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Characterization of Crop Canopies
and Water Stress Related
Phenomena using Microwave
Remote Sensing Methods: A Review

In this paper we reviewed the use of microwave remote sensing methods for characterizing
crop canopies and vegetation water stress related phenomena. Our analysis includes both
active and passive systems that are ground-based, airborne, or spaceborne. Most of the
published results that have examined crop canopy characterization and water stress have
used active microwave systems. In general, quantifying the effect of dynamic vegetation
properties, and water stress related processes in particular, on the measured microwave
signals can still benefit from improved models and more observational data. Integrated
data sets providing information on both soil status and plant status are lacking, which has
hampered the development and validation of mathematical models. There is a need to
link three-dimensional functional, structural crop models with radiative transfer models
to better understand the effect of environmental and related physiological processes on
microwave signals and to better quantify the impact of water stress on microwave sig-
nals. Such modeling approaches should incorporate both passive and active microwave
methods. Studies that combine different sensor technologies that cover the full spectral
range from optical to microwave have the potential to move forward our knowledge of the
status of crop canopies and particularly water related stress phenomena. Assimilation of
remotely sensed properties, such as backscattering coefficient or brightness temperature,
in terms of estimating biophysical crop properties using mathematical models is also an
unexplored avenue.

Abbreviations: HH, copolarized horizontal transmit, horizontal receive [polarization]; IHS, intensity—
hue-saturation; IR, infrared; LAI, leaf area index; MPDI, Microwave Polarization Difference Index; MPDT,
Microwave Polarization Difference Temperatures; MVIs, Microwave Vegetation Indices; NDVI, Normalized

Difference Vegetation Index; PCA, principal component analysis; SAR, synthetic aperture radar; VOD, veg-
etation optical depth; VV, copolarized vertical transmit, vertical receive [polarization].

Over the last three decades there has been a growing awareness of the importance
of land surface processes and their value in predicting climate change and its subsequent
impact on the terrestrial system, managing water resources, and predicting and monitoring
floods and droughts. Remote sensing from Earth observation platforms has played a key
role by providing valuable data to the scientific community, from local to global scales and
at different time scales. Given the importance of the land surface for terrestrial processes
and for agricultural activity, the characterization and monitoring of vegetation and crops
has been an important focus area in remote sensing of the Earth surface. Historically,
remote sensing of vegetation has focused primarily on the use of spectral measurements
in the visible, near infrared, and shortwave infrared region of the spectrum. This region is
important because the reflectance measurements are governed primarily by the scattering
and absorption characteristics of the leaf internal structure and biochemical constituents.
Overviews of the satellite-based results can be found in Lu (2006) for biomass estimation,
Zheng and Moskal (2009) for leaf area index (LAI) retrieval, Govender et al. (2009) for
multispectral detection of plant water stress, and Pinter et al. (2003) for crop management.

During the last decade, satellite and spaceborne synthetic aperture radar (SAR) systems
(i.e., ALOS PALSAR, RADARSAT-1 & 2, ERS-1 & 2, ENVISAT ASAR, SIR-C/X
SAR, TerraSAR-X) and microwave radiometers (i.e., AQUA AMSR-E, Coriolis Wind-
SAT, SMOS MIRAS) have been available. (See the Appendix for a list of remote sensing
system acronyms.) A list of spaceborne microwave sensors is given in Table 1 and a list of
microwave frequency bands is given in Table 2. In the near future combined active and
passive systems, such as AQUARIUS (launched in June 2011) and SMAP (planned launch

in November 2014), will offer new opportunities in microwave remote sensing. Passive and




Table 1. List of spaceborne microwave sensors.

Name Platform Frequency
GHz
AMSR-E AQUA 6.925,10.65, 18.7,
23.8,36.5,89.0
ASCAT MetOp 5.255
PALSAR ALOS 1.27
AQUARIUS AQUARIUS/SAC-D 1.413 (passive), 1.26 (active)
ASAR ENVISAT 5.331
COSMO-SkyMed COSMO-SkyMed 9.6
ERS-SAR ERS-1 & ERS-2 5.3
JERS-1-SAR JERS-1 13
RADARSAT 1 & RADARSAT 1 & 5.405
RADARSAT 2 RADARSAT 2
SIR-A Space Shuttle 1.28
SIR-C/X Space Shuttle 1.25,5.3,9.6
SMAP SMAP 1.41 (passive), 1.26 (active)
MIRAS SMOS 1.4
SSM/1 SSM/1 19.35,22.2,37.0, 85.5
SeaWinds Quickscat 13.4
Tandem-L Tandem-L 1.2
TanDEM-X TanDEM-X 9.65
TerraSAR-X TerraSAR-X 9.65
WindSAT Coriolis 6.8,10.7,18.7,23.8, 37.0

Temporal

Spatial resolution resolution Active/passive
d

56,38,21,24,12,5.4km 1 passive

25 to 50 km 2 active

9to 157 m 46 active

76 to 156 km 7 active and passive

30 to 1000 m S active

1to 100 m 0.5-16 active

30 m 3,35,176 active

18 m 44 active

10 m 24 active

40 m -t active

10 to 30 m -1 active

40 km (passive), 1 to 3 km (active) 2-3 active and passive

35 to 60 km 3 passive

13 to 69 km 0.5 passive

25 km 1 active

3t020m 8 active

1to 18 m 2-4 active

1to18 m 2-4 active

8to71 km passive

t A temporal resolution is not given because the missions took several days. SIR-A was a mission from 12 to 14 Nov. 1981; SIR-C/X was a mission from 9 to 20 Apr.

1994 and from 30 Sept. to 11 Oct. 1994.

active measurements in the microwave region of the spectrum have
mainly been used to characterize biophysical parameters of the
plant canopy, such as shape, size, and distribution of plant elements,
water content, height of the vegetation, LAI, aboveground biomass,
and number of plants (Chukhlantsev et al., 2003; Della Vecchia
etal.,, 2007; Moran et al., 1997; Paloscia and Pampaloni, 1988). In
addition, passive microwave methods at low frequencies (X, C, and
L bands) have typically been used to detect bare or vegetated soil
surface moisture content (Calvet et al., 2011; Guglielmetti et al.,
2008; Jackson and Schmugge, 1989; Jackson et al., 1982; Jonard
et al,, 2011; Njoku and Entekhabi, 1996; Schmugge et al., 1974;
Wigneron etal., 2003). Additionally, low frequency active systems
have been used to study the role of vegetation on land surface prop-
erties. The effect of vegetation on the recovery of soil moisture was
studied by Mitzler (1990), Serbin and Or (2005), and Joseph et al.
(2010, 2008). O’Neill et al. (1996) used both active and passive
microwave sensors for soil moisture estimation through vegetation.
Vegetation transmissivity and scattering were characterized by
using L-band radar data. The vegetation parameters were then used
for soil moisture retrieval based on a radiative transfer approach
utilizing passive microwave data. However, limited attention has
been given to the use of microwave methods to detect water stress

in agricultural canopies despite the advantages of these methods

Table 2. Standard IEEE microwave frequencies and nomenclature.

Band designator Frequency Wavelength in free space
GHz cm

IL, 1-2 30-15

S 2-4 15-75

© 4-8 7.5-3.8

X 8-12 3.8-2.5

Ku 12-18 25-1.7

K 18-27 1.7-1.1

Ka 27-40 1.1-0.75

v 40-75 0.75-0.40

w 75-110 0.40-0.27

compared to optical, and infrared (IR) multi- or hyperspectral
sensors (Detar et al., 2006, and references therein). These include
the ability of providing time critical remotely sensed observa-
tions, such as at night or when cloud cover is present (McNairn
and Brisco, 2004) and the ability to sense the entire canopy as
opposed to just the leaves. Ferrazzoli (2002) briefly reviewed the
use of SAR for agricultural purposes. In addition to describing
the historical evolution from ground-based measurements, to
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airborne measurements, and finally satellite platforms, Ferrazzoli
(2002) addressed and discussed the identification of useful radar
configurations and the development of relationships between back-

scattering and variables for seven selected crops.

Despite the extensive body of literature available on the subject
of remote sensing and vegetation, no attempt has been made at
in depth evaluation and analysis of the use of active and passive
microwave methods to characterize crop canopies, specifically in

relation to stress phenomena. This review has three main objectives:

1. to review the use of microwave methods to characterize crop
canopies with specific attention to stress-related properties such
as vegetation water content and leaf water potential;

2. to analyze the effect of confounding factors on the retrieval of
drought conditions or water stress in crop canopies;

3. to formulate future avenues of research related to water stress
recognition in vegetation using microwave methods.

The paper is organized into eight sections. In the second section, we
will present an overview of the theory and models that were devel-
oped to interpret signal propagation of microwave systems (passive
and active) in aboveground agricultural vegetation properties. The
third section addresses the characterization of crop canopies using
ground-based measurements with specific attention to diurnal and
seasonal dynamics of backscattering in canopies. The fourth sec-
tion deals mainly with the characterization of crop canopies from
remote sensing observations. In the fifth section, we discuss the
relationship between dielectric properties of the vegetation and
soil-plant water relationships, whereby these relationships are
essential for the interpretation of the diurnal and seasonal changes
in emissivity and backscattering. The sixth section discusses the
factors controlling microwave signals obtained from crop canopies
with a specific focus on water stress phenomena. Finally, we con-
clude this review with the topic of multisensor measurements and
an outlook section presenting conclusions and avenues for further

research needs.

Measurements Principles and
General Modeling Approaches

This section provides a general overview of the measurement
principles of passive and active systems and a brief description of
clectromagnetic wave propagation, attenuation, and scattering
in vegetation canopies. Specific attention will be given to models
specifically designed to predict emission or backscattered signals
from crop canopies. Only a brief overview of the theory and the
various models is provided. For more detailed information the
reader will be referred to the original citations. In the presenta-
tion, we make a distinction between passive and active systems, as
cach system measures different properties of the canopy. Passive
microwave radiometers provide the brightness temperature, T'g,
of the surface, whereas active radar systems measure the backscat-

tering coefficient, a0,

Passive Systems

For land surfaces, low frequency passive microwave radiometry can
be used as an indirect method to measure the complex dielectric
permittivity € = €’ + ie” of a bare soil, which can be used as a
proxy for the estimation of the soil moisture content (Hong and
Shin, 2011; Hornbuckle et al., 2003; Saleh et al., 2007; Schnee-
berger et al., 2004; Wigneron et al., 1995, among many others).
The determination of the permittivity, €, is typically based on the
measurement of thermal radiance emitted from the Earth surface
in a given frequency band (Njoku and Entekhabi, 1996). At spe-
cific frequency, the intensity of the received radiation (thermal
emission) is proportional to the thermodynamic temperature 7,
(K] and the emissivity e, of the soil, which can be expressed by the
Rayleigh—Jeans approximation of Planck’s Law. According to this
equation, the radiance is proportional to the physical temperature
of the object, and therefore, denoted as brightness temperature,
T’y [K] (Njoku and Entekhabi, 1996; Wigneron et al., 2001). Asa
consequence, the brightness temperature of a soil surface observed
for example by a radiometer operating at the L band can then be
expressed as (Jackson, 1993; Wigneron et al., 2001):

T

Ty :es,st+(l—e sy (1]

? )

where e is the surface emissivity, 7,

[K] is the sky radiometric
temperature calculated following Pellarin et al. (2003), 7 [K] is
the effective physical temperature of the soil, and p refers to the
polarization (horizontal or vertical). However, in the presence of
vegetation Eq. [1] is no longer applicable because absorption, emis-
sion, and scattering by the vegetation canopy need to be considered
in the formulation of the radiative transfer model (see also Fig. 1).
Therefore, T’y for one polarization of a soil-vegetation system can
be expressed by:

Tp=T,(1-r, =) +e TN+ T, (1-r,—)(1-e)y (2]

where 7, is the vegetation temperature [K], 7 is the vegetation
canopy reflectivity, and ~ is the transmissivity of the vegetation
canopy (Chukhlantsev et al., 2003).

At low frequencies (L band) and for low vegetation, a zero-order
solution of radiative transfer equation, called Tau—Omega model,
can be used and is expressed by:

TB’I):(l—wp)(l —’\(p)(l+~(P;"S)P)Tv+(1—rs’p)ﬁ(])TS (3]

where 7 is the soil reflectivity and w the single scattering albedo.
The attenuation in the vegetation layer as described by the veg-
etation attenuation factor ~ (or vegetation transmissivity) can be
defined in terms of the optical depth (7) and incidence angle (6,
the angle between a ray incident on a surface and the line perpen-
dicular to the surface at the point of incidence) (Wigneron et al.,
2007) by:
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Y= cxp(—’rp/cose) (4]

Jackson and O’Neill (1990) showed that a linear relationship
between the optical depth (1) and the vegetation water content

(VWC [kg m~2]) exists:

T,=b,VWC (5]

where 4 is a regression coefficient that is frequency and polarization
dependent and characteristic for the type of canopy (Jackson and
Schmugge, 1991; Van de Griend and Wigneron, 2004).

In general, the Tau-Omega model is a good approximation at low
frequencies such as L band and has been intensively used to model
microwave emissions from uniformly vegetated land surface at this
frequency (Hornbuckle et al., 2003; Joseph et al., 2010; O’Neill et
al., 1996; Wigneron et al., 2004). Within the SMOS and SMAP
communities, a modified version of the Tau—Omega model is used
and is called the L-band Microwave Emission of the Biosphere
(L-MEB) model (Wigneron et al., 2007).

Only a few physically based radiative transfer models have been
developed that account for the vegetation explicitly. These models
are mainly used to correct for the vegetation influence to improve
soil moisture observations in forest stands (Della Vecchia et al.,
2006; Ferrazzoli and Guerriero, 1996). Only a few approaches
were made to physically model agricultural crops, such as the
explicit model presented by Schwank et al. (2005), who showed
that changes in the plant geometry (here induced by a hail storm
over clover grass) will greatly influence measured brightness
temperatures.

Active Systems

Active systems such as radars or scatterometers are typically used
to define the backscattering coefficient of the land surface. The
backscattering coefficient, which is the effective scattering area of
the target per unit area, is directly proportional to the ratio of the
backscattered to the emitted energy. For a soil-vegetation system
(Fig. 1) the backscattering coefficient is generally expressed as:

o’ =0y +od(1—~*)+o? (6]

sV

where 0° and ¥ are the backscattering coefficients of the soil and
vegetation canopy, respectively, and o, is the backscattering coef-
ficient of the vegetation layer including the reflection from the soil
and the attenuation by the vegetation (Chukhlantsev et al., 2003).

In the carly years of radar application over vegetation, empiri-
cal models were developed using regression analysis of the radar
backscattering on plant moisture, plant height, and the moisture
content of the underlying soil (Bush and Ulaby, 1976; Ulaby and

radiometer radar K
T, a?

atmosphere layer

vegetation layer

Fig. 1. Schematic illustration of the different components of the pas-
sive and active signals measured by radiometer and radar, respectively.
Tyis the brightness temperature measured by the radiometer, oY1is the
backscattering coefficient measured by the radar, 7', is the temperature
profile of the atmosphere layer, 7', is the temperature profile of the
vegetation layer, T is the vegetation optical depth, w is the single scat-
teringalbedo of the vegetation layer, 7,y is the temperature profile in
the soil, and €, is the dielectric permittivity profile in the soil. Also
shown are the signal emitted by the radar and reflected on the vegeta-
tion canopy (1), the radar signal reflected by the vegetation stems to
the radar antenna (2), the radar signal reflected by the soil surface and
then the vegetation to the radar antenna (3), the passive microwave
signal emitted from the atmosphere (A), the microwave emission from
the atmosphere and reflected by the soil to the radiometer antenna
(B), the microwave emission from the soil (C), the microwave emis-
sion from soil transmitted to the radiometer antenna through the
vegetation layer (D), the microwave emission from the vegetation
canopy (E), and the microwave emission from the vegetation canopy
reflected by the soil to the radiometer antenna (F).

