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Abstract

Résumé

Les norovirus (genre Norovirus, famille Caliciviridae) représentent la cause principale de
gastro-entérite sporadique et épidémique non bactérienne chez I'homme au niveau mondial. La
recombinaison et I'accumulation de mutations ponctuelles sont des mécanismes clés de I'évolution et de
la diversité des norovirus; de plus en plus de preuves indiquent que la recombinaison faconne la
pathogeneése et l'aptitude réplicative des norovirus et entraine I'évolution de souche émergentes de

norovirus humains.

La compréhension générale de la biologie des norovirus humains et en particulier de leur
recombinaison est peu connue par rapport a celle d'autres virus, en raison, entre autres, de la difficulté
que représente 1’étude in vitro des norovirus humains. Malgré des avancées spectaculaires au niveau de
I’étude in vivo et in vitro des norovirus humains, des questions importantes restent sans réponse en raison
des limites techniques de ces systémes expérimentaux. L’étude du norovirus murin, qui est
génétiquement et biologiquement apparenté aux norovirus humains, combine plusieurs avantages, a
savoir : une infection expérimentale in vivo relativement aisée sur un type d'héte propice, d'une culture
in vitro efficace et reproductible, et d’une large disponibilité d'outils de manipulation génétique. Il reste

ainsi le modele de choix pour 1’étude de norovirus.

Cette these étudie les différents points de contréle de la recombinaison: la co-infection de I'hote,
la co-infection de la cellule cible, la recombinaison en tant que processus et la sélection fonctionnelle
des souches résultantes sont examinées. La thése discute aussi qui les facteurs qui les favorisent ou le

défavorisent.

L'article de revue «Norovirus recombinants: recurrent in the field, recalcitrant in the lab — a
scoping review of recombination and recombinant types of noroviruses» (Ludwig-Begall et al., 2018)
donne un apercu complet de la recombinaison chez les norovirus et de son réle dans leur évolution
moléculaire. De plus, elle identifie les inconnues concernant les processus se déroulant avant et aprés la
recombinaison stricto sensu; dans |'étude de la co-infection cellulaire a la sélection fonctionnelle, les

études expérimentales 1 et 2 fournissent de nouvelles informations sur ces étapes cruciales.

In vivo, la co-infection unicellulaire synchrone par plusieurs virus est susceptible d'étre un
événement rare et les infections secondaires retardées sont plus probables. L'étude 1 détermine I'effet
d'une séparation temporelle des infections in vitro avec les deux souches parentales de norovirus murins
homologues MNV-1 WU20 et CW1 et leur impact sur la composition des populations de norovirus
murins. En résumé, WU20 et CW1 ont été inoculés, soit de maniére simultanée sur des monocouches
de cellules macrophages murines (co-infection), soit en différé (surinfection avec des titres variables de

CW1, d'une demi-heure a 24 heures de délai). Vingt-quatre heures aprés la co- ou surinfection initiale,
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la quantification du nombre de copies génomiques et du criblage des virus de descendance infectieuses
prélevés sur plaque ont démontré une prédominance dépendante du temps pour une primo-infection avec
WU20 dans la majorité des nouvelles générations. Nos résultats indiquent qu'un intervalle de temps
d'une & deux heures entre deux infections consécutives & norovirus permet I'établissement d'une barriére
qui réduit ou empéche la surinfection; ceci représente la premiére démonstration d'interférence virale
temporelle pour les norovirus et a des conséquences claires sur la compréhension de I'épidémiologie des

norovirus, I'évaluation des risques et potentiellement sur le traitement.

L'étude 2 examine les processus ayant lieu directement aprés la recombinaison et vise a
caractériser la capacité d'adaptation du norovirus murin recombinant WU20-CW1 précédemment généré
in vitro, RecMNV, et examine ainsi comment I'accumulation de mutations ponctuelles a travers des
passages viraux successifs peut compenser les pertes de capacité réplicative subies lors de la
recombinaison. En comparant l'aptitude réplicative (replicative fitness) et les caractéristiques génétiques
des descendants de RecMNV aux stades précoces et tardifs d'une expérience d'adaptation, le
rétablissement de I'aptitude réplicative (replicative fitness) du recombinant a été démontré avant et aprés
le passage in vitro en série. Les profils phénotypiques ont été associés a des modifications génétiques
au niveau de la population. Pour étudier I'effet des changements génomiques séparés ou non au sein d'un
norovirus murin infectieux chimérique, obtenu artificiellement, des mutations ont été introduites dans
un ADNc recombinant WU20-CW1 en vue d’obtenir une récupération génétique inverse basée sur
I'ADN. Cette expérience a prouvé que la perte de I’aptitude réplicative (replicative fitness) de RecMNV
était ainsi liée a une mutation C7245T et a une troncature de la protéine de capside mineure (cadre de
lecture ouvert 3) fonctionnelle; les effets compensatoires individuels et cumulatifs d'une mutation
synonyme au niveau de la protéine majeure de capside (cadre de lecture ouvert 2) et de deux mutations
non synonymes de la protéine non structurale 1/2 (cadre de lecture ouvert 1) acquises au cours de cycles
successifs de réplication in vitro ont été démontrés, suggérant que les interactions entre les protéines
virales et/ ou les structures secondaires de I'ARN des cadres de lecture ouverts différents peuvent jouer

un role dans la régulation de I'aptitude réplicative (replicative fitness) aprés recombinaison.

Cette theése sert a fournir un apercu des points critiques affectant le processus de recombinaison
et, via I’étude de I'exclusion de la surinfection et de la sélection fonctionnelle, fournit de nouvelles

informations sur les processus ayant lieu avant et aprés la génération d'un norovirus recombinant.



Abstract

Abstract

Noroviruses (genus Norovirus, family Caliciviridae) are recognised as the major global cause
of sporadic and epidemic non-bacterial gastroenteritis in humans. Recombination and the accumulation
of point mutations are key mechanisms in the evolution and diversity of noroviruses; increasing evidence
indicates that recombination shapes norovirus pathogenesis and fitness and drives the evolution of

emerging human norovirus strains.

The understanding of human norovirus biology in general and norovirus recombination in
particular has lagged behind that of other viruses due to the difficulties historically associated with
robust in vitro human norovirus propagation. While recently developed in vivo and in vitro human
norovirus assays have provided invaluable tools to dissect the norovirus life cycle, significant questions
remain unanswered due to the technical limitations of many of these experimental systems. The
genetically and biologically closely related murine norovirus combines the advantages of easy in vivo
infection of a genetically tractable native host, efficient and robust in vitro culture, and availability of

tools for genetic manipulation and thus remains the model of choice for many norovirus studies.

In the context of this thesis, the various norovirus recombination checkpoints, namely host
coinfection, single cell coinfection, recombination, and functional selection, are examined and their

drivers and constraints are discussed.

The review “Norovirus recombinants: recurrent in the field, recalcitrant in the lab — a scoping
review of recombination and recombinant types of noroviruses” (Ludwig-Begall et al., 2018) provides
a comprehensive overview of norovirus recombination and its role in norovirus molecular evolution and
identifies knowledge gaps pertaining to prerequisite processes both directly prior to and post actual
recombination in sensu stricto; in investigating conditions governing cell coinfection and functional

selection, respectively, experimental studies 1 and 2 provide novel insights into these crucial steps.

In vivo, synchronous single-cell coinfection by multiple viruses, the ultimate prerequisite to viral
recombination, is likely to be a rare event and delayed secondary infections are a more probable
occurrence. Study 1 determines the effect of a temporal separation of in vitro infections with the two
homologous parental murine norovirus strains MNV-1 WU20 and CW1 on the composition of murine
norovirus populations. WU20 and CW1 were either synchronously inoculated onto murine macrophage
cell monolayers (coinfection) or asynchronously applied (superinfection with varying titres of CW1 at
half-hour to 24-hour delays). Twenty-four hours after initial co- or superinfection, quantification of
genomic copy numbers and discriminative screening of plaque picked infectious progeny viruses
demonstrated a time-dependent predominance of primary infecting WU20 in the majority of viral

progenies. Our results indicate that a time interval from one to two hours onwards between two
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consecutive norovirus infections allows establishment of a barrier that reduces or prevents super-
infection; this first demonstration of time-dependent viral interference for noroviruses has clear

implications for norovirus epidemiology, risk assessment, and potentially treatment.

Study 2 examines the processes directly following recombination and aims to characterise the
adaptive capacity of previously in vitro-generated WU20-CW1 recombinant murine norovirus
RecMNV, thus investigating how the accumulation of point mutations through successive viral
passaging may compensate for initial replicative fitness losses incurred during deleterious
recombination processes. By comparing the replicative fitness and genetic characteristics of RecMNV
progenies at early and late stages of an adaptation experiment, replicative fitness regain of the
recombinant was demonstrated between viral progenies prior to and post serial in vitro passaging and
observable phenotypic profiles of viral fitness were associated to population-level genetic modifications.
To investigate the effect of genomic changes separately and in combination in the context of an
infectious lab-generated inter-murine norovirus chimera, mutations were introduced into a recombinant
WU20-CW1 cDNA for subsequent DNA-based reverse genetics recovery. Fitness loss of RecMNV was
thus linked to a C7245T mutation and functional minor capsid protein (open reading frame 3) truncation;
individual and cumulative compensatory effects of one synonymous major capsid protein (open reading
frame 2) and two non-synonymous non-structural protein 1/2 (open reading frame 1) consensus-level
mutations acquired during successive rounds of in vitro replication were demonstrated, suggesting that
interactions of viral proteins and/or RNA secondary structures of different open reading frames may
play a role in the regulation of replicative fitness after a recombination event. This in vitro proof-of-
concept study thus simulates successful adaptation (genetic drift) of a nascent norovirus after
recombination (genetic shift) and serves to conceptualise how the emergence of recombinant human
norovirus field strains, held to represent an adapted and functionally selected subset of all generated
recombinants, may be regulated by an interplay between the two evolutionary processes of

recombination and point mutation accumulation.

This thesis serves to provide a comprehensive overview of the recombination checkpoints to be
bypassed and, in investigating both superinfection exclusion and functional selection, provides novel

insights into prerequisite processes both before and after generation of a recombinant norovirus genome.
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Preamble

Noroviruses are recognised as the major global cause of sporadic and epidemic non-bacterial
gastroenteritis in humans. Recombination and the accumulation of point mutations are key mechanisms
in the evolution and diversity of noroviruses; increasing evidence indicates that recombination
influences norovirus pathogenesis and fitness and contributes to the evolution of emerging human
norovirus strains. Despite its importance, many aspects of norovirus recombination have hitherto

remained unresolved.

In the context of this thesis, the various norovirus recombination checkpoints, namely host
coinfection, single cell coinfection, recombination, and functional selection, are examined and their

drivers and constraints are discussed.

The manuscript comprises four sections. The first chapter of the introduction encompasses an
overview of the various aspects of norovirus biology. This is followed by a detailed description of RNA
virus evolutionary processes and the molecular evolution of noroviruses in chapter 2, which closes with
a scoping review of recombination and recombinant types of noroviruses (published in Journal of
General Virology). The thesis objectives are succeeded by the experimental section which is subdivided
into two parts. Experimental Study 1 describes how the analysis of synchronous and asynchronous in
vitro infections with homologous murine norovirus strains reveals time-dependent viral interference
effects (published in Viruses). Experimental Study 2 focuses on the replicative fitness recuperation of a
recombinant murine norovirus and describes the in vitro reciprocity of genetic shift and drift (published
in Journal of General Virology). In the last section of this manuscript, the main results of this thesis are

discussed and perspectives of the work are presented.
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1. Noroviruses

1.1 Phylogeny

1.1.1  The Caliciviridae family

The Caliciviridae family of small, non-enveloped, positive sense, single-stranded RNA viruses
derives its name from the Latin calix for chalice with reference to the cup-shaped depressions that
commonly contour the virion surface of caliciviruses. The family is currently comprised of eleven
approved genera, Norovirus, Sapovirus, Nebovirus, Recovirus, Lagovirus, Vesivirus, Valovirus,
Bavovirus, Nacovirus, Minovirus and Salovirus (Figure 1), which are distinguished based on over 60%
amino acid sequence difference in the complete major capsid protein (VP1) sequence (Vinjé et al.,
2019).

Caliciviridae infect a wide range of host species and cause a variety of mainly species-specific
diseases (Desselberger, 2019). Within the seven genera of which members infect mammals, noroviruses
and sapoviruses typically cause gastroenteritis of varying severity in their animal and human hosts (Oka
et al., 2015; Robilotti et al., 2015; Scipioni et al., 2008a), while neboviruses and recoviruses are enteric
pathogens of cattle (Bridger et al., 1984) and rhesus macaques (Farkas, 2015; Farkas et al., 2008),
respectively. Some lagoviruses and vesiviruses cause severe systemic infections in their mammalian
hosts; pathogenic lagovirus infections provoke necrotic hepatitis and systemic haemorrhagic disease in
lagomorphs (Abrantes et al., 2012; Le Pendu et al., 2017; Ohlinger et al., 1990; Wirblich et al., 1994),
and vesivirus infections cause respiratory infections in cats (Radford et al., 2007), vesicular disease and
foetal damage in swine, and vesicular exanthema and diseases of the reproductive system in marine
mammals (Neill et al., 1995). The disease association of swine valoviruses remains unknown (L’Homme
et al., 2009). Members of the two genera Bavovirus and Nacovirus have been associated with enteritis
in poultry (Wolf et al., 2012); members of the two genera Minovirus and Salovirus infect various fish
species (Mikalsen et al., 2014; Mor et al., 2017).

1.1.2 The Norovirus genus

The genetically diverse noroviruses (NoVs), which infect a broad range of mammalian hosts,
derive their name from the city of Norwalk, Ohio, where an acute gastroenteritis outbreak in a school
was caused by the prototypic Norwalk virus (Kapikian et al., 1972). In the early 2000s, classification
into NoV genogroups and genotypes was initially based on amino acid sequence analysis of the complete
VP1 capsid protein, with an amino acid divergence of 14.1% within a genotype and an adjusted cut-off
threshold of a minimum of 15% pairwise difference proposed for classification of new genotypes (Vinjé
et al., 2000; Zheng et al., 2006).
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In 2013, the international Norovirus Classification Working Group (NCWG) put forth a
proposal for a unified NoV nomenclature and genotyping, whereby NoVs were genetically classified
into six established genogroups (GI-GVI), with a seventh proposed (GVII), and genogroups were
further divided into at least 38 genotypes based on phylogenetic clustering of complete VP1 amino acid
sequences (Kroneman et al., 2013; Vinjé, 2015); GlI.4 strains were additionally subtyped into variants
based both on phylogenetic clustering and on the condition of their having become epidemic in at least
two separate geographical locations and were named according to year and location of the first full-
length capsid sequence in the public domain. To account for the common occurrence of recombination
in the overlapping region between the first two of three open reading frames (ORF1/2) encoded by
NoVs, a dual-nomenclature system based on complete capsid sequences in ORF2 and partial sequences
of the RNA-dependent RNA polymerase (RdRp) region in ORF1 was established (Kroneman et al.,
2013). According to this nomenclature, e.g. “norovirus GII/Hu/FR/2004/GII.P12_GII.3/Paris23”
designated a GII recombinant strain with known partial ORF1 RdRp type (GlI, P type = 12) and
complete ORF2 (genotype = 3) sequences; “norovirus GII/Hu/FR/2004/GII.12/Paris25” denoted a strain
with known capsid sequence (GlI, genotype 12), but unidentified RdRp. Naming of “orphan” ORF1
polymerase types, also known as “obligatory NoV recombinants” and designating known RdRp
sequences lacking attributed capsid sequences but promiscuously associated with capsids of different

genotypes, followed a preliminary alphabetical naming system (e.g. G1.Pa).

Adhering to the established criteria for genotype attribution and numbering of complete capsid
sequences, the prior classification was recently updated to encompass ten accepted genogroups (Gl to
GX) and 49 confirmed genotypes (Figure 1), as well as two tentative genogroups (GNAL and GNA2)
and three proposed genotypes (Chhabra et al.,, 2019). To more easily accommodate ORF1/2
recombination of NoVs and to eliminate the necessity of the letter-based orphan ORF1 naming system,
partial RARp sequence clusters were grouped into eight confirmed and two tentative polymerase (P)-
groups as well as 60 accepted and 14 tentative P-types independently of the classification of their capsid
genogroups or genotypes. Accordingly, nine VP1 genotypes in Gl, 27 in GlI, three in GllII, two each in
GIV, GV and GVI, and one each in GVII to GX are currently recognised; of the P-types, 14 cluster in
Gl, 37 in GlI, two in GllI, one in GIV, two each in GV and GVI, and one each in GVII and GX (Figure
2). Separate phylogenetic clusters for both VP1 and partial RdRp sequences are confirmed according to
the 2 x standard deviation criteria, which state that the average distance between all sequences within a
newly identified cluster and its nearest established cluster, should not overlap within two standard
deviations of each other (Chhabra et al., 2019). The previous dual typing nomenclature of norovirus
strains was abandoned in favour of an updated version first listing the capsid genotype followed by the
P-type between brackets (e.g. previous designation: GII.P12-GIl.3; current designation: GII.3[P12]).
For strains where ORFII and ORF1 amino acid sequences cluster in different genogroups, the
designations are Genogroup.genotype[Pgroup.P-type] (e.g. previous designation: GVI.P1-GIV.2;

current designation: GIV.2[GVI.P1] (Chhabra et al., 2019).
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Caliciviridae
—  Norovirus  —1— Gl Human
—  Sapovirus ~— GIll Human | Porcine
—  Nebovirus — Glll Bovine | Ovine
—  Recovirus — GIV Human | Canine | Feline
—  Lagovirus — GV Murine
—  Vesivirus — GVI Canine
—  Valovirus —  GVII Canine
—  Bavovirus —  GVIII Human
—  Nacovirus —  GIX Human
—  Minovirus — GXBat
—  Salovirus

Figure 1. Schematic diagram of the Norovirus genus within the Caliciviridae family. The ten
established genera (Gl — GX), as defined by Chhabra et al. 2019, are shown.

Genogroups Gl, GlI, GIV, GVIII and GIX (previously GII.15) infect humans and cause acute
gastroenteritis (Chhabra et al., 2019; van Beek et al., 2018). Of these, viruses from the genotype Gll.4
are responsible for the majority of NoV outbreaks worldwide with novel pandemic GIl.4 variants
emerging every 2 to 3 years (Bruggink et al., 2017; de Graaf et al., 2016; Mathijs et al., 2011). Other
species from which NoVs have been isolated include pigs (GII) (L’Homme et al., 2009), cattle and sheep
(GII) (Di Felice et al., 2016; Oliver et al., 2003; Scipioni et al., 2008a), rats and mice (GV) (Karst et
al., 2003), dogs (GVI and GVII) (Mesquita et al., 2010) and bats (GX) (Wu et al., 2016). Tentative new
genogroups GNAL and GNAZ2 are detected in harbour porpoises (de Graaf et al., 2017a) and sea lions
(Teng et al., 2018), respectively. The remarkable level of variability within the NoV genus reflects the

high level of continuous viral evolution therein.
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Figure 2. Phylogenetic classification of noroviruses. Above: Phylogenetic tree of ten
established (turquoise) and two non-assigned (NA; light grey) norovirus genogroups based
on major structural protein amino acid sequences. Below: Phylogenetic tree of eight
established (dark grey) and two tentative (NA; light grey) norovirus P-groups based on partial
RNA-dependent RNA polymerase sequences (762 nucleotides). Phylogenetic analyses were
performed using maximum likelihood. Adapted from Chhabra et al. 2019.
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In the following chapters, the focus of this thesis will be on both HuUNoVs, the major aetiologic agents
of global sporadic and epidemic viral gastroenteritis (Robilotti et al., 2015), and on the genetically and
biologically closely related MuNoVs, which combine the advantages of efficient in vitro culture systems
(Wobus et al., 2006, 2004) and availability of tools for genetic manipulation (Arias et al., 2012a; Yunus
et al., 2010), and were used as a model for the NoV studies included in the context of this work.

1.2 Genome organisation

The linear, positive sense, single-stranded RNA genomes of NoVs are between 7.3 — 7.5
kilobases (kb) in length (Thorne and Goodfellow, 2014); a subgenomic RNA identical to approximately
the last 2.3 kb of the genome is found in viral particles and is expressed, at higher levels than the viral
genomic RNA, in infected cells (Asanaka et al., 2005). The 5’ ends of NoV genomic and subgenomic
RNA are linked to viral protein VPg (Goodfellow, 2011; Lee et al., 2018; Olspert et al., 2016), the 3’
ends are polyadenylated (Lambden et al., 1993). At their extremities, NoV genomes contain short
untranslated regions (UTRs) (Bertolotti-Ciarlet et al., 2003) which contain evolutionarily conserved
RNA secondary structures that extend into the coding regions and are repeated throughout the genome,
playing functional roles for viral replication, translation and pathogenesis by binding viral and host
factors (Simmonds et al., 2008); a highly conserved non-coding RNA stem-loop structure upstream of
the start site for subgenomic RNA initiation at the overlap of ORFs 1 and 2 has been identified as the
core promoter for NoV subgenomic RNA synthesis by binding with the viral RNA-dependent RNA
polymerase (RdRp) (Bull et al., 2005; Lin et al., 2015; Thorne and Goodfellow, 2014; Yunus et al.,
2015).

The NoV genome is organised into three or, for MuNoV, four ORFs (Figure 3) (McFadden et
al., 2011). The 5’ proximal ORF1 encodes a large polyprotein that is co-and post- translationally cleaved
by a virus-encoded protease into six non-structural proteins (NS) involved in replication complex
formation (NS1/2, NS3, NS4), genome linkage (NS5, VPg), polyprotein processing (NS6), and genome
replication (NS7, RdRp) (Thorne et al., 2012; Thorne and Goodfellow, 2014). Alternative names exist
for HUNoV- and MuNoV NS proteins (Sosnovtsev et al., 2006); throughout this thesis the names related
to MuNoV will be utilised. ORF2 and ORF3, both translated from subgenomic RNA, encode the
structural components of the virion, the major viral protein (VP1) and minor viral protein (VP2),
respectively. Open reading frame 4, unique to MuNoVs, overlaps ORF2 and is also translated primarily
from subgenomic RNA; it encodes the virulence factor 1 (VF1) which is involved in regulation of innate
immunity and apoptosis. The functions of various NoV proteins are discussed further in the context of

the NoV replicative cycle (chapter 1.4.).
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Figure 3. Schematic diagram showing the organisation of norovirus genomes.

Above: The human norovirus genome is covalently attached to genome-linked viral protein
VPg at the 5’end and is polyadenlyated at the 3’end. The genome is divided into three open
reading frames (ORFs), which are common to all noroviruses. ORF1 is translated as a
polyprotein, which is cleaved by the viral protease (Pro) to produce the non-structural proteins
(p48, NTPase, p22, VPg, Pro and Pol). ORF2 and ORF3 are translated from a subgenomic
RNA. They encode the major structural protein, VP1 and the minor structural protein, VP2,
respectively. The 5" and 3’ genome extremities contain short untranslated regions (UTRs).
Below: The murine norovirus shares a similar genome organisation but has an additional
fourth ORF which overlaps with ORF2 and is also translated primarily from subgenomic RNA
into the virulence factor 1 (VF1) protein; adapted from Thorne & Goodfellow 2014

1.3 Virion morphology

The NoV capsid is typically 27-30 nm in diameter and displays a T=3 icosahedral symmetry;
cup-like depressions, characteristic for caliciviruses, are localised at the three- and fivefold symmetry
axes (Figure 4). Each capsid is composed of 180 copies of monomeric major structural protein VP1
which form 90 dimeric capsomers (Prasad et al., 1994, 1999). Each VP1 comprises a short N-terminal
arm of unknown function, a shell domain (S), and a protruding domain (P) forming dimeric VVP1 arches
(Figure 4) (Prasad et al., 1999). The well-conserved N-terminal S domain faces the interior of the capsid
and forms a continuous surface surrounding the viral RNA. The P domain, linked to the S domain
through a flexible hinge, corresponds to the C-terminal part of VVP1. It is postulated to confer increased
stability to the icosahedral capsid and to provide a control for the size of viral particles (Bertolotti-Ciarlet
et al., 2002). The P domain is further divided into a proximal P1 stalk subdomain at the base of the

arches and the highly variable distal P2 subdomain. Localised at the tips of the arches, the exposed P2
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subdomain interacts with neutralizing antibodies and contains the defined host receptor binding site for
MuNoVs (Graziano et al., 2020) and putative receptor binding site for HuNoVs (Chakravarty et al.,
2005; Graziano et al., 2019; Hutson et al., 2004; Orchard et al., 2016).

Minor structural protein VP2 (Glass et al., 2000), encoded by all caliciviruses, is located at the
interior of the viral capsid and bound to a conserved motif in the VP1 S domain. It is postulated to be
involved in MuNoV encapsidation via an interaction with viral genomic RNA (Thorne and Goodfellow,
2014; Vongpunsawad et al., 2013) and acidic regions of VP1 (Thorne et al., 2012) and is held to regulate
expression and stability of VP1 in HuNoVs (Bertolotti-Ciarlet et al., 2003; Liu et al., 2019). VP2
integrity has been shown to be essential for productive replication of infectious feline calicivirus
(Sosnovtsev et al., 2005). Feline calicivirus VP2 forms a portal-like assembly following host cell
receptor engagement and is hypothesised to function as a channel for viral genome release from the

endosome into the cytoplasm of a host cell (Conley et al., 2019).

P2-domain

P1-domain

Figure 4. Norovirus virion morphology.

Left: An aggregate of Norwalk virus particles in stool filtrate as visualized by immune electron
microscopy; adapted from Kapikian et al., 1972. Middle: Surface reconstruction of a T=3
icosahedral Norwalk virus-like particle (the structure has been resolved both by cryo-electron
microscopy and x-ray crystallography; Protein Data Bank ID: 1IHM; DOI:
10.2210/pdb1IHM/pdb); adapted from Prasad et al., 1999 and Hutson et al., 2004. Right: The
ribbon diagram represents the monomeric VP1 capsid protein divided into an N-terminal arm
(green) facing the capsid interior, a shell domain (S-domain, yellow) that forms the continuous
surface, and a protruding domain (P-domain) that extends from the S-domain surface. The P-
domain is further divided into subdomains, proximal P1 (red) and distal P2 (blue); adapted
from Hutson et al., 2004.
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1.4 Replicative cycle

1.4.1 Attachment, receptor engagement, endocytosis, and uncoating

As the initial step of the NoV replicative cycle and decisive early determinant of cell tropism,
host range, and pathogenesis, the multi-phasic process of viral entry commences via virion attachment
to the cell surface (Marsh and Helenius, 2006). Attachment of NoVs is mediated by binding of the virus
to both cell-associated and soluble host factors (Graziano et al., 2019).

HuNoVs are bound by histo-blood group antigens (HBGAS), as evidenced by in vitro assays
(Marionneau et al., 2002) as well as multiple volunteer studies documenting the correlation between
long-term resistance to infection with certain HuNoV strains and FUT2 gene-mediated genetic
polymorphisms that determine host secretor status (Johnson et al., 1990; Thorven et al., 2005). The
ability to secrete a diverse set of fucosylated HBGAs into body fluids and on mucosal cells (secretor) is
associated with HuNoV susceptibility; expressing only a limited array of HBGAs (non-secretor) is
linked to resistance to certain HuNoV strains (including genogroups Gl.1 and prevalent Gll.4)
(Lindesmith et al., 2003; Nordgren and Svensson, 2019). While non-secretors thus experience infections
with a lesser variety of NoV strains, the resistance to HuNoV is not absolute and they can become
infected by secretor-independent strains (GII.3, GII.7, and GII.6), implicating non-HGBA ligands
(fucosylated and sialylated carbohydrates (Wegener et al., 2017)) and co-factors in HuNoV binding
(Almand et al., 2017; Graziano et al., 2019; Lindesmith et al., 2020).

In addition to binding to host HBGAs, NoVs may also bind directly to HBGAs expressed by
commensal bacteria in the gut (Miura et al., 2013b), which may thus act as proviral co-factors for
HuNoV infection; in this context, HuNoV B cell infection is enhanced by HBGA-producing bacteria or
free synthetic HBGAs (Jones et al., 2014). While HGBA binding apparently plays no role in MuNoV
infection, a dependency on faecal microbiota has been demonstrated for MuNoVs in vitro (Jones et al.,
2014) and in vivo (Baldridge et al., 2015); thus, bacterial depletion via antibiotic treatment of mice
prevents infection with both acute and persistent MuNoV strains (Baldridge et al., 2015) and
susceptibility to persistent strains has been linked to changes in target cell numbers (tuft cells are targets
of persistent MuNoV strains; see below) which may be regulated by the presence and composition of
gut microbiota and their metabolites (Wilen et al., 2018).

For MuNoVs, non-essential carbohydrate attachment factors including heparan sulfate
proteoglycans and terminal sialic acid have been shown to enhance viral VP1 binding in a strain-
dependent manner (Orchard et al., 2016; Taube et al., 2012, 2009). Notably, sialic acids have also been
implicated in facilitating the attachment of bovine NoVs and feline calicivirus (FCV) to susceptible cells
(Mauroy et al., 2011; Stuart and Brown, 2007).
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Suggested host and microbial cofactors that enhance NoV attachment to cells (also in a strain-
dependent manner) include bile acids (MuNoV and HuNoV) (Ettayebi et al., 2016; Kilic et al., 2018;
Nelson et al., 2018), phospholipids (MuNoV) (Orchard et al., 2018), and divalent cations (MuNoV)
(Nelson et al., 2018).

