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ABSTRACT 

We study a two-level spare parts supply chain in which a manufacturer supplies a 

central warehouse (CW) with original equipment manufacturer (OEM) and replacement 

or pattern parts (PP). The CW, distantly located from the manufacturer, distributes both 

OEM parts and PP to a given number of depots facing stochastic demands. The demand 

for spare parts is intermittent, exhibiting an infrequent rate and extreme dispersal over 

time periods. Along with lateral transshipment, PP can be used as substitutes for the 

OEM parts to sidestep shortage at depots. Assuming that emergency shipments are 

significantly longer and more expensive, we aim at underlining the relative 

effectiveness of such a new spare parts inventory management policy. A mixed-integer 

linear programming model is pro- posed to solve the inventory routing problem with 

transshipment and substitution under stochastic demands. The objective is to minimise 

costs of holding inventory, transportation which includes regular shipment and 

transshipment, substitution and lost sales. To solve the problem, Sample Average 

Approximation method is used. Based on empirical goodness-of-fit tests, three demand 

patterns are studied: Poisson distribution, stuttering Poisson distribution and negative 

binomial distribution. The model is tested on well-known benchmark instances 

generated for multi-product multi-vehicle IRP. Computational experiments highlight 

the benefits of promoting transshipment and substitution on the overall supply chain 
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performance. Results also suggest insights, which are of interest to professionals who 

are willing to develop new decision support models for the most efficient management 

of such items. 

 

1. Introduction 
Generally, in the first level of a spare parts supply chain, some producers or 

manufacturers supply their customers with original equipment manufacturer (OEM) 

parts and/or aftermarket parts also called replacement parts or pattern parts (PP). The 

latter are reverse-engineered OEM parts, designed to perform in the same way as OEM 

parts, less expensive, have a quality equivalent to or better than OEM parts, and are 

provided with a wider range of variety [1,2]. Spare parts distributors (or depots) and 

eventual re-sellers such as shops and car dealerships are on the second level of the 

supply chain. The key role of the depots is to guarantee that end-user demands are met 

while incurring the lowest logistical costs [3]. 

An efficient spare parts inventory management is argued to be the backbone for 

reliable plant operations, costs reduction, and service level maximisation [4]. Such items 

are at the greatest risk of obsolescence and may collectively account for up to 60% of the 

total stock value [5]. Moreover, their demand pattern is intermittent, exhibiting an 

infrequent rate and extreme dispersal over time periods which often hinders the 

reduction of lost sales at depots. This is particularly true in the aerospace, IT, and 

automotive industry contexts [6]. In this respect, the classical management models 

mainly designed to guarantee smooth replenishment often do not apply [7]. Thus, 

alternative methods to manage inventory within the distribution network must be 

investigated to minimise logistics costs and ensure a high customer service level 

commitment [8]. In this paper, we propose a new management policy consisting of 

promoting multi-sourcing options to mitigate shortages: (1) regular shipment from 

manufacturer, (2) inventory sharing, or so-called lateral transshipment (LT), among 

depots, and (3) the use of PP as substitutes for OEM parts. We focus particularly on the 

inventory routing problem (IRP) that arises in a two-level spare parts supply chain in 

which a manufacturer distributes via her/his central warehouse (CW) a set of spare parts 

to a given number of depots facing stochastic demand. Indeed, assuming that emergency 

supplies from the CW are significantly long and expensive, this paper promotes spare 

parts substitution along with LT whenever demand exceeds the available stock at the 

level of each depot. That is, LT and substitution can be considered by depots to meet 

expected demands with the use of the same part from the inventory of other depots (LT) 

or with the use of a PP as substitutes for OEM parts held at their inventory (substitution). 

Different incentives can promote the use of both LT and substitutions among depots. 
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Regardless of the type of item, promoting LT is known to be a viable solution for 

managers aiming to improve the system’s wide service level by dynamically reallocating 

(excess) stocks while lowering the lost sales cost [9-11]. Another criterion that can 

promote substitution is the readily availability of PP, which increases the likelihood of 

the user switching more often. Not to mention the case where PP are of high quality. 

However, from the manufacturer’s point of view, it would be beneficial if she/he sells 

more PP than OEM parts by relying on branding and pricing, especially in a market where 

there are fewer substitute PP, which allows a higher probability of earning greater profits. 

