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In the past 20 years, a new concept has slowly emerged and expanded to
various domains of marine biology research: the holobiont. A holobiont describes the
consortium formed by a eukaryotic host and its associated microorganisms including
bacteria, archaea, protists, microalgae, fungi, and viruses. From coral reefs to the
deep-sea, symbiotic relationships and host–microbiome interactions are omnipresent
and central to the health of marine ecosystems. Studying marine organisms under
the light of the holobiont is a new paradigm that impacts many aspects of marine
sciences. This approach is an innovative way of understanding the complex functioning
of marine organisms, their evolution, their ecological roles within their ecosystems, and
their adaptation to face environmental changes. This review offers a broad insight into
key concepts of holobiont studies and into the current knowledge of marine model
holobionts. Firstly, the history of the holobiont concept and the expansion of its use
from evolutionary sciences to other fields of marine biology will be discussed. Then,
the ecology and physiology of marine holobionts will be investigated through the
examples of corals and sponges. We will discuss the impacts of environmental change
on organisms at the holobiont level and how microbiomes contribute to the resilience
and/or vulnerability of their host in the face of environmental stressors. Finally, we will
conclude with the development of new technologies, holistic approaches, and future
prospects for conservation biology surrounding marine holobionts.

Keywords: marine holobionts, symbiosis, microorganisms, host-microbes interactions, environmental stress

THE MARINE HOLOBIONT CONCEPT

A Short History of a New Concept
The first time the term “symbiosis” (see Box 1 for full definition of this term and others
used in this review article) was used in a biological context dates from 1878 when the
German botanist and mycologist, Heinrich Anton de Bary, defined the symbiosis as “the
living together of differently named organisms” in its lecture entitled “Die Erscheinung
der Symbiose” (“The phenomenon of symbiosis”) (De Bary, 1879; Oulhen et al., 2016).
In the following decades, the idea that different organisms establish partnerships and live
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BOX 1 | Glossary.
Adaptation sensu lato: Describes any transgenerational process that increases the fitness of the holobiont phenotype. It includes: physiological transgenerational
acclimation, host evolution (often involving epigenetic changes), heritable microbial community changes, and microbial evolution (Webster and Reusch, 2017).

Adaptation sensu stricto: The equivalent of evolutionary adaptation. Describes the hereditary alteration or adjustment in the mean phenotype of a population due
to natural selection and involving genetic change in the form of differing allele frequencies between generations.

Assisted evolution: Describes the range of practices involving active human intervention to accelerate the rate of naturally occurring evolutionary processes. The
aim is to enhance certain attributes to help species adapt to changing environmental conditions faster than they would via natural selection.

Beneficial microorganisms: Microorganisms that improve the fitness of others, and, in the context of holobionts, of the host they live in association with.

Codiversification: Simultaneous diversification (evolution) of two species lineages.

Coevolution: Reciprocal evolutionary change between interacting species that exert selection pressures on each other.

Coral probiotic hypothesis: Hypothesis stating that a dynamic relationship exists between symbiotic microorganisms and environmental conditions which prompts
the selection of the most advantageous coral holobiont. Corals adapt to changing environmental conditions more rapidly (days to weeks) by changing their microbial
partners than through mutation and selections (years) (Reshef et al., 2006).

Core microbiome: Members of a host’s microbial community that are highly prevalent across all individuals of the same species and whose functions are potentially
vital for holobiont functioning.

Disease: Any impairment to cells or tissues of an organism that results in its dysfunction.

Dysbiosis: Changes in microbiome composition frequently correlated with disease states, without inferring a causative link between the two.

Ecogenomics: The study of the ecology of microorganisms through the analysis of genomes and metagenomes in the aim to understand ecosystem functioning
through the microbial lens.

Ecosystem engineers: Organisms that create, maintain and/or modify habitats with impacts on the availability of resources to other species by being the drivers of
physical and chemical changes to the environment. Corals and sponges are excellent examples of marine ecosystem engineers in environments such as coral reefs
or deep-sea sponge grounds.

Endosymbionts: Organisms that entertain a symbiotic relationship within a host, either inside the cells (endocytosymbionts, intracellular symbionts, or endocellular
symbionts) or attached to the surface of cells (extracellular endosymbionts).

Holobiont: Eukaryotic host with its endocellular and extracellular microbiome including bacteria, archaea, protists, fungi, and viruses.

Hologenome: The sum of the genetic information of the host and its associated symbiotic microorganisms.

Hologenome theory of evolution: Theory of evolution that considers the holobiont (animal or plant with all of its associated microorganisms) as a unit of
selection in evolution.

Horizontal gene transfer (HGT): The transfer of genetic material between non-mating species, often a process leading to genetic differentiation, adaptive
evolution, and favoring coevolution.

Horizontal transmission: Acquisition of microorganisms (symbiotic, commensal or parasitic) from the surrounding environment or from a nearby host.

Microbiome: Community of microorganisms found at a specific place and/or a specific time.

Metaorganism: Eukaryotic host and associated microorganisms for which the function is known or implied at a moment in time and in a given environment.

Nested ecosystem: A biological community of interacting organisms and their physical environment nested within a larger one. Each ecosystem is an integrated
whole as well as a part of larger systems. Changes within an ecosystem can affect the properties of the ecosystems nested within it and the larger ecosystems in
which it exists.

Phylosymbiosis: The retention of the phylogenetic signal of a host within its associated microbial community through the correlation between host phylogenetic
relatedness and multivariate community similarities of the associated microbiome.

Marine probiotics: Marine bacterial strains that favor the growth of beneficial microbes within microbiomes and that restrict the proliferation of decay- or
disease-causing pathogens.

Sponge loop: Recycling of the dissolved organic matter (DOM) produced by corals and algae into the food web through sponge activity.

Symbiosis: Persistent and intimate relationship between two or more dissimilar organisms from which at least one of them benefits.

Variable microbiome: Members of a host’s microbial community that are present only in some individuals of a same species or that vary in their relative abundance.

Vertical transmission: Direct transmission of microorganisms (symbiotic, commensal, or parasitic) from parent to offspring.

in association slowly implemented itself in scientific literature.
In the mid-20th century, theoretical biologist Adolf Meyer-
Abich developed the “theory of holobiosis,” notably arguing
that it was necessary to focus on describing the processes of
assemblage of independent organisms to explain evolutionary
change (Baedke et al., 2020). This evolutionary theory was the
precursor to the modern notion of “holobiont” introduced in
Margulis and Fester (1991). Deriving the concept from their
work on endosymbiosis, they described a holobiont as “a simple

biological entity involving a host and a single inherited symbiont”
(Margulis and Fester, 1991; Simon et al., 2019). Today, the notion
of holobiont has been extended to define a host and its associated
communities of microorganisms, and the concept is widely used
in various biological research fields, from invertebrate and plant
holobionts to humans (Vandenkoornhuyse et al., 2015; Kundu
et al., 2017; Simon et al., 2019). A quick search through scientific
publication databases shows how popular the term “holobiont”
has become in the past 10 years, with a steady exponential
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FIGURE 1 | Occurrence of the term “holobiont” in the title, abstract, and/or keywords of scientific publications from 1990 to December 2020 (N = 1209). Data
retrieved from the curated citation and abstract database Scopus.

increase since the beginning of the 2000s (Figure 1). This marked
rise in holobiont studies goes in pair with the blossoming of
high throughput sequencing (HTS) technologies during the past
20 years. Indeed, since the completion of the human genome
project in 2003, sequencing technologies have experienced
extraordinary progress with the introduction of next generation
sequencing (NGS), leading to a significantly decreased cost per
megabase and reduced analysis time. Today, NGS technologies
have become a routine part of biological research (Goodwin
et al., 2016). Microbiome studies investigating the composition,
functions and dynamics of complex microbial communities
inhabiting diverse environments have multiplied, and with
this, microbiome analysis methods and standards have rapidly
advanced (Knight et al., 2018). The ocean microbiome has been
widely studied for several decades and the emergence of holistic -
omics approaches became central to this research field to establish
the link between microbial diversity and microbial functions in
the ocean (Moran, 2015; Coutinho et al., 2018). Similarly, HTS
and -omics methodologies are increasingly employed to study
the structure and functions of complex associations between
microbial communities and their marine host. Between 2016
and 2018, the Tara Pacific expedition collected metadata and
applied state-of-the-art technologies in very high throughput
genetic sequencing and molecular analysis to uncover the
microbial, chemical and functional diversity associated with coral
holobionts (Planes et al., 2019). Recent advances in biological
technologies have allowed the development of a novel strategy
in the study of marine ecosystems and organisms: the holobiont
approach. Since the first idea of symbiosis and theories of
holobiosis in the 19th and 20th centuries, we finally have the

means to investigate these complex relationships and work in a
novel framework.

Key Concepts in Holobiont Studies
The holobiont concept emerged from an evolutionary framework
but it was progressively used in different contexts such as
physiological and host–microbiome interactions, ecological and
biotic interactions in complex ecosystems. Some of the key
concepts in global holobiont studies emerged from the study of
coral holobionts. In 2006, the observation that corals could adapt
to environmental stressors such as elevated temperatures and
infections by specific pathogens led to the emergence of the coral
probiotic hypothesis. This hypothesis states that the dynamic
relationship existing between symbiotic microorganisms and
environmental conditions leads to the selection of the most
advantageous coral holobiont (Reshef et al., 2006). Indeed, the
ability of corals to modulate their microbial partners allows them
to adapt more promptly to changing environmental conditions
than by mutation and selection.

Extrapolating from the coral probiotic hypothesis, Ilana
Zilber-Rosenberg and Eugene Rosenberg introduced the concept
of “hologenome” for all invertebrates, higher animals and plants,
and proposed a higher order of postulation: the hologenome
theory of evolution (Rosenberg et al., 2007; Zilber-Rosenberg and
Rosenberg, 2008). The hologenome is simply defined as the sum
of the genetic information of the host and its associated symbiotic
microorganisms. The hologenome theory of evolution posits that
the holobiont with its hologenome, acting in consortium, should
be considered as the unit of natural selection in evolution, and
that the microbial symbionts have an important role in the
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adaptation and evolution of the holobiont through their relatively
rapid variations in diversity (Rosenberg et al., 2007; Zilber-
Rosenberg and Rosenberg, 2008). However, the hologenome
concept needs to be used with care. Some opponents to this
theory argue that the hologenome is based on overly restrictive
assumptions as it requires high partner fidelity for the entire
host–microbiome if it is to evolve as a unit; and where it
does not, there is the potential for complex interactions and
effects leading to both mutualistic and antagonistic (fitness
conflict) evolution (Douglas and Werren, 2016). Others warn
against interpreting evolution solely through the lens of the
hologenome as intimate and highly specific relationships between
host and microbiome do not necessarily entail coevolution
(Moran and Sloan, 2015). Indeed, it is vital to distinguish
between the concepts of coevolution, codiversification, and
phylosymbiosis when talking about evolutionary processes
at the holobiont level. Coevolution occurs when interacting
species affect each other’s evolution through the process of
natural selection. This can occur between two species (pairwise
coevolution), a suite of species (diffuse coevolution) and can
involve gene-for-gene correspondence among species (matching
gene coevolution) (Langerhans, 2008). Codiversification is
the simultaneous diversification (evolution) of two species
lineages. However, codiversification does not necessarily imply
coevolution (Moran and Sloan, 2015). Phylosymbiosis is a
fairly recent concept introduced to designate the phenomenon
of microbial community relationships that recapitulate the
phylogeny of their host (Brucker and Bordenstein, 2013; Lim
and Bordenstein, 2020). It is a pattern observed at one moment
in time and space and does not assume a stable evolutionary
association or congruent ancestral splits between a host and its
associated microbiome (O’Brien et al., 2020).

