
Chapter 32

Symbolic methods and automata
Bernard Boigelot

Contents

1. Introduction . 1189

2. Integer domain . 1191

3. Real domain . 1202

4. Conclusions and perspectives . 1211

References . 1212

1. Introduction

In addition to being useful mathematical objects, automata can be employed as actual
data structures. In this chapter, we use automata for symbolically representing sets of
values over a given (generally infinite) domain D. The aim is thus to describe subsets
of D, without ambiguity, using finite-state machines. Note that a data structure that
only admits a countable number of possible instances will never be able to represent
all the subsets of an infinite domain. In most cases, the symbolic representation will
need to be expressive enough to cover a class of sets that is deemed to be useful for
the considered application. Additional requirements include the possibility of building
representations of elementary sets from their description, and performing operations of
interest on the represented sets.

A finite automaton can be seen as a data structure that provides a symbolic repre-
sentation of its accepted language. In order to use automata as symbolic representations
of sets over a domain D, a natural idea is to define a mapping from the elements of D
to the words read by the automata [8]. This mapping needs to be unambiguous, in the
sense that every word can only correspond to at most one value in D. In this way, a
set X � D is mapped onto a language that precisely describes its elements, and a finite
automaton that accepts this language can be seen as a symbolic representation of X .

Definition 1.1. Let D be a domain and A be a finite alphabet. An encoding relation
from D to A is a relation E such that

� either E � D � A� (finite encodings) or E � D �A! (infinite encodings),
� the relation E is total over D, that is, for all d 2 D, there exists w 2 A� [A!

such that .d;w/ 2 E, and
� the relation E is injective, that is, for all .d;w/; .d 0; w0/ 2 E, the condition
w D w0 implies d D d 0.

The encoding of a set X � D by E is the language E.X/ D S
d2X E.d/.

1189

1190 Bernard Boigelot

Definition 1.2. Let E be an encoding relation from a domainD to an alphabet A, and
let X � D be a set of values. An automaton over A is a finite-state representation of
X or, equivalently, is said to recognise X , if it accepts the language E.X/.

In this definition, we have not fixed the form of the automata used for representing
sets, which can be specific to the application of interest.

One advantage of using automata-based representations of sets is that computing
Boolean combinations of sets reduces to performing the same operations on the lan-
guages accepted by their finite-state representations. The same property holds for set
comparison operations such as emptiness, inclusion or equality checking.

Theorem 1.1. Let E be an encoding relation from a domainD to an alphabet A, and
X;X 0 � D be sets of values. We have

E.X [X 0/ D E.X/ [E.X 0/;
E.X \X 0/ D E.X/ \ E.X 0/;
E.X nX 0/ D E.X/ n E.X 0/:

Furthermore,

X D ; () E.X/ D ;;
X � X 0 () E.X/ � E.X 0/;
X D X 0 () E.X/ D E.X 0/:

Since regular and !-regular languages are closed under Boolean operators, it fol-
lows from Theorem 1.1 that finite-state representations of sets naturally enjoy the
same closure property. Combining automata by means of Boolean operators over
their accepted languages is algorithmically simple with most forms of automata [29]
(a noteworthy exception being the operations that rely on complementing Büchi au-
tomata [32]).

From an algorithmic point of view, another advantage of automata-based repre-
sentations is that deterministic automata over finite words, as well as some types of
infinite-word automata, can easily be minimised into a canonical form [28] and [35].
This makes it possible to obtain a symbolic representation of a set that is independent of
the history of its construction. In particular, this simplifies set comparison operations,
since equality testing then reduces to checking isomorphism between transition graphs
of automata.

Note that Theorem 1.1 would not hold any longer if encodings of sets were allowed
to contain only some encodings of their elements, as opposed to all of them. Also notice
that all words over the considered alphabetA are not required to be encodings of values
in D. We have the following definition.

Definition 1.3. Let E � D � A be an encoding relation over a domain D. The set V
of valid encodings of E over D is defined as the language V D E.D/.

32. Symbolic methods and automata 1191

In most applications, a natural requirement is to impose that V is a regular or !-
regular language. In such a case, the complementD nX of a set X � D is encoded by
the language V nE.X/, as a consequence of Theorem 1.1, and is thus representable by
an automaton provided that X is representable as well.

In the next sections, we present finite-state representation systems suited for several
data domains that are relevant to actual applications, and discuss their properties.

2. Integer domain

In this section, we consider the domain D D Zn, with n > 0, that is, we study the
representations of sets of integer vectors with a fixed dimension n.

2.1. Encoding relation. In order to obtain a finite-state representation system, we
need to define an encoding relation over the elements of the domain. We first discuss
the encoding of natural numbers. A simple solution is to use the positional k-ary
notation. One selects a numeration base k > 1, which provides an alphabet of digits
Ak D ¹0; 1; : : : ; k � 1º. A finite word ap�1ap�2 � � �a0 2 A�k , with p > 0, then encodes
the number

Pp�1
iD0 aik

i . The lengthp of an encoding does not need to be fixed, provided
that it is large enough. Every natural number thus admits infinitely many encodings that
only differ by the number of repetitions of a leading digit equal to 0.

This encoding relation generalises to signed numbers thanks to the base-comple-
ment method. Under this scheme, a number z 2 Z is encoded by the last p dig-
its ap�1ap�2 � � �a1a0 2 A�

k
of the (unsigned) encodings of kp C z, for all p > 0

such that z 2 Œ�kp�1; kp�1 � 1�. Notice that if z is negative, then we have
kp C z 2 Œ.k � 1/kp�1; kp � 1�, which implies ap�1 D k � 1. Otherwise, if z is
nonnegative, then we have kp C z 2 Œkp ; kp C kp�1 � 1�, and hence ap�1 D 0. It
follows that the leading digit of an encoding can be understood as a sign digit, and be-
longs to the restricted alphabet ¹0; k � 1º. Every integer admits an infinite number of
encodings, which only differ by the number of repetitions of their sign digit. The valid
encodings of integers in base k form the language ¹0; k � 1ºA�

k
.

Let us now discuss encodings of vectors Ev D .v1; v2; : : : vn/ 2 Zn. The idea
is to first encode each component vi separately into a word wi , choosing the same
number p of digits for each of them, that is, jw1j D jw2j D � � � D jwnj D p.
This is always possible, for the sign digit of an encoding can be repeated at will.
Then, one reads sequentially and repeatedly one symbol in each wi , obtaining a word
w of length p over the alphabet .Ak/n that encodes Ev. In other words, if we have
wi D ai;p�1ai;p�2 � � �ai;0 for each i 2 Œ1; n�, then the encoding is defined as the word
w D .a1;p�1; : : : ; an;p�1/.a1;p�2; : : : ; an;p�2/ � � � .a1;0; : : : ; an;0/.

With this encoding technique, the leading symbol of a vector encoding charac-
terises the sign of its components, and can thus be seen as a sign symbol. This symbol
belongs to the restricted alphabet ¹0; k � 1ºn. The encodings of a given vector only
differ by the number of repetitions of their sign symbol. The language containing the
valid base-k encodings of vectors in Zn is given by ¹0; k � 1ºn..Ak/n/�.

1192 Bernard Boigelot

Example 2.1. Let Ev D .0;�7; 3/ and k D 2. The encodings of the compo-
nents of Ev form the languages E.0/ D 0C, E.�7/ D 1C001 and E.3/ D 0C11.
The encodings of Ev must therefore be at least of length 4, which yields E.Ev/ D
.0; 1; 0/C.0; 0; 0/.0; 0; 1/.0; 1; 1/.

In most applications, relying on an alphabet that is exponential in the dimension of
the domain is problematic. A simple workaround is to serialise the encodings, which
consists in reading the tuple components of a symbol .a1; a2; : : : ; an/ sequentially, that
is, as the word a1a2 � � �an, rather than simultaneously as a single symbol. Serialised
encodings in base k are thus expressed over the alphabet Ak . The signs of the compo-
nents of a vector correspond to the first n digits of its serialised encodings, which are
known as their sign header. The language of valid serialised encodings is given by

¹uv j u 2 ¹0; k � 1º�; v 2 .Ak/�; juj D n; jvj � 0 .modn/º:
Example 2.2. Let Ev D .0;�7; 3/. The serialised encodings of Ev in base k D 2 form
the language E.Ev/ D .010/C000001011.

From a theoretical point of view, working with serialised or unserialised encodings
is mostly equivalent. Indeed, an automaton recognising unserialised encodings can
easily be turned into one operating on serialised ones by renaming its edge labels.
The reciprocal transformation can be achieved by, for instance, using a finite-state
transducer that rewrites sequences of n consecutive digits into a single symbol. In this
chapter, for clarity’s sake, we will assume that encodings of vectors are not serialised,
unless stated otherwise. In practical implementations however, working with a small
alphabet is essential to achieving efficiency, and serialised encodings are preferred.

Definition 2.1. Let n > 0 be a dimension, and k > 1 be a numeration base. Let
E denote the (either serialised or unserialised) encoding relation suited for Zn in
base k. Let X � Zn. A finite-word automaton is a number decision diagram (NDD)
representing X if it accepts the language E.X/.

Example 2.3. Let n D 2 and k D 2. The automaton illustrated in Figure 1 is an NDD
representing the set ¹.y; z/ 2 N2 j y < zº.

.0; 0/ .0; 1/

.0; 0/

.1; 1/

.0; 0/

.0; 1/

.1; 0/

.1; 1/

Figure 1. Example of NDD

32. Symbolic methods and automata 1193

2.2. Expressive power. The expressive power of automata recognising sets of integers
and vectors has been well studied. We recall some results that are discussed in detail
in Chapter 26. The following theorem characterises the sets that can be recognised by
NDD in a given base, see [23] and [22].

Theorem 2.1 (Büchi–Bruyère). Let n > 0 be a dimension and k > 1 be a numeration
base. Let VkWN! N denote the function such that Vk.0/ D 1 and Vk.x/ is the highest
integer power of k that divides x for all x > 0. A set X � Zn is recognisable by an
NDD in base k if and only if it can be defined in the first-order theory hZ;C; <; Vki.

