

ACADÉMIE DE RECHERCHE ET D'ENSEIGNEMENT SUPÉRIEUR

Land-use effects on soil quality of agricultural systems in the Central Andes of Bolivia

PhD. Candidate: Alejandro Coca Salazar

Laboratory of plant and microbial ecology – ULiège Laboratorio de Suelos y Aguas – UMSS

Supervisors: Monique Carnol, Jean-Thomas Cornelis

Outline of the presentation

- 1. Introduction
- 2. Study area
- 3. Methods, results and discussion
 - Soil chemical variables as indicators of soil quality
 - Soil physical variables as indicators of soil quality
 - Ammonia oxidizers as indicators of soil quality
 - Effects of fertilization on soil quality and plant development
- 4. Conclusions

1. Introduction

Soil quality:

"The capacity of a soil to function, to sustain biological productivity while maintaining environmental quality and promoting animal and human health"

(Doran and Parkin, 1994)

Chemical characterisitics

Physical characteristics

Microbial processes

Land use change

Mueller et al. 2013

Agricultural systems in the Andean region

- Potato is the main crop
- Fallow periods have been shortened
- Chicken manure was incorporated
- Eucalyptus plantations were introduced

General objective

Assess the effects of potato, short fallow fields, eucalyptus plantations, and chicken manure fertilization on soil quality of agricultural systems of the Central Andes of Bolivia

Specific objectives

Specific objectives

- Assess the soil chemical characteristics and microbial process related to C and N cycling, and the suitability of labile C fractions as indicators of microbial processes.
- Evaluate the soil aggregates and their association with soil binding agents (minerals and C fractions) and microbial processes.
- Evaluate the activity and abundance of ammonia oxidizing archaea and bacteria, and their relationships with physicochemical variables.
- Evaluate the effect of compost management on stability and maturity of chiken manure, and the effect of fertilization on soil quality and plant development.

2. Study area

Pocona

> 7000 farmers

Chullchunqani Community (4 km²)

Potato

Fallow

Eucalyptus

()

()

Soil sampling: •Eight plots per land use •Three samples per plot

An

Fallo

Eucalyptus

Potato

3. Methods, results and discussion

3.1 Soil chemical characteristics and their relationship with microbial processes

Methods Chemical variables Microbial processes рΗ Respiration Cations C fractions SOM – Total C Extractable C **Microbial biomass** N fractions Total N **Organic** N Inorganic N N Mineralization $NH_4 + NO_3$

 CO_2

Fallow and potato soils were similar for most soil variables and processes

Fallow and eucalyptus plantations lead to a reduction of net N transformations

Eucalyptus increased C fractions and respiration potential

Under eucalyptus aluminum increased and metabolic diversity reduced

Exchangeable AlMetabolic diversity(cmol kg⁻¹)of bacteria Index

The hot water extractable C was strongly related to respiration pontential and N mineralization

24

3.2 Soil aggregates and their association with soil constituents and microbial processes

Methods

• Oxalate

Soil structure improved under Eucalyptus plantations

Aggregate stability and Microbial processes size distribution

3.3 Ammonia oxidizers activity and abundance and their association with chemical variables

Methods

Abundance

Activity

DNA extraction

Total potential nitrification

qPCR of amoA gene

Archaea potential nitrification

AOA abundance and activity dominated under the three land uses

amoA abundance (%)

Potential nitrification (%)

Increase of the AOA and AOB abundances were associated with higher activity

Potato OFallow A Eucalyptus

Potato OFallow A Eucalyptus

3.4 Effects of fertilization on soil quality and plant development

Methods

Chicken manure composting

Treatments:

OT No turning4W Turning every 4 weeks2W Turning every 2 weeks

Soil fertilization experiment

Methods

Soil fertilization experiment

Avena sativa

- Soil physico-chemistry
- Plant development

Turning events accelerated composting process and promoted N loss

📕 OT 📃 🔍 📥 2W

Manure increased labile C and N, respiration potential, and soil pH

Fertilization enhanced plant development

📕 OT 📃 4W 📒 2W

Manure at early stages of decomposition increase the risk of negative effects on plants

Seeds with root damage

Root damage %

General Conclusions

• Evaluation of the interaction between the soil chemical, physical and biological components contributed to understand how soil quality respond to land uses.

Fallow

Eucalyptus

Fertilization

Fallowing soils did not have an effect on soil quality compared to cultivated fields Eucalyptus reduced chemical and biological soil quality but improved soil physical quality compared with cultivated fields

Chicken manure improved soil chemical and biological quality for cultivation

Acknowledgements

ACADÉMIE DE RECHEI D'ENSEIGH SUPÉRIEU

- Académie de Recherche et d'Enseignement Supérieur (ARES)
- Dirección de Investigación Científica y Tecnológica DICyT UMSS
- Le Centre pour le Partenariat et la Coopération au Développement PACODEL – Ulg
- Laboratory of plant and microbial ecology ULg
- Laboratorio de Suelos y Aguas UMSS
- Pocona Municipality
- Chullchungani Community and Subcentral Huayapacha

Acknowledgements

- Thanks to my supervisors Monique Carnol and Jean-Thomas Cornelis for their relentless support, guidance, and motivation.
- Thanks to my committee members for helping to improve my research.
- ► Thanks to Ramiro Iriarte and Alfredo Cáceres for sharing their extensive experience of Bolivian soils.
- Thanks to Bernard Bosman, Arnaud Adelgre, Marie Christine Requier, Assia Tahiri for their support and guidance during lab analyses.
- Thanks to my family for their endless emotional support and encouragement.

Thanks for your attention

Backup information

Perspectives and future research

Microbial community structure

Nutrient balance

Mean values ± standard deviation of sand, silt, and clay fractions, water holding capacity (WHC). Different letters indicate significant differences between land uses (p-value <0.05, n=8, ANOVA and Tukey).

	Potato	Fallow	Eucalyptus
Sand (%)	21.80±4.84 a	22.85±4.29 a	34.08±9.64 a
Silt (%)	29.51±3.87 a	31.57±8.75 a	29.53±5.02 a
Clay (%)	48.69±5.88 a	45.57±11.30 a	36.38±6.26 a
WHC (%)	51.20±4.02 a	53.20±2.60 a	48.79±7.73 a

Chicken manure decomposition and fertilization experiment

Chicken manure decomposition:

Nine manure piles were assigned to three turning frequency treatments and followed during 150 days:

T0: no turning4W: turning every 4 weeks2W: turning every 2 weeks

16 sampling dates

Fertilization experiment: 6 sampling dates were selected and used to assess the effect of manure on soil properties and plant development.

T0: no turning4W: turning every 4 weeks2W: turning every 2 weeks

Left: roots without rood damage. Right roots with signs of apparent damage in the form of tissue oranging. Different background color for A and B are presented to improve contrast and distinguish differences

Manure piles stablishment

General Conclusions

 The labile hot water extractable C and microbial biomass are potential indicators of changes in soil processes related to C and N cycling, and to changes in aggregates formation, respectively.

General Conclusions

- Evaluation of the interaction between the soil chemical, physical and biological components contributed to understand how soil quality respond to land uses.
- AOA dominated the three land uses studied and changes in the dominance are were associated to soil pH. Agricultural practices leading to changes in pH would thus determine changes in their contribution to nitrification.

