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Abstract: Accurate characterization of forest litter is of high interest for land surface modeling
and for interpreting remote sensing observations over forested areas. Due to the large spatial
heterogeneity of forest litter, scattering from litter layers has to be considered when sensed using
microwave techniques. Here, we apply a full-waveform radar model combined with a surface
roughness model to ultrawideband ground-penetrating radar (GPR) data acquired above forest litter
during controlled and in situ experiments. For both experiments, the proposed modeling approach
successfully described the radar data, with improvements compared to a previous study in which
roughness was not directly accounted for. Inversion of the GPR data also provided reliable estimates
of the relative dielectric permittivity of the recently fallen litter (OL layer) and of the fragmented
litter in partial decomposition (OF layer) with, respectively, averaged values of 1.35 and 3.8 for the
controlled experiment and of 3.9 and 7.5 for the in situ experiment. These results show the promising
potentialities of GPR for efficient and non-invasive characterization of forest organic layers.
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1. Introduction

Accurate soil surface characterization is essential for the understanding and the modeling of
the various processes occurring at the soil-vegetation-atmosphere interface. In particular, soil water
content is a fundamental soil state variable in many fields such as hydrology, soil and water resource
management or meteorology. Therefore, L-band (1–2 GHz) remote sensing missions like the ESA Soil
Moisture and Ocean Salinity (SMOS) or the NASA Soil Moisture Active Passive (SMAP) satellites have
been especially designed for the large scale measurement of this key variable [1,2]. Yet, though soil
water content estimations with reasonable accuracy are generally obtained from remote sensing data
over grasslands and crops [3,4], much larger uncertainties are usually associated with corresponding
estimates for forested areas mainly due to the presence of litter on the forest floor [5–7]. Indeed,
this layer, consisting essentially of shed vegetative parts and organic matter in various stages of
decomposition at the soil surface, was found to significantly reduce the sensitivity of the remote sensing
signal to the water content of the underlying mineral soil [5,7–10]. Furthermore, forest litter is also
acknowledged to have a significant influence on the backscattered signal of synthetic aperture radar
(SAR) used in other microwave remote sensing missions (e.g., Sentinel-1) to determine biophysical
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properties of forest canopies, leading potentially to inaccuracies and bias in the estimations of canopy
parameters (e.g., tree height, canopy architecture, aboveground biomass and water content) [11–13].
Consequently, the presence of litter has to be accounted for in the electromagnetic models used
to process microwave remote sensing data acquired over forests [8,10,14–16]. Knowledge of the
electromagnetic properties and their spatiotemporal dynamics of this compartment is required for
proper modeling of remote sensing microwave data. However, although the effects of the forest litter on
microwave remote sensing are now well recognized and despite the research efforts undertaken over
the past few years in that direction (e.g., [14,17]), in situ experiments related to this topic remain scarce.

Besides, soil organic layers are important components of forest ecosystems, notably with regard
to carbon balance or to water and nutrient cycling as well as to soil protection or population dynamics
of ground vegetation and soil fauna [18–24]. These matters require detailed characterization of humic
horizons, especially in the context of global warming and climate change feedback effects [25,26].
In addition, forest litter thickness and composition usually present a relatively large spatial variability
under the combined influence of stand characteristics with climatic, biological and anthropogenic
factors [27–30]. Nevertheless, methods traditionally used to characterize forest litter and to capture its
spatial variability are tedious, time consuming and disturbing or destructive.

Given its ability to provide efficient and non-invasive characterization of soil and materials,
ground penetrating radar (GPR) appears as being a particularly convenient tool to characterize
litter layers with fine spatial and/or temporal resolutions over relatively large areas. Moreover,
this geophysical technique could also be used to both study the effects of litter on the microwave signal
from proximal measurements and determine litter constitutive properties. This information could then
subsequently be used in remote sensing radiative transfer models. Nevertheless, few studies have
investigated the potentialities of GPR to characterize litter. In a first study, Winkelbauer et al. [31]
successfully retrieved the total thickness of humus horizons and could reconstruct its spatial variability
using a time domain GPR system equipped with a 800 MHz centre-frequency antenna. However,
these authors could not delineate the different humus horizons, presumably as a result of the rather
low operating frequency combined with the limited dielectric contrast between horizons and their
generally small thicknesses. More recently, using an off-ground ultrawideband stepped-frequency
continuous-wave (SFCW) GPR and resorting to full-wave inversion of the radar data [32], André et al.,
demonstrated the ability of the technique to retrieve litter layer thicknesses and to provide reliable
estimates of their constitutive properties in both controlled [33] and in situ [34] conditions.

In other respects, surface roughness may strongly affect backscattered electromagnetic signals
by engendering diffuse reflection, also referred to as scattering, while most of the energy would be
reflected in the specular direction on a smooth surface. As a result, either for remote or proximal
sensing data, surface roughness effects have to be considered in signal processing and have been a
matter of intense research work for many years. Rough surface scattering may be modeled through
either semi-empirical, analytical or numerical approaches. Semi-empirical methods consist of simple
physically-based equations with parameters fitted experimentally and their validity is usually restricted
to the conditions from which they have been established. Analytical approaches are based on a physical
description of wave scattering on a rough surface using approximations and/or assumptions so as to
derive close form equations for modeling the backscatter, and their applicability is thereby limited to
the conditions for which these assumptions are valid. In contrast, numerical methods solve directly
the Maxwell equations for a numeric physical reconstruction of the investigated surface to provide the
results of the scattering on that surface. Therefore, numerical methods are more accurate than the two
former approaches and are usually considered as references. Yet, they are much more computationally
intensive methods, which limits their usage compared to semi-empirical and analytical approaches,
especially in an inversion framework. In the specific case of off-ground GPR, Jonard et al. [35]
combined the full-waveform GPR model of Lambot et al. [32] with the Ament roughness model
derived from the Kirchhoff scattering theory [36,37]. Despite the abundant literature on surface
roughness effects on electromagnetic signals, only a few studies focused on the scattering and emission
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from litter layers. Among these works, Della Vecchia et al. [38] included the contribution of litter
in forest radiative transfer models using an effective medium approach by considering the litter
layer as a mixture of leaves, water and air and they accounted for its roughness through IEM, while
Lawrence et al. [39] used a FEM approach for modeling rough surface scattering and emission of
soil and litter layers. André et al. [33,34] considered frequency dependence of litter effective electrical
conductivity to account for the effects of both relaxation and scattering phenomena on the radar signal.

In the present paper, we apply the combined full-waveform and roughness radar model proposed
by Jonard et al. [35] to the GPR data from the controlled and in situ experiments of André et al. [33,34]
in order to investigate the ability of the approach to properly reconstruct litter horizons, and to evaluate
thereby the potentiality of the technique to provide quantitative characterization of litter for both
surface roughness and horizon constitutive properties. The results of the present approach including
a physical description of scattering through a roughness model are compared with those obtained
previously by considering frequency dependence of effective electrical conductivity of litter to account
for scattering together with dielectric losses.