Ten years after the original proposal of the hologenome theory
of evolution, the authors refined their position concerning the
principles of evolution and the available data supporting them.
They conclude that considerable evidence exists to support the
hypothesis that the holobiont, with its hologenome, is a level
of selection in evolution as it interacts, replicates, manifests
adaptation and, benefits from the selection process (Rosenberg
and Zilber-Rosenberg, 2018; Roughgarden et al., 2018). Rapid
genomic changes in the microbiome allow holobionts to
constantly adapt to changing environmental conditions. This
would provide the time necessary for the host genome to
adapt and evolve (Rosenberg and Zilber-Rosenberg, 2018).
Holobionts and hologenomes are undeniable multipartite entities
resulting from ecological, evolutionary and genetic processes at
different levels; they do not only refer to a simple process but
constitute a wider structure for host biology in the light of the
microbiome (Theis et al., 2016). The concept of the holobiont
constitutes an important reminder that there is a reciprocal
impact of each partners’ growth and survival on the evolution
of both the host and associated microbial symbionts. However,
attention must be kept to the behavior of individual species
that comprise communities while considering the significance
of their interactions for the ecology and evolution of both the
host and microbial partners (Koskella and Bergelson, 2020).
More importantly, working within the holobiont-hologenome

framework is acknowledging the innate complexity of biological
systems and adopting a holistic approach to understand the
evolution, physiology, and ecology of organisms.

Holobionts in Marine Systems and
Nested Ecosystems
Microbiome research has revolutionized the way scientists reflect
on the roles of microorganisms in ecosystem functions in a
variety of environments, from plants in terrestrial ecosystems
(Vandenkoornhuyse et al., 2015), to animal and human guts
(Kundu et al., 2017), to the diverse marine ecosystems. Holobiont
research in the marine environment is particularly pertinent since
microorganisms dominate the ocean in biomass, diversity and
metabolic activity. They are major drivers in biogeochemical
cycles, they colonize every ecosystems and living organisms, thus
considerably influencing their functioning and health (Arrigo,
2005; DeLong, 2009; Moran, 2015). The physical nature of water
allows for greater physicochemical connectivity between habitats
and the organisms they host, resulting in flexible ecosystems
where dispersal barriers are reduced and microbial diversity shifts
are facilitated compared to terrestrial environments (Kinlan and
Gaines, 2003; Dittami et al., 2020).

In addition to the roles marine microorganisms fulfill in
geochemical and nutrient cycling at an ecosystem-wide scale,
they support the health of a wide array of benthic and
pelagic organisms at a cellular and molecular scale through
complex associations and symbiotic interactions (Rosenberg
et al., 2007; Webster and Taylor, 2012; Egan et al., 2013; Leitão
et al., 2020; Vanwonterghem and Webster, 2020). The recent
uncovering of the astounding marine microbial diversity is
moving marine biology research into the study of the interactions
between the host and a multi-member microbiome. Holobiont
research in the marine environment involves multiple levels
of investigation, from understanding the intricate mechanisms
of communication and cycling of nutrients between species
from different kingdoms, predicting the consequences for the
health of the holobiont, to the repercussions at the ecosystem
levels. Holobionts are complex units within which the actions
and interactions of their components affect the overall state
of the holobiont. In this way, holobionts can be considered
as functioning ecosystems that are nested within successively
larger systems where they interact at a wider scale and influence
neighboring holobionts (Pita et al., 2018; Vanwonterghem and
Webster, 2020). Pita et al. (2018), in their review on the
sponge holobiont, introduced the concept of nested ecosystem
which was further exploited by Vanwonterghem and Webster
(2020) in the context of coral reefs communities. This concept
implies that the microbiome functions at the organismal level
modulate holobiont performance which, in turn, influences its
interactions with the surrounding environment. In this way,
functional constituents of the microbiome impact ecosystem
health and functioning through cascading effects involving
primary production, nutrient cycling, disease regulation, and
community structure (Pita et al., 2018; Vanwonterghem and
Webster, 2020). In a similar train of thoughts, the concept
of “eco-holobiont” was recently proposed to describe the
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system of interactions between biotic (plants and animals) and
environmental (e.g., water, soil, sediment, air) microbiomes
which constitute a microbial loop that modulates the functioning
of an assembly of holobionts within an ecosystem (Singh et al.,
2020). Some advocate for the use of the term “metaorganism”
to describe the holobiont and the associated microorganisms
whose functions are recognized at a moment in time and
in a specific environment. In contrast, the term holobiont
is then simply used to describe the host and its entire
associated microbial diversity, while keeping in mind that
not all microorganisms are functionally important and that
associated microorganisms are not involved in all host processes
(Jaspers et al., 2019).

Studying holobionts in marine ecosystems is inherently
complex due to the multilevel nature of the interactions between
organisms from different kingdoms, in a spatiotemporal context
that is highly sensitive to environmental perturbations. However,
adopting the holobiont concept in marine biological research is
of the utmost importance. Indeed, some of the most important
ecosystem engineers such as reef-building corals, sponges, deep-
sea mussels or hydrothermal vent tubeworms rely heavily on their
microbial partners to sustain primary productivity, nutrient flows
and create the structural habitats and resources supporting their
respective ecosystem (Wilkins et al., 2019). Holobiont research is
particularly gaining popularity in coastal marine environments
that provide numerous ecosystem services. Trevathan-Tackett
et al. (2019) identified key marine microbiome research themes to
be urgently addressed to gain a deeper understanding of coastal
ecosystem dynamics and functions framed under the holobiont
concept. The themes include linking microbiome dynamics with
spatiotemporal parameters, linking community structure with
microbial function and the impacts on the resilience and health
of the holobiont, understanding host-microbiome reciprocal
interactions and tripartite interaction with the environment, and
reflecting on how we can manage microbiomes in the coastal
environment and the ways marine holobionts are relevant to
human health and well-being (Trevathan-Tackett et al., 2019).

Holobiont Models in Marine
Environments
To best characterize “functional holobionts,” otherwise referred
to as metaorganisms, some authors prone the study of a limited
set of model organisms for which clear methodologies can be
established and whose associated microbes can be manipulated
in a less complex environment (Jaspers et al., 2019). Such model
organisms include early diverging non-bilaterian metazoans
such as Hydra (freshwater model), Nematostella, and Exaiptasia
(Jaspers et al., 2019) or other organisms that can be cultivated
ex situ aposymbiotically for fully controlled experiments such
as the upside-down jellyfish Cassiopea, the bobtail squid
Euprymna scolopes, the flatworm Symsagittifera roscoffensis,
the unicellular alga Ostreococcus or the green macroalga Ulva
(Dittami et al., 2020). The freshwater Hydra model forms a
tripartite partnership with symbiotic algae, Chlorella, and stably
associated microorganisms which can be studied in a controlled
environment to decipher the nature of the interactions, the

interkingdom communication tools such as the Toll-Like
Receptors (TLR) or the dynamics of the holobiont following
environmental perturbations (Bosch, 2012; Bathia and Bosch,
2020). The renowned Vibrio-squid model has allowed to closely
investigate bacterial-animal interactions from the establishment
of the symbiosis and its maintenance to the impacts on the
holobiont development (McFall-Ngai, 2014). The Nematostella
anemone, due to its easy maintenance in the lab and sequenced
genome, has been developed as a model for metazoan evolution
and development and its associated microbiome has been
characterized using holobiont metatranscriptomics (Har et al.,
2015). S. roscoffensis, whose entire life-cycle can be completed in
the lab, serves as a marine model system for photosymbiosis and
for the study of physiological processes supported by the tripartite
association between the host, microalgae and microbiome
such as the production of dimethylsulfoniopropionate (DMSP)
(Arboleda et al., 2018). Cassiopea sp. and Exaiptasia sp. are the
equivalent of “laboratory rats” for cnidarian research, especially
the cnidarian-zooxanthellae symbiosis (Lampert, 2016; Rädecker
et al., 2018) and, more recently, as models with the potential
of providing a basic functional understanding of cnidarian
microbiomes (Herrera et al., 2017).

In parallel to studying model organisms to resolve
evolutionary and functional questions, the study of non-
model ecologically important species remains essential to
provide valuable insights into ecosystem functioning and
resilience of key species. There is indisputable evidence that
host-microbiome interactions not only impact the holobiont but
also underpin the health of some of the most threatened marine
ecosystems (Wilkins et al., 2019). Ideally, the knowledge gained
from the study of model species and model systems needs to be
substantiated in ecologically relevant target species in their native
environment (Jaspers et al., 2019). Holobionts are engineers
that, through the functional roles provided by their associated
microorganisms, have adapted to extreme environments, like
mollusks, annelids, and arthropods in hydrothermal vents,
invertebrates in intertidal zones or corals in oligotrophic seas
(Bang et al., 2018). In coastal environments, some of the key
holobionts are corals, sponges, macroalgae, seagrasses, or
live in mangroves, and saltmarshes (Trevathan-Tackett et al.,
2019). These engineer metaorganisms are at the center of
attention when it comes to unraveling the driving forces of
ecosystem vulnerability and resilience in the face of increased
environmental stressors.

To this date, close to half of the scientific literature utilizing the
keyword “holobiont” is centered around corals (47%) (Figure 2).
Indeed, the term was first employed in a marine biology context
for the description of the animal-dinoflagellate symbiosis in coral
reef environments (Rowan, 1998). Shortly after, the concept of
“coral holobionts” emerged and quickly spread to describe the
coral animal, its algal endosymbionts, and associated microbial
community (Little et al., 2004; Wegley et al., 2004). Today,
the importance of coral-microbiome interactions is widely
recognized and integrated in coral research. In the past decade,
the coral holobiont has been the central topic of numerous review
and perspective papers (see Supplementary Materials for a list
of key holobiont papers) discussing the nature of coral–microbes
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FIGURE 2 | Prevalence of certain marine topics appearing in combination with the term holobiont in the title, abstract, and/or keywords of scientific publications
from 1990 to February 2021 (N = 1269). “All” represents the entirety of publications containing the term “holobiont” (100%). The other bars indicate the percentage
of publications within this list that contain terms related to a certain marine topic (cnidarians, corals, sponges, etc.). It is important to note that the different topics
may overlap in several publications. For example, many publications treat of the topics of coral and sponge holobionts together. Data retrieved from the curated
citation and abstract database Scopus on the date 10/03/2021.

relationships, the diseases associated with the break-down of
those interactions, the implications for the ecosystems, and the
stakes surrounding coral holobionts in a context of global change
(e.g., Rosenberg et al., 2007; Bourne et al., 2009, 2016; Thompson
et al., 2014; Peixoto et al., 2017; Torda et al., 2017; Mera and
Bourne, 2018; Van Oppen and Blackall, 2019).

Slowly emerging beside the phenomenon of the coral
holobiont is the sponge holobiont. Over four decades ago,
the early works of Vacelet and Donadey and of Wilkinson
first introduced the notion that marine sponges hosted rich
microbial communities, and had been doing so over evolutionary
significant times (Vacelet and Donadey, 1977; Wilkinson, 1978,
1984). Marine sponges and their incredible microbiome have
been recently revisited under the light of the sponge holobiont
(Webster and Taylor, 2012; Pita et al., 2018; Kiran et al.,
2018; Li et al., 2020). Sponges are vital members of benthic
communities across various ecosystems from shallow-water
reefs to deep-sea sponge grounds where they act as keystone
species by providing a habitat and refuge for other species,
thus constituting “biodiversity hotspots” (Bell, 2008; Hogg et al.,
2010; Schöttner et al., 2013; Bell et al., 2015). Sponges have
been estimated to host up to 40% of their volume worth
of associated microorganisms (Webster and Taylor, 2012) and
there is increasing evidence that their microbiome underlines
key physiological and ecological processes such as nutrient
cycling, benthic-pelagic coupling (Bell, 2008), or production of

bioactive and antimicrobial compounds which, in addition to
their ecological value (Thakur and Singh, 2016), have potential
biomedical applications (Sunil Kumar, 2016).

Macroalgae are also key organisms for which microbiome
studies are emerging. Indeed, macroalgae are both ecologically
and economically important, and their functioning within
ecosystems or in an industrial setting is highly dependent on
the relationships they maintain with their associated microbiome
(Egan et al., 2013; Singh and Reddy, 2016). Several studies have
started to investigate the structure and function of seaweed
microbial communities and their interplay with environmental
change or pathogens (Case et al., 2011; Lachnit et al., 2011;
Campbell et al., 2011, 2015; Fernandes et al., 2012; Marzinelli
et al., 2015; Singh and Reddy, 2016; Florez et al., 2019).