Moreover, multiple-sourcing is a promising research field for spare parts management 

(e.g., producing spare parts on-demand via additive manufacturing) [12,13]. With this 

respect, the use of PP can be viewed as one of more sourcing options available for spare 

parts management since PP is a less expensive and less reliable sourcing option. Another 

incentive for LT and substitution would be the slowness of the procedures regarding the 

control of the conformity of the imported spare parts with regards of local or 

international standards. For instance, most automotive spare part distributors, such as 

Moroccan companies, often procure spare parts from domiciled offshore suppliers [14]. 

The procedure of the quality control can take up to over 15 days and even longer if the 

Ministry’s departments decide to rely on laboratories to analyse further the supplied 

parts [14,15]. Moreover, spare parts are often stored until the results are published, which 

increases storage costs and therefore renders emergency supplies significantly long and 

expensive [15]. 

On-demand distribution, parametric approaches rely upon a lead-time demand 

distributional assumption, and the use of an appropriate forecasting procedure for 

estimating the characteristics of a given distribution (i.e., means and variance) [6,7,16]. 

For the case of fast-moving items, the Normality assumption is typically sufficient [17]. 

However, Stock Keeping Units (SKUs) often exhibit intermittent or irregular demand 

patterns that may not be represented by the Normal distribution [7]. This is almost the 

case for spare parts since demands arise whenever a component fails or requires 

replacement instead of being generated according to buying behaviours of end-

consumers [7,17]. We refer to [18] for further details on such non-Normal demand 

patterns. Demand for spare parts exhibits thus an infrequent rate, extreme dispersal over 

time periods, with some time periods having no demand. In the literature, intermittent 

demand patterns are built from compound elements, namely a demand inter-arrival 

time and distribution of the demand sizes, when demand occurs [6,7,16]. As such, [7] 

carry out an empirical analysis of the fitness of different compound distributions and 

their stock-control effects concerning inventories, demands and service levels in real-

world contexts. According to the authors, the compound Poisson distribution (called the 
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stuttering Poisson), a combination of a Poisson distribution for demand occurrence and 

a geometric distribution for demand size, outperforms in all considered data sets. In this 

paper, three compound distributions are considered. In addition to stuttering Poisson 

distribution, we conduct experiments for two other distributions, namely Poisson 

distribution for demand occurrence, combined with demands of constant size and 

negative binomial distribution. 

This paper contributes to the literature in three main dimensions. We study a two-level 

spare parts supply chain in which a manufacturer supplies a CW with OEM and PP parts. 

The CW, distantly located from the manufacturer, distributes both OEM parts and PP to 

a given number of depots facing stochastic demands. These depots may thus form a 

virtual pool of their parts inventories, allowing LT. Unlike other research, our approach 

integrates LT decisions in the design of routes that carry out regular shipments from CW. 

Substitutions are also possible among parts for which waiting is not an option. In 

addition, parts are assumed to be substitutable only if they have the same shape, fit, and 

function. Substitution is also assumed to be not bi-directional. That is, part 1 is, for 

example, substituting part 2, and the inverse is not necessarily applied. Considering the 

aforementioned multi-sourcing options and assuming that emergency shipments are 

significantly longer and more expensive, we aim at underlining the relative effectiveness 

of the spare parts inventory management policy based on LT and substitutions. We 

model the problem as a two-stage stochastic multi-product multi-vehicle IRP 

considering LT and substitution as emergency measures to mitigate shortages. The 

objective is to minimise the total cost, including the inventory holding cost at the CW and 

depots, transportation which includes regular shipment and transshipment, substitution 

and lost demands. To solve the problem, the sample average approximation method 

(SAA) is used because of its good convergence properties. Based on empirical goodness-

of-fit tests of [7], three different demand patterns are studied, namely Poisson 

distribution for demand occurrence, combined with demands of constant size, stuttering 

Poisson distribution and negative binomial distribution. The model is tested on well-

known benchmark instances generated for multi-product multi- vehicle IRP. 

Computational experiments provide insights into the benefits of promoting 

transshipment and substitution on the overall supply chain performance. They also 

suggest findings that may interest practitioners willing to improve decision support 

models for the most effective management of such items. 

The remainder of the paper is structured as follows. Section 2 presents related works. 