2. Material and Methods

This section describes the experimental setups, the electromagnetic model used to process the
GPR data and the statistics considered to analyze the results. The symbols used to represent the
different parameters are listed in Table 1 along with a brief description of their meaning.

Table 1. List of parameter symbols and their meaning.

Symbol Description

f frequency (Hz)
λ free space wavelength of the incident wave (m)
pc antenna phase center (m)

S11( f ) complex ratio between the backscattered and the incident electromagnetic fields (−)
R0( f ) global reflection of the radar antenna in free space (−)
Rs( f ) global reflection for the field incident from the layered medium onto the field point (−)
Ti( f ) global transmission coefficient for the field incident from the VNA reference calibration plane onto the point source (−)
Ts( f ) global transmission coefficient for the field incident from the layered medium onto the field point (−)

G↑xx( f ) frequency domain Green’s function, representing the response of the air-subsurface system (−)
g↑xx(t) time domain Green’s function (−)
RF

TE transverse electric global reflection coefficient for multilayered medium with smooth surface (−)
RF

TM transverse magnetic global reflection coefficient for multilayered medium with smooth surface (−)
RR

TE transverse electric global reflection coefficient for multilayered medium with rough surface (−)
RR

TM transverse magnetic global reflection coefficient for multilayered medium with rough surface (−)
ρ scattering loss factor (−)
γi incidence angle (rad)
sr standard deviation of the litter surface height (m)
h0 height of the radar antenna above litter surface (m)

hOL thickness of the OL litter layer (m)
hOF thickness of the OF litter layer (m)
h1 litter thickness (m)

= hOL for the OL litter configuration (see Figure 1a)
= hOF for the OF litter configuration (see Figure 1b)
= hOL+hOF for the OL-OF litter configuration (see Figure 1c)

σ0 air layer electrical conductivity, set to 0 Sm−1

σ0.8 GHz, OL OL litter layer electrical conductivity at 0.8 GHz, set to 0 Sm−1

σ0.8 GHz, OF OF litter layer electrical conductivity at 0.8 GHz, set to 0 Sm−1

σA A horizon electrical conductivity, set to 0 Sm−1

εr, 0 air layer relative dielectric permittivity, set to 1 (−)
εr, OL OL litter layer relative dielectric permittivity (−)
εr, OF OF litter layer relative dielectric permittivity (−)
εr, A A horizon relative dielectric permittivity (−)
aOL linear variation rate of OL litter layer effective electrical conductivity with frequency (SHz−1m−1)
aOF linear variation rate of OF litter layer effective electrical conductivity with frequency (SHz−1m−1)
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Figure 1. Schemes of the experimental setup for (a) the single recently fallen (OL) layer, (b) the single
fragmented (OF) layer and (c) the OL-OF litter configurations. Adapted from [33].

2.1. Experimental Setups

Both the controlled and the in situ experiments were carried out in the “Bois de Lauzelle”, located
nearby the city of Louvain-la-Neuve in central Belgium.

The controlled experiment was performed on 25 July 2012 within a beech stand situated on
a leached brown soil (Luvisol according to the Food and Agricultural Organization of the United
Nations (FAO) classification) with a moder type humus composed of well-developed recently fallen
(OL) and fragmented (OF) litter layers [40]. The setup consisted in a square wood frame 1.0 m ×
1.0 m wide and 0.2 m high placed on a flat area after removal of the organic horizons, the mixed
organo-mineral A horizon constituting therefore the bottom layer (lower half-space in the model).
A first radar measurement was performed without the litter layers to characterize the properties
of this A horizon. Litter was then collected in the surrounding area and was placed into the wood
frame according to three different litter configurations: (1) a single OL layer, (2) a single OF layer and
(3) an OF layer overlaid by an OL layer (Figure 1). For each configuration, litter was progressively
added so as to consider different litter thickness levels, namely, nine OL levels (with 2.5, 3.8, 5.4,
6.3, 7.8, 8.9, 10.3, 12.8 and 17.0 cm for OL thickness), four OF levels (with 2.6, 3.9, 5.0 and 6.3 cm for
OF thickness) and four OL-OF levels (with 4.7, 6.0, 7.2, and 8.8 cm for OL + OF thickness). A GPR
measurement was performed after each litter addition so as to acquire radar data for each level and
the height of the radar antenna above the litter surface (h0) and the litter thickness (h1) were then
measured to the nearest millimeter with a measuring tape using a cardboard plane placed horizontally
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at the litter surface: h0 corresponds to the vertical distance between the antenna aperture and the
cardboard, while h1 was determined by subtracting from the wood frame height (i.e., 0.2 m, see above)
the vertical distance measured between the cardboard and the wood frame top. The litter volumetric
and gravimetric water contents were determined using the oven-drying method at 105 ◦C for at least
48 h. The measured volumetric water content amounted to 1.4% and 22.8% for the OL horizon and the
OF horizon, respectively.

The in situ experiment was conducted on 19 June 2014 along a 100 m length transect
crossing stands of various deciduous and coniferous tree species, namely, pure western hemlock
(Tsuga heterophylla (Raf.) Sarg.) stands, a mixed hemlock and common beech (Fagus sylvatica L.)
stand, a clearing, a mixed deciduous stand with common beech, northern red oak (Quercus rubra L.)
and pedunculate oak (Quercus robur L.), and a Norway spruce (Picea abies (L.) H. Karst) stand.
GPR measurements and litter ground truth data were collected at 21 locations along the transect,
in situations contrasting in terms of litter thickness and species composition. The encountered humus
types ranged from acidic mull under the deciduous trees to moder in the coniferous stands.

GPR measurements were carried out at three different positions around each location so as to
capture the local spatial variability of litter properties. In addition, radar measurements were repeated
twice at each position in order to integrate measurement errors likely to arise from small movements
of the antenna held manually during data acquisition (see Section 2.2). After radar measurements,
litter was collected by monolith sampling at each GPR measurement location using a square 0.09 m2

area metal frame and placed in hermetic plastic bags for bulk density and volumetric water content
determination in the laboratory. OL and OF litter layer thicknesses were measured to the nearest
millimeter in the middle of each side of the sampling square, using a measuring tape. Finally, litter was
removed over wider areas (c.a., 1.0 m × 1.0 m) centered on each sampling location and a second set
of radar data was collected for characterizing the properties of the organo-mineral A horizon, which
was considered as the bottom layer of the litter profile (i.e., lower half-space of the electromagnetic
model configuration). Contrary to the controlled experiment, both the OL and OF litter layers were
systematically present for these natural, undisturbed, situations and only the OL-OF litter configuration
(see Figure 1c) was considered when processing the GPR data in the presence of litter.

Pictures of the setups for both experiments are presented in Figure 2. We refer to [33] and to [34]
for detailed descriptions of the controlled and in situ experiments, respectively.