The second step of viral entry is the engagement of host receptors to actively promote viral
access to cells. CD300If, an immunoglobulin domain-containing integral membrane protein expressed
in myeloid cells, lymphoid cells and intestinal epithelial tuft cells (Borrego, 2013), has been identified
as the primary physiologic cellular MuNoV receptor (Orchard et al., 2016). It functions by binding the
apical side of the P2 subdomain and is essential for infection of diverse MuNoV strains both in vitro
and in vivo independent of infection route (Graziano et al., 2020); its paralogue CD300Id has also been
demonstrated to be sufficient for MuNoV infection in vitro. Ectopic expression of murine CD300If on
human and other mammalian cells has been shown to be sufficient to confer cross-species permissivity,
effectually breaking the species barrier and allowing MuNoV replication in non-murine cells (Orchard
et al., 2016). Human CD300If is not a receptor for HuNoVs and the HUNoV receptor remains unknown
(Graziano et al., 2020).

The details of which mechanisms are involved in the endocytic internalisation of HuNoV
particles following receptor engagement are unknown. For MuNoVs, entry into permissive macrophages
and dendritic cells is known to be rapid, requiring host cholesterol and dynamin (Gerondopoulos et al.,
2010; Perry and Wobus, 2010). This viral endocytosis is independent of pH (Perry et al., 2009), clathrin
and caveolae, and is neither mediated by phagocytosis nor micropinocytosis (Perry and Wobus, 2010).
For bovine NoVs, VLP internalisation into permissive cells involves both the cholesterol-dependent

pathway and macropinocytosis (Mauroy et al., 2011).

After endocytosis, endosomal escape and viral uncoating are required to release the viral
genome into the host cytoplasm. While the process remains unsolved for NoVs, a recent near-atomic
resolution analysis of FCV yielded important basic information regarding these important last steps of
calicivirus entry. In the process of clathrin- and pH-dependent endocytosis, binding of FCV to its
receptor feline junctional adhesion molecule A (fJAM-A) was shown to induce formation of a portal-
like assembly made up of twelve copies of VP2 arranged with their hydrophobic N termini pointing
away from the virion surface around a pore in the capsid shell. The funnel-like structure is hypothesised
to function as a channel for the delivery of the viral genome through the endosomal membrane into the

cytoplasm of a host cell, thereby initiating infection (Conley et al., 2019).
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1.4.2 Translation and polyprotein processing

Following its release into the cytoplasm of a permissive cell, the VPg-linked NoV RNA acts as
a messenger RNA (mRNA) template for an initial round of viral RNA translation. Attached covalently
to the 5° end of the genome, NoV VPg (NS5) functions as a cap substitute to recruit eukaryotic initiation
factors and mediate translation of viral RNA into protein via multiple direct interactions with the cellular
translational apparatus of the host cell and core stress granule components (Brocard et al., 2020;
Chaudhry et al., 2006; Daughenbaugh et al., 2006; Emmott et al., 2017; Hosmillo et al., 2019).
Interactions between various host cell RNA-binding proteins and conserved RNA secondary structures
of complementary sequences at the 3’ and 5* genome extremities are further postulated to enhance and
regulate viral protein translation, putatively by stabilising sequence-mediated, long-range physical RNA
interactions that promote genome circularisation (Lépez-Manriquez et al., 2013; Simmonds et al., 2008).
Translation of the viral proteins VP1 and VP2 occurs primarily from the ORFs of the polycistronic
subgenomic RNA which, following its transcription from genomic RNA by the NoV nonstructural
proteins, is expressed at higher levels than the viral genomic RNA in infected cells (Asanaka et al.,
2005) in a probable strategy to augment levels of VP1 production for virus assembly (Thorne and
Goodfellow, 2014). Translation of ORF4 in MuNoV from subgenomic RNA yields VF1 which has been
implicated in interfering with innate immune signalling at the cellular level and was recently found to
delay the upregulation of IFN-B and other interferon stimulated genes (ISGs) in vitro (McFadden et al.,
2011).

1.43 Viral genome replication

Once translated, the ORF1 polyprotein is co- and post-translationally cleaved by the viral
protease (NS6) to release NS precursors and mature viral proteins (NS1/2 to NS7) (Emmott et al., 2019;
Sosnhovtsev et al., 2006) that then serve to assemble the replication complex by recruitment of cellular

membranes to the perinuclear region of the cell (Hyde et al., 2009).

MuNoV NS1/2, the least conserved NoV NS (Thorne et al., 2012), is hypothesised to be one of
the main drivers of replication complex formation by associating with components of the endocytic and
secretory pathway together with co-localizing NS4 (Hyde and Mackenzie, 2010; Kaiser, 2006). NS1/2
contains an N-terminal disordered region and a C-terminal predicted trans-membrane domain (Baker et
al., 2012). MuNoV NS1/2 has been shown to induce rearrangement of the endoplasmic reticulum. It is
implicated in viral persistence in vivo (Nice et al., 2013) and, once unconventionally secreted via
caspase-3 cleavage, is essential for intestinal pathogenesis of MuNoV infection and resistance to
endogenous IFN-y (Lee et al., 2019). Its HuNoV equivalent p48 promotes Golgi disassembly dependent

upon the C-terminal hydrophobic region and disrupts expression and trafficking of cell surface proteins
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by interfering with cellular vesicle transport (Doerflinger et al., 2017; Fernandez-Vega et al., 2004); a
secreted form of HuNoV NS1 is also observed (Lee et al., 2019).

As a constituent of the MuNoV replication complex, NS4 localises to endosomes (Hyde et al.,
2009; Hyde and Mackenzie, 2010). HuUNoV NS4 (P22) has been shown to induce Golgi disassembly
(Sharp et al., 2010) and has been identified as a key determinant in the formation of membrane
alterations by HuNoVs (Doerflinger et al., 2017); both MuNoV and HuNoV NS4 inhibit cellular protein
secretion (mildly in MuNoV and potently in HuNoV) (Hyde and Mackenzie, 2010; Sharp et al., 2010).

While NS1/2 and NS4 are acknowledged to be key main mediators of replication complex
formation, NS3, to which RNA-chaperoning and helicase activities have been attributed (Han et al.,
2018; Li et al., 2018), has also been shown to localise to cellular membranes (Hyde et al., 2009). Both
HuNoV and MuNoV NS3 induce formation of motile membrane-derived vesicular structures that
colocalise with the Golgi apparatus and the endoplasmic reticulum (Cotton et al., 2017; Doerflinger et
al., 2017).

Norovirus genome replication occurs via a negative-strand intermediate (Thorne and
Goodfellow, 2014); subsequent to the initial round of translation of the incoming positive-stranded
parental RNA, this mMRNA serves as a template for the synthesis of negative-strand RNA from its 3° end
and the formation of a double-stranded replicative form. The negative-sense genomic and subgenomic
RNAs are then used as templates for the synthesis of positive sense genomic and subgenomic RNAS
(Thorne and Goodfellow, 2014). These transcription reactions are catalysed by the RNA-dependent
RNA-polymerase (RdRp, NS7), using de novo mechanisms for synthesis of negative-stranded RNA
(Subba-Reddy et al., 2017, 2012), and VVPg-dependent mechanisms of positive sense genomic and
subgenomic RNA synthesis in which the NS7 uses multifunctional VVPg as a proteinaceous primer (Lee
et al., 2018; McSweeney et al., 2019; Olspert et al., 2016). Two, not-mutually exclusive, models have
been proposed for the generation of NoV subgenomic RNA; based on the detection of negative-sense
subgenomic RNA copies in Norwalk virus replicon-bearing and MuNoV infected cells (Chang et al.,
2006; Yunus et al., 2015), the pre-mature termination model proposes synthesis of negative-sense
subgenomic RNA linked to an unidentified termination signal, and subsequent generation of positive
sense subgenomic RNA from this template. The internal initiation model postulates that the highly
conserved stem-loop structure upstream of the subgenomic start site in the negative-sense genomic RNA
acts as the core of an internal subgenomic promoter and binds to the RdRp to direct initiation at the
overlap of ORFs 1 and 2. In this case, newly synthesised subgenomic RNA may function as a template
for further rounds of replication via a negative-sense subgenomic RNA intermediate (Bull et al., 2005;
Lin et al., 2015; Simmonds et al., 2008; Yunus et al., 2015).
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1.4.4  Assembly and exit

Self-assembly of VP1 into virus-like particles (VLPs) that are morphologically and antigenically
comparable to native virions (Bertolotti-Ciarlet et al., 2002), suggests that VP1 alone may be able to
drive assembly of infectious NoV particles. While not essential for assembly, the 3° UTR of the Norwalk
MRNA can stimulate VVP1 expression via putative RNA-capsid interactions and the presence of VP2 is
held to enhance the stability of nascent particles (Bertolotti-Ciarlet et al., 2003; Lin et al., 2014; Pogan
etal., 2018). Associated with a conserved acidic motif in the VP1 S domain at the capsid interior (Thorne
et al., 2012; Vongpunsawad et al., 2013), the highly basic VP2 may provide the link between capsid
subunits and acidic viral RNA (Thorne and Goodfellow, 2014; Vongpunsawad et al., 2013).

Upon completed assembly, virion exit is the last step of the replicative cycle. Active viral
replication of MuNoVs in permissive cells, and indeed the expression of the MuNoV polyprotein alone,
have been shown to regulate and induce apoptosis and programmed cell death in conjunction with
downregulation of pro-survival factor surviving in infected cells (Bok et al., 2009; Herod et al., 2014).
While its role in viral exit remains undetermined, inhibition of apoptosis has been shown to accelerate
cell death, change the death pathway to rapid necrosis, and to ultimately result in an over 10-fold

reduction in infectious NoV vyield (Furman et al., 2009).

While MuNoVs lytically infect innate immune cells including macrophages and dendritic cells
in vitro (Karst et al., 2003), the nature of in vitro B cell infection by HuNoVs and MuNoVs is distinct
in that mature B cells are infected noncytopathically (Jones et al., 2015; Karst, 2015a), suggesting that
different mechanisms of cellular regulation and cell exit can be employed by NoVs. The paradigm that
nonenveloped viruses must lyse their target cells in order for progeny virions to be released
extracellularly has further been challenged by the discovery that, amongst other enteric viruses, NoVs
can be secreted from cultured cells inside extracellular membrane-bound vesicles and that they are shed
in faeces within vesicles of exosomal or plasma membrane origin presenting highly virulent units of

faecal-oral transmission (Santiana et al., 2018).

An outline of the entire NoV replication cycle is provided in Figure 5.
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Figure 5. Outline of the norovirus replication cycle.

Human and murine noroviruses (turquoise hexagons) attach to the cell surface using
carbohydrate attachment factors and cofactors (1). To mediate entry, binding to a protein
receptor is required (2). After entry (3) and uncoating (4), the incoming viral genome is
translated through interactions with the genome-linked protein VPg (non-structural protein
NS5; red triangle) at the 5" end of the genome and the cellular translation machinery (5). The
open-reading frame 1 polyprotein is co- and post-translationally cleaved by the viral protease
(NS6; blue flash) (6). The replication complex is formed by recruitment of cellular membranes
to the perinuclear region of the cell, through interactions in part with NS1/2 (rose shape) and
NS4 (yellow shape) (7). Genome replication occurs via a negative-strand intermediate
(dashed line) (8), and genomic and subgenomic RNA (unbroken lines) are generated by the
viral RNA-dependent RNA polymerase (NS7; green jagged circle), using de novo and VPg- or
internal promoter-dependent mechanisms of RNA synthesis (9). Replicated genomes are
translated or packaged into the capsid, composed mainly of viral protein 1 (VP1), for virion
assembly (10) and exit (11).
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1.5 Clinical aspects of norovirus infection

1.5.1 Human noroviruses

HuNoVs are recognised as the major global cause of sporadic and epidemic viral gastroenteritis
(Patel et al., 2008; Robilotti et al., 2015). After a short incubation period of 24-48 hours (Lee et al.,
2013), clinical symptoms typically last for two to three days (Robilotti et al., 2015), followed by a
median of four weeks of post-clinical shedding (Atmar et al., 2008) with peak viral titres varying
between 10°-10° genome copies/g of faeces (Teunis et al., 2015).

Characteristic symptoms of HuNoV infection are acute onset of watery, non-bloody diarrhoea
and projectile vomiting (Kaplan et al., 1982). Other symptoms include abdominal cramps, nausea,
bloating, mild fever, chills, headaches and myalgia (Atmar and Estes, 2006; Gallimore et al., 2004a3;
Tseng et al., 2011). While self-limiting gastrointestinal infections are the norm, more severe intestinal
pathologies such as necrotising enterocolitis in neonates (Stuart et al., 2010; Turcios-Ruiz et al., 2008),
post-infectious irritable bowel syndrome (Marshall et al., 2007), and exacerbation of inflammatory
bowel disease (Khan et al., 2009) have been described. Atypical extraintestinal pathologies such as
seizures in young children (Chen et al., 2009; Hu et al., 2017; Ueda et al., 2015), encephalopathy (lto et
al., 2006), and acute liver dysfunction (Lok Tung Ho et al., 2020; Nakajima et al., 2012) have also been
reported in association with NoV infections; NoV RNA has been detected in sera (Takanashi et al.,
2009) and cerebrospinal fluids (Ito et al., 2006) of infected individuals, suggesting possible spread to

peripheral tissues.

Despite typically eliciting severe gastroenteritis, HUNoVs cause only modest intestinal
pathologies. Histopathological changes in the small intestine include broadening and shortening of the
microvilli, crypt hypertrophy, as well as increased epithelial mitoses and apoptosis (Schreiber et al.,
1973). Decreased brush border enzyme activity, transient malabsorption of D-xylose, fat, and lactose,
disruption of epithelial barrier functions, reduction of tight junctional sealing proteins, and stimulation
of active anion secretion, suggest that both a leak flux and alterations of secretory and/or absorptive
processes cause HuNoV-induced diarrhoea (Blacklow et al., 1972; Karst et al., 2015; Troeger et al.,
2009). Vomiting episodes may be linked to abnormal gastric motor functions and delays in gastric

emptying, however the underlying pathophysiology remains unclear (Meeroff et al., 1980).

Asymptomatic infections and viral shedding similar to that of symptomatic infections (Teunis
et al., 2015) have been both experimentally observed in volunteer studies (Graham et al., 1994) and
detected in various epidemiological analyses of clinically healthy individuals and those with various
underlying illnesses resulting in impaired immunity (Ayukekbong et al., 2011; Lopman et al., 2014;

Siebenga et al., 2008; Utsumi et al., 2017).
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Customarily an acute and self-limiting illness, HUNoV infection can become persistent in the
elderly (Harris et al., 2008), malnourished and/or immunocompromised (individuals with genetic or
acquired immune-deficiencies, cancer patients undergoing treatment, transplant patients) (Brown et al.,
2017, 2016; Gallimore et al., 2004b; Vega et al., 2014; Woodward et al., 2017). These individuals often
experience severe, even lethal, persistent or recurring NoV infections during which prolonged diarrhoea
and vomiting can lead to weight loss and malabsorption; in these patient cohorts viral RNA remains
detectable in stool samples for months to years (Brown et al., 2019; Gallimore et al., 2004b; Green,
2014; Sukhrie et al., 2010).

1.5.2 Animal noroviruses

Animal NoVs have been linked to gastroenteritis outbreaks and acute diarrhoeic episodes of
varying severity in cattle (Di Felice et al., 2016), pigs (Mauroy et al., 2008; Shen et al., 2012b, 2012a),
cats (including a captive lion cub that succumbed to severe haemorrhagic enteritis) (Martella et al., 2007;
Pinto et al., 2012), and dogs (Mesquita and Nascimento, 2012). While a clinical association typically
exists in these domesticated mammalian hosts, asymptomatic infections have been observed (at lower
prevalences) in epidemiological screening studies (Cho et al., 2013; Scipioni et al., 2008a; Villabruna
et al., 2019); the only documented GlII sheep NoVs were reportedly isolated from animals that showed
no obvious clinical signs (Wolf et al., 2009). In wild animals such as bats (Wu et al., 2016), harbour
porpoises (de Graaf et al., 2017a), and Californian sea lions (Teng et al., 2018), where NoVs are typically
detected in the context of metagenomics analyses and/or retrospective analyses of stored samples, a

potential disease association often remains undetermined.

1.5.3 Murine noroviruses

Murine noroviruses have been isolated from asymptomatic wild populations of both field and
wood mice (Apodemus agrarius and Apodemus sylvaticus) (Farkas et al., 2012; D. B. Smith et al., 2012)
and have been detected in various cohorts of domesticated mice (Mus musculus), including mice sold as

pets or snake food, show animals, and those bred for academic research (D. B. Smith et al., 2012).

Indeed, MuNoVs are recognised as one of the most prevalent, albeit often undetected, pathogens
of contemporary laboratory mice, as evidenced by serologic testing and reverse transcription polymerase
chain reaction (RT PCR) screening (Hsu et al., 2006, 2005; Mdiller et al., 2007). Thirty fully sequenced
MuNoV strains have been isolated from specific-pathogen-free mice in academic research colonies
across the globe; while these strains comprise a single genetic cluster, they broadly segregate into two
categories regarding their pathogenesis and disease profile (Kahan et al., 2011). The prototype acute
strain MNV-1, which infects immune cells in the gut-associated lymphoid tissue, reaches peak intestinal
titres 1-2 days post-infection (dpi) and is cleared by 7-14 dpi; persistent strains MNV-3 and MNV-CR6
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can establish life-long infections, linked to replication in the caecum, colon, mesenteric lymph nodes,
and rare intestinal epithelial tuft cells (Arias et al., 2012a; Hsu et al., 2006; Wilen et al., 2018). Persistent
asymptomatic infection with typically nonpersistent strain MNV-1 CW3 has been associated with
adaptive changes to viral proteins NS1/2, NS7 and VP2 (Borin et al., 2014; Nice et al., 2013).

Notwithstanding differences in clearance kinetics and cell tropism, all MuNoV strains elicit sub-
clinical infections of the intestine, lacking any association with diarrhoea or other overt disease in
juvenile and adult mice of wild-type- and certain knock-out strains. A MNV-1-induced decrease in
faecal consistency as measured by visual scoring of faecal samples of immunocompetent mice remains
the only modest disease-association (MNV-3 failed to induce this pathology) (Kahan et al., 2011).
Despite a subclinical presentation, quantifiable intestinal pathology and detection of viral RNA in the
liver, spleen, mesenteric lymph nodes, and proximal intestine (but not in the lung, brain, blood, or faeces)
have been described in association with experimental MuNoV infection of wild-type hosts (Hsu et al.,
2005; Karst et al., 2003; Shortland et al., 2014; Wobus et al., 2006).

In severely immunodeficient adult mice lacking functional components of the innate immune
system and interferon (IFN) pathways, MuNoV infection has been shown to be associated with lethal
disease (Karst et al., 2003; Wobus et al., 2006). Following oral MNV-1 inoculation, mice deficient in
signal transducer and activator of transcription 1 (STATL) and recombination-activating gene 2 (RAG2)
rapidly succumb to systemic disease associated with severe weight loss, diarrhoea, bloating, pathologies
in intestinal and peripheral tissues, and the presence of viral RNA in all organs. Persistent strains MNV-
3 and MNV-CRG6 cause less overt symptoms than MNV-1 in IFN-deficient mice (Strong et al., 2012).

Recently, self-resolving diarrhoea in the absence of systemic disease was reported in MuNoV-
infected wild-type neonatal mice, mirroring key clinical features of HuNoV disease; diarrhoeic episodes
were neither associated with disruption of the intestinal epithelium nor notable inflammation. Oral
MNV-1 inoculation, and to a lesser extent that of MNV-3 and MNV-CRG, caused acute diarrhoea in
three-day-old BALB/c mice (Roth et al., 2020).

1.6  Human norovirus epidemiology and transmission

1.6.1 The societal burden of norovirus infections and the role of genotype Gll1.4

HuNoVs are recognised as major aetiologic agents of global sporadic and epidemic non-
bacterial gastroenteritis (Patel et al., 2008; Robilotti et al., 2015), causing significant morbidity and
mortality in developing countries and engendering enormous economic losses in developed countries
(Bartsch et al., 2016). Causing a median number of 669 million illnesses and an estimated 219.000

deaths across all ages per year globally, HuNoVs have been calculated to result in a yearly total of USD
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4.2 billion in direct health care costs (outpatient visits and hospitalisation) and USD 60.3 billion in

societal costs (productivity losses due to absenteeism or mortality) (Bartsch et al., 2016).

Gll1.4 infections, which are responsible for the majority of past HuNoV outbreaks (55-85%) and
also sporadic cases, have been associated with a higher probability of severe outcomes and lead to higher
hospitalisation and mortality rates (Desai et al., 2012).

GI1.4 NoVs have been the predominant genotype circulating in humans for over two decades,
with novel circulating Gl1.4 strains emerging every two to three years and replacing their predecessors
in an immune-driven selection process known as epochal evolution (Ji et al., 2013; Siebenga et al., 2007;
Wang et al., 2012). Postulated mediators for the Gll.4 dominance include selective advantages and
improved adaptation to host receptors via physicochemical P2 changes in the virion of new GlI.4
subtypes and the evasion of herd immunity against predominant genotypes (Giammanco et al., 2012;
Hoffmann et al., 2013; Lam et al., 2012; Motomura et al., 2010). The elevated number of novel
nonsynonymous mutations in Gll.4 capsid sequences and changing HBGA binding patterns (Boon et
al., 2011), as well as intragenotypic recombination have long been postulated to be a driving force of
GIl.4 NoVs. Strain-dependent differences in NoV molecular evolution via the accumulation point
mutations are briefly discussed in chapter 2.2; complex patterns of intragenotypic recombination within

the Gll1.4 lineage are discussed in chapter 2.3 (Ludwig-Begall et al., 2018).

The position of the rapidly evolving dominant GI1.4 variants has only recently been challenged
by emergence and re-emergence of different intra- and intergenotype recombinants modifying long-term
global NoV genetic diversity trends (Bruggink et al., 2016, 2014; De Graaf et al., 2015; Fu et al., 2017,
Hoffmann et al., 2013; Mabhar et al., 2013; van Beek et al., 2018).

1.6.2 Norovirus shedding and human infectious dose

Norovirus particles are shed for weeks to months via the faeces or vomit of both infected
symptomatic and asymptomatic patients (Davis et al., 2020; Leon et al., 2008; Siebenga et al., 2008).
While the main NoV transmission route is faecal-oral transmission, with faecal loads reaching up to 10°
genomic copies/g faeces (Atmar et al., 2008; Teunis et al., 2015), transmission via vomiting has also
been identified as a risk (de Graaf et al., 2017b). Unlike shedding through stool, vomiting is more likely
to result in significant environmental contamination, leading to transmission through fomites and
airborne vomitus droplets (1.7x10® genome equivalent copies are typically shed in emesis (circa 4x10*
genomic equivalent copies/ml vomitus) (Atmar et al., 2014; Kirby et al., 2016; Tung-Thompson et al.,
2015). The high doses of virus shedding stand in clear contrast to the low 50% human infectious dose

which has been calculated to lie between 1320 and 2800 genome equivalents (Atmar et al., 2014).
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1.6.3 Transmission routes

Highly tenacious and resistant in the face of various decontamination methods (Ludwig-Begall
etal., 2021; Zonta et al., 2015), HuNoVs are transmitted either via direct person-to-person contact or by
consumption of contaminated water or food (Verhoef et al., 2015) (Figure 6). Infectious viruses can
enter environmental waters either via direct discharge or release of improperly-treated sewage from
industrial-scale or small private waste-water treatment plants, discharges from vessels, as well as urban
runoff, the latter especially in times of flooding or heavy rainfall which have been linked to a high
prevalence of HUNoVs in coastal waters (Campos et al., 2013; Campos and Lees, 2014; Hassard et al.,
2017; Wyn-Jones et al., 2011). Suspended or precipitated NoVs have been shown to retain infectivity
for weeks to months (Bosch et al., 2006; Campos and Lees, 2014; Mclntyre et al., 2012; Seitz et al.,
2011) and have been detected up to 10 km distant from their discharge point (Campos et al., 2017; Wyn-
Jones et al., 2011).

The foodborne proportion of HuNoV outbreaks is estimated at 14% (Verhoef et al., 2015).
Foods implicated in outbreaks are contaminated either directly with faecal matter at the source or by
infectious food-handlers (Hardstaff et al., 2018). The most common food vehicles remain fresh or frozen
soft fruits and vegetables, ready-to-eat foods (such as sandwiches and salads) which require handling
but no or little subsequent cooking, and undercooked or raw seafood (bivalve molluscs) (Razafimahefa
et al., 2019). Bivalve molluscs, including cockles, mussels, clams, scallops, and oysters, accumulate
NoVs via filter feeding; large volumes of water are pumped through the ctenidia, the molluscs’
respiratory and feeding organs, in a process which filters not only nutrients but also contaminating
bacteria and viruses. Depuration practices, which aim at eliminating such bioaccumulated pathogen
charges are unsuccessful in the face of NoV contamination. Increasingly, this effect is attributed to the
fact that NoVs are not only filtered and concentrated through nonspecific interactions, but are also bound
in a genogroup- and strain-dependent manner to molluscan gastrointestinal carbohydrate structures
(HBGA-like moieties and sialic acid-residues) (Almand et al., 2017). As known “hotspots” for the
accumulation of multiple NoV strains (de Graaf et al., 2016; Lysén et al., 2009), bivalve molluscs have
been postulated to present opportunities for infectious HuNoV inter-and intragenotype co-infection (thus
facilitating subsequent viral recombination within the host), and have been pinpointed as high-risk
vectors for the introduction of novel recombinant strains into the human population (Ludwig-Begall et
al., 2018; Rajko-Nenow et al., 2013). In a similar context, bivalve molluscs, as potential interfaces of
shared species exposure through filtration of human and animal waste, have also tentatively been
implicated as a putative way of introducing both human and different animal NoVs into a single host
(Ludwig-Begall et al., 2018; Takano et al., 2015).

Norovirus outbreaks are often reported in the context of communal dining at restaurants,

festivals, picnics, schools, cruise ships and military bases (Pringle et al., 2015; Rha et al., 2016; A. J.
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Smith et al., 2012; Verhoef et al., 2008) or in institutional settings such as hospitals and care homes,
where spread of infection from a common-source exposure is facilitated by enclosed living quarters and
reduced personal hygiene (Mathijs et al., 2012; Patel et al., 2009; Sukhrie et al., 2012, 2010).

Recently, wild birds and rodents were named as new potential HuNoV transmission routes; Gl
and GIl HuNoV genome copies were detected in faecal samples of gulls and crows (31%) and rats (2%),
implicating them as mechanical carriers, capable of spreading HuNoVs in the environment and possibly
transmitting the virus to humans directly or indirectly by contaminating foods (Summa et al., 2018).
Determination of the replication capability of HuUNoVs in these new potential carriers (e.g. by detection
of viral antibodies in blood or whole virus particles in faeces) is still pending.
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Figure 6. Norovirus transmission.
Transmission routes of human noroviruses (solid arrows) and animal noroviruses (dashed
arrows) are shown. Unconfirmed transmission is indicated by a question mark.
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1.6.4 Immunity to noroviruses

Many gaps remain in the understanding of natural immunity to HuNoVs. In addition to genetic
resistance to infection based on secretor status (see chapter 1.4.1), with non-secretors representing as
much as 20% of the European population (Le Pendu et al., 2006), NoV infection has been shown to

result in development of clinical immunity.

Upon RNA virus invasion, two main innate immune cell pathways are rapidly launched against
intestinal RNA viruses such as NoVs. Recognition of conserved viral pathogen—associated molecular
patterns by germline-encoded pathogen recognition receptors upregulates transcription of genes
involved in antiviral responses and activates both type | and type Il IFN systems to control viral
replication, clear pathogen-infected cells, and coordinate adaptive immune responses (Campillay-Véliz
et al., 2020; Jensen and Thomsen, 2012; Lee and Baldridge, 2017). Both toll-like and retinoic acid-
inducible gene I-like receptor family members sense cytosolic viral RNA and signal via mitochondrial
antiviral-signalling protein to stimulate transcription of type | and Il IFNs by members of the IFN
regulatory factor family. Both type I IFNs (13 subtypes of IFN-a, IFN-B, k, o, €, 3, and t), which signal
through the ubiquitous IFNo/B receptor to regulate IFN-stimulated gene expression through
phosphorylation of STAT proteins (Cho and Kelsall, 2013), and type III IFNs (IFN A or interleukin-
28/9), which are produced by leukocytes and epithelial cells and signal through the IFNA receptor
expressed on epithelial cells, but also type IT IFNs (IFN vy), have been shown to be critical for control of
HuNoV and MuNoV replication. Thus, findings show that natural HuNoV infection results in the
production of proinflammatory and anti-inflammatory cytokines (Cutler et al., 2017), that HuNoV
replication in zebrafish larvae results in a measurable innate response (Van Dycke et al., 2019), and that
the innate immune response partially restricts HuNoV replication in human intestinal epithelial cells
(IECs) through IFN-induced transcriptional responses and production of pro- and anti-inflammatory
cytokines (Hosmillo et al., 2020). Mice lacking functional type I and 11 IFN pathways succumb to lethal
MuNoV infections (Karst et al., 2003). Type | and Il IFNs play a role in the control of acute MuNoV
infections both in vivo and in vitro (Changotra et al., 2009) but are dispensable for intestinal regulation
of persistent strains for which IFN-A instead plays a critical regulatory role (Lee and Baldridge, 2017;
Nice et al., 2015).