ECOLOGY AND PHYSIOLOGY OF
HOLOBIONT ORGANISMS

Diversity of Marine Microbes
Microbes in the Global Ocean
The ocean is the largest environment on our planet and hosts the
greatest, most dilute microbial system covering the majority of
the Earth’s surface and extending to an average depth of 3600 m
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down to the seafloor (Moran, 2015). Although invisible to the
naked eye, marine microbes constitute the majority of the ocean’s
biomass with their number reaching into the billions per liter
of seawater (Whitman et al., 1998; Moran, 2015). This teeming
microscopic world is at the base of marine ecosystem functioning
and constitutes a crucial link in trophic food chains through the
microbial loop (Pomeroy et al., 2007). Indeed, marine microbes
are capable of utilizing molecular-size resources such as drifting
proteins, lipids, carbohydrates, and nucleic acids which, in part,
are the remains of zooplankton excretion or the cellular innards
of lysed plankton cells. In this way, they are reintroducing energy
into the food web when higher trophic level species consume
them (Pomeroy et al., 2007).

Estimating the diversity, distribution and functional roles
of microbes in the global ocean has presented many challenges
and brought about debates. Estimates of the total marine
microbial diversity range between 106 and 109 bacterial
taxa (Pedrós-Alió, 2006) but many questions regarding
their specific abundance in various ecosystems, distribution,
functional roles, or responses to environmental changes remain
unanswered (Salazar and Sunagawa, 2017). The development
of sequencing technologies and meta-omics approaches has
become central in the quest of linking microbial functions
to the microbial community (Moran, 2015). The Tara Ocean
expedition running between 2009 and 2013 gathered an
international team of scientists who aimed at exploring
the morphological, genetic, and functional biodiversity of
plankton organisms in the global ocean employing state-
of-the-arts technologies such as flow cytometers to monitor
viruses, bacteria and small protists, confocal and electron
microscopy for 2D/3D imaging of microbial cells as well as
HTS for detailed deep phylogenetic rDNA/rRNA tag data and
metagenomic/metatranscriptomic functional profiles (Karsenti
et al., 2011). This global scale project yielded tremendous
amounts of data from dozens of locations around the globe
allowing to generate an ocean microbial reference gene catalog
with over 40 million non-redundant, mostly novel genomic
sequences from viruses, prokaryotes, and picoeukaryotes
(Sunagawa et al., 2015). Some of the most abundant taxa across
the global ocean belong to members of the Proteobacteria such as
the ubiquitous clades SAR11 (Alphaproteobacteria) and SAR86
(Gammaproteobacteria), the Cyanobacteria, the Deferribacteres,
and Thaumarchaeota.

Variations in abundance and richness follow a vertical
stratification according to changes in light, temperature, and
nutrients. Interestingly, the taxonomic and functional richness
of mesopelagic and deep-sea microbes is higher than shallow
counterparts, whereas cell abundance and potential maximum
growth rates decreased with depth (Sunagawa et al., 2015). This
pattern is in part explained by the scarcity (mesophotic zone)
or total absence of light (aphotic zone) which stimulates the
diversification in the utilization of a broad range of alternate
energy sources (Ferreira et al., 2014). The deep ocean, and
particularly benthic sediments, host microbial engineers who are
the driving force of biogeochemical fluxes in the ocean, and, by
extension, the Earth’s biogeochemical cycles (Falkowski et al.,
2008; Orcutt et al., 2011). Investigating marine microbe diversity

and functions across different deep-sea ecosystems is key in order
to best predict the impact of climate change and anthropogenic
stressors on marine ecosystems. Indeed, for a long time, it was
assumed that the deep sea constituted a stable habitat where
perturbations were buffered, but recent studies demonstrated that
deep-sea microbes are sensitive to changes in temperature, water
column oxygenation, pH, availability of trophic resources and
food quality with probable scaled-up consequences on marine
ecosystems functioning (Corinaldesi, 2015; Danovaro et al., 2016;
Sweetman et al., 2017).

Marine microorganisms follow a stratified vertical structure
according to physicochemical parameters. The upper ocean
presents warmer temperatures and well-mixed surface water,
whereas colder temperatures under the thermocline slow the
mixing. This results in a limited nutrient supply in the upper
thermocline, with nutrients being consumed by phytoplankton
for their growth. The upper ocean is depleted in nutrients but
is rich in particulate organic carbon accumulating from the
phytoplankton. Phytoplankton grow best at a depth, called the
“deep chlorophyll maximum” (DCM), where the combination of
light and nutrients is optimal (Pierella Karlusich et al., 2020).
Eukaryotic phytoplankton such as dinoflagellates and diatoms,
and photosynthetic bacteria such as the cyanobacterial genera
Prochlorococcus and Synechococcus, constitute the “Earth’s lungs”
as they produce significant amounts of oxygen and contribute to
almost half of the global net primary production (Field et al.,
1998; Partensky et al., 1999). Primary production is highest in
coastal and upwelling regions or seasonally at temperate and
subpolar latitudes. General trends in phytoplankton community
structure show that picocyanobacteria (Prochlorococcus and
Synechococcus) dominate in warm, nutrient-poor waters in
tropical and subtropical regions, whereas nano- (haptophytes,
chlorophytes, pelagophytes, diatoms) and microphytoplankton
(diatoms, dinoflagellates) are found year-round in temperate
regions and at higher latitudes or upwelling regions respectively
(Pierella Karlusich et al., 2020). Much remains to be uncovered
regarding the contribution of marine microbes to the functioning
of sea-surface ecosystems. However, studies conducting large
scale data gathering and meta-analyses are starting to shed light
on the spatial patterns and dynamics of microbial communities
across large ecosystems such as the Great Barrier Reef (GBR)
(Frade et al., 2020). These kinds of studies fall within ecogenomics
which is the field of research that aims to understand ecosystem
functioning in light of the ecology of microorganisms through
the analysis of genomes and metagenomes (Roux et al., 2016;
Coutinho et al., 2018).

Archaea and viruses have been discarded from marine
research for a long time. However, they have recently been
increasingly studied in marine ecosystems, revealing their
ubiquity and vital functions in the global ocean. Marine
archaea comprise four distinct groups with diverse distributions,
physiological and ecological roles. The thaumarchaea are
ubiquitous chemolithotrophic organisms that carry a vital
role in ammonia oxidation, hence contributing largely to
nitrogen and carbon cycling. MGII archaea are heterotrophic
and photoheterotrophic organisms whose metabolic diversity
remains largely uncharacterized. MGIII archaea, although found
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throughout the water column, are particularly abundant in
the deep-sea where they assumedly perform vital roles in
biogeochemical cycling. However, very little is known about
the distributions and roles of MGIII and MGIV archaea
(Santoro et al., 2019). Viruses are the most abundant biological
entities in the ocean and their influence on marine processes
and biogeochemical cycles is not to be underestimated (Roux
et al., 2016). Indeed, marine viruses are remarkably diverse
and can carry a variety of auxiliary metabolic genes encoding
vital ecological functions (Breitbart, 2012). Viruses have been
both viewed as pathogens potentially causing diseases and as
benefactors for the holobiont as they notably exert population
control on bacterial and archaeal communities (Sweet and
Bythell, 2017). Phages represent the majority of marine viruses.
They influence their bacterial hosts in various ways (cell
lysis, DNA transfer, manipulation of host metabolism and
gene expression, selection for resistance and introduction of
novel genetic material), which have radical consequences for
marine bacterial assemblages and global biogeochemical cycles
(Breitbart, 2012).

Marine Microbiomes
Aside from nutrient cycling and primary productivity in
the ocean, marine microbes carry vital functions in host
physiology. Microbiomes of several important benthic species
have been studied to understand their community structure and
function and how they relate to the surrounding environment’s
microbial pool (Barott et al., 2011; Ainsworth et al., 2015;
Campbell et al., 2015; Jensen et al., 2019; Ziegler et al.,
2019; Marchioro et al., 2020). Holobionts present a variable
microbiome which differs across distinct individuals of the
same species, and a core microbiome which is defined as
a group of persistent microbes across all individuals of the
same species, for which we can infer a potentially vital role
in the holobiont (Hernandez-Agreda et al., 2017; Pita et al.,
2018). Studying corals from different locations and different
depths allowed to characterize a coral core microbiome which
was defined by only several hundred distinct phylotypes in
contrast with the much larger global microbial diversity observed
in individual corals (Ainsworth et al., 2015). Interestingly,
some bacterial phylotypes, identified within the endosymbiotic
community, were universal to the core microbiome of coral
species that were located in widely separated geographical
regions (Ainsworth et al., 2015). Similar results were obtained
from sponge holobionts which present species-specific and
stable microbiomes across large geographical regions as well
as across environmental gradients such as season, depth, and
habitat (Pita et al., 2018). Such patterns are also expected
in other marine holobionts, such as a kelp species who
demonstrated a core microbiome which was influenced by
the host health condition rather than its geographical location
(Marzinelli et al., 2015). Core microbiomes have also been
investigated in scyphozoan jellyfish and some evidence points
to the existence of a microbial core-community which is
present through different life stages of a same species,
highlighting the intrinsic quality of a microbiome for those

organisms in their development and evolutionary success
(Lee et al., 2018).

Host-associated microbiomes tend to present a clear distinct
community composition from the surrounding environment
(Barott et al., 2011; Jensen et al., 2019; Marchioro et al.,
2020). It was demonstrated that deep-sea corals host highly
specific bacterial communities with the most abundant OTUs
(operational taxonomic units) only accounting for <0.1% of
the surrounding seawater bacterial community (Jensen et al.,
2019). Some associated microorganisms called “specialists” are
highly specific to certain species with which they maintain a
stable partnership, while others, referred to as “generalists,” are
abundant across several species and display weaker associations
(Jensen et al., 2019). A recent collaborative initiative, the
Global Sponge Microbiome Project, aimed at characterizing the
microbial diversity in sponges: the most abundant sponge-
associated microbes belong to the phyla Proteobacteria
(particularly Gamma- and Alphaproteobacteria), Actinobacteria,
Chloroflexi, Nitrospirae, Cyanobacteria, Thaumarchaea, and
the candidate phylum Poribacteria which is almost exclusively
found within sponges (Thomas et al., 2016; Moitinho-Silva
et al., 2017; Pita et al., 2018; Orlić, 2019). In corals, the
dominant microbial phyla reside within the Proteobacteria
(mainly Gamma- and Alphaproteobacteria), Actinobacteria, and
Cyanobacteria (Bourne et al., 2016). A recently characterized
gammaproteobacterial genus, Endozoicomonas, has attracted
attention since the genus (or Endozoicomonas-related bacteria)
was reported from various marine invertebrates including corals,
sponges, polychetes, ascidians, and mollusks in much higher
abundances than in the surrounding sediment or seawater
(Shiu and Tang, 2019). In corals, Endozoicomonas dominate the
endodermal tissue microbial communities and appear to sustain
an intimate and vital relationship with the coral host (Bayer
et al., 2013; Neave et al., 2017; Pollock et al., 2018; Marchioro
et al., 2020). Indeed, significant decreases of Endozoicomonas
abundances in the coral microbiome were observed in diseased
corals or following environmental stress (Bourne et al., 2008;
Webster et al., 2016). Algae and macroalgae’s microbiomes
remain largely understudied but constitute nonetheless a
promising field of study. Assessing the microbial diversity of reef
algae showed that their microbiome was seemingly more diverse
than corals’ microbiomes with a higher abundance of autotrophic
bacteria involved in N cycling (Barott et al., 2011). Macroalgae-
associated biofilms might provide a niche habitat for microbial
indicators of environmental fluctuations such as Firmicutes and
Bacteroidota whose ratio increase is indicative of raised nutrient
levels and the onset of microbialization in coral reefs (Glasl et al.,
2019, 2020). Studying the microbial diversity of certain marine
species also reveals crucial links between holobionts, the health
of an ecosystem and the threats applied to it. An example is
the identification of scyphozoan species-specific microbiomes
which, in the case of jellyfish blooms, might influence microbially
mediated element cycling in a species-specific manner and act
as vectors for pathogens such as Vibrio, Mycoplasma, Ralstonia,
Tenacibaculum, Nautella, and Acinetobacter that are harmful to
marine organisms and human health (Peng et al., 2021).
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Establishment of the Symbiosis,
Coevolution, and Adaptive Potential
Transmission, Establishment, and Maintenance
Hosts acquire their symbionts and microbiota either from
the surrounding environment through horizontal transfer
or from their parents through vertical transfer. Some mixed
modes involving both horizontal and vertical transmission
or intermediate modes also exist (Bright and Bulgheresi,
2010). Irrespective of the mode of transmission, acquiring
a microbiome, establishing and maintaining a microbial
community necessitate sophisticated mechanisms involving the
host immune system. The transmission of symbionts, whether
it is vertically or horizontally, is stressful for both the symbionts
and the host. The symbionts have to endure extreme transition in
physicochemical conditions (pH, nutrients, trace metals, osmotic
and oxidative stress) linked to the characteristics of the niche
habitat but also the host developmental hormones and diet.
The host’s immune system is greatly challenged as it needs to
recognize, accept and incorporate foreign cells. These processes
are accompanied by gene expression transitions, chemical
and physical alterations to accommodate the newly acquired
symbiont (Apprill, 2020).