(a) (b)

Figure 2. Pictures of the experimental setups for the (a) controlled (from [33]) and (b) in situ experiments.

2.2. Radar Measurements

For both the controlled and the in situ experiments, the radar measurements were carried out
using an ultra wideband stepped-frequency continuous-wave radar connected to a transmitting
and receiving doubled-ridge horn antenna (BBHA 120 A, Schwarzbeck Mess-Elektronik, Schönau,
Germany) operating at about 30 cm above the medium. The antenna has a 14 × 24 cm2 aperture
area and is 22 cm high. Its nominal frequency range is 0.8 to 5.2 GHz and the isotropic gain ranges
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from 4.4 to 14.0 dBi. The antenna was connected to the reflection port of a vector network analyzer
(VNA, ZVL, Rohde & Schwarz, Munich, Germany) with a high quality N-type 50-Ω coaxial cable.
The VNA was calibrated at the connection between the coaxial cable and the antenna using a standard
Open-Short-Match (OSM) calibration kit. The frequency-dependent complex ratio S11( f ) between the
returned and the emitted signals was measured sequentially at 734 evenly stepped frequencies from 0.8
to 5.2 GHz with a frequency step of 6 MHz, f being the frequency. For the the controlled experiment,
the antenna was fixed on a rigid fiberglass tube to ensure its stability during the measurements.
In contrast, the antenna was held manually by the operator during the in situ experiment, the forest
floor micro-relief and the rather high stand density making difficult the use of an antenna support
in this case.

2.3. Radar Data Processing

2.3.1. Radar Model

The antenna being located in the far-field region in both experiments (see [41]), the distribution of
the backscattered field over the antenna aperture is homogeneous and the far-field model proposed by
Lambot et al. [32] can be applied. In this approach, the antenna is described using (1) a single
point source and receiver located at its phase centre and (2) global reflection and transmission,
frequency-dependent coefficients to account for the internal antenna variations of impedance.
The radar equation is formulated in the frequency domain as [32,42]:

S11( f ) =
b( f )
a( f )

= R0( f ) +
Ts( f )G↑xx( f )Ti( f )

1− G↑xx( f )Rs( f )
(1)

where S11( f ) is the measured complex ratio between the backscattered b( f ) and the incident a( f )
fields at the VNA reference plane, R0( f ) is the global reflection coefficient of the antenna in free space,
Ti( f ) and Ts( f ) are the global transmission coefficients for the field incident from the VNA reference
calibration plane onto the point source and for the field incident from the layered medium onto the
field point, respectively, accounting for the gain and phase delay, and Rs( f ) is the global reflection
coefficient for the field incident from the layered medium onto the field point leading in particular
to the interactions between the antenna and the medium. G↑xx( f ) is a Green’s function representing
the response of the air-subsurface system and is formulated as an exact solution of the 3-D Maxwell’s
equations for electromagnetic waves propagating in planar layered media. It is defined as the x-directed
component of the reflected electric field for a unit-strength x-directed electric source and it is derived
using a recursive scheme to compute the transverse electric (TE) and magnetic (TM) global reflection
coefficients of the multilayered medium in the spectral domain [43,44]. The transformation back
to the spatial domain is performed by evaluating numerically a semi-infinite integral using a fast
evaluation method [45]. The antenna transfer functions are determined from radar measurements
over well characterized medium configurations for which the corresponding Green’s functions
can be computed [32,46].

Rearranging Equation (1), it is possible to filter the antenna effects out of the raw radar data
and obtain in this way the observed Green’s function G↑meas

xx ( f ) corresponding to the medium
response only:

G↑meas
xx ( f ) =

S11( f )− R0( f )
S11( f )Rs( f ) + T( f )− R0( f )Rs( f )

, (2)

where T( f ) = Ts( f )Ti( f ).

2.3.2. Model Configurations

The GPR data acquired directly above the A horizon (i.e., before placing litter in the wood frame
for the controlled experiment, and after litter removal in the in situ experiment) were processed
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considering a two-layer electromagnetic model in order to characterize the A horizon. The first layer
represents the air layer between the antenna and the soil surface. Its electrical conductivity and relative
dielectric permittivity values were set to the theoretical values σ0 = 0 Sm−1 and εr,0 = 1, respectively,
and its thickness corresponds to the sum of the distance between the antenna phase center and its
aperture (pc = 7.14 cm) with the antenna height (h0). The second layer is the lower half-space and
represents the A horizon. Its electrical conductivity was set to σA = 0 Sm−1, referring to the findings
of [47]. Accordingly, the corresponding radar data were inverted for h0 and A horizon relative dielectric
permittivity (εr,A) focusing on the surface reflection (see Section 2.3.3).

The model configuration used to analyze the GPR data acquired in the presence of litter was
adapted as a function of the litter configuration. A three-layer electromagnetic model was considered
for the single OL layer and the single OF layer configurations of the controlled experiment, while
a four-layer model was adopted to process the data for the controlled OL-OF configuration as well
as those of the in situ experiment. As for the A horizon configuration, the first layer corresponds
to the air layer between the antenna phase center and the litter surface and the lower half-space
represents the A horizon. The relative dielectric permittivity of this latter horizon was set to the value
retrieved from inversion of the signal in the absence of litter. The intermediate layer(s) correspond(s)
to OL and/or OF litter.

André et al. [33,34] showed that proper modeling of radar data collected above litter requires
frequency dependence of medium properties to be considered in order to account for both scattering
and dielectric losses occurring within litter horizons. In these works, radar data were successfully
reproduced by the electromagnetic model when the frequency dependence of litter effective electrical
conductivity was described by the following linear equation:

σ( f ) = σ0.8 GHz + a( f − 0.8× 109), (3)

where σ0.8 GHz is the reference electrical conductivity at 0.8 GHz and a is the linear variation rate of
σ( f ). Furthermore, as evidenced by the findings of the previous studies, σ0.8 GHz was considered as
equal to 0 Sm−1. Indeed, dielectric losses due to relaxation of water molecules become essentially
significant above 1 GHz, the relaxation frequency of free water being around 17 GHz.

Jonard et al. [35] adapted the electromagnetic model to account for surface roughness. In this
model, the scattering losses in the specular direction due to the reflection on the rough surface are
considered by multiplying the global reflection coefficients by a scattering loss factor (ρ), which is
based on the Rayleigh parameter expressed as a function of frequency and is formulated as:

ρ = e−
1
2

(
4πsr cos γi

λ

)2

, (4)

where sr is the standard deviation of the surface height, γi is the incidence angle and λ is the free space
wavelength of the incident wave. Then, the modified TE- and TM-mode reflection coefficients, RR

TE
and RR

TM, accounting for the reduction of the energy reflected in the specular direction are defined as:

RR
TE(TM) = ρRF

TE(TM), (5)

with RF
TE and RF

TM being the corresponding global reflection coefficients for a smooth surface.
Equation (5) assumes a Gaussian distribution for the surface heights with negligible sharp edge
and shadowing effects. The model also considers the absence of multiple scattering [37].