Actually, the result expressed by Theorem 2.1 was originally established for the
domain Nn. It generalises to Zn thanks to the following mechanism. A formula in the
theory hZ;C; <; Vki can be rewritten as a formula in hN;C; <; Vki by replacing each
variable x over Z by the difference y� z of two variables over N. The reciprocal trans-
formation is immediate. A similar transformation is applicable to NDD: an automaton
recognising vectors .x1; x2; : : : ; xn/ 2 Zn can be turned into one operating on vec-
tors .y1; z1; y2; z2; : : : ; yn; zn/ 2 N2n such that xi D yi � zi for all i , and vice versa.
Algorithms for performing these transformations on NDD will be presented in § 2.4.

The following result is a corollary of Cobham and Semenov’s theorems (see [24]
and [42]), and characterises the sets of integer vectors that are recognisable by NDD
regardless of the chosen numeration base. A detailed discussion of this theorem, its
consequences, and its generalisations can be found in Chapter 26.

Theorem 2.2. Let n > 0 be a dimension. A set X � Zn is recognisable by an NDD in
every base k > 1 if and only if it can be defined in the first-order theory hZ;C; <i.

The theory hZ;C; <i can be seen as an extension to integers of the first-order addi-
tive theory of natural numbers hN;Ci, also known as Presburger arithmetic, see [40]
and [41]. In this chapter, we will refer to Presburger arithmetic as the theory hZ;C; <i
when reasoning about signed integers, and say that a set that is definable in that theory
is Presburger definable.

Presburger arithmetic is quite an expressive formalism. In particular, every mod-
ular linear constraint of the form ¹Ex 2 Zn j Ea:Ex # bº, with Ea 2 Zn, b 2 Z and
2 ¹<;6;D;>; >;�2;�3;�4; : : :º is Presburger definable, where y �i z is short-
hand for y � z .mod i/ for all i > 1. In addition, Presburger arithmetic is, by defi-
nition, closed under Boolean operators, and operations such as Cartesian product and
projection of sets.

It follows from the previous results that NDD provide a symbolic representation of
Presburger-definable sets of integer vectors. In § 2.3 and § 2.4, we will introduce algo-
rithms for constructing NDD that represent some elementary sets, and for performing
operations on represented sets.

2.3. Construction of elementary sets

2.3.1. Linear equalities. Consider a dimension n > 0 and a linear constraint

X D ¹Ex 2 Zn j Ea:Ex D bº;

1194 Bernard Boigelot

with Ea D .a1; a2; : : : ; an/ 2 Zn and b 2 Z. From Theorem 2.1, the setX is recognisable
by an NDD in any base k > 1. We now develop an algorithm for constructing such a
NDD.

In an NDD recognising X , the paths originating from an initial state and ending
in an accepting state q precisely read the encodings of the vectors Ex that satisfy the
constraint Ea:Ex D b. This can be seen as a property of the state q, which can be labelled
by the constraint Ea:Ex D b, or more simply, by its constant term b. This prompts us to
define a labelling ˇ of the states of the automaton by integer values, such that ˇ.q/ D b
for the state q that we have considered.

Now let q0 be a state from which q can be reached by following a single edge e,
and let Ed 2 .Ak/n be the tuple of digits labelling this edge. Any path � 0 from an initial
state to q0 can be completed to a path � that reaches q by appending the edge e. If � 0

is not empty, then the vectors Ex and Ex0 respectively recognised by � and � 0 satisfy the
relation Ex D k Ex0 C Ed . If � 0 is empty, then e reads a sign symbol; this case will be
discussed later.

We therefore have kEa:Ex0 C Ea: Ed D Ea:Ex D ˇ.q/, which gives Ea:Ex0 D ˇ.q0/, with

ˇ.q0/ D ˇ.q/ � Ea: Ed
k

: (1)

In other words, every path from an initial state to q0 recognises a vector Ex0 that
satisfies Ea:Ex0 D ˇ.q0/. Recursively applying the same reasoning on the predecessor
states of q0, one eventually obtains a labelling of all the states of the NDD from which
an accepting state can be reached (with the possible exception of initial ones, since we
have rejected empty paths).

Those observations lead to a procedure for constructing a deterministic NDD
representingX D ¹Ex 2 Zn j Ea:Ex D bº. The first step is to create a single accepting state
q labelled by b, that is, such that ˇ.q/ D b. Then, for every symbol Ed 2 .Ak/n, one
checks whether q admits an incoming edge labelled by Ed , originating from some state
q0. This is done by applying the backward propagation rule (1), and checking that the
resulting value of ˇ.q0/matches the constant term of a constraint Ea:Ex D ˇ.q0/, for some
Ex 2 Zn. This is the case if and only if ˇ.q0/ is an integer divisible by gcd.a1; : : : ; an/.
In this case, a new edge ending in q and labelled by Ed is created. The value of ˇ.q0/
then either identifies a previously created state q0, or prompts the creation of a new one.
In the latter case, the procedure is recursively applied to the new state.

The last step is to create the initial state q0 of the NDD. According to our encoding
relation, a single sign symbol Ed D .d1; d2; : : : ; dn/ 2 ¹0; k � 1ºn encodes a vector
.x1; x2; : : : ; xn/ 2 Zn such that for all i 2 Œ1; n�, xi D 0 if di D 0, and xi D �1 if
di D k� 1. In other words, we have Ex D 1=.1� k/ Ed . One can therefore explore all the
sign symbols Ed 2 ¹0; k � 1ºn and for each of them, compute the corresponding value
of Ex and check whether a state q such that Ea:Ex D ˇ.q/ has been built. In the positive
case, an edge from q0 to q labelled by Ed needs to be added.

32. Symbolic methods and automata 1195

The algorithm for constructing a deterministic NDD recognising the set

¹Ex 2 Zn j Ea:Ex D bº
is summarised in Algorithm 1.

Algorithm 1 Algorithm for building a base-k NDD representing Ea:Ex D b

1. Create a table Q of states and a list L of labels of “active” states, both initialised to ¹bº.
2. Set I D E D ;, and T D ¹bº.
3. While L ¤ ;, remove a value v from L, and for every Ed 2 ¹0; 1; : : : ; k � 1ºn,

� if v0 D v�Ea: Ed
k

is an integer multiple of gcd.a1; : : : ; an/, then
1. if v0 62 Q, then add v0 to Q and L;
2. add an edge .v0; Ed; v/ to E.

4. Add a new initial state q0 to Q and I , and, for every Ed 2 ¹0; k � 1ºn,

� if v D Ea: Ed
1�k is such that v 2 Q, then add an edge .q0; Ed; v/ to E.

5. Return .Q; I; E;T /.

It is shown in [19] that this procedure always terminates. Consider an accepting
state q, and one of its immediate predecessors q0 such that q0 ¤ q0. From (1), we get

ˇ.q0/ 2 1
k
Œb � .k � 1/aC; b � .k � 1/a��;

where aC D
P
ai>0

ai and a� D
P
ai<0

ai .
A state from which q is reachable after following a path of length p > 1 thus has a

label that belongs to the interval
h b
kp
�

pX

iD1

k � 1
ki

aC;
b

kp
�

pX

iD1

k � 1
ki

a�
i

�
h b
kp
� .k � 1/aC;

b

kp
� .k � 1/a�

i
:

If rp > jbj, since the state labels are restricted to integer values, this interval
reduces to Œ�.k � 1/aC;�.k � 1/a��. It follows that the only labels different from
b that have to be considered during the construction are those belonging to the union of
intervals

[̀

iD1

h b
ki
� .k � 1/aC;

b

ki
� .k � 1/a�

i
;

where ` D blogk jbjcC1 if b ¤ 0, and ` D 0 if b D 0. The construction thus terminates
after having created at most `..k�1/.aC�a�/C1/ states, in addition to the initial and
accepting ones.

Theorem 2.3. Let n > 0 be a dimension, k > 1 be a base and let X D ¹Ex 2 Zn j
Ea:Ex D bº be a linear constraint, with Ea D .a1; : : : ; an/ 2 Zn and b 2 Z. There exists
an NDD recognising X in base k with O

�
k.log jbj/Pn

iD1 jai j
�

states.

1196 Bernard Boigelot

Example 2.4. An NDD representing the set ¹.x1; x2/ 2 Z j 2x1 � x2 D �4º in base 2
is illustrated in Figure 2. The state labels correspond to those used by Algorithm 1.

Finally, it is worth mentioning that the procedure that constructs an NDD from a
linear constraint can easily be adapted for producing automata that operate on serialised
encodings of vectors.

�2 �4

0 �1 �3

.0; 0/
.1; 1/

.1; 0/

.0; 0/

.0; 1/

.0; 0/

.1; 1/
.1; 0/

.0; 1/

.1; 0/

.0; 0/ .1; 1/

.1; 0/

Figure 2. NDD recognising 2x1 � x2 D �4

2.3.2. Linear inequations. The algorithm introduced in § 2.3.1 can straightforwardly
be turned into one constructing the base-k representation of a linear inequation X D
¹Ex 2 Zn j Ea:Ex 6 bº, with k > 1, Ea D .a1; a2; : : : ; an/ 2 Zn and b 2 Z. By the same
reasoning, each state q of an NDD recognising X can be labelled by a value ˇ.q/, such
that the paths from an initial state to q recognise the vectors Ex that satisfy Ea:Ex 6 b.

The application of the propagation rule (1) needs to be adapted slightly. Consider a
state q for which the value of ˇ.q/ is known, and a state q0 linked to q by a single edge
.q0; Ed; q/. If the value of ˇ.q0/ given by (1) is not an integer multiple of gcd.a1; : : : ; an/,
then the inequality Ea:Ex 6 ˇ.q0/ may nevertheless admit integer solutions Ex. The set of
these solutions is actually identical to that of the constraint Ea:Ex 6 gbˇ.q0/=gc, where
g D gcd.a1; : : : ; an/. In this case, the value of ˇ.q0/ does not have to be discarded as
in the case of linear equalities, but must be suitably rounded into an integer value.