Bush, 1976a,b). However, no knowledge about the physical pro-

cesses was assumed or incorporated into the empirical models.

During the last decades physically based models were developed
to describe the propagation, scattering, and attenuation of the
clectromagnetic waves in the vegetation layer. A detailed treat-
ment and overview of models and microwave sensing theories
is given by Ulaby et al. (1986) and Fung (1994). Chukhlantsev
et al. (2003) distinguished two fundamentally different types of
model approaches: (i) the continuous layer models with a randomly
distributed dielectric constant (the so called cloud models) and
(ii) models assuming a set of randomly distributed lossy scatters
representing the different constituents of the vegetation, such as

leaves, stalks, branches, and trunks.

Attema and Ulaby (1978) developed a cloud model for radar back-
scattering from vegetation. In this model, it is assumed that the
vegetation is mainly composed of water that is surrounded by a
large air volume. Therefore, the vegetation water can be represented

by a water cloud whose water droplets are held in place by the



vegetation. The model is based on the assumption that the canopy
“cloud” contains identical water droplets that are randomly dis-
tributed within the canopy. The model was successfully applied by
Paris (1986), Prevot et al. (1993), Taconet et al. (1994), Wigneron
etal. (2002), Maity et al. (2004), and Serbin and Or (2005) for dif-
ferent applications and crop stands. It has to be noted that various
authors modified the “simple cloud model” to increase the com-
plexity and as a consequence the overall performance of the model
(Paris, 1986). Ulaby et al. (1990) developed the Michigan Micro-
wave Canopy scattering model for forest systems, which is a widely
used model in active microwave remote sensing. This model was

successfully adapted to agricultural crops by Touré et al. (1994).

Eom and Fung (1984) developed a scatter model based on the
matrix doubling method for volume scattering and the Kirchhoff
method for rough surface scattering. They assumed that the scat-
tering from the vegetation is dominated by the leaves, and therefore
single leaves can be modeled by thin dielectric discs. Finally, the
vegetation layer was modeled as a layer of leaves above an irregular
soil surface. Additionally, the phase function for a single leaf was
computed by approximating an integral equation for the electric
field. To obtain closed form equations strong assumptions have
to be made. These include: (i) that the field variation across the
thickness of the leaf is negligible and (ii) that the phase change
across the surface of the leaf can be accounted for by integrating
the static field. Thus, the model is a static approximation general-
ized to include phase changes across the leaf surface. Finally, the
closed form solution for the scattering coeflicient contains three
terms. One term represents volume scattering, another term repre-
sents ground-surface scattering attenuated by the vegetation, and
the last term accounts for surface—volume interactions.

Further research included various modifications and improve-
ments to increase the physical representation of the model for
different crops and frequencies. For example, Della Vecchia et al.
(2004) modeled the radar backscattering from a canopy with leaves
described as curved rectangular dielectric sheets based on the Tor
Vergata model (Bracaglia et al., 1995). Stiles and Sarabandi (2000)
developed a fully phase coherent scattering models for grassland,
and Marliani et al. (2002) for crops such as sunflower (Helianthus
annuus L.) and wheat (Triticum aestivum L.).

For fully developed crops the canopy may become dense, and
multiple scatter effects may occur (Picard et al., 2003), which
requires an improved description of the radiative transfer by
taking into account higher order effects (Ferrazzoli and Guer-
riero, 1996). Additionally, resolving radiative interactions with
complex multilayer objects often requires an explicit three-
dimensional modeling of radiation pathways via ray tracing
methods (Battaglia et al., 2006).

Characterization of Crop
Canopies Using Ground-Based
Measurements

Combined Crop and Microwave Measurements

To gain information about the biophysical crop parameters, three
different types of retrieval algorithms are in use either for passive or
active systems. The first type is based on empirical functions (e.g.,
regression equations) between the quantity measured (emission or
backscattering coefficient) and the biophysical parameter investi-
gated, whereby these empirical equations are often only valid for
the test site, the region, or the crop investigated. The second type
of retrieving algorithms is based on neural network predictions.
In this approach it is necessary to train the corresponding neural
network by statistically representative sampling. In many cases
such training is not always feasible. The third type of algorithms
is based on the inversion of radiation models, and it is most widely
used. In this approach, the models relate the radiation parame-
ters to environmental parameters, such as the vegetation canopy
(Chukhlantsev et al., 2003). In the following we give a literature
overview of studies that provide both microwave data obtained
from ground-based systems and crop data. Additionally, we orga-

nized the discussion along the two major measurement systems.

Active Systems

Table 3 gives an overview of literature studies that provide infor-
mation on ground-based radar backscattering measurements,
crop canopy properties, and soil moisture content. This table also
provides information on the use of air- and spaceborne micro-
wave platforms that are discussed below in “Characterization of
Crop Canopies using Air- and Spaceborne Remote Sensing.” In
general, our analysis of literature dealing with crop characteriza-
tion and stress detection showed that most studies used active
systems. This is especially the case for the analysis of diurnal
and seasonal dynamics observed in crop canopies, as discussed
in “Diurnal Dynamics of Backscattering in Crop Canopies and
Seasonal Dynamics of Backscattering in Crop Canopies” below.
Although active and passive systems have both their advantages
and disadvantages, active radar systems on air- and spaceborne
platforms provide higher spatial resolution than passive systems.
One reason could be that mapping and characterizing canopies
as well as detecting water stress phenomena typically requires a
high spatial resolution due to the inherent heterogeneity of land
cover. In the case of soil moisture mapping this picture might
look different. Due to the limited number of studies using passive
systems, we refrained from including an explicit table in the text
but referred to the relevant references in two separate subsections

(see “Passive Systems”).

The majority of the experiments using active systems were con-
ducted on cereals such as wheat and sorghum [Sorghum bicolor (L.)
Moench], corn (Zea mays L.), soybean [Glycine max (L.) Merr.],
alfalfa (Medicago sativa L.), ladyfinger (Musa acuminata Colla),
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and tomato (Solanum lycopersicum L.) with frequencies ranging
from L to X band. Most experiments were performed under field
conditions with natural rainfall or eventually irrigation. Typical
biophysical parameters that were measured include LAT, biomass
of the whole plant and its components, crop height, vegetation
stage, vegetation water content, and soil moisture. In the 1970s,
Ulaby and Bush (1976b) used a scatterometer in the frequency
range of 8 to 18 GHz to monitor corn growth for a 4-mo period.
The authors found a good correlation between normalized plant
water content (i.c., the ratio of mass of water in the plant to plant
height) and the radar backscattering coefficient at incidence angles
of 40° or more. Higher frequencies typically showed better correla-
tions. Bush and Ulaby (1976) used the same setup to analyze the
backscattering from alfalfa. They found that, at nadir, the back-
scattering coeflicient was dependent on variations in plant height
and soil moisture content. Ulaby and Wilson (1985) used L-, C-,
and X-band radars mounted on a boom truck to investigate canopy
attenuation of winter wheat and soybeans. Attenuation data were
acquired at 1.55, 4.75, and 10.2 GHz for copolarized horizontal
transmit, horizontal receive (HH) and copolarized vertical trans-
mit, vertical receive (VV) polarization at incidence angles of 20
and 50°. The authors found that vegetation canopies are highly
nonuniform and anisotropic at microwave frequencies. They also
observed large differences between the HH and V'V polarization
measurements of canopy attenuation, which indicated that the
relative importance of ground emission and backscattering was
polarization dependent. Recently, Prasad (2009) showed that the
angular variation of scattering coefficient at the X band for the
crop ladyfinger decreases as the plant grows since the effects of soil
was masked by developing vegetation. The author also observed
that scattering coefficients increased with LAI both for VV and
HH polarization and that LAI and biomass are highly correlated
with backscattering (more than for plant height). As already
observed by Ulaby and Bush (1976b) for a corn crop, the author
also noticed that at the X band, the effect of crop covered soil
moisture in the retrieval of crop variables could be neglected at
incidence angle of about 45° or higher.

In general, no specific attention was paid in determining param-
eters or variables that provide information on the water stress
status of the canopy. Typical indicators, such as soil water poten-
tial, leaf water potential, or chlorophyll content, have only been
measured sporadically. The study of Singh et al. (2003) is the only
one available in literature that provides information between
chlorophyll content of the leaves and backscattering measured
in the X band. The wheat chlorophyll was shown to be sensitive
to the radar backscattering coefficient at 40° incidence angle,
and this sensitivity was higher for V'V than for HH polarization.
Forster et al. (1991) observed changes in X-band radar backscat-
tering in water-stressed tomato canopies over several days. The
dynamics in radar backscattering were correlated to the changes
in leaf water potential observed during the recovery of the plant

after wilting. Colpitts and Coleman (1997) also determined

leaf water potential to identify the water status of the potato
(Solanum tuberosum L.) canopy and leaves in combination with

diurnal measurements of backscattering.

Passive Systems

For passive systems the vegetation cover attenuates soil emission
and adds its own contribution to the emitted radiation, whereby
the contribution of the vegetation depends on the vegetation
characteristics (density and vegetation water content) and the fre-
quency used for observation. For frequencies ranging between 1
and 5 GHz, the vegetation is semitransparent, and therefore, its
influence on the soil moisture retrieval is reduced (Guglielmetti et
al., 2007; Wigneron et al., 1995).

Numerous studies have shown the potential of passive microwave
radiometers to estimate soil moisture and vegetation biomass
(Jackson and Schmugge, 1989; Wegmiiller, 1993, among others).
Soil moisture content and vegetation biomass were both retrieved
over the growing season of soybean and wheat by Wigneron et al.
(1995). The authors used multiple angle measurements of bright-
ness temperature at L and C band and found that the retrieval
process was more accurate and stable if both bands are analyzed
simultancously and if multiple observation angles (10-40°) were
included in the analysis. Liu et al. (2002) investigated the retrieval
of vegetation water content from the combined brightness tem-
peratures at the X and L bands using the crane-based PORTOS
radiometer and an error propagation learning back propagation
neural network. The combined use of both frequencies signifi-

cantly outperformed the accuracy of single channel analyses.

So far our knowledge about the sensitivity of the microwave mea-
surements to the plant water stress is very limited. Paloscia and
Pampaloni (1984) observed that microwave measurements at the
Ka band were sensitive to plant stress. They found a correlation
between a polarization index based on vertical and horizontal
microwave measurements at the Ka band and a measured crop
water stress index over corn. A coefficient of correlation of 0.92
was obtained for measurements performed with an incidence angle
of 50°. Other authors treated the vegetation canopy more or less as
an “interference factor” that hinders direct estimation of the soil
moisture from microwave emission (Jackson and Schmugge, 1991;
Joseph et al., 2010; Wigneron et al., 1993, 2004, among others).

Diurnal Dynamics of Backscattering

in Crop Canopies

Since the late 1970s, various studies reported diurnal variations
in the backscattering coefficient of crop canopies. This was attrib-
uted to variations in the dielectric properties of the canopy caused
by changes in the vegetation moisture status (Brisco et al., 1990;
Ulaby and Batlivala, 1976) and to changes in the geometrical prop-
erties related to leaf orientation (Brisco et al., 1990).
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A diurnal pattern in backscattering in a wheat canopy was observed
by Brisco et al. (1990) using a truck-mounted L-, C-, and Ku-band
scatterometer. However, these patterns were dependent on the fre-
quencies investigated. The difference in patterns was explained by
an increased geometric effect in the backscattering at higher fre-
quency. The diurnal changes in backscattering were also dependent
on the status of the crop. In the vegetative stage (June), diurnal
changes were mostly controlled by the vegetation water content,
whereas at the senescing stage (July, August), diurnal backscat-
tering changes were controlled by soil backscattering. They also
observed that cross-polarization measurements (VH, HV) resulted
in smaller diurnal changes of the backscattering than the copolar-
ized channels (HH, VV), especially for C- and L-band frequencies.
Forster et al. (1991) observed that the diurnal changes in X-band
radar backscattering from water-stressed tomato canopy plants
were dependent on frequency and incidence angles. Brakke et
al. (1981) measured diurnal backscattering from ground-based
microwave radar at the Ku band (13 GHz), VV polarization, and
50° incidence angle for wheat, corn, and sorghum. Surprisingly,
they did not found any correlation between the backscattering and
cither leaf water potential or wind speed. However, their data set

was relatively limited.

Seasonal Dynamics of Backscattering

in Crop Canopies

Seasonal variations in the backscattering coefficient in crop cano-
pies were also investigated by several authors. The backscattering
coefficients of sugarbeet (Beta vulgaris L.) and potato were deter-
mined by Bouman and Van Kasteren (1990a) using X-band radar
over a period of 6 yr. They observed a saturation level in backscat-
tering coefficients when crops reached a soil cover of 80%. Changes

in the geometry of a crop—soil system caused by strong winds, thin-
ning of plants, as well as architecture of individual plants were

found to affect backscattering. The authors concluded that radar
backscattering across the various years was highly variable due to

interplay of different environmental factors influencing canopy
geometry. Paris (1986) presented results of combined backscat-
tering and biophysical parameters obtained during the growing
season of corn. He found a clear power law relationship between

the backscattering cross section of a corn leaf and its LAI Peak
values of canopy LAI coincided with measured backscattering
cocflicients observed at a 50° incidence angle both in HH and

VYV polarization. The time of the onset of the reproductive process

in the corn plant was clearly detected in the temporal evolution of
the backscattering coefficient. The surface soil moisture effect on

the backscattering coefficient was insignificant at the Ku band (17
GHz), except at the end of the season when the corn was nearly
transparent to the radiation.

Characterization of Crop

Canopies Using Air- and

Spaceborne Remote Sensing
Active Systems
Table 3 also provides an overview of remotely sensed backscattering
using aircraft and satellite platforms for agricultural crops. Most
of these studies were conducted in the framework of large mea-
surement campaigns operated at regional scale. A major difference
with the experiments conducted using ground-based equipment
is the fact that the obtained backscattering is typically related
to averaged ground-based measurements of soils and vegetation
obtained at different fields. Often the timing of ground-truth sam-
pling shows a time lag with respect to the overpasses. This might
not be a problem for quantities that differ only slightly in time lag
such as LAT, biomass, and plant height. Evidence from diurnal
measurements, however, shows that this might be different for
vegetation water content and canopy structure. The latter may be
strongly affected by stress effects and wind conditions and may lead
to additional noise on measured signals which cannot be related
to a specific process. Ferrazzoli (2002) concluded on the basis of
a literature review that correlations between backscattering and
vegetation parameters obtained from airborne campaigns were
not as good as the ones obtained from multitemporal single-field
ground-based observations.