After a detailed description of the problem in Section 3, a mathematical formulation and 

a solution approach are provided in Section 4. Then, Section 5 provides computational 

results. Finally, Section 6 presents conclusions and perspectives. 
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2. Related work 
The classical IRP includes inventory management, vehicle routing, and delivery 

scheduling decision problems [19]. Such decisions can be streamlined by introducing a 

vendor managed inventory (VMI) approach, which incorporates replenishment and 

distribution processes, resulting in overall logistics cost reduction. The deterministic 

versions of the IRP have been widely studied. Applications can be found in [20-24]. The 

most closely aligned work to this paper is the one that studied the stochastic variant of 

the IRP. The Stochastic IRP (SIRP) is similar to the deterministic IRP except that the 

customer’s demand is known in probabilistic sense [19]. More recent work on SIRP 

includes the one of [25], in which stock-outs and finite horizon SIRP is studied and solved 

using a dynamic programming model and a hybrid roll-out algorithm. A similar problem 

is addressed in a robust optimisation approach through MILP formulations by [26], who 

suggest a robust-based strategy for these demands that assumes a uniform random 

behaviour. In [27], the authors develop a modified ant colony optimisation metaheuristic 

for the multi-product SIRP. A robust inventory routing policy, considering stochastic 

customer demands and replenishment lead times, is addressed in [28]. Dynamic SIRP 

under Maximum Level (ML) and Order Up-To level (OU) policies is studied in [29]. The 

authors use a proactive and reactive approach to solve the problem. In [30], this work is 

extended by addressing the robustness of inventory replenishment and customer 

selection policies. In [31], a SIRP with split deliveries and service level constraints is 

addressed. In [32], a multi-period IRP with stochastic stationary demand through a 

deterministic equivalent approximation model is studied. Finally, in [33] the authors 

study a SIRP and incorporate constructive components in a simheuristic they use to solve 

the problem. 

It is in the latter context that in [34], the authors introduce the concept of LT between 

customers within a deterministic inventory-routing (IRPT). In [34], a single-product, 

single-vehicle IRPT is studied and an Adaptive Large Neighbourhood Search heuristic 

(ALNS) is used to solve large scale instances. The authors assume that shortages are not 

permitted, and LT is performed by a carrier’s vehicles and not by the supplier’s. In [11], 

the authors extend the work of [34] by proposing new sets of valid inequalities to 

strengthen the linear relaxation. A multi-product IRPT is studied and solved using a 

Randomized Variable Neighbourhood Descent in [35]. On stochastic IRPT (SIRPT), [29] 

study the stochastic version of the problem addressed in [34]. Under the same 

assumptions, the authors propose a reactive and proactive policy to solve the single-

product, single-vehicle SIRPT. In [36], a multi-product, multi-vehicle SIRPT is addressed 

and solved using a Variable Neighbourhood Search algorithm. In [37], a mathematical 

model that decides on proactive transshipment under stochastic demand to reduce total 



 
Published in: Applied Mathematical Modelling (2022), volume 101, pp 

309–331 

DOI: 10.1016/j.apm.2021.08.029 

Status : Postprint (Author’s version)   
 

 

costs, as well as shortages in a blood supply chain, is developed. Finally, single-product 

SIRPT is studied in [38]. Lot sizing and perishability of the product are also considered. 

The authors propose a Lagrangian relaxation- based heuristic to solve the problem. 

Based on this literature review, it can be stated that fewer papers on IRPT and SIRPT 

study a multi-product multi-vehicle version and take into account lost sales due to the 

shortages as a measure of the service quality. Moreover, in the design of vehicle routing, 

LT-related decisions are not integrated as LT is always assumed to be subcontracted or 

handled by another carrier’s vehicles. Indeed, to simplify the optimization problem, 

authors identify just the nodes and time periods when LT may take place and manage 

stocks so LT may be performed. With this respect, this paper is thus intended to fill this 

gap. Furthermore, to the best of the authors’ knowledge, none of the existing papers 

incorporates product substitution within the settings along with promoting LT between 

depots to avoid shortages of parts. We study in the following a multi- product multi-

vehicle SIRPT and ML inventory policy. Therefore, we develop an appropriate model to 

underline the relative effectiveness of this new spare parts inventory management policy 

based on LT and substitutions and use the SAA method to solve it. 

 

3. Problem description 
We consider a spare parts supply chain with two levels. The CW distributes different 

parts to a certain number of depots (the second level). Compared to the distance from 

the CW, the depots are located at a negligible distance away from each other, and all hold 

low-demand spare parts. By allowing LT, these depots form a pool that can share 

inventories. In this paper, we assume that LT is not outsourced and is incorporated into 

the routes that carry out regular shipments. We also assume that PP can also be 

transshipped between depots. Given the demand distributions of depots, at the 

beginning of the planning horizon, the CW’s manager needs to choose the routes, 

inventory levels and transshipment and substitution decisions. Once demand is realised, 

if it exceeds the available capacity at the level of each depot, spare part substitution and 