Some symbionts reside within host cells (endocytosymbionts).
Their location is the testimony to a high level of co-dependency
and suggests a highly elaborate cellular machinery involved in
the maintenance of the relationship (Rosset et al., 2021). Vertical
transmission of symbionts requires that the hosts integrate the
microbial partners in their reproductive developmental biology
through host-mediated mechanisms but also through bacterial
molecular mechanisms such as the T3SS (type III secretion
system) proteins which allow the bacteria to escape phagocytosis
by host immune cells (Dale et al., 2002; Bright and Bulgheresi,
2010). While strict vertical transmission takes place before the
progeny leaves the mother, horizontally transmitted symbionts
are typically acquired after their dispersal from the parent or
after a period of dormancy associated with major developmental
morphological modifications (Bright and Bulgheresi, 2010).
Horizontal transmission is often mediated through a mucous
interface and requires complex recognition mechanisms, most
often involving sugar-lectin interactions and cellular surface
structures, to select specific symbionts from the environment and
avoid pathogen invasions (Bright and Bulgheresi, 2010).

Much remains to be deciphered regarding the specific
mechanisms involved in the transmission, establishment and
maintenance processes. It is also unclear how prevalent
vertical transmission is compared to horizontal transmission
for many marine organisms. The coevolutionary theory states
that beneficial microbial symbionts are most likely vertically
transmitted and that the prevalence of vertical transmission
is correlated with the level of dependency of the host on
its microbial symbionts (Björk et al., 2019). This has indeed
been demonstrated for several symbiotic associations, many of
them involving terrestrial insects (Baumann, 2005), some others
identified in aquatic organisms such as Hydra (Bathia and Bosch,
2020), in sponges such as Svenzea zeai (Lee et al., 2009) or
bivalves containing sulfur-oxidizing chemoautotrophic bacteria
(Krueger et al., 1996; Stewart and Cavanaugh, 2006). However,

some argue that this does not apply to symbiosis involving
a large and diverse microbial community where the vertical
transmission of hundreds to thousands of species concomitant
with the preservation of their interaction structures and functions
is highly improbable (Björk et al., 2019). A recent meta-analysis
revealed that, while vertical transmission of microbial symbionts
in terrestrial environments seems to prevail, it is remarkably
less prevalent in aquatic environments (Russell, 2019). This
could arise from the simple fact that water is a conducive
medium in which desiccation and osmolarity do not represent
a problem, thus encouraging horizontal transmission and host-
to-host transfer events (Russell, 2019). Many factors potentially
play a role in favoring one mode of transmission over the other.
Host dependence and symbiont function are two of them. Indeed,
it was demonstrated that host fitness was significantly reduced
when nutrient-provisioning, vertically transmitted symbionts
were removed (Fisher et al., 2017). This result indicated that
functionally important microbes and microbes on which the host
is highly dependent tend to be vertically transmitted.

For example, the freshwater Hydra can vertically transfer its
photosymbionts, Chlorella, either during asexual reproduction
(budding) or through germ-line maternal cells. Although
the symbiosis between Hydra and Chlorella indicates a high
level of co-dependency, the host is also capable of acquiring
the symbionts from the surrounding environment through
horizontal acquisition (Bathia and Bosch, 2020). Conversely,
the transfer of the luminous Vibrio fisheri symbionts of the
bobtail squid Euprymna scolopes occurs exclusively through
horizontal acquisition. The processes involved in this acquisition
and establishment of the symbiosis have been largely studied, and
the squid-Vibrio symbiosis now constitutes a prime model system
for horizontal transmission (Nyholm and McFall-Ngai, 2004).

Several studies on sponge microbiomes concluded that vertical
transmission was a widespread phenomenon in sponges (Schmitt
et al., 2007, 2008; Lee et al., 2009; Webster et al., 2010).
16S rRNA gene tag pyrosequencing allowed to investigate the
modes of symbionts transmission in 3 Australian sponge species
leading to the identification of sponge-specific symbiont clusters
that were either absent or barely detectable in surrounding
seawater but were highly enriched in adult sponges and their
larvae (Webster et al., 2010). This suggested that vertical
transmission and horizontal acquisition of symbionts from the
rare seawater microbial community might operate together and
both contribute to sponge-microbiome evolution (Webster et al.,
2010). Schmitt et al. (2008) argue that “entire microbial consortia
are vertically transmitted in sponges” and that additional
environmental transfer between adult individuals of the same
and even different species might obscure possible signals of
co-speciation (Schmitt et al., 2008). A recent study, however,
cast doubts on the consistency and faithfulness of vertical
transmission in sponges, doubting the feasibility of vertically
transmitting multiple microbial species simultaneously and
suggesting that complex pathways of indirect transmission also
intervene (Björk et al., 2019). These indirect pathways need to
be considered during the transmission of diverse and complex
microbiomes (Björk et al., 2019).

In corals, the transmission of the algal symbionts can either
occur by vertical transmission or horizontal acquisition from
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the surrounding seawater. Around 85% of scleractinian coral
species broadcast spawn gametes into the environment while 15%
internally brood their planulae. Spawning corals tend to mainly
acquire their Symbiodiniaceae from the environment (∼80%)
while brooding corals rely heavily on vertical transmission
(∼82%) of the algal symbionts (Baird et al., 2009; Quigley
et al., 2017). It would seem that both strategies are employed
as their costs and benefits vary depending on environmental
conditions. For example, thermal stress conditions could increase
the stress in larvae containing high levels of symbionts compared
to larvae with low levels of symbionts (Chamberland et al.,
2017). To this date, very little is known about the transmission
of microbial partners in corals. However, some evidence of
vertical transmission exists in brooding corals (Sharp et al.,
2012) whose eggs are fertilized inside the polyp and whose
larvae are internally brooded. Some corals could also use an
intermediate mode of transmission where specific groups of
bacteria are released by the parent during spawning and are
taken up by their offspring (Ceh et al., 2013). This strategy
is not as specific as strict vertical transfer, but more specific
than random horizontal acquisition from the surrounding
seawater communities (Ceh et al., 2013). The reproductive
strategy of the host (brooding vs. spawning) could have an
impact on the specificity of certain microbial partners. Spawning
corals, which probably acquired microbes from the surrounding
seawater, harbored the same Endozoicomonas symbionts across
different regions while brooding corals, which release symbiont-
rich planula larvae, harbored more specific and geographically
distinct Endozoicomonas genotypes (Neave et al., 2017).

Evolution and Adaptation
Arguably the holobiont constitutes a unit of evolutionary
selection as it interacts as a whole and manifests adaptation
(Roughgarden et al., 2018). A mathematical model showed
that, irrespective of symbiont transmission mode, holobiont
selection does cause evolutionary changes in holobiont traits
(Roughgarden, 2020). This indicates that it believably is an
effective evolutionary force, which is something that was
contested on the basis that a holobiont’s microbiome is an
acquired condition rather than an inherited trait (Roughgarden,
2020). Irrespective of the mode of transmission, hosts and
associated microorganisms entertain tight relationships that
might intervene in a process of coevolution. Some of the
mechanisms that enable symbiotic partners to coevolve include
horizontal gene transfer (HGT, the transfer of genetic material
between non-mating species, Goldenfeld and Woese, 2007),
genome erosion of obligate symbionts (the minimization of
genetic information within a genome), strain specificity as well
as the growth, reduction and acquisition of novel microbial
species from the surrounding environment (Apprill, 2020). In
coral genomes, signatures of Symbiodiniaceae and microbial
symbiosis are easily identified in the forms of HGT, gene family
expansions, and a large collection of innate immunity genes and
oxidative stress response genes (Van Oppen and Medina, 2020).
These mechanisms of coevolution have the potential to result
in longer-term adaptation of the holobiont to environmental
stress conditions, leading to a higher resilience (Apprill, 2020).

For example, microbial symbionts likely influence immunity
evolution of the host through different interactions that will
either lead to constraint or relax the selection on immune
system maintenance (Gerardo et al., 2020). Commensal microbes
that have evolved within the host could contribute to the
overall pathogen resistance of the host through competition with
pathogens for resources and via direct inhibition. According to
some authors, this cooperative immunity, which facilitates the
adaptive evolution of non-pathogen-related host traits, is the
principal evolutionary advantage provided by the microbiome to
their host (McLaren and Callahan, 2020).

However, observing and demonstrating a reciprocal
adaptation of diverse microbial lineages with a host lineage
is extremely complex. Often, evolutionary studies focus on the
inheritance of DNA from parents to offspring. However, this
Neo-Darwinian framework, which integrates Mendelian
genetics, is challenged by the complexity of symbioses,
endosymbioses and host-associated microbiomes (Collens
et al., 2019). Increasing evidence shows that the impact of
symbionts on host genomes extends beyond the traditional
Mendelian views of transmission genetics: symbionts influence
host gene expression without changes in DNA sequences.
In this way, the hologenome and the co-evolution of host
and associated symbionts are an epigenetic phenomenon
(Collens et al., 2019). Epigenetic communication between the
host and its microbiome, as it was demonstrated in recent
studies, is reciprocal and likely involves microRNAs which
could regulate gene expression and DNA methylation in the
symbiosis partners (Collens et al., 2019). In this context, some
authors distinguish between evolutionary adaption, also called
adaptation sensu stricto, and adaptation through acclimation,
also termed adaptation sensu lato (Webster and Reusch,
2017). The former corresponds to population-level changes in
phenotypes due to natural selection and involving genetic change
in the form of differing allele frequencies between generations.
The later describes transgenerational acclimation in the forms
of physiological acclimation, host evolution (often involving
epigenetic changes), heritable microbial community changes, and
microbial evolution (Webster and Reusch, 2017). Acclimation
is a form of phenotypic plasticity describing the adjustment
of an organism’s physiology to changing environmental
conditions. This is often a reversible phenomenon. In corals,
microorganisms evolve much more rapidly than the host and
have the potential to rapidly alter the holobiont phenotype
via symbionts shuffling and switching, via microbial genetic
mutations and HGT. When the microorganisms are vertically
transmitted, long-term acclimation of the host is permitted.
This is what is called microbiome-mediated transgenerational
acclimatization (MMTA) of the coral holobiont (Webster and
Reusch, 2017), and this concept could be extended to many
marine holobionts. As Amy Apprill points out “symbiosis
has played a major role in the evolution of marine organisms
and may have driven biological innovation on timescales that
are shorter than those of traditional evolutionary responses”
(Apprill, 2020). Much remains to be deciphered regarding
coevolution and coadaptation of the partners constituting
complex holobionts. Mathematical modeling and the study of
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phylosymbiosis in some key models such as sponges which
present a long evolutionary history will help untangle the
(co)evolutionary dynamics occurring in complex holobiont
systems (O’Brien et al., 2019, 2020).