A main motivation for using radar remote sensing is crop classifica-
tion (Bouman and Van Kasteren, 1990a), which is primarily based
on the characterization of crop geometry. Hereby, differences in
phenological development of, for example, wheat, barley (Hordeum
vulgare L.), and oat (Avena sativa L.) may lead to different tem-
poral signatures in the backscattering, Skriver et al. (1999) found
that the correlation between HH and V'V polarization backscat-
tering from C- and L-band SAR was suitable for discriminating
between winter and spring crops, especially for the C band. Dis-
crimination at early stages between both types of crops may help in
further distinguishing individual crops belonging to one of these
categories based on the temporal evolution of such correlations.
Recently, Skriver et al. (2011) used short-revisit multitemporal
C- and L-band SAR data for crop classification. They found that
multitemporal acquisitions are very important for single- and
dual-polarization modes and that cross-polarized backscattering
provided the best results.

Airborne and spaceborne radars have also been used to better
understand the influence of vegetation on the signal backscattering.
Brown et al. (1992) used airborne SAR data of different frequen-
cies (L, C, and X bands) to measure backscattering from different
canopies and found that correlation between C- and L-band and
between X- and L-band data were very low, indicating that the
radar backscattering at the different frequencies was caused by dif-
ferent mechanisms. Especially for vertical oriented crops such as

wheat, a low correlation was found for the X and C bands, whereas
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the correlation was found to be acceptable for broad-leaved plants
such as canola (Brassica napus L.) and field pea (Pisum sativum
L.). Additionally, the backscattering determined at the L band was

found to be more sensitive to the soil moisture content.

Several studies investigated the potential use of spaceborne radar
for agricultural purposes, such as crop type mapping, crop condi-
tion assessment, soil tillage, crop residue mapping, soil moisture

estimation, and monitoring crop growth (McNairn and Brisco,
2004). In the past, spaceborne SAR sensors (e.g., ERS-1, ERS-2,
JERS-1, RADARSAT-1) were limited to a single frequency and

polarization. To obtain enough information for agriculture

applications, multichannel radar observations were required.
Recently several improvements were made to increase the infor-
mation content in the SAR data sets, such as the addition of
polarizations (ASAR/ENVISAT, RADARSAT-2), the use of
additional frequencies (TerraSAR-X, COSMO-SkyMed, and

PALSAR/ALOS), and the integration of SAR data with other
frequencies and optical sensors that can provide additional crop

and soils information (Clevers and vanLeeuwen, 1996; McNairn

and Brisco, 2004). Nevertheless, information on the sensitivity
of SAR measurements to crop condition indicators is still limited

(McNairn and Brisco, 2004). Wigneron et al. (2002) found limi-
tations in the retrieval of vegetation biomass of sunflower using
ERS-2/SAR C-band data. This was attributed to the long revisit
period (35 d), which was deemed not sufficient for monitoring of
the sunflower vegetation cycle. In addition, accuracy of retrievals

of the parametric growth curve was low. Recently, Baghdadi et
al. (2009) examined the potential of three SAR sensors (Ter-
raSAR-X, ASAR/ENVISAT, PALSAR/ALOS) operating at
different frequencies (X, C, and L bands) for mapping the har-
vest of sugarcane. The authors showed a high correlation between
backscattering coefficient and Normalized Difference Vegeta-
tion Index (NDVI) independently estimated from SPOT-4/5
images over the same fields. The best discrimination between
plowed and vegetated sugarcane (Saccharum officinarum L.) fields

was obtained by TerraSAR-X data. They also showed that cross-
polarization channels have more potential than copolarization

channels for the detection of the sugarcane harvest.

A correct assessment of vegetation water content is essential for
the accurate prediction of backscattering and emission from crop
canopies as well as for the exact assessment of surface soil mois-
ture content. In addition, vegetation water content could be an
important indicator for the presence of water stress in crop cano-
pies, as well as the phenological stage of the canopy. Taconet et al.
(1994) found a negative correlation between X-band backscatter-
ing and vegetation water content in wheat from airborne radar
with no dependency on the soil moisture content. Additionally,
accuracies in estimated crop water content were the same at 20
and 40° incidence angle and higher for HH polarization than
for VV polarization. A saturation effect of the radar cross section

was observed as the canopy becomes denser. Saatchi et al. (1994)

developed an algorithm to retrieve canopy water content of natu-
ral grassland and pastures from airborne SAR data. Le Vine and
Karam (1996) analyzed the dependence of attenuation in a vegeta-
tion canopy on frequency and plant water content in a synthetic
study to examine the hypothesis that attenuation in vegetation is
proportional to the water content of the canopy. Therefore, they
used the concept of optical depth (1) with T =6 x VWC (see Eq.
[5]). The results indicated that the hypothesis is not unreasonable
for canopies whose structure are small (e.g., leaves, stalks, stems,
branches) compared to wavelength. This study was performed
to find an appropriate correction of the measured signal for the
vegetation canopy to retrieve soil moisture information instead of

using the information for canopy characterization.

Passive Systems

In the past, most of the studies performed with airborne or space-
borne radiometers were focused on the retrieval of soil moisture.
The vegetation was systematically considered as an attenuation
factor in the soil moisture retrieval (Njoku et al., 2000; Wigneron
et al., 2004). Recently, several authors used spaceborne radiom-
eter data to characterize the vegetation mostly based on vegetation
indices that were derived from the data. These vegetation indices
include Microwave Polarization Difference Temperatures (MPDT)
(Choudhury and Tucker, 1987), Microwave Polarization Differ-
ence Index (MPDI) (Becker and Choudhury, 1988; Kirdyashev
etal., 1979), and Microwave Vegetation Indices (MVIs) (Shi et
al.,2008). Shi et al. (2008) developed a set of MVIs based on data
from AMSR-E. The microwave vegetation indices were defined as
the intercept (2) and slope (b) derived from a linear relationship
between the brightness temperatures observed at two adjacent
radiometer frequencies. The MVIs were correlated to the NDVI
derived from Moderate Resolution Imaging Spectroradiometer
onboard ENVISAT (MODIS) data. They found that the MVTs
can provide additional information on crop status since the micro-
wave measurements were sensitive not only to the leafy part of
the vegetation but also to the properties of the overall vegetation
canopy. Similarly, Chen etal. (2009) found a new MVI for SMOS
through the analysis of simulations by the advanced integral
equation model. The polarization difference for the bare surface
emission signals at different view angles can be well characterized
by a linear function with parameters that are dependent on the
pair of view angles to be used. This makes it possible to minimize
the surface emission signal and maximize the vegetation signal
when using multiangular SMOS measurements. Zhao et al. (2011)
found that the MVTs are a function of vegetation water content or
vegetation transmissivity. The & parameter of MVIs decreased with
increased vegetation water content but increased with increased
vegetation transmissivity. Finally, the authors used the MVTs for
the correction of vegetation effects in soil moisture retrieval over
areas with sparse vegetation in the Tibet Plateau. Li et al. (2010)
analyzed the relationship between MPDT, MPDI, and M Vs
for the case of cotton (Gossypium hirsutum L.). They showed that
MPDT and MPDI were negatively correlated to vegetation water
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content. For the specific case of cotton, they showed that MV s
are more suitable to retrieve vegetation water content. Jones et al.
(2011) used passive microwave information from AMSR-E (Ku
band) to quantify global patterns and seasonal variability in veg-
etation optical depth (VOD) over a 6-yr record (2003-2008). The
VOD parameter showed significant correlation with vegetation
indices and LAI obtained from MODIS optical-infrared data and
phenology cycles over 82% of the global domain. It has to be noted
that dual-polarized and multiangular L-band data from SMOS
have also the ability to gain information on both soil moisture

content and VOD.

Canopy Dielectric
and Plant Water Properties

Vegetation Dielectric Properties

As already stated, backscattering and emission retrieved by active
and passive systems are directly affected by the dielectric proper-
ties of the soil-plant system and might therefore be used for early
water stress detection in crop stands because the amount of water
in the crop canopy is generally the dominant factor controlling the
dielectric properties (Nelson, 1991). Unfortunately, the dielectric
properties also depend on measurement frequency, canopy and
soil temperature, density and structure of the vegetation (Nelson,
1991), and the salinity of the plant water (Ulaby and Jedlicka,
1984). Therefore, the relationship between dielectric permittiv-
ity and canopy water content is not straightforward. Among the
first who systematically analyzed the dependency of dielectric
permittivity and canopy water content were Ulaby and Jedlicka
(1984), who treated the wet vegetation as a two-component mix-
ture of bulk water (including air) and water. On the basis of these
assumptions they developed two phase mixing models where the
dielectric permittivity of the vegetation mixture (namely the stalk
material), water, and bulk vegetation was assumed to differ in total
amounts (and therefore differ in total influence on the overall
signal). Unfortunately, none of the developed two-phase mixing
models could describe measured data at the X band (8 GHz). Asa
consequence they increased the complexity of the models by using
a three-component random-needle mixing model, where the bulk
vegetation was used as a host material and the air and water as
randomly orientated needle-like inclusions. This approach already
agreed well with measured data at the X band (8 GHz). Finally,
they proposed a four-phase refractive mixing model consisting of
the bulk vegetation as a host, and three additional types of inclu-
sion, such as (i) air, (ii) free water with a fixed dielectric permittivity
for the frequency range used, and (iii) bound water with an ice-like
dielectric permittivity. Applying this complex model the measured
data were fitted as good as with the simpler three-phase mixing
model. Therefore, the authors concluded that the problem of
modeling the dielectric properties of water contained in a given
material was not well understood at the time. On the basis of this
work, Ulaby and El-Rayes (1987) developed a Debye-Cole dual-

dispersion dielectric model consisting of a component that accounts

for the volume fraction occupied by water in free form and another
that accounts for the volume fraction occupied by the mixture com-
prised of water molecules bound to bulk-vegetation molecules. The
model was again tested against measured data and showed excellent
agreement over a wide range of moisture conditions and within the
frequency range 0.2 to 20 GHz. Additionally, Ulaby and El-Rayes
(1987) found that the bound water content increases with decreasing
total water content. A number of authors developed mixing models
for specific purposes or vegetation compartments, such as the dielec-
tric model for leaves as proposed by Mitzler (1994), and for various
plants, such as Shrestha et al. (2005, 2007).

Diurnal Changes in Plant Water

and Dielectric Properties

Within the biological and agronomy community it is widely
known that diurnal changes of plant water content might occur
as a consequence of water stress induced by high temperatures and/
or shortening of available soil moisture. Ackley (1954) observed
diurnal and seasonal changes in crop water content and water
deficit of crops. He clearly demonstrated that leaf water content
drops to its minimum in the early afternoon and recovered during
night time. In the following years various studies indicated that
not only the water content but also the turgor pressure change
during the day (Acevedo et al., 1979; Ackerson et al., 1977; Allen
et al.,, 1998; Dutt and Gill, 1978; Ehrler et al., 1978; Olsson and
Milthorpe, 1983; Turner, 1974, among many others), whereby the
changes were highly dependent on the crop type (Turner, 1974).
From a plant physiological point of view it is also clear that the
turgor pressure is much more sensitive to stress conditions than
the total plant water content. This has been proven by studies from
Dutt and Gill (1978), for example, who showed that even small
changes in water content correspond to relatively large changes
in turgor pressure. Additionally, Ehrler et al. (1978), Forster et al.
(1991), and Olsson and Milthorpe (1983) showed the existence of
adiurnal hysteretic effect in the leaf water potential as a function
of the induced water stress in the soil. Hereby, the recovery of plant
water potential tended to be slower for plants that are undergoing

water stress compared to nonstressed plants.

Backscattering coefficients were also found to be sensitive to
changes in leaf water potential, as reported by Forster et al. (1991),
Martin et al. (1989), and Siddique et al. (2000). However, fur-
ther research is needed to explore dependencies between canopy
properties such as leaf water potential, leaf water content, and
canopy geometry and radar backscattering. To complement the
information from plant observations these dependencies need to
be related to the observed water status in soil using soil moisture
content and soil matric potential measurements. In addition, the
value of combined passive and active microwave measurements
in characterizing the dynamics of canopy geometry needs to be
explored. There is evidence in literature that changes in canopy
geometry may strongly contribute to the observed backscatter-

ing (see below). In addition, geometric effects appear to be more
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important in backscattering from active microwave systems than
in signals obtained by passive systems.

Factors Controlling Microwave
Signals of Crop Canopies

In this section, we will discuss the various factors that may lead
to changes in the structure and function of crop canopies, and
that, therefore, may affect the observed microwave emission and
backscattered signals. Some of these factors have already been
addressed in previous sections and will only be briefly mentioned.
The presentation below shows that many environmental factors
may influence the observed microwave signals and that disen-
tangling their influence needs both monitoring of these factors
but also quantification of their effect on microwave signals. The
identification of water stress phenomena in particular may be con-
founded by other effects also inducing changes in canopy structure
and function. Also, environmental controls, such as soil moisture
status and microclimatology, may affect microwave signals. Iden-
tification of water stress may therefore require monitoring of all
relevant parameters and properties affecting microwave emission

and backscattering.

Water Stress Phenomena

The relation between water stress and microwave emissions and
backscattering was already partly addressed. In this subsection
we will mainly focus on the effect of water stress on crop canopy
structure and function. It is well known from crop physiology that
water or drought stress in plants may lead to changes in the struc-
ture and function of the canopy and thereby affect the observed
microwave emission or backscattering coefficient. Depending on
the intensity and severity of this stress, the effects may range from
fully reversible to irreversible. Despite this effect of plant water
status on microwave emission of its canopy due to changes in its
structural properties, there are practically no studies available in
the literature that allow relating water stress, the related changes
in geometrical properties of the canopy, and, for example, back-
scattering coeflicients or microwave emission. Water stress effects
that may be detected by microwave techniques include: (i) loss of
turgor pressure in the leaves leading to the droop of leaves (Singh
etal., 2006), (ii) reduced cell division and thus reduced stem elon-
gation leading to changes in LAI and plant height (Song et al.,
2008), (iii) changes in leaf structure to reduce transpiration losses
(Moran et al., 1989), and (iv) reduced capability in tracking sun-
light (Moran et al., 1989). Most of these effects, however, have
typically been studied with optical and near-infrared sensors (Col-
well, 1974; Moran et al., 1989). Droop of cars in spring barley was
observed by Cookmartin et al. (2000) using microwave methods.
This droop of ears led to a substantial increase in their radar cross
section. Most likely this effect was caused by stress conditions, but
no clear evidence was given by the authors. The study by Colpitts
and Coleman (1997) analyzed drought stress of a potato leaf using
measurements in the L, C, and Ku bands. Drought stress could be

related directly to reduced leaf gravimetric water content and leaf
thickness. They found only weak statistical relationships between
complex relative permittivity and the gravimetric moisture con-
tent of a leaf because the water/air ratio within the leaf remained
nearly constant with changing water content. In contrast, corre-
lations were found between leaf permittivity and leaf thickness
across the wavelengths used. The leaf thickness was found to be
directly related to relative leaf water content, osmotic potential,
water potential, and turgor pressure. These findings suggest that
the canopy architecture will have a much stronger effect on radar

backscattering than the permittivity.

Wind Strength

It appears that the effect of wind strength on radar backscatter-
ingis important for measurements performed at high frequencies.
These findings and the importance for retrieving canopy water
stress from backscattering measurements of wind strength, how-
ever, need to be further validated. In early publications, such as
Brakke et al. (1981), no effect of wind speed on the radar backscat-
tering measured at the Ku band and two different polarizations
was found for corn, sorghum, and wheat. Wu et al. (1985b)
observed strong fading of the backscattering signal in milo due to
wind effects using the X band. Bouman and Van Kasteren (1990a)
used the X band to analyze factors that influence backscattering
cocflicient of potato and sugarbeet and found that the architecture
of individual beet plants and their distribution in space affected
the radar backscattering. Strong winds especially led to changes in
canopy architecture and therefore will affect radar backscattering

and may confound the quantification of water stress phenomenon.