A similar adaptation is needed for generating the edges linking the initial state
q0 to labelled states. Recall that a sign symbol Ed 2 ¹0; k � 1ºn encodes the vector
Ex D 1=.1 � k/ Ed . For each such Ed , one computes the corresponding value of Ex, and
creates edges labelled by Ed from s0 to all the states q such that Ea:Ex 6 ˇ.q/. The
resulting algorithm is given in Algorithm 2.

32. Symbolic methods and automata 1197

Algorithm 2 Algorithm for building a base-k NDD representing Ea:Ex 6 b

1. Create a table Q of states and a list L of labels of “active” states, both initialised to ¹bº.
2. Set I D E D ;.
3. While L ¤ ;, remove a value v from L, and for every Ed 2 ¹0; 1; : : : ; k � 1ºn,

a. compute v0 D v�Ea: Ed
k

and v00 D g
�
v0
g

˘
, where g D gcd.a1; : : : ; an/;

b. if v00 62 Q, then add v00 to Q and L;
c. add an edge .v00; Ed; v/ to E.

4. Add a new initial state q0 to Q and I , and, for every Ed 2 ¹0; k � 1ºn and v 2 Q,

� if Ea: Ed
1�k 6 v, then add an edge .q0; Ed; v/ to E.

5. Set T D ¹b0 2 Q j b0 6 bº.
6. Return .Q; I; E;T /.

An important difference between Algorithm 1 and Algorithm 2 is that the latter
generally produces nondeterministic NDD. This may be problematic in some applica-
tions, in particular if automata need to be minimised in order to obtain canonical set
representations.

One can of course always compute a deterministic form of an NDD using the
traditional subset construction method [29]. It is however known that the automata
generated by Algorithm 2 have a special structure that makes it possible to determinise
them much more efficiently. The following result is established in [44].

Theorem 2.4. Let A be a nondeterministic NDD produced by Algorithm 2. This NDD
can be determinised in linear time with respect to its number of states.

A construction that directly generates a deterministic and minimal NDD recognis-
ing the set of solutions of a linear inequation is given in [30]. Finally, notice that the
results of this section can also be applied to the construction of base-k NDD recog-
nising sets of the form ¹Ex 2 Zn j Ea:Ex # bº, with k > 1, Ea 2 Zn, b 2 Z, and
2 ¹<;>;>º. Indeed, in the integer domain, we have Ea:Ex < b () Ea:Ex 6 b � 1,
Ea:Ex > b () � Ea:Ex 6 �b � 1, and Ea:Ex > b () � Ea:Ex 6 �b.

2.3.3. Modular constraints. We now study the construction of NDD recognising
sets of the form X D ¹Ex 2 Zn j Ea:Ex �m bº in a base k > 1, with m > 1,
Ea D .a1; a2; : : : ; an/ 2 Zn, and b 2 Œ0;m � 1�. Recall that y �m z is shorthand
for y � z .modm/.

The construction algorithm is based on similar principles as the one developed for
linear equalities, but the propagation rule (1) needs to be adapted to modular arithmetic.
A state q of the constructed automaton is now labelled by a value ˇ.q/ such that every
vector Ex recognised by a path leading from the initial state to q satisfies Ea:Ex �m ˇ.q/.
As a consequence, it is sufficient to consider the labels that belong to ¹0; 1; : : : ; m � 1º
and that are divisible by g D gcd.m; a1; a2; : : : ; an/.

In order to construct a deterministic NDD recognising X in base k, it is simpler to
apply a forward rather than backward propagation rule. First, one creates m

g
labelled

1198 Bernard Boigelot

states, as well as a separate initial state q0. The state qT whose label satisfiesˇ.qT /�m b
is made accepting.

For each labelled state q and symbol Ed 2 .Ak/n, the destination q0 of the edge
.q; Ed; q0/ must be such that

ˇ.q0/ �m kˇ.q/C Ea: Ed;

which provides a simple rule for creating the edges between labelled states.
It remains to connect the initial state q0 to the other states of the automaton. For a

sign digit Ed 2 ¹0; k � 1ºn, the edge .q0; Ed; q/ recognises the vector Ex D .1=.1 � k// Ed ,
and its destination is thus the state q that satisfies ˇ.q/ �m Ea:Ex.

The algorithm for constructing a deterministic NDD recognising the set

¹Ex 2 Zn j Ea:Ex �m bº

is summarised in Algorithm 3.

Algorithm 3 Algorithm for building a base-k NDD representing Ea:Ex �m b

1. Compute g D gcd.m; a1; : : : ; an/, and create a table Q of states, initialised to ¹ig j i 2
N; ig < mº.

2. Set I D E D ;, and T D ¹b0º, where b0 2 Œ0; m� 1� and b0 �m b.
3. For each v 2 Q and Ed 2 ¹0; 1; : : : ; k � 1ºn:

a. compute v0 2 Œ0; m� 1� such that v0 �m kv C Ea: Ed ;
b. add an edge .v; Ed; v0/ to E.

4. Add a new initial state q0 to Q and I , and, for every Ed 2 ¹0; k � 1ºn,

a. compute v0 2 Œ0; m� 1� such that v0 �m Ea: Ed
1�k ;

b. add an edge .q0; Ed; v0/ to E.
5. Return .Q; I; E;T /.

2.4. Operations on sets. In this section, we study algorithms for performing various
operations on sets represented by NDD. A first problem is to construct an NDD repre-
senting a set X � Zn defined by a Presburger formula. Without loss of generality, we
may assume that the formula defining X is of the form

� D Q1y1Q2y2 � � �Qmym�.x1; : : : ; xn; y1; : : : ; ym/;

where x1; : : : ; xn are the free variables, eachQi is a quantifier equal to either 9 or8, and
� is a quantifier-free Presburger formula. We may furthermore assume that the formula
� does not contain occurrences of the negation operator, since negations can always be
pushed inwards and then applied to atomic subformulas. In other words, � is expressed
as a Boolean combination of linear equalities and linear inequations.

32. Symbolic methods and automata 1199

2.4.1. Quantifier-free Presburger formulas. The algorithms presented in § 2.3.1
and § 2.3.2 can be employed for constructing deterministic NDD A1, A2, . . . , Ap that
recognise the sets of vectors satisfying the atomic subformulas of � , in a given base
k > 1. From Theorem 1.1, an NDD recognising the characteristic set of � , that is, the
set ¹.x1; : : : ; xn; y1; : : : ; ym/ 2 ZnCm j �.x1; : : : ; xn; y1; : : : ; ym/º can be obtained by
combining the automata A1, A2, . . . , Ap by means of a product operation [29]. In other
words, one builds an automaton that simulates the concurrent operation of A1, A2, . . . ,
Ap on a common input word, with an accepting condition derived from the Boolean
structure of � . This construction yields a deterministic NDD.

2.4.2. Quantified Presburger formulas. It remains to show how to handle quantifiers.
We have the following definition.

Definition 2.2. Let Z � Zp be a set, with p > 1, and let i 2 Œ1; p� be a vector
component. The projection of Z over the components different from i , denoted Zj¤i ,
is the set

¹.z1; : : : ; zi�1; ziC1; : : : ; zp/ j 9zi 2 ZW .z1; z2; : : : ; zp/ 2 Zº:
It follows from Definition 2.2 that applying an existential quantifier amounts to

projecting a set: for a Presburger formula '.x1; : : : ; xp/ admitting the characteristic set
Y � Zp, the characteristic set of 9xi '.x1; : : : ; xp/ is equal to Y j¤i , for any i 2 Œ1; p�.

Universal quantifiers can be handled by reducing them to existential ones: the
formula8xi '.x1; : : : ; xp/ is equivalent to:9xi :'.x1; : : : ; xp/, hence its characteristic
set can be computed by first complementing the characteristic set of ', projecting it over
the components different from i , and then again complementing the result.

2.4.3. Projection operation. In order to compute the finite-state representation of sets
defined by quantified Presburger formulas, we thus need an algorithm for applying a
projection operator to a set of integer vectors recognised by an NDD. We now focus on
this operation.

Let X � Zn be a set of vectors recognised by an NDD A in a base k > 1, and let
i 2 Œ1; n� be a vector component. In order to obtain X j¤i , one needs to remove the i-th
component from all the vectors belonging to X . A simple way of obtaining an NDD
recognising X j¤i is thus to remove the i-th component from each symbol labelling an
edge of A. In other word, the operation turns the automaton A D .Q; I;E; T / into
.Q; I;E 0; T /, where E 0 D ¹.q; Ed j¤i ; q0/ j .q; Ed; q0/ 2 Eº. Note that this procedure
generally produces a nondeterministic automaton.

Unfortunately, the resulting automaton is generally not a valid NDD. Indeed, even
though it clearly only accepts encodings of the vectors inX j¤i , it may not accept all such
encodings. Consider, for instance, the set X D ¹.0;�7; 3/º introduced in Example 2.1.
In the base k D 2, this set is encoded by the language .0; 1; 0/C.0; 0; 0/.0; 0; 1/ .0; 1; 1/.
Let us now attempt to compute the encoding of X j¤2. By removing the second
component from each symbol, one obtains the language .0; 0/C.0; 0/.0; 1/.0; 1/. This
language is not equal to the language .0; 0/C.0; 1/.0; 1/ that encodes X j¤2, since the
former does not contain the word .0; 0/.0; 1/.0; 1/, which is a valid encoding of .0; 3/.

1200 Bernard Boigelot

In order to obtain a valid NDD recognising X j¤i , it is thus not enough to project
the language accepted by an NDD recognising X . This operation has to be followed
by a transformation aimed at ensuring that the language contains all the encodings of
the vectors it represents. Recall that two encodings of the same vector only differ in the
number of repetitions of their sign symbol. For each word belonging to the projected
language, one can thus remove the copies of its sign symbol Ed , and replace them by EdC.

On a given automaton, this completion operation can be carried out as follows.
One enumerates the possible sign symbols Ed 2 ¹0; k � 1ºn�1. For each of them, the
states that are reachable from an initial one by reading words from the language EdC are
identified. Then, each of those states is made reachable after reading any word from
EdC, which amounts to creating a new initial state q0 with a self-edge .q0; Ed; q0/, and
edges .q0; Ed; q/ linking this state to every identified state q.