Adaptive immunity against HuNoVs is postulated to include both cellular and humoral
responses (Campillay-Véliz et al., 2020; van Loben Sels and Green, 2019). While information on
cellular responses to HuNoV infection is scarce, increases of various pro- and anti-inflammatory
cytokines in volunteer serum samples indicate involvement of both Thl and Th2 immune responses
(Lindesmith et al., 2005). Humoral immunity to HuNoVs is considered to be stronger and more long-
lasting than cellular immunity; based on human challenge studies, first estimates of immunity duration

suggested short term, adaptive immunity to homotypic Norwalk re-challenge with high viral doses to
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last from two months to two years (Parrino et al., 1977) or for longer than six months (Johnson et al.,
1990). Epidemiological data and mathematical modelling have since suggested that naturally induced
immunity in the absence of major strain changes may actually last for much longer and potentially span
up to a decade (Simmons et al., 2013). While seroprevalence studies have shown an estimated 90% of
adult populations to be seropositive to NoV (O’Ryan et al., 1998), probably only a small fraction of the
total HUNoV specific antibodies represent partial or even absolute neutralising antibodies, i.e. correlates
of protection that mediate reduced infection or disease severity (van Loben Sels and Green, 2019). Strain
dependent differences in the induction of protective immune responses (Zhu et al., 2013), antigenic
diversity and known lack of heterotypic cross-protection between certain NoV genogroups, genotypes
and strains (Rockx et al., 2005a) further confound the determination of immunity duration (Cates et al.,
2020).

A recent model of adaptive immune responses to MuNoV infection suggests that presentation
of MuNoV peptides on major histocompatibility complex class | molecules leads to the stimulation of
primary Thl proinflammatory responses, whereupon CD4+ Thl cells release various cytokines that
upregulate the activity of CD8+ cytotoxic T lymphocytes (van Loben Sels and Green, 2019). Humoral
immunity supplements the Th1l response and has been shown to play a critical role in MuNoV clearance
(Chachu et al., 2008) and protection from subsequent challenge (in this context it is noteworthy that
MuNoVs are less diverse genetically and constitute a single genotype) (Zhu et al., 2013); proposed
responses involve migration of antigen presenting cells to mesenteric lymph nodes where they present
MuNoV antigens on major histocompatibility complex class Il molecules and elicit upregulation of Th2
responses to help mature B cells (van Loben Sels and Green, 2019).

1.6.5 Seasonality of human norovirus infections

True to the name “winter vomiting disease”, HuNoV infections follow a typical seasonality with
incidents peaking during the winter months from October to March (Lopman et al., 2009). While not
fully elucidated, this pattern is attributed to a complex combination of host, climactic environmental and
viral factors. On the host side, winter peaks in NoV infections are linked to changes in societal
behaviour, an upsurge in hospitalisations due to other infectious diseases, and fading herd immunity;
inverse linear associations of NoV laboratory reports and daily temperatures have been reported, linking
cold, dry conditions to higher NoV activity. NoV levels typically peak in winter in sewage (Nordgren
et al., 2009; Victoria et al., 2010), freshwater (Westrell et al., 2006; Pérez-Sautu et al., 2012) and
seawater as conditions for NoV persistence in waters are improved by colder water temperatures and

reduced solar irradiation (Katayama et al., 2004; Lopman et al., 2009; Nordgren et al., 2009).
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1.6.6 Reservoirs

The excretion of infectious NoV from persistently infected individuals (Davis et al., 2020;
Teunisetal., 2015) is purported to be one of the sources of NoV outbreaks. Not only has the involvement
of chronic shedders in hospital outbreaks indicated them to be a reservoir for nosocomial transmission
of NoVs (Sukhrie et al., 2010), but persistently infected patients have also been suggested to contribute

to HuNoV transmission as reservoirs for emerging strains.

Intra-host evolution via point mutation accumulation (Hoffmann et al., 2012; Yu et al., 2020)
and the acquisition of superinfections over the protracted period of persistent infections (Brown et al.,
2017) implicate persistently infected patient cohorts as potential reservoirs for novel HuNoV variants
(de Graaf et al., 2016). Multiple phylogenetic analyses have identified viral populations in persistently
infected patients to be highly diverse and genetically distinct from viruses circulating in the general
population (Bull et al., 2012; Green, 2014).

The within-host viral variation via the acquisition of point mutations in chronic shedders is
typically not random but has been shown to be a result of positive selection, as evidenced both by
nonsynonymous versus synonymous substitution ratios (>1) and the clustering of amino acid changes
at VP1 blocking epitopes (hypervariable P2 domain) and HBGA binding sites on the capsid surface
(Hoffmann et al., 2012; Nilsson et al., 2003; Siebenga et al., 2008; Van Beek et al., 2017; Yu et al.,
2020). Indeed, the intra-host emergence of antigenically distinct strains comparable to the variation
between chronologically predominant Gll.4 strains has been observed, suggesting that in certain
individuals the evolution during a persistent NoV infection translates into relevant phenotypic
variability, thus potentially selecting for viruses able to escape herd immunity to earlier isolates
(Debbink et al., 2014).

At an average of five to nine mutations per 100 days (Hoffmann et al., 2012) or 1.85 to 2.66 x
1072 substitutions per nucleotide site per year (s/n/y) in the viral capsid gene (Nilsson et al., 2003), NoV
evolution rates in immunocompromised hosts are generally significantly elevated compared to those in
healthy hosts. The process, whereby NoV strains can acquire enough mutations to constitute novel
epidemic subtypes within weeks to months (on a global scale this would normally take years), has been
attributed to the particularities of a reduced but constant intra-individual selection pressure in
immunocompromised hosts (Hoffmann et al., 2012; Karst and Baric, 2015; Siebenga et al., 2008).
Siebenga et al. reported that the number of VP1 amino acid changes selected per time in intra-individual
guasispecies was higher in patients with intermediate immunocompromise than in severely
immunocompromised patients (Siebenga et al., 2008). This is concurrent with the phylodynamic
framework for RNA virus evolution proposed by Grenfell et al., which argues that highest rates of

pathogen adaptation occur at intermediate levels of immunity when medium immune pressure coincides
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with appreciable virus replication and the co-evolutionary competition between host and pathogen is
most intense (Grenfell et al., 2004).

Over the prolonged period of persistent NoV infections, superinfections with a second genotype
have been shown to occur in a sixth of patients; in such cases, temporary mixed infections can be
detected in a single sample (Brown et al., 2017). Mixtures of NoV strains further heighten the
complexity of intra-individual quasispecies in immunocompromised hosts and provide opportunities for
viral recombination, which constitutes another possible factor towards driving the emergence of new

epidemic strains (Ludwig-Begall et al., 2018; Parra, 2019).

While multiple analyses have highlighted the diversity of NoV variants in immunocompromised
patients and have shown that chronic variants have the propensity to rapidly generate novel variants, the
contribution of this diversity to NoV evolution at the inter-host population level is still unclear. Recent
mathematical modelling based on the standard epidemiological categorisation of susceptible, infected
and recovered individuals, suggested that despite the capacity of immunocompromised hosts to generate
significant diversity, the relative isolation and rarity of such hosts limits their impact on broader
pathogen evolution and epidemiology. Specifically, only a minor role for immunocompromised
individuals in shaping large scale evolutionary patterns and processes and the global emergence of new
HuNoVs was inferred (Eden et al., 2017). However, the model presented several inherent caveats,
notably the implicit assumption within the modelling framework for there to be no selective advantage
of novel genetic variants (all nucleotide substitutions were considered to be effectively neutral), the fact
that varying immune pressures were not accounted for, the disregard of superinfections and the potential
for mixed viral recombination in immunocompromised patients, and the failure to account for complex

host population structures in institutional settings.

While the reservoir of novel NoV strains is yet to be definitively identified, NoV diversity could
also be originated at inter- and intra-host levels in otherwise healthy populations of different age groups
(from infants in day care centres (Hebbelstrup Jensen et al., 2019) to adults in the context of communal
living and dining as described above). Thus, mutations could arise during transmission events which
present an evolutionary bottleneck in outbreak settings, and/or during shedding in healthy individuals
(Bull et al., 2012; Parra, 2019).

The lack of certitude regarding the source of newly emerging HuNoVs and the close genetic
relatedness between certain animal and human NoVs have generated interest in the possible role of
animals as a potential zoonotic reservoir for emerging strains (Villabruna et al., 2019). More than two
thirds of human emerging infectious diseases are thought to originate from animal reservoirs (Jones et
al., 2008); for other members of the Caliciviridae family, interspecies transmission has been reported
(Smith et al., 1998, 1973). The as yet unproven existence of a zoonotic potential for NoVs has long been

discussed, potential interfaces of shared species exposure being food, water or animal contact. Despite
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known NoVs exhibiting marked host specificity, the discussion about interspecies and/or zoonotic
transmission is fuelled by the close relationship of certain animal and human NoV strains, detection of
HuNoVs in animal faeces, detection of antibodies against HuNoVs in swine, and the demonstration of
experimental HuNoV GII infection in gnotobiotic pigs (Bank-Wolf et al., 2010; Mathijs et al., 2012;
Scipioni et al., 2008a; Wilhelm et al., 2015). Questions concerning species barrier determinants
preventing HUNoV infection of murine cells were recently resolved with the identification of a CD300If
proteinaceous receptor as the primary determinant of MuNoV species tropism. All other components of
cellular machinery required for NoV replication are conserved between humans and mice (Orchard et
al., 2016); expression of MuNoV CD300 family receptor molecules rendered non-murine mammalian
cells susceptible to MuNoV infection (Haga et al., 2016). If the key to cross-species transmission lies
only at a structural virus-host receptor level, this presents ORF1/2 NoV recombination (discussed further
in chapter 2.3.1), by which a nascent recombinant virus gains a complete novel capsid protein set, in an
interesting light, in that a “lucky” intragenogroup recombination event between two co-infecting viruses
might tender a zoonotic/ interspecies recombinant. Indeed, putative GIV.2_GVL.I interspecies
recombinant FNoVM49, isolated from a cat captured near a Japanese oyster farm in 2015 (Takano et
al., 2015), may have originated via a similar mechanism. However, since conclusive data supporting
inter-species transmission is yet lacking, the continuous emergence of new HuNoV through zoonotic

events is unlikely.

1.7 Detection and typing of noroviruses

1.7.1 Diagnostic methods

Since NoV infections present a major public health issue, rapid diagnosis is vital for the

initiation of appropriate control measures to curtail viral spread and curb the extent of outbreaks.

Based on the typical clinical presentation of NoV infections, the Kaplan criteria can assist in
diagnosis when laboratory resources are unavailable to determine an outbreak aetiology. Developed
from pooled data of gastroenteritis outbreaks between 1967 and 1980, the Kaplan criteria consist of four
patterns that characterise NoV outbreaks; accordingly, stool cultures negative for bacterial pathogens,
mean (or median) duration of illness of 12-60 hours, vomiting in greater than or equal to 50% of cases,
and a mean (or median) incubation period of 24-48 hours satisfy the criteria for a Norwalk-like infection
(Kaplan et al., 1982). While a useful diagnostic aid in discriminating confirmed foodborne
gastroenteritis outbreaks due to NoVs from those due to bacteria with a reportedly high specificity
(99%), these criteria are only moderately sensitive (68%) (Turcios et al., 2006), necessitating further

laboratory confirmation of the viral aetiology.
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Electron microscopy, utilised for the first ever identification of NoV particles in stool (Kapikian
et al., 1972), permits rapid and direct visualisation of NoVs and other gastroenteritis viruses such as
rotaviruses, adenoviruses, astroviruses, and sapoviruses. However, the method lacks sensitivity and
facile implementation (highly trained personnel is a prerequisite to its use), rendering it ineligible for
routine diagnostics (Vinjé, 2015). In lieu of this costly method, and in the absence of a stable and
inexpensive HUNoV cell culture system, routine laboratory diagnostics for NoVs are typically either

performed via immunological assays or amplification of viral nucleic acids.

While the development of a broadly reactive NoV antigen enzyme immunoassay (EIA) has
proven challenging owing to the number of antigenically distinct HuNoV genotypes and the continuous
antigenic drift of certain strains (Chan et al., 2016), several EIAs are commercially available for the
detection of NoV Gl and GlI antigens in stool specimens. Most commercial kits consist of solid-phase,
sandwich-type immunoassays and include combinations of multiple cross-reactive monoclonal and
polyclonal antibodies. Sensitivity and specificity of these Kits, typically around 70% and 90%,
respectively, are subject to significant variation depending on the viral load and NoV genotypes present
in the sample. The clinical context of sample collection (sporadic case versus outbreak) and the number
of samples tested are recognised to influence the sensitivity of EIAs to such an extent that their use,
while undoubted for rapid screening of multiple faecal samples during an outbreak of acute
gastroenteritis, is not recommended in interpreting test results from sporadic cases and that negative
results should be further confirmed by molecular methods (RT-PCR) (Costantini et al., 2010; Gray et
al., 2007). Similarly, immunochromatographic lateral flow assays, designed for rapid and uncomplicated
testing of individual faecal samples, have been shown to have a varying, genogroup-dependent
sensitivity and, while useful for preliminary screening in outbreaks, their negative results should be
verified by RT-PCR (Ambert-Balay and Pothier, 2013).

Amplification-based techniques for the detection of NoVs in clinical samples, environmental
samples, and food and water include conventional RT PCR (Vinjé et al., 2003) and one- or two-step
guantitative real-time RT PCRs (RT gPCR) (Kageyama et al., 2003). Most contemporary assays use
genogroup-specific oligonucleotide primers and fluorescent probes typically targeting a small conserved
genome region at the ORF1/ORF2 junction (Katayama et al., 2002). Increasingly, such assays are
multiplexed, allowing simultaneous detection of multiple NoV genotypes within different genogroups,
e.g. the simultaneous detection of Gl and Gl strains (Rolfe et al., 2007; Shigemoto et al., 2011) or Gl,
Gll, and GIV strains (Miura et al., 2013a); several different multiplex molecular gastrointestinal

diagnostic pathogen platforms are commercially available (Claas et al., 2013).

Quantitative RT gPCR assays, which implement either intercalating dyes (Scipioni et al., 2008Db)
or fluorescent probe-based chemistries (Miura et al., 2013a), can be used to determine the amount of

nucleic acid (genomic copies) in a sample. However, a distinction between infectious and non-infectious
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virus particles is not possible and virus detection by RT qPCR does not necessarily correlate with a true
infectious NoV burden. Methods to evaluate the correlation between genomic copies and infective NoV
particles are under investigation. Amongst these, the binding long-range PCR (Li et al., 2014) has been
proposed to assess genome integrity and the use of a ligand binding step prior to RT gPCR (Afolayan et
al., 2016; Dancho et al., 2012) or viability PCR assays (Karim et al., 2015; Razafimahefa et al., 2021)
are utilised to investigate capsid integrity. Comparison of RT gPCR results with newly developed
HuNoV infectivity assays (further discussed in chapter 1.9) may help determine cycle threshold cut offs
for clinical diagnostic RT gPCRs, allowing estimation of infectious virus burdens to help guide infection
control (Chan et al., 2019; Straub et al., 2013).

Increasingly, the spectrum of analytical techniques is being widened; promising developments
in the field include biosensors (such as monoclonal antibodies, aptamers, porcine gastric mucin, and
HBGAS), investigated for their potential of concentrating NoVs, microarray-based assays (Yu et al.,
2016) and omics-based analyses (Liu and Moore, 2020; Strubbia et al., 2019).

1.7.2 Genotyping

With the increasing implementation of molecular methods in NoV diagnostics, virus typing
through (partial) sequence analysis has become increasingly common. The web-based, open access
Norovirus Automated Genotyping Tool (Version 2.0; NoroNet) for sequence-based typing, available
online from the NoroNet website of the Dutch National Institute for Public Health and the Environment

(http://www.rivm.nl/mpf/norovirus/typingtool), provides direct and internationally standardised

genotyping of NoVs. Based on genetic homology and phylogenetic inferences, the tool assigns
sequences to a NoV genogroup, maps query sequences to a specific location on the reference genome(s),
and offers information on RdRp- and capsid affiliation on either side of the ORF1/2 overlap. Briefly,
the tool, updated periodically with new names and reference strains, employs a typing algorithm on
ORF1 and ORF2 sequences of Gl and Il NoVs, starting with BLAST analysis of the query sequence
against a reference set of Caliciviridae sequences. This is followed by phylogenetic analysis of the query
sequence and a sub-set of the reference sequences to assign NoV genotype and/or variant (Gl1.4), with

profile alignment, construction of phylogenetic trees and bootstrap validation (Kroneman et al., 2011).
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1.8 Treatment and prophylaxis

Despite the clinical significance and societal burden of NoV infections, neither approved
antivirals nor licensed vaccines are yet available to combat this pathogen.

1.8.1 Antivirals

While medical intervention is rarely needed in typical NoV infections of immunocompetent
individuals, safe and effective antivirals are essential for treatment of high-risk, persistently infected
immunocompromised individuals and other vulnerable populations (juvenile/elderly). In the absence of
specific therapeutic measures, treatment is focused on providing supportive care such as rehydration.

Research efforts towards antiviral development have been furthered by a deeper understanding
of the NoV replicative cycle and recent breakthroughs in culturing HuNoVs; direct acting antiviral

therapies target various stages of the NoV replication cycle (Arias et al., 2013; Netzler et al., 2019).

Strategies to prevent NoV attachment and entry include HBGA binding inhibition via various
glycomimetic compounds (Koromyslova et al., 2017, 2015; Zhang et al., 2013) and passive
immunotherapy with monoclonal antibodies (Chen et al., 2013) or nanobodies (Koromyslova and
Hansman, 2017).

The activity of NS6 protease inhibitors depends on preventing polyprotein processing by the
viral NS6. Candidate drugs targeting this step include broad-spectrum antivirals that covalently bind to
the catalytic site of 3C or 3C-like proteases (Kim et al., 2012), enzymatic transition state inhibitors or -
analogues (Galasiti Kankanamalage et al., 2016).

Compounds targeting viral polymerase NS7 to interfere with NoV replication comprise chain-
terminating and mutagenic nucleoside analogues as well as non-nucleoside inhibitors. Nucleoside
analogues under investigation include the cytidine analogue 2'-C-methylcytidine (Rocha-Pereira et al.,
2015b) and its derivatives, and purine analogues favipiravir (Arias et al., 2014) and ribavirin, the latter
of which is licensed to treat chronic hepatitis C infections (Chang and George, 2007; Perales et al., 2013;
Woodward et al., 2017). Their inhibitory effects are attributed to multiple modes of action including
chain termination, provocation of an error catastrophe scenario for the viral quasispecies via ambiguous
base pairing (lethal mutagenesis), direct RdRp inhibition, and unbalancing of intracellular NTP pools
(Crotty et al., 2002; Graci and Cameron, 2006). Non-nucleoside inhibitors target binding pockets of the
RdRp thus preventing conformational changes required for formation of an active replication complex
(Mastrangelo et al., 2012).
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Host factor drugs with the potential to treat NoV infections include immunomodulators (type I,
Il and 111 IFNs) (Changotra et al., 2009; Nice et al., 2015; Rocha-Pereira et al., 2015a) and small
molecule inhibitors that downregulate viral RNA secondary structure-binding host factors (Arias et al.,
2013).

1.8.2 Vaccines

The development of HuNoV vaccines is desired to protect vulnerable populations
(immunocompromised/juvenile/elderly) and high-risk groups, including health care workers, military
personnel, and (cruise ship) travellers experiencing crowding conditions. Prophylactic applications may
also include the vaccination of food handlers to reduce the occurrence of food-borne outbreaks.

Key challenges for NoV vaccine development pertain to vaccine effectiveness in the face of
NoV strain diversity and continuing evolution, which call for multivalent vaccines and periodic updates
to protect against a range of current and emerging epidemiologically important genotypes. Further, the
lack of a universally accepted correlate of protection against NoV, documented varying seroresponse
and uncertainty regarding the duration of long-term immunity conferred by NoV infection (see chapter

1.6.4) or vaccination are barriers faced in NoV vaccine development (Hallowell et al., 2019).

Nevertheless, a bivalent GI.1/Gll.4 VLP vaccine (Treanor et al., 2020) and a recombinant
adenovirus vector vaccine expressing GI.1 or Gll.4 VP1 with monovalent or bivalent dosing (Kim et
al., 2018), are currently in clinical trials. Further vaccines have been approved for clinical trial testing

or are in the pre-clinical phase of development (Cates et al., 2020; Lucero et al., 2018).

1.9 Model systems to study norovirus biology

1.9.1 Invivo model systems for human noroviruses

Early volunteer challenge studies and epidemiological observations of HuNoVs in their natural
hosts have yielded important in vivo data to further the understanding of HuNoV infections (Johnson et
al., 1990; Le Pendu et al., 2006; Meeroff et al., 1980). However, since the interpretation of results from
such studies may not only be complicated by small sample sizes, variations in susceptibility to infection,
previous history of exposure and cross-reactivity of antibodies, but may also pose potential health risks

to participants, a robust HuNoV animal model has long been sought.

Various non-human primates have been tested as HuNoV infection models (Todd and Tripp,
2019). While neither baboons, common marmosets, cotton top tamarins nor cynomolgus seem
susceptible to HUNoV infection (Rockx et al., 2005b), rhesus macaques and chimpanzees produce serum

antibodies and shed virus upon oral HuUNoV infection but do not develop clinical symptoms (Bok et al.,
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2011; Rockx et al., 2005b; Wyatt et al., 1978); only infection of pigtail macaques has been shown to
result in typical clinical illness including vomiting, thus potentially presenting a model to study the
emetic response to HUNoVs (Subekti et al., 2002).

Large animal models for symptomatic HuNoV infection include gnotobiotic pigs and calves.
Infection of gnotobiotic piglets with a GI1.4 HuNoV results in mild diarrhoea, faecal shedding of viral
RNA, expression of viral RNA in intestinal enterocytes and extra-intestinal lymphoid tissues, and
seroconversion (Cheetham et al., 2006; Park et al., 2018). Prolonged HuNoV infections and viral
dissemination beyond the intestine have been observed in gnotobiotic pigs with a severe combined
immunodeficiency phenotype (Lei et al., 2016). Gnotobiotic piglets provide a useful experimental model
as the pig intestine anatomy resembles that of humans and protection from disease provides a valuable
read-out in vaccine trials and testing of therapeutics (Bui et al., 2013; Kocher et al., 2014). Gnotobiotic
calves infected orally with HuNoV develop diarrhoea associated with intestinal damage and faecal viral

shedding for up to six days, as well as local and systemic immune responses (Souza et al., 2008) .

Double knockout recombination activation gene (Rag”) and common gamma chain (yc”)
deficient BALB/c mice support subclinical HuNoV GlIl.4 replication upon infection via the
intraperitoneal route (Taube et al., 2013). The model has been used to assess the anti-HuNoV activities
of antiviral compounds (Kolawole et al., 2016). However, since these mice cannot be infected orally
and lack both gut-associated lymphoid tissues and the ability to produce numerous cytokines and mature

B and T cells, the model cannot recapitulate typical HuNoV infection.

Recently, multiple HuNoV Gl and GlI strains were shown to replicate to high titres in cells of
both the hematopoietic lineage and the intestine of zebrafish larvae (Danio rerio) following yolk
inoculation (larval food reserve) (Van Dycke et al., 2019). Yielding over three orders of magnitude
(3loguo) increases in GllI.4 viral RNA copies, zebrafish larvae were shown to constitute a simple and

robust in vivo HUNoV replication model and were also demonstrated to be suited to antiviral studies.

1.9.2 Human norovirus tropism and in vitro culture of human noroviruses

In lieu of a stable HuNoV culture system, HUNoV in vitro assays were, until very recently,

conducted using the Norwalk virus replicon (Chang et al., 2006) and/or virus-like particles (VLPs).

The Norwalk virus RNA replicon consists of an intact ORF1 and ORF3, and an ORF2 disrupted
by a neomycin gene engineered into the VP1-encoding region (thus blocking expression of intact VP1).
Self-replicating and stably expressed following transfection into cell lines of human (Huh-7) or hamster
(BHK21) origin, the replicon has proven useful for the study of HuNoV genome replication and

screening of antiviral compounds (Chang and George, 2007; Rocha-Pereira et al., 2014).
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The RNA replicon is complemented by VLP systems, in which expression of capsid protein
VP1 results in the self-assembly of recombinant VLPs that are morphologically and antigenically
indistinguishable from native HuNoV virions and consequently represent useful tools to study physical
virion properties, antibody responses, and attachment factor interactions (Bertolotti-Ciarlet et al., 2002).

Notwithstanding the utility of these two systems, the fact that the understanding of HuNoV
biology has lagged behind that of other positive strand RNA viruses has been, in great part, due to the
difficulties historically associated with robust in vitro HUNoV propagation (Duizer et al., 2004; Lay et
al., 2010); in turn, issues with HUNoV cell culture stem from the uncertainties still surrounding HuNoV
tropism and the lack of a known (proteinaceous) entry receptor (see chapter 1.4.1).

Recent data support a dual cell tropism of epithelial cells and nonepithelial cells of
hematopoietic origin both in vivo (Karandikar et al., 2016) and in vitro (Wobus, 2018) and illustrate a
complex interplay with the host microbiome (Jones et al., 2014; Walker and Baldridge, 2019). Currently,

two different HuUNoV cell culture systems successfully capitalise on this dual tropism.

The development of the in vitro BJAB human B cell line demonstrated that HuNoV (and
MuNoV) can either infect B cells directly or in a coculture system in which the virus must cross a
confluent epithelial monolayer to access underlying B cells; productive GIl.4 HuNoV infection of B
cells required the presence of the HGBA-expressing commensal bacteria (or free synthetic HBGA),
identifying them as a stimulatory cofactor for bridging NoV attachment to and infection of B cells (Jones
et al., 2015, 2014). This and other available data directed the development of a working model for NoV
intestinal infection whereby NoVs bind to specific glycans expressed on the surface of members of the
gut microbiota and/or enterocytes and are then transcytosed across the polarized intestinal epithelial
barrier to gain access to their target immune cells (Karst, 2015b; Karst and Wobus, 2015). Notably, this
model provides an explanation for how NoVs may achieve co-infection of host cells in conditions when
the number of cells far outweighs that of virions; multiple genetically distinct virions can be effectively
concentrated by binding to the surface of a single bacterium, thereby increasing the opportunity for co-
infection (Erickson et al., 2018; Jones and Karst, 2018). While the technical simplicity and use of a
commonly used cell line are strengths of the BJAB assay, current drawbacks are the modest level of

viral replication and varying reproducibility.

In a technically more complicated approach, but with more robust infection levels overall,
cultivation of multiple HuNoV strains has recently been demonstrated in stem cell-derived, human
intestinal enteroid (HIE) cultures (epithelial mini guts) which recapitulate the multicellular,
physiologically active human intestinal epithelium (Estes et al., 2019; Ettayebi et al., 2016). Grown from
single multipotent stem cells of the human intestinal crypts (isolated from endoscopic biopsies), HIEs
can be maintained continuously as three-dimensional cultures. Differentiation into distinct mature cell

types present in the epithelium, such as absorptive enterocytes, multiple secretory cells (Paneth cells,
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goblet cells, enteroendocrine cells, and tuft cells), and the M cells of Peyer’s patches can be achieved
by modifying culture conditions (Sato et al., 2011, 2013). Propagation (and limited passaging) of
HuNoVs in enterocytes of differentiated HIES (either three-dimensional or trypsinised and seeded into
monolayers) has been shown to be dependent on HBGA expression in a strain-dependent manner
(secretor-negative HIEs are permissive to Gl1.3, but not Gll.4 replication); in addition, bile acids have
been shown to be required for productive infection of certain strains (Gl.1, GI1.3, and GI1.17), but bile
is not necessary for cultivation of HuNoV GI1.4/Sydney. The expense and complexity of the HIE system,
relatively low sensitivity of the cultures to infection, issues with sustained passaging, and the unresolved
basis for strain specific replication requirements remain challenges faced in the ongoing enhancement
of HuNoV HIE cultures (Estes et al., 2019).

Different in vivo and in vitro HuNoV assays have all provided invaluable tools to dissect the
NoV life cycle. However, there is still a lack of detailed understanding of NoV replication and significant

guestions remain unanswered due to the technical limitations of many of these experimental systems.

1.9.3 The murine norovirus - an in vivo and in vitro human norovirus surrogate

The genetically and biologically closely related murine norovirus (MuNoV) combines the
advantages of easy in vivo infection of a cost-effective, genetically tractable, bona-fide native host (Karst
et al., 2003), efficient and robust in vitro culture systems (Wobus et al., 2006, 2004), and availability of
tools for genetic manipulation (Arias et al., 2012a, 2012b; Yunus et al., 2010), and thus remains the

model of choice to study both the host response to NoV infection and basic aspects of NoV biology.

Caveats to the model include differences between HuNoV and MuNoV carbohydrate attachment
factors and proteinaceous receptors (see chapter 1.4.1), the fact that HuNoVs replicate in intestinal
enterocytes, a cellular tropism that MuNoV does not seem to share, and the typically asymptomatic
nature of MuNoV infections in wild-type mice. In vivo MuNoV infections of adult immunocompetent
and immunocompromised mice as well as those of neonatal mice are described in chapter 1.5.3. The
adult in vivo models have long yielded valuable information concerning the biology of a NoV in its
natural host (Wobus et al., 2006). The newly described model of NoV diarrhoea in which key clinical
features of HuNoV disease are mirrored in MuNoV-infected neonatal mice will open up new avenues
of research and the finding that disease severity is regulated by viral genetics (MNV-3 and MNV-CR6
cause a reduced incidence of diarrhoea relative to MNV-1) will facilitate identification of viral virulence
determinants (Roth et al., 2020).