Saturation Effect

The quantification of saturation effect is mainly an issue for active
systems, especially at higher frequencies. Saturation implies that
the backscattering coeflicient becomes insensitive to changes in
canopy structure and function (Blaes et al., 2006; Cookmartin
etal.,, 2000; Liu et al., 2006; Taconet et al., 1994). Occurrence of
saturation effects have been related to the type of crop (Bouman
and Van Kasteren, 1990a; Ferrazzoli et al., 1997), crop biomass
(Bouman and Van Kasteren, 1990a), crop cover (Bouman, 1991),
crop height (McNairn et al., 2000), and LAI (Blaes et al., 2006;
Ferrazzoli et al., 1992) and may mask potential correlation between
crop parameters and backscattering coefficient (Chen et al., 2009).
In addition, saturation has been observed at different polarizations
and incidence angles (Chen et al., 2009; Ferrazzoli et al., 1992;
McNairn and Brisco, 2004).

Only a few studies analyzed the effect of vegetation water content
on the occurrence of saturation. Taconet et al. (1994) used the
airborne scatterometer ERASME in the C and X bands, HH and
VV polarization, and incidence angles 15 to 45°. Backscattering
coefficients were obtained for 2 yr under different soil moisture
conditions for wheat. Backscattering values obtained with the X

band using HH polarization saturated at vegetation water contents
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larger than 3 kg m™2 and became highly variable for values larger
than 4 kg m~2. A similar pattern was observed for values observed
in the X band using V'V polarization. Bouman (1991) used radar
backscattering data at the X band to derive crop parameter from
beet, potato, barley, and wheat. In the case of beet, the backscat-
tering coeflicients obtained saturation values at a fraction cover of
0.8, with values ranging between 0 and —2 dB. Backscattering coef-
ficients for potato were found to saturate at a similar fraction cover
but with values ranging between —2 and —4 dB. For wheat and
barley no saturation level could be observed. For beet, crop water
content at the fraction cover of 0.8 was about 0.5 kg m~2, whereby
between 0.8 and full cover the crop water content increased up to
6kg m~2 and more, indicating that radar backscattering no longer
corresponded to changes in vegetation water content (their Fig.
1 and 7a). Therefore, the presence of saturation effect may mask
the detection of water stress in plant canopies. Saturation effects
may also be observed for microwave signals obtained from radi-
ometers. Wigneron et al. (1993) used a multifrequency radiometer
(PORTOS) to monitor the microwave emission of a soybean field.
Both soil moisture and biomass parameterized by the vegetation
volume fraction were found to have a very significant effect on
the evolution of the microwave signal. Increase in biomass led to
saturation of the observed emissions at 5.05 and 36.5 GHz, but
this effect was less pronounced at 1.4 GHz, showing a continuous
increase of the microwave signal.

Surface Soil Moisture Content

Surface soil moisture content is a key variable in understanding
mass and energy transfer processes between the land surface and
the atmosphere, whereby passive and active microwave systems
have extensively been used to determine its spatial and temporal
dynamics. However, exact estimation of soil moisture content
from emission or backscattering is hampered by the presence of
a vegetation canopy. To overcome the problem of the confound-
ing signal from the vegetation canopy, radiative transfer models
were developed and applied which account for all processes within
the vegetation canopy (Hunt et al., 2011; Joseph et al., 2010). The
derivation of crop parameters from microwave methods may be
hampered by the influence of the underlying soil, and more spe-
cifically, by changes in the soil moisture content, especially for
frequencies lower than the C band. In this respect, vegetation
canopy models may be extremely valuable to derive properties that
can provide information on the status of the canopy, and its water

status in particular.

Several findings have shown that the soil surface moisture status
determines the intensity of the observed radar backscattering of
cropped soil. For example, Ulaby et al. (1982) found that at 50%
of field capacity the backscattering of a radar operating at 4.25
to 4.75 GHz (10° incidence angle) was dominated by the vegeta-
tion. Additionally, radar backscattering seemed to be dominated
by the return from the soil at higher moisture contents. Airborne
scatterometer (X band with HH polarization) data of wheat fields

showed no clear dependence of the backscattering signal on soil
moisture content (Taconet et al., 1994). Additionally, a negative
correlation between radar backscattering and vegetation water con-
tent was found for the frequency used. They found that at lower
frequencies (C band) and steep to medium incidence angles, the
radar backscattering comes from the underlying soil attenuated
through the vegetation above. Similarly, Baghdadi et al. (2009)
showed that for L-band measurements performed at 20° inci-
dence angle over a fully grown sugarcane crop (50 cm high) the
radar signal was no longer sensitive to surface roughness and the
sensitivity to soil moisture content was low (around 0.04 dB [%,
v/v]). Detecting crop emergence may be masked by dips and peaks
in the backscattering caused by changes in soil moisture content
(Bouman and Van Kasteren, 1990a). Joseph et al. (2008) used the
ratio between modeled bare soil backscattering and the vegetation
water content to estimate surface soil moisture using dual-polar-
ized L-band measurements (1.6 GHz). The authors also reported
that the retrieval of soil moisture was found to be dependent on the
view angle and polarization used, whereby they found best agree-
ment at 35° view angle and V'V polarization. Encouraged by the
positive results Joseph et al. (2010) used also successfully C-band
data to estimate soil moisture content. Contradictory to these find-
ings Schoups et al. (1998) reported that for the S and even C bands,
the radar signal becomes less sensitive to soil moisture content and
surface roughness and more sensitive to canopy parameters.

Also, the characterization of vegetation canopy using passive
microwave measurements is affected by the surface soil moisture
status. Hornbuckle and England (2004), for example, reported
that there was still a radiometric sensitivity in the L band to soil
moisture even under corn having a biomass of 8.0 kg m~2. One
way to exclude the effect of soil moisture on the total emission
and radar backscattering was the installation of a perfect reflector
above the ground. Brunfeldt and Ulaby (1984) analyzed the effect
of vegetation on microwave emission and radar backscattering in
asystematical sense by applying this technique. Therefore, the soil
between the crop rows was covered by a perfect reflector to block
emissions from the soil and reflect downwelling radiation from
the vegetation. Additionally, uncovered reference fields were used
to validate their simplified radiative transfer model. Overall, the
model performed well, but the authors also clearly indicated that
more research is needed to understand emission and reflection
from crop stands. Calvet et al. (2011) analyzed the sensitivity of
passive microwave observations to soil moisture content and veg-
etation water content for frequencies ranging between the L and
W bands. They showed that for frequencies higher than the L band
alarger sensitivity was observed to vegetation water content than

to surface soil moisture content.

Biophysical Crop Parameter
Microwave methods have extensively been used to characterize
biophysical crop parameters. Most of this work has been done

by relating backscattering coefficients from active microwave
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methods to observed crop parameters under field conditions. In
the subsequent discussion, we will briefly present some major
findings regarding key parameters such as crop biomass, LAI, and
plant geometry. Biomass and LAI will be discussed together since
most microwave studies typically provide information on both
quantities (Table 3). Other properties, such as plant height, crop
cover, and growing stage, will be referred to as we present these
key parameters.

Crop Biomass and Leaf Area Index

Many studies have shown that there is a clear interdependence
between biomass, LAI and observed backscattering coefficients
from active microwave systems. A large number of these studies
are listed in Table 3, and they provide regression equations and
coeflicient of correlation to express the performance of the derived
relationships. Rather than presenting these relationships in detail
we would like to highlight some issues that are of importance when
conducting microwave experiments to derive such dependencies.
Analysis of these studies showed that canopy properties other than
biomass and LAI may confound the expected relationship between
both properties and the observed backscattering. These properties
included the growing stage of the crop (Bouman and Hoekman,
1993; Bouman and Van Kasteren, 1990a) and the canopy structure
and geometry (Bouman and Hockman, 1993; Bouman and Van
Kasteren, 1990a), but also the soil moisture status (Brakke et al.,
1981; Brown et al., 1992; Martin et al., 1989; Mattia et al., 2003),
environmental conditions (Hoekman and Bouman, 1993), and
management properties (Paris, 1983). It is therefore mandatory to
monitor these confounding factors when trying to relate biomass

and LAT to observed backscattering coefficients.

The specific growing stage of the crop has been shown to be an
important factor determining the relationship between biomass,
LAI and backscattering. The effect of growth stage was often
related to geometry and saturation effects. C-band HH backscat-
tering data from ASAR obtained over winter wheat was found
to correlate very well with biomass (R? > 0.65), LAI and other
parameters, such as plant water content, leaf water content per
unit leaf area, and specific growing stages, such as regreening (Liu
etal., 2006). In the same study backscattering signals from VV
polarization were also analyzed but typically showed less correla-
tion than values obtained with HH polarization, independently
of the growth stage. During booting and milking stages temporal
changes in the correlation were observed with lower correlations
both for HH and V'V polarization. On the other hand, pooling of
regreening and booting data resulted in high correlations between
C-band HH backscattering, biomass, and LAI Negative correla-
tions between biomass and C-band HH and V'V backscattering
(R? = —0.52 and —0.44) were found at booting. This was explained
by changes in the canopy structure. The low correlations between
biomass and also LAI observed from the C-band HH backscatter-
ing may be due to saturation. Blaes et al. (2006) showed that VV/
HH polarization ratios obtained at incidence angles between 35

and 45° were able to assess the crop growth until saturation of the
signal was reached (LAI of 4.6).

Several studies specifically focused on the analysis between LAI
and backscattering coefficients. Ulaby and Jedlicka (1984), for
example, studied the relationship between LAI and backscattering
measured at frequencies ranging between 8.6 and 35.6 GHz over
corn, sorghum, and wheat. Most of the observed variation in canopy
backscattering could be explained through variations in green LAI
for cases where the LAT was greater than 0.5. For the wheat crop, the
correlation was only good before head formation started. Again the
authors observed an important contribution of the soil backscat-
tering at early growth stages with low LAI (<0.5). The relationship
between LAI of rice (Oryza sativa L.) and the C-band VV/HH
backscattering ratio was analyzed by Chen et al. (2009), who found
highest correlation for LAI values ranging between 1.7 and 3.5.

The above discussion of confounding factors showed that the
effect of these parameters on backscattering depends also on
the type of polarization and the incidence angles used. Singh
(2006) performed ground-based X-band measurements at differ-
ent angles and polarizations to analyze the relationship between
biophysical parameters of soybean such as plant height, biomass,
LAIT, and crop covered soil moisture. He found the highest cor-
relation between biomass and backscattering for incidence angles
larger than 40° and V'V polarization. Lower angles were more
affected by dynamics in soil moisture. Brown et al. (2003) used
C- and X-band measurements to estimate the biomass of an out-
door wheat canopy. They showed that a two-channel C band
operating at moderate incidence angles was most appropriate to
estimate biomass. The authors argued that biomass was expressed
through its effect on extinction, rather than by its contribution to
backscattering. Differential attenuation of soil backscattering by
the HH and V'V polarization (i.e., the difference between both
polarizations) was found to best relate to biomass. However, the
period with a large biomass increase was not captured. Mattia et al.
(2003) used ground-based C-band backscattering measurements
on wheat fields to derive relationship between wheat biomass and
soil moisture. They showed that biomass could not be retrieved
using V'V polarization with an incidence angle of 23° due to
modulation from soil moisture. Better results were obtained for
biomass prediction from backscattering when using the VV/HH
ratio with an incidence angle of 40°. Maity et al. (2004) assumed a
linear relationship between LAT and crop height for analysis with
RADARSAT, whereby the increase in LAI and plant height led
to an increase in backscattering. All studies analyzed suggest that
the derivation of relationships between biomass and backscattering
coeflicient was most successful for larger incidence angles and that
lower frequencies may result in better estimates.

Effects of Leaves, Stems, and Branches
Most of the work on the effects of geometry and related plant parts

on microwave signals has been done using active measurements
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systems and has focused on specific parts of the plants such as
leaves, stems, and branches. Characterizing these elements in terms
of electromagnetic properties and shapes is essential for any math-
ematical modeling of backscattering coefficients. Several studies
have shown that the leaf size and leaf geometry greatly influence the
observed backscattering coeficients (Brown et al., 2003; Karam
and Fung, 1989; Wu et al., 1985b). Paris (1986) was one of the first
to include the leaf size in a modified water cloud model to predict
backscattering from a corn canopy and obtained an excellent fit
between modeled and observed backscattering at a frequency of
17.5 GHz. Paloscia (1998) showed that the change in backscatter-
ing with vegetation water content was different for wide-leaf crops
(grains) and crops with circular leaves (sunflowers). She concluded
that crops with the same vegetation water content may result in
different backscattering due to the geometry of the leaves. Cook-
martin et al. (2000) showed that nonplanarity of leaves in oilseed
rape was a considerable source of error in the physically based radia-
tive transfer model RT2. An additional mechanisms was observed
by Della Vecchia et al. (2006), who reported that leaf curvature of
maize and stem hollowness of wheat led to a reduction of backscat-
tering and stem attenuation from the C band, respectively. Further
analysis showed that these effects seem to be dependent on the
growth stage of the crop. In addition to leaf shape and size, stem,
ear, and branch properties also influence backscattering of radar
signals. To overcome these problems and to allow interpretation
of ERS-2 backscattering data, Cookmartin et al. (2000) developed
an equivalent integratable first-order radiative transfer model that
included a correct representation of attenuation by the stems and

scattering by ears in cereals crops.
gy

Management Practices

Finally, management practices also may play an important role in
the analysis of backscattering signals. Paris (1983) found that radar
backscattering coeflicients were affected by row directions among
fields cropped with corn, soybean, alfalfa, and wood when using
like-polarization at look angles between S and 25°. No effects were
found for cross-polarization or look angles greater than 25° inde-
pendent of the polarization. Additionally, wet surface soil water
conditions, typical for irrigated crop systems, were less favorable
than dry surface conditions for distinguishing between crop types.
The effect of row direction of wheat and barley, for example, was
smaller than the effect of row spacing. A close row spacing of 12.5
cm for wheat and barley resulted in relatively high backscatter-
ing values during carly vegetative growth and low backscattering
values at grain filling and ripening compared to larger row spacing.
This effect of row spacing was only observed at low and medium
frequencies. Even the removal or preservation of crop residues and
plowing and harrowing of the stubble will influence the backscat-
tering coefficient of X-band measurements, as reported by Bouman
and Van Kasteren (1990a).

Multisensors Measurements

For the characterization of crop conditions (i.c., type, status,
height), the use of more than one sensor type gives valuable infor-
mation. Data acquired for the same site by different sensors are
partially redundant, since they represent the same location, and
partially complementary, since the sensors have different charac-
teristics and the physical mechanisms of diffusion are different (Le
Hegarat-Mascle et al., 2000). Several approaches to combine micro-
wave data from several frequencies, active with passive microwave,
or microwave data with optical data from visible, near infrared,
and thermal spectra have been published. These methods are dis-
cussed in the following. We will focus on the combination of active
and passive systems and on the combination of microwave with
optical/multispectral systems. However, Dong et al. (2009) and
Pohl and van Genderen (1998) reviewed the topic and found that
real fusion techniques for disparate data that actually contribute
to the understanding of the objects observed are rare.