The procedure for applying the projection operator to a set represented by an NDD,
including the completion step, is summarised in Algorithm 4.

Algorithm 4 Algorithm for projecting a set represented by an NDD

1. Let .Q; I;E; T / be an NDD representing X � Zn in a base k > 1, and let i 2 Œ1; n� be the
vector component that is projected away.

2. Compute E 0 D ¹.q; Ed j¤i ; q0/ j .q; Ed; q0/ 2 Eº, and sets Q0 WD Q and I 0 WD I .

3. For every Ed 2 ¹0; k � 1ºn�1,
a. create a new state qI and add it to Q0 and I 0;
b. add an edge .qI ; Ed; qI / to E 0;
c. for every state q of .Q; I; E 0; T / reachable by reading a word in EdC,

add an edge .qI ; Ed; q/ to E 0.
4. Return the NDD .Q0; I 0; E 0; T /.

This algorithm has two drawbacks. First, it outputs a nondeterministic automaton.
The production of nondeterminism is inherent to projection since this operation has
a surjective behaviour, that is, it may map two distinct vectors into a single output
value. As a consequence, the resulting automaton may admit multiple paths reading
the same word. If this automaton needs to be complemented, for instance in order to
apply a universal quantifier, or to be minimised into a canonical form, it will have to be
determinised, which might potentially be a costly operation.

The second drawback is the exponential cost of the transformation ensuring that the
resulting NDD accepts all the encodings of the vectors it recognises. It is shown in [16]
that this cost can be mitigated if one works with serialised encodings of numbers. The
idea is that the NDD undergoing the projection generally does not distinguish all the
individual values of the sign header of encodings. More precisely, two sign headers
u1 and u2 are considered to be equivalent if any state of the automaton that can be
reached after reading ui1, for any i > 0, can also be reached by reading ui2. In such a
case, those two sign headers do not need to be considered separately by the algorithm.

32. Symbolic methods and automata 1201

A detailed projection algorithm based on this principle and applicable to serialised NDD
is presented in [16].

2.4.4. Deciding Presburger arithmetic. Number decision diagrams provide an ele-
gant method for deciding Presburger formulas. Using the construction algorithms pre-
sented in §§ 2.3.1–2.3.3, as well as the Boolean operators provided by Theorem 1.1,
one can build an NDD representing the set of solutions of any quantifier-free Presburger
formula. Then, using the mechanisms discussed in §§ 2.4.1–2.4.3, one can apply quan-
tifiers by computing projections and complement operations. Finally, the formula is
decided by checking whether the resulting automaton accepts an empty language.

Since the complement operation is only applicable to deterministic automata, each
alternation of quantifiers requires one determinisation step, which may incur an expo-
nential blowup. Since a Presburger formula may include an arbitrarily large number of
quantifier alternations, the size of the automaton constructed from a formula may poten-
tially become nonelementary in the size of the formula. It has been shown in [30] that
the automata that are constructed from Presburger formulas acquire a special structure
that curbs this nonelementary blowup. The following result provides an upper bound
on the size of NDD recognising Presburger-definable sets [30].

Theorem 2.5. Let � be a Presburger formula. The size of the minimal deterministic

NDD recognising the set of solutions of � is at most 22
2O.n/

.

The bound expressed by Theorem 2.5 is known to be tight [30]. Note that this
bound only applies to the size of the automata, and not to the cost of their construc-
tion. During the construction of an NDD representing the set of solutions of a Pres-
burger formula, each determinisation step may possibly incur an exponential blowup,
hence the worst-case cost of deciding a Presburger formula by using NDD constructs

is bounded by O.22
22O.n/

/. It is known, however, that Presburger formulas can be de-

cided inO.22
2O.n/

/ time (see [39] and [26]), which shows that the NDD-based decision
procedure for Presburger arithmetic is, from a theoretical point of view, less than opti-
mal. In typical practical applications however, the triple exponential blowup in the size
of the formulas is seldom experienced, and the cost of performing a determinisation and
minimisation step after each projection operation is often acceptable. An experimental
account of this property is given in [44].

2.4.5. Presburger-definable transformations. We now address the problem of ap-
plying a transformation f WZn ! Zn to a set X � Zn recognised by an NDD in some
base k > 1. This operation is essential to applications such as symbolic state-space
exploration of programs, in which sets of integer vectors are used for representing sets
of configurations of the programs under analysis, and the effect of executing a program
instruction is described by a transformation.

If the transformation f can be expressed in Presburger arithmetic, which means
that the set ¹.x1; : : : ; xn; y1; : : : ; ynº 2 Z2n j .y1; : : : ; yn/ D f ..x1; : : : ; xn//º is Pres-
burger-definable, then an NDD recognising f .X/ can easily be computed from one

1202 Bernard Boigelot

recognising X . The first step is to build an NDD recognising the characteristic formula
�.x1; : : : ; xn; y1; : : : ; yn/ of f . Each edge of this automaton is labelled by a vector of
digits .d1; : : : ; dn; d 01; : : : ; d

0
n/ 2 ¹0; 1; : : : ; k�1º2n, which can be split into two vectors

.d1; : : : ; dn/ and .d 01; : : : ; d
0
n/ that respectively correspond to digits in the encodings of

Ex D .x1; : : : ; xn/ and Ey D .y1; : : : ; yn/. The automaton can then be seen as a transducer
that turns encodings of Ex into encodings of Ey. By combining the NDD recognising X
with this transducer, one obtains an automaton that recognises encodings of the vectors
in f .X/.

As in the case of the projection operation discussed in § 2.4.3, the resulting autom-
aton might not accept all the encodings of the vectors it recognises, and thus has to be
completed by the same procedure. Furthermore, this automaton is generally nondeter-
ministic. This was expected, since projection is a particular case of Presburger-definable
operation.

2.4.6. Other operations. Finally, it is worth mentioning that techniques have been de-
veloped for deciding whether an NDD represents a Presburger-definable set of vectors
(see [34]) or a periodic one (see [27], [36], and [18]), as well as for extracting from an
NDD a Presburger formula that defines the set it recognises (see [33] and [34]). Another
operation of interest is the computation of the image of an NDD-represented set by the
iterative closure of an affine transformation, discussed in [9] and [5].

3. Real domain

In this section, we apply finite-state representation systems to the domain Rn, that is,
we study representations suited for sets of real vectors with a fixed dimension n > 0.

3.1. Encoding relation. The positional encoding of integer vectors introduced in § 2.1
extends naturally to the real domain. The first step is to decompose a real number x 2 R

into an integer part xI 2 Z and a fractional part xF 2 Œ0; 1�, such that x D xI C xF .
Note that, for reasons that shall become apparent soon, integers can be decomposed in
two ways, for instance, x D 3 leads to both xI D 3; xF D 0 and xI D 2; xF D 1.

After choosing a numeration base k > 1, an integer part xI is encoded using the
k-ary positional encoding of integers described in § 2.1, negative values being handled
by the base-complement method. One obtains a finite word wI 2 ¹0; k � 1ºA�k, where
Ak D ¹0; 1; : : : ; k � 1º, such that xI 2 Œ�kp�1; kp�1 � 1�, with p D jwI j.

In order to encode a fractional part xF , one moves to infinite words, considering
that the word a�1a�2a�3 � � � 2 A!k encodes the value xF D

P
i<0 aik

i . The encodings
of a number x 2 R then take the form of words xI ? xF , in which xI and xF are a
matching pair of integer and fractional parts of x, and the special symbol ? is used as a
separator.

By this method, real numbers are encoded over the alphabet Ak [¹?º, and their
valid encodings form the language ¹0; k � 1ºA�

k
? A!

k
. Note that the fractional part of

encodings, that is, the suffix following the separator ?, is able to encode all values in

32. Symbolic methods and automata 1203

Œ0; 1�, which is our motivation for allowing xF D 1 in the definition of fractional parts
of numbers.

As in the case of integer encodings, the first symbol of an encoding is its sign digit,
and takes the value 0 for nonnegative integer parts and k � 1 for negative ones. The
sign digit of an encoding can be repeated at will without affecting the encoded value.
Every real number thus admits an infinite number of possible encodings in a given base
k > 1. However, unlike integer encodings, some real numbers admit distinct encodings
that do not only differ by the number of repetitions of their sign digit: numbers that can
be expressed as a fraction y=km, where y;m 2 Z, can be encoded both by words ending
in 0! , and by other ones ending in .k�1/! , which we call dual encodings. In particular,
all integers admit dual encodings.

Example 3.1. Let x D �11
4

and k D 2. The encodings of x form the language
1C01 ? 010! [1C01 ? 001! .

We now extend this encoding scheme to vectors Ex 2 Rn, withn > 0, using the same
principles as in § 2.1. One separately encodes each component of Ex and, in order for the
separator symbol to be read simultaneously in all components, one chooses encodings
that share the same integer-part length. This is always possible, for the sign digit of
an encoding can be repeated at will. Then, one reads simultaneously and repeatedly
one symbol in each component encoding, which yields a word w over the alphabet
.Ak/

n [¹?º that encodes Ex. Note that, since the separator symbol is read at the same
time in all components, it can be denoted by a unique symbol.

As in the case of integer encodings, the first symbol of an encoding is a sign symbol,
and can be repeated without affecting the encoded vector. The language containing the
valid encodings of vectors in base k is ¹0; k � 1ºn..Ak/n/� ? ..Ak/n/! .

Example 3.2. Let Ex D
�
� 11

4
; 2
3

�
and k D 2. The encodings of the components of Ex

form the languagesE
�
� 11
4

�
D 1C01?010![1C01?001! andE

�
2
3

�
D 0C?.10/! . The

encodings of Ex are thus given byE.Ex/ D .1; 0/C.0; 0/.1; 0/?.0; 1/.1; 0/Œ.0; 1/.0; 0/�![
.1; 0/C.0; 0/.1; 0/ ? .0; 1/.0; 0/Œ.1; 1/.1; 0/�!.