For the present study, the incidence is normal (γi = 0) and the model is applied to the
spectral-domain global reflection coefficients of the first interface (i.e., litter surface) of the layered
medium. Both the controlled and the in situ data sets were processed using this approach in order
to investigate the ability of the model to describe radar data collected above litter and to evaluate
its performances with regard to the preceding approach. Several model parameterizations were
tested, considering either exclusively the roughness model to account for the dispersive properties
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of litter or applying it jointly with the linear frequency dependent model presented in Equation (3).
In all cases, the magnetic permeability µ of each layer was assumed as equal to that of free space
(i.e., µ0 = 4π × 10−7 Hm−1), which holds for nonmagnetic materials as found in litter and soils in
most environments [48,49].

2.3.3. Model Inversion

As aforementioned, radar data inversion for the dielectric permittivity of the A horizon after
litter removal was carried out in the time domain by focusing on the surface reflection, adopting
the approach proposed by [47]. According to this procedure, the objective function to be minimized
is formulated as:

φ1(b) = |g↑meas
xx − g↑mod

xx |T|g↑meas
xx − g↑mod

xx |, (6)

where g↑meas
xx (t) = g↑meas

xx (t)|tmax
tmin

and g↑mod
xx (t, b) = g↑mod

xx (t, b)|tmax
tmin

are, respectively, the observed and
simulated Green’s functions in the time domain over the [tmin tmax] time window including the surface
reflection, b is the vector of parameters to be estimated (i.e., h0 and εr,A). Optimization was carried out
using the local Levenberg–Marquardt algorithm [50].

Inversion of the GPR data collected above litter was performed in the frequency domain by
minimizing the objective function defined as follows:

φ2(b) = |G↑meas
xx − G↑mod

xx |T|G↑meas
xx − G↑mod

xx |, (7)

where G↑meas
xx ( f ) and G↑mod

xx ( f , b) are, respectively, the observed and simulated Green’s functions in
the frequency domain. In this case, the optimized parameters b correspond to the electromagnetic
properties and the thicknesses of the litter layers (i.e., εr,OL, εr,OF, aOL, aOF, hOL, hOF, sr) and the
antenna height h0. Besides, a simplified model was also tested by neglecting aOL and/or aOF, in order
to investigate the relevance of accounting for the frequency dependence of the effective electrical
conductivity of the litter layer(s) when applying the roughness model as well as to reduce the number
of unknowns. Given the complex topography of the objective function and the large dimension of
the parameter space, inversion of these data was carried out by combining sequentially the global
multilevel coordinate search (GMCS) algorithm [51] with the Levenberg–Marquardt algorithm [52,53].

2.4. Statistics

For result comparison, the same statistical tests and measures of agreement as reported by
André et al. [34] were used to examine the correspondence between estimated and measured values of
litter layer thicknesses for the in situ experiment. Statistical tests consisted in a paired Student’s t-test
and in a linear regression between two sets of values and the selected measures of agreement were the
Pearson’s correlation coefficient (r), the root mean square error (RMSE) and the fractional bias (FB)
defined as follows by Janssen et al. [54]:

FB =
E−M

1/2(E + M)
, (8)

where E and M are, respectively, the means of the estimated and measured values of the
considered parameter.

The paired Student’s t-test and FB quantify the bias between compared values. The regression
analysis tests for the significance of the deviation of the intercept and of the slope from 0 and 1,
respectively. If the slope is close to 1, an intercept significantly different from zero reflects the presence
of systematic differences between compared values, while deviation of the slope from 1 indicates
proportional bias. Linear regression coefficients were determined through total least squares to account
for the fact that both the dependent and the independent regression variables (i.e., the estimated
and measured litter thicknesses) were associated with errors [55]. Confidence intervals of regression
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coefficients were established using the bootstrap percentile method considering 10,000 replicated
computations [56]. According to this procedure, the lower and upper interval limits are, respectively,
the 250th (10,000 × α/2) and the 9750th (10,000 × (1−α/2)) ordered values of the replications, α being
the significance level (fixed to 0.05). Finally, the correlation coefficient quantifies the strength of the
linear relationship between the two compared variables and the RMSE expresses the discrepancy
between paired values.

Such statistics were not considered for the controlled experiment for which graphical comparisons
of estimates with measurements and with previous results are more straightforward than for the in
situ experiment given the lower number of observations and the better agreement found between
measured and estimated litter thicknesses (see below).

3. Results and Discussion

3.1. Radar Signal Modeling

Full-wave inversion of the GPR signal was used to evaluate the applicability of the proposed radar
model accounting for surface roughness to forest litter characterization. Measured Green’s functions
(see Equation (2)) and modeled Green’s functions obtained from radar data inversion are presented in
Figures 3 and 4 for the controlled and the in situ experiments, respectively. Modeled Green’s functions
reported by André et al. [33,34] for the model considering only frequency dependence of litter effective
electrical conductivity are also shown for comparison. Though the GPR data were acquired between
0.8 and 5.2 GHz, radar signal inversions focused over the 0.8–4 GHz and the 0.8–2.2 GHz bands for
the controlled and the in situ experiments, respectively, due to the presence of noise in the data at
higher frequencies. This noise would notably result from small movements of the antenna during the
measurements, especially for the in situ experiment for which the antenna was held manually by the
operator (see above).

For the controlled experiment, close correspondence is generally observed between the measured
and the modeled Green’s functions, as illustrated in Figure 3 with data selected for each of the three
considered litter configurations. In each case, the phase in the frequency domain and, as a result,
the propagation time in the time domain are well reproduced by the model. On the other hand, some
differences appear between the amplitudes of the measured and modeled Green’s functions, especially
in the more complex cases (i.e., OL-OF configuration). These differences are particularly noticeable in
the frequency domain, while in the time domain, quite good agreement is found for the main reflections
and most of the discrepancies between measured and modeled Green’s functions are observed at
larger propagation times, corresponding to the lower half-space. Besides, comparing modeled Green’s
functions, good correspondence is also generally found between the model considering only frequency
dependence of litter effective electrical conductivity (blue curves), the model accounting for both
surface roughness and frequency dependence of litter effective electrical conductivity (red curves)
and the model considering surface roughness only (green curves). Yet, pronounced discrepancies
between model versions are sometimes observed, as notably in Figure 3c for the OL-OF configuration.
These discrepancies mainly occur between the model considering only frequency dependence and
the models accounting for surface roughness, while close correspondence is found between the
two model versions including surface roughness (i.e., with or without consideration of frequency
dependence). Comparison of the models through examination of the values of the objective functions
at optimum parameter estimates (φ2) confirms the preceding observations and reveals that the models
accounting for surface roughness often present smaller φ2 values and, therefore, closer agreement
than the model considering only frequency dependence of effective electrical conductivity (Figure 5a).
Such observations would indicate the significance of accounting for surface roughness when modeling
radar data acquired above forest litter. In contrast, the relatively small differences among both model
versions including surface roughness suggest irrelevance of considering frequency dependence of
litter effective electrical conductivity when accounting for roughness. This will be corroborated by
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analysis of the parameter inversion results (see Section 3.2). These findings are of interest for the
characterization of litter layers from radar data as neglecting frequency dependence parameters aOL