Active and Passive Microwave Sensors

In several early studies, passive and active microwave signatures
of various agricultural crops were measured, for example, by
Brunfeldt and Ulaby (1984) and Hiippi (1987). At this stage, a
strong focus was on the estimation of soil moisture, considering
vegetation as a confounding factor only for soil moisture retrieval
(Jackson et al., 1982). Saatchi et al. (1994) developed an active/
passive microwave scattering model for a grass canopy to explain
the behavior of reduction in sensor sensitivity to soil moisture in
the presence of a (wet) thatch layer. Chauhan (1997) used NASA’s
AIRSAR to estimate the vegetation opacity and surface roughness,
whereas the brightness temperature was received by the Push-
Broom Microwave Radiometer (PBMR). The study was mainly
focused on the estimation of soil moisture, but they showed well
the synergistic effect of active and passive microwave sensors to
gain information about the status of cropped agricultural fields.
As a consequence of the upcoming SMAP mission (Njoku et al.,
2010), the combined use of active and passive microwave data is
gaining more attention, whereby the focus of SMAP lies in the

estimation of near surface soil moisture (Dorigo et al., 2010).

An exception from the focus on soil moisture retrieval is the work
of Wigneron et al. (1999), who simulated active and passive obser-
vations to investigate the surface characteristics over a soybean
field. Soil and vegetation effects were best described by combin-
ing passive microwave data at the L band with multiangle active
microwave data at the C band. Similarly, Jin and Huang (1996)
developed a model considering an agricultural crop stand as a layer
of continuous random media with an underlying rough surface.
They analyzed the correlations of active and passive microwave
signatures for different crops and compared them to real measure-
ments at 1.2 GHz. The results showed that simultaneous radar
and radiometer observations can be efficiently used to monitor

the development of agricultural crops. Moreover, they identified
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clusters in emissivity and backscattering, which were used to
separate different vegetation types. Oza et al. (2008) used SSM/I
(passive) and Quickscat (active) data for the identification of rice
growing stages from transplanting to maturity. While SSM/I was
better able to identify the transplantation period, Quickscat was
better able to predict the heading phase. Unfortunately, a real
fusion of active and passive microwave data was not performed. A
study using the ground-based radiometer—scatterometer system
RASAM (Hiippi, 1987) and a feed forward neural network for
biomass estimation of oat and wheat was presented by Jin and Liu
(1997). This was also not a real data fusion, but they jointly used
active and passive microwave signals for the retrieval of biomass
characteristics including canopy height, canopy water content, and

dry matter fraction in an adequate accuracy.

Microwave and Optical/Multispectral Sensors
While the microwave scattering process is influenced by the struc-
tural elements of the land cover, optical sensors provide either
information on the chemical composition (hyperspectral sensors)
or physical temperature (IR sensors) of the scene. Therefore, a
fusion of these two data sets is feasible, especially for charac-
terization of the plant status (Huang et al., 2010). Important
fusion techniques are the principal component analysis (PCA)
and the intensity—hue-saturation (IHS) transform. Additive
Integration, Component Substitution, and Intensity Modulation
are fusion methods tested by Chibani (2006) using SPOT and
RADARSAT-1 data. However, most studies just compared the
microwave signals to vegetation indices (Baghdadi et al., 2009;
Hunt et al., 2011; Jones et al., 2011; Rosenthal et al., 1985; Svoray
and Shoshany, 2002).

Real combination or fusion of microwave and optical signals for
the characterization of crop canopies are rare, but would provide
reasonable information. In general, two categories of microwave

and optical data fusion techniques are reported.

The first category includes approaches aiming at an enhanced land
cover and land use discrimination. Hereby, methods such as IHS
transform and PCA transfer the remote sensing data into a new
system, which introduces severe radiometric distortions, or they
even lose their physical meaning, but enhance the spatial separabil-
ity of land cover classes. Wavelet-based methods (Amolins et al.,
2007)—even the simplest—tend to produce better results than
standard fusion schemes such as IHS and PCA. Typically, wavelet
fusion schemes have been proposed to import detailed informa-
tion from SAR into multispectral imagery. The advantage is that
the multispectral information remains almost unchanged and the
texture information from SAR will be transferred. For classifica-
tion approaches, a significant change in the data characteristics
can be accepted because a classification traditionally makes use
of the relative differences between the classes only. Horgan et al.
(1992) as well as Vescovi and Gomarasca (1999) fused shuttle imag-
ing radar and Landsat data for enhanced classification. Similarly,

Smara et al. (1998) and Michelson et al. (2000) found higher class
separabilities when Landsat TM and ERS-1 data were combined.
Alparone et al. (2004) presented a similar study on the succes-
sion satellites Landsat ETM+ and ERS-2 data with a wavelet
transform. Le Hegarat-Mascle et al. (2000) fused multitemporal
ERS images and multispectral Landsat images by the Dempster-
Shafer evidence theory for unsupervised classification to use their
complementarity in reducing confusion by getting more complete
description of the land cover type features. Haack and Khatiwada
(2010) applied a spectral signature extraction and Transformed
Divergence approach for SIR-C and Landsat data. Hong et al.
(2009) developed a combined IHS-Wavelet Fusion algorithm.
Finally, McNairn et al. (2009) analyzed the performance of dif-
ferent classification algorithms on fused data sets of Radarsat-1,
ASAR, SPOT, and Landsat.

The second category includes approaches that aim at a more
detailed identification of absolute crop conditions. A combined
use of optical and radar remote sensing was presented by Dente
et al. (2008), who assimilated LAI derived from MERIS and
ASAR into a crop growth model for yield estimation. It has to be
mentioned that the combination of microwave and optical data
was only used for gap filling of time series within the study. Man-
giarotti et al. (2008) used a bi-objective optimization method to
assimilate ASAR backscattering and SPOT-Vegetation NDVTinto
avegetation dynamics model to improve its predictions on biomass
and LAIL whereas Hadria et al. (2010) performed a comparative
analysis using time series of both FORMOSAT-2 and ASAR
images for the monitoring of irrigated wheat crops in a semiarid
region in Morocco. Hereby, FORMOSAT-2 images were used to
characterize the spatiotemporal variations of green LAI which was
incorporated into a simple canopy functioning model to provide
spatial estimates of above-surface biomass and topsoil moisture.
They found evidence that the signal reaches a saturation level from
intermediate values of biomass water content (~2000 g m~2). Air-
borne Visible and Infrared Imaging Spectrometer (AVIRIS) and
AirSAR data were fused by Huang et al. (2010) for the estimation
of fractions of nonphotosynthetic vegetation (grass and shrub).
This approach may also give feasible information on the condi-

tions of dried crops, such as cereals before harvest.

In general, the utilization of multisensor and multifrequency
information leads to a better characterization of the crop status.
The approaches mentioned may be feasible to identify plant stress
related differences to the normal crop growth. However, for this
goal more work is needed on the development of new sensors and

fusion algorithms in an applicable way.

Outlook

We reviewed the use of microwave methods to characterize crop
canopies using microwave methods and with specific focus on their

ability to identify the presence of water stress related phenomena.
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Our analysis of the literature showed that practically no data sets
are available that provide both microwave measurements of the
plant canopy (e.g., backscattering, optical depth) and detailed
measurements of the physiological properties of the canopy, the
soil moisture status, and the microclimatic conditions in the
canopy, and therefore, allow evaluating observed microwave sig-
nals in relation to stress phenomena. Measurements presented in
the literature and related to analyzing the effect of water stress
on, for example, microwave signals were typically conducted on
single plants under lab conditions with little information on the
soil and plant water status. Moreover, there are no data available
that provide information on soil and plant water status in combi-
nation with microwave measurements at the field scale. Detailed
temporal and spatially distributed information about the soil and
plant water status is in our opinion essential when evaluating any
remote sensing method used to assess the occurrence and pres-
ence of water stress in plants. Microwave measurements should
therefore be combined with measurements of soil water potential
and soil moisture content in the root zone, micrometeorological
measurements within and above the canopy as well as physiologi-
cal properties and quantities of the plant such as volume—pressure
curves, vegetation water content, leaf water potential, and transpi-
ration rate of the plant. The characterization of geometrical and
structural properties of the canopy and their dynamical behavior
is another essential element to assess the effect of water stress phe-
nomena on microwave signals. Interpretation of such integrated
data sets in combination with three-dimensional functional, struc-
tural plant canopy models including the effects of physiological
processes on the radiative transfer properties of the canopy will
improve early identification of stress and will help to disentangle
the factors influencing observed microwave signals. It will help
to better evaluate the importance of mapping the dynamics and
spatial distribution of surface soil moisture in terms of identifying
the occurrence of plant water stress at the field scale. Up to now it
is not clear in how far information on surface soil moisture status

is relevant in assessing early plant water stress.

A combination of different sensor technologies covering the full
spectral range from optical to microwave will open new perspec-
tives and generate new knowledge about the status of vegetation
and more specifically crop canopies. A first attempt to combine
this spectral range on one platform that was suitable for crop sci-
ence applications was ESA’s ENVISAT mission, launched in 2002.
For future satellites there is a trend to develop specialized sensors
on individual platforms, such as the five planned ESA Sentinels
(1: C-Band SAR, 2: Superspectral, 3: Ocean, 4/5: Atmospheric
Chemistry) will continue the work of actual missions. Moreover,
German activities around TerraSAR-X, TanDEM-X, RapidEye,
EnMAP, and Tandem-L provides and will provide sound knowl-
edge about plant conditions and will in combination be able to
identify crop stress. Myneni and Choudhury (1993) already
pointed at the potential of combining different sensor technolo-

gies. They stated that combining optical and microwave techniques

will allow observing different responses of the plants due to water
stress, such as the diurnal response of water stress detectable by
microwave methods, but which does not occur in the pigment con-
centration. Moreover, a combination of optical and microwave data
can be synergistically used to infer land surface properties and crop
status. Also, optical data and their deduced parameters can be used
for correction and interpretation of microwave observations.

Here a close cooperation between the soil, plant, and remote sens-
ing communities may lead to new results. In addition, validation
of these novel model approaches will require data that are presently
not available in literature as already outlined above.

Assimilation of remotely sensed properties, such as backscattering
coeflicient or brightness temperature, may provide a unique oppor-
tunity to improve the estimate of biophysical properties as crop
canopies, such as LA, dry matter, plant water content, and related
leaf potential, and others. Initial studies that use assimilation of
remotely sensed microwave data have been developed recently in
the field of hydrology (Draper et al., 2011; Montzka et al., 2011),
meteorology (Rasmy et al., 2011), or for optical remote sensed
data and the assimilation in crop functioning models (Weiss et
al., 2001). However, this avenue has not been really pursued in
the past for vegetation canopy properties for microwave frequen-
cies, but it provides a huge potential for remotely sensed data,
especially for microwave data, as they are available for almost all
weather conditions. Within the field of microwave measurements,
acquisition of backscattering data at different frequency bands may
provide additional information on the status of the crop. Lopez-
Sanchez and Ballester-Berman (2009) stated that a combination of
low and high microwave bands allows determination of different
properties of the plants and different scales of their components,
such as leaves, stems, and heads. Additionally, multipolarization
(dual and full polarization) data exploit the sensitivity of the wave
polarization to the orientation, shape, and dielectric properties of
the elements in the scene. Therefore, polarimetry SAR interferom-
etry (such as PolInSAR) seems to be the most promising tool to
gain information for agricultural crop stands (Lopez-Sanchez and
Ballester-Berman, 2009). Finally, PolInSAR yields information
not only about the dielectric properties, shape, and orientation of
the whole plant constituents, but also about the vertical structure
of the plant by means of information about the localization of the
scattering centers.

Appendix

AirSAR: NASA’s Airborne Synthetic Aperture Radar

AMSR-E: Advanced Microwave Scanning Radiometer onboard
the Earth Observing System

ALOS: Advanced Land Observing Satellite

AQUARIUS: NASA's sea surface salinity mission

ASAR: Advanced Synthetic Aperture Radar onboard ENVISAT
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ASCAT: MetOp’s Advanced SCATterometer, the successor to the
C-Band scatterometers flown on ESA’s ERS-1 and ERS-2 satellites
AVIRIS: Airborne Visible and Infrared Imaging Spectrometer
COSMO-SkyMed: Constellation of small Satellites for Mediter-
ranean basin Observation

EnMAP: German hyperspectral Environmental Mapping and
Analysis Program

ERS-1 & 2: European Remote Sensing Satellite 1 and 2
ENVISAT: ESA’s Environmental Satellite

ETM+: Landsat Enhanced Thematic Mapper Plus (Landsat 7)
FORMOSAT-2: Taiwan Earth imaging satellite 2

JERS-1: Japanese Earth Resources Satellite 1

Landsat TM: Landsat Thematic Mapper (Landsat 5)

MAPS: Multifrequency polarimetric scatterometer

MERIS: Medium Resolution Imaging Spectrometer onboard
ENVISAT

MIRAS: Microwave Imaging Radiometer with Aperture Synthesis
onboard SMOS

MODIS: Moderate Resolution Imaging Spectroradiometer
onboard ENVISAT

PALSAR: Phased Array type L-band Synthetic Aperture Radar
onboard ALOS

PBMR: Push-Broom Microwave Radiometer

PolInSAR: Polarimetric interferometric SAR

PORTOS: Six-frequency radiometer of the Institut National de
Recherches Agronomiques (INRA) Avignon, France.

Radarsat-1 & 2: Canadian Space Agency’s radar satellite 1 & 2
RapidEye: System of 5 multi-spectral satellites

RASAM: Radiometer-Scatterometer to Measure Microwave Sig-
natures of Soil, Vegetation and Snow

SAC-D: Satélite de Aplicaciones Cientificas, platform of AQUAR-
[USSAR: Synthetic Aperture Radar

SMAP: NASA’s Soil Moisture Active Passive Mission

SIR-A: Shuttle Imaging Radar A L-Band Synthetic Aperture
Radar flown 1981 on Space Shuttle

SIR-C/X SAR: Spaceborne Imaging Radar-C/X-Band Synthetic
Aperture Radar flown 1994 on Space Shuttle

SMOS: ESA’s Soil Moisture and Ocean Salinity Mission

SPOT: Satellite Pour ’Observation de la Terre (Satellite for Earth
Observation)

SSM/I: Special Sensor Microwave Imager

Quickscat: NASA’s Quick Scatterometer

Tandem-L: Proposed L-Band Radar Mission

TanDEM-X: TerraSAR-X add-on for Digital Elevation
Measurement

TerraSAR-X: German X-Band Radar Mission

WindSAT: Multi-channel multi-frequency microwave radiometer
for Ocean Surface Wind detection

Acknowledgments

This study was supported by the German Research Foundation DFG (Transregional
Collaborative Research Centre 32—Patterns in Soil-Vegetation—Atmosphere Sys-
tems: Monitoring, modeling and data assimilation).