If the exponential size of the alphabet with respect to the domain dimension is
problematic, then encodings of real vectors can be serialised in the same way as integer
vectors. A serialised encoding of a vector is simply obtained by replacing each tuple
of digits .a1; a2; : : : ; an/ by the word a1a2 � � �an. The separator symbol ? is left
unchanged. The first n symbols of a serialised vector encoding correspond to its sign
header, and can be freely repeated. The language of valid serialised encodings is given
by ¹uv ? w j u 2 ¹0; k � 1º�; v 2 .Ak/�; w 2 .Ak/! ; juj D n; jvj � 0 .modn/º.

Example 3.3. Let Ex D
�
� 11

4
; 2
3

�
and k D 2. The serialised encodings of Ex form the

language E.Ex/ D .10/C0010 ? 0110.0100/! [.10/C0010 ? 0100.1110/!.

We are now ready to define finite-state representations of sets of real vectors.

1204 Bernard Boigelot

Definition 3.1. Let n > 0 be a dimension, and k > 1 be a numeration base. Let E
denote the (either serialised or unserialised) encoding relation suited for Rn in base
k. Let X � Rn. An infinite-word automaton is a real vector automaton (RVA)
representing X if its accepts the language E.X/.

Example 3.4. Let n D 2 and k D 2. The automaton illustrated in Figure 3 is an RVA
with a Büchi acceptance condition, representing the set

¹.y; z/ 2 R2; y > 0; z > 0; y < zº:

.0; 0/ ?

?

?

.0; 1/ .0; 1/

.0; 0/

.0; 1/

.1; 1/

.0; 0/

.0; 1/

.1; 1/

.0; 0/

.1; 1/

.0; 0/

.1; 1/

.1; 0/

.1; 0/

.0; 0/

.0; 1/

.1; 0/

.1; 1/

.1; 0/

.1; 1/ .1; 1/

?

?

.1; 0/

.1; 0/

.1; 0/

.1; 1/

.1; 0/

.1; 1/

Figure 3. Example of RVA

Notice that Definition 3.1 does not impose a specific form of infinite-word autom-
aton. In [10], RVA are defined as Büchi or, equivalently, Muller automata. This choice
may be problematic for actual applications, since some operations such as complemen-
tation can become costly on such automata [32]. In the next section, we show that a
restricted form of infinite-word automaton that is more easily handled algorithmically
suffices for a large class of applications.

32. Symbolic methods and automata 1205

3.2. Expressive power. The expressive power of unrestricted RVA, that is, of RVA
based on Büchi or Muller automata, in a base k > 1 has been established in [19]. This
result is expressed in terms of a predicate XkWR�N� ¹0; 1; : : : ; k � 1º ! ¹true; falseº
defined as follows.

Definition 3.2. Let x 2 R, y 2 N and d 2 ¹0; 1; : : : ; k�1º. We haveXk.x; y; d/ if and
only if y is a power of k, and x admits an encoding w D ap�1ap�2 � � �a0 ? a�1a�2 � � �
in which the digit ai such that y D ki is equal to d .

Theorem 3.1. Let n > 0 be a dimension and k > 1 be a numeration base. A set
X � Rn is recognisable by an RVA in base k if and only if it can be defined in the
first-order theory hR;Z;C; <;Xki.

The following result characterises the expressiveness of RVA regardless of the
chosen numeration base [12].

Theorem 3.2. Let n > 0 be a dimension. A set X � Rn is recognisable by an RVA in
every base k > 1 if and only if it can be defined in the first-order theory hR;Z;C; <i.

Theorem 3.2 generalises Cobham and Semenov’s theorem to the real domain. The
theory hR;Z;C; <i can be seen as an extension of Presburger arithmetic to mixed inte-
ger and real variables. This theory is quite expressive, since it covers linear constraints
over both integer and real variables, as well as modular constraints over integers, and
is closed under Boolean combinations, projection, Cartesian product of sets,

It is known that the full expressive power of infinite-word automata is not needed
for representing sets that are definable in hR;Z;C; <i, see [15]. We have the following
definition and result.

Definition 3.3. A weak automaton is a Büchi automaton such that every strongly
connected component of its transition graph contains either only accepting or only
nonaccepting states.

Theorem 3.3. Let n > 0 be a dimension and k > 1 be a numeration base. Every set
X � Rn that is definable in the first-order theory hR;Z;C; <i can be recognised by a
weak deterministic RVA in base k.

The advantage of working with weak deterministic automata is that these automata
are much more easily manipulated algorithmically than Büchi or Muller ones. In
particular, complementing a weak deterministic automaton simply amounts to inverting
the accepting status of each strongly connected component in its transition graph,
provided that this graph is complete. These automata can also be efficiently minimised
into a canonical form [35].

3.3. Construction of elementary sets

3.3.1. Linear equalities. Let n > 0 be a dimension, and X D ¹Ex 2 Rn j Ea:Ex D bº
be a linear constraint over real vectors, with Ea D .a1; a2; : : : ; an/ 2 Zn and b 2 Z.
We now adapt the algorithm introduced in § 2.3.1 for constructing a weak deterministic
RVA that recognises X in a base k > 1.

1206 Bernard Boigelot

Recall that an encoding of a vector Ex 2 Rn takes the form wI ? wF , where
wI 2 ..Ak/n/� and wF 2 ..Ak/n/! respectively encode an integer part ExI 2 Zn and a
fractional part ExF 2 Œ0; 1�n of Ex, such that Ex D ExI C ExF . Thus, an RVA that recognises
Ex first reads its integer part, then a separator, and then its fractional part.

Consider a deterministic RVA that recognises the set X . Each Ex 2 X satisfies
Ea:Ex D b, hence after decomposing Ex into an integer part ExI and a fractional part
ExF , we obtain Ea:ExI C Ea:ExF D b. Notice that we have Ea:ExI 2 Z, which implies
Ea:ExF 2 Z. Furthermore, if g D gcd.a1; a2; : : : ; an/ is such that g > 1, then we have
Ea:ExI � 0 .modg/, hence Ea:ExF � b .modg/. Since ExF 2 Œ0; 1�n, the possible values of
Ea:ExF are, moreover, restricted to belong to the interval Œa�; aC�, where a� D

P
ai<0

ai
and aC D

P
ai>0

ai .
Let

Z D
´
¹z 2 Z j a� 6 z 6 aCº if g D 1,

¹z 2 Z j a� 6 z 6 aC; z � b .modg/º if g > 1.

For each Ex 2 X and decomposition ExI C ExF of Ex into an integer and a fractional part,
we have Ea:ExF D z for some z 2 Z, and Ea:ExI D b � z.

This property makes it possible to construct a weak deterministic RVA recognising
X by separately constructing the parts of the automaton that deal with the integer and the
fractional part of encodings. This can be done by enumerating the elements of the setZ.
For each z 2 Z, one constructs an NDD recognising the set ¹ExI 2 Z j Ea:ExI D b � zº.
From the accepting state(s) of this NDD, one creates edges labelled by ? and leading to
a new state. From this state, one builds an automaton accepting the fractional parts wF
of encodings, such that the corresponding vector ExF satisfies Ea:ExF D z.

In order to construct the part of the automaton that deals with the integer part of
encodings, the first idea is to apply the algorithm proposed in § 2.3.1 for each value
of z. This procedure can be improved by constructing a single automaton in which the
states that have identical labels in different runs of the algorithm are merged. In other
words, this amounts to starting the construction described in Algorithm 1 from a set of
states labelled by the elements of Z, instead of from a single state. The application of
the backward propagation rule and the construction of the initial states are unchanged.
This procedure produces a single deterministic automaton, with a unique output state
qz associated to each value z 2 Z, such that the paths leading from the initial state to
qz recognise the vectors ExI 2 Z such that Ea:ExI D b � z.

We now address the construction of the part of the automaton that deals with the
fractional part of encodings. Let z 2 Z. The goal is to construct a weak deterministic
automaton accepting the words wF 2 ..Ak/n/! such that 0 ? wF encodes a vector
ExF 2 Œ0; 1�n satisfying Ea:ExF D z. As in § 2.3.1, we proceed by labelling the states
of the constructed automaton. Labelling the state q with
.q/ means that the paths
originating from q recognise the solutions ExF of Ea:ExF D
.q/. Hence, the construction
starts by labelling the initial state q0 of the automaton with
.q0/ D z.

Given a state q with a known label
.q/, the labels of its successors can be
computed as follows. Consider a symbol Ed 2 .Ak/n and an edge .q; Ed; q0/ to some

32. Symbolic methods and automata 1207

state q0. By definition of the labelling, every path leaving q0 recognises a solution Ex0F
of Ea:Ex0F D
.q0/. Every such path can be turned into a path leaving q by prefixing it

with the edge .q; Ed; q0/, which results in a path reading ExF D
�
1
k

�
.Ex0F C Ed/. This yields

Ea:Ex0F C Ea: Ed D kEa:ExF , and hence

.q0/ D k
.q/ � Ea: Ed: (2)

The forward propagation rule (2) can be used for recursively generating the state
labels starting from the initial state, but an additional constraint has to be imposed in
order to force termination. In the fractional part of the automaton, each path recognises
a vector that belongs to Œ0; 1�n; hence each state q must have a label that satisfies

.q/ 2 Œa�; aC�. If the application of (2) yields a label that violates this constraint,
then the corresponding state can be safely discarded.

This procedure produces a deterministic automaton in which each infinite path is
accepting. All its states can thus be marked as being accepting, which results in a
weak automaton. Finally, note that, similarly to the case of integer parts, the automata
corresponding to the different values of z do not have to be built separately, and can
share states with identical labels.

The algorithm for constructing a weak deterministic RVA recognising the set

¹Ex 2 Rn j Ea:Ex D bº
is summarised in Algorithm 5.