and aOF allows to reduce the complexity of the inverse problem, leading thereby to potentially more
stable estimates of the other litter properties.
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Figure 3. Measured (black curves) and modeled Green’s functions in the frequency and the time
domains for selected litter thickness levels of the (a) OL, (b) OF and (c) OL-OF configurations
of the controlled experiment. The blue curves correspond to modeled Green’s functions for the
model considering only frequency dependence of litter effective electrical conductivity, reported by
André et al. [33], the red curves represent modeled Green’s functions for the model accounting for both
surface roughness and frequency dependence of litter effective electrical conductivity, and the green
curves are modeled Green’s functions for the model considering surface roughness only.
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Figure 4. Measured (black curves) and modeled Green’s functions in the frequency and the time
domains for four contrasted situations of the in situ experiment: (a) litter of pure hemlock stand,
(b) litter of mixed hemlock-beech stand, (c) litter in the clearing and (d) litter of the mixed deciduous
stand. The blue curves represent the modeled Green’s functions for the model considering only
frequency dependence of litter effective electrical conductivity, reported by André et al. [34], and the
green curves are the modeled Green’s functions for the model accounting for surface roughness only.

Based on the results from the controlled experiment showing irrelevance of considering frequency
dependence of litter effective electrical conductivity when surface roughness is included in the
electromagnetic model and for the sake of conciseness, only the model accounting exclusively
for surface roughness was considered when processing GPR data from the in situ experiment.
As for the controlled conditions, generally close correspondence between measured and modeled
Green’s functions was found for in situ data, especially in the time domain and for the phase in the
frequency domain while more noticeable discrepancies appear for the amplitude in the frequency
domain. This is illustrated in Figure 4 with data from four contrasted situations along the measurement
transect (i.e., pure hemlock stand, mixed hemlock-beech stand, clearing, and mixed deciduous
stand). Similarly, good agreement is generally observed between the model accounting for frequency
dependence of litter effective electrical conductivity proposed by André et al. [34] (blue curves) and
the model considering surface roughness (green curves) though discrepancies between both models
are also present, especially for the amplitude in the frequency domain. Contrary to the controlled
experiment, the comparison of the two model versions based on the objective function values at
parameter optimum shows no systematic ranking among the different measurement locations along
the transect (Figure 5b). Moreover, as shown by the generally overlapping errors bars depicting the
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95% confidence intervals for φ2, no significant differences are observed among performances of both
model versions in terms of agreement with the data.
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Figure 5. Variations of the objective function logarithm at optimum parameter estimates (log10(φ2))
as a function (a) of measured litter thickness for the controlled experiment and (b) of measurement
location along the transect of the in situ experiment.

3.2. Estimates of Litter Properties

3.2.1. Litter Layer Thicknesses

Inversion estimates of litter layer thicknesses are compared to corresponding measured values
in Figures 6 and 7 for the controlled and the in situ experiment, respectively. For the controlled
experiment, the results are distinguished for the different litter configurations using separate marker
types, namely, triangles for single OL layer (see Figure 1a), squares for single OF layer (see Figure 1b)
and circles for OL-OF litter (see Figure 1c). Furthermore, results are presented for the model proposed
by André et al. [33] considering only frequency dependence of litter effective electrical conductivity
(blue markers), for the model accounting for both surface roughness and frequency dependence of
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litter effective electrical conductivity (red markers) and for the model considering surface roughness
only (green markers). For the in situ experiment, marker colors are used to distinguish the different
stand compositions at measurement locations. As stated before, only the OL-OF litter configuration
(see Figure 1c) was considered for this latter experiment.

h1= hOL for OL litter configuration (Figure 1a)
= hOF for OF litter configuration (Figure 1b)
= hOL+hOF for OL-OF litter configuration (Figure 1c)

(a)

hOL for OL-OF litter configuration (Figure 1c)

(b)

hOF for OL-OF litter configuration (Figure 1c)

(c)

Figure 6. Comparison of inversion estimates of litter layer thicknesses (a) h1, (b) hOL and (c) hOF

with corresponding measured values for the controlled experiment. Results are presented for the
model considering only frequency dependence of litter effective electrical conductivity reported
by André et al. [33] (blue markers), for the model accounting for both surface roughness and frequency
dependence of litter effective electrical conductivity (red markers) and for the model considering
surface roughness only (green markers). Marker types specify litter configurations. The dashed line
is the 1:1 line. Error bars for h1 are 1.96 × sr estimates; for the sake of legibility, these are shown for
OL litter only.
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(a) (b)

(c) (d)

Figure 7. Comparison of inversion estimates for (a) OL litter layer thickness hOL, for (b) OF litter layer
thickness hOF and for (c) total litter thickness h1 with corresponding measured values, and of (d) total
litter thickness estimates corrected by surface roughness coefficient (h1 + 1.96× sr) with measured total
litter thickness, for the in situ experiment. The OL-OF litter configuration (see Figure 1c) is considered.
Marker colors specify stand composition at each measurement location. Vertical and horizontal error
bars represent 95% confidence intervals for the six estimated values and for the four measured values
at each location, respectively. The dashed line is the 1:1 line.

For the controlled experiment, close correspondence is generally observed between measured
litter thicknesses h1 and corresponding inverse estimates (Figure 6a). RMSE values found when
accounting for roughness only amount to 22.6× 10−3 m, to 4.9× 10−3 and to 8.0× 10−3 for the OL,
OF and OL-OF configurations, respectively.