References

Acevedo, E., E. Fereres, T.C. Hsiao, and D.W. Henderson. 1979. Diurnal growth
trends, water potential, and osmotic adjustment of maize and sorghum
leaves in the field. Plant Physiol. 64(3):476—480. doi:10.1104/pp.64.3.476

Ackerson, R.C., D.R. Krieg, T.D. Miller, and R.E. Zartman. 1977. Water relations
of field-grown cotton and sorghum- temporal and diurnal changes in leaf
water, osmotic, and turgor potentials. Crop Sci. 17:76-80. doi:10.2135/cro
psci1977.0011183X001700010022x

Ackley, W.B. 1954. Seasonal and diurnal changes in the water contents
and water deficits of Bartlett pear leaves. Plant Physiol. 29(5):445-448.
doi:10.1104/pp.29.5.445

Allen, L.H., R.R. Valle, J.W. Jones, and P.H. Jones. 1998. Soybean leaf water
potential responses to carbon dioxide and drought. Agron. J. 90:375-383.
doi:10.2134/agronj1998.00021962009000030010x

Alparone, L., S. Baronti, A. Garzelli, and F. Nencini. 2004. Landsat ETM+ and SAR
image fusion based on generalized intensity modulation. IEEE Trans. Geosci.
Rem. Sens. 42(12):2832-2839. doi:10.1109/TGRS.2004.838344

Amolins, K., Y. Zhang, and P. Dare. 2007. Wavelet based image fusion tech-
nigues—An introduction, review and comparison. ISPRS J. Photogramm.
Remote Sens. 62(4):249-263. doi:10.1016/j.isprsjprs.2007.05.009

Attema, E.PW., and FT. Ulaby. 1978. Vegetation modeled as a water cloud. Ra-
dio Sci. 13(2):357-364. doi:10.1029/RS013i002p00357

Baghdadi, N., N. Boyer, P. Todoroff, M. El Hajj, and A. Begue. 2009. Potential of
SAR sensors TerraSAR-X, ASAR/ENVISAT and PALSAR/ALOS for monitoring
sugarcane crops on Reunion Island. Remote Sens. Environ. 113(8):1724—
1738. doi:10.1016/j.rse.2009.04.005

Battaglia, A., M.O. Ajewole, and C. Simmer. 2006. Evaluation of radar multiple-scat-
tering effects from a GPM perspective. Part I: Model description and validation.
J. Appl. Meteorol. Climatol. 45(12):1634-1647. doi:10.1175/JAM2424.1

Becker, F., and B.J. Choudhury. 1988. Relative sensitivity of normalized differ-
ence vegetation index (NDVI) and microwave polarization difference index
(MPDI) for vegetation and desertification monitoring. Remote Sens. Envi-
ron. 24:297-311. doi:10.1016/0034-4257(88)90031-4

Blaes, X., and P. Defourny. 2003. Retrieving crop parameters based on tandem
ERS 1/2 interferometric coherence images. Remote Sens. Environ. 88:374—
385. doi:10.1016/j.rse.2003.08.008

Blaes, X., P. Defourny, U. Wegmidiller, A. Della Vecchia, L. Guerriero, and P. Fer-
razzoli. 2006. C-band polarimetric indexes for maize monitoring based
on a validated radiative transfer model. IEEE Trans. Geosci. Rem. Sens.
44(4):791-800. doi:10.1109/TGRS.2005.860969

Bouman, B.A.M. 1991. Crop parameter-estimation from ground-based X-band
(3-cm wave) radar backscattering data. Remote Sens. Environ. 37:193-205.
doi:10.1016/0034-4257(91)90081-G

Bouman, B.A.M., and D.H. Hoekman. 1993. Multitemporal, multifrequen-
cy radar measurements of agricultural crops during the Agriscatt-88
campaign in the Netherlands. Int. J. Remote Sens. 14(8):1595-1614.
doi:10.1080/01431169308953988

Bouman, B.A.M., D.W.G. van Kraalingen, W. Stol, and H.J.C. van Leeuwen. 1999.
An agroecological modeling approach to explain ERS SAR radar backscat-
ter of agricultural crops. Remote Sens. Environ. 67:137-146. doi:10.1016/
S0034-4257(98)00079-0

Bouman, B.A.M., and H.W.J. van Kasteren. 1990a. Ground-based X-band (3-cm
wave) radar backscattering of agricultural crops. 1. Sugar-beet and po-
tato—Backscattering and crop growth. Remote Sens. Environ. 34:93-105.
doi:10.1016/0034-4257(90)90101-Q

Bouman, B.A.M., and HW.J. van Kasteren. 1990b. Ground-based X-band (3-
cm wave) radar backscattering of agricultural crops. 2. Wheat, barley, and
oats—The impact of canopy structure. Remote Sens. Environ. 34:107-119.
doi:10.1016/0034-4257(90)90102-R

Bracaglia, M., P. Ferrazzoli, and L. Guerriero. 1995. A fully polarimetric mul-
tiple scattering model for crops. Remote Sens. Environ. 54:170-179.
doi:10.1016/0034-4257(95)00151-4

Brakke, TW., ET. Kanemasu, J.L. Steiner, FT. Ulaby, and E. Wilson. 1981.
Microwave radar response to canopy moisture, leaf-area index, and dry-
weight of wheat, corn, and sorghum. Remote Sens. Environ. 11:207-220.
doi:10.1016/0034-4257(81)90020-1

Brisco, B., R.J. Brown, J.A. Koehler, G.J. Sofko, and M.J. Mckibben. 1990. The di-
urnal pattern of microwave backscattering by wheat. Remote Sens. Environ.
34:37-47. d0i:10.1016/0034-4257(90)90082-W

Brown, R.J., M.J. Manore, and S. Poirier. 1992. Correlations between X-band,
C-band, and L-band imagery within an agricultural environment. Int. J. Re-
mote Sens. 13(9):1645-1661. doi:10.1080/01431169208904218

Brown, S.C.M., S. Quegan, K. Morrison, J.C. Bennett, and G. Cookmartin. 2003.
High-resolution measurements of scattering in wheat canopies- Implications
for crop parameter retrieval. IEEE Trans. Geosci. Rem. Sens. 41:1602-1610.
doi:10.1109/TGRS.2003.814132

Brunfeldt, D.R., and F.T. Ulaby. 1984. Measured microwave emission and scat-
tering in vegetation canopies. IEEE Trans. Geosci. Rem. Sens. 22:520-524.

Bush, T.F, and FT. Ulaby. 1976. Radar return from a continuous vegeta-
tion canopy. IEEE Trans. Antenn. Propag. 24(3):269-276. doi:10.1109/
TAP.1976.1141352

www.VadoseZoneJournal.org



Calvet, J.C., J.P. Wigneron, J. Walker, F. Karbou, A. Chanzy, and C. Albergel. 2011.
Sensitivity of passive microwave observations to soil moisture and veg-
etation water content: L-band to W-band. IEEE Trans. Geosci. Rem. Sens.
49:1190-1199. doi:10.1109/TGRS.2010.2050488

Chauhan, N.S. 1997. Soil moisture estimation under a vegetation cover: Com-
bined active passive microwave remote sensing approach. Int. J. Remote
Sens. 18:1079-1097. doi:10.1080/014311697218584

Chen, J.S., H. Lin, C.D. Huang, and CY. Fang. 2009. The relationship be-
tween the leaf area index (LAl) of rice and the C-band SAR vertical/
horizontal (VV/HH) polarization ratio. Int. J. Remote Sens. 30(8):2149-2154.
doi:10.1080/01431160802609700

Chibani, Y. 2006. Additive integration of SAR features into multispectral SPOT
images by means of the a trous wavelet decomposition. ISPRS J. Photo-
gramm. Remote Sens. 60(5):306—-314. doi:10.1016/j.isprsjprs.2006.05.001

Choudhury, B.J., and C.J. Tucker. 1987. Monitoring global vegetation using
Nimbus-7 37 Ghz Data—Some empirical relations. Int. J. Remote Sens.
8:1085-1090. doi:10.1080/01431168708954754

Chukhlantsev, A.A., A.M. Shutko, and S.P. Golovachev. 2003. Attenuation of
electromagnetic waves by vegetation canopies. J. Commun. Technol. Elec-
tron. 48:1177-1202.

Clevers, J.G.PW., and H.J.C. vanLeeuwen. 1996. Combined use of optical and
microwave remote sensing data for crop growth monitoring. Remote Sens.
Environ. 56:42-51. doi:10.1016/0034-4257(95)00227-8

Colpitts, B.G., and W.K. Coleman. 1997. Complex permittivity of the potato leaf
during imposed drought stress. IEEE Trans. Geosci. Rem. Sens. 35:1059—
1064. doi:10.1109/36.602547

Colwell, J.E. 1974. Vegetation canopy reflectance. Remote Sens. Environ.
3:175-183. doi:10.1016/0034-4257(74)90003-0

Cookmartin, G., P. Saich, S. Quegan, R. Cordey, P. Burgess-Allen, and A. Sow-
ter. 2000. Modeling microwave interactions with crops and comparison
with ERS-2 SAR observations. IEEE Trans. Geosci. Rem. Sens. 38:658-670.
doi:10.1109/36.841996

Del Frate, F., P. Ferrazzoli, L. Guerriero, T. Strozzi, U. Wegmidiller, G. Cookmartin,
and S. Quegan. 2004. Wheat cycle monitoring using radar data and a neu-
ral network trained by a model. IEEE Trans. Geosci. Rem. Sens. 42:35-44.
doi:10.1109/TGRS.2003.817200

Della Vecchia, A., P. Ferrazzoli, and L. Guerriero. 2004. Modelling microwave
scattering from long curved leaves. Waves Random Media 14(2):5S333—
S343. doi:10.1088/0959-7174/14/2/012

Della Vecchia, A., P. Ferrazzoli, L. Guerriero, L. Ninivaggi, T. Strozzi, and U. We-
gmiller. 2008. Observing and modeling multifrequency scattering of maize
during the whole growth cycle. IEEE Trans. Geosci. Rem. Sens. 46:3709—
3718. doi:10.1109/TGRS.2008.2001885

Della Vecchia, A., P. Ferrazzoli, J.P. Wigneron, and J.P. Grant. 2007. Modeling
forest emissivity at L-band and a comparison with multitemporal mea-
surements. IEEE Geosci. Remote Sens. Lett. 4(4):508-512. doi:10.1109/
LGRS.2007.900687

Della Vecchia, A., K. Saleh, P. Ferrazzoli, L. Guerriero, and J.P. Wigneron. 2006.
Simulating L-band emission of coniferous forests using a discrete model
and a detailed geometrical representation. IEEE Geosci. Remote Sens. Lett.
3(3):364-368. doi:10.1109/LGRS.2006.873230

Dente, L., G. Satalino, F. Mattia, and M. Rinaldi. 2008. Assimilation of leaf
area index derived from ASAR and MERIS data into CERES-Wheat model
to map wheat yield. Remote Sens. Environ. 112:1395-1407. doi:10.1016/j.
rse.2007.05.023

Detar, W.R., J.V. Penner, and H.A. Funk. 2006. Airborne remote sensing to de-
tect plant water stress in full canopy cotton. Trans. ASABE 49(3):655—665.

Dong, J., D.F. Zhuang, Y.H. Huang, and J.Y. Fu. 2009. Advances in multi-sensor
data fusion: Algorithms and applications. Sensors (Basel Switzerland)
9(10):7771-7784. doi:10.3390/s91007771

Dorigo, W.A., K. Scipal, R.M. Parinussa, YY. Liu, W. Wagner, R.A.M. de Jeu, and
V. Naeimi. 2010. Error characterisation of global active and passive micro-
wave soil moisture datasets. Hydrol. Earth Syst. Sci. 14(12):2605-2616.
doi:10.5194/hess-14-2605-2010

Draper, C., J.F. Mahfouf, J.C. Calvet, E. Martin, and W. Wagner. 2011. Assimila-
tion of ASCAT near- surface soil moisture into the SIM hydrological model
over France. Hydrol. Earth Syst. Sci. 15(12):3829-3841. doi:10.5194/hess-
15-3829-2011

Dutt, S.K., and K.S. Gill. 1978. Diurnal changes in leaf water potential of rice,
barley and wheat. Biol. Plant. 20(6):472—474. doi:10.1007/BF02923354

Ehrler, W.L., S.B. Idso, R.D. Jackson, and R.J. Reginato. 1978. Diurnal changes
in plant water potential and canopy temperature of wheat as affected by
drought. Agron. J. 70:999-1004. doi:10.2134/agronj1978.0002196200700
0060027x

Eom, H.J., and A.K. Fung. 1984. A scatter model for vegetation up to Ku-band.
Remote Sens. Environ. 15(3):185-200. doi:10.1016/0034-4257(84)90030-0

Ferrazzoli, P. 2002. SAR for agriculture: Advances, problems and prospects.
Proceedings of the Third International Symposium on Retrieval of Bio- and
Geophysical Parameters from SAR Data for Land Applications. ESA Special
Publications. ESA Publications Division.

Ferrazzoli, P., and L. Guerriero. 1996. Passive microwave remote sensing of
forests: A model investigation. IEEE Trans. Geosci. Rem. Sens. 34:433-443,
doi:10.1109/36.485121

Ferrazzoli, P., S. Paloscia, P. Pampaloni, G. Schiavon, S. Sigismondi, and D.
Solimini. 1997. The potential of multifrequency polarimetric SAR in as-
sessing agricultural and arboreous biomass. IEEE Trans. Geosci. Rem. Sens.
35(1):5-17. doi:10.1109/36.551929

Ferrazzoli, P, S. Paloscia, P. Pampaloni, G. Schiavon, D. Solimini, and P. Cop-
po. 1992. Sensitivity of Microwave Measurements to Vegetation Biomass
and Soil-Moisture Content- a Case-Study. IEEE Trans. Geosci. Rem. Sens.
30(4):750-756. doi:10.1109/36.158869

Forster, R.R., C.E. Martin, and R.K. Moore. 1991. Radar backscatter correlation
with leaf water potential of water-stressed tomato canopies. In: IEEE Geo-
science and Remote Sensing Symposium, 1991. IGARSS ’91, p. 2269-2272.

Fung, A.K. 1994. Microwave scattering and emission models and their applica-
tion. Artech House, Boston, MA.

Gomez-Dans, J.L., S. Quegan, and J.C. Bennett. 2006. Indoor C-band polari-
metric interferometry observations of a mature wheat canopy. IEEE Trans.
Geosci. Rem. Sens. 44(4):768-777. doi:10.1109/TGRS.2005.863861

Govender, M., PJ. Dye, I.M. Weiersbye, E.T.F. Witkowski, and F. Ahmed. 2009.
Review of commonly used remote sensing and ground-based technologies
to measure plant water stress. Water S.A. 35(5):741-752. doi:10.4314/wsa.
v35i5.49201

Guglielmetti, M., M. Schwank, C. Matzler, C. Oberdorster, J. Vanderborght,
and H. Fluhler. 2007. Measured microwave radiative transfer properties
of a deciduous forest canopy. Remote Sens. Environ. 109(4):523-532.
doi:10.1016/j.rse.2007.02.003

Guglielmetti, M., M. Schwank, C. Matzler, C. Oberdorster, J. Vanderborght, and
H. Fluhler. 2008. FOSMEX: Forest soil moisture experiments with microwave
radiometry. IEEE Trans. Geosci. Rem. Sens. 46(3):727-735. doi:10.1109/
TGRS.2007.914797

Haack, B.N., and G. Khatiwada. 2010. Comparison and integration of optical
and quadpolarization radar imagery for land cover/use delineation. J. Appl.
Remote Sens. 4:043507. doi:10.1117/1.3328873

Hadria, R., B. Duchemin, L. Jarlan, G. Dedieu, F. Baup, S. Khabba, A. Olioso,
and T. Le Toan. 2010. Potentiality of optical and radar satellite data at high
spatio-temporal resolutions for the monitoring of irrigated wheat crops
in Morocco. Int. J. Appl. Earth Obs. Geoinf. 12:532-537. do0i:10.1016/j.
jag.2009.09.003

Hoekman, D.H., and B.A.M. Bouman. 1993. Interpretation of C-band and
X-band radar images over an agricultural area, the Flevoland test site
in the Agriscatt-87 campaign. Int. J. Remote Sens. 14(8):1577-1594.
doi:10.1080/01431169308953987

Hong, G., Y. Zhang, and B. Mercer. 2009. A wavelet and IHS integration method
to fuse high resolution SAR with moderate resolution multispectral images.
Photogramm. Eng. Remote Sens. 75(10):1213-1223.