The size of the RVA constructed by this algorithm can be estimated by the same
technique as in § 2.3.1. For the integer part of the automaton, we obtain that the only
labels that are considered belong to the union of intervals

Œb � aC; b � a�� [
[̀

iD1

hb � aC
ki

� .k � 1/aC;
b � a�
ki

� .k � 1/a�
i

�
[̀

iD0

h b
ki
� kaC;

b

ki
� ka�

i
;

where ` D blogk max.jb � aCj; jb � a�j; 1/c C 1.
In the fractional part of the automaton, the labels of the states necessarily belong

to the interval Œa�; aC�.
In summary, the RVA produced by Algorithm 5 contains at most

.`C 1/..k.aC � a�/C 1//
states in its integer part and at most aC � a�C 1 states in its fractional part, in addition
to a unique initial state. We thus have the following result.

Theorem 3.4. Let n>0 be a dimension, k>1 be a numeration base, andXD¹Ex2Rn j
Ea:Ex D bº be a linear constraint, with Ea D .a1; : : : ; an/ 2 Zn and b 2 Z. There exists a
weak deterministic RVA recognising X in base k with O

�
k.log jbj/Pn

iD1 jai j
�

states.

1208 Bernard Boigelot

Algorithm 5 Algorithm for building a base-k RVA representing Ea:Ex D b

1. Compute the set Z D ¹z 2 Z j a� 6 z 6 aCº, where a� D
P
ai<0

ai and aC D
P
ai>0

ai .
2. Set g D gcd.a1; a2; : : : ; an/. If g > 1, replace Z by Z \ ¹z 2 Z j z � b .modg/º.
3. Create a table QI of states and a list L of labels of “active” states, both initialised to
¹b � z j z 2 Zº.

4. Set I D E D ;.
5. While L ¤ ;, remove a value v from L, and for every Ed 2 ¹0; 1; : : : ; k � 1ºn,

� if v0 D v�Ea: Ed
k

is an integer multiple of g, then
a. if v0 62 QI , then add v0 to QI and L;
b. add an edge .v0; Ed; v/ to E.

6. Add a new initial state q0 to QI and I , and, for every Ed 2 ¹0; k � 1ºn,

� if v D Ea: Ed
1�k is such that v 2 QI , then add an edge .q0; Ed; v/ to E.

7. Create a table QF of states, considered distinct from those in QI , and initialised to Z.
8. For each z 2 Z, add an edge .qI ; ?; qF /, where qI 2 QI , qF 2 QF , and qI C qF D b.
9. Set L D T D Z.

10. While L ¤ ;, remove a value v from L, and, for every Ed 2 ¹0; 1; : : : ; k � 1ºn,
� if v0 D kv � Ea: Ed is such that a� 6 v 6 aC, then

a. if v0 62 QF , then add v0 to QF , L, and T ;
b. add an edge .v; Ed; v0/ to E.

11. Compute the union Q ofQI andQF , considering that states that have the same label in both
sets are distinct.

12. Return .Q; I; E;T /.

Example 3.5. An RVA representing the set ¹.x1; x2/ 2 R j 2x1 � x2 D �4º in base 2
is illustrated in Figure 4. The state labels used in the integer and fractional parts of this
automaton correspond to those used by Algorithm 5.

As in § 2.3.1, Algorithm 5 can be adapted for generating automata reading serialised
encodings of vectors.

3.3.2. Linear inequations. The algorithm developed in § 3.3.1 can easily be adapted
for constructing an RVA that recognises the set of solutions X D ¹Ex 2 Rn j Ea:Ex 6 bº
of a linear inequality, with Ea D .a1; a2; : : : ; an/ 2 Zn and b 2 Z.

The decomposition of a vector Ex 2 Rn into an integer part ExI 2 Zn and a fractional
part ExF 2 Œ0; 1�n, such that Ex D ExI C ExF is unchanged. During the construction of
the integer part of the automaton, one simply uses the technique proposed in § 2.3.2:
when the propagation rule (1) yields a label ˇ.q0/ that is not an integer multiple of
g D gcd.a1; : : : ; an/ for some state q0, this value is rounded down to gbˇ.q0/=gc instead
of being discarded.

A similar reasoning can be applied to the fractional part of the automaton. Consider
a state q for which the propagation rule (2) gives a value
.q0/ for some successor q0 of
q such that
.q0/ 62 Œa�; aC�, with a� D

P
ai<0

ai and aC D
P
ai>0

ai . If
.q0/ > aC,
then the constraint Ea:ExF 6
.q0/ is satisfied by all ExF 2 Œ0; 1�n, and hence the value

32. Symbolic methods and automata 1209

of
.q0/ can be replaced by aC. On the other hand, if
.q0/ < a�, then the constraint
Ea:ExF 6
.q0/ is unsatisfiable in Œ0; 1�n, and the state q0 does not have to be created.

�2 �4

0 �1 �3 �5

�6

1

2

�1

0

.0; 0/ .1; 1/

.1; 0/

.0; 0/

.0; 1/

.0; 0/

.1; 1/

.1; 0/

.0; 1/

.1; 0/

.0; 0/

.1; 0/

.0; 1/

.1; 1/ ?

?

?

?

.0; 0/

.1; 0/

.0; 1/

.1; 1/

.0; 0/ .1; 1/

.1; 0/

.1; 1/

.1; 0/

.0; 1/

.0; 0/

Figure 4. RVA recognising 2x1 � x2 D �4

An algorithm formalising this construction is given in Algorithm 6. The size of
the generated RVA is similar to that produced by Algorithm 5; however this automaton
is generally nondeterministic. Since the nondeterminism is only located in the integer
part of the automaton, Theorem 2.4 can be applied, and a deterministic RVA can be
obtained in linear time. The constructions proposed in [30] can also be used for directly
generating a deterministic automaton dealing with the integer part of encodings.

Finally, notice that constraints of the form ¹Ex 2 Rn j Ea:Ex # bº, with k > 1, Ea 2 Zn,
b 2 Z, and # 2 ¹<;>;>º, can be expressed as Boolean combinations of the constraints
handled by Algorithm 5 and Algorithm 6. We indeed have

Ea:Ex < b () Ea:Ex 6 b ^ :.Ea:Ex D b/;
Ea:Ex > b () � Ea:Ex 6 �b ^ :.Ea:Ex D b/;
Ea:Ex > b () � Ea:Ex 6 �b:

3.4. Operations on sets. RVA lead to an elegant decision procedure for the first-order
theory hR;Z;C; <i. By a similar approach as in § 2.4.1 and § 2.4.2, one decides a
formula by building RVA corresponding to its atomic subformulas, combining them
by means of Boolean operators, and applying quantifiers by performing projection
and complementation operations. RVA can be projected in the same way as NDD,
by removing the vector component that is projected away from each edge label, and
completing the resulting automaton so as to make it accept all the encodings of the
vectors it recognises. This procedure can be carried out by a slight adaptation of
Algorithm 4, in which step 2 skips the edges labelled by the separator symbol ?.

1210 Bernard Boigelot

Algorithm 6 Algorithm for building a base-k RVA representing Ea:Ex 6 b

1. Compute the set Z D ¹z 2 Z j a� 6 z 6 aCº, where a� D
P
ai<0

ai and aC D
P
ai>0

ai .
2. Set g D gcd.a1; a2; : : : ; an/. If g > 1, replace Z by Z \ ¹z 2 Z j z � b .modg/º.
3. Create a table QI of states and a list L of labels of “active” states, both initialised to
¹b � z j z 2 Zº.

4. Set I D E D ;.
5. While L ¤ ;, remove a value v from L, and for every Ed 2 ¹0; 1; : : : ; k � 1ºn,

a. compute v0 D v�Ea: Ed
k

and v00 D g
�
v0
g

˘
;

b. if v00 62 QI , then add v00 to QI and L;
c. add an edge .v00; Ed; v/ to E.

6. Add a new initial state q0 to QI and I , and for every Ed 2 ¹0; k � 1ºn,

� if v D Ea: Ed
1�k is such that v 2 QI , then add an edge .q0; Ed; v/ to E.

7. Create a table QF of states, considered distinct from those in QI , and initialised to Z.
8. For each z 2 Z, add an edge .qI ; ?; qF /, where qI 2 QI , qF 2 QF , and qI C qF D b.
9. Set L D T D Z.

10. While L ¤ ;, remove a value v from L, and for every Ed 2 ¹0; 1; : : : ; k � 1ºn,
a. compute v0 D kv � Ea: Ed ;
b. if v0 > aC, then set v0 D aC;
c. if v0 > a�, then

i. if v0 62 QF , then add v0 to QF , L, and T ;
ii. add an edge .v; Ed; v0/ to E.

11. Compute the union Q ofQI andQF , considering that states that have the same label in both
sets are distinct.

12. Return .Q; I; E;T /.

However, compared to the case of integer vectors, working in the real domain
presents an additional difficulty. If one decides to use weak deterministic automata in
order to benefit from an efficient complementation algorithm, then applying a projection
operator becomes problematic, because it produces a nondeterministic automaton, and
the class of weak automata is not closed under determinisation.

A solution to this problem is provided in [15]. In Definition 3.3, we have introduced
weak automata as a specific form of Büchi automata. Interestingly, those automata can
also be seen as a particular case of co-Büchi automata, that is, infinite-word automata in
which a path is accepting if and only if it does not visit infinitely many accepting states.
Actually, a weak automaton can be turned into a co-Büchi one by simply inverting the
accepting status of each of its states.

The advantage of working with co-Büchi automata is that those can easily be
determinised, using a variant of the subset construction developed for finite-word
automata, see [37] and [31]. Thus, from a nondeterministic weak automaton, one can
construct a deterministic co-Büchi automaton that accepts the same language.

In general, this deterministic co-Büchi automaton cannot be turned into a weak
deterministic one. It is however shown in [15] that, if the considered automaton is an

32. Symbolic methods and automata 1211

RVA that recognises a set definable in hR;Z;C; <i, then it necessarily has a special
structure that makes this conversion feasible. This special structure is formalised by the
following definition.

Definition 3.4. A Büchi or co-Büchi automaton is inherently weak if no strongly
connected component in its transition graph contains both an accepting cycle (that is, a
cycle visiting at least one accepting state), and a nonaccepting one.