LT are used as a recourse. That is, when critical OEM parts are not available, transshipped 

parts and the compatible PP can be used to satisfy the demand at the depots. As is 

commonly the case, we assume that the vehicle capacity is expressed as a function of the 

demands to be satisfied [20,29,39]. We also assume that all PP made available to depots 

are reliable and of a good quality. Parts are substitutable only if they have the same 

shape, fit, and function. Furthermore, we assume that the substitution is not bi-

directional. We also implicitly assume that emergency supplies from the CW are 

significantly long and expensive. Therefore, LT and substitutions is favoured over the use 

of emergency supplies. Transshipment and substitution can be then considered by 
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depots to meet expected demands with the use of the same part from the inventory of 

other locations (transshipment) or with the use of a compatible part from their inventory 

(substitution). 

The problem of concern can be addressed as a two-stage stochastic inventory-routing 

problem considering transshipment and substitution as emergency measures to 

mitigate shortages. We assume the routing (which depots to visit in each period) is the 

first-stage decision. The quantities to deliver including transshipment, the lost sales at 

each time period as well as the inventory levels and substituted quantities are adjusted 

to the scenario. The stochastic approach aims to find the solution that minimises the 

routing cost plus the expected cost of both inventory, transshipment, substitution, and 

shortage due to loss of sales. 

 

4. Mathematical formulation 
4.1. MATHEMATICAL MODELLING 

The SIRPTS is defined on a graph G = (N, A), where N is the vertex set indexed by i ∈  {0 

,..., n} and A = { (i, j) : i, j ∈  N , i ≠ j} is the edge set. Vertex 0 represents the CW, and the set 

N0 = N \{0} denotes the depots. The length of the planning horizon is H with discrete time 

periods t. Each depot i ∈  N0 has demands for spare part p ∈  {1, . . . , m} per period t ∈  H = 

{1, . . . , T} which is a random variable Dpit. A scenario denoted ω is a set of potential 

demands that appear by the end of the horizon H. We denote the set of scenarios for the 

realisation of demands by Ω. Thus, Dpit (ω) denotes the demand of a depot i of a spare 

part p in period t in scenario ω ∈ {1, . . . , | Ω |}. Moreover, each depot and the CW, i ∈ N, incur 

unit inventory holding costs, hpi , per period and per spare part p ∈ {1, . . . , m }, with 

inventory capacities Ki . Inventories are not allowed to exceed the holding capacity and 

must be positive. At the beginning of the planning horizon, at each location, i ∈ N , the 

current inventory levels Ipi0 of the spare part p are known. A set of homogeneous vehicles 

v ∈ V = { 1, . . . , k } is available, each with a capacity Q in terms of the spare part without 

distinction between them, with a being a fixed transportation cost per km. Each vehicle 

is able to perform a route per period. A distance di j is associated for all (i, j) ∈ A. A 

transshipment can start from any depot, i.e., a depot can transfer to other locations as 

needed. Transshipments can occur when it is profitable to ship spares between depots. 

As in [34], we choose a transshipment cost per unit of bi j =0.01 adij . The unit cost of 

substituting a spare part p by s ∈ P is cps . All possible combinations according to the parts’ 

compatibility are represented by ops , which is equal to 1 if a spare part p is compatible 

with a spare part s, and 0 otherwise. The lost sales cost associated with a spare part p at 

the depot i is fpi , and the quantity of spare parts shipped by the manufacturer (from the 
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factory) to the CW during period t is gpt . Finally, it is assumed that holding and vehicle 

capacities, and quantity shipped by the manufacturer are exogenous parameters and are 

not under the control of the CW. All of these notations as well as decision variables are 

summarised in Table 1: 

The formulation of the SIRPTS can be written as: 

 
 

Subject to: 

 
 

Table 1- Notation summary. 
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The objective function minimises the total cost. The first term corresponds to the 

transportation costs, the second term to the inventory cost at the CW and depots’ 

locations, the third term to the transshipment costs, the fourth term to lost sales costs at 

the depots’ locations, and the last term corresponds to the cost of substitutions. 