The larger RMSE value for OL litter mainly results from systematic underestimation of litter
thicknesses for this configuration. Differences in considering the position of litter surface between
the model and for litter thickness ground truth measurements might explain these observations.
Indeed, a cardboard plane placed on litter was used as a reference for litter surface for determination
of litter thickness ground truth values (see Section 2.1). As a result, litter surface was assumed
in this case as corresponding to the top of peaks of surface roughness. In contrast, in the models
accounting for roughness, litter surface was considered as the average level of the roughness peaks
and troughs, the roughness coefficient sr being defined as the standard deviation of the surface height.
Therefore, thickness estimates provided by the model considering roughness are expected to have
lower values than corresponding ground truth measurements. It is worth to note that the two models
accounting for roughness, with and without consideration of frequency dependence of litter effective
electrical conductivity, generally provide identical (i.e., to the neatest millimeter) thickness estimates.
One exception is the case with the largest litter thickness for which the model considering roughness
only provides a much lower thickness estimated value than the model accounting for both roughness
and frequency dependence. This outlier point would presumably arise from an inversion problem.
Similarly as for the comparison with the ground truth thickness values, the models accounting for
roughness provide systematically lower estimates of OL litter thickness compared to the values
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retrieved by André et al. [33] with the model considering only frequency dependence of litter apparent
electrical conductivity. In the latter model, litter surface is defined as the air-litter interface and the
litter roughness peaks are then part of the litter layer thickness, which corresponds to the reference
adopted to determine ground truth thicknesses. As a result, closer agreement (RMSE = 8.5× 10−3 m)
was found by André et al. [33] between estimated and measured OL litter thickness than observed
in the present study with the roughness model. Yet, adding estimations of roughness peak heights
derived from sr coefficient to OL thickness estimates obtained when considering roughness improves
the agreement with measured thickness values. This is illustrated in Figure 6a by the error bars
representing 1.96 × sr which, according to the assumption of Gaussian distribution considered for
surface height variations due to roughness, would correspond to the intervals containing 95% of the
peak and trough amplitude values around the average surface height level. The upper limit of this
interval is in most cases (except the outlier point) close to the 1:1 line and/or to the André et al. [33]
thickness estimate values, indicating that “roughness thickness” would at least partly explain the
underestimation of OL litter layer thickness noticed when accounting for roughness.

Contrary to the OL configuration, systematic h1 underestimation is not found for the OF and
OL-OF litter configurations for which good agreement between estimated and measured litter thickness
values is observed. The absence of underestimation for the OF configuration would result from the
lower levels of OF litter roughness as revealed by the smaller corresponding sr estimates compared with
OL litter (see below). The explanation for the absence of underestimation is less obvious for the OL-OF
configuration. It could notably arise from the larger complexity of the inverse problem compared with
the single litter layer configurations due to the larger set of parameters to be estimated, potentially
giving rise to larger uncertainties affecting the estimations. In other respects, compared to the model
proposed by André et al. [33], OF and OL-OF litter thickness estimates from the models considering
roughness show closer agreement with ground truth measurements, especially for the largest thickness
levels. As already pointed out above when comparing the objective functions (see Section 3.1), such
observations would indicate that accounting for roughness would allow for improved modeling of
radar data collected over forest litter compared with the model based on frequency dependence of
litter effective electrical conductivity, presumably as a result of a more physical description of the
scattering phenomena occurring at the rough surface.

Regarding the individual OL and OF layers for the OL-OF litter configuration, poorer agreements
are found between estimated and measured thicknesses hOL and hOF (Figure 6b,c). For the OL layer,
such results could partly arise from the quite narrow range of thickness values considered for this
configuration, which imperil the identification of any significant relationship between both sets of
values. Besides, the relatively limited dielectric contrast between the OL and the OF litters (see
below) leading to inaccurate delineation of the two layers through signal inversion may also explain
the weak correspondence between thickness estimations and measurements, which is corroborated
by the rather close correspondence found for total litter thickness h1 for the same configuration
(Figure 6a). Indeed, such a close correspondence for h1, defined as hOL + hOF, indicates that total litter
layer is well reconstructed and, therefore, that overestimations observed for hOL are compensated by
underestimations for hOF, and inversely.

Finally, it is worth noting that divergences between litter thickness estimations and corresponding
ground truth values may also partly result from inaccuracies in the measurement of litter thicknesses.
These inaccuracies have been quantified below for the in situ experiment through repetitions of the
litter layer thickness measurements at each location.

For the in situ experiment, plots presenting estimated litter layer thickness as a function of ground
truth values present larger dispersion of the points around the 1:1 line than observed for the controlled
experiment (Figure 7). The corresponding statistics are presented in Table 2 for both the complete
data set and a restricted data set for which the two points presenting extreme high measured values
for hOL and h1 in the mixed hemlock-beech stand were not considered to avoid misinterpretation
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of the results due to the predominant influence of these two points on the statistics compared with
the other observations.

Table 2. Statistical comparisons between measured and inversely estimated litter layer thicknesses for
the in situ experiment.

Parameter Paired t-Test FB a RMSE b
r c (p-Value) Total Least Squares Regression

t-Ratio (p-Value) (m) Intercept [CI95] d Slope [CI95] d

All Data
hOL −0.098 (0.923) −0.0004 0.009 0.585 (0.005) −0.006 [−0.028; 0.017] 1.10 [0.26; 1.82]
hOF −0.094 (0.926) −0.0010 0.017 0.630 (0.002) 0.009 [−0.004; 0.022] 0.59 [0.26; 0.89]

h1 = hOL + hOF −0.137 (0.892) −0.0027 0.020 0.740 (0.001) 0.010 [−0.010; 0.033] 0.69 [0.37; 0.99]
h1 + 1.96 × sr 0.006 (0.996) −0.0001 0.016 0.760 (0.001) 0.013 [−0.007; 0.039] 0.80 [0.45; 1.10]

Restricted Data Set
hOL −0.100 (0.922) −0.0003 0.008 0.352 (0.139) −0.013 [−0.072; 0.035] 1.38 [−0.43; 3.55]
hOF −0.076 (0.940) −0.0007 0.015 0.628 (0.004) 0.008 [−0.008; 0.020] 0.66 [0.31; 1.01]

h1 = hOL + hOF −0.132 (0.896) −0.0020 0.016 0.709 (0.001) 0.005 [−0.017; 0.027] 0.80 [0.46; 1.12]
h1 + 1.96 × sr −0.029 (0.977) 0.0005 0.014 0.737 (0.001) 0.007 [−0.014; 0.032] 0.92 [0.56; 1.24]

a Fractional bias (see Equation (8)), b Root mean square error, c Pearson’s correlation coefficient, d 95% confidence
interval established using the bootstrap percentile method (see Section 2.4.)

RMSE values found for hOL are close to 1 cm while values ranging from 1.5 cm to 2 cm are
observed for hOF and h1. For hOL, these RMSE values are in agreement with that found above for the
controlled experiment as well as with those reported by André et al. [33,34]. Regarding hOF and h1,
RMSE values correspond with results for the in situ experiment using the model considering only
frequency dependence of litter effective electrical conductivity [34], while they are up to three times
higher than the values obtained for the controlled experiment (see above and [33]). On the other
hand, in contrast to RMSE, correlation coefficients r indicate closer agreement between estimated and
measured thicknesses for h1 and hOF than for hOL. Looking at the restricted data set so as to avoid the
strong influence of the two extreme points, r values found for hOL, hOF and h1 are 0.352, 0.628 and
0.709, respectively. As already mentioned above for the OL-OF litter configuration of the controlled
experiment, the nonsignificant correlation values observed for hOL would notably result from the quite
narrow range of values encountered for this parameter. Indeed, the range of values for hOL is of the
same order of magnitude as its measurement and estimation errors as depicted in Figure 7a by the
horizontal and the vertical error bars representing 95% confidence intervals to average measured and
estimated values, respectively. It also explains the nonsignificant values obtained for the corresponding
regression coefficients. For hOF, points are distributed around the 1:1 line for the lowest thickness
levels corresponding to the deciduous stand situations, indicating on average good agreement between
measurements and estimations in these cases. In contrast, as hOF increases, a tendency to underestimate
the parameter is observed (Figure 7b). As a result, an intercept close to 0 and a slope lower than 1
are found for the regression between estimated and measured hOF. A pattern similar to that of hOF