Clearly, an automaton that is inherently weak can easily be turned into a weak one,
by making all the states accepting in strongly connected components that contain at
least one accepting cycle. This operation preserves determinism. The following result
is established in [15].

Theorem 3.5. Let n > 0 be a dimension. Every deterministic RVA recognising a set
X � Rn that is definable in hR;Z;C; <i is inherently weak.

If a projection operator is applied to a setX definable in hR;Z;C; <i, then the result
belongs to the same theory. From Theorem 3.5, it follows that a weak deterministic au-
tomaton recognising the projected set can be constructed from an RVA recognising X .

In summary, in order to decide a formula expressed in the first-order theory
hR;Z;C; <i, one builds a weak deterministic RVA recognising its set of solutions, and
then checks whether this RVA accepts a nonempty language. Note that weak deter-
ministic RVA can be minimised into a canonical form [35]; performing a minimisation
operation after each manipulation step actually helps to keep the size of the constructed
RVA under control.

4. Conclusions and perspectives

Finite-state automata provide elegant and powerful data structures for representing
sets of values symbolically. The main advantages of finite-state representations are
that they are naturally closed under Boolean operators, and that they admit an easily
computable canonical form, which can make the representation of a set independent of
its construction. In applications such as symbolic state-space exploration of programs,
in which sets of reachable configuration frequently have a simple structure but are
computed as the result of lengthy sequences of operations, this property is essential.

In the particular cases of the integer and real domains, using a positional encod-
ing leads to an expressive power that is well matched to applications relying on the
manipulation of linear constraints and discrete periodicities, see [43], [7], [14], [4], [6],
and [38]. Finite-state representations are not a panacea; however, since the size of NDD
and RVA recognising linear constraints can grow linearly with the magnitude of their
coefficients, the representations can become unnecessarily large. A possible solution
to this problem, consisting of representing some internal structures of automata by al-
gebraic means, is being investigated, see [11] and [17]. Another problem is that the
presence of dual encodings is also a source of inefficiency. For instance, the minimal
weak deterministic RVA recognising ¹.0; 0; : : : ; 0/ 2 Rnº has O.2n/ states, since 0

1212 Bernard Boigelot

admits dual encodings. A method that successfully tackles this problem is described
in [25].

Finally, it is worth mentioning that finite-state representation systems have also
been applied to other domains, such as the representation of sets of stack or FIFO
queue contents (see [20], [13], [21], and [1]), or of configurations of parameterised
programs [2]. The regular model checking approach to program verification relies on
finite-state representations for representing the sets of configurations that need to be
handled [3].

Acknowledgement. The work of this chapter has been partially supported by the
Interuniversity Attraction Poles program MoVES of the Belgian Federal Science Policy
Office, and by the grant 2.4530.02 of the Belgian Fund for Scientific Research (F.R.S.-
FNRS).

References

[1] P. A. Abdulla, A. Collomb-Annichini, A. Bouajjani, and B. Jonsson, Using forward reacha-
bility analysis for verification of lossy channel systems. Form. Methods Syst. Des. 25 (2004),
no. 1, 39–65. Zbl 1073.68675 q.v. 1212

[2] P. A. Abdulla and B. Jonsson, Model checking of systems with many identical timed pro-
cesses. Theoret. Comput. Sci. 290 (2003), no. 1, 241–264. MR 1935692 Zbl 1018.68046
q.v. 1212

[3] P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena, A survey of regular model check-
ing. In CONCUR 2004–concurrency theory (P. Gardner and N. Yoshida, eds.). Proceedings
of the 15th International Conference, held in London, UK, August 31–September 3, 2004.
Lecture Notes in Computer Science, 3170. Springer, Berlin, 2004, 35–48. Zbl 1099.68055
q.v. 1212

[4] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci, FAST: Fast acceleration of symbolic tran-
sition systems. In Proceedings of the 15 th International Conference on Computer Aided
Verification (W. A. H. Jr. and F. Somenzi, eds.). Lecture Notes in Computer Science, 2725.
Springer, Berlin, 2003, 118–121. q.v. 1211

[5] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen, Flat acceleration in symbolic model
checking. In Automated technology for verification and analysis (D. A. Peled and Y. Tsay,
eds.). Proceedings of the Third International Symposium, ATVA 2005, held in Taipei,
Taiwan, October 4–7, 2005. Lecture Notes in Computer Science, 3707. Springer, Berlin,
2005, 474–488. Zbl 1170.68507 q.v. 1202

[6] B. Becker, C. Dax, J. Eisinger, and F. Klaedtke, LIRA: Handling constraints of linear arith-
metics over the integers and the reals. In Proceedings of the 19 th International Conference
on Computer Aided Verification (W. Damm and H. Hermanns, eds.) Lecture Notes in Com-
puter Science, 4590. Springer, Berlin, 2007, 307–310. q.v. 1211

[7] M. Biehl, N. Klarlund, and T. Rauhe, Mona: Decidable arithmetic in practice. In Proceed-
ings of the 4 th International Symposium on Formal Techniques in Real-Time and Fault-
Tolerant Systems (B. Jonsson and J. Parrow, eds.). Lecture Notes in Computer Science,
1135. Springer, Berlin, 1996, 459–462. q.v. 1211

http://zbmath.org/?q=an:1073.68675
http://www.ams.org/mathscinet-getitem?mr=1935692
http://zbmath.org/?q=an:1018.68046
http://zbmath.org/?q=an:1099.68055
http://zbmath.org/?q=an:1170.68507

32. Symbolic methods and automata 1213

[8] B. Boigelot, Symbolic methods for exploring infinite state spaces. Ph.D. thesis. Université
de Liège, Liège, 1998. q.v. 1189

[9] B. Boigelot, On iterating linear transformations over recognizable sets of integers. Theoret.
Comput. Sci. 309 (2003), no. 1–3, 413–468. MR 2016536 Zbl 1070.68062 q.v. 1202

[10] B. Boigelot, L. Bronne, and S. Rassart, An improved reachability analysis method for
strongly linear hybrid systems. In Proceedings of the 9 th International Conference on Com-
puter Aided Verification (O. Grumberg, ed.). Lecture Notes in Computer Science, 1254.
Springer, Berlin, 1997, 167–177. q.v. 1204

[11] B. Boigelot, J. Brusten, and J.-F. Degbomont, Implicit real vector automata. In Proceed-
ings of the 12 th International Workshop on Verification of Infinite-State Systems. (Y. Chen
and A. Rezine, eds.). INFINITY 2010. Electron. Proc. Theor. Comput. Sci. 39 (2010),
63–76. q.v. 1211

[12] B. Boigelot, J. Brusten, and J. Leroux, A generalization of Semenov’s theorem to automata
over real numbers. In Automated deduction—CADE-22 (R. A. Schmidt, ed.). Proceedings
of the 22nd International Conference held at McGill University, Montreal, QC, August 2–7,
2009. Lecture Notes in Computer Science, 5663. Lecture Notes in Artificial Intelligence.
Springer, Berlin, 2009, 469–484. MR 2550354 Zbl 1250.03061 q.v. 1205

[13] B. Boigelot and P. Godefroid, Symbolic verification of communication protocols with infi-
nite state spaces using QDDs. Form. Methods Syst. Des. 14 (1999), no. 3, 237–255.
q.v. 1212

[14] B. Boigelot and F. Herbreteau, The power of hybrid acceleration. In Computer aided ver-
ification (T. Ball and R. B. Jones, eds.). Proceedings of the 18th International Conference,
CAV 2006, held in Seattle, WA, August 17–20, 2006. Lecture Notes in Computer Science,
4144. Springer, Berlin, 2006, 438–451. q.v. 1211

[15] B. Boigelot, S. Jodogne, and P. Wolper, An effective decision procedure for linear arith-
metic over the integers and reals. ACM Trans. Comput. Log. 6 (2005), no. 3, 614–633.
MR 2147298 Zbl 1407.03052 q.v. 1205, 1210, 1211

[16] B. Boigelot and L. Latour, Counting the solutions of Presburger equations without enumer-
ating them. Theoret. Comput. Sci. 313 (2004), no. 1, 17–29. MR 2055954 Zbl 1069.68063
q.v. 1200, 1201

[17] B. Boigelot and I. Mainz, Efficient symbolic representation of convex polyhedra in high-
dimensional spaces. In Automated Technology for Verification and Analysis (Sh. K. Lahiri
and C. Wang, eds.). Proceedings of the 16th International Symposium, ATVA 2018, held
in Los Angeles, CA, October 7-10, 2018. Lecture Notes in Computer Science, 11138.
Springer, Berlin, 2018, 284–299. q.v. 1211

[18] B. Boigelot, I. Mainz, V. Marsault, and M. Rigo, An efficient algorithm to decide pe-
riodicity of b-recognisable sets using MSDF convention. In 44 th International Collo-
quium on Automata, Languages, and Programming (I. Chatzigiannakis, P. Indyk, F. Kuhn,
and A. Muscholl, eds.). Proceedings of the colloquium (ICALP 2017) held in Warsaw,
July 10–14, 2017. LIPIcs. Leibniz International Proceedings in Informatics, 80. Schloss
Dagstuhl. Leibniz-Zentrum für Informatik, Wadern, 2017, Art. no. 118, 14 pp. MR 3685858
Zbl 07089069 q.v. 1202

[19] B. Boigelot, S. Rassart, and P. Wolper, On the expressiveness of real and integer arith-
metic automata. In Automata, languages and programming (K. G. Larsen, S. Skyum, and
G. Winskel, eds.). Proceedings of the 25th International Colloquium, ICALP ’98, held in
Aalborg, Denmark, July 13–17, 1998. Lecture Notes in Computer Science, 1443. Springer,
Berlin, 1998, 152–163. Zbl 0910.68149 q.v. 1195, 1205

http://www.ams.org/mathscinet-getitem?mr=2016536
http://zbmath.org/?q=an:1070.68062
http://www.ams.org/mathscinet-getitem?mr=2550354
http://zbmath.org/?q=an:1250.03061
http://www.ams.org/mathscinet-getitem?mr=2147298
http://zbmath.org/?q=an:1407.03052
http://www.ams.org/mathscinet-getitem?mr=2055954
http://zbmath.org/?q=an:1069.68063
http://www.ams.org/mathscinet-getitem?mr=3685858
http://zbmath.org/?q=an:07089069
http://zbmath.org/?q=an:0910.68149