Functional Roles of Microbiomes
Microbiomes appear to be necessary for their host to thrive as
they produce molecules the macroorganism cannot generate by
itself. They play a role in nutrient supply, in detoxification, in
protection of the holobiont against detrimental microorganisms
and in some developmental stages. The well-known examples
of sponge and coral holobionts are here explored in details to
illustrate the functional roles of microbiomes.

Sponges
Symbionts are necessary for sponge survival as they produce
amino acids and vitamins that the animal cannot produce itself
(e.g., lysine, histidine, tryptophan, biotin, thiamin, riboflavin, and
cobalamin; Fiore et al., 2015). The sponge could collect those
needed metabolites by filtration of water, but their associated
microbes provide them with these molecules continuously, which
ensures them a constant supply.

Genomic studies on phylogenetically divergent species have
revealed that their microbiome is capable of nitrogen cycling
processes such as denitrification and ammonium oxidation (Fan
et al., 2012; Pita et al., 2018). In addition to the direct advantages
to the symbionts, the removal of ammonium, nitrate, and nitrite
benefits the sponge as those compounds may be harmful if
present in large quantities (Hoffmann et al., 2009). It appears
that the symbionts can reduce nitrate into nitrite and then into
nitric oxide, but do not possess the enzymatic machinery to
produce nitrous oxide and finally N2. However, symbionts still
use the formers for their growth. Evidence suggests that nitrite
could sustain anaerobic growth by its use in acetogenesis. Nitric
oxide appears to be used by methanotrophic bacteria to produce
nitrogen and oxygen, the latter being used for methane oxidation,
thus transforming an anaerobic environment into an aerobic one
and maintaining an aerobic respiration even when the sponge is
not pumping water (Fan et al., 2012).

Sponge symbionts are able to use molecules produced by their
host as a source of carbon and nitrogen, such as creatinine.
However, in Xestospongia muta, transcriptomic analyzes showed
that the symbionts were using NH3 as a source of nitrogen,
while the host was using the catabolism of amino acids. This
implies that, if there is any N transfer from the microbiome
to the animal, it must be under an organic form (Fiore et al.,
2015). In some sponge species, it seems that part of the nitrogen
acquired by the animal comes from nitrogen fixation made by
cyanobacteria and/or heterotrophic bacteria (Mohamed et al.,
2008). This hypothesis is supported by the observation of a
low δ15N and the expression of nitrogenase. Different sponge
species rely on different ways on their microbiome, especially on
photosymbionts, in distinct ways for C and N supply: some use
both C and N coming from their symbionts, others use only one
of the two forms, and those remaining only feed on particulate
organic matter in the filtered water. Those distinctions are
perhaps explained by differences in the ability of cyanobacteria

to transfer their nutrients to the host, as the microbial species
differed between sponges. It is to note that the animal can
acclimate to a decline in light, either by feeding heterotrophically
or by catching symbiont-derived nutrition, as it still grows
under such conditions (Freeman and Thacker, 2011). However,
symbionts do not only play a role in the autotrophic supply
of carbon. They may play a role in the heterotrophic carbon
assimilation, especially in high-microbial abundance sponges
(HMA) (Rix et al., 2020). It is hypothesized that, in addition to the
surprising direct absorption of dissolved organic matter (DOM)
by sponges compared to their well-known particulate organic
matter (POM) feeding, microbes also provide them with DOM
either by transferring low molecular weight compounds to the
animal or by being digested by phagocytosis.

It has been observed in some sponges that both sulfate-
reducing bacteria and sulfur-oxidizing bacteria coexist (Gauthier
et al., 2016). When oxygen concentration declines, if the animal
stops pumping for example, sulfate-reducing bacteria use sulfate
as an electron acceptor and produce sulfides, which are toxic
above a certain concentration. On the contrary, sulfur-oxidizing
microbes prevent sulfides from becoming toxic by oxidizing
them to produce carbohydrates from CO2. They can also
use reduced sulfur coming from the environment, such as
sediments if the sponge is partially covered. Phosphorus is often
a limiting nutrient in oligotrophic environments, such as in coral
reefs. In addition to the role of free-living microbes, sponge
symbionts have been shown to play a significant role in P
sequestration. Indeed, they are able to sense the level of inorganic
P thanks to a phosphate regulon system, and to create long-chain
polyphosphates (Gauthier et al., 2016).

Microbes also produce chemicals that deter predators to feed
on their hosts, and secondary metabolites that help the holobiont
to compete with other organisms in the ecosystem (Pita et al.,
2018). Sponge symbionts are also capable of detoxifying their
immediate environment from heavy metals concentrated by the
filtering activity of their host (Fan et al., 2012), and to produce
antimicrobial compounds to compete with the other microbiome
members, which appear to also prevent fouling bacteria from
invading the host (Thakur et al., 2004).

In addition to the benefits symbionts offer their host, they
have to lose virulence traits and develop protection mechanisms
against host defenses, attacks from neighboring microbes and
phages (that are concentrated because of the filtering activity
of the sponge). As such, genomic analyses often show genes
encoding chaperones, membrane proteases and possible evading
mechanisms (e.g., ankyrin-repeat proteins) on the one hand
and CRISPR or other protecting functions against foreign DNA
on the other hand (Gauthier et al., 2016). The production of
eukaryotic-like proteins could interfere with eukaryotic protein-
protein interactions, especially with proteins from sponge
amebocytes to prevent the symbionts from being phagocytized
(Burgsdorf et al., 2015). It has already been observed between
Legionella pneumophila and their ameba host (Richards et al.,
2013). Moreover, symbionts harbor modified antigens (Burgsdorf
et al., 2015), or, on the contrary, lack some immune system
elicitors such as flagellin (flagella are absent in all sponge
microbiome members) (Hayashi et al., 2001; Siegl et al., 2011),
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enabling them to enter the symbiosis. Hosts appear to recognize
their (future) microbial partners via Toll-like receptors, NOD-
like receptors and scavenger receptor cysteine-rich (SRCR) family
members. Then, some transcription factors (FoxO and NFκβ for
example) are upregulated when a microorganism recognized as
suitable is present, so that it is maintained in the holobiont.
However, the precise mechanisms are not completely understood
yet (Pita et al., 2018).

Corals
In corals, symbionts also play a role in nutrient cycling (Bourne
et al., 2016). They both produce and degrade carbon molecules.
In addition to the well-known role of Symbiodiniaceae in organic
carbon supply, cyanobacteria also transfer photosynthates.
Microbes catabolize sugars, from simple (e.g., mannose) to
complex ones (e.g., cellulose and chitin) (Kimes et al., 2010).
Bacteria from Porites astreoides are able to process sugars
and proteins that are present in the mucus thereby leading
to the hypothesis that they recycle the great amount of
energy transferred to this outside layer back to the holobiont
(Wegley et al., 2007). Nonetheless, those catabolic properties
can have a negative effect, as they trigger the overgrowth
of microbes and thus the imbalance of the symbiosis when
mono- or polysaccharides are added to the environment
(Wegley et al., 2007).

Regarding nitrogen, corals are able to cope with the
oligotrophic environment in which they live. Both the animal
and Symbiodiniaceae can assimilate ammonium as they both
possess glutamine synthetase (GS). Glutamine is transformed
into glutamate by glutamine:2-oxoglutarate aminotransferase
(GOGAT) in microalgae, and by GOGAT or glutamate
dehydrogenase in the animal cells (Pernice et al., 2012). The algae
also use nitrate and nitrite reductases to convert NO3 into NH4
(Yellowlees et al., 2008). Diazotrophs from the microbiome can
also provide the algal endosymbionts with ammonium obtained
from N2 when other nitrogen sources are at least partly depleted
(Cardini et al., 2015). However, if NH4 concentration is elevated,
it can affect the holobiont fitness by inhibiting the assimilation of
carbohydrates by the endosymbionts, and the uptake of nitrate.
Thus, mechanisms to prevent an accumulation are needed.
Nitrifying and denitrifying microbes are hypothesized to play this
role for the holobiont (Siboni et al., 2008). Nitrification could
also be used to control Symbiodiniaceae growth as the algae need
more energy to use NO3

− (Rädecker et al., 2015).
Sulfur is essential for proteins, coenzymes, and

metalloproteins and is mostly assimilated under the sulfate
form (Sievert et al., 2007). It can be used to synthesize cysteine
and methionine, and then DMSP, mainly by algal endosymbionts
(Stefels, 2000; Van Alstyne et al., 2006). This product is partly
metabolized by bacteria (Raina et al., 2010), and it is hypothesized
that some by-products are transferred back to the algae, as it
has been observed in other bacterial/algal associations (Amin
et al., 2015). Moreover, it is used by a bacterium, Pseudovibrio
sp. P12, to produce the antimicrobial tropodithietic acid (TDA)
(Raina et al., 2016). Genomic studies have also shown that some
bacteria have the potential to reduce sulfate during anaerobic

respiration but this process has not been clearly observed yet
(Kimes et al., 2010).

Corals also rely on their microbiome to acquire essential
vitamins, such as vitamin B12 (Agostini et al., 2012). The
prokaryotes do not only provide nutrients and energy to the
host; they also protect the holobiont against pathogens either
by niche competition or by the production of antimicrobial
compounds, such as TDA (Peixoto et al., 2017). However, they
are not the only ones to do so. Some viruses, such as the
BA3-phage, are known to infect and kill bacterial pathogens,
and it is thought that microbiome viruses maintain lysogenic
infections of the mutualistic bacteria, which protect them against
lytic viruses, whereas opportunistic prokaryotes are susceptible
(Sweet and Bythell, 2017).

Focusing on Symbiodiniaceae, evidence supports the idea that
they need bacteria to thrive. Firstly, specific bacterial taxa co-
localize with the algae inside the coral cells. Secondly, the small
genomes of endosymbionts (∼1–5 Gb) imply that they need to
associate with other organisms such as the colocalized bacteria
(Aranda et al., 2016). Other microalgae-bacteria associations
with interesting benefits for the algae (complex compounds
degradation, protection, bioavailable iron acquirement) have
already been observed. Thirdly, Symbiodiniaceae, when free-
living, can form calcified structures with bacteria, called
symbiolites which probably protect them against UV and
predation and maintain an algal pool available for recruitment
by corals (Matthews et al., 2020; Garrido et al., 2021). Similarly,
the metamorphosis of some coral larvae appears to be triggered
by some microbial biofilms made of bacteria and archaea
(Webster et al., 2004).

All the advantages of the microbiome could not be accessible
if there was not a robust communication between the host and its
microorganisms. Bacteria have been proposed to communicate
via quorum-sensing molecules, morphogens, bacterial lipid-
based molecules, and vitamins (Van Oppen and Blackall, 2019).
Recently, it has been proposed that non-coding RNA could be
used as messengers between the members of corals, as those
molecules are very old and readable by all types of cells (Leitão
et al., 2020). Before any communication or advantage, the host
has to build a healthy microbiome. Bacteria are first attracted by
chemotaxis toward compounds released by corals and are then
categorized as either mutualist or pathogen by the recognition of
their microbe-associated molecular patterns (MAMPs). MAMPs
are recognized by pattern-recognition receptors (PRRs) but
the subsequent mechanisms allowing or not the entry in the
symbiosis are not well understood (Bourne et al., 2016).