Until very recently, MuNoVs were the only cultivable NoVs, replicating efficiently and to high
titres in cultured bone marrow-derived murine macrophages (RAW264.7 cells) (Wobus et al., 2006,
2004) and murine-derived microglial cells (BV-2 cells) (Cox et al., 2009) as well as B cells (M12 and
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WEHI-231), where peak titres are reached one day later than in RAW264.7 macrophages (Jones et al.,
2014).

The panel of techniques described to study MuNoV biology (Hwang et al., 2014) includes both
DNA-based and RNA-based reverse genetics systems (Arias et al., 2012b). The DNA-based system is
implemented in Study 2 of the Experimental Section of this thesis. Briefly, complementation in baby
hamster kidney cells constitutively expressing the bacteriophage T7 RNA polymerase by a helper
fowlpox virus encoding for T7 RNA polymerase allows transcription of an infectious plasmid containing
MuNoV ¢DNA under control of a truncated T7 polymerase promoter (pT7: MNV 3’ Rz), expression of
the viral RNA, and subsequent recovery of infectious virus (Arias et al., 2012a) (Figure 7). A more
sensitive RNA-based approach allows efficient recovery of infectious MuNoV from cDNA via in vitro
transcription, in vitro capping and subsequent transfection into permissive RAW264.7 or BV2 cells
(Yunus et al., 2010).

FPV-T7 7 ORF1 ORF2 ORF3 Ribo
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synthesis BSRT7 7.MuNoV RNA and protein synthesis
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N

Figure 7. DNA-based reverse genetics recovery of infectious MuNoV, as adapted from Arias
etal., 2012.

BSRT7 cells are infected with a recombinant fowlpox virus expressing T7 RNA polymerase
(FPV-TT)) (1). The infected cells are incubated for two hours to allow for expression of FPV
proteins (including the T7 RNA polymerase) (2). The plasmid pT7:MNV 3'Rz is transfected
into the cells (3). Once inside the cell, pT7:MNV 3'Rz is recognised by the T7 RNA
polymerase which synthesises murine norovirus (MuNoV) RNA transcripts (4). The presence
of a self-cleaving 8-Ribozyme sequence (Ribo) at the 3° end of the genome guarantees that
the transcript 3' terminus is located just after the polyA tail (5). Some viral transcripts are
intracellularly capped by an FPV capping enzyme (6). The resulting capped MuNoV
transcripts are translated to generate MuNoV proteins which catalyse replication of MuNoV
transcripts. Newly synthesised non-structural protein 5 (VPg) -linked MuNoV RNA molecules
then undergo successive cycles of replication accompanied by viral translation (7). Replicated
genomes are packaged into the capsid for virion assembly and release of infectious virus (8).
ORF= open reading frame.
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2. Molecular evolution of noroviruses

2.1 General concepts of RNA virus evolution

RNA viruses, particularly those of the positive-strand Baltimore class 1V, account for the
majority of the virome diversity in eukaryotes (Koonin et al., 2015); RNA viruses pose major threats to
human and animal health and number prominent agents of emerging and re-emerging infectious diseases
(Holmes, 2010a; Woolhouse, 2002). A catalogue of all known human-infective RNA virus species
comprises over 200 listings, is thought to be by no means complete, and remains subject to continuous
revisions (Woolhouse and Brierley, 2018).

The variability within the RNA virosphere originates with the reliance of its constituents on the
error prone RdRp, the viral hallmark protein that is universally conserved in RNA viruses (Koonin et
al., 1993). The low-fidelity RdRp both introduces mutations (genetic drift) and mediates recombination
between nascent RNA genomes (genetic shift). The viral diversity thus intrinsically produced is then
modulated by extrinsic evolutionary forces, including random genetic drift (driven by frequent
bottlenecking events) and natural selection (episodes of strong purifying pressure) (Grenfell et al., 2004).

2.1.1 Point mutation accumulation of RNA viruses

Mutations in viral genomes may originate from a range of sources such as spontaneous nucleic
acid damage (all viruses), diversity-generating retro-elements (encoded by prokaryotic DNA viruses),
and editing of the genetic material by host-encoded proteins (enzyme-driven hypermutation acts on a
number of RNA viruses) (Sanjuan and Domingo-Calap, 2016). Intrinsic polymerase fidelity, the ability
to incorporate the correct base and exclude incorrect bases from the active site during synthesis, is the
primary determinant of genetic diversity (Sanjuan and Domingo-Calap, 2016). While error frequencies
between viral polymerases are comparable prior to exonuclease correction, viral mutation rates are
modulated by the ability of a virus to correct mismatches via polymerase-associated proofreading and/or
post-replicative repair, a characteristic typically encoded by DNA viruses. Low-fidelity RNA virus
RdRps lack exonuclease activity and consequently intrinsically misincorporate at higher frequencies
(Smith, 2017) (exception among RNA viruses: viruses from the order Nidovirales encode a proofreading
3'-to -5'" exoribonuclease (Ogando et al., 2019)). At 0.1 to 1.0 mutations per genome per RdRp-mediated
replication (Duffy et al., 2008), or 10 to 10 substitutions per nucleotide site per cell infection (s/n/c),
average RNA virus mutation rates are several orders of magnitude higher than those of most DNA-based

organisms (Peck and Lauring, 2018; Sanjuan, 2012).

High mutation rates confer genetic plasticity to a viral population; “mutational fitness effects”

may be neutral, beneficial or deleterious to the overall fitness of a given virus within a viral population
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(Wargo and Kurath, 2012). Within the typically compact RNA virus genomes (notable exception:
Nidovirales) that encode only a few proteins, even single nonsynonymous mutations can be sufficient
to alter the structure or function of virus-encoded proteins (Borin et al., 2014; Elde, 2012). Synonymous
mutations (which do not change encoded amino acids) may impact viral fitness via non-neutral epistatic
effects influencing RNA stability and splicing (Draghi et al., 2010; Lauring and Andino, 2010) and silent
tuning for increased adaptability (Chamary et al., 2006; Elde, 2012; Lauring et al., 2012; Wilke and
Drummond, 2010). In RNA viruses, most mutations are deleterious or lethal and result in the generation
of less-fit or non-replicative variants, and beneficial mutations are comparatively rare (Sanjuan et al.,
2004). Consequently, RNA virus populations commonly contain large numbers of defective RNASs or
defective interfering particles, virus-like by-products of replication that carry deleterious mutations
(typically large deletions). These degenerate non-viable particles may “interfere” with standard virus
particles by competing for resources (Stauffer Thompson and Yin, 2010) but may also modulate the
course of infection by acting as immune stimulants or immune decoys (Rezelj et al., 2018). The
incorporation of deleterious mutations in an irreversible, ratchet-like manner is termed Muller’s ratchet
and can lead to a rapid debilitation of viral fitness unless relieved by compensatory mechanisms (Muller,
1964).

RNA virus replication may be described as a balancing act between the generation of sufficient
diversity on which natural selection can act and the maintenance of genetic integrity and infectivity
(Smith, 2017). This is illustrated by the fact that alterations to intrinsic RdRp fidelity have been
demonstrated to have a negative impact on viral fitness in complex environments (Borderia et al., 2016),

suggesting that RNA virus mutation rates have been evolutionarily optimised.

2.1.2 Selection and genetic drift of RNA viruses

Within the epidemiological triad of host, agent, and environment, viruses are locked in a
perennial arms race with their hosts as they attempt to comply with the biological imperative of genetic
survival (of the fittest) (Hurst and Lindquist, 2000).

The deterministic force of natural selection acts on the phenotypic diversity of mutant genomes
in a viral population and drives viral populations as a whole towards increased overall viral fitness;
positive selection drives fixation of beneficial mutations in a population, purifying selection removes

deleterious reduced fitness mutants (Dolan et al., 2018).

The stochastic influence of random genetic drift, the change of variant frequencies in a viral
population which occurs as a result of sampling error from generation to generation, can lead to the
fixation of neutral and deleterious mutations in finite populations (Gillespie, 2001). RNA viruses, which
can experience significant fluctuation in their population sizes, are subjected to the strong influence of

genetic drift when within-host and transmission bottlenecks mediate transient reduction of the number
42



Introduction

of viral genomes and the ensuing population is derived from a small sample of the ancestral population
(Gutiérrez et al., 2012; Li and Roossinck, 2004).

Viral substitution rates, which describe the rate at which mutations become fixed within a
population subsequent to selection and genetic drift, largely correlate with mutation rates. Thus, the high
mutation rates of RNA viruses are mirrored in their mean nucleotide substitution rates of 10 to 103
s/nly (Duffy et al., 2008; Holmes, 2010a).

The high evolutionary rates of RNA viruses are held to be inextricably linked to their typically
short genomes, large population sizes, and their existence as viral quasispecies (Andino and Domingo,
2015; Holmes, 2010a, 2009; Sanjuén et al., 2010).

2.1.3 RNA viruses as viral quasispecies

Building on classical population genetics, quasispecies theory seeks to explore the consequences
of error-prone replication of simple RNA and RNA-like replicons and near-infinite population sizes for
genome evolution (Eigen, 1993). More recently, quasispecies theory has been used to describe the
mutant distributions that are generated upon replication of rapidly mutating RNA viruses at large
population sizes (Andino and Domingo, 2015; Domingo, 2016, 1998; Domingo et al., 2012; Domingo
and Perales, 2019; Lauring and Andino, 2010; Mas et al., 2010).

According to viral quasispecies theory, virus populations (mutant “spectra”, “clouds”,
“swarms”’) are depicted as collections of closely related viral genomes connected by a network of single
mutations which surround a modal master or consensus sequence; variants are linked within the viral
population through antagonistic and cooperative functional interactions and collectively contribute to
the characteristics of the population (Andino and Domingo, 2015; Domingo et al., 2012; Holmes,
2010b). The target of selection is the population as a whole, wherein variant distributions can swiftly
shift and adapt to altered selective conditions by virtue of the expansive repertoire (or reservoir) of
potentially beneficial mutations. The effect of deleterious mutations, which result in low individual
fitness variants or defective interfering particles, can be relieved through complementation (Segredo-
Otero and Sanjuan, 2019; Vignuzzi et al., 2006), cooperation (Shirogane et al., 2016), and, notably,

recombination between different viruses (Muller, 1964).

Viral quasispecies theory has been extended to include not only the effects of point mutation
accumulation but also recombination, which can buffer viral populations against deleterious and lethal
mutations, prevent extinction of advantageous mutants during selective sweeps, combine co-circulating

adaptive mutations to generate new variation that enhances virus fitness, but may also push a
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quasispecies over a critical error threshold (Andino and Domingo, 2015; Boerlijst et al., 1996; Domingo
etal., 2012).

2.1.4 RNA virus recombination — definitions and mechanisms of viral genetic shift

The concept of recombination prevalent in evolutionary genetics describes the complex
molecular process by which a fragment of DNA is reciprocally exchanged between homologous
chromosomes in the context of sexual reproduction in eukaryotes (exchange of genetic material between
chromatids in the first meiosis division) (Posada et al., 2002). In prokaryotes and viruses,
recombination, more aptly described as lateral gene transfer or gene conversion, involves nonreciprocal
replacement or addition of genome sequences rather than exchange (Pérez-Losada et al., 2015; Posada
et al., 2002).

Viral recombination occurs when at least two viruses infect the same host cell and exchange
genetic sequences; less frequently, recombination may occur between viral and cellular sequences
(Becher and Tautz, 2011). Between two (or more) RNA viruses, recombination can occur either via a
replicative copy-choice mechanism or via non-replicative breakage and re-joining of genome fragments;
both processes can theoretically result in homologous recombination involving the same site in both
parental strands or non-homologous (illegitimate) recombination at different sites of the donor
molecules (Galli and Bukh, 2014). Consequently, irrespective of the underlying recombination
mechanism, homologous recombinants have the same genome architecture as their parental viruses,
whereas nascent non-homologous recombinants bear atypical structures including deletions, insertions,
or duplications (Galli and Bukh, 2014; Worobey and Holmes, 1999).

Focusing on the underlying mechanisms at play, three classes of replicative RNA recombination
have been described (Nagy and Simon, 1997); accordingly, recombination events may be classed as
similarity-essential (base-pairing dependent; class 1), similarity-nonessential (base-pairing independent;
class 1), and similarity-assisted (base-pairing assisted; class I11). For class | recombination, sequence
similarity between parental RNAs is held to facilitate annealing between nascent and acceptor RNAs
within the complementary region and is described as the major determinant of a recombination event.
For class Il recombination, sequence similarity between parental RNAS is not a requirement and
recombination depends on RNA features other than base-pairing (e.g. RdRp binding sequences, RNA
secondary structures, and heteroduplex formation between parental RNAs) which may bring parental
RNAs into proximity and mediate template-switching by stalling the viral RdRp. Class 111 recombination
combines features of both class I and Il recombination in that both base-pairing and additional RNA

features influence the occurrence of recombination events (Figure 8).
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Figure 8. The three classes of RNA virus recombination. Similarity-essential (base-pairing
dependent) recombination (top), similarity non-essential (base-pairing independent)
recombination (middle), and similarity-assisted (base-pairing assisted) recombination
(bottom) are shown. RNA polymerase-mediated RNA synthesis after the template switch is
indicated by the jagged circle and arrow. The hairpin structure represents various RNA
features that are required for Class Il and Class Ill recombination (Figure adapted
from Nagy and Simon, 1997).

The replicative copy-choice model of recombination typically (but not exclusively) depends on
sequence similarity and mostly results in homologous recombination (if the viral polymerase continues
to copy the new strand precisely where it left the old one); it is generally accepted to be the prevalent
recombination mechanism in RNA viruses (Simon-Loriere and Holmes, 2011; Worobey and Holmes,

1999). Following this model, a mid-replication switch of the viral polymerase and the replication
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complex from “donor” to “acceptor” template during synthesis of the nascent strand results in a chimeric
RNA that contains fragments of both parental templates (Galli and Bukh, 2014).

The non-replicative mechanism of recombination describes self-ligation or host-factor-mediated
joining of genetic fragments randomly cleaved through external influences such as physical shearing,
electromagnetic radiation damage, and the activity of cellular endonucleases or cryptic ribozymes.
Breakage and re-joining may occur between fragments of the same virus, amongst different viruses, and
also between viral and cellular molecules, and more frequently results in non-homologous than
homologous recombination (Galli and Bukh, 2014). Non-replicative recombination has been
demonstrated for a number of positive sense single-stranded RNA viruses (Buning et al., 2017; Gallei
et al., 2004; Galli and Bukh, 2014; Lowry et al., 2014). Proposed models for replicative and non-
replicative NoV recombination, but which may also serve to illustrate RNA virus recombination in a
wider context, are shown in Fig. 1 of the review on NoV recombination that comprises chapter 2.3 of
this thesis (Ludwig-Begall et al., 2018).

Reassortment (or shuffling), a particular type of recombination unique to segmented or
multipartite viruses (Sicard et al., 2016), can interchange discrete genome segments of co-infecting
parental viruses; without involving intramolecular crossovers, entire genome segments of different
origins are packaged into progeny viruses during viral replication, thereby giving rise to novel segment
combinations (Pérez-Losada et al., 2015). Reassortment is frequently observed in segmented DNA and
RNA viruses (Nelson et al., 2008; Thiry et al., 2005), however since it does not apply to monopartite
NoVs which experience recombination in sensu stricto, the mechanism is not further discussed in the

context of this thesis.

2.1.5 RNA virus recombination frequencies

Recombination frequencies are known to vary extensively amongst different RNA viruses;
while large-scale comparative studies of RNA virus recombination rates are as yet lacking, significant
variation has been reported both for the intrinsic rates of replicative and non-replicative RNA virus
recombination prior to selection, as well as recombination rates that can be inferred at the population
level. The former are typically measured in vitro via single-cycle assays in co-infected cells, population
level estimations are typically based on sequence analysis and necessarily exclude deleterious

recombinant forms that have been removed by purifying selection (Simon-Loriere and Holmes, 2011).

Recombination is frequent in retroviruses, notably in the human immunodeficiency virus where
recombination rates, at approximately two to three recombination events per genome per virus
replication cycle or 1.38 x 10 to 1.4 x 10 recombination events/adjacent sites/generation, may exceed

those of mutation (Jetzt et al., 2000; Shriner et al., 2004). Such high recombination rates probably reflect
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mechanistic aspects of retrovirus biology and genome architecture; specifically, their pseudodiploidy
may facilitate recombination when two RNA molecules are packaged into the same virion, the physical
proximity thus increasing the likelihood of template switching which is, in itself, an intrinsic component
of the retrovirus replication strategy (Simon-Loriere and Holmes, 2011). Meanwhile, negative sense
RNA viruses only infrequently experience recombination (Chare et al., 2003). Reasons for low negative
sense RNA virus recombination rates remain to be fully elucidated but may include both ecologic and
mechanistic constraints; their low recombination rates have been tentatively linked to the presence of
the RNA-bound ribonucleoprotein complex which may affect the ability of the RNA polymerase to
switch templates during replication (Chare et al., 2003). In positive sense RNA viruses, recombination
occurs at highly variable frequencies between different virus families; recombination is frequently
observed in the Caliciviridae, Picornaviridae and Coronaviridae (vertebrate viruses; in the latter,
recombination is likely facilitated by discontinuous transcription involving jumps of the replication-
transcription complex during minus strand RNA synthesis) (Desselberger, 2019; Lin et al., 2019;
Simmonds, 2006), Bromoviridae and Potyviridae (plant viruses), but appears to be non-existent in the
Leviviridae (bacteriophages), Barnaviridae, and Narnaviridae (mycophages) (Bentley and Evans, 2018;
Simon-Loriere and Holmes, 2011). In addition, rates may also vary significantly between different
genera of the same family. Thus, the incidence of recombination varies amongst the four genera of the
Flaviviridae, where recombination events are easily detected in pestiviruses (Becher and Tautz, 2011;
Buning et al., 2017), pegiviruses (Zhang et al., 2019), the hepacivirus, hepatitis C virus (Galli and Bukh,
2014), and certain mosquito-borne flaviviruses (Durdes-Carvalho et al., 2019), but are rarely reported
in any of the tick-borne flaviviruses (Bentley and Evans, 2018; Norberg et al., 2013).

The range of recombination rates that characterises RNA viruses may be held to either reflect
purely mechanistic features of particular viral ecologies or genome architectures, or may be attributed
to certain advantages of recombination over asexual evolution and the fact that natural selection may
favour specific genetic variants produced by recombination (Holmes, 2009; Simon-Loriere and Holmes,
2011). A dissection of the various checkpoints or steps that give rise to a recombinant a viral RNA, and
ultimately a viable recombinant RNA virus, illustrates how drivers and constraints at each stage can
determine whether a recombination event may be achieved for a given virus (Worobey and Holmes,
1999).

2.1.6 RNA virus recombination checkpoints

For the generation of a recombinant viral RNA, and ultimately a viable recombinant RNA virus,
several requirements must be met (Galli and Bukh, 2014; Worobey and Holmes, 1999). Five steps or
checkpoints must be successfully completed in vivo to generate a viable, replicating recombinant RNA
virus following the classical copy-choice model of replicative recombination; four steps are necessary

to obtain the same result via non-replicative recombination (Figure 9).
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The first step necessarily preceding any recombination event is the simultaneous infection of a
host with at least two parental strains (or clonal within-host replication allowing for subsequent
recombination between nascent progeny viruses). Co-circulation of different viral strains in the same
geographic area and within the same risk population are prerequisites to synchronous host co-infection.
An overlap in space, if not in time, may nevertheless enable simultaneous infection of a host, provided
superinfection by a secondary virus is not prevented by the host immune system and the primary virus
has not been cleared before the event (Worobey and Holmes, 1999).

Once a host has been successfully co-infected, the second step is co-infection of a single target
cell. The uptake of multiple viruses into a single cell is dependent both on the quantity of co-circulating
viruses, the mode of their uptake (Erickson et al., 2018), and on factors that may limit consecutive entry
of more than one virus particle per cell in a process known as superinfection exclusion. Superinfection
exclusion is defined as the ability of an established virus to prevent a secondary infection by the same
or a closely related virus (Folimonova, 2012); the primary infecting virus may render cells refractory to
subsequent infection through interference at various stages of the replicative cycle of the secondary
invader in a time-dependent manner. Viral pre-and post-entry blocks have been described for a number
of RNA viruses (Adams and Brown, 1985; Bergua et al., 2014; Bratt and Rubin, 1968; Claus et al.,
2007; Huang et al., 2008; Lee et al., 2005; Tscherne et al., 2007; Zhou et al., 2019), but may be overcome
by certain strains after a period of adaptation (Lee et al., 2005; Webster et al., 2013; Zou et al., 2009).

The third step to obtaining a recombinant virus can either consist of a step of non-replicative
recombination or a combination of replication and template switch (step four) between two co-infecting
viruses within a cell. Co-localisation to the same subcellular region within said cell is necessary for
interaction between viral genomes via either mechanism; co-occupancy of replication complexes is a
prerequisite to recombination via the replicative pathway. Specific features of the viral genome and
replicative proteins may further advance or hinder copy-choice recombination. Thus, the distribution of
recombination junctions is frequently biased towards regions of sequence identity between RNA
templates, the presence of tertiary genome structures is held to expedite replicative recombination, and
the fidelity of the polymerase itself plays a role in determining how often particular genomes recombine
(Bentley and Evans, 2018; Worobey and Holmes, 1999).

By whichever way a recombinant viral genome is generated, it is by no means a foregone
conclusion that the process will result in a replicating recombinant RNA virus. Any given recombination
event, switching out large genome segments in a nascent virus, presents a significant modification. It
follows that initial imprecise recombination events (e.g. introduction of mutations or faulty epistatic

interrelationships between the parts of an incipient recombinant) present an evolutionary bottleneck that
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can result in the generation of non-functional genome chimeras (defective or defective interfering
RNAS) or recombinant viruses of reduced replicative fitness. If recombinants are not able to function at
the same level as their parental strains or do not possess selective advantages over their progenitors, it
is unlikely that they will survive in a viral population (Lowry et al., 2014; Sackman et al., 2015). Studies
in various RNA viruses have shown that circulating recombinants probably only represent a subset of
those that are actually generated, and are the ones that are maintained in the viral population after a
rigorous functional selection, having bypassed this fifth and final step of successful RNA virus
recombination (Bagaya et al., 2017; Banner and Mc Lai, 1991; Lowry et al., 2014).

A conceptual model illustrating RNA virus recombination checkpoints is shown in Figure 9

(and is, with corresponding adaptations, reprised in Figure 3 of the review on NoV recombination that

comprises chapter 2.3 of this thesis (Ludwig-Begall et al., 2018)).
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Figure 9. Conceptual model of steps, drivers and constraints of RNA virus recombination.

(A) gives an overview of the different recombination steps and accompanying host, virus, or
environmental drivers and constraints (predictive risk factors), as adapted from Worobey and
Holmes (1999). (B) and (C) focus on putative drivers and constraints of both non-replicative
recombination and template-switch-mediated recombination, respectively.

2.1.7 Consequences of RNA virus recombination

Successful recombination, whether it represents an accidental by-product of virus biology
(reflecting breakage and joining (non-replicative) and/or association and dissociation of RNA template
and replication complex (replicative)), or a key adaptive and evolutionarily selected process, may

profoundly influence an individual virus and a virus population as a whole.
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A single recombination event can switch out entire genome sections and simultaneously transfer
multiple mutations previously incorporated into a genomic region; deleterious mutations can be purged
via this process (an escape from Muller’s ratchet) and advantageous genetic combinations may unlink
from deleterious backgrounds and be spread at a rate unattainable by purely clonally reproducing
organisms (Bentley and Evans, 2018; Simon-Loriere and Holmes, 2011).

The extensive genetic changes achievable through successful recombination can result in rapid
and extreme changes in virus phenotype, allowing for antigenic shifts (Hahn et al., 1988; Malim and
Emerman, 2001), pathogenesis and fitness modifications (including the facilitated spread of drug-
resistant mutants) (Moutouh et al., 1996), and changes in receptor or even host tropism (Jackwood et
al., 2010; Li et al., 2020).

Various prominent human pathogenic disease outbreaks have been linked to recombination
events. Thus, bouts of vaccine-derived paralysis have been linked to recombination between live
attenuated poliovirus vaccine strains and circulating enterovirus C species (Bentley and Evans, 2018;
Kew et al., 2002); the three most pathogenic human coronaviruses (SARS, MERS, and most recently
SARS-2) are the result of recombination among coronaviruses (Graham and Baric, 2010; Li et al., 2020).
Consequently, the potentially dire fallout of viral recombination calls for an improved insight into and

closer monitoring of these processes.

2.2 Norovirus point mutation accumulation

2.2.1  Human norovirus mutation rates and sources of point mutation

The NoV RdRp, a key enzyme for transcription and replication of the NoV genome, shares
functional and structural features with other RNA virus polymerases (Deval et al., 2017). In vitro RdRp
fidelity assays have been implemented to experimentally determine mutation rates of various HuNoV
strains (Bull et al., 2010). These assays demonstrated overall mutation rates to lie within the range of
those typically described for RNA viruses, but pinpointed strain-dependent differences. Globally
predominant Gl1.4 strains had five- to 36-fold higher mutation rates (average of 7.95 x 10 substitutions
per nucleotide site or 5.97 +1.96 substitutions per genome replication event) compared to less frequently
detected strains, Gll.b (1.53 x 10** or 1.15 substitutions per genome replication event) and GI1.7 (2.21 x

10 or 0.17 substitutions per genome replication event).

Recently, single-cycle viral replication of a Norwalk virus infectious cDNA clone transfected

into human embryonic kidney cells yielded a mutation rate estimate of 1.5x107 s/n/c (Cuevas et al.,
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2016). Interestingly, a large fraction of NoV spontaneous mutations constituted U-to-C and A-to-G
substitutions occurring as bouts of mutations in the same RNA molecule; such sequence changes are
characteristic of adenosine to inosine editing (inosines subsequently base-pair with cytosines) by
double-strand RNA-dependent adenosine deaminases (ADARs) (Samuel, 2012), suggesting that host-
driven extrinsic NoV hyper-mutation acting on double-stranded replication intermediates may be a
source of NoV diversity comparable to intrinsic viral RdRp fidelity. In depth analysis of NoV
spontaneous mutations in clinical Gll.4 samples supported the hypothesis that hyper-mutation may
reflect a relevant mutational process in NoVs (Cuevas et al., 2016).

2.2.2 Evolutionary rates of human noroviruses

Early bioinformatics analysis of published ORF2 sequence data revealed strain dependent
differences in NoV evolutionary rates, estimating 1.7-fold higher average rates of evolution within Gl1.4
capsid sequences (3.9 x 10 n/s/y) than other NoVs (GII.3, GII.3[Pb], GII.7 with 1.9 x 103, 2.4 x 1073,
and 2.3 x 10 n/sly, respectively) (Bull et al., 2010). Higher ratios of nonsynonymous to synonymous
amino acid changes in GI1.4 NoV capsids were held to indicate that Gll.4 strains experience faster rates
of antigenic drift than other NoV strains as a probable consequence of their higher RdARp mutation rates
(Bull et al., 2010). Nonsynonymous mutations for NoV Gll.4 and all other analysed genotypes (albeit
at lower numbers) were shown to cluster to common structural surface-exposed residues of the
hypervariable P2 capsid domain, corresponding to known HBGA-binding targets and hypervariable
GII1.4 “evolution hotspots™ (Lindesmith et al., 2008), suggesting that these sites are likely to be subject

to immune-driven selection (Bull et al., 2010).

Other long-term evolutionary analyses of archival NoV sequences have calculated similar
population-level evolutionary rates for GI1.4 VVP1 capsid sequences (4.3 x 10 n/s/y) and have identified
preferential sites for evolution under positive selection to be located in the VP1 shell domain as well as
P2 (Karin et al., 2009; Mori et al., 2017). However, in contrast to previous observations, evolutionary
rates of various non-Gll.4 genotypes, e.g. GII.3 VVP1 (4.16 x 10 n/sly) (Boon et al., 2011), GI1.2[P2]
(1.75 x1072 n/sly) or GI1.2[P16] (2.37 x 10 n/sly) (Tohma et al., 2017), have been estimated to be close
to those of Gl1.4 strains. Differences in mutation rates may provide higher diversity at a given time (e.g.
after a recombination event) and so confer an advantage to GlI.4 strains; however, they seem to have a
limited impact on overall NoV evolutionary rates. Strain-dependent differences of NoV evolutionary
patterns are thus not entirely attributable to differences in viral RdRp fidelity and remain to be fully

elucidated.

Full-genome deep sequencing analyses have revealed that evolutionary rates are not uniform

across the NoV genome, with surface- and immune-exposed regions experiencing more variation than
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less malleable sections; correspondingly, ORF2 (VP1) and ORF3 (VP2)-specific rates are typically
higher than those reported for ORF1 (NS). Within ORFL1, regions encoding NS1/2 and NS4 have been
shown to exhibit the highest levels of change (Cotten et al., 2014; Hasing et al., 2016).

Overall NoV evolutionary dynamics at inter-host population levels may differ from intra-host
dynamics where, subsequent to transmission typically characterised by a strong genetic bottleneck,
evolutionary rates fluctuate by several orders of magnitude dependent on the host immune status (Bull
et al., 2012; Hoffmann et al., 2012; Karst and Baric, 2015) (as described in chapter 1.6.6).

2.2.3 Impact of human norovirus diversification via point mutation accumulation

The epochal emergence of Gll.4 variants is commonly ascribed to the accumulation of novel
VP1 GIl.4 amino acid mutations (linear evolution with intermediate periods of stasis), while non-Gll.4
genotypes experience limited changes and can persist for decades with minimal VP1 modification as
so-called static genotypes (Boon et al., 2011; Mori et al., 2017; Parra, 2019; Parra et al., 2017).