Constraints (2) indicate that, for each depot i and each spare part p, the inventory level 

at period t is the inventory level at the previous period plus the delivered quantity of the 

spare part p and the lost sales wpit , if any, minus the demand, plus the difference between 

the quantity of spare part p transshipped to and from i, plus the difference between the 

quantity of spare part s used as a substitute of p and the quantity of p used as a substitute 

of the other spare parts. Constraints (3) express the conservation conditions of inventory 

at the CW over successive periods. The conditions take into account quantities delivered 

to the CW and the depots. Constraints (4) express the flow conservation conditions at a 

depot j. Constraints (5) state that at the end of each period, vehicles must return empty 

to the CW. Constraints (6) guarantee that inventory levels do not exceed the maximal 

available inventory capacity. Constraints (7) and (8) state that the maximum capacity of 

the vehicle is not exceeded. Constraints (9) state that the quantity transshipped from a 

depot i at a period t does not exceed the initial inventory level at this period. Constraints 

(10) stipulate that if a vehicle v visits the depot j, it must leave j in the same period t. 

Constraints (11) ensure that, at most, one vehicle v visits a depot per period. Constraints 
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(12) ensure that only vehicles carrying parts leave the CW. Constraints (13) stipulate that 

the sum of vehicles used in time period t is bounded by the number of available vehicles. 

Constraints (14) ensure that spare part p is transshipped from the node i to the node j by 

vehicle v if the arc (i, j) is being used by the vehicle v during the period t. 

 

4.2. SAMPLE AVERAGE APPROXIMATION 

Given their inherent analytical complexities and high computational requirements, 

solving large-scale stochastic optimisation problems is extremely challenging [40,41]. 

The SAA method’s sound convergence properties, which have been thoroughly explored 

in the literature, are one of its most appealing features [42,43]. Regarding SAA estimators’ 

consistency, which is often seen as a minimum criterion for any good estimator, [44] 

stress, in a somewhat general fashion, that the sequence of approximate objective 

function epi-converges to the optimal solution. This enables the inference of sets of 

optimal values with high consistency. An alternate approach, based on the epic 

convergence, has been followed. This approach draws from a strong consistency of 

optimal estimators, by constructing almost sure uniform convergence [45]. In [42], the 

authors examine the rates at which optimum SAA estimators converge in the almost sure 

and mean sense with their deterministic counterparts. Finally, in [46], the SAA method is 

applied to three classes of 2-stage stochastic routing problems. Through a considerable 

amount of experimentation, the authors proved the good convergence properties of SAA 

and the high quality of solutions to the stochastic programming problems under 

consideration. The interested reader is referred to this paper for further details. For all 

these reasons, SAA has been widely used to cover a large variety of applications such as 

stochastic supply chain design and optimisation problems of large scale [47]; stochastic 

knapsack problem [40] and reliability-based design of engineering systems [48]. 

In SAA, the objective function value of the stochastic problem is unknown and 

approximated using a random sample estimate [49,50]. For a given number of scenarios, 

the objective function is evaluated iteratively before the optimality gap falls below a 

certain threshold value. SAA provides a straightforward framework that is conducive to 

parallel implementation and reduction of variance techniques. It also possesses good 

convergence properties and well-developed statistical methods to validate solutions 

and perform error analysis. For this reason, SAA is used to solve the SIRP with 

transshipment and Substitution (SIRPTS). 

SAA approximates the expected cost of the objective function by the average sample 

function. This expected cost is replaced by the mean value of a random set of samples 

(ω1, ω2 , ..., ω 
| Ω |) of size |Ω| obtained by the Monte Carlo method, where Ω is the set of ω-

indexed scenarios. This is repeated L times with different samples, and each time results 
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in a candidate solution. Thus, SAA method generates L separate sample sets Ωl , l ∈ {1, ..., 

L}. For each scenarios set, Ωl , the related SAA problem (where Ω is replaced by Ωl in 

SIRPTS) is solved and generates a candidate solution. Therefore, the first-stage solution 

is fixed for each candidate solution, and the value of the objective function for a very large 

sample with l scenarios is computed. This value is computed in the two-stage model 

SIRPTS by solving a pure linear programming problem on the second-stage variables. 

With a reasonable level of accuracy, SAA solves the real problem if certain conditions 

are met [40,51]. These requirements and justifications for how SIRPTS meets them are as 

follows: 

1. a sample realisation of the random variable can be generated. For SIRPTS, this can 

be done for each random variable Dpit which represents demand each depot i has to 

satisfy for each spare part p and for each period t (see Section 5.1.2). 

2. with a moderate sample size, the SAA problem can be solved effectively. In the 

computational experiments section, we will show that for most test instances, with 

a sample size of 20, we can solve SIRPTS in a reasonable amount of time. 

3. the expected costs can be easily calculated by solving the model for a given first-

stage solution and a given realisation of demand. 

4. there is a complete recourse to the actual problem, i.e. every solution to the first 

stage problem is feasible to the second stage. In SIRPTS, this is made possible by 

assuming that transshipment and substitutions are always used when demand 

cannot be met with the related first stage variables. 

