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Introduction : 
The depth at which magma chamber processes take place below magmatic arcs and the parameters controlling them are highly debated. These questions are fundamental for our understanding of the global magma differentiation as 
well as the formation of the continental crust at convergent margins (Rudnick and Gao, 2003), but also for evaluating the risks associated with volcanic eruptions. 

In the Central Southern Volcanic Zone (Central-SVZ) of the Chilean Andes, a thin continental crust (30-40 km) and the occurrence of a major fault zone (Linquiñe-Ofqui) likely favor rapid magma ascent. This segment of the arc is as a 

consequence one of the most active in Chile with several recent eruptions (e.g. Llaima 2009, Cordon Caulle 2011, Calbuco 2015, Villarrica 2015 & 2019). The Central-SVZ is characterized by dominant mafic lavas (basalts, basaltic 

andesites), few rhyodacitic lavas and a noticeable compositional (Daly) gap in the intermediate compositions (andesites). Noteworthy, amphibole is usually absent, except in a few volcanoes (e.g. Calbuco) or only occurs as microliths 

in enclaves, which suggests rather low water contents. These observations contrast sharply with the Northern-SVZ where andesitic lavas are dominant and hydrous phases 

common. 

We focused our research on the eruptive products of Osorno volcano (41°S, CSVZ) located between two volcanoes (Calbuco and Cordon Caulle) which recently showed 

very explosive eruptions and partly overlies an older Pleistocene eroded volcanic edifice (La Picada). A large series of samples were collected in four units spanning 200 kyr. 

They define a differentiation trend ranging from tholeiitic basalts to calk-alkaline dacites with a Daly Gap between 58 wt. % and 63 wt. % SiO2. Plagioclase and olivine are 

dominant before the gap while plagioclase, clino- and orthopyroxene dominate afterwards.  

III.  Depths ↓ 
Pressures were converted to depths using the model of Tassarra and Euchaurren (2012). Last man-

tle equilibration pressures calculated with Lee et al. (2009) gives results of 11-12kbar, which is the vi-

cinity of the Moho interface depth. Pressures calculated from Cpx-Liq equilibrium (~3kar)  that corre-

spond to the main site of differentiation is estimated around 12km bsl.  

  IV.  MELTS simulations ↑ 
Rhyolite-Melts simulations were used to fractionate a mafic basalt at low-pressure (≤4kbar) considering isobaric 

conditions at NNO. Petrology of our samples is best reproduced at low pressure (1-2kbar) with water initial con-

tent in the range 1-2wt%. Each diagram is split into three parts: (1) indications of the chemistry for different phas-

es (Ol, Plag, Cpx, Opx ; the color code is consistent with the caption). (2) indications of the crystallized mass 

peak during differentiation. (3) Relative proportions of each phase in weight%.  Each part is function of the tem-

perature steps used for the simulation. Red vertical lines represent an estimation of the observed Daly gap limits.  

 

Conclusions: 
The use of recent thermobarometric models revealed two main storage regions: (1) at the MOHO interface (1-1.2GPa) and (2), at 

the upper/lower crust interface with rather low pressures (likely ≤0.3 Gpa). While at (1) primary magmas differentiate, (2) is inter-

preted as the depth of major differentiation and volatile exsolution. Thermodynamic simulations (Gualda et al., 2012; Ghiorso & 

Gualda, 2015) support these (2) depth estimates and reproduce the main paragenesis by simple fractional crystallization at 0.1-0.2 

GPa. Our results may explain the recent seismic unrest below Osorno (from 2015 to 2019) with earthquakes mostly taking place 

between 0.1-0.3 GPa (4-10km below the summit). We added our data to the recent geophysical model of the magmatic reservoir. 

I.  Temperature ← 
Temperature was calculated 

using several liq, Ol-Liq, Cpx-

Liq, Opx-Liq, Chr-Ol, Apatite 

thermometers (Putirka, 2008; 

Wan et al, 2008; Coogan et al, 

2014; Harrison and Watson, 

1984). As two slightly different 

trends appeared in the 

MgOvsSiO2 diagram, data 

were split between a high- 

and a low-MgO trend because 

most of the thermometers 

may be sensitive to MgO con-

tent. When needed, assump-

tions on pressure (3 ±2 kbar) 

and H2O content (2.5 ±2.5 wt%) were made. Displayed points represent respectively 3kbar and 

2.5 wt% H2O. See Figure for results. 

 

II.  Pressure → 
Cpx-Liq equilibrium, pre-

viously calculated tem-

peratures and same H2O 

assumption were used 

to calculate pressure 

(Putirka, 2008; Neave et 

Putirka, 2017). See fig-

ure for details. Note that  

in the absence of Cpx in 

some thin sections, 

pressures for mafic la-

vas were not calculated. 

The uncertainty is also 

large. 

A. Hypersthene  and augite dominated dacite  (aphyric) → 

B. Plagioclase and olivine dominated Basaltic-

Andesite (porphyric) ↑ 

C. Olivine dominated Basalt (aphyric) ↑ 

(the three images from thin sections are at 

the same scale) 

V.  Recorded seismicity → 
SERNAGEOMIN observatory reports each 

month major seismic events related to  frac-

turation of brittle material below the volcano. 

We used these reports since 2015. The main 

part of the seismicity is located on the NW to 

the NNW flanks. It is interpreted here as re-

cording lateral dyke propagation and sill em-

placement at relatively shallow depth. Color 

and size of the dots are linked with the magni-

tude of the earthquake. 

VI.  Model ↑  
The figure above, after Diaz et al. (2020), is a model of the magma chamber under Osorno that was imaged 

thanks to a geophysical approach. We added a network of sills and dykes according to our interpretation of 

the seismicity below the volcano (Part V). We understand the system dynamics as follows : (1) input  of an 

undifferentiated basaltic  magma  from the MOHO  (image C, Part III) in the reservoir at low pressure (Part II 

and III). Here the magma may stagnate, cool and evolve through fractional crystallization (Image B, Part I 

and  IV). It becomes an immobile magmatic mush after a sudden increase of crystallinity between 1100-

1000°C. At this point, the only magma that can reach the surface is a dacitic one (= the mush interstitial liq-

uid, image A) or gas and fluids. The dacitic magma being highly viscous, we speculate that  external parame-

ters such as the arrival of a new batch of magma reheating the mush or the release of tectonic stresses may 

trigger such an eruption.  While imperfect, this model explains the observed crystallinity, the lack of andesite, 

phase chemistry and recent seismicity. 

NNO—3kbar – H2O=1% 

NNO—1kbar – H2O=1% 
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