is observed for total litter thickness (h1) but with a regression slope closer to 1 (Figure 7c), revealing
that underestimations noticed above for hOF are partly compensated by overestimations for hOL and
suggesting thereby inaccurate delineation of OL and OF litter horizons through GPR signal inversion.
Yet, as confirmed by the FB and paired t-test statistics showing negative values, though non significant,
a general tendency to underestimate litter thickness occur when surface roughness is accounted for
in the electromagnetic model, while it was not the case when only frequency dependence of litter
effective electrical conductivity was considered [34]. These observations evoke the results presented
above for hOL in controlled conditions, showing that underestimation of litter layer thickness could
be corrected through consideration of the surface roughness coefficient estimates (sr). Applying the
same correction to in situ h1 estimates substantially improves the agreement between estimated and
measured values, both visually (Figure 7d) and statistically with regression slopes getting closer to
1 and a noticeable decrease of t-ratio and FB values compared with uncorrected h1. The correlation
coefficients also slightly increase (Table 2). Nevertheless, in spite of the relatively good agreement
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between corrected estimations and measurements of h1, significant discrepancies between both sets
of values are found in some cases, which may arise from a limited dielectric contrast between litter
and the A horizon at these locations as often observed along the measurement transect (Figure 9a).
A particularly marked h1 underestimation is observed for a point of the mixed hemlock-beech stand
presenting the largest values for litter thickness. Besides a weak dielectric contrast among horizons,
the presence of large roots in the OF horizon may also explain such an observation. Indeed, these
large roots may significantly affect the GPR signal while the electromagnetic model used in the present
study consider litter as a planar layered medium and does not allow to account for such local objects,
which could therefore influence the reconstruction of litter horizons through GPR data inversion.
Finally, as already aforementioned for the controlled experiment, it is important to note that, aside
these modeling errors, local spatial variations of litter layer thicknesses combined with difficulties
in their visual delineation may also lead to measurement errors giving rise to divergences between
thickness estimates and ground truth values. Significant measurement errors occurred in some cases
as attested by the rather large horizontal error bars sometimes observed in Figure 7, representing
confidence intervals to the average measured thickness values.

These results are similar to those obtained when considering only frequency dependence of litter
effective electrical conductivity [34], the most noticeable changes being the higher values generally
found in the present study for the correlation coefficients between estimated and measured thicknesses.
Therefore, taking into account the effect of surface roughness, the electromagnetic model did not
substantially improve the retrieval of litter layer thicknesses. Yet, accounting for this effect should
potentially allow for a more physical description of scattering due to litter roughness, leading thereby
to improved modeling of the GPR signal, as already pointed out above when comparing the objective
functions (see Section 3.1). This will be further investigated in the next section by examining estimates
of litter constitutive properties.

3.2.2. Litter Constitutive Properties

Estimates of litter electromagnetic properties retrieved from GPR data inversion are presented in
Figures 8 and 9 for the controlled and the in situ experiments, respectively.

For the controlled experiment, parameter estimates are plotted as a function of measured litter
thickness. As above, the results are distinguished for the different litter configurations using separate
marker types and estimates from the models accounting for surface roughness with (red markers)
or without (green markers) consideration of frequency dependence of litter effective electrical
conductivity are compared with results reported by André et al. [33] considering frequency dependence
only (blue markers).

Estimates of OL litter relative dielectric permittivity (εr,OL) when accounting for roughness
show quite stable values for all litter thickness levels of the OL configuration, except for the largest
thickness case for which a much higher estimated value is observed when considering roughness only
(Figure 8a). Excluding this outlier point, εr,OL estimates average out to 1.35, which is in accordance with
the average value of 1.19 obtained by André et al. [33] without accounting for roughness. In contrast,
εr,OL estimates for the OL-OF configuration are often larger than corresponding values found by
André et al. [33]. Inaccurate delineation of OL and OF horizons leading to overestimation of the
thickness of the OL layer thickness, which thereby encroaches on the OF layer presenting higher
relative dielectric permittivity values (see below), may explain these results. The fact that these
observations occur only when accounting for roughness might arise from limited OL layer thicknesses
(around 2 cm) considered for the OL-OF configuration. Indeed, values sometimes up to more than 1
cm retrieved for the estimates of the surface roughness coefficient sr would indicate that, in these cases,
most of the layer thickness is considered as part of roughness itself by the model. This may induce
a tendency to overestimate OL layer thickness when reconstructing horizons through GPR signal
inversion. Yet, this explanation essentially holds for the observation OL-OF with the penultimate
largest OL-OF thickness level, as overestimation of hOL accompanied by marked underestimation of
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hOF are found in that case only (see Figure 6b,c). Another possible explanation would be less stable
parameter estimates associated with the higher complexity of the inverse problem given the rather
large number of parameters to be estimated. Regarding OF litter, εr,OF estimates for the OF and the
OL-OF configurations are generally within similar ranges of values though a bit lower for OL-OF, with
averages of 5.4 (4.27 without considering the estimation for the last observation of the OF configuration
which appears to be an outlier) and 3.46, respectively (Figure 8b). These results are in agreement with
findings of André et al. [33]. As already discussed by these authors, the higher values observed for
εr,OF compared to εr,OL should at least partly result from both the higher water content and the higher
density of OF layer.

(a) (b)

(c) (d)

Figure 8. Variations of the estimates of the relative dielectric permittivity (a) of OL litter (εr,OL) and (b)
of OF litter (εr,OF), (c) of the rate of variation of litter electrical conductivity with frequency (log10(a))
and (d) of the standard deviation of litter surface height (sr) as a function of measured litter thickness
of the controlled experiment. The OL, OF and OL-OF litter configurations (see Figure 1) are considered
for, respectively, the OL, OF and OLOF litter types. Results are presented for the model considering
only frequency dependence of litter effective electrical conductivity reported by André et al. [33] (blue
markers), for the model accounting for both surface roughness and frequency dependence of litter
effective electrical conductivity (red markers) and for the model considering surface roughness only
(green markers). Marker types specify litter configurations.