Statistical estimates of the lower and upper bounds on the objective function value of 

the stochastic problem, as well as estimates of the variances of these bounds, can be 

computed in order to evaluate the quality of the SAA solution [40,51]. Let  be a 

candidate solution to the first stage with an objective function . To estimate the lower 

bound of the true objective function value, the mean  and the variance  of the 

objective function  
 

 
 

The lower bound is then expressed as: 

 

where  is the π-critical value of the χ-distribution with p degrees of freedom, p — L - 

1 
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By assessing the solution with a huge scenario tree of size |Ω’| that is assumed to 

represent the true distribution of demand, the upper bound on each candidate solution’s 

true objective function value is computed. As each scenario ω ∈ {1,... , |Ω’|} is an i.i.d. 

random sample, the problem of assessing a candidate solution is broken down into Ω’ 

sub-problems. The size of Ω’, which is the scenario tree, is far larger than the one held in 

any SAA run [40]. The objective function value of a given sub-problem ω is denoted as 

, which is calculated as: 

 

 
 

It has be noted that |Ω’| can be very large since each subproblem is solved separately 

without creating a significant computation complexity. The approximation of the true 

objective value, denoted as  (χ l), of the second stage problem is computed as: 

 
 

The value of the true objective function, , for a candidate and its variance as 

computed then as follows:  

 

 

The upper bound of the candidate  is then computed as: 

 

where  is the π-critical value of the τ-distribution. The upper bound of the 

algorithm is the smallest φl and the candidate solution  refers to the solution with 

the smallest upper bound solution that results in the smallest optimality gap for all 

candidate solutions: 

 

5. Computational experiments 
This section presents the experimental design adopted in this paper as well as the 

computational results. 
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5.1. EXPERIMENTAL DESIGN 

 

5.1.1. SAA Setting 

To solve the SIRP, |Ω| = 20 scenarios is used to compute the expected costs of the 

second stage. Each scenario is repeated L= 20 times in order to compute the LB on the 

true expected value. This choice is based on a trade-off between the op-timality gap and 

computational time. For the UB on expected cost, all L candidate solutions are assessed 

using a scenario tree of |Ω’| = 800. Finally, all optimisation steps are carried out with a 

personal computer (MacBook Pro, macOS Big Sur, 3.3 GHz Quad-Core Intel Core i7 CPU 

with 8 GB of RAM), and with CPLEX 12.9 and Python 3.7. A maximum time limit of 1200 

seconds is fixed. 

 

5.1.2. Demand distributions 

The demand for spare parts occurs when a component fails or needs replacement 

rather than being triggered by the end-user purchasing behaviours (and the way demand 

moves upstream in a supply chain). Then, it is possible to identify such items as sporadic 

and slow movers arising at irregular intervals and variable sizes. It is preferable to model 

spare parts demand from the constituent components, i.e. the size of demand and the 

inter-demand interval. Consequently, compound theoretical distributions (which 

specifically include the combination of size and interval) are widely used in such 

application contexts [6,7,52]. In this paper, demands each depot i has satisfy per spare 

part p and per period t are random variables D pit. Different distributions have been 

studied based on empirical goodness-of-fit tests. Discrete distributions are chosen since 

they provide a better fit for intermittent demands compared to continuous ones. 

According to [7], these distributions are: (1) Poisson distribution (PD) for demand 

occurrence with demands of constant size; (2) stuttering Poisson distribution (SPD), with 

Poisson distribution for demand occurrence and geometric distribution for demand size; 

and (3) negative binomial distribution (NBD), with a Poisson distribution for demand 

occurrence and logarithmic distribution for demand size. 

For β = 0,1,2 . the distribution functions of Poisson distribution occurrence PD(β) can 

be expressed as: 

 
the stuttering Poisson distribution SPD(, Ø) (β) as 

 
where  and Ø are the Poisson and geometric distribution parameters, and the Negative 



330 

 

 

Binomial distribution NBD(r, μ)(β) as: 

 
 

where r is the number of successes, and i is the probability of success. 

To generate an independent and identical distributed (i.i.d.) random sample of |Ω| 

realisations of Dpit for each distribution under consideration, the Inverse Transform 

Sampling algorithm 1 is used. 