Hong, S., and I. Shin. 2011. A physically-based inversion algorithm for retrieving
soil moisture in passive microwave remote sensing. J. Hydrol. 405(1-2):24—
30. doi:10.1016/j.jhydrol.2011.05.005

Horgan, G.W., C.A. Glasbey, S.L. Soria, J.N.C. Gozalo, and F.G. Alonso. 1992.
Land-use classification in central Spain using Sir-a and Mss imagery. Int. J.
Remote Sens. 13(15):2839-2848. doi:10.1080/01431169208904085

Hornbuckle, B.K., and A.W. England. 2004. Radiometric sensitivity to soil mois-
ture at 1.4 GHz through a corn crop at maximum biomass. Water Resour.
Res. 40(10):W10204. doi:10.1029/2003WR002931

Hornbuckle, B.K., AW. England, R.D. De Roo, M.A. Fischman, and D.L. Boprie.
2003. Vegetation canopy anisotropy at 1.4 GHz. IEEE Trans. Geosci. Rem.
Sens. 41(10):2211-2223. doi:10.1109/TGRS.2003.817192

Huang, S.L., C. Potter, R.L. Crabtree, S. Hager, and P. Gross. 2010. Fusing optical
and radar data to estimate sagebrush, herbaceous, and bare ground cover
in Yellowstone. Remote Sens. Environ. 114(2):251-264. doi:10.1016/j.
rse.2009.09.013

Hunt, E.R., L. Li, M.T. Yilmaz, and T.J. Jackson. 2011. Comparison of vegetation
water contents derived from shortwave-infrared and passive-microwave
sensors over central lowa. Remote Sens. Environ. 115(9):2376-2383.
doi:10.1016/j.rse.2011.04.037

Huppi, R.A. 1987. RASAM: A radiometer-scatterometer to measure microwave
signatures of soil, vegetation and snow. University of Bern, Bern.

Jackson, TJ. 1993. Measuring surface soil-moisture using passive micro-
wave. 3. Remote sensing. Hydrol. Processes 7(2):139-152. doi:10.1002/
hyp.3360070205

Jackson, T.J., and P.E. O’Neill. 1990. Attenuation of soil microwave emission by
corn and soybeans at 1.4 Ghz and 5 Ghz. IEEE Trans. Geosci. Rem. Sens.
28(5):978-980. doi:10.1109/36.58989

Jackson, T.J., and T.J. Schmugge. 1989. Passive microwave remote-sensing sys-
tem for soil-moisture- some supporting research. IEEE Trans. Geosci. Rem.
Sens. 27(2):225-235. doi:10.1109/36.20301

Jackson, T.J., and T.J. Schmugge. 1991. Vegetation effects on the microwave
emission of soils. Remote Sens. Environ. 36(3):203-212. doi:10.1016/0034-
4257(91)90057-D

Jackson, T.J., T.J. Schmugge, and J.R. Wang. 1982. Passive microwave sensing of
soil-moisture under vegetation canopies. Water Resour. Res. 18(4):1137—
1142. doi:10.1029/WR018i004p01137

Jin, ¥.Q., and X.Z. Huang. 1996. Correlation of temporal variations of active and
passive microwave signatures from vegetation canopy. IEEE Trans. Geosci.
Rem. Sens. 34(1):257-263. d0i:10.1109/36.481910

www.VadoseZoneJournal.org



Jin, Y.Q., and C. Liu. 1997. Biomass retrieval from high-dimensional active/pas-
sive remote sensing data by using artificial neural networks. Int. J. Remote
Sens. 18(4):971-979. doi:10.1080/014311697218863

Jonard, F.,, L. Weihermiiller, K.Z. Jadoon, M. Schwank, H. Vereecken, and S. Lam-
bot. 2011. Mapping field-scale soil moisture with L-band radiometer and
ground-penetrating radar over bare soil. IEEE Trans. Geosci. Rem. Sens.
49(8):2863-2875. doi:10.1109/TGRS.2011.2114890

Jones, M.O., L.A. Jones, J.S. Kimball, and K.C. McDonald. 2011. Satellite passive
microwave remote sensing for monitoring global land surface phenology.
Remote Sens. Environ. 115(4):1102—1114. doi:10.1016/j.rse.2010.12.015

Joseph, AT, R. van der Velde, P.E. O’Neill, R. Lang, and T. Gish. 2010. Effects of
corn on C- and L-band radar backscatter: A correction method for soil mois-
ture retrieval. Remote Sens. Environ. 114(11):2417-2430. doi:10.1016/j.
rse.2010.05.017

Joseph, AT, R. van der Velde, P.E. O’Neill, R.H. Lang, and T. Gish. 2008. Soil
moisture retrieval during a corn growth cycle using L-band (1.6 GHz)
radar observations. IEEE Trans. Geosci. Rem. Sens. 46(8):2365-2374.
doi:10.1109/TGRS.2008.917214

Karam, M.A., and A.K. Fung. 1989. Leaf-shape effects in electromagnetic-wave
scattering from vegetation. IEEE Trans. Geosci. Rem. Sens. 27(6):687-697.
doi:10.1109/TGRS.1989.1398241

Kirdyashev, K.P.,, A.A. Chukhlantsev, and A.M. Shutko. 1979. Microwave ra-
diation of grounds with vegetative cover. Radiotekhnika | Elektronika
24(2):256-264.

Le Hegarat-Mascle, S., A. Quesney, D. Vidal-Madjar, O. Taconet, M. Nor-
mand, and C. Loumagne. 2000. Land cover discrimination from
multitemporal ERS images and multispectral Landsat images: A study
case in an agricultural area in France. Int. J. Remote Sens. 21(3):435-456.
doi:10.1080/014311600210678

Le Vine, D.M., and M.A. Karam. 1996. Dependence of attenuation in a vegeta-
tion canopy on frequency and plant water content. IEEE Trans. Geosci. Rem.
Sens. 34(5):1090-1096. doi:10.1109/36.536525

Li, Y.Q., L.X. Zhang, L.M. Jiang, Z.J. Zhang, and T.J. Zhao. 2010. Evaluation of veg-
etation indices based on microwave data by simulation and measurements.
In: IEEE International Symposium on Geoscience and Remote Sensing
IGARSS, p. 3311-3314.

Liu, LY., JJ. Wang, Y.S. Bao, W.J. Huang, Z.H. Ma, and C.J. Zhao. 2006. Predicting
winter wheat condition, grain yield and protein content using multi-tem-
poral EnviSat-ASAR and Landsat TM satellite images. Int. J. Remote Sens.
27(4):737-753. doi:10.1080/01431160500296867

Liu, S.F, Y.A. Liou, W.J. Wang, J.P. Wigneron, and J.B. Lee. 2002. Retrieval of
crop biomass and soil moisture from measured 1.4 and 10.65 GHz bright-
ness temperatures. IEEE Trans. Geosci. Rem. Sens. 40(6):1260-1268.
doi:10.1109/TGRS.2002.800277

Lopez-Sanchez, J.M., and J.D. Ballester-Berman. 2009. Potentials of polarimet-
ric SAR interferometry for agriculture monitoring. Radio Sci. 44:RS2010.
doi:10.1029/2008RS004078

Lu, D.S. 2006. The potential and challenge of remote sensing-based
biomass estimation. Int. J. Remote Sens. 27(7):1297-1328.
doi:10.1080/01431160500486732

Macelloni, G., S. Paloscia, P. Pampaloni, and R. Ruisi. 2001. Airborne multifre-
quency L- to Ka-band radiometric measurements over forests. IEEE Trans.
Geosci. Rem. Sens. 39(11):2507-2513. doi:10.1109/36.964988

Maity, S., C. Patnaik, M. Chakraborty, and S. Panigrahy. 2004. Analysis of tem-
poral backscattering of cotton crops using a semiempirical model. IEEE
Trans. Geosci. Rem. Sens. 42(3):577-587. doi:10.1109/TGRS.2003.821888

Mangiarotti, S., P. Mazzega, L. Jarlan, E. Mougin, F. Baup, and J. Demarty. 2008.
Evolutionary bi-objective optimization of a semi-arid vegetation dynam-
ics model with NDVI and sigma(0) satellite data. Remote Sens. Environ.
112(4):1365-1380. doi:10.1016/j.rse.2007.03.030

Marliani, F., S. Paloscia, P. Pampaloni, and J.A. Kong. 2002. Simulating coher-
ent backscattering from crops during the growing cycle. IEEE Trans. Geosci.
Rem. Sens. 40(1):162-177. doi:10.1109/36.981358

Martin, R.D., G. Asrar, and E.T. Kanemasu. 1989. C-band scatterometer mea-
surements of a tallgrass prairie. Remote Sens. Environ. 29(3):281-292.
doi:10.1016/0034-4257(89)90007-2

Mattia, F., T. Le Toan, G. Picard, F.l. Posa, A. D’Alessio, C. Notarnicola, A.M.
Gatti, M. Rinaldi, G. Satalino, and G. Pasquariello. 2003. Multitemporal C-
band radar measurements on wheat fields. IEEE Trans. Geosci. Rem. Sens.
41(7):1551-1560. doi:10.1109/TGRS.2003.813531

Matzler, C. 1990. Seasonal evolution of microwave-radiation from an oat field.
Remote Sens. Environ. 31(3):161-173. doi:10.1016/0034-4257(90)90086-2

Matzler, C. 1994. Microwave (1-100 Ghz) dielectric model of leaves. IEEE Trans.
Geosci. Rem. Sens. 32(4):947-949. doi:10.1109/36.298024

McNairn, H., and B. Brisco. 2004. The application of C-band polarimetric SAR
for agriculture: A review. Can. J. Rem. Sens. 30(3):525-542. doi:10.5589/
m03-069

McNairn, H., C. Champagne, J. Shang, D. Holmstrom, and G. Reichert. 2009.
Integration of optical and Synthetic Aperture Radar (SAR) imagery for de-
livering operational annual crop inventories. ISPRS J. Photogramm. Remote
Sens. 64(5):434-449. doi:10.1016/j.isprsjprs.2008.07.006

McNairn, H., J.J. van der Sanden, R.J. Brown, and J. Ellis. 2000. The potential
of RADARSAT-2 for crop mapping and assessing crop condition. In: Second

International Conference on Geospatial Information in Agriculture and For-
estry, Lake Buena Vista, FL.

Michelson, D.B., B.M. Liljeberg, and P. Pilesjo. 2000. Comparison of algorithms
for classifying Swedish landcover using Landsat TM and ERS-1 SAR data. Re-
mote Sens. Environ. 71(1):1-15. doi:10.1016/50034-4257(99)00024-3

Montzka, C., H. Moradkhani, L. Weihermdiller, H.-J. Hendricks Franssen, M.
Canty, and H. Vereecken. 2011. Hydraulic parameter estimation by remote-
ly-sensed top soil moisture observations with the particle filter. J. Hydrol.
399:410-421. doi:10.1016/j.jhydrol.2011.01.020

Moran, M.S., P.J. Pinter, B.E. Clothier, and S.G. Allen. 1989. Effect of water-
stress on the canopy architecture and spectral indexes of irrigated alfalfa.
Remote Sens. Environ. 29(3):251-261. doi:10.1016/0034-4257(89)90004-7

Moran, M.S., A. Vidal, D. Troufleau, J. Qi, T.R. Clarke, P.J. Pinter, T.A. Mitchell, Y.
Inoue, and C.M.U. Neale. 1997. Combining multifrequency microwave and
optical data for crop management. Remote Sens. Environ. 61(1):96-109.
doi:10.1016/S0034-4257(96)00243-X

Myneni, R.B., and B.J. Choudhury. 1993. Synergistic use of optical and
microwave data in agrometeorological applications. Adv. Space Res.
13(5):239-248. doi:10.1016/0273-1177(93)90551-L

Nelson, S.0. 1991. Dielectric-properties of agricultural products—Mea-
surements and applications. IEEE Trans. Electr. Insul. 26(5):845-869.
doi:10.1109/14.99097

Njoku, E.G., and D. Entekhabi. 1996. Passive microwave remote sensing of soil
moisture. J. Hydrol. 184(1-2):101-129. doi:10.1016/0022-1694(95)02970-2

Njoku, E.G., P.E. O’'Neill, K.H. Kellogg, W.T. Crow, W.N. Edelstein, J.K. Entin, S.D.
Goodman, T.J. Jackson, J. Johnson, J. Kimball, J.R. Piepmeier, R.D. Koster,
N. Martin, K.C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J.C. Shi,
M.W. Spencer, S.W. Thurman, L. Tsang, and J. Van Zyl. 2010. The soil mois-
ture active passive (SMAP) mission. Proc. IEEE 98(5):704—-716. doi:10.1109/
JPROC.2010.2043918

Njoku, E.G., W.J. Wilson, S.H. Yueh, and Y. Rahmat-Samii. 2000. A large-an-
tenna microwave radiometer-scatterometer concept for ocean salinity
and soil moisture sensing. IEEE Trans. Geosci. Rem. Sens. 38:2645-2655.
doi:10.1109/36.885211

Olsson, K.A., and F.L. Milthorpe. 1983. Diurnal and spatial variation in leaf wa-
ter potential and leaf conductance of irrigated peach-trees. Aust. J. Plant
Physiol. 10(3):291-298. d0i:10.1071/PP9830291

O’Neill, P.E., N.S. Chauhan, and T.J. Jackson. 1996. Use of active and passive
microwave remote sensing for soil moisture estimation through corn. Int. J.
Remote Sens. 17(10):1851-1865. doi:10.1080/01431169608948743

Oza, S.R., S. Panigrally, and J.S. Parihar. 2008. Concurrent use of active and pas-
sive microwave remote sensing data for monitoring of rice crop. Int. J. Appl.
Earth Obs. Geoinf. 10(3):296-304. doi:10.1016/j.jag.2007.12.002

Paloscia, S. 1998. An empirical approach to estimating leaf area index
from multifrequency SAR data. Int. J. Remote Sens. 19(2):359-364.
doi:10.1080/014311698216323

Paloscia, S., and P. Pampaloni. 1984. Microwave remote-sensing of plant
water-stress. Remote Sens. Environ. 16(3):249-255. doi:10.1016/0034-
4257(84)90068-3

Paloscia, S., and P. Pampaloni. 1988. Microwave polarization index for moni-
toring vegetation growth. IEEE Trans. Geosci. Rem. Sens. 26(5):617-621.
doi:10.1109/36.7687

Paris, J.F. 1983. Radar backscattering properties of corn and soybeans at
frequencies of 1.6, 4.75, and 13.3 Ghz. IEEE Trans. Geosci. Rem. Sens. GE-
21(3):392-400. doi:10.1109/TGRS.1983.350472

Paris, J.F. 1986. The effect of leaf size on the microwave backscattering by corn.
Remote Sens. Environ. 19(1):81-95. doi:10.1016/0034-4257(86)90042-8

Pellarin, T., J.P. Wigneron, J.C. Calvet, M. Berger, H. Douville, P. Ferrazzoli,
Y.H. Kerr, E. Lopez-Baeza, J. Pulliainen, L.P. Simmonds, and P. Waldteufel.
2003. Two-year global simulation of L-band brightness temperatures
over land. IEEE Trans. Geosci. Rem. Sens. 41(9):2135-2139. doi:10.1109/
TGRS.2003.815417

Picard, G., T. Le Toan, and F. Mattia. 2003. Understanding C-band radar
backscatter from wheat canopy using a multiple-scattering coherent
model. IEEE Trans. Geosci. Rem. Sens. 41(7):1583-1591. doi:10.1109/
TGRS.2003.813353

Pinter, P.J., J.L. Hatfield, J.S. Schepers, E.M. Barnes, M.S. Moran, C.S.T. Daughtry,
and D.R. Upchurch. 2003. Remote sensing for crop management. Photo-
gramm. Eng. Remote Sensing 69(6):647-664.