The emergence of both Gll.4 and non-Gll.4 viruses has been linked to changes in the viral
RdRp, highlighting it, and potentially other non-structural proteins, as drivers of NoV evolution. Thus,
the emergence of certain Gll.4 variants (since their establishment as prevalent genotype in the mid-
1990s) has been associated with mutations in the Gl1.4 RdRp gene (Lopman et al., 2004) or acquisition
of a new viral polymerase via recombination (the genetic diversity of GIl.4 variants due to
recombination is discussed in chapter 2.3) (Cannon et al., 2017; Parra, 2019). Both the predominance of
re-emerging (2016-2017) (Ao et al., 2018; Tohma et al., 2017) recombinant GII.2[P16] viruses (Parra
et al., 2017; Tohma et al., 2017) and GII.17[P17] viruses between 2013 and 2015 (Parra and Green,
2015) have been putatively associated to substitutions in the viral RdRp. Notably, single HuNoV RdRp

point mutations have been experimentally demonstrated to affect replication kinetics (Bull et al., 2010).

Norovirus diversification and emergence is thus associated (in varying measure) with changes
to two regions of the NoV genome, non-structural protein-encoding ORF1 and VVP1-encoding ORF2.
Recombination events can create chimeric viruses to generate new recombinants and further contribute
to NoV strain diversification by combining and modifying existing mutational profiles (discussed in
chapter 2.3).

2.2.4  Murine norovirus evolution via point mutation accumulation

In vitro mutation rates have been inferred for representative genome regions of MuNoV isolate

MNV1-CW1 (Mauroy et al., 2017). Mutation rates were shown to not significantly differ between
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regions encompassing partial coding sequences for NS1/2, NS5, NS6, and NS7 within ORF1, where
they were within the same range as those reported for various HUNoV strains, but were estimated to be
at least one order of magnitude higher for partial ORF2, 3 and 4 sequences (Mauroy et al., 2017).
Interestingly, the existence of defective RNAs or defective interfering particles, commonly associated
with the population dynamics of error-prone virus replication (Stauffer Thompson and Yin, 2010), was
indicated by diverging infectious NoV virus titres and genomic copy values determined during MuNoV
serial passaging (Mauroy et al., 2017).

Highlighting the importance of point mutation as an evolutionary mechanism for NoVs, a single
point mutation in NS1/2 (changing aspartic acid to glutamic acid) has been shown to dramatically alter
the biological behaviour of a MuNoV, rendering non-persistent MNV1-CW3 persistent and causing an
increased growth of CW3 in the proximal colon, a tissue reservoir of MuNoV persistence (Borin et al.,
2014; Nice et al., 2013).

Furthermore, in vivo assays have shown that single point mutations modulating MuNoV RdRp
fidelity may affect MuNoV pathogenesis; Arias et al. demonstrated a high-fidelity MNV-3 NS7 active-
site mutant to exhibit delayed replication in vivo (but not in vitro) and reduced transmission between
hosts, suggesting that the generation of sufficient genetic diversity (via a low-fidelity RdRp) may be
linked to efficient intra-host virus transmission (Arias et al., 2016). Conversely, artificially increased
mutagenesis above the inherently high mutation rates of NoVs has been shown to lead to extinction of
MuNoV populations (Arias et al., 2014), highlighting the NoV RdRp as an important target for the
development of anti-noroviral therapies (see also chapter 1.8.1) (Rocha-Pereira et al., 2016).

2.3 Norovirus recombinants: recurrent in the field, recalcitrant in the lab — A scoping review

of recombination and recombinant types of noroviruses

Chapter 2.3 of this thesis was published as a review article in the Journal of General Virology
mid-2018 and is reproduced on the following pages.
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Norovirus recombinants: recurrent in the field, recalcitrant in
the lab — a scoping review of recombination and recombinant
types of noroviruses
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Abstract

Noroviruses are recognized as the major global cause of sporadic and epidemic non-bacterial gastroenteritis in humans.
Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and recombination.
Intragenotypic recombination has long been postulated to be a driving force of Gll.4 noroviruses, the predominant genotype
circulating in humans for over two decades. Increasingly, emergence and re-emergence of different intragenotype
recombinants have been reported. The number and types of norovirus recombinants remained undefined until the 2007
Journal of General Virology research article ‘Norovirus recombination’ reported an assembly of 20 hitherto unclassified
intergenotypic norovirus recombinant types. In the intervening decade, a host of novel recombinants has been analysed. New
recombination breakpoints have been described, in vitro and in vivo studies supplement in silico analyses, and advances have
been made in analysing factors driving norovirus recombination. This work presents a timely overview of these data and
focuses on important aspects of norovirus recombination and its role in norovirus molecular evolution. An overview of
intergenogroup, intergenoctype, intragenotype and ‘obligatory’ norovirus recombinants as detected via in silico methods in the
field is provided, enlarging the scope of intergenotypic recombinant types to 80 in total, and notably including three
intergenogroup recombinants. A recap of advances made studying norovirus recombination in the laboratory is given.
Putative drivers and constraints of norovirus recombination are discussed and the potential link between recombination and
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norovirus zoonosis risk is examined.

INTRODUCTION

Noroviruses (NoVs) belong to the Caliciviridae family of
small, non-enveloped, positive sense, single-stranded RNA
viruses, currently divided into the five approved genera Ves-
ivirus, Lagovirus, Nebovirus, Sapovirus and Norovirus, while
additional genera have been proposed [1]. Detected in a
wide range of mammalian species, NoVs cause gastroenteri-
tis of varying severity in their animal hosts [2]. Human nor-
oviruses (HuNoVs) are recognized as the major global cause
of sporadic and epidemic non-bacterial gastroenteritis
[3, 4], with significant morbidity and mortality in impover-
ished developing countries [5, 6] and a high economic
impact in developed countries [7]. Despite their signifi-
cance, no viable cell culture system existed for the study of
HuNoVs until the recent report of low-level infection of cul-
tured human B cells [8] and the advent of the human enter-
oid system [9]. While practicability of these new cell culture
systems still presents hurdles, the murine norovirus

(MuNoV), replicating efficiently in murine dendritic or
macrophagic cells [10, 11], currently remains the model of
choice for in vitro study of NoVs and in vivo infection of a
genetically tractable host.

HuNoVs and MuNoVs share many similarities in terms of
their genome structure. The HuNoV linear, single-stranded,
polyadenlyated positive-sense, ca. 7.5 kb long RNA genome
is classically divided into three ORFs, with a fourth
described for MuNoVs [12]. The 5" proximal ORF1 encodes
a large polyprotein that is co- and post-translationally
cleaved by protease-catalysed mechanisms into the six non-
structural viral proteins (NS1/2 to NS7) [6]. ORF2 and
ORF3 encode the structural components of the virion,
major and minor capsid protein, VP1 and VP2, respectively.
VP1 itself consists of a conserved shell (S) and two protrud-
ing (P) domains, of which the conserved P1 enhances parti-
cle stability, while the exposed, variable P2 forms binding
clefts for virus receptors and harbours antigenic epitopes at
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the capsid exterior. ORF4, entirely overlapping the 5’end of
ORF2, encodes an antagonist of innate immunity, virulence
factor VF1 [6].

NoVs are genetically classified into six established gen-
ogroups (GI-GVI), while a seventh (GVII) was recently
proposed [13]. Genogroups are further divided into at least
38 genotypes [14, 15] and GII.4 strains are additionally sub-
typed into variants. Since the mid-1990s, classification into
genogroups and genotypes has been based on amino acid
sequence analysis of the complete VP1 capsid protein, with
an updated cut-off threshold of a minimum of 15 % pairwise
difference proposed for classification of a new genotype. To
account for the common occurrence of recombination in
the ORF1-ORF2 overlapping region, a dual-nomenclature
system based on complete capsid sequences and the RNA
polymerase region in ORF1 [14] was recently established by
consensus of the International Norovirus Working Group.
The remarkable level of variability within the NoV genus
reflects the high level of continuous viral evolution therein.

Molecular mechanisms driving NoV evolution are the accu-
mulation of point mutations (or genetic drift) and recombi-
nation. In any given virus, the accumulation of point
mutations generally leads gradually to genetic variation and
the generation of viral quasispecies [16]. Recombination,
the complex molecular process by which a fragment of
DNA is reciprocally exchanged between homologous chro-
mosomes, serves as the basis of evolution/sexual reproduc-
tion in eukaryotes [17] and, in fact, deeply impacts the
evolution of all biological entities. In prokaryotes and
viruses, recombination (or lateral gene transfer or gene con-
version) involves non-reciprocal replacement or addition of
genome sequences rather than exchange [17, 18] and can
create considerable changes in a given viral genome, allow-
ing for antigenic shifts [19], changes in receptor or host tro-
pism [20], and pathogenesis and fitness modifications to
shape viral epidemiology [21].

Intragenotype recombination has long been postulated to be
a driving force of GII.4 NoVs, which have been the predom-
inant genotype circulating in humans for over two decades
[22-24]. This position has only recently been challenged by
emergence and re-emergence of different intergenotype
recombinants modifying long-term global NoV genetic
diversity trends [25-31]. Recombination is clearly a wide-
spread evolutionary mechanism used by NoVs.

Here, we review the different aspects of NoV recombination
and its role in NoV molecular evolution. We give a compre-
hensive overview of intergenogroup, intergenotype and
intragenotype (and their importance in the GIL.4 lineage)
and obligatory NoV recombinants, as detected via in silico
methods in the field. We then provide a recap of advances
made studying NoV recombination in the lab. Putative driv-
ers and constraints of NoV recombination are discussed
and the potential link between recombination and norovirus
zoonosis risk is briefly examined.

971

MECHANISMS OF NOV RECOMBINATION -
THE ORF1/2 OVERLAPPING HOTSPOT AND
LESS COMMON BREAKPOINTS

Typical as well as atypical recombination breakpoints have
been described along the length of the NoV genome. While
predictive recombination tools and similarity plots between
putative recombinant genomes and suspected parental
genomes have suggested recombination at breakpoints
within ORF2 in several genomes of MuNoV field strains
[32], sequence analysis of field HuNoV strains has over-
whelmingly shown the predominant recombination break-
point to lie in the highly conserved ORF1/ORF2 overlap
corresponding to the junction of RdRp and capsid sequen-
ces [33]. The region is considered as a negative-strand sub-
genomic RNA promoter site, leading to the development of
a model for NoV recombination, which combines the copy-
choice model of recombination in which recombinant RNA
molecules are generated via template switch of the RdRp,
with an internal initiation mechanism for subgenomic syn-
thesis [33, 34]. Both the standardized NoV nomenclature
(as described above) and current genotyping assays are
designed to accommodate the ORF1/2 recombination hot-
spot [14]. Thus, e.g. the Norovirus Automated Genotyping
Tool (NoroNet) [35] assigns NoV sequences to a NoV gen-
ogroup, and offers unequivocal information on RdRp and
capsid-affiliation on either side of the ORF1/2 overlap based
on genetic homology and phylogenetic inferences.

However, atypical recombination breakpoints have been
observed, amending the paradigm of ORF1/2 recombina-
tion. As such, an atypical recombination event located at the
3’ end of the NoV polymerase gene (at nt position 4889)
was first described in the GIL.4 recombinant Hu/771/2005/
IRL (GenBank accession number EF219487) [36]. Recently,
similar atypical breakpoints were observed in epidemic
GIIL4 variants at nt position 4.834 of the GIL4 US95_96/
GIIL.4 Kaiso_2003 recombinant strain Hu/GIL.P4/VIG246/
2003/BRA  (GenBank accession numbers KU756290-
KU756293) and at nt position 5.002 of the strain Hu/GII.
P4/2A1049/2009/BRA GII.4 Den_Haag-2006b/GIL.4 Yerse-
ke_2006a (GenBank accession numbers: KU756294 and
KU756295) [37]. Interestingly, there seems a marked ten-
dency for GILP7/GIL6 viruses to also harbour breakpoints
located near the 3" end (C terminus) of the RdRp and at
least 40 nt upstream of the overlapping region of ORF1 and
2. The breakpoint in 105 of 112 analysed GILP7/GIL6
sequences was located at nt position 5009 in reference to
strain GII/Hu/China/2009/GIL.P7-GIL6/Beijing (GenBank
accession number KX752057) in the absence of a known
RNA promoter at this site [38]. An additional ORF2/3 junc-
tion breakpoint was reported for GII/4 variants [39-41] and
sequences of GII.4 2008 variant viruses have been reported
to consistently exhibit a 300-500 bp long mosaic fragment
in the ORF2 P2 domain in addition to the typical ORF1/2
breakpoint [42]. In a recent study, only in one of 21 GIL.2
recombinant strains was the recombination breakpoint
located within the ORF1/2 overlapping region, while in 15
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strains it was located within ORF1 and in five strains within
ORF2 [43]. Low frequencies of recombination in the VPg,
protease and 3" end of the RdRp coding region as well as the
VP1 S domain of MuNoVs were reported by Zhang et al.
[44]. Such a recombination in the absence of an obvious
RNA promoter or triggering secondary structure has been
tentatively purported to suggest that at atypical recombina-
tion sites, recombination may have arisen by other mecha-
nisms to those that induce a breakpoint in or around the
ORF1/2 overlap [34]. The possibility of non-replicative
recombination by which randomly cleaved RNA strands are
self-ligated or joined by cellular enzymes has been demon-
strated for other positive-sense single-stranded RNA viruses
[45-48], and may be considered in this context. Proposed
models for replicative and putative non-replicative NoV
recombination, as adapted from Bull et al. [34] and a gen-
eral model for RNA virus recombination [48], respectively,
are shown in Fig. 1. Studies in other RNA viruses have
shown that observed recombination breakpoints probably
only represent a subset of those that are actually generated,

and are the ones that are maintained in the viral population
after a rigorous functional selection [45, 49]. The same
probably holds true for the typical ORF1/2 NoV breakpoint
as well as less frequent other breakpoints distributed across
the virus genome (discussed further below).

NOROVIRUS RECOMBINATION IN THE FIELD

Intergenogroup and intergenotype recombinants

Since the first description of a naturally occurring HuNoV
recombinant in 1997 [50], recombinant NoVs have been
reported worldwide. The actual number and types of
recombinants remained undefined until 2007, when Bull
et al. published an assembly of 20 hitherto unclassified
intergenotypic NoV recombinant types. The authors con-
firmed seven NoV GI recombinants collectively belonging
to the recombinant genotype GI.2/GL6, 17 prototype GII
recombinants, all of which were a combination of one of
eight different polymerase genotypes and one of nine differ-
ent capsid genotypes, and three GIII recombinants,

Replicative NoV
recombination

Q O

] v
P

5 +

Recombinant NoV genome

Gut lumen

Non-replicative NoV

Q Q recombination
6 (‘\) Cytoplasm
\ / UV-damage

ﬁ Cryptic ribozyme
O

Cellular enderibonuclease

|
3P 5OH
(N

Ligation via cellular ligases / self ligation

Physical shearing

5 +
Recombinant NoV genome

Fig. 1. Proposed models for replicative and non-replicative recombination in noroviruses, as adapted from Bull et al. [34] and Galli
and Bukh [48], respectively. Left: this model of replicative norovirus recombination combines the copy-choice model of recombination,
in which recombinant RNA molecules are generated via template switch of the RdRp, with an internal initiation mechanism for subge-
nomic synthesis. After infection of the cell by two different NoV strains (blue and green hexagons), RNA-dependent RNA polymerase
(RdRp) (blue jagged circle) transcription of incoming genomes generates a negative-stranded intermediate. Binding of the RdRp to both
a 5" and an internal promoter (indicated by blue and green rectangles), initiates positive-stranded genome and subgenomic RNA syn-
thesis. RNA synthesis from the 3" end then generates negative-stranded genomes and subgenomic RNA. Recombination occurs during
replication when the RdRp, having initiated positive-stranded synthesis at the 3" end of the negative strand, stalls at the subgenomic
promoter (near the ORF1/2 overlap), disassociates from the donor template and switches to subgenomic RNA of a co-infecting virus.
Right: a putative model of non-replicative norovirus recombination as based on Galli and Bukh's model of non-replicative recombina-
tion in positive-sense RNA viruses [48]. After infection of the cell by two different narovirus strains, RNA strands are randomly cleaved
via physical shearing, UV-damage, cryptic ribozyme activity or cellular endoribonucleases. Fragments, carrying 3-phaosphate and 5'-
hydroxyl ends, are subsequently self-ligated or re-joined by cellular ligases to farm a recombinant norovirus genome.
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categorized into two recombinant types NoV GIIL.1/GIIL.2
and NoV GIIL.2/GIIL1 [34].

In continuation of this list, Table 1 of the present review
comprehensively compiles first reports (to the knowledge of
the authors) of novel intergenogroup and intergenotype
recombinants reported over the intervening ten years. The
recombinant type list (Table 1), was assembled following an
exhaustive Medline (accessed via PubMed) (www.ncbi.nlm.
nih.gov/pubmed) and GenBank (www.ncbinlm.nih.gov/
genbank/) search, including literature and database hits
published from July 2007 to February 2018. PubMed search
terms were as follows: (‘norovirus’[MeSH Terms] OR ‘noro-
virus’[All Fields]) AND (‘recombination, genetic’[MeSH
Terms] OR (‘recombination’[All Fields] AND ‘genetic’[All
Fields]) OR ‘genetic recombination’[All Fields] OR ‘recom-
bination’[All Fields]) AND recombinant[All Fields].
In total, 96 full-text English-language research articles,
either direct PubMed search results hits or identified via
perusal of selected articles” bibliographies, were included in
this compilation. Corresponding sequence searches in the
NCBI nucleotide database yielded a total of 83 NoV recom-
binant sequences. Table 1 thus enlarges the scope of inter-
genotypic recombinant types to 80 in total and notably
includes three intergenogroup recombinants.

While Bull ef al. rigorously applied three methods, namely
phylogenetic analysis, SimPlot analysis and the x> method,
to identify recombinants and excluded (certain intergeno-
typic and all intragenotypic) reported recombinant strains
that failed to meet all three criteria, such a detailed recombi-
nation analysis would exceed the scope of this review and,
accordingly, reported recombinants were preliminarily
assumed to be genuine on the strength of their original anal-
ysis. Confirmation of the ‘recombinant status’ was sought
via the automated Norovirus Genotyping Tool (Version
2.0), available online from the NoroNet website of the
Dutch National Institute for Public Health and the Environ-
ment (www.rivm.nl/mpf/norovirus/typingtool). Briefly, the
tool employs a typing algorithm on ORF1 and ORF2
sequences of genogroup I and II noroviruses, starting with
BLAST analysis of the query sequence against a reference set
of Caliciviridae sequences. This is followed by phylogenetic
analysis of the query sequence and a sub-set of the reference
sequences, to assign NoV genotype and/or variant, with
profile alignment, construction of phylogenetic trees and
bootstrap validation [35]. Interestingly, certain NoroNet
analyses yielded divergent results from those published by
the original authors, either refuting the submitted sequen-
ces’ ‘recombinant’ status entirely or divergently identifying
either RdRp- or capsid-sequence affiliation. While this effect
probably reflects the regular monitoring and updates of the
typing tool’s reference set by the ‘Norovirus working group’
members [this is supported by the fact that most ‘mis-
matches’ appear in older publications (before 2012)], it also
calls into question whether a shared sequencing protocol
and stricter baseline limit of nucleotides should be
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established for analysing and reporting of NoV recombi-
nants [30].

Intragenotype/intersubtype recombinants -
importance in the Gll.4 lineage

Considering that recombination at the ORF1/2 boundary
region, as mediated by the proposed homologous copy-
choice mechanism, has been associated with high similarities
of implicated sequences [33], intragenotype/intersubtype
recombination should actually occur more frequently than
intergenogroup and intergenotype recombination [41].
Reports of intragenotype recombinants are, however, often
difficult to confirm, necessitating extremely sensitive meth-
ods to avoid confusion of true intragenotype recombinants
with strains that have simply undergone genetic drift. Logi-
cally, this liability is much increased in intragenotype
recombinants as compared to those derived from more dis-
tantly related parental strains [22]. Accordingly, in 2007,
Bull et al. were unable to confirm nine reported intrageno-
type recombinants [34], amongst these notably Hu/NLV/
Saitama U3/02/JP and Hu/NLV/GII/MD145-12/87/US
(GenBank accession numbers AB039776 and AY032605,
respectively) [51]. Surprisingly, the NoroNet Sequencing
Tool today identifies the former as a GILP7/GIL6 recombi-
nant, while the latter groups as a non-recombinant GII.4
Camberwell_1994 in both polymerase and capsid regions.

Nevertheless, intragenotypic recombination has been
increasingly cited as an important means for GIL4 (and
other) variant emergence and successful navigation of the
fitness landscape [52]. The phenomenon has been discussed
exhaustively in recent publications [22, 37, 53, 54], but this
review would nevertheless not be complete without a short
overview of the issue. Postulated mediators for intrageno-
type GIL4 recombination include selective advantages and
improved adaptation to host receptors via physicochemical
P2 changes in the virion of new GII.4 subtypes and the eva-
sion of herd immunity against predominant genotypes
[29, 41, 42, 55]. Motomura et al. [41] reported evidence of
intersubtype genome mosaicism of GIL4 subtypes 2007a,
2007b, 2008a and 2008b, showing them to be ORF1/2
recombinants with distinct evolutionary lineages for capsid-
and non-structural proteins of previously co-circulating
GIL.4 subtypes [40, 41]. NoroNet Sequencing Tool analysis
revealed the sequences to be recombinants of GII.Pe/GIL.4
Osaka_2004 (GenBank accession number AB541190.1) for
subtype 2007a and GILP4 Apeldoorn_2007/GI1.4 Den_
Haag 2006b for the remaining three strains (2007b:
AB541193.1 and AB541192.1; 2008a: AB541196.1 and
AB541195.1; 2008b: AB541200.1).

Complex patterns of intragenotypic recombination within
the GIL4 lineage were revealed with the identification of
double and triple recombinant forms involving the P2 anti-
genic domain of GIL.4/2008 variants [42]. The pattern was
backed up by detection of interpandemic recombinants
between GIL.4 New_Orleans_2009 and GIL4 Sydney_2012,
in itself a recombinant variant (representative GenBank
accession number of a GII.P4 New_Orleans_2009/GII.4
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*Gll.b (now known as GII.21) was initially described as an obligatory recombinant owing to its typical pairing of a phylogenetically unigue ORF1 region with one of a number of genotypes (GII.T,
GII.2, GII.3 and Gll.4 amongst others) in the absence of a ORF2 Gll.b phylogenetic cluster [61, 62]. When the Indian strain Hu/NoV/Ahm PC03/2006/India (GenBank accession number EU019230)

was identified as present in the pORF GII.21 cluster together with representatives of the pORF1 type Il.b, the orphan Gll.b cluster was renamed GII.21 [14]. The strain Hu/Ahm/PC03/2006/India

was identified as GII.21 by [173] and in this study. The sole pORF1 orphan type Gll.d was grouped in the GI1.22 cluster [14].

tThe strain V1628 (AB453773.1) showed 96 % identity in its RdRp region with Pont de Roide 673/FRN (GenBank accession number AY682549), in itself identified as a GI.P21/GI.2 recombinant,

whereas V1628 capsid region resembled GII.7/0saka F140/JPN strain (98 %) [125].

tInterestingly, when Kroneman et al. [14] typed the strain Hu/Pune/PC51/2007/India (GenBank accession number EU921388.2) the recombinant sequence was assigned as Gll.e/Gll.b [14], whereas

the group's own Sequence Typing Tool (introduced in the cited publication) called a GIl.Pe/Gll.4 Osaka_2007 recombinant upon analysis in January 2018 {(10/01/2018). This result probably reflects

the regular monitoring and updates of the typing tool's reference set by the norovirus working group members.

8Unless otherwise specified, ‘Gll.4" can be understood to refer to the Gll.4 genotype in general in that either several Gll.4 subtypes were detected to be represented in a Gll.4 recombinant type or
further subtyping of a recombinant involving Gll.4 was not performed. Thus, e.g. the recombinant type GII.4/GII.3 includes the strain Norovirus Hu/5Z-2011-8/CHN (GenBank accession number

KR093991.1), a Gll.4 2006b/GII.3 NoV [121].

[IGI.12 sequences (reference Saitama U1/JP), especially of ORF1, have been known to branch inside Gll.4 clusters [41] and similarities between the two genotypes have also been suggested by

their capsid domain crystal structures and capacity for HBGA recognition [55]. The ‘confusion’ of Gll.4 and GII.12 strains in earlier publications seems correspondingly to be a common problem.

Thus, e.g. [111] report the Chiba1/04/JP (GenBank accession number DQ372864.1) as a Gll.4/GIl.3 recombinant. The NoroNet sequencing tool, however, identifies it as norovirus GII.P12/GII.3.

Equally, [98] report a Gll.4 Sakai/Gll.3 strain (accession number GQ856467.1) which is identified as GII.P12/GI.3 by NoroNet. Nevertheless, the strain Hu/Tokyo/7882/2007/JPN, a Gll.4 2006b/GlI.3

NoV recombinant (accession number KR093991.1) reported by [121], is confirmed as such by NoroNet analysis. Hu/Hiroshima/60-1015/2005/JP (GenBank accession number AB354299.1) was
reported as a Gll.4/GIl.2 NoV by [97], but is identified as a GII.P12/GI.2 NoV recombinant by the NoroNet Sequencing Tool. Inversely, Hu/Tokyo/7882/2007/JPN (GenBank accession number

FJ875971.1) reported as a GII.P4 Den_Haag_2006b/Gll.2 [142] is correctly identified by the NoroNet Sequencing Tool.

QViruses with a GI.17 VP1 genotype typically contain various ORF1 genotypes (ORF1 GII.P16, GII.P3 and GIl.P4). Sequence comparison showed that the ORF1 region of the novel GIl.17 viruses had

not previously been detected [167]. As the first orphan ORF1 sequence associated with GII.17, it was designated GII.P17 according to the criteria of the proposal for unified norovirus nomenclature

and genotyping [14, 25].
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Sydney_2012 recombinant: KF378731.1) [23, 24, 56-59].
The GIL4 New_Orleans_2009/GIL.4 Sydney_2012 strain,
reported to have undergone genetic changes (to its hyper-
variable antigenic epitopes) between its first emergence in
2015 and re-emergence in June 2016, has recently been pro-
posed as a candidate new epidemic strain [23].

GIL.4 recombinant sequences with typical ORF1/2 break-
points thus include the strains Asia_2003, Osaka_2007,
Japan_2008, Randwick 2011, New_Orleans_2009, Syd-
ney_2012, Seoul/1071/2010/KR (GenBank accession num-
ber JX448566.1), LC31912/2012/US (GenBank accession
number KF429777.1), GIL.Pe/GIL.4 Sydney_2012 [60]. Fur-
thermore, minor ORF1/2 recombinant variants GII.P4
New_Orleans 2009/GII.4 Hunter 2004 and GIIL.P4 Yerse-
ke_2006a/GII.4 Apeldoorn_2007 were recently reported in
South Africa [54]. The recombinant GIL.4 strain Cape Town
6745 (GenBank accession number KJ710245.2) [58], with a
New_Orleans_2009 polymerase, still remains unassigned in
its capsid sequence.

A putative GII4 intragenotype recombinant, sporting an
atypical recombination event between ORFs 2 (new GIL4
variant) and 3 (Den Haag subcluster) (GenBank accession
number EU921388) was identified in 2010 via full-genome
sequencing using overlapping primer sets [39]. The Noro-
Net Sequencing Tool, however, which does not use ORF3
sequences, identifies the sequence as GII.Pe/GIL4
Osaka_2007 recombinant (supported with phylogenetic
analysis and bootstrap 100.0 (>70.0)). Intragenotype
recombinants, GII.4 US95_96/GII.4 Kaiso_2003 (GenBank
accession numbers KU756290-KU756293) and GII.4 Den_-
Haag-2006b/GIL.4 Yerseke 2006a (GenBank accession
numbers KU756294 and KU756295) sporting another atyp-
ical breakpoint within the RdRp, were recently identified
[37]. The strains Hunter_2004 and Apeldoorn_2007 possess
breakpoints in the S (5318, 5326) and P domains (5828) of
ORF?2 [54].

Both typical and atypical intragenotype recombination thus
contribute to the growing complexity of the GIL.4 lineage,
furthering GII.4 variant emergence and spread.

Obligatory norovirus recombinants - the ‘odd ones
out’ in an unsolved and never-ending Rubik’s cube?

While a NoV recombinant is typically comprised of two (or
more) sections of different ORF1 and ORF2 genotypes
which are paired in the respective parental strains at either
side of the typical recombination breakpoint, several excep-
tions exist. A number of polymerase types, such as GlLa, c,
e and n, have been assigned preliminary letter-based names
rather than genotype numbers to signify that only their
ORFI sequences have been detected with no known ‘own’
capsid sequences [14]. Such ‘orphan’ ORF1 genotypes can
be promiscuously associated with capsids of different geno-
types. As such, GILb (now known as GILP21) was initially
described as an obligatory recombinant owing to its typical
pairing of a phylogenetically unique ORF1 region with one
of a number of genotypes (GIL1, GIL.2, GIL3 and GIL.4
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amongst others) in the absence of an ORF2 GILb phyloge-
netic cluster [61, 62]. Its status was only changed when the
Indian strain Hu/NoV/Ahm PC03/2006/India (GenBank
accession number EU019230) was identified as present in
the partial ORF (pORF) GIL21 cluster together with repre-
sentatives of the pORF1 type IL.b. The orphan GILb cluster
was consequently renamed GII.21 [14]. First emerging in
2008 in Victoria, Australia, the obligatory recombinant
GlLe (identified by ORF1 nucleotide sequencing) became
the prominent ORF1 genotype in 2012, superseding GII.4
[27]. No unique GILe ORF2 genotype has been identified
and GIlL.e continues to cluster with a multitude of ORF2
sequences (amongst these GIL3, GII.12 and various GIL4
variants) [27, 56, 63, 64]. The obligatory NoV recombinant
GILPg, already present in 1989 [65], re-emerged clinically
around the same time as GII.Pe, and has so far been confi-
dently associated with the four different OFR2 genotypes,
GILI, GII.3, GII.12 and GII.13 [28, 64, 66].