Marine Holobionts as Drivers of
Ecological Processes
Because of all their abilities, microbiomes enable their holobionts
to play significant roles for the ecosystems in which they live. The
first benefit of microbiomes for ecosystems is their indirect role
in key species thriving. With the beneficial roles microbes play
for their host (see section “Functional Roles of Microbiomes”),
they help engineer species to create the structural and nutritional
foundations of their ecosystems (Wilkins et al., 2019), and
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FIGURE 3 | Sponge loop: (1) corals and algae excrete dissolved organic matter (DOM), (2) DOM is taken up by sponges, (3) sponges release detrital particulate
organic matter (POM), (4) POM is ingested by detritivores.

important processes, such as the sponge loop, to take place. The
sponge loop (see Figure 3) consists in the transformation of
DOM, unusable by the majority of heterotrophic fauna, to POM
with a lower C:N ratio by sponges. Sponges thus provide the
biggest source of organic matter available for reef organisms, and
part of this process is carried out by their bacteria (Rix et al.,
2017). In coral reefs, this production of usable POM appears to
be as important as the gross primary production. This is linked
to the rapid cell proliferation and turnover of choanocytes, the
flagellated cells generating the water flow inside sponges and then
absorbing nutritive particles, which releases sponge detritus that
form POM. It is hypothesized that microbes having absorbed
DOM either translocate low molecular weight compounds or are
phagocytosed by choanocytes (Rix et al., 2020). DOM mainly
comes from the dissolution of a great part (56 to 80%) of the
mucus excreted by corals, and also from algal exudates. Produced
POM is then mainly ingested by benthic sponge detritivores,
such as ophiuroids, holothuroids, and polychetes. Detritivores are
then predated by reef fishes and consequently, sponges enable the
transfer of DOM to higher trophic levels (Rix et al., 2018).

Some microbial partners of sponges can deter fishes to feed
on their host, such as some cyanobacteria in Lamellodysidea
herbacea (Pita et al., 2018). In habitats where predation
pressure is high, such capacity has a great impact on the
community structure. In addition, the microbiome also helps
its host to compete with other organisms, which also shapes
the community. For example, bacteria of Terpios hoshinota
favor this sponge over corals by the production of cytotoxic
secondary metabolites (Pita et al., 2018). It is noteworthy to
precise that Epulopiscium gut bacteria of surgeonfish enable this
animal to digest polysaccharides from red and brown algae,

thus preventing them to overgrow and take the place of corals
(Wilkins et al., 2019).

Apart from indirectly providing food, such as the sponge loop,
a microbiome can also influence environmental parameters so
that they meet the needs of other organisms. For example, aerobic
sulfide-oxidizing bacteria associated with benthic bivalves can
detoxify anoxic sediments and enable the growth of seagrasses.
It is worthy to add that enhancement of microbiome capabilities
by biostimulation (addition of limiting nutrients for example) is
a promising technique to save ecosystems from being destroyed
by hydrocarbons (e.g., oil spill). Coastal microbiomes also appear
to be beneficial to humans as they reduce the number of human
pathogens in the coastline, probably because of the production
of biocides either by the host (seagrass) or by its prokaryotes
(Trevathan-Tackett et al., 2019).

Holobionts also play important roles in biogeochemical cycles.
It has been demonstrated that sponges release water with more
dissolved inorganic nitrogen (DIN) than the water that entered
the filtering system. This DIN is either NO3

− or NH4
+, and

the net fluxes are highly variable, depending on many factors
such as O2 level and H2S (an inhibitor of both nitrification
and denitrification) concentration. The form of released DIN
affects the growth of the other organisms, with NH4

+ being
more easily incorporated than NO3

−. In any way, sponges
are important producers of DIN in an oligotrophic coral reef
environment, as they generate more nitrogen than microbial mats
and sediments (Fiore et al., 2013). Moreover, with processes such
as denitrification and annamox, sponges also play a significant
role in the recycling of nitrogen back to the atmosphere, even
more important than the one played by sediments if sponge
cover is high (Hoffmann et al., 2009). Both sponges, especially
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when they host photosynthetic organisms, and corals present
important gradients in O2 concentration within their tissues,
which favor both aerobic and anaerobic transformations of
nitrogen (Moulton et al., 2016). Corals also play a significant
role in sulfur cycling. Indeed, their Symbiodiniaceae are great
producers of DMSP. 75% of this compound is transformed
in methylmercaptopropionate which is then incorporated into
bacteria biomass. The remaining 25% is metabolized into
dimethyl sulfide (DMS) and acrylic acid. Between 50 and 80%
of DMS is used by other types of bacteria, but the remaining
20 to 50% goes back to the atmosphere, where they favor cloud
formation and thus, climate cooling (Raina et al., 2009).

HOLOBIONTS IN CHANGING
ENVIRONMENTS

Threats to Marine Holobionts
Climate change, ocean acidification, eutrophication, pollution,
and overfishing are the main threats to marine holobionts.

Temperature Rise and Acidification
The rise in temperature has been demonstrated to negatively
affect coral holobionts. In addition to the well-known coral
bleaching phenomenon (see Weis, 2008; Oakley and Davy, 2018
for more details), the microbiome is also impacted: a rise in
temperature decreases the antibacterial capacities of the mucus-
associated bacteria (Mouchka et al., 2010). In addition, the
healthy microbiome tends to transform into a pathogenic one,
especially because of the presence of Vibrio spp. Either those
bacteria are replaced by more virulent strains or they undergo
metabolic changes that increase the disease potential of the whole
holobiont, perhaps because of virally mediated horizontal gene
transfer of virulence factors (Thurber et al., 2009). Metagenomic
analyses revealed that the virulence genes linked to proteolytic
pathways were enhanced with temperature, which means that
pathogens tend to lyse holobiont cells during their infection. In
addition to bacteria, potentially harmful Microviridae and Fungi
related to plant pathogens are also more numerous. Globally, the
stress state caused by heat is evidenced by a greater expression
of genes related to phenylpropanoids biosynthesis, protection
against osmotic and oxidative stress, and repairment of DNA
(Littman et al., 2011).

Ocean acidification, which is also caused by climate change,
has detrimental effects on corals too. Besides the impairment of
coral calcification, which can be decreased by 15–20% (Jokiel
et al., 2008), some studies showed that pH could also affect the
coral-algal symbiosis. Lower pH induces bleaching, especially
under naturally high light, possibly through a disruption of
photoprotective mechanisms such as photorespiration or thermal
dissipation (Anthony et al., 2008). Acidification also appears to
influence coral microbiomes. Morrow and colleagues showed
that it was linked to a drop of Endozoicomonas, one of the most
abundant bacterial genus in healthy animals, in P. cylindrica
and Acropora millepora. Endozoicomonas are thought to provide
a great part of the requested nitrogen and sulfur, and to

shape the microbiome via signaling molecules and antimicrobial
compounds (Morrow et al., 2015).

Regarding sponges, ocean acidification alone could have
a beneficial impact on their photoautotrophic symbionts
(e.g., Synechococcus sp.) whereas global warming alone
would negatively affect those microbes. Indeed, studies
demonstrated that cyanobacteria are more abundant on
sponges located at natural CO2 seeps than on others subjected to
contemporary carbonate concentration, and that an increase in
temperature induces a decline of photosynthesis efficiency.
When exposed simultaneously to temperature and pH
stresses, both photosynthesis and biosynthesis of secondary
metabolites involved in chemical defense decrease. Acidification
is hypothesized to decrease the ability of the host to regulate its
microbiome when exposed to stressors as great inter-individual
differences are observed in the composition and the predicted
function of the microbes (Lesser et al., 2016). Botté et al. (2019)
unveiled a reduction in the transfer of exogenous carbohydrates
and amino acids from the animal to the symbionts in CO2
seeps. However, the bicarbonate ion assimilation through the
3-hydroxypropionate/4-hydroxybutyrate (HP/HB) cycle was
enhanced in those pH-reduced conditions. In Coelocarteria
singaporensis, abundant at CO2 seeps, the host translocates
creatine to its symbionts rather than creatinine, thus conserving
energy because creatinine degradation uses one ATP to produce
two molecules of ammonia whereas creatine degradation
also gives two ammonia but does not need any ATP. On the
other hand, Stylissa flabelliformis, which is more abundant in
control areas, is sensitive to acidification. Its microbiome does
not possess the gene battery for creatine metabolism, and thus
probably does not receive enough nitrogen from the animal when
it is placed in low pH conditions. In addition, these conditions
negatively affect the potential of this species to degrade taurine
(one of the most abundant free amino acids in sponges) and
assimilate sulfur, which could be another explanation of its
sensitivity. Hence, all sponge species do not react the same way
to ocean acidification (Botté et al., 2019).

Sediments and Nutrients
Another threat to coral reefs is sedimentation and nutrients
input. The effects of such stresses on corals are summarized
in Bourne et al. (2016). Excess sediment deposition, caused by
land practices or dredging for example, has been implicated in
diseases expansion, probably because of an immune function
reduction, a decrease in energy reserves due to light attenuation,
and changes in the microbiome composition. If sediments
are especially organic-rich, heterotrophic microorganisms can
overgrow, induce the formation of anoxic areas and generate
high concentrations of toxic sulfide. More generally, an organic
load favors excessive microbial growth, which breaks the balance
between the animal and its microbiome, leading to coral death.
Corals are also threatened by macroalgae expansion caused by
eutrophication and overfishing. The excess of usually limiting
nutrients and the reduction of the number of herbivorous
fishes induce an overgrowth of algae (Rix et al., 2017). Those
organisms harm corals by shading, abrasion and physical injuries,
toxic substances release or by attracting corallivorous organisms
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(Sweet et al., 2013b). In addition, dissolved nutrients excreted
by algae can stimulate the overgrowth of coral microbiome and
its invasion by opportunistic pathogens (Bourne et al., 2016).
Macroalgae were revealed to be reservoirs of pathogenic bacteria
and ciliates involved in two coral diseases (white syndrome
and yellow band disease) (Sweet et al., 2013b). Sponges seem
to tolerate short term nutrients input equivalent to sewage
effluent as no visible detrimental effect nor any consequent
change in the microbiome were observed in two different species.
It is thought that they possibly adapted to increased nutrient
concentration as they are abundant on inshore reefs, though
precise mechanisms have not been unraveled yet (Simister
et al., 2012; Luter et al., 2014). Conversely, sedimentation,
even when light intensity was enhanced to counterbalance
the opacity caused by sediments, had negative impacts on
sponge health and growth. The fitness of those organisms
declined even though they did not present significant microbial
change and despite their ability to shift from mixotrophy to
phototrophy (and vice versa). This decline is perhaps linked to
the obligate reduction of food retention when sediments are
expelled with mucus in order not to obstruct the aquiferous
system (Pineda et al., 2017).

Pathogens and Diseases
Diseases are a major current threat to marine holobionts,
especially because they are enhanced by climate change,
eutrophication, and overfishing.

Corals
A great difficulty in studying diseases is to identify the causative
agent(s), the mode of infection, the genetic basis of virulence,
the reservoirs and the vectors, as well as the environmental
cofactors (Bourne et al., 2009). Diseases are often correlated
to dysbiosis but it is difficult to retrieve the primary agent.
Many causative agents have been proposed after microscopic
observations or metagenomic analyses of tissue lesions. One
has to be careful with those interpretations as causation can
only be confirmed by a direct link between the pathogen and
the lesion at both gross and cellular levels (Mera and Bourne,
2018). In addition, gross lesions usually used to define a disease
can be common to many infections with different pathogens
such as for coral white plague disease type II. The symptoms
appear in more than 40 species, though a proposed pathogen,
Aurantimonas coralicida, has only been demonstrated to fulfill
Koch’s postulates with Dichocoenia stokesi (Sunagawa et al., 2009).
Those postulates require the isolation of the putative pathogen
from every infected host and the apparition of the symptoms on
healthy organisms when they are inoculated with this isolate. The
same symptoms in Orbicella faveolata were associated with an
increase in known coral pathogens and bacteria that had already
been isolated from diseased or injured marine invertebrates, but
not with A. coralicida. This is an example that adds strength to the
hypothesis that disease outbreaks may come from an infection
by opportunistic pathogens or the overgrowth of normally
commensal bacteria after a weakening of host immune defenses,
either caused by a primary infection or an environmental stress
(e.g., rise in temperature).