 

 
 

5.1.3. Other input data 

First, the model is tested on randomly instances generated by [39] for multi-product 

multi-vehicle IRP. Following a brief description is provided, and the reader is referred to 

their paper for further details. The dataset can be downloaded from http://www.leandro-

coelho.com/instances/. For each instance, the number of depots varies between 10 and 

50, and the number of both products and vehicles varies between 1 and 5. Each instance 

contains 3, 5 and 7 periods. Product availability at the CW is a multiple of a number 

randomly generated according to a discrete uniform distribution in the interval [50,140], 

and the maximum inventory level is a multiple of a number drawn randomly from 

[150,200]. The initial inventory level is a randomly generated number in the interval [100, 

150]. Holding costs are randomly generated from a continuous uniform distribution in 

the interval [0.02,0.2]. As in [29], shortage penalty cost equals 200 times the holding cost. 

Secondly, to highlight the benefit of promoting substitutions along with 

transshipment on the overall supply chain performance, we use the same set of instances 

but this time for a number of products varying between 20 and 40. For each depot, period 

and spare part Poisson and geometric distribution parameters  and Ø, as well as the 

NBD parameters r and μ, are random numbers generated between 0 and 1. 

An instance name is referred to as n [number of depots] m [number of spare parts] k 

[number of vehicles] T [number of periods], e.g. n5m20k2T5 is an instance consisting of 

5 depots, demands for a number of spare parts equal to 20 performed by 2 vehicles in a 

planning horizon that corresponds to 5 days. 

 

5.2. COMPUTATIONAL RESULTS 

This section present for each distribution, computational results obtained for all 
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instances under consideration. Tables 2, 4, 6, 8, 10 and 12 report costs computed for the 

first and second stage (FSC, SSC), standard deviation regarding the upper and lower 

bound (UB, LB), and CPU time in second. Tables 3, 5, 7,9 , 11 and 13 provide for all 

instances under consideration the breakdown of costs namely: Transportation (T), 

Inventory (I), Lost sales (LS), substitution (S) and transshipment (Ts). All experiments are 

performed for four different models: SIRP, SIRP with Transshipment (SIRPT), SIRP with 

Substitution (SIRPS) and finally SIRPTS. They also report cost saving (SV) computed with 

regard to total cost (TC), which is expressed as follows: 

 
From Tables 2, 4, 6, 8, 10 and 12 we can notice that for all instances and demand 

patterns under study any reduction in costs is made possible by allowing LT between 

depots and substitution of spare parts. Indeed, from Tables 3, 5, 7, 9, 11 and 13, we can 

see that these emergency measures allow to reduce holding and transportation costs 

along with lost sales. 

For all sets of instances and models, we can see that when substitution and LT are not 

considered, the supply chain seems to experience high transportation, inventory and lost 

sales costs for the three different distributions. When LT is allowed (SIRPT), the depots 

receiving the quantity latterly transshipped can satisfy even more (sometimes 

completely) demand and consequently reduce lost sales. The depots from which the LT 

is carried out are, in counterpart, allowed to lower their inventory holding costs. When 

the substitution is also allowed (SIRPS), compared to the SIRP model, we observe a 

reduction of the costs of lost sales and holding inventory. Indeed, quantities that might 

be latterly transshipped from a depot can be used at its level as a substitute to other 

spare parts, which allows reducing the lost sales. For SIRPTS, we observe that it allows 

reducing costs considerably compared to the other models. In addition to what can be 

received through LT, each depot can use the quantities of spare parts, if compatible, that 

could constitute idle stock (which leads to high holding cost) to meet other spares’ 

demand. Moreover, PP can also be transshipped to substitute other spare parts through 

substitution based on our assumptions. Finally, when compared with SIRPS, the SIRPT 

provides, in general, the same results in terms of reduction of total costs. From Table 9 

for example, we can see that for PD, on average SIRPS allows a saving of 16% while SIRPT 

allows a saving of 17%. 

Concerning the demand patterns, we observe that a very low variability in demand 

size (as in the case of PD) can be less stressful, regardless of the average inter-demand 

interval. Indeed, when demand size is greater than the quantity available to promise, the 

emergency measures cannot be sufficient to mitigate any loss of sales.  
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Table 2 Computational results for a number of products varying between 1 and 5 - number of depots 

equal to 10 

 
 

Table 3 Breakdown of cost for a number of products varying between 1 and 5 - number of depots 

equal to 10. 
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Table 4 Computational results for a number of products varying between 20 and 40 - number of 

depots equal to 10 

 
 

Table 5 Breakdown of cost for a number of products varying between 20 and 40 - number of depots 

equal to 10. 
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Table 6 Computational results for a number of products varying between 1 and 5 - number of depots 

equal to 20 

 
 