Similarly to the obligatory recombinant ORF1 genotypes,
other polymerase genotypes, notably GI1.4, GIL7, GIL12,
GIL.16 and GII.21 have been reported to be associated to
more than one capsid genotype, supporting the polymerase
as the driving factor in recombination [34, 39, 57, 64].
While the reasons for this are unclear, poor processivity of
certain polymerases, rendering an ORF1/2 template switch
more likely, has been advanced as a possible factor [34].
Polymerase fidelity has been identified as the determining
factor in driving recombination in other RNA viruses [67]
and should also be considered in this context. Inversely, but
less frequently, certain capsid types (e.g. GII.3) have been
associated with multiple polymerases. A quantitative repre-
sentation, showing intragenogroup association of NoV pol-
ymerases to genetically diverse capsid types, is provided in
Fig. 2.

It has been noted that ‘the fact that a virus has an identical
VP1 and pORF2 type does not necessarily mean that it is
not a recombinant’ [14]. It seems, that in the ever-changing,
ever-shifting association of NoV capsid and polymerase
types, it is near-impossible to clearly say ‘who originally
belonged to whom’. This begs the question whether NoV
classification, necessarily based on a transversal, arbitrary
cut-off, indeed correctly associates capsids and polymerases,
or whether ‘parental’ strains are in themselves recombi-
nants. We can liken this to an unsolvable Rubik’s cube, in
which matching colour codes do not necessarily signify
togetherness and in which each rotatable single square may
be pivoted to partner with any of the other squares.

NOROVIRUS RECOMBINATION IN THE LAB -
A RECAP OF IN VITRO AND IN VIVO STUDIES

Few experimental data are available concerning NoV
recombination under laboratory conditions. The first in
vitro experimental evidence of NoV recombination, was
obtained for MuNoV (GV), using a PCR-based discriminat-
ing tool, to demonstrate a homologous recombination event
at the ORF1/ORF2 overlap of the MuNoV genome [68]. In
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this study, cell cultures were co-infected with two parental
homologous MuNoV strains CW1 and WU20, sharing an
87% nucleotide sequence similarity in their complete
genomes, and a single viable recombinant virus was detected
and isolated from an infectious centre assay. This recombi-
nant has since been shown to display similar biological
properties to its parental strains in vivo, albeit with a slight
reduction in replicative fitness [69]. The first artefact-free
estimate of in vitro recombination rates (P,..) between these
same two strains co-infecting a murine macrophage culture
(at high m.0.i.:2) was obtained via use of drop-based micro-
fluidics [70]. The P, of co-infecting progeny viruses was
measured as 3.3x10”*+2x107>; however, it remains unde-
termined whether the rare RNA recombinants identified
were indeed viable infectious MuNoV recombinants.
Recently, we examined whether different parameters of co-
and superinfection, prerequisites for recombination events,
influence the frequency of recombination in vitro. No viable
recombinants could be detected after synchronous and
asynchronous infections of cultured murine macrophagic
cells with the two homologous MuNoV strains WU20 and
CW1 using different multiplicities and different times of
infection (as yet unpublished preliminary results). The phe-
nomenon of NoV recombination is not easily reproducible
in laboratory conditions, and has been shown to be appar-
ently rare both in vitro [68, 70] and in a recent in vivo study
[44], where MuNoV recombinants were isolated from
CWI1- and WU20 co-infected mice. Interestingly, in addi-
tion to the typical ORF1/ORF2 breakpoint, Zhang et al. [44]
also detected recombination events with low frequencies in
the VPg, protease and 3’end of the RARp coding region as
well as the VP1 S domain of MuNoVs. These newly detected
recombinants were, to our knowledge, again not tested for
infectivity and it is uncertain, whether the identified addi-
tional breakpoints would generate replication-effective
recombinants, as virus-amplification steps did not succeed
their identification. This somewhat limits the extent to
which reliability can be placed upon the occurrence of such
a recombination event in a replication-effective MuNoV.

Compared to the sheer quantity of reports of HuNoV
recombinants detected in the field, the paucity of informa-
tion regarding MuNoV recombination as studied in the lab
either in vitro or even in vivo, is evident. Equally, the diffi-
culties accompanying the generation of a recombinant
MuNoV in vitro [68], stand in stark contrast to the compa-
rable ease of generating recombinants of other more dis-
tantly related [71] or even very similar [72] viruses under
comparable circumstances. The only epidemiological data
available for MuNoVs are the early screening results of 76
faecal samples from 28 different SPF mouse lines which sug-
gested intergenotypic recombination events for MuNoVs
[73]. Comparisons of the vastly different-sized datasets for
HuNoVs and MuNoVs and their corresponding denomina-
tors allow only very limited inferences and, due to a lack of
data, no conclusions can be drawn at this time regarding a
comparison of recombination frequencies in the field and
under laboratory conditions.
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Fig. 2. Intragenogroup assaciation of norovirus polymerases to genetically diverse capsid types. The figure shows the association of
norovirus polymerase types (far left column) with different capsid types (top row) and vice versa for genogroups Gl (above) and GlI
(below). The total number of genetically diverse capsid types (} capsid) to which a polymerase type within the same genogroup is
associated, is given in the far right column. The total number of genetically diverse polymerase (RdRp) types (3"RdRp) to which a cap-
sid type within the same genogroup is associated, is given in the bottom row. Known ‘abligatory recombinants’ Gll.Pe and GIl.Pg are
shaded in red tones. Green squares mark spatial positions of strains with ‘'matching’ polymerase and capsid types (e.g. GII.P4/Gll.4) as
reported by Vinjé [13].
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DRIVERS AND CONSTRAINTS OF NOROVIRUS
RECOMBINATION

Loosely based on a pre-existing model for the production of
a viable recombinant RNA virus [74], the necessary steps,
including their respective drivers and constraints (predictive
risk factors), for recombination of NoVs are considered
(Fig. 3). Five steps must be successfully passed to generate a
viable, replicating recombinant NoV following the classical
copy-choice model of replicative NoV recombination. We
suggest four steps to obtain the same result via non-replica-
tive recombination, the main difference being the process
(and enzymes) needed for joining partial parental sequen-
ces, once in close proximity within a cell.

The first (simplified) step necessarily preceding any recom-
bination event is the simultaneous infection (co-infection)
of a host with at least two parental strains (Fig. 3a). The
ability of different NoV strains to overlap sufficiently in
space and time to effect co-infection of a host is undoubted.
Not only are several strains frequently detected to be co-cir-
culating within the context of a single outbreak but also
within a single patient. Only recently, e.g. circulation of GII
Pg/GIL.1 and GILPe/GIL4 Sydney 2012 recombinant
variants was detected in an asymptomatic population in
Indonesia. Of seven positive individuals, two were repeat-
edly infected with the same strain and heterogenous strains
[75]. Both the noroviruses’ notorious low-level antigenicity
between strains [76] as well as the well-documented delayed
immune clearance, genetic diversity and continuing quasis-
pecies evolution in immunocompromised patients [77-79]
facilitate host co-infection. Further opportunities for human
co-infection present themselves via a typical mode of NoV
infection, food- or waterborne outbreaks, and in particular
the consumption of bivalve molluscs, which have been
known to accumulate several different strains in their intes-
tines [80, 81]. An overview of NoV transmission routes,
highlighting the three above-mentioned ‘hot-spots’ for accu-
mulation of multiple NoV strains and increased risk of viral
recombination is presented in Fig. 4.

Once a host has been successfully co-infected, the second
step is co-infection of a single cell. While factors such as a
strong host immune response or virus-mediated superinfec-
tion exclusion might prevent this, novel models of NoV
pathology and cell-tropism present intriguing mechanisms
for bypassing these barriers. Karst and Wobus compellingly
suggest that NoVs, bound to motile bacteria and/or host
carbohydrates in the gut lumen, could be taken up via
Peyer’s patch-associated M-cells to then be delivered to per-
missive immune cells in the underlying lamina propria [82].
Not only may the simultaneous uptake of multiple viruses
into a single cell be possible via this route, but also a puta-
tive subsequent persistent infection of target cell immune
cells could be seen to heighten chances of co-infection at a
later date.

The third step to obtaining a recombinant virus can either
be a step of non-replicative recombination in which viral
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genome fragments are ligated by host factors (Fig. 3b) [46]
or, as described for NoVs above, a combination of replica-
tion and template switch (step four), between two co-infect-
ing viruses within a cell (Fig. 3c).

By whichever way a recombinant NoV genome is created, it
does not necessarily follow that this will yield a replicating
recombinant NoV. Any given recombination event, switch-
ing out large genome parts in a nascent virus, presents a sig-
nificant modification. It follows, that initial imprecise
recombination events (e.g. introduction of mutations or
faulty epistatic interrelationships between the two parts of a
novel recombinant) present an evolutionary bottle-neck
which can either result in non-functional genome recombi-
nants or in reduced-fitness recombinants. The droplet or
fomite transmission of NoVs, their low infectious dose [83]
and typically observed high viral loads [80] entail that even
poorly performing recombinants may get an opportunity to
survive, to resolve and then to proliferate in the viral popu-
lation at a between-host level. If recombinants do not pos-
sess selective advantages over their parental strains, it is
unlikely that they will be maintained in a viral population
within the original host before they can undergo a stage of
resolution optimizing their replicative fitness [45, 84]. The
typical ORF1/2 recombination breakpoint of NoVs indi-
cates how recombinants may ‘survive’ this fifth step, selec-
tion. Such a recombination event may confer advantages
under host- or population-level immune pressure that can
outweigh initial detriments to replicative fitness. Putative
replicative disadvantages, it seems, are more than compen-
sated for by other advantages at the level of competitive or
transmissive fitness, when a ‘coat switching’ event occurs in
which a novel recombinant couples non-structural proteins
from one and structural proteins carrying antigenic deter-
minants from the other parental virus [33, 39, 85, 86].

TRUE RECOMBINATION OR RAPID GENETIC
DRIFT?

Detection of viral recombination events at a population level
in the field is traditionally based on bioinformatical analy-
ses, implementing similarity, distance, phylogenetic and
compatibility methods and/or substitution distribution [17].
When applied to positive-sense RNA viruses with high
mutation rates [87], a pitfall of all recombination detection
programmes is the possibility of overestimating the fre-
quency of genetic shift. In other words, phylogenetic-based
analyses of recombination can be affected by convergent
evolution leading to similar sets of nucleotide and amino
acid substitutions in independent lineages [42]. For NoVs,
mutation rates have been inferred to correspond to a rate of
2—9x 107 substitutions per nucleotide per year [88].
Hoffmann et al. [89] demonstrated that GII.4 and GIL7
strains underwent positive selection during chronic infec-
tion of immunocompromised patients at an even more ele-
vated evolutionary rate as compared to that found at an
inter-host population level (owing to constant intra-individ-
ual selection pressure) [89]. It seems probable that this
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Fig. 3. Steps, drivers and constraints of NoV recombination as adapted from Worobey and Holmes [74]. (a) gives an overview of the
different recombination steps and accompanying host, virus or environmental drivers and constraints (predictive risk factors). (b) and
(c) focus on putative drivers and constraints of both non-replicative recombination and template-switch-mediated recombination [repli-
cation and template switch via the RdRp (NS7)], respectively. APC: antigen-presenting cells; p.i.: persistently infected.

process, whereby NoV strains can acquire enough muta-
tions to constitute novel epidemic subtypes within weeks to
months (on a global scale this would normally take years),
might contribute to the overestimation of recombination
(‘false positive’ identification of NoV recombinants), when a
fast genetic drift is mistaken for recombination. The solving
of the Rubik’s cube, it seems, can be further muddled by
squares changing their colours while the puzzle is being
pivoted.
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NOROVIRUS RECOMBINATION, INTERSPECIES
TRANSMISSION AND ZOONOSIS RISK

The as yet unproven existence of a zoonotic potential for
NoVs has long been discussed, potential interfaces of
shared species exposure being food, water or animal con-
tact. The discussion about interspecies and/or zoonotic
transmission is fuelled by the close relationship of certain
animal and human NoV strains, detection of HuNoVs in
animal faeces, detection of antibodies against HuNoVs in
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swine and the demonstration of experimental HuNoV
GII infection in gnotobiotic pigs [2, 90-92]. Questions
concerning  species barrier determinants preventing
HuNoV infection of murine cells were recently resolved
with the identification of a CD300If proteinaceous recep-
tor as the primary determinant of MuNoV species tro-
pism, showing other components of cellular machinery
required for NoV replication to be conserved between
humans and mice [93]. If we assume the key to cross-
species transmission to be located only at a structural
virus-host receptor level, this presents ORF1/2 NoV
recombination, by which a nascent recombinant virus
gains a complete novel capsid protein set, in an interest-
ing light, in that a Tucky’ intragenogroup recombination
event might tender a zoonotic/interspecies recombinant.
Indeed, putative GIV.2_GVLI interspecies recombinant
FNoVM49 isolated from a cat captured near a Japanese
oyster farm in 2015 [94], may have originated via a simi-
lar mechanism.

CONCLUSION AND UNANSWERED QUESTIONS

Recombination, shifting the ‘Rubik’s cube’s building blocks’
of NoV classification, remains a significant factor influenc-
ing NoV molecular evolution and diversity. The enormous
scope of intragenotype, intergenotype and even intergen-
ogroup NoV recombinants and their recurrent implication
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in reported outbreaks highlight the continued importance
of standardized monitoring (via shared sequencing proto-
cols or implementation of whole-genome next-generation
sequencing) and reporting of novel NoV recombinant types.
With respect to their potential to emerge and re-emerge as
dominant NoV strains, early detection of NoV recombi-
nants and an understanding of the possible impact of
recombination on (future) vaccine usage must be furthered.
Special attention should be paid to recombination between
genetically distant NoVs, which may generate novel NoV
variants with altered pathogenesis and modified host
tropism.

Despite the abundance of epidemiological data recording
different, mainly HuNoV, recombinant types, evidence for
MuNoV recombinants generated in vitro is scarce and the
mechanism(s) involved are poorly characterized. It remains
to be seen whether there is a true disconnect between NoV
recombination frequency in the field and its apparent rarity
under laboratory conditions. Since the MuNoV model
allows only limited inferences regarding NoV recombina-
tion, in vifro HuNoV recombination studies in robust cell
culture systems, the development of novel tools (NGS analy-
sis of RNA within the cell and improved reverse genetic sys-
tems) to allow generation and detection of recombinants, as
well as co-infection studies with other animal models, will
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help resolve as yet unanswered questions in this area. In this
context, drivers and constraints of NoV recombination
must be investigated.
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Recombination and the accumulation of point mutations are key mechanisms in the evolution
and diversity of NoVs. Increasing evidence indicates that recombination shapes NoV pathogenesis and
fitness and drives the evolution of emerging HuNoV strains; new recombinant NoV types are
continuously described in the context of sporadic cases and field outbreaks (Ludwig-Begall et al., 2018).

The publication “Experimental evidence of recombination in murine noroviruses” (Mathijs et
al., 2010), described the in vitro isolation of an infectious recombinant NoV. Recombinant MuNoV
RecMNV was isolated following co-infection of RAW264.7 cells with two parental homologous
MuNoV strains CW1 and WU20 in an infectious centre assay. While demonstrating a significantly lower
in vitro replicative fitness than either of its parental strains, RecMNV remains one of its kind, to date
constituting the only proven infectious experimental NoV recombinant (Mathijs et al., 2010, 2016).

The 2018 Journal of General Virology review, “Norovirus recombinants: recurrent in the field,
recalcitrant in the lab” (Ludwig-Begall et al., 2018), which compounds chapter 2.3.1 of this thesis,
provides an overview of advances on the subject of NoV recombination and outlines the seeming
discrepancy between the sheer quantity of naturally occurring NoV recombinants and the paucity of
information and difficulties associated to NoV recombination as studied in the lab. Several putative
drivers and constraints at various checkpoints of NoV recombination are identified in a conceptual
model (see also Figure 10). Following this, host coinfection, single cell coinfection, and recombination
must be accomplished to generate a recombinant NoV RNA; incipient recombinant viruses must then
survive a process of functional selection to be maintained in the viral population. Figure 8 of this thesis
recapitulates the NoV recombination checkpoints and attributes a colour code to indicate the level of
confidence associated with their drivers and constraints; the particular drivers and constraints of NoV

recombination investigated in the context of experimental sections 1 and 2 of this thesis are highlighted.

Host coinfection may be dependent on spatial and temporal overlap of strain-distributions; cell
coinfection, the ultimate prerequisite to viral recombination (Worobey and Holmes, 1999), depends on
factors influencing the within-host distribution of viruses to target cells. True coinfection of cells is
likely to be a rare event under natural conditions and delayed secondary infections are a more probable
occurrence. In the event of an asynchronous infection, the uptake of multiple viruses into a single cell
is dependent on factors that may limit consecutive entry of more than one virus particle per cell in a
process known as superinfection exclusion. Superinfection exclusion is defined as the ability of an
established virus to prevent a secondary infection by the same or a closely related virus (Folimonova,
2012); the primary infecting virus may render cells refractory to subsequent infection through
interference at various stages of the replicative cycle of the secondary invader in a time-dependent
manner. Viral pre-and post-entry blocks have been described for a number of RNA viruses (Adams and
Brown, 1985; Bergua et al., 2014; Bratt and Rubin, 1968; Claus et al., 2007; Huang et al., 2008; Johnson,
2019; Lee et al., 2005; Tscherne et al., 2007; Zhou et al., 2019).
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The first part of this thesis (Study 1) is dedicated to examining how different parameters of co-
and superinfection may influence the composition of a nascent mixed viral quasispecies and investigates
whether superinfection exclusion between two homologous MuNoV strains may play a role in
preventing NoV co-infection in vitro; importantly, superinfection exclusion has remained hitherto

unexplored in NoV biology.

Recombination, while conferring selective advantages to a nascent recombinant virus on a
population level under in vivo immune pressures, can entail great modifications in a single viral genome,
potentially eliciting a replicative fitness cost, which must be compensated via the adaptive capacity of a

recombinant virus.

The second part of this thesis (Study 2) aims to characterise the adaptive capacity of in vitro
generated RecMNV, thus investigating how the accumulation of point mutations through successive
viral passaging can compensate for replicative fitness losses. The work, entitled “Replicative fitness
recuperation of a recombinant murine norovirus — in vitro reciprocity of genetic shift and drift” (Ludwig-

Begall et al., 2020), has been published in Journal of General Virology.

The aim of this thesis is to evaluate experimental conditions for and implications of MuNoV in
vitro recombination. The insights thus gained will further a deeper understanding of the drivers and

constraints of NoV recombination.
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Figure 10. Conceptual model of steps, drivers and constraints of norovirus recombination.

(A) gives an overview of the different recombination steps and accompanying host, virus, or
environmental drivers and constraints (predictive risk factors). (B) and (C) focus on putative
drivers and constraints of both non-replicative recombination and template-switch-mediated

recombination, respectively. Blue shading indicates that putative drivers and
constraints represent confirmed aspects of norovirus biology (according to pertinent
literature). Yellow shading indicates a degree of uncertainty pertaining to the

state of the art. The particular drivers and constraints of norovirus recombination investigated
in the context of experimental sections 1 and 2 of this thesis are correspondingly annotated.
APC: antigen-presenting cells; p.i.: persistently infected; NoV: norovirus
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Experimental section — Study 1

Preamble

Viral recombination is a key mechanism in the evolution and diversity of noroviruses. In vivo,
synchronous single-cell coinfection by multiple viruses, the ultimate prerequisite to viral recombination,
is likely to be a rare event and delayed secondary infections are a more probable occurrence. Here, we
determine the effect of a temporal separation of in vitro infections with the two homologous murine
norovirus strains MNV-1 WU20 and CW1 on the composition of nascent viral populations. WU20 and
CW1 were either synchronously inoculated onto murine macrophage cell monolayers (coinfection) or
asynchronously applied (superinfection with varying titres of CW1 at half-hour to 24-hour delays). 24
hours after initial co-or superinfection, quantification of genomic copy numbers and discriminative
screening of plaque picked infectious progeny viruses demonstrated a time-dependent predominance of
primary infecting WUZ20 in the majority of viral progenies. Our results indicate that a time interval from
one to two hours onwards between two consecutive norovirus infections allows establishment of a
barrier that reduces or prevents super-infection; this first demonstration of time-dependent viral
interference for NoVs has clear implications for NoV epidemiology, risk assessment, and potentially

treatment.

An article describing the work presented in this chapter was published in the Multidisciplinary
Digital Publishing Institute (MDPI) Open Access journal Viruses in May 2021 (Special Issue Series:
NOROvirus and Beyond: Not Only “the Runs” Outbreak Virus) and is reproduced below.
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Abstract: Viral recombination is a key mechanism in the evolution and diversity of noroviruses.
In vivo, synchronous single-cell coinfection by multiple viruses, the ultimate prerequisite to viral
recombination, is likely to be a rare event and delayed secondary infections are a more probable
occurrence. Here, we determine the effect of a temporal separation of in vitro infections with the two
homologous murine norovirus strains MNV-1 WU20 and CW1 on the composition of nascent viral
populations. WU20 and CW1 were either synchronously inoculated onto murine macrophage cell
monolayers (coinfection) or asynchronously applied (superinfection with varying titres of CW1 at
half-hour to 24-h delays). Then, 24 h after initial co-or superinfection, quantification of genomic copy
numbers and discriminative screening of plaque picked infectious progeny viruses demonstrated
a time-dependent predominance of primary infecting WU20 in the majority of viral progenies.
Our results indicate that a time interval from one to two hours onwards between two consecutive
norovirus infections allows for the establishment of a barrier that reduces or prevents superinfection.

Keywords: norovirus; murine norovirus; coinfection; superinfection; superinfection exclusion; interference

1. Introduction

Human noroviruses (HuNoVs) are recognised as a leading global cause of spo-
radic and epidemic viral gastroenteritis [1] and account for a global economic burden
of $60 billion, over one million hospitalisations, and 200,000 deaths per annum [2,3]. Cus-
tomarily an acute and self-limiting illness, HuNoV infection can become chronic in the
elderly, malnourished, and/or immunocompromised; such patients may experience pro-
tracted severe, even lethal, NoV infections and superinfections [4-8].

Various HuNoV infection models have yielded valuable insights into the NoV life cycle
in recent years [9-12]. However, many of these experimental systems are technically chal-
lenging and as yet lack the degree of robustness required for detailed decipherment. The
genetically and biologically closely related murine norovirus (MuNoV), which combines
the advantages of available tools for genetic manipulation [13,14], easy in vivo infection
of a genetically tractable native host [15], and efficient in vitro propagation [15-17], thus
remains the main model for NoV in vitro studies.

Human noroviruses and MulNoVs belong to the Norovirus genus within the Caliciviridae
family of small, non-enveloped, positive sense, single-stranded RNA viruses [18,19]. The
linear, polyadenlyated 7.4-7.7 kb long HuNoV genome is organised into three open reading
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frames (ORFs); an additional fourth ORF is described for MuNoVs [20,21]. The 5’ proximal
NoV ORF1 encodes a large polyprotein that is co-and post-translationally cleaved into six
non-structural viral proteins [22]. ORF2 and ORF3 encode the structural virion components,
major and minor capsid proteins, VP1 and VP2, respectively. ORF4, which entirely overlaps
the 5'end of ORF2, encodes virulence factor (VF1) [23].

Viral recombination is a key mechanism in the evolution and diversity of NoVs; in-
creasing evidence indicates that recombination shapes NoV pathogenesis and fitness and
drives the evolution of emerging strains [24]. Numerous field recombination events, pre-
dominantly at a typical ORF1/2 recombination breakpoint [25], have been detected in silico
in the Norovirus genus [26,27]. In contrast, few experimental data are available concerning
NoV recombination under laboratory conditions and the mechanism(s) involved are poorly
characterised [26,28-30].

We recently identified a set of checkpoints, including their respective drivers and
constraints, that must be successfully bypassed for the generation of a viable recombinant
NoV [26,31]. Following this, host coinfection, single cell coinfection, and recombination
must be accomplished to generate a recombinant NoV RINA. An incipient recombinant
viruses must then survive a process of functional selection to be maintained in the viral
population [32-35]. The rise of recombinant viruses resulting from this process is influenced
by different factors. In vivo, host coinfection may be dependent on spatial and temporal
overlap of strain-distributions. Cell coinfection, the ultimate prerequisite to viral recombi-
nation, depends on factors influencing the within-host distribution of viruses to target cells,
thereby limiting or increasing the likelihood of cellular coinfections. True coinfection of
cells is likely to be a rare event (unless mediated by factors directing synchronous uptake of
diverse viruses into both host and cell [36] under natural conditions and delayed secondary
infections are a more probable occurrence.

In the event of an asynchronous infection, the uptake of multiple viruses into a single
cell is dependent on factors that may limit consecutive entry of more than one virus particle
per cell in a process known as superinfection exclusion. Superinfection exclusion is defined
as the ability of an established virus to prevent a secondary infection by the same or
a closely related virus [37]. The primary infecting virus may render cells refractory to
subsequent infection through interference at various stages of the replicative cycle of the
secondary invader in a time-dependent manner. Viral pre-and post-entry blocks have been
described for a number of RNA viruses [38-46]. However, hitherto, NoVs have not been
listed amongst them.

Here, we determine the effect of a temporal separation of in vitro infections with the
two homologous parental MuNoV strains MNV-1 WU20 and CW1 on the composition
of MuNoV populations. A clear advantage of in vitro systems to study viral population
dynamics is that they present a well-defined entity containing only viruses and cells.
Effects of other factors interfering with cell coinfection (such as the host immune response
or microbiome) may thus be discounted.

Our results demonstrate that a time interval from one to two hours onwards between
two consecutive NoV infections allows establishment of a barrier that reduces or prevents
superinfection; this first demonstration of time-dependent viral interference for NoVs has
clear implications for NoV epidemiology, risk assessment, and potentially treatment.

2. Materials and Methods

A graphical overview of all assays is provided in Figure 1.

83



Experimental section — Study 1

Viruses 2021, 13, 823

3of11

1. Co- or superinfection

WwuU20MOI1 CW1I1MOI0.17 17/ 10
Oh 0Oh/05h/1h/2h/4h/8h/12h/24h
=~

} '

2. Incubation 24hrs

RAW264.7
4. Plaque purification

QOO
QOO

—

3. Genomic copies quantified on 5" end

5. Progeny amplification

—

~~

|

6. Discriminative 5’ & 3' qPCR screen

Texas Red Texas Red HEX
r- =A(n) Wu20 = =A(n) WU20
FAM FAM FAM
b= =A(n) CW1 >= =A(n) CW1
FAM HEX
> =A(n) Rec
Texas Red FAM
> -A(n) Rec

Figure 1. Workflow of the experimental set-up to analyse synchronous and asynchronous in vitro
infections with homologous murine norovirus strains MNV-1 WU20 and CW1. MOI = Multiplicity of
infection; ORF = Open Reading Frame; qPCR = quantitative polymerase chain reaction.

2.1. Viruses and Cells

The murine macrophage cell line RAW264.7 (ATCC TIB-71) was maintained in Dul-
becco’s modified Eagle’s medium (DMEMc) (Invitrogen, San Diego, CA, USA, Thermo
Fisher Scientific, Waltham, MA, USA) containing 10% heat inactivated foetal calf serum
(FCS) (BioWhittaker), 2% of an association of penicillin (5000 ST units mL~') and strepto-
mycin (5 mg ml~1) (PS, Invitrogen), and 1% 1 M HEPES buffer (pH 7.6) (Invitrogen) at
37 °C with 5% CO,.

Murine NoV isolates MNV-1 CW1 and WU20 (GenBank accession numbers DQ285629
and EU004665.1; 87% nucleotide sequence similarity; previously shown to exhibit highly
similar replication kinetics [28,47] were plaque purified and propagated in RAW 264.7 cells
as described by Mathijs et al., 2010 [28]. Virus stocks were produced by infection of RAW
264.7 cells at a multiplicity of infection (MOI, expressed as plaque forming units per cell)
of 0.05. Two days post-infection, cells and supernatants were harvested and clarified by
centrifugation for 20 min at 1000x g after three freeze/thaw cycles (—80 °C alternating
with 37 °C). Supernatants were purified by ultracentrifugation on a 30% sucrose cushion in
a SW28 rotor (Beckman Coulter, Indianapolis, IN, USA) at 23,000 rounds per min for 2 h at
4 °C. Pellets were suspended in 500 uL phosphate-buffered saline (PBS), aliquoted, and
frozen at —80 °C. Viral titres were determined via plaque assay for the seventh passage of
WU20 and the eighth of CW1 (WU20 P7 and CW1 P8), as described by Hyde et al., 2009 [48].
WU20 P7 and CW1 P8 single-step and multi-step growth curves, performed prior to
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launching the co-and superinfection experiments described below, exhibited no significant
differences in the replication kinetics of the two virus stocks (Supplementary Figure 51).