More than 20 coral diseases have already been described,
though the causative agents have not been identified for all
of them yet. They are summarized in Sheridan et al. (2013).
Five of them are illustrated in Figure 4. In some cases,
coral bleaching appears to be caused by a pathogen whose
virulence has been activated by temperature increase. Two
examples are the infections of Oculina patagonica by Vibrio
shiloi and Pocillopora damicornis by Vibrio coralliilyticus. The
former pathogen expresses a cell-surface adhesin, Toxin P,
which blocks the photosynthesis of Symbiodiniaceae, and the
superoxide dismutase, the enzyme that initiates the inactivation
of superoxide ion, a ROS, in response to heat. The latter pathogen
synthetizes an extracellular proteinase which acts as an important
virulence factor. The fireworms (Hermodice carunculata) play
the role of reservoir for V. shiloi as they feed on corals during
summer, extracting the pathogen and keeping it in their body
during winter, then re-infecting the cnidarians the next summer
(Rosenberg et al., 2007; Sheridan et al., 2013). Bleaching induced
by a rise in temperature or by UV also appears to be linked
to an activation of latent viruses in some cases (Van Oppen
et al., 2009; Sweet and Bythell, 2017). Another Vibrio, Vibrio
harveyi, seems to be correlated with the rapid tissue necrosis
(Luna et al., 2007).

Black band disease (BBD) is linked to a consortium of
pathogens, including cyanobacteria, heterotrophic microbes and
sulfate-reducing bacteria (Desulfovibrio spp.). Cyanobacteria
provide heterotrophic organisms with organic compounds and
oxygen, which stimulate their growth and the production of an
anaerobic zone suited for sulfate reduction. The simultaneous
action of anoxic environment, cyanobacterial toxins and high
sulfide concentration leads to tissue degradation, and finally to
the death of the animal (Bourne et al., 2009; Mera and Bourne,
2018; Van Oppen and Blackall, 2019). Gray-patch disease (GPD)
presents similarities with BBD: cyanobacteria overgrowth leads
to the onset of disease lesions that are subsequently infected
by multiple microbes. However, there is no evidence of a rise
in sulfate-reducing bacteria. Microbes clustering at the lesions
are identical between infected corals, and the competitiveness of
this particular assemblage is believed to be the explanation of
this great similarity. GPD is less lethal than many other diseases
(Sweet et al., 2019). Aspergillosis is an example of disease where
the causative agent is difficult to identify. Scientists first thought
that this gorgonian illness was linked to the fungus Aspergillus
sydowii, before it was defined as an opportunistic pathogen rather
than the cause (Mera and Bourne, 2018). Another disease, dark
spot syndrome, seems to be linked to a fungus, in addition to
bacteria. Indeed, the two most likely pathogens for this disease are
a bacteria from the Oscillatoria genus and a fungus closely related
to the plant pathogen Rhytisma acerinum (Sweet et al., 2013a).
However, one cannot affirm that they are the primary agents
given that their correlation with disease lesions does not imply
causality. On the contrary, the causative agents of the Caribbean
yellow blotch/band disease have been experimentally identified.
Four Vibrio spp. extracted from diseased corals triggered the
apparition of pale zones when they were inoculated on healthy
animals. This loss of color is caused by a lysis of Symbiodiniaceae
in the gastroderm. It is not known if those Vibrio species directly
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FIGURE 4 | Examples of coral diseases: (A) gray-patch disease, (B) black band disease, (C) bleaching, (D) white syndrome, (E) brown band disease. Photographs
credits: A/Prof. Michael Sweet (A–D) and A/Prof. David Bourne (E).

induce the degradation of algae or provoke a transformation of
normally mutualistic microbes into pathogenic ones. However,
whatever the direct action of Vibrio spp., heat increased the
disease spread (Cervino et al., 2004). A bacterial causative
agent of white pox (WP) was also identified with inoculation
experiments (Patterson et al., 2002). The coral Acropora palmata
developed irregularly shaped white lesions when it was infected
by the human enterobacterium Serratia marcescens and the
disease spread more rapidly when temperature was high. White
pox was the first disease demonstrated to be caused by human
sewage release in the sea.

Another disease inducing the whitening of corals, white
band disease (WBD), has also been extensively studied although
its causation remains unclear. At first, Vibrio charchariae was
proposed to be the primary pathogen (Ritchie and Smith, 1998).
However, no subsequent experiment undoubtedly proved it was
the case by re-isolating this pathogen from inoculated corals.
In 2014, antibiotic treatments allowed to identify 16 microbes
(14 bacteria, one archaea and one ciliate) associated with this
disease (Sweet et al., 2014). Thirteen of them were identified as
secondary pathogens because their elimination with antibiotics
did not induce the complete cessation of the disease, whereas
three of them (prokaryotes) remain possible primary agents
because they could not be eliminated with a specific drug.
Gignoux-Wolfsohn et al. (2020) also pinpointed the fact that
Rickettsiales-like organisms, which had also been proposed as
causative agents, do not increase in abundance on diseased corals.
However, they noted that these bacteria, having been observed

to multiply in mucocytes and then to rupture them, affect
beneficial microorganisms and weaken the holobiont immunity.
It is noteworthy to add that Philaster lucinda, the ciliate species,
has been associated with WBD and WP (Sutherland et al.,
2016). However, in light of the inability of metronidazole, an
antiprotozoal agent, to stop WBD lesion progression, this ciliate
could be a secondary pathogen, further affecting corals by
feeding on tissue and digesting Symbiodiniaceae (Sweet et al.,
2014). WBD could be one of the diseases grouped under the
name “white syndrome” (WS). Bacterial assemblages of WS vary
geographically, and the bacteria and ciliate involved in WBD
are identical to one of them (Sweet and Bythell, 2015). Other
ciliates also appear to be correlated with other diseases. For
example, ciliates, especially Philaster guamensis, are thought to
be primarily responsible for the extension of brown band disease
lesions. It is even hypothesized that they are the first to infect
the coral, before bacteria such as Arcobacter sp. and Aeromonas
sp., and after the animal has been injured by a predator, such
as the sea star Acanthaster planci. Another Philaster sp. is also
associated to brown jelly syndrome, a disease mainly observed
in aquaria (Sweet and Bythell, 2012; Sweet et al., 2012). A fourth
ciliate, Halofolliculina corallasia is thought to infect corals already
damaged by another disease, bleaching or predation and to
give rise to Caribbean ciliate infection (Cróquer et al., 2006).
In addition to microorganisms, many virus-like particles have
been demonstrated to increase in number simultaneously to
several diseases (white plague, yellow band syndrome, white
syndrome). It is now thought that they play a role, though
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one cannot say if they are either primary or secondary agents
(Sweet and Bythell, 2017).

Sponges
Many disease symptoms have been observed on sponges for
decades and worldwide. Many of them are summarized in
Webster (2007). They are suspected to be linked to microbes,
but only very few causative agents have been determined.
The pathogen causing spongin boring necrosis in Rhopaloeides
odorabile was identified to be the Alphaproteobacteria strain
NW4327 (Webster et al., 2002; Choudhury et al., 2015). Other
diseases appear to be linked with non-bacterial microorganisms
or viruses, though Koch’s postulates have not been demonstrated
yet. Lesions on a single specimen of Verongia cavernicola
have been associated with an adenovirus-like particle, diseased
tissues of many commercial species with unidentified fungi,
and Aplysina red band syndrome with a cyanobacterium. In
many studies, a disease-state was correlated with a change
of the microbiome from specific to more generalist species.
Those observations tend to support the hypothesis that sponge
diseases are caused by an imbalance in the microbiome that
favors the infection by opportunistic or polymicrobial pathogens
(Pita et al., 2018). Studying diseases in Porifera is trickier
than in Cnidaria because the former is made of massive
three-dimensional tissues that hide disease progression more
effectively than the latter that presents thin living tissue on
the skeleton. Like corals, sponge diseases will increase with
climate change, and probably with eutrophication. Temperature
raises virulence of pathogens and reduces host immunity and
resilience. In addition, enrichment in inorganic nitrogen and
phosphorus likely increases pathogens fitness and virulence
(Webster, 2007).

Holobiont Responses, Adaptability, and
Vulnerability
Corals’ and sponges’ fates are not easy to define with
certitude since some arguments support a decline whereas
others are in favor of a resistance to current stressors. As
addressed above, environmental changes tend to increase
diseases outbreaks by enhancing pathogens virulence and/or
reducing host resistance. Moreover, immunity needs energy to
be maintained. Stresses that affect dietary resources, such as
coral bleaching, can force the holobiont to re-allocate energy
where it is indispensable, at the expense of defense. Nevertheless,
those organisms are able to protect themselves to some extent
(Mullen et al., 2004).

Sponges produce many antibacterial, antiviral, anti-
inflammatory, herbicidal and anti-fouling compounds. They
fight pathogens that enter their filtering system by releasing
cytokines and by phagocytizing them. Animal cells also enter
into apoptosis if they get infected, and damaged tissues are
isolated from the healthy ones by building tissue barriers.
Nitric oxide is also used by sponges against detrimental
organisms, and it appears that the production of this gas is
enhanced by temperature (Webster, 2007). A recent study
revealed that some sponge species are able to enhance their
capacity to acquire new microbes in order to sustain their

normal growth under acidification. This capacity could
perhaps help Porifera to acclimate to environmental changes
(Pita et al., 2018).

Corals also possess an innate immunity. Firstly, the acidic
mucus repels or traps microbes, and is then evacuated by the
movement of apical cilia. Secondly, epidermis forms a physical
barrier, followed by a cellular defense consisting of amebocytes
and their phagocytosis capacity. In addition, this animal is
able to produce antibacterial, antifungal and predator-deterrent
compounds (Mullen et al., 2004). The microbiome also produces
such compounds, competes with injuring microorganisms for
space and nutrients, and contains predators of some detrimental
organisms (e.g., Halobacteriovorax spp., predators of Vibrio
coralliilyticus) (Van Oppen and Blackall, 2019). However, each
aspect of this innate immunity is not equally developed in each
species (Mullen et al., 2004).

Though corals do not possess an acquired immunity, it has
been observed that they become resistant to some pathogens.
For example, V. shiloi cannot induce bleaching of Mediterranean
O. patagonica anymore. The bacteria can still adhere to the animal
and penetrate into the tissues but they are then lysed in the
holobiont cells and they are no longer detectable 4 days after
inoculation. This gave rise to the “Coral Probiotic Hypothesis.”
This concept states that a dynamic relationship exists between
the microbiome and the environment, leading to the selection of
microbial partners most suited for the environmental conditions
and, more importantly, giving the most advantageous holobiont
(see section “Key Concepts in Holobiont Studies”). For the
example of V. shiloi and O. patagonica, it is thus believed that
a member of the microbiome releases materials that induce the
lysis of the pathogen. A change in microbiome implies losses
and gains. The microorganisms whose abundance decreases do
not multiply rapidly enough to counteract the loss rate induced
by mucus removal, or are lysed by bacteriophages. Conversely,
microbes growing in abundance were either already present
and overgrew or came from the surrounding water or from
corallivorous animals (Reshef et al., 2006).

It is supposed that viruses, in addition to their role
in protecting microbiome (see section “Functional Roles of
Microbiomes”), protect Symbiodiniaceae and cyanobacteria (e.g.,
Synechococcus sp. phages) from photodamage by encoding D1
and D2 proteins, among others (Van Oppen et al., 2009).
However, it is important to note that the protection of the
microbiome may be reversed under adverse environmental
conditions: lysogenic phages may enter lytic cycle while normally
lytic viruses attacking foreign microbes may lose their virulence
with stressors (Sweet and Bythell, 2017).

A key for corals survival is within-generation plasticity,
accompanied by transgenerational plasticity (TGP). TGP has
already been observed in the offsprings of Pocillopora damicornis
exposed to high temperature and CO2 concentrations, though
it is not known if this adaptation is effective throughout the
lifespan of F1 generation and beyond. TGP would be particularly
necessary for brooding species (species whose mother colony
incubates larvae) as the offspring is not highly dispersed, and will
thus live in conditions similar to the ones in which its parent lives,
and because those species have relatively short lifespans. Yet, the
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majority of corals are broadcast spawners, which disperse their
larvae to wider areas. So TGP is unlikely the major driver of coral
adaptability (Torda et al., 2017).