Whatever the litter configuration, values retrieved for the rate of variation of effective electrical
conductivity with frequency (a) are generally much lower for the model accounting for both surface
roughness and frequency dependence compared with the model of André et al. [33] considering
frequency dependence only with, in most of the cases, a estimates for the former model close to
the lower bound of the optimization interval for this parameter (i.e., a = [10−13 10−8] SHz−1m−1)
(Figure 8c). Furthermore, the few cases for which a estimates from the model considering roughness
are in agreement with values reported by André et al. [33] generally present estimations of surface
roughness coefficient (sr) equal or close to 0 m (Figure 8d). Such observations would indicate that
the electromagnetic phenomena considered through parameter a in the André et al. model, or at
least the major part of them, are accounted for by coefficient sr when roughness is included in the
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model. This would mean that dielectric losses presumed as occurring in OF litter by André et al. [33,34],
notably due to its higher water content compared to OL litter, would also be accounted for by coefficient
sr, in addition to scattering resulting from surface roughness. Therefore, these results suggest that
scattering and dielectric losses could generally not be characterized apart even when considering
roughness and frequency dependence together in the model, both phenomena being accounted for
either through parameter a or, as in most cases here, through coefficient sr.
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Figure 9. Variations of estimates (a) of the relative dielectric permittivity of the OL and OF litter layers
(εr,OL, εr,OF) and of the A horizon (εr,A) and (b) of the standard deviation of the surface height (sr) as
a function of measurement location along the transect of the in situ experiment. The OL-OF litter
configuration (see Figure 1c) is considered. Error bars represent 95% confidence intervals for the six
estimated values at each location.

Estimations of surface roughness coefficient sr for the OL configuration range from 0.4 cm for the
lowest thickness level up to more than 1.0 cm for the largest ones, though quite stable values around
0.7 cm are observed for the intermediate thicknesses (Figure 8d). In contrast, for the OF and OL-OF
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configurations, a continuous increase of sr estimates is observed as litter thickness increases. For the
OF configuration, sr estimates remain quite small with values increasing from 0 cm for the smallest
litter thickness to 0.6 cm for the largest one. Such small values for the roughness coefficient may be
attributed to the relatively smoother surface of OF litter compared with OL litter. Estimates of sr for
the OL-OF configuration vary from 0 cm to 1.1 cm, which is in agreement with the range of values
observed for the same coefficient for the OL configuration. In other respects, these increasing values of
the roughness coefficients with OF and OL-OF litter thickness correspond to similar trends reported
by André et al. [33] for parameters a for the same litter configurations (see Figure 8c). As already
suggested above when discussing results for a estimates, this might further indicate that coefficient sr

explains at least a part of the signal information initially accounted for by parameter a in the model
version proposed by André et al. [33].

For the in situ experiment, parameter estimates are presented in Figure 9 as a function of
measurement location along the transect.

Variations of the estimates of litter relative dielectric permittivity (εr) along the transect show
rather similar general patterns for both the OL and the OF layers, though variations are much
pronounced for the OF layer (Figure 9a). Furthermore, values retrieved for the OL layer (εr,OL) are in
most cases lower than estimations for the OF layer (εr,OL) at the corresponding location, with average
values of 3.9 and 7.5, respectively. As already pointed out and discussed in the previous works [33,34],
such differences of dielectric permittivity both among litter layers and among measurement locations
should be at least partly ascribed to, respectively, vertical and horizontal spatial variations of physical
litter properties, such as water content and bulk density. Yet, these differences are generally not
significant due to the quite large variability of εr estimates observed for most locations as shown
by the 95% intervals to the estimates represented by the errors bars. This local variability of the
estimates would itself also partly result from contrasted litter properties among the positions used as
pseudoreplicates around each measurement location (see Section 2.1).

As presented in Figure 9b, estimates for the surface roughness coefficient sr show strong variations
along the transect, in particular with generally lower values, around 0.7 cm, observed for the deciduous
stand compared with the other measurement locations which are all characterized by the presence of
coniferous species, except the clearing. These differences between deciduous and coniferous species
might notably arise from contrasted litter thicknesses, the former species presenting the thinnest
litter layers (see Figure 7). Such a positive effect of litter thickness on sr is consistent with the
increasing estimated values of this parameter as litter thickness increases observed above for the
controlled experiment (see Figure 8d). Finally, sr estimates around 0.7 cm for the deciduous stand are
in agreement with corresponding estimates for the controlled experiment, concerning also a deciduous
species, namely, beech.

4. Conclusions and Perspectives

A full-waveform radar modeling approach combined with the Ament roughness model was
applied to radar data collected above litter in order to investigate its ability to provide quantitative
characterization of forest floor organic layers in terms of their surface roughness and their constitutive
properties. Radar data were acquired using an ultrawideband (0.8–4.0 GHz) off-ground GPR system
both over artificially reconstructed litter horizons and over in situ, undisturbed, litter in stands of
various tree species. The radar model used to invert the data considers all antenna effects, including
antenna-medium interactions, and describes wave propagation in a three-dimensional layered medium
using Green’s functions. The performances of the proposed combined full-waveform and roughness
radar model are compared with those of a similar approach adopted in previous works by considering
frequency dependence of litter effective electrical conductivity to account for litter scattering properties
instead of a roughness model.

For both the controlled and the in situ experiments, the proposed modeling approach successfully
reproduced radar data, showing agreement between measured and modeled signals at least equivalent



Remote Sens. 2019, 11, 828 21 of 24

and even often better than that obtained previously using the effective electrical conductivity frequency
dependent model. Such improved performances for the present approach would arise from a better
physical description of scattering through the roughness model than when considering frequency
dependence of litter effective electrical conductivity. Litter thickness was generally retrieved with
accuracies around 1 cm for the OL layer and around 1.5 cm for the OF layer as well as for the total
litter in cases where both horizons were present, which corresponds to the accuracy levels reported in
the previous studies. Yet, in the present study, such precisions were reached provided correction of
the estimations for litter thickness by the corresponding values retrieved for the surface roughness
coefficient. Estimates for this coefficient averaged to 0.7 cm and 1.3 cm for deciduous and coniferous
litters, respectively. In other respects, when litter consisted of two overlaid OL and OF horizons,
inaccurate delineation of both layers was generally observed at least partly due to limited dielectric
contrast between OL and OF litter, as also mentioned in previous works. Besides, inversion of
radar data also provided reliable estimates of litter electromagnetic properties with relative dielectric
permittivities of OL and OF litter averaging, respectively, 1.35 and 3.8 for the controlled experiment
and 3.9 and 7.5 for the in situ, which are in agreement with corresponding findings using the litter
effective electrical conductivity frequency dependent approach.

These results show the promising potentialities of GPR for efficient and non-invasive
characterization of forest organic layers. It could notably be used in ecological studies as an alternative
to the time consuming and disturbing conventional methods used for humus description and sampling
in other to capture the spatial and/or temporal variability of litter characteristics over extended areas.
Furthermore, litter electromagnetic and scattering properties as provided by GPR signal inversion
constitute valuable information for the processing of remote sensing data collected over forested areas,
to be used either as direct inputs of the remote sensing models or as reference data for the calibration
and the validation of their litter module.
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