2.2. Coinfection and Superinfection of RAW264.7 Cells with Murine Noroviruses WU20 and CW1

Monolayers of RAW 264.7 cells were prepared in 24-well plates at a density of
5 x 10* cells per well. Working on ice, each well was infected with WU20 (MOI = 1;
confirmed via back-titration). After 1 h, the WU20 inoculums (300 uL) were removed and
stored at —80 °C. The cells were washed twice with PBS and were infected with CW1
at various MOIs (0.1; 1; 10; confirmed via back-titration) at delays of 0 min (coinfection),
30 min, and 1, 2, 4, 8, 12, and 24 h (superinfections). For coinfections, CW1 and WU20
inoculums in a final volume of 300 pL were simultaneously added to cells. Cells and virus
then remained on ice for 1 h, whereupon the inoculum was removed. For superinfec-
tions, CW1 inoculums were asynchronously dispensed onto cells at the appropriate delays,
whereupon cells and virus remained on ice for 1 h until removal of the inoculums; the cells
were then washed twice with PBS and 300 pL. DMEMc were added. Twenty-four hours
post co-or superinfection, both cells and supernatants were frozen and stored at —80 °C
until further analysis.

2.3. Quantification of WU20 and CW1 Genomic Copies in Viral Progenies 24 h Post Co-
or Superinfection

RNA extractions were performed with Tri Reagent solution (Ambion, Austin, TX, USA)
on 120 pL of co-and superinfection supernatants. Extracted RNA was reverse-transcribed
into complementary DNA (cDNA) using an iScript cDNA Synthesis kit (Bio-Rad, Hercules,
CA, USA). The extracted and reverse-transcribed cDNA was quantitatively analysed via
real time quantitative PCR (qPCR), employing primers to allow discrimination between
CW1 and WU20 based upon single nucleotide polymorphisms (SNPs) at the 5 genomic
extremity (amplicon in ORF1, dubbed region 1), as described by Mathijs et al. 2010.
Primers and probes used in the quantification of genomic copies correspond to those listed
in Supplementary Table S1 as published by Mathijs et al., 2010 [28].

Quantifications were performed as previously described by Mauroy et al. (2012) [49];
for generation of the standard curve, region 1 amplicons were amplified for both CW1
and WU20, then cloned into a pGEMt-Easy vector (Promega, Madison, WI, USA) and
sequenced. Both CW1-region 1 and WU20-region 1 plasmids were in vitro transcribed with
the Ribomax kit (Promega) following manufacturer’s instructions. Briefly, Spel-linearised
and purified plasmids were transcribed with T7 RNA polymerase, treated with DN Ase,
and quantified via spectrophotometer. Genomic copy numbers of transcribed RNA were
deduced and serial ten-fold dilutions were prepared with ultrapure RNAse free water
(Invitrogen). Aliquots of the master stock were stored at —80 °C and measured before
dilution and use. Final results were normalised using transcripts of the housekeeping gene
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Barber et al. 2005). A 5 uL gPCR
mix (technical duplicates) was set up by adding 1 uL of cDNA to 2.50 pL of iQQ supermix,
0.1 uL of both GAPDH-forward and -reverse primers (100 nM final concentration), 0.2 uL of
the GAPDH-probe (200 nM final concentration) and 1.1 uL of nuclease free water. Cycling
conditions included an initial 5-min denaturation at 95 °C followed by 38 cycles of 10 s at
95 °C and 40 s at 60 °C.

2.4, Isolation and Screening of Infectious Progeny Viruses

Cells and supernatants from the co- and superinfection step were frozen and thawed
once and then utilised as inoculums in a plaque assay for purification of infectious progeny
viruses following the method described by Hyde et al. 2009 with slight modifications [48].
Briefly, RAW 264.7 monolayers, cultured in six-well plates (2 x 106 RAW264.7 cells/well)
were inoculated at room temperature with 1 mL of serial dilutions of virus-containing
culture fluids of the co- and superinfection assays. After 1 h, inoculums were removed
and cells were overlaid with 2 mL of medium containing 70% DMEM-Glutamax (4.5 g
glucose I-1 and 15 mM sodium hydrogen carbonate), 2.5% FCS, 2% PS, 1% HEPES and 0.7%
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SeaPlaque agarose (Lonza, Basel, Switzerland) per well. After 48 h of incubation (37 °C, 5%
C0Oy), 36 individual plaques were randomly selected per condition. Infected cells from the
plaque margins were picked with a needle under a microscope and were diluted into fresh
DMEMCc before propagation by inoculation onto RAW 264.7 cells grown in 24-well plates.
After 72 h, supernatants were collected and frozen at —80 °C until further analysis.

Following RNA extraction and reverse transcription, cDNAs of individual plaque-
purified virus progenies were analysed via two parallel real time PCR runs employing
two pairs of primers to allow discrimination between CW1, WU20 (and recombinant)
signals based upon single nucleotide polymorphisms (SNPs) at both genomic extremities
(ORF1 and ORF3, dubbed regions 1 and 5, respectively) as described by Mathijs et al.
2010 [28]. Five ul reactions were carried out with iQ supermix. Primers and probes for this
TagMan-based discriminative qPCR correspond to those listed in Supplementary Table S1
as published by Mathijs et al. 2010 [28].

In the case of ambiguous signals originating from mixed virus populations, an additional
quick screen was performed via Sanger sequencing of the ORF1/2 overlap (base pairs 4864
to 5298 in MNV-1 CW1), this to exclude the presence of potential recombinants or PCR
chimeras from interfering with later calculations of WU20 to CW1 infectious virus ratios.

3. Results
3.1. Absolute and Relative Quantification of Genomic Copies Reveals Skewed WU20 and CW1
Distributions and a WU20 Dominance in Most Viral Progenies 24 h Post Co- or Superinfection

To quantitatively assess viral progeny distributions 24 h after initial co-or superin-
fection, MNV-1 WU20 and CW1 genomic copy numbers were inferred from the cycle
threshold (Ct) values of the qPCR reactions and normalised against GAPDH Ct values.
This genomic quantification (5’ region 1 amplicon) revealed WU20 absolute genomic copy
numbers, averaging 3.55 (£0.57) logy genomic copies over all measured time points, to
be higher than those of CW1 in all but four of the resulting 24 viral progenies. Only short
superinfection delays (t0 h, 0.5 h, 1 h, 2 h) with a WU20 to CW1 starting ratio of one to
ten resulted in CW1 genomic copy numbers significantly higher than or equal to those of
WU20 24 h post co- or superinfection at 3.23 (£0.96), 3.44 (£0.48), 3.74 (£0.09), and 3.93
(4=0.06) logyg, respectively (Figure 2, top panels).

These absolute genomic copy numbers translate into relative ratios of genomic copies
that reflect a disproportionate WU20 dominance within the majority of viral populations
(Figure 2, bottom panels). A WU20 to CW1 starting MOI ratio of 1 to 0.1 (expected to yield
90% WU20 and 10% CW1 genome copies upon qPCR analysis of the viral population)
yielded mean WU20 genomic copy numbers of 3.40 (£0.43), 3.17 (£0.34), 3.33 (+0.40), and
4.27 (+0.05) log;g (accounting for 95.98%, 92.46%, 91.74%, and 95.73% of the population)
24 h after either coinfection (t0) or superinfections with delays of half an hour (t0.5) to
two hours (t2). From a superinfection delay of four hours (t4) onwards, WU20 mean
genomic copy numbers ranging from 3.28 (+0.56) to 4.24 (£0.01) logyp (99.43 to 99.96% of
the population) are juxtaposed against CW1 values of 1.43 (0.81) to 0.07 (£0.32) log.

At an equal WU20 to CW1 starting MOI of 1 (expected yield to 50% WU20 and 50%
CW1 genome copies), 3.17 (£0.33) logg (77.30%) WUZ20 to 2.49 (£0.54) logp (22.69%) CW1
(t0) and 2.98 (£0.78) logg (62.64%) WU20 to 2.89 (+0.59) log;g (37.36%) CW1 ratios (t0.5),
are succeeded by a marked increase of the WU20 proportion, covering 4.27 (£0.11) (77.63%)
(t1), 4.17 (£0.18) (89.26%) (12), and 3.37 (£0.04) log;q (86.01%) (t4), and then reaching values
of over 3.16 (+0.47) log;g (95%) from t8 onwards, while CW1 values are consistently at
least one order of magnitude lower and never surpass 2.67 (£0.02) logg from t4 onwards.

A WU20 to CW1 starting MOI ratio of 1 to 10 (expected to yield 10% WU20 and 90%
CW1 genome copies) resulted in 3.66 (+0.24) logg to 3.23 (+0.96) logp and 3.88 (4-0.09)
to 3.44 (+0.48) log;p WU20 to CW1 genome copies at t0 and t0.5, respectively (roughly
50-50 ratios), fulfilled expectations with 2.2 (+0.59) log1n WU20 to 3.74 (+0.09) log1o CW1
genome copies (6.16% WU20 to 93.84% CW1) at t1, after which WU20 genome copy
numbers progressively increased to 3.76 (=0.01), 3.68 (+0.29), 4.16 (£0.3), 3.09 (£0.63),
and 3.19 (£0.32) logyp (accounting for 37.85%, 61.66%, 81.67%, 71.20%, and 74.58% of
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the population) at t2, t4, t8, t12, and t24, respectively. CW1 genome copy numbers
correspondingly decreased.
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Figure 2. Genomic quantification on 5’ genome ends establishing raw genomic copy numbers (top) and relative proportions
of mean genomic copies (below) of co- or superinfecting murine noroviruses MNV-1 WU20 and CW1 in viral progenies
24 h post co- or superinfection. Genomic copy numbers and their relative proportions resulting from one co-infection (t0)
and seven asynchronous infections (primary infection: WU20; superinfection at half-hour to 24-h delays (t0.5 to t24): CW1)
are shown. Varying multiplicities of infection (MOI) were analysed; the MOI of primary infecting WU20 remained stable
at 1 throughout all assays while the MOI of superinfecting CW1 varied between 0.1 (left panels), 1 (middle panels), and
10 (right panels). Black bars represent WU20, grey bars represent CW1. Differences in yield between mean WU20 and
CW1 genome copies were analysed using GraphPad Prism 7 (Graph-Pad Software) and p values were determined using
two-sided unpaired-sample t tests, where *** p < 0.001, ** p < 0.01, and * p < 0.05.

3.2. Molecular Screening on Picked Lysis Plaques Demonstrates a WU20 Predominance in the
Majority of Infectious Viral Progenies

To isolate and screen infectious progeny viruses present within the various viral
populations 24 h after initial co-or superinfection, 36 viral plaques per condition were
picked from a plaque assay, further propagated in RAW?246.7 cells, and then analysed in
parallel duplex qPCR runs to discriminate between MNV-1 CW1 and WU20 (as well as
possible recombinant viruses) based on 5 and 3’ SNPs. In three cases, additional ORF1/2
screening confirmed sequence kinship to either WU20 or CW1.

Overall, the previously observed WU20 dominance, particularly following longer
CW1 superinfection delays, is mirrored in the proportions of plaque picked infectious
viruses (Figure 3). Thus, a WU20 to CW1 starting MOI ratio of 1 to 0.1 (expected to yield
infectious progeny virus proportions of 90% WU20 to 10% CW1) yielded 94%, 68%, 83%,
84%, 100%, 88%, 100%, and 100% WU20 24 h after coinfection (t0) or superinfection delays
of half an hour (t0.5) to 24 h (t24), respectively. Pure CW1 fractions are seen to account
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for 3%, 16%, and 6% of infectious viral populations at t0, t0.5, and t1. However, with the
exception of the eight-hour superinfection delay (3% CW1 at t8), CW1 is not represented in
infectious virus progenies from {2 onwards. Mixed WU20 and CW1 progenies make up the
remaining fractions of the various populations.

WU20/CW1 MOI 1/0.1

100

50

Relative % of supernatants

100511 @

WU20/CW1 MOI 1/1 WU20/CW1 MOI 1/10
100 Mixed
cwi
50 — wu20
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4 18 112 ©24 00511 2 t4 8 12 24 010511 2 4 18 112 124

Co-/ superinfection delays Co-/ superinfection delays Co/ superinfection delays

Figure 3. Relative proportions of viable co- or superinfecting murine noroviruses MNV-1 WU20 and CW1 after plaque
purification and amplification. Black bars show the proportion of WU20, grey bars show the proportion of CW1, and

striped bars indicate mixed signals of both WU20 and CWT1 in viral progenies amplified from 36 plaques per condition. One
coinfection (t0) and seven asynchronous infections (primary infection: WU20; superinfection at half-hour to 24-h delays (t0.5
to t24): CW1) and varying multiplicities of infection (MOI) were analysed; the MOI of primary infecting WU20 remained
stable at 1 throughout all assays while the MOI of superinfecting CW1 varied between 0.1 (left panel), 1 (middle panel), and

10 (right panel)).

At an equal WU20 to CW1 starting ratio (expected to yield balanced infectious WU20
and CW1 proportions), initial 76% WU20 to 9% CWT1 (plus 15% mixed) and 9% WU20
to 50% CW1 (plus 41% mixed) ratios at t0 and t0.5 are succeeded by a marked increase
of the WU20 proportion. WU20 thus accounts for 67%, 71%, and 52% of infectious viral
progenies at t1, t2, and t4, and consistently reaches values of over 94% from an eight-hour
superinfection delay (t8) onwards. CW1 and mixed progeny proportions correspondingly
decrease following the one-hour superinfection delay (t1).

A WU20 to CW1 starting MOI ratio of 1 to 10 (expected to yield infectious progeny
virus proportions of 10% WU20 to 90% CW1) resulted in WU20 proportions of 3% following
coinfection (t0) and 6%, 0%, and 3% following early superinfection delays (t0.5 to t2). From
t4 onwards, WU20 quantities are seen to progressively increase, accounting for 21% (t4),
46% (t8), and 100% (t12 and t24) of infectious virus progenies.

4. Discussion

Viral recombination has been identified as a key mechanism shaping the evolution
and diversity of NoVs [24,26,27]. In contrast to an abundance of field data, few experi-
mental data are available concerning NoV recombination and the mechanism(s) involved
remain poorly characterised [26,28-30,50]. An incremental step in the generation of any
recombinant viral RNA and consequently any viable recombinant virus is the successful si-
multaneous infection of a single cell by (a minimum of) two viruses [32-35]. Under natural
conditions, various environmental, host, and virus factors may influence the probability of
synchronous coinfections and may determine the delay or even the absolute achievability
of asynchronous cellular superinfections. Superinfection exclusion, whereby a primary
infecting virus may render cells refractory to subsequent infection through interference
at various stages of the replicative cycle of the secondary invader [37], is a typically virus-
mediated process. Viral pre-and post-entry blocks have been described for a number of
RNA viruses [38—45]. Hitherto, NoVs have not been listed amongst them.
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Here, we determined the effect of a temporal separation of in vitro infections with the
two homologous MuNoV strains MNV-1 WU20 and CW1 on the composition of nascent
MuNoV populations. In utilising an in vitro system, we excluded both environmental
and host influences and were thus able to examine only those effects mediated by the
viruses themselves.

Subsequent to initial WU20 and CW1 cell coinfections or superinfections with half-
hour- to 24 h-delays and varying input MOIs (1:0.1; 1:1; 1:10), followed by a 24-h propaga-
tion step, individual viral progeny distributions were analysed via qPCR. This quantitative
analysis revealed a disproportionate dominance of primary infecting WU20 genomic copies
in the majority of resulting viral progenies. While the WU20 dominance appeared to be
near-independent of the input MOI ratios of the two viruses (and indeed skewed expected
genomic copy ratios throughout), it was markedly time-dependent; increasing CW1 super-
infection delays from one to two hours onwards were associated directly with increasing
WU20 genome copy fractions. While primary infecting WU20 is expected to have under-
gone a round of replication before addition of CW1 at superinfection delays of more than
eight hours (thus inherently tipping the balance of virus ratios in favour of WU20), input
and expected ratios deviate significantly even at earlier time points where this effect cannot
serve to explain the observed WU20 dominance.

Interestingly, the way in which higher-than-expected WU20 genomic copy numbers
skewed expected genomic copy ratios even after coinfections or short superinfection delays
may hint at the mechanism of the pronounced dominance following longer delays. Where
input MOls of 1:0.1, 1:1, and 1:10 were expected to yield WU20 to CW1 genomic copy ratios
of 90% to 10%, 50% to 50%, and 10% to 90% following coinfection, these expectations were
frustrated in the face of 3.40 (+0.43) to 1.79 (£0.75), 3.17 (£0.33) to 2.49 (£0.54), and 3.66
(£0.24) to 3.23 (+0.96) log;p WU20 to CW1 genomic copy proportions. Vacillating levels of
infectious virus and genomic copies have previously been associated with the presence
of defective interfering (DI) RNAs or DI particles within NoV populations [51]. DI RNAs
or particles, deleterious virus-like by-products of error-prone RNA virus replication, are
known interfere with standard virus particles by competing for resources [52,53]. DI RNAs
may also play a role in mediating superinfection exclusion by induction of RNA silencing
and the homology-dependent degradation of incoming RNA molecules [54]. In this context,
it is conceivable that WU20 DI RNAs within the population (necessarily included in the
quantitative analysis of genome copies since the qPCR assay does not distinguish between
DI RNAs or DI particles and whole (infectious) viral genomes) were recognised by the
cellular RNA silencing machinery and served to guide degradation of incoming CW1 RNA
sequences, this particularly following longer superinfection delays.

Relative proportions of infectious viruses isolated from viral progenies following
coinfection (t0) or short superinfection delays of up to two hours (t0.5 to t2), support
a possible role of WU20 DI RNAs. Thus, e.g., coinfection with a one to ten WU20 to
CW1 MOI ratio resulted in skewed genomic copy ratios of 45.57% WU20 to 54.43% CW1,
but translated into infectious virus ratios of 3% WU20 and 91% CW1 (plus 6% mixed).
Following asynchronous infection with longer delays (t4 to t24), a time-dependent WU20
dominance and corresponding CW1 decrease is evident within infectious virus progenies.
Mixed populations registered subsequent to two-hour superinfection delays may indicate
that that the barrier is established progressively and is, initially, not strong enough to
completely repel superinfecting CW1, especially in the face of high input titres.

Taken together, these results demonstrate that a time interval from one to two hours
onwards between two consecutive in vitro MuNoV infections allows establishment of a
barrier that progressively reduces or prevents superinfection. While viral interference, or
superinfection exclusion, has hitherto not been described for NoVs, it is well documented
for other positive sense, single-stranded RNA viruses, such as hepatitis C-, bovine viral
diarrhoea-, and West Nile virus and may be established within 30 min to several hours of
primary infection [43,44,55-57].

89



Experimental section — Study 1

Viruses 2021, 13, 823 9of 11

In future investigations it will be interesting to leverage population-level deep se-
quencing to analyse how the viral interference effects pinpointed here may influence
the generation of NoV RNA recombinants (and thus ultimately influence the chances
of recombinant virus generation under the application of selective pressures). Further
work should also focus on the mechanism of NoV interference (pre-or post-entry mode
of action analysis) and will investigate whether the observed block can be overcome by
superinfecting viruses.

Understanding the influence that viral interference may have on NoV population
dynamics has clear implications for NoV epidemiology and risk assessment. The phe-
nomenon is thought to decrease the evolution of drug resistance and immune escape by
limiting population variability and virus recombination [55]. Identifying where it plays a
role and also where and how it may be overcome in the field by superinfecting variants are
also important in the context of treating NoV infections.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/v13050823/51, Figure S1: Growth curves for MNV-1 WU20 and CW1 at low and high
multiplicities of infection (MOI).
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Supplementary Figure 1. Growth curves for MNV-1 WU20 and CW1 at low and high
multiplicities of infection (MOI). Data for total, intracellular and extracellular virions were
obtained after infection of RAW 264.7 cells as described by Mathijs et al., 2010 (28). Virus
titres are expressed as means +5D of cells and supernatant analyses (technical duplicates).
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Preamble

Noroviruses are recognised as the major cause of non-bacterial gastroenteritis in humans.
Molecular mechanisms driving norovirus evolution are the accumulation of point mutations and
recombination. Increasing evidence indicates that recombination influences NoV pathogenesis and
fitness and contributes to the evolution of emerging HuNoV strains. For the generation of a viable
recombinant NoV, several steps, namely host coinfection, single cell coinfection, RNA recombination,
and functional selection, must be accomplished. Study 1 demonstrated how superinfection exclusion
may interfere with the generation of recombinant NoV RNA by preventing cell-coinfection; Study 2
now examines the next recombination checkpoint and addresses the issue of how incipient recombinant
NoVs may survive a process of functional selection. Recombination can create considerable changes in
a viral genome, potentially eliciting a fitness cost, which must be compensated via the adaptive capacity
of a nascent recombinant NoV. A replicative fitness cost of the first in vitro generated WU20-CW1
recombinant MuNoV, RecMNV, was reported by Mathijs et al., 2010. In this follow-up study,
RecMNV’s capability of replicative fitness recuperation and genetic characteristics of RecMNV
progenies at early and late stages of an adaptation experiment were evaluated. Replicative fitness regain
of the recombinant was demonstrated via growth kinetics and plaque sizes differences between viral
progenies prior to and post serial in vitro passaging. Point mutations at consensus and sub-consensus
population levels of early and late viral progenies were characterised via next generation sequencing
and putatively associated to fitness changes. To investigate the effect of genomic changes separately
and in combination in the context of a lab generated inter-MNV infectious virus, mutations were
introduced into a recombinant WU20-CW1 cDNA for subsequent DNA-based reverse genetics recovery
(see Figure 11 for an overview of the experimental workflow). We thus associated fitness loss of
RecMNV to a C7245T mutation and functional VP2 (ORF3) truncation and demonstrated individual
and cumulative compensatory effects of one non-synonymous OFR2 and two synonymous ORF1
consensus level mutations acquired during successive rounds of in vitro replication. Our data provide
evidence of viral adaptation in a controlled environment via genetic drift after genetic shift induced a

fitness cost of an infectious recombinant NoV.

An article describing the work presented in this chapter was published in the Journal of General

Virology in February 2020 and is reproduced below.
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Figure 11. Workflow Study 2. Replicative fitness recuperation of a recombinant murine
norovirus (RecMNV)- in vitro reciprocity of genetic shift and drift. RecE = early RecMNV
passage; RecL = late RecMNV passage; NGS = Next generation sequencing; ORF = Open
reading frame; NS = non-structural protein; VP2 = Viral protein 2; Ribo = self-cleaving 6-
Ribozyme sequence
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Abstract

Noroviruses are recognized as the major cause of non-bacterial gastroenteritis in humans. Molecular mechanisms driving nor-
ovirus evolution are the accumulation of point mutations and recombination. Recombination can create considerable changes
in a viral genome, potentially eliciting a fitness cost, which must be compensated via the adaptive capacity of a recombinant
virus. We previously described replicative fitness reduction of the first in vitro generated WU20-CW1 recombinant murine noro-
virus, RecMNV. In this follow-up study, RecMNV's capability of replicative fitness recuperation and genetic characteristics of
RecMNV progenies at early and late stages of an adaptation experiment were evaluated. Replicative fitness regain of the
recombinant was demonstrated via growth kinetics and plague size differences between viral progenies prior to and post serial
in vitro passaging. Point mutations at consensus and sub-consensus population levels of early and late viral progenies were
characterized via next-generation sequencing and putatively associated to fitness changes. To investigate the effect of genomic
changes separately and in combination in the context of a lab-generated inter-MNV infectious virus, mutations were introduced
into a recombinant WU20-CW1 cONA for subsequent DNA-based reverse genetics recovery. We thus associated fitness loss of
RecMNV to a C7245T mutation and functional VP2 (ORF3) truncation and demonstrated individual and cumulative compensa-
tory effects of one synonymous OFR2 and two non-synonymous ORF1 consensus-level mutations acquired during successive
rounds of in vitro replication. Our data provide evidence of viral adaptation in a controlled environment via genetic drift after

genetic shift induced a fitness cost of an infectious recombinant norovirus.

INTRODUCTION

Human noroviruses (HuNoVs) are recognized as major aetio-
logic agents of global sporadic and epidemic non-bacterial
gastroenteritis [1], causing significant morbidity and mortality
in developing countries [2] and high economic losses in
developed countries [1, 3]. The development of HuNoV
replicon bearing cells in a human hepatoma cell line [4], the
B-cell culture system [5], the stem-cell-derived intestinal
organoid system [6] and zebrafish larvae infection models
[7] have all provided invaluable tools to dissect the NoV life

cycle. However, there is still a lack of detailed understanding
of HuNoV replication and significant questions remain
unanswered due to the technical limitations of many of these
experimental systems. The genetically and biologically closely
related murine norovirus (MuNoV) combines the advantages
of efficient in vitro culture systems [8, 9], availability of tools
for genetic manipulation [10, 11] and easy in vivo infection
of a genetically tractable native host [12] and thus remains
the model of choice for NoV studies. Human noroviruses
and MuNoVs [13] belong to the Norovirus genus within the
Caliciviridae family of small, non-enveloped, positive sense,
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single-stranded RNA viruses [14]. The linear, polyadenlyated
7.4-7.7kb long HuNoV genome is classically organized into
three ORFs, while MuNoV genomes are described to addi-
tionally harbour a fourth ORF [15, 16]. The 5' proximal ORF1
encodes a large polyprotein that is co- and post-translationally
cleaved into six non-structural viral proteins (NS1/2 to NS7)
[17]. ORF2 and ORF3 encode the structural components of
the virion, major and minor capsid protein, VP1 and VP2,
respectively. ORF4, entirely overlapping the 5'end of ORF2,
encodes a virulence factor (VF1) [18].

Replicative, transmissive, competitive and epidemiological
fitness are key elements of the overall viral fitness [19], which
conceptually determines how well a virus its’ into its environ-
ment [20]. Viral ecology is based on complex epigenetic and
genetic interactions within the common triad of environment,
host and virus. A given virus’s ecology is thus governed in part
by the particularities of its genetic evolution as it attempts to
comply with the biological imperatives of genetic survival and
replication [21]. Replicative fitness, defined as ‘the capacity of
avirus to produce infectious progeny in a given environment,
can be investigated by either in silico, in vitro, ex vivo or in
vivo experiments [19].

Molecular mechanisms mediating viral evolution are the
accumulation of point mutations and recombination. While
an accumulation of point mutations by virtue of the error-
prone RNA-dependent RNA polymerase (RdRp) generally
leads more gradually to the generation of quasispecies in
RNA viruses [22-25], recombination can quickly create
considerable changes in a viral genome, allowing for complete
antigenic shifts, host jumps and both pathogenesis and fitness
modifications [26]. A change of large genomic regions can
highly impact the fitness of a novel recombinant virus, but can
also provide the virus with new arms regarding its transmis-
sive, competitive and epidemiological fitness [27].

While many field recombination events, predominantly at a
typical ORF1/2 recombination breakpoint [28], have been
detected in silico in the Norovirus genus [29, 30], few experi-
mental data are available concerning NoV recombination
under laboratory conditions and the mechanism(s) involved
are poorly characterized [29]. The first in vitro experimental
evidence of NoV recombination was provided by Mathijs et al.
[31], describing the detection and isolation of a single viable
recombinant virus from an infectious centre assay following
coinfections of mouse leukaemic monocyte-macrophage cells
(RAW264.7) with the two homologous parental MuNoV
strains MNV1-CW1 and WU20 (87% nucleotide sequence
similarity). The ensuing recombinant, RecMNV, composed
of a WU20-related ORF1 and CW1-related ORFs 2, 3 and
4, was shown to exhibit reduced in vitro fitness compared to
its parental strains [31], while nevertheless retaining in vivo
infectivity (albeit also with a slight reduction of infectivity
as measured by comparing weight loss, viral loads in faeces,
blood and various organs of RecMNYV infected mice) [32].

In the present study, we evaluated the replication capability of
previously in vitro-generated recombinant MuNoV RecMNV
at early (RecE) and late (RecL) stages of an in vitro replicative

fitness adaptation experiment. We associated population-level
genetic modifications to observable phenotypic profiles of
viral fitness. Fitness loss of RecMNV was thus linked to a
C7245T mutation and functional VP2 (ORF3) truncation;
individual and cumulative compensatory effects of one
non-synonymous VP1 (OFR2) and two NS1/2 synonymous
ORF1I consensus level mutations acquired during successive
rounds of in vitro replication were demonstrated, suggesting
that interactions of viral proteins and/or RNA secondary
structures of different ORFs may play a role in the regulation
of replicative fitness post recombination. This in vitro model
simulates the adaptation process (genetic drift) of NoVs aftera
recombination event (genetic shift); it supplements the scarce
experimental data available concerning MuNoV recombina-
tion and may also further a conceptual understanding of the
mechanisms behind HuNoV evolution.

METHODS

Viruses and cells

The murine macrophage cell line RAW264.7 (ATCC TIB-71)
was maintained in Dulbecco’s modified Eagle’s medium
(Invitrogen) containing 10% heat inactivated foetal calf
serum (FCS) (BioWhittaker), 2% of an association of peni-
cillin (5000 SI units ml™') and streptomycin (5 mg ml™") (PS,
Invitrogen) and 1% 1 M HEPES buffer (pH 7.6) (Invitrogen)
at 37°C with 5% CO,.

BHK cells engineered to express T7 RNA polymerase (BSR-T7
cells, obtained from Karl-Klaus Conzelmann, Ludwig Maxi-
milian University, Munich, Germany) were maintained in
DMEM containing 10% FCS, penicillin (100 SI units ml™)
and streptomycin (100 ug ml™), and 0.5 mg ml™ G418.