HOLOBIONT STUDIES OPEN NEW
PERSPECTIVES

The holobiont concept in marine research has opened a whole
new world of discoveries, challenges and perspectives. The
exponential rise in marine holobiont topics in recent years (see
“A Short History of a New Concept” and “Holobiont Models
in Marine Environments”) has shed light on the importance of
marine microorganisms for holobiont health and survival. In
addition to the gain in fundamental understanding of marine
organisms’ biology and ecology, the holobiont approach is key to
developing applied solutions for the protection and conservation
of ecologically relevant marine species such as corals and sponges.
Assuredly, as high-throughput methods to analyze microbiomes
are increasingly accessible and fine-tuned (Miller et al., 2011),
they are becoming efficient tools to monitor ecosystem health and
to inform conservation (Webster et al., 2018).

Marine Probiotics, Customized Medicine,
and Assisted Evolution
Human related-stressors such as the introduction of pathogens,
of non-native species, contamination with antimicrobials from
offshore farms, the use of antibiotics in conventional aquaculture,
discharge of contaminants from power plants, oil or mining
activities are directly affecting natural marine microbiomes
(Wilkins et al., 2019). Microbiomes have the potential to
respond rapidly to changes in environmental conditions,
including stressors linked to global climate change. Thus,
microbiome dynamics could act as biomarkers and inform
conservation practices. Species sensitivity distribution and
functional sensitivity distribution should be used in probability
models to improve the assessment of ecological risk and, in this
way, establish microbial conservation guidelines (Webster et al.,
2018). Some key areas for future research are the elaboration
of microbiome health indices for threatened species and the
identification of microbial species and functions that could be
used as biomarkers of host’s health and disease (West et al., 2019).
In addition, characterizing microbiome taxonomic composition
and functional diversity in organisms subjected to non-optimal
environmental conditions is paramount to identify the important
microbial functional roles involved in the maintenance of the
host’s resilience (Wilkins et al., 2019). The strategies using
microorganisms to promote marine holobionts’ health remain
in their infancy but are, nonetheless, promising. They include
direct bioaugmentation by enriching the environment with
specific microbes and biostimulation of specific metabolisms
involved in host resistance and recovery (Wilkins et al., 2019).
Microbiome research in threatened animal species from all
marine and terrestrial ecosystems is of the utmost importance
as it is key to the development of novel conservation practices
(West et al., 2019).

The conservation of coral reefs is amongst the most pressing
environmental issues of our generation and is an active research
priority (National Academies of Sciences Engineering and
Medecine, 2019). A strategy of prevention consisting in removing
the factors contributing to reduced health and to mortality
in corals (i.e., mitigating the impacts of climate change and
eliminating sources of pollutions) is, unfortunately, overwhelmed
by the recurrence and increased frequency of climate-related
stress events. Therefore, an active intervention, in the form
of restoration of coral reefs, is required in order to ensure
these ecosystems survive and continue to exist. While we still
need to work on enhancing our knowledge of coral reef health
by investigating coral holobionts’ responses to environmental
stressors, their genetics, their physiological traits and their
microbiome assemblages, we also need to work on applied
solutions in the form a customized medicine for corals (Peixoto
et al., 2019). This describes a multi-level approach to alleviate
compromised health symptoms in corals and to aid coral
resilience. Some key topics to be explored in coral customized
medicine include the development of effective coral probiotics,
of methods to deliver beneficial compounds (e.g., antioxidants,
nutritional supplementation) and microorganisms to corals,
pathogen control (phage therapy, antibiotics, niche occupation,
and pathogen exclusion), formulation of BMC (beneficial
microorganisms for corals) cocktails facilitating remediation of
pollutants, mitigating local environmental impacts, and genetic
manipulation of corals (Peixoto et al., 2019).

Many holobiont conservation strategies now fit within the
assisted evolution approach. The concept of assisted evolution
was first developed by Madeleine J. H. van Oppen in the
context of enhancing coral reef resilience. This consists in
practices involving human intervention to accelerate the rate
of naturally occurring processes in holobiont’s evolution (Van
Oppen et al., 2015; Damjanovic et al., 2017). The aim is to
enhance certain attributes to help species adapt to changing
environmental conditions faster than they would via natural
selection. For example, reciprocal transplantation of corals
between thermally distinct environments was employed to
stimulate the change from a heat-sensitive coral microbiome
to a heat-tolerant community (Ziegler et al., 2017). Corals that
harbored a tolerant microbiome bleached less when exposed to
temperature stress. Recently, inoculation of corals with beneficial
bacteria was performed on two coral species in a laboratory
setting and proved to be a success as the coral recruits were
enriched with these beneficial microbes (Damjanovic et al.,
2019). However, host factors still influenced the final taxonomic
composition and diversity of the associated microbiome, and
it is highly probable that environmental factors also have an
impact. Therefore, the success of this manipulation and the long-
term stability of the inoculated taxa remain to be evaluated
in situ. The use of probiotics is a recent but increasingly
popular trend in aquaculture as it presents many advantages
such as the elimination of the use of antibiotics, improved
water quality, prevention of disease and enhanced fish immune
responses (Chauhan and Singh, 2019). Marine probiotics are
marine bacterial strains favoring the growth of beneficial
microorganisms within a microbiome, as well as restricting
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the proliferation of decay or disease causing pathogens (Kim
et al., 2012). Probiotics are increasingly considered for use in
coral conservation practices. For instance, a recent experiment
demonstrated that the inoculation of corals with probiotics
significantly lessened the effects of thermal stress by increasing
coral resistance to bleaching and to pathogen invasion (Rosado
et al., 2019). Probiotics could also be used for disease mitigation
(Ritchie, 2006; Alagely et al., 2011) and have been shown to
be efficient for bioremediation of oil following an oil spill
(Fragoso Ados Santos et al., 2015; Blackall et al., 2020). The
observation that corals of a same species are genetically divergent
across habitats and that both Symbiodiniaceae and prokaryotic
populations differ across habitats, leads scientists to contemplate
assisted evolution strategies such as assisted gene flow, artificial
cross-breeding or probiotic inoculations for the preservation of
coral reefs (Van Oppen et al., 2018).

Although assisted evolution and manipulation of holobionts’
beneficial microbes represent promising perspectives for the
conservation of endangered ecosystems such as coral reefs, they
also raise numerous practical and ethical questions. We still lack
a tremendous amount of knowledge regarding ecophysiological
responses of marine holobionts to environmental stressors
as well as regarding host–microbiome and host–pathobiome
interactions. We also lack the practical experience in such
practices. As such, one of the greatest concern is the introduction
of dangerous pathogens along with the transplantation of
“enhanced holobionts” back to their original environment
(Sweet et al., 2017). These pathogens could originate from
aquariums or the locations used to grow the genetically- or
microbially enhanced holobionts. Although some urgency exists
surrounding the conservation of endangered ecosystems such
as coral reefs, the use of potentially beneficial conservation
tools should not risk to inadvertently inflict greater harm
in the long term (Sweet et al., 2017). Aside from the
lack of knowledge concerning the consequences of such
practices, important ethical questions regarding the feasibility
and the desirability of creating anthropogenically enhanced
systems can be raised (Van Oppen et al., 2015). Indeed, the
use of genetically modified or anthropogenically enhanced
organisms is extremely controversial. By doing so, we put
ourselves in a position of “designers” of nature which forces
us to rethink our conceptualization of what is natural
(Filbee-Dexter and Smajdor, 2019). Thus, assisted evolution
should be used with care, with knowledge and as a last
resort when other options are ruled out. It is important
to remind ourselves that our efforts need to be primarily
oriented toward preventing future damage, protecting healthy
ecosystems and understanding future change before considering
anthropogenically modifying natural systems (Filbee-Dexter and
Smajdor, 2019).

Biotechnological Potential and
Economic Value of Marine Holobionts
Many holobionts are increasingly recognized as having great
biotechnological potential. Numerous biologically active
compounds have been, and still are, discovered and isolated

from sponges and their associated microorganisms (Taylor et al.,
2007; Sunil Kumar, 2016). As such, sponges have long been
considered to have a high potential for drug discovery such as
anti-cancer or anti-inflammatory agent. Some sponge species,
such as sponges from the Irciniidae family, could be well suited
for mariculture in the aim to harvest bioactive compounds
(Hardoim and Costa, 2014). New technologies have allowed to
identify such potential in other marine holobionts. For example,
soft corals (octocorals) are now considered a potential rich
source in bioactive secondary metabolites such as terpenes
and terpenoids, steroids or prostanoids with promising drug
leads as some of these compounds possess anticancer, anti-
inflammatory, or antimicrobial properties (Van De Water et al.,
2018). Although these octocorals’ derived biomolecules have not
yet been adapted to clinical use, some are already used in skin-
care products or are considered for use as natural anti-fouling
compounds on ships (Van De Water et al., 2018). Similarly,
other marine holobionts whose microbiomes are increasingly
studied arouse interest for their potential use for biotechnological
applications and drug discovery. For example, some argue that
jellyfish microbiomes harbor several microbial species with high
biotechnological potential that remains to be explored (Tinta
et al., 2019). Tunicates, similarly to sponges, are increasingly
studied as a source of compounds with pharmacological interest
(Bauermeister et al., 2018). Although these biotechnological
applications are highly attractive, most are still at the stages of
initial screening and pre-clinical studies. Sustainable harvesting
of those biomolecules represents a major challenge as they are
usually present in small quantities and many of the microbes
involved in their production are uncultivable under laboratory
conditions (Van De Water et al., 2018).

Holobionts are ubiquitous in marine environments where they
often support vital ecological processes and act as ecosystem
engineers. Beside their ecological roles, marine holobionts have
an important economic value. This arises from the nature of the
ecosystems in which they thrive such as coral reefs, kelp forests
or deep-sea sponge grounds. Human populations rely on the
health of these systems for provisioning (fisheries, materials),
supporting (trophic cycles, nutrient cycling), regulating services
(carbon sequestration and storage, moderation of extreme events,
erosion prevention and pollution remediation), and cultural
services (tourism, recreational, aesthetic, and spiritual benefits)
(Millennium Ecosystem Assessment, 2005).

CONCLUSION

Studies on holobionts have become more and more numerous
in the past 20 years, especially with the emergence of HTS
technologies as they greatly facilitate the study of taxonomic and
functional diversity in the microbiome. Researchers first focused
on evolutionary questions, before addressing the implications
of such associations for the fitness of the partners and for
the ecosystems. Bacteria, but also archaea, fungi and viruses,
appear to be necessary for their hosts as they play key roles
in nutrition, development, protection and competition, thus
having an impact on biogeochemical cycles and on community
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structure. To this day, microbiome dynamics within
holobionts have not been completely unraveled. However,
the identification of a core microbiome across individuals of
a same species across various locations and environmental
conditions represents a significant step in our understanding
of holobiont’s associated microbial communities. All the
functions microorganisms play for their hosts have certainly
not been totally discovered. Questions also remain about the
transmission of symbionts to the offspring, their establishment,
and their maintenance through some mechanisms of the host
immunity acceptance and microbial adaptation to radically
different conditions. Microbiome also enhance acclimation and
adaptation capacities of their host via symbionts shuffling and
switching, microbial genetic mutations and horizontal gene
transfer. However, climate change, eutrophication, pollution
and overfishing appear to negatively impact ecologically
important holobionts such as several sponge species and
corals. These adverse conditions tend to reduce immunity
and increase the virulence of some pathogens, leading to
an increase in diseases outbreaks. In order to counteract
these detrimental effects and to keep the irreplaceable roles
holobionts play for ecosystem maintenance, as well as
their unique biotechnological potential, research is currently
carried out to elaborate biostimulation, bioaugmentation
and assisted evolution strategies. However, such practices
require that careful attention is brought to the ethical and
technical questions.

From coral reefs, to the deep sea, marine holobionts are
ubiquitous and support vital ecosystem services. The rise in
holobiont studies is exponential as microbiomes are increasingly
recognized as key players in many physiological and ecological
processes. With this, a series of new perspectives spanning
over evolutionary, ecological and conservation questions appear,

pushing the study of marine holobionts in the ranks of top
priorities for ocean health.
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