1214 Bernard Boigelot

[20] A. Bouajjani, J. Esparza, A. Finkel, O. Maler, P. Rossmanith, B. Willems, and P. Wolper,
An efficient automata approach to some problems on context-free grammars. Inform.
Process. Lett. 74 (2000), no. 5–6, 221–227. MR 1766207 Zbl 1137.68418 q.v. 1212

[21] A. Bouajjani and P. Habermehl, Symbolic reachability analysis of FIFO-channel systems
with nonregular sets of configurations. Theoret. Comput. Sci. 221 (1999), no. 1–2, 211–250.
MR 1700826 Zbl 0933.68089 q.v. 1212

[22] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire, Logic and p-recognizable sets of
integers. Bull. Belg. Math. Soc. Simon Stevin 1 (1994), no. 2, 191–238. Journées Montoises
(Mons, 1992). Corrigendum, ibid. 1 (1994), no. 4, 577. MR 1318968 MR 1315840 (corri-
gendum) Zbl 0804.11024 Zbl 0812.11019 (corrigendum) q.v. 1193

[23] J. R. Büchi, On a decision method in restricted second order arithmetic. In Logic, Method-
ology and Philosophy of Science (E. Nagel, P. Suppes, and A. Tarski, eds.). Proceedings
of the 1960 International Congress. Stanford University Press, Stanford, CA, 1962, 1–11.
MR 0183636 Zbl 0147.25103 q.v. 1193

[24] A. Cobham, On the base-dependence of sets of numbers recognizable by finite automata.
Math. Systems Theory 3 (1969), 186–192. MR 0250789 Zbl 0179.02501 q.v. 1193

[25] J. Eisinger and F. Klaedtke, Don’t care words with an application to the automata-based
approach for real addition. Form. Methods Syst. Des. 33 (2008), no. 1–3, 85–115. q.v. 1212

[26] J. Ferrante and C. Rackoff, A decision procedure for the first order theory of real addition
with order. SIAM J. Comput. 4 (1975), 69–76. MR 0389572 Zbl 0294.02022 q.v. 1201

[27] J. Honkala, A decision method for the recognizability of sets defined by number systems.
RAIRO Inform. Théor. Appl. 20 (1986), no. 4, 395–403. MR 0880843 Zbl 0639.68074
q.v. 1202

[28] J. E. Hopcroft, An n logn algorithm for minimizing states in a finite automaton. In Theory
of machines and computations (Z. Kohavi and A. Paz, eds.). Proceedings of an International
Symposium on the Theory of Machines and Computations held at Technion in Haifa,
Israel, on August 16–19, 1971. Academic Press, New York and London, 1971, 189–196.
MR 0403320 Zbl 0293.94022 q.v. 1190

[29] J. E. Hopcroft and J. D. Ullman, Introduction to automata theory, languages, and computa-
tion. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Read-
ing, MA, 1979. MR 0645539 Zbl 0426.68001 q.v. 1190, 1197, 1199

[30] F. Klaedtke, Bounds on the automata size for Presburger arithmetic. ACM Trans. Comput.
Log. 9 (2008), no. 2, Art. 11, 34 pp. MR 2398573 Zbl 1407.03053 q.v. 1197, 1201, 1209

[31] O. Kupferman and M. Y. Vardi, Weak alternating automata are not that weak. ACM Trans.
Comput. Log. 2 (2001), no. 3, 408–429. MR 1859532 Zbl 1171.68551 q.v. 1210

[32] O. Kupferman and M. Y. Vardi, Complementation constructions for nondeterministic au-
tomata on infinite words. In Tools and algorithms for the construction and analysis of sys-
tems (K. Jensen and A. Podelski, eds.). Proceedings of the 11th international conference,
TACAS 2005. Held as part of the joint European conference on theory and practice of soft-
ware, ETAPS 2005, Edinburgh, UK, April 4–8, 2005. Lecture Notes in Computer Science,
3440. Springer, Berlin, 2004, 206–221. Zbl 1087.68050 q.v. 1190, 1204

[33] L. Latour, From automata to formulas: convex integer polyhedra. In Proceedings of the
19 th Annual IEEE Symposium on Logic in Computer Science, 2004. Held in Turku, Finland,
July 17, 2004. IEEE Press, Los Alamitos, CA, 2004, 120–129. IEEEXplore 1319606
q.v. 1202

[34] J. Leroux, A polynomial time Presburger criterion and synthesis for number decision di-
agrams. In 20 th Annual IEEE Symposium on Logic in Computer Science. LICS ’05.

http://www.ams.org/mathscinet-getitem?mr=1766207
http://zbmath.org/?q=an:1137.68418
http://www.ams.org/mathscinet-getitem?mr=1700826
http://zbmath.org/?q=an:0933.68089
http://www.ams.org/mathscinet-getitem?mr=1318968
http://www.ams.org/mathscinet-getitem?mr=1315840
http://zbmath.org/?q=an:0804.11024
http://zbmath.org/?q=an:0812.11019
http://www.ams.org/mathscinet-getitem?mr=0183636
http://zbmath.org/?q=an:0147.25103
http://www.ams.org/mathscinet-getitem?mr=0250789
http://zbmath.org/?q=an:0179.02501
http://www.ams.org/mathscinet-getitem?mr=0389572
http://zbmath.org/?q=an:0294.02022
http://www.ams.org/mathscinet-getitem?mr=0880843
http://zbmath.org/?q=an:0639.68074
http://www.ams.org/mathscinet-getitem?mr=0403320
http://zbmath.org/?q=an:0293.94022
http://www.ams.org/mathscinet-getitem?mr=0645539
http://zbmath.org/?q=an:0426.68001
http://www.ams.org/mathscinet-getitem?mr=2398573
http://zbmath.org/?q=an:1407.03053
http://www.ams.org/mathscinet-getitem?mr=1859532
http://zbmath.org/?q=an:1171.68551
http://zbmath.org/?q=an:1087.68050
https://ieeexplore.ieee.org/document/1319606

32. Symbolic methods and automata 1215

Held in Chicago, IL, June 26–29, 2005. IEEE Press, Los Alamitos, CA, 2005, 147–156.
IEEEXplore 1509219 q.v. 1202

[35] C. Löding, Efficient minimization of deterministic weak !�automata. Inform. Process.
Lett. 79 (2001), no. 3, 105–109. MR 1836123 Zbl 1032.68103 q.v. 1190, 1205, 1211

[36] V. Marsault and J. Sakarovitch, Ultimate periodicity of b-recognisable sets: a quasilinear
procedure. In Developments in language theory (M. Béal and O. Carton, eds.). Proceedings
of the 17th International Conference (DLT 2013) held at Université Paris-Est, Marne-la-
Vallée, June 18–21, 2013. Lecture Notes in Computer Science, 7907. Springer, Berlin,
2013, 362–373. MR 3097342 Zbl 1381.68128 q.v. 1202

[37] S. Miyano and T. Hayashi, Alternating finite automata on !-words. Theoret. Comput.
Sci. 32 (1984), no. 3, 321–330. Zbl 0761350 MR 0544.68042 q.v. 1210

[38] H. Mousavi, Automatic theorem proving in Walnut. Preprint, 2016. arXiv:1603.06017
[cs.FL] q.v. 1211

[39] D. C. Oppen, A 22
2pn

upper bound on the complexity of Presburger arithmetic. J. Comput.
System Sci. 16 (1978), no. 3, 323–332. MR 0478750 Zbl 0381.03021 q.v. 1201

[40] M. Presburger, Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. C. R. Congrès Math.
Pays slaves 1930, 92–101, supplement ibid., 395. JFM 56.0825.04 q.v. 1193

[41] M. Presburger and D. Jacquette, On the completeness of a certain system of arithmetic of
whole numbers in which addition occurs as the only operation. Hist. Philos. Logic 12 (1991),
no. 2, 225–233. Translated from the German and with commentaries by D. Jacquette.
MR 1111343 Zbl 0741.03027 q.v. 1193

[42] A. L. Semenov, Presburgerness of predicates regular in two number systems. Siberian
J. Math. 18 (1977), 289–299. Zbl 0411.03054 q.v. 1193

[43] P. Wolper and B. Boigelot, An automata-theoretic approach to Presburger arithmetic con-
straints. In Proceedings of the 2nd International Static Analysis Symposium (A. Mycroft,
ed.). Lecture Notes in Computer Science, 983. Springer, Berlin, 1995, 21–32. q.v. 1211

[44] P. Wolper and B. Boigelot, On the construction of automata from linear arithmetic con-
straints. In Tools and algorithms for the construction and analysis of systems (S. Graf and
M. I. Schwartzbach, eds.). Proceedings of the 6th International Conference, TACAS 2000.
Held as part of the joint European conferences on theory and practice of software, ETAPS
2000, Berlin, Germany, March 25–April 2, 2000. Lecture Notes in Computer Science, 1785.
Springer, Berlin, 2000, 1–19. Zbl 0964.68082 q.v. 1197, 1201

https://ieeexplore.ieee.org/document/1509219
http://www.ams.org/mathscinet-getitem?mr=1836123
http://zbmath.org/?q=an:1032.68103
http://www.ams.org/mathscinet-getitem?mr=3097342
http://zbmath.org/?q=an:1381.68128
http://zbmath.org/?q=an:0761350
http://www.ams.org/mathscinet-getitem?mr=0544.68042
http://arxiv.org/abs/1603.06017
http://www.ams.org/mathscinet-getitem?mr=0478750
http://zbmath.org/?q=an:0381.03021
http://zbmath.org/?q=an:56.0825.04
http://www.ams.org/mathscinet-getitem?mr=1111343
http://zbmath.org/?q=an:0741.03027
http://zbmath.org/?q=an:0411.03054
http://zbmath.org/?q=an:0964.68082