Murine NoV isolate RecMNV [31] was propagated in
RAW264.7 cells as described by Mathijs et al. Initial RecMNV
progeny was produced by infection of RAW264.7 cells at a
m.o.i. (expressed as plaque-forming units per cell) of 0.05.
Two days post-infection, cells and supernatant were harvested
and clarified by centrifugation for 20 min at 1000 g after three
freeze/thaw cycles (-80°C alternating with 37°C). Superna-
tants were purified by ultracentrifugation on a 30% sucrose
cushion in a SW28 rotor (Beckman Coulter) at 23000 rounds
per min for 2h at 4°C. Pellets were suspended in 500 pl PBS,
aliquoted and frozen at -80°C. Titres were determined via
the TCID, method. For this, RAW 264.7 cells were seeded
in 96-well plates, infected with tenfold serial dilutions of
MuNoV, incubated for 4 days at 37°C with 5% CO, and
finally stained with 0.2% crystal violet for 30 min. The titres,
expressed as TCID, ml™, were calculated according to the
Reed and Muench transformation [33].

RecMNV in vitro serial replication

To evaluate the capability of replicative fitness adaptation
of in vitro-generated recombinant MuNoV RecMNV in cell
culture, RecMNYV was serially replicated in RAW264.7 cells
over nine passages. Briefly, monolayers of 5x10° RAW264.7
cells were initially infected with RecMNV at a m.o.i. of 0.05
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and were incubated for 72 h. Following this, fresh RAW?264.7
cell layers were infected with 100 ul supernatant from the
preceding passage. The procedure was repeated eight times.
The remaining supernatants were centrifuged at 1000 g for
20 min to remove cell debris and were stored at -80°C until
further analyses. Virus progenies resulting from the initial
RecMNYV production and those generated following the ninth
passage of RecMNYV are henceforth referred to as early (RecE)
and late (RecL) recombinant progenies.

Plaque size analysis and replication kinetics of
early (RecE) and late (RecL) RecMNV progenies

Two independent lysis plaque assays were performed in trip-
licate in RAW264.7 cells with RecE and RecL. Viral plaque
sizes (15 discrete and well-isolated plaques were randomly
selected per virus and per triplicate) of RecE and RecL were
measured at 48 h p.i. with the open source image processing
program Image] [34].

To compare infectivity between the progenies, a standard-
ized production of RecE and RecL was performed. Per
progeny, triplicate RAW264.7 monolayers in six-well plates
were infected at a m.o.i. of 0.01 (TCID, /cell). After 24 h p.i.,
total virus was released by three freeze/thaw cycles, clarified
at 3000 r.p.m. for 20 min, and total viral progeny titres were
analysed via TCID_ (biological and technical triplicates).

Early (RecE) and late (RecL) RecMNV progenies
sequence analysis

RNA was extracted from 150 pl of viral suspensions using the
NucleoSpin RNA virus kit (Macherey-Nagel) according to
the manufacturer’s instructions. For genomic DNA depletion,
the total RNA was treated with 4 MBU of Baseline-ZERO
DNase (Epicentre) in a total volume of 60 ul. The reaction was
incubated 15min at 37°C and inactivated by a bead-based
purification step using the Agencourt AMPure XP (Beckman-
Coulter). First-strand ¢cDNA synthesis was performed
using SuperScript IV reverse transcriptase (Thermo Fisher
Scientific) according to the manufacturer’s protocol. Briefly,
10 pl of DNase-treated total RNA was combined with oligo-
nucleotide primers MNV-tail: TTTTTTTTTAAAATGC
ATCTAACTACCAC (2.5 uM) and MNV-2745: CTCACGAT
CAGCGAGGTAGTC (0.1 uM), dNTPs (10 mM: Promega)
and nuclease-free water. Reactions were incubated at 65°C
for 10min and cooled on ice for 5min. A second reagent
mix was added containing SuperScript IV enzyme (200 U:
Thermo Fisher Scientific), RNasin Plus RNase Inhibitor
(40 U: Promega), 0.1 M dTT (Thermo Fisher Scientific),
before incubating at 50, 55 and 60°C for 30 min, succes-
sively. A final incubation at 80°C for 10 min was performed
for inactivation. Second-strand synthesis was performed
using NEBNext mRNA second-strand synthesis module
(New England Biolabs) as per the manufacturer’s instruc-
tions. The resulting dsDNA was purified using Agencourt
AMPure XP (Beckman-Coulter) beads according to the
manufacturer’s instructions and samples eluted in 45 ul of
nuclease-free water. Double-stranded cDNA samples were
quantified using the Quantifluor dsDNA system (Promega)

with the Quantus Fluorometer (Promega). One nanogram
of each dsDNA sample was used to prepare sequencing
libraries using the Nextera XT DNA Sample Preparation Kit
(Mlumina) according to the manufacturer’s instructions. The
libraries were quantified with the Kapa library quantification
kit Illumina platforms (Kapa Biosystems) and the insertion
size was verified using the Agilent Bioanalyzer with the
high-sensitivity DNA kit (Agilent Technologies). Twenty-two
libraries were multiplexed using standard [llumina indexing
primers. Sequencing was performed using a MiSeq reagent
kit version 3 (Illumina) with 2x300 bp paired-end sequencing
on a MiSeq Benchtop Sequencer (Illumina).

Bioinformatics

The quality of the raw MiSeq sequence data of each library was
assessed using FastQC v0.11.3 (http://www.bioinformatics.
babraham.ac.uk/projects/). Trimming was performed using
Trim galore! v0.3.8 (http://www.bioinformatics.babraham.
ac.uk/projects/trim_galore/) based on quality (Q score
>30) and length (length >80bp, 5’ clip for R1 and R2=20).
To obtain near full-length genomes for RecE and RecL, the
trimmed reads were assembled de novo using SPAdes v3.9.0
with k values 21, 33, 55 and a subsample of 10000 or 13, 200
paired-end reads, respectively [35]. Reads from RecE and
RecL were aligned to either the parental sequences MNV
CWI1 (GenBank accession number DQ285629) and WU20
(GenBank accession number EU004665.1) or each other
using the Burrows-Wheeler Alignment tool (BWA) [36]. The
alignments were sorted using Samtools v1.2 [37], converted
using GATK v3.6.0 [38], and PCR duplicates were removed
using Picard (http://broadinstitute.github.io/picard/). Subse-
quently variants were called using LoFreq [39].

Statistics

Statistical analyses of plaque size diameters determined
with the Image ] software were performed with SAS
edition studio (SAS, Institute, Cary, NC, USA) using the
NPARIWAY procedure (non-parametric tests) or analysed
using GraphPad Prism 7 (Graph-Pad Software) and P-values
were determined with the non-parametric Mann-Whitney
test, where ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05, and
ns is P>0.05.

GenBank accession numbers

The consensus nucleotide sequences of the near full genomes
of RecE and RecL were deposited in GenBank/EMBL/
DDBJ under the accession no. KU743153 and KU743152,
respectively.

Generation of an inter-MNV chimeric plasmid

An inter-MNYV chimeric cDNA was generated to contain a
recombinant ‘carbon copy’ genome sequence (RecMNV_) of
parental strains WU20 (before the recombination breakpoint)
and CW1 (after the recombination breakpoint) under the
control of a truncated T7 RNA polymerase promoter. Wher-
ever SNPs were identified between RecE and its respective
parental strains as encoded in GenBank, the position was
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sequenced (post reverse transcription-PCR amplification) in
the true, biological parental virus population to verify its pres-
ence or absence therein. If already present in a parental popu-
lation, the mutation was considered to have been acquired
prior to the recombination event in question (via genetic
drift during generation of virus stocks) and was included in
RecMNV .

To build RecMNVec, a WU20 insert obtained by PCR ampli-
fying the WU20 ORF1 region from infectious virus stock
was embedded into a pT7: MNV 3'Rz CW1 infectious clone
backbone [40] containing a Notl restriction site in the m53
stem loop via Gibson assembly.

Generation of pT7: MNV 3'Rz M53 Notl

Briefly, to insert a NofI restriction site into pT7: MNV 3'Rz at
the site of the m53 stem loop (GACCCCGC to GCGGCCGC
at nt position 5024-5031), site-directed mutagenesis was
performed by overlap mutagenic PCR with KOD Hot Start
polymerase (Novagen) using primers IGUC3715 and 6042R
(PCR1) and IGUC3716 and 3848F (PCR2) (see Table S1,
available in the online version of this article). The resultant
PCR products were used as templates for a third PCR with
primers 3848F and 6042R to generate an amplicon containing
the inserted NotI restriction site and flanked by Afel and SacII
restriction sites. After Afel and Sacll (New England Biolabs)
digestion, the PCR3 product was ligated into Afel- and Sacll-
digested and dephosphorylated (Antarctic Phosphatase, New
England Biolabs) pT7: MNV 3'Rz. The sequence of pT7:
MNYV 3'Rz N53Notl was confirmed using primers 3848F,
4450F and 6042R.

PCR amplification of WU20 ORF1

To enable the generation of an ORF1 WU20 ¢cDNA, RNA
was extracted from infectious virus stock (Epoch Life Science,
EconoSpin All-in-One Mini Spin Columns), DNAse purified,
and copied into oligo (d)T- and random hexamer-primed
cDNA using SuperScript I1I (Invitrogen). Phusion high fidelity
polymerase (New England Biolabs) was used to amplify
a 5kb region of WU20 cDNA, using 5’ primer IGUC3720
(containing the truncated T7 polymerase promoter sequence
(of the pT7: MNV 3'Rz plasmid) and partial 5’ sequence of
WU20) and 3’ primer IGUC3721 [containing the recombina-
tion site (sequence identity between WU20 and CW1)] (see
Table S1).

Gibson assembly of pT7: MNV 3'Rz M53 Notl and
WU20 ORF1

The pT7: MNV 3'Rz M53 Notl vector was cut with restric-
tion enzymes Alel and NotI-HE. A Gibson assembly (New
England Biolabs) was set up with 100 ng gel purified vector
and 200-300ng column purified WU20 insert, according to
the manufacturer’s instructions. During the Gibson assembly
process, the Notl site, previously inserted for cloning
purposes, was removed. Following transformation into and
recovery from NEB 5-alpha Gold Competent Cells (New
England Biolabs), the identity of RecMNV was confirmed by

sequencing with ten overlapping primer pairs covering the
entire recombinant NoV genome (see Table S1). Three single
nucleotide polymorphisms (SNPs) attributable either to PCR
or cloning errors were corrected via site-directed mutagenesis
to generate a perfect ‘carbon copy’ recombinant of parental
strains WU20 and CW1.

Cloning of point mutations into a lab-generated
inter-MNV chimeric plasmid

Following the generation of RecMNVcc, one consensus-level
synonymous and three non-synonymous point mutations
identified as entirely novel either to RecE or RecL popula-
tions (Table 1a, b, Fig. S1), were cloned into RecMNV_ via
site-directed mutagenesis to generate five different mutant
constructs, RecE ., ... (C7245T present in RecE and ReclL),
RecMNV (i wgney  (T697C present in Recl), RecM-

(G234A present in RecL), RecMNV,

C7245T_G234A C7245T_A5864G

(A5864G present in RecL), RecL i1 casan teorc_asseacy 1
which unique RecE or RecL mutations were either isolated or
combined. Insertion of the desired mutation was confirmed
by sequencing. Details on the cloning strategy and primers
used for the generation of the five different mutant constructs
may be found in Table S2.

DNA-based reverse genetics to recover inter-MNV
mutant viruses

Virus was rescued from the six RecMNV cDNA clones,
wild-type pT7: MNV 3'Rz CW1 (as positive control) and
the full-length cDNA clone of polymerase active site mutant
pT7: MNV POL-3'Rz in which the NS7 active site is mutated
from YGDD to YGGG (as replication-defective control) [41]
by using the reverse genetics system based on recombinant
fowlpox virus expressing T7 RNA polymerase, as previously
described [10, 40]. Briefly, 1ug of each cDNA expression
construct was transfected, using Lipofectamine 2000 trans-
fection reagent (Invitrogen), into BSR-T7 cells previously
infected with recombinant fowlpox virus expressing T7
RNA polymerase at a m.o.i. of approximately 0.5 p.f.u. per
cell (based on the virus titre in chick embryo fibroblasts).
At 48h post cDNA transfection, three freeze/thaw cycles at
-80°C/37°C were performed to release virus particles from
cells and infectious virus titres were determined as TCID, in
RAW 264.7 cells using tenfold serial dilutions typically over
a range of undiluted neat virus to 107. The viral TCID_ ml™!
of biological triplicates was determined by scoring signs of
cytopathic effect (CPE) using microscopic visualization and
crystal violet staining at 4 days post infection.

M.o.i.-controlled mid-point replication (P1) of inter-
MNV mutant constructs

Mid-point passaging under standardized conditions [10h
infection, m.o.i. of 0.01 (TCID_/cell)] of all six infectious
recombinant constructs was carried out in RAW264.7
monolayers. To release infectious viruses of this first passage
(P1) from cells, three freeze/thaw cycles were subsequently
performed.
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Table 1. Nucleotide changes present at cansensus and sub-consensus

level (under 50%) of the viral population of RecE (left), and RecL (right), Table 1. Continued

el Dbty S ERRE DT

and ORF3, respectively. Positions corresponding to WU20 (left: nt

112 to 4865; right: nt 5290 to 7245) are shaded light grey; positions 6625 T 21262 0.57

corresponding to CW1 (left: nt 5166 to 7354; right: nt &1 to 4961) are

shaded dark grey 6630 T 21366 0.30
nt Parental RecE Raw depth Frequency (%) 6676 ' ez 040
position strain 6677 G 21401 0.53
112 T A 4126 99.95 7245 T 9718 99.73
193 T A 7933 1.09 7354 T 1619 1.23
197 C G 7996 1.06 61 A G 62 9.67
198 G C 8047 1.06 112 T A 145 99.31
199 © G 8020 1.05 134 T C 182 10.43
203 T A 8323 1.21 234 G A 339 99.70
360 A G 12743 1.08 641 T A 532 1.31
697 T C 14431 3.39 697 T C 499 99.59
711 A G 14072 1.94 716 T C 462 1.51
829 (%) T 14909 0.30 761 C T 468 13.88
1039 A G 14296 0.51 824 © T 509 1.37
1503 A G 16768 0.54 1077 A G 565 1.76
1683 A G 17706 1.32 1107 A G 567 2.99
2030 © A 18558 0.66 1540 A G 708 1.55
2269 A G 20062 99.88 1727 A G 636 1.25
2532 T C 18825 99.90 1995 G T 710 2.53
2804 C G 12273 3.22 2057 © T 721 2.63
2978 © T 12001 99.86 2211 A G 814 2.08
3164 © T 12563 0.93 2269 A G 850 99.76
4607 T C 18390 98.92 2498 G T 106 1.32
4865 A G 18337 99.95 2532 T C 976 99.48
5166 T 16582 0.34 2643 & T 658 2.73
5461 T 16394 0.62 2741 T C 376 7.44
5484 T 15954 1.45 2978 G T 376 100.00
5502 G 15622 0.56 2993 G A 375 1.33
5613 T 15629 0.19 4097 (G G 538 8.55
5664 T 15982 0.25 4607 T C 691 100.00
5864 G 11687 1.54 4727 A G 742 1.48
6089 G 16096 0.31 4742 G A 736 6.52
6117 C 15917 0.54 4865 A G 657 99.84
6458 C 19083 0.52 4961 A G 613 6.19
6534 A 20580 0.21 5290 T 542 1.84
6610 G 21335 2.04 5631 T 626 1.43

Continued Continued
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Table 1. Continued

nt Parental RecE Raw depth Frequency (%)
position strain

5703 T 610 4.91
5864 G 432 7222
6372 T 613 2.28
6510 A 703 2.27
6531 T 692 3.75
6534 A 697 4.87
6534 G 697 12.19
6657 G 720 1.52
7215 C 381 2.09
7245 T 330 99.69

Frequency: count (the number of times a particular nt occurs)/
coverage.
nt: nucleotide.

Demonstration of VP2 functional truncation via
Western blot

To analyse protein expression and specifically reveal VP2
functional truncation generated as a result of the C7245T
mutation, BSR-T7 cells were harvested for Western blot
analysis 48 h post-transfection with C7245T-mutated wild-
type cDNA. Briefly, cells were lysed in RIPA buffer [50 mM
Tris/HCI (pH 8.0), 150 mM NaCl, 1 mM EDTA, 1% Triton
X-100, 0.1% SDS] and analysed subsequently by Western
blot using a rabbit polyclonal antiserum to the minor capsid
protein VP2 as described in [40].

Plaque size analysis and end-point replication
kinetics of inter-MNV mutant constructs

To compare infectious virus titres of the six P1 inter- MNV
constructs, TCID, assays were performed in RAW 264.7 cells
using tenfold serial dilutions (as described above). Plaque
assays were performed and analysed in RAW264.7 cells for
each of the six constructs. Viral plaque sizes (25 discrete and
well-isolated plaques were randomly selected per virus and
per triplicate; i.e. n=75 plaques/virus) of each inter-MNV
construct were measured at 48 h p.i. with the open source
image processing program Image].

RESULTS

Early and in vitro serially replicated late
recombinant murine norovirus RecMNV progenies
display differences in plaque sizes and replication
kinetics

Differences of in vitro replicative fitness of RecMNV progeny
RecE (‘early’; prior to in vitro replication) and serially repli-
cated, ‘late’ recombinant murine norovirus progeny RecL
were analysed by comparing plaque sizes and replication
kinetics. Plaque phenotypes showed that diameters of RecL
were significantly larger (0.5mm?) than those of RecE
(0.1 mm?) (Fig. 1a). Standardized single-step replication of
RecE and RecL and analysis of viral progenies via TCID,,
showed viral titres to differ by two orders of magnitude (2
log10) with mean values of 2.58:£0.44x10°> TCID, ml™' for
RecE and 1.00+0.55x10” TCID, ml™' for RecL (Fig. 1b).
Thus, both the plaque size analysis and standardized produc-
tion of RecE and Recl. progenies indicated a replicative
fitness adaptation of RecMNV over intervening steps of viral
amplification.
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Fig. 1. Lysis plague size comparison and analysis of viral progeny titres of RecE (a) and Recl (b). Plaque size quantification was performed
on discrete, well-isolated plagues. The increase of mean surface area of the plaques from 0.1 to 0.5 mm?, as determined with the Image
J software and statistically analysed with procedure NPARTWAY of SAS edition studio [SAS, Institute, Cary, NC, USA), is shown in (a).
*** P<(.001. Standardized production of RecE and RecL (infection of six-well plates at m.o.i. 0.01, 24 h incubation) and analysis of viral
progeny titres via TCID, (biological and technical triplicates) shows viral titres differing by two orders of magnitude (2 log10) with mean
values of 2.58+0.44x10° TCID,, ml™" reported for RecE and 1.000.55x107 TCID,; ml™" for RecL (b). P-values were computed by using a

two-sided independent sampl'é I-test, ***: P<0.001,
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Next-generation sequencing (NGS) of early and late RecMNV
progenies reveals a C7245T mutated VP2 in both popula-
tions and three further point mutations in the late RecMNV
consensus sequence.

To associate differences in replicative fitness between RecE
and RecL. populations to changing molecular characteristics
within the respective viral populations, MiSeq Illumina NGS
was performed for RecE and RecL. Near-full-length, 7362
nucleotide-long consensus genomes were obtained by de novo
assembly for RecE and RecL. The median read depth for both
samples was at least 583 with 99.6% of the bases covered at
least 20 times for RecE and 98.5% for RecL. These coverage
rates allowed the confident detection of low-frequency single
nucleotide variants [42]. The consensus sequence of RecE
(GenBank accession number: KU743153) was compared to
the corresponding sequences of its parental strains as encoded
in GenBank. The recombination breakpoint was confirmed to
be located at the ORF1/ORF2 junction in a 123 base pair large
region of complete sequence identity (nucleotides 4968 to
5090) between the parental isolates. Thus, the complete RecE
ORF1 sequences were matched against WU20 (GenBank:
EU004665.1), while ORF2 and ORF3 sequences were
compared to the corresponding regions of CW1 (GenBank:
DQ285629.1) (Table 1). Wherever SNPs were identified at
consensus level (over 50%) within the RecE population and its
respective parental strains as encoded in GenBank, the posi-
tion was sequenced in the original parental WU20 or CW1
virus population to verify its presence or absence therein. If
already present in a parental population, the mutation must
have been acquired prior to the recombination event in ques-
tion (via genetic drift during generation of virus stocks) and
was thus not included in further investigations. Accordingly,
a single nucleotide transition from C (CW1) to T (RecE) at
position 7245 was identified to have introduced a stop codon
(Gln>Stop187) in ORF3, resulting in a 20 amino acid trun-
cated VP2 in RecE (Table 2a, b).

The RecE consensus sequence was then mapped against that
of RecL to identify mutations appearing between the two
populations (and potentially associated the observed differ-
ences in replicative fitness) (Table 2a). A comparison of the
consensus genome sequences of RecE and RecL (GenBank
accession number: KU743152) revealed three nucleotide
changes in total. Within NS1/2 (ORF1), two changes at posi-
tions 234 (G to A) and 697 (T to C) occurred, both of which
resulted in amino acid mutations at positions 77 (Gly->Ser77)
and 231 (Leu>Pro231), respectively (Table 2b). Interestingly,
due to the non-silent mutation at nucleotide position 234,
the RecL sequence corresponded to that of CW1 at the same
position in both its nucleotide and amino acid sequence,
reflecting the WU20 non-structural region ‘picking up’ a
codon present in the corresponding region of CW1. ORF2
of RecL harboured a novel synonymous mutation at position
5864 (A to G), while the previous change at position 7245 was
maintained in ORF3 of RecL.

The relative percentages of mutations (variants) within the
population were determined after mapping the processed

Table 2. Nucleatide changes (a) and non-synonymous mutations (b)
between the consensus sequences of RecE, RecL and the parental
strains WU20 and CW1. The relative percentages of mutations (variants)
within the population were determined after mapping the processed
MiSeq Illumina sequencing reads to the respective reference sequence,
WU20 (GenBank: EU004665.1) in ORF1, CW1 (GenBank: DQ285629.1) in
ORF2 and 3. Wherever deviating from the reference sequence, positions
were sequenced in the respective WU20 or CW1 parental virus
population. If already present in a parental population, the mutation
was considered to have been acquired prior to the recombination event
in question (via genetic drift during generation of virus stocks) and was
not included in this table

ORF1 ORF2 ORF3
NS1/2
nt position 234 697 5864 7245
Wwu20 G T A C
CW1 A T A (c
RecE G T A T
RecL A C G T
ORF1 ORF3
NS1/2
AA 77 231 190
wu20 Gly Leu Gln
CW1 Ser Leu Gln
RecE Gly Leu Stop
Recl Ser Pro Stop

Those changes resulting in a non-synonymous mutation (amino
acid change) are marked in bold. The parental strain for the
respective ORF is shaded in grey. Dotted underlining of nucleotides
or amino acids signals changes appearing between the parental
strain and RecE. Solid underlining of nucleotides or amino acids
signals changes appearing between RecE and Recl.. ORF: open
reading frame; nt: nucleotide; AA: Amino acid.

MiSeq Illumina sequencing reads to the respective refer-
ence sequence. Except at nucleotide positions 697 and 5864,
variants hitherto reported were present at >98% within both
populations and can confidently be viewed as stably estab-
lished within the population. At position 697, 3.39% cytosine
(C) and at nucleotide position 5864, 1.54% adenine (A) were
present within the RecE population. Indicating a positive
selection over the interim passages, these values mounted to
99.59 and 72.22%, respectively in RecL.

Introduction of separate and combined RecMNV
point mutations into an inter-MNV chimeric plasmid
backbone via site-directed mutagenesis generates
six chimeric plasmids

To investigate the effect of individual observed genomic
changes within the RecE and RecL populations, an inter-
MNYV chimeric plasmid was generated by replacing the
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ORF1 region of a CW1 cDNA (pT7: MNV 3'Rz [40]) with
a PCR-amplified WU20 ORF1 to represent a recombinant
‘carbon copy’ (RecMNV_) of the parental strains. The unique
consensus-level synonymous and three non-synonymous
RecE or RecL point mutations identified in previous steps
were introduced separately and in combination into RecM-
NV_ via site-directed mutagenesis, generating five different
mutant constructs, RecE(C72 45T) (C7245T present in RecE and
RecL), RecMNV . 1 ey (T697C present in RecL), RecM-
(G234A present in RecL), RecMNV |

VC724ST7(‘1234A C7245T_A5864G
Inser-

(A5864G prese;nt in ReCF)> RecL sy Gaman_tsorc_asssacy .
tion of the desired mutation was confirmed by sequencing.

DNA-based reverse genetics allows recovery of six
infectious inter-MNV chimeric viruses

A DNA-based reverse genetics system allowed recovery of
infectious virus (P0) at similar titres for all six recombinant
constructs RecMNV_, RecE ., .., (C7245T present in RecE
and RecL), RecMNV 0 16076y (T697C present in RecL),
RecMNV_ o osan (G234A present in RecL), RecMNV_, -
A5864G (A5864G present in ReCL)’ ReCL(C7245T_GZ34A_T697C_A5864G)
and wild-type MNV (Fig. 2) demonstrating that no mutation

was so deleterious as to impair virus rescue.

A C7245T mutation results in functional truncation
of VP2

The presumptive functional truncation of VP2 caused by the
C7245T mutation in infectious viral progeny (passage 1) was
confirmed via Western blot analysis using a rabbit polyclonal
antiserum to the minor capsid protein VP2 as described in
[40] (Fig. 3).

A replicative fitness cost of the C7245T VP2
truncation is compensated by separate and
cumulative point mutations associated to late
RecMNV

Mid-point passaging in RAW264.7 cells at low m.o.i.
(0.01) of all six infectious recombinant constructs yielded
a standardized passage 1 (P1) stock. Differences in in vitro
replicative fitness of inter-MNV recombinant P1 prog-
enies were compared using end-point replication kinetics
and plaque size comparison and as proxy measurements.
Titres of inter-MNV P1 viruses RecMNV_ (1.36+0.08x10°
TCID,, ml™), RecE . (2.4220.17x10* TCID,  ml™") and
RecMNV__ oo (2.4240.08x10* TCID, ml™) differed by
approximatively one order of magnitude (1 log10). Titres for
RecMNV (7.65+0.17x10* TCID, ml™") and RecM-

C7245T_G234A s > . .
NV st assea (1:36%10°£0.14 TCID, ml™') were similar to

that of RecMNV_, while the titre of R’ecL(C72 (ST oA TE97C_ASKGG)
was slightly higher at 3.55+0.14x10° TCID, ml™' (Fig. 4c).

The mean surface area of plaques [n=75 (3x25), biological
triplicates; mm?] was shown to differ significantly between the
six constructs (Fig. 4b). RecMNV_plaques were shown to have
a mean surface area of 1.821+0.1708 mm?, whilst RecE(mmT)
plaques were smaller by a factor of 3.9 (0.465+0.08285 mm?).

Plaque sizes of RecMNV .. ..., (mean surface area

|.|.|
i
b

O =N W P OO

Log;oTCIDso mi™

Fig. 2. A DNA-based reverse genetics system allowed recovery
of infectious virus (P0) at similar titres for all six recombinant
constructs, RecMNV_, RecE . ReCMNV ) 0o REEMNV ) oo
RECMNVCUABT ABB6LG and RECLJC72AET G234A_TE97C_ABBSLG)H and W.[d_type CW] ' The
mean log10 TCID,; ml™" and the standard error of the mean for each
of the viruses are determined; formal statistical hypothesis testing,
assuming independence between measurements of the infectivity of
the wild-type and mutant viruses and computed by using two-sided
independent sample t-tests showed no statistical differences between
RecMNV mutants and WTCW1. WTCW1: plasmid pT7: MNV 3'Rz; ANS7:
polymerase active site mutant pT7: MNV POL-3’Rz in which the NS7
active site is mutated from YGDD to YGGG.

2.261%0.2197 mm? augmentation of plaque size by factor
1.2 as compared to RecMNV_) and RecMNV_ . ...
(1.91240.1903 mm?) were shown to be similar to those of
RecMNV_, and RecMNV ., . . plaques with a mean
surface area of 0.670+0.105 mm? dispfayed afactor 2.7 reduc-
tion of plaque size as compared to RecMNV _. The surface area
of RecL o)1 conin too7c assacy Plaques (3.866+0.2482 mm?)
was shown to be 2.1 times larger than that of RecMNV_
plaques indicating a cumulative effect of three mutations in

two different ORFs in RecL.

DISCUSSION

This is the first study in which the capability of replicative
fitness adaptation and associated genetic characteristics of
a previously in vitro-generated recombinant MuNoV were
evaluated at early and late time points of serial in vitro
passaging. Our data provide evidence of viral adaptation to
a controlled environment (here a cell-culture system) after a
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20kDa» VP2

Fig. 3. The presumptive functional truncation of VP2 caused by the
C7245T mutation in infectious viral progeny was confirmed via Western
blot analysis using a rabbit polyclonal antiserum to the minor capsid
protein VPZ. The molecular ladder used was BioRad PrecisionPlus Dual
colour. Mock: mock infection; WTCW1: plasmid pT7: MNV 3'Rz; ANS7:
polymerase active site mutant pT7: MNV POL-3’Rz in which the NS7
active site is mutated from YGOD to YGGG.

recombination event, which initially induced a steep reduc-
tion of replication capacity [31, 32].

Recombination has previously been shown to incur fitness
costs in viruses either as a result of disrupted epistatic inter-
relationships between the genetic loci of a novel recombinant
(this typically between highly divergent viruses) [43] or as a
result of point mutations acquired while bypassing the evolu-
tionary bottleneck that is recombination. The recombinant
strain RecMNV has been demonstrated to generate smaller
plaques and have slower replication kinetics than its parental
strains. Its lower replicative fitness was previously putatively
associated to a longer cell sequestration before release [31].

Within compact viral genomes that encode only a few
proteins, even single non-synonymous mutations can be
sufficient to alter the structure or function of virus-encoded
proteins to mediate fitness