Pohl, C., and J.L. van Genderen. 1998. Multisensor image fusion in re-
mote sensing: Concepts, methods and applications. Int. J. Remote Sens.
19(5):823-854. doi:10.1080/014311698215748

Prasad, R. 2009. Retrieval of crop variables with field-based X-band micro-
wave remote sensing of ladyfinger. Adv. Space Res. 43(9):1356-1363.
doi:10.1016/j.asr.2008.12.017

Prévot, L., M. Dechambre, O. Taconet, D. Vidalmadjar, M. Normand, and S.
Galle. 1993. Estimating the characteristics of vegetation canopies with
airborne radar measurements. Int. J. Remote Sens. 14(15):2803-2818.
doi:10.1080/01431169308904310

Rasmy, M., T. Koike, S. Boussetta, H. Lu, and X. Li. 2011. Development of satellite
land data assimilation system coupled with mesoscale model in the Tibet-
an plateau. IEEE Trans. Geosci. Rem. Sens. 49(8):2847-2863. doi:10.1109/
TGRS.2011.2112667

www.VadoseZoneJournal.org



Rosenthal, W.D., B.J. Blanchard, and A.J. Blanchard. 1985. Visible infrared micro-
wave agriculture classification, biomass, and plant height algorithms. IEEE
Trans. Geosci. Rem. Sens. GE-23(2):84-90. doi:10.1109/TGRS.1985.289404

Saatchi, S.S., D.M. Le Vine, and R.H. Lang. 1994. Microwave backscattering
and emission model for grass canopies. IEEE Trans. Geosci. Rem. Sens.
32(1):177-186. doi:10.1109/36.285200

Saleh, K., J.P. Wigneron, P. Waldteufel, P. de Rosnay, M. Schwank, J.C. Calvet, and
Y.H. Kerr. 2007. Estimates of surface soil moisture under grass covers using
L-band radiometry. Remote Sens. Environ. 109(1):42-53. doi:10.1016/j.
rse.2006.12.002

Schmugge, T., P. Gloersen, T. Wilheit, and F. Geiger. 1974. Remote-sensing of
soil-moisture with microwave radiometers. J. Geophys. Res. 79(2):317-323.
doi:10.1029/JB079i002p00317

Schneeberger, K., M. Schwank, C. Stamm, P. de Rosnay, C. Métzler, and H. Flih-
ler. 2004. Topsoil structure influencing soil water retrieval by microwave
radiometry. Vadose Zone J. 3:1169-1179.

Schoups, G., P.A. Troch, and N. Verhoest. 1998. Soil moisture influences on the
radar backscattering of sugar beet fields. Remote Sens. Environ. 65(2):184—
194. doi:10.1016/50034-4257(98)00026-1

Schwank, M., C. Matzler, M. Guglielmetti, and H. Fluhler. 2005. L-band radiom-
eter measurements of soil water under growing clover grass. IEEE Trans.
Geosci. Rem. Sens. 43(10):2225-2237. doi:10.1109/TGRS.2005.855135

Serbin, G., and D. Or. 2005. Ground-penetrating radar measurement of crop
and surface water content dynamics. Remote Sens. Environ. 96(1):119-134.
doi:10.1016/j.rse.2005.01.018

Shi, J.C., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, and K.S. Chen. 2008. Micro-
wave vegetation indices for short vegetation covers from satellite passive
microwave sensor AMSR-E. Remote Sens. Environ. 112(12):4285-4300.
doi:10.1016/j.rse.2008.07.015

Shrestha, B.L.,, H.C. Wood, and S. Sokhansanj. 2005. Prediction of mois-
ture content of alfalfa using density-independent functions of
microwave dielectric properties. Meas. Sci. Technol. 16(5):1179-1185.
doi:10.1088/0957-0233/16/5/018

Shrestha, B.L., H.C. Wood, and S. Sokhansanj. 2007. Modeling of vegetation
permittivity at microwave frequencies. IEEE Trans. Geosci. Rem. Sens.
45(2):342-348. doi:10.1109/TGRS.2006.886175

Siddique, M.R.B., A. Hamid, and M.S. Islam. 2000. Drought stress effects on
water relations of wheat. Bot. Bull. Acad. Sin. 41(1):35-39.

Singh, D. 2006. Scatterometer performance with polarization discrimination ra-
tio approach to retrieve crop soybean parameter at X-band. Int. J. Remote
Sens. 27(19):4101-4115. doi:10.1080/01431160600735988

Singh, D., Y. Yamaguchi, H. Yamada, and K.P. Singh. 2003. Retrieval of wheat
chlorophyll by an X-band scatterometer. Int. J. Remote Sens. 24(23):4939—
4951. doi:10.1080/0143006031000095961

Singh, V., C.K. Pallaghy, and D. Singh. 2006. Phosphorus nutrition and tolerance
of cotton to water stress. I. Seed cotton yield and leaf morphology. Field
Crop Sci. 96:191-198. doi:10.1016/j.fcr.2005.06.009

Skriver, H., F. Mattia, G. Satalino, A. Balenzano, V.R.N. Pauwels, N.E.C. Verhoest,
and M. Davidson. 2011. Crop classification using short-revisit multitem-
poral SAR data. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens.
4(2):423-431. doi:10.1109/JSTARS.2011.2106198

Skriver, H., M.T. Svendsen, and A.G. Thomsen. 1999. Multitemporal C- and
L-band polarimetric signatures of crops. IEEE Trans. Geosci. Rem. Sens.
37(5):2413-2429. doi:10.1109/36.789639

Smara, Y., A. Belhadj-Aissa, B. Sansal, J. Lichtenegger, and A. Bouzenoune.
1998. Multisource ERS-1 and optical data for vegetal cover assessment
and monitoring in a semi-arid region of Algeria. Int. J. Remote Sens.
19(18):3551-3568. doi:10.1080/014311698213812

Song, Y., C. Birch, and J. Hanan. 2008. Analysis of maize canopy development
under water stress and incorporation into the ADEL-Maize model. Funct.
Plant Biol. 35:925-935. doi:10.1071/FP08055

Stiles, J.M., and K. Sarabandi. 2000. Electromagnetic scattering from grassland
Part I: A fully phase-coherent scattering model. IEEE Trans. Geosci. Rem.
Sens. 38(1):339-348. doi:10.1109/36.823929

Svoray, T., and M. Shoshany. 2002. SAR-based estimation of areal aboveground
biomass (AAB) of herbaceous vegetation in the semi-arid zone: A modifi-
cation of the water-cloud model. Int. J. Remote Sens. 23(19):4089-4100.
doi:10.1080/01431160110115924

Taconet, O., M. Benallegue, D. Vidalmadjar, L. Prevot, M. Dechambre, and M.
Normand. 1994. Estimation of soil and crop parameters for wheat from
airborne radar backscattering data in C-bands and X-bands. Remote Sens.
Environ. 50(3):287-294. doi:10.1016/0034-4257(94)90078-7

Touré, A., K.P.B. Thomson, G. Edwards, R.J. Brown, and B.G. Brisco. 1994.
Adaptation of the mimics backscattering model to the agricultural con-
text—Wheat and canola at L and C bands. IEEE Trans. Geosci. Rem. Sens.
32(1):47-61. doi:10.1109/36.285188

Turner, N.C. 1974. Stomatal behavior and water status of maize, sorghum, and
tobacco under field conditions. 2. Low soil-water potential. Plant Physiol.
53(3):360-365. doi:10.1104/pp.53.3.360

Ulaby, ET., A. Aslam, and M.C. Dobson. 1982. Effects of vegetation cover on
the radar sensitivity to soil-moisture. IEEE Trans. Geosci. Rem. Sens. GE-
20(4):476-481. doi:10.1109/TGRS.1982.350413

Ulaby, FT., and P.P. Batlivala. 1976. Diurnal-variations of radar backscatter from
a vegetation canopy. IEEE Trans. Antenn. Propag. 24(1):11-17. doi:10.1109/
TAP.1976.1141298

Ulaby, FT., and T.F. Bush. 1976a. Corn growth as monitored by radar. IEEE Trans.
Antenn. Propag. 24(6):819-828. d0i:10.1109/TAP.1976.1141452

Ulaby, FT., and T.F. Bush. 1976b. Monitoring wheat growth with radar. Photo-
gramm. Eng. Remote Sensing 42(4):557-568.

Ulaby, FT.,, and M.A. El-Rayes. 1987. Microwave dielectric spectrum of
vegetation. 2. Dual-dispersion model. IEEE Trans. Geosci. Rem. Sens. GE-
25(5):550-557. doi:10.1109/TGRS.1987.289833

Ulaby, FT., and R.P. Jedlicka. 1984. Microwave dielectric-properties of plant
materials. IEEE Trans. Geosci. Rem. Sens. GE-22(4):406-415. doi:10.1109/
TGRS.1984.350644

Ulaby, FT., R.K. Moore, and A.K. Fung. 1986. Microwave remote sensing: Active
and passive, from theory to applications. Vol. 3. Artech House, Delham, MA.

Ulaby, FT., K. Sarabandi, K. Mcdonald, M. Whitt, and M.C. Dobson. 1990.
Michigan microwave canopy scattering model. Int. J. Remote Sens.
11(7):1223-1253. doi:10.1080/01431169008955090

Ulaby, FT., and E.A. Wilson. 1985. Microwave attenuation properties of veg-
etation canopies. IEEE Trans. Geosci. Rem. Sens. GE-23(5):746-753.
doi:10.1109/TGRS.1985.289393

Van de Griend, A.A., and J.P. Wigneron. 2004. The b-factor as a function of
frequency and canopy type at h-polarization. IEEE Trans. Geosci. Rem. Sens.
42(4):786-794. doi:10.1109/TGRS.2003.821889

Vescovi, F.D., and M.A. Gomarasca. 1999. Integration of optical and microwave
remote sensing data for agricultural land use classification. Environ. Monit.
Assess. 58(2):133-149. doi:10.1023/A:1006047906601

Wegmiiller, U. 1993. Signature research for crop classification by ac-
tive and passive microwaves. Int. J. Remote Sens. 14(5):871-883.
doi:10.1080/01431169308904383

Weiss, M., D. Troufleau, F. Baret, H. Chauki, L. Prevot, A. Olioso, N. Bruguier,
and N. Brisson. 2001. Coupling canopy functioning and radiative trans-
fer models for remote sensing data assimilation. Agric. For. Meteorol.
108(2):113-128. doi:10.1016/5S0168-1923(01)00234-9

Wigneron, J.P., J.C. Calvet, T. Pellarin, A.A. Van de Griend, M. Berger, and P.
Ferrazzoli. 2003. Retrieving near-surface soil moisture from microwave
radiometric observations: Current status and future plans. Remote Sens.
Environ. 85(4):489-506. doi:10.1016/S0034-4257(03)00051-8

Wigneron, J.P., A. Chanzy, J.C. Calvet, and W. Bruguier. 1995. A simple algorithm
to retrieve soil-moisture and vegetation biomass using passive microwave
measurements over crop fields. Remote Sens. Environ. 51(3):331-341.
doi:10.1016/0034-4257(94)00081-W

Wigneron, J.P., P. Ferrazzoli, J.C. Calvet, Y. Kerr, and P. Bertuzzi. 1999. A paramet-
ric study on passive and active microwave observations over a soybean crop.
IEEE Trans. Geosci. Rem. Sens. 37(6):2728-2733. doi:10.1109/36.803421

Wigneron, J.P., M. Fouilhoux, L. Prevot, A. Chanzy, A. Olioso, N. Baghdadi, and
C. King. 2002. Monitoring sunflower crop development from C-band radar
observations. Agronomie 22(6):587-595. doi:10.1051/agro:2002047

Wigneron, J.P., Y. Kerr, A. Chanzy, and Y.Q. Jin. 1993. Inversion of surface param-
eters from passive microwave measurements over a soybean field. Remote
Sens. Environ. 46(1):61-72. doi:10.1016/0034-4257(93)90032-S

Wigneron, J.P.,, Y. Kerr, P. Waldteufel, K. Saleh, M.J. Escorihuela, P. Richaume,
P. Ferrazzoli, P. de Rosnay, R. Gurney, J.C. Calvet, J.P. Grant, M. Gugliel-
metti, B. Hornbuckle, C. Matzler, T. Pellarin, and M. Schwank. 2007. L-band
Microwave Emission of the Biosphere (L-MEB) Model: Description and
calibration against experimental data sets over crop fields. Remote Sens.
Environ. 107(4):639-655. doi:10.1016/j.rse.2006.10.014

Wigneron, J.P., L. Laguerre, and Y.H. Kerr. 2001. A simple parameterization of
the L-band microwave emission from rough agricultural soils. IEEE Trans.
Geosci. Rem. Sens. 39(8):1697-1707. doi:10.1109/36.942548

Wigneron, J.P., M. Parde, P. Waldteufel, A. Chanzy, Y. Kerr, S. Schmidl, and N.
Skou. 2004. Characterizing the dependence of vegetation model param-
eters on crop structure, incidence angle, and polarization at L-band. IEEE
Trans. Geosci. Rem. Sens. 42(2):416-425. doi:10.1109/TGRS.2003.817976

Wu, LK., R.K. Moore, and R. Zoughi. 1985a. Sources of scattering from vegeta-
tion canopies at 10 Ghz. IEEE Trans. Geosci. Rem. Sens. GE-23(5):737-745.
doi:10.1109/TGRS.1985.289392

Wu, LK., RK. Moore, R. Zoughi, A. Aftfi, and FT. Ulaby. 1985b. Prelimi-
nary results on the determination of the sources of scattering from
vegetation canopies at 10 GHz. Int. J. Remote Sens. 6(2):299-313.
doi:10.1080/01431168508948445

Zhao, T.J., LX. Zhang, J.C. Shi, and L.M. Jiang. 2011. A physically based sta-
tistical methodology for surface soil moisture retrieval in the Tibet
Plateau using microwave vegetation indices. J. Geophys. Res. 116:D08116.
doi:10.1029/2010JD015229

Zheng, G., and L.M. Moskal. 2009. Retrieving leaf area index (LAI) using re-
mote sensing: Theories, methods and sensors. Sensors (Basel Switzerland)
9(4):2719-2745. d0i:10.3390/590402719

www.VadoseZoneJournal.org