Table 7 Breakdown of cost for a number of products varying between 1 and 5 - number of depots 

equal to 20 
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Table 8 Computational results for a number of products varying between 20 and 40 - number of 

depots equal to 20 

 
 

Table 9 Breakdown of cost for a number of products varying between 20 and 40 - number of depots 

equal to 20 
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Table 10 Computational results for a number of products varying between 1 and 5 - number of 

depots equal to 50 

 
 

 

Table 11 Breakdown of cost for a number of products varying between 1 and 5 - number of depots 

equal to 50 
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Table 12 Computational results for a number of products varying between 20 and 40 - number of 

depots equal to 50 

 
 

Table 13 Breakdown of cost for a number of products varying between 20 and 40 - number of depots 

equal to 50 

 
 

Therefore, the benefits of promoting transshipment and substitution rely on the extent 

to which demand variability is considered as a stressful scenario. The computational 
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experiments also stress that the benefit of transshipment and/or substitution can be less 

notable for some instances, as in the case of instances n20m1k3T3 and n20m20k3T7 in 

Table 7 with a saving equal to 7% for SIRPT model. As LT depends on the travelling 

distances and is incorporated in route decisions, the related cost cannot sometimes be 

offset by the savings it brings in reducing inventory and lost sales costs. In such context, 

the substitution would be given higher priority than LT as we could substitute spares at 

the level of the depot itself, and thus no further shipment would be required. 

Furthermore, the combination of LT and substitution, compared with the other 

configurations, always reduces total costs. On the other hand, the two alternatives help 

mitigate lost sales, but they can lead to higher costs. Thus, both LT and substitution can 

be of such interest as long as the costs they incur can be offset by the savings they enable. 

As for SAA performance, from Table 8 for example, we can notice a low variability in 

the solutions of the SAA runs (based on the standard deviation computed for the UB and 

LB) which shows the sampling stability of the different runs. We note, however, that the 

maximum time limit of each SAA run (1200s) is reached for some instances and models 

under consideration (see Table 8, for example), which means that some of the SAA runs 

might not have been resolved to optimality, hindering the quality of the candidate 

solutions and, in turn, the optimality gap. However, there is no incentive to increase the 

number of scenarios retained in the SAA problem due to the low variability in the 

solutions across various instances under the current setting. Moreover, CPU time for 

some instances is small meaning that optimality is reached (see Tables 2 and 6). For 

future studies, because of the combinatorial complexity of the problem, we suggest the 

hybridisation of SAA and metaheuristics such as Genetic Algorithm to enhance further 

the quality of solutions and within a reasonable amount of time. 

 

6. Conclusions & perspectives 
In this paper, we consider a two-level supply chain. At the first level, a manufacturer-

owned central warehouse distributes spare parts to a given number of depots (the 

second level). Spare parts demand arises when a component fails or requires 

replacement instead of being generated according to end-consumer buying behaviours. 

We model the problem as a shared inventory-routing problem considering the two 

flexible instruments of transshipment and substitution to mitigate shortages. We assume 

that lost sales are allowed when a shortage occurs. 

Based on empirical goodness-of-fit tests, three discrete distributions are chosen since 

they provide a better fit for intermittent demands compared to continuous ones. These 

distributions are the Poisson distribution for demand occurrence, combined with 

demands of constant size; the stuttering Poisson distribution; and the negative binomial 
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distribution. 

To solve the problem, we have used the SAA method because of its good convergence 

properties. For the different demand patterns under consideration, computational 

results highlight that allowing transshipment and substitution is beneficial as they both 

allow reducing holding and transportation costs along with lost sales. In addition, 

experiments show the impact of transshipment and substitution on the overall 

performance depends on the size variability of demands, regardless of the average inter-

demand interval. Moreover, they stress that transshipment and substitution can only be 

of such interest as long as the costs they incur can be offset by the savings they enable. 

Due to combinatorial complexity, metaheuristics must be developed for future studies 

to enhance the quality of the candidate solutions. It is also possible to extend this paper 

to examine a multi-echelon of either centralised or decentralised supply chains. Other 

policies and non-parametric methods for demand may be investigated, whereby the 

distribution of empirical distribution is instead directly constructed from the data. It is 

also possible to investigate stochastic lead time and production along with demands. 

Moreover, the reliability of PP can be integrated into the model as it affects the 

customers’ future requirements for spare parts. Finally, using metaheuristics and solving 

the problem in large experimental data sets are necessary to strengthen the present 

analysis and generalise findings that can be applied to more complex supply chains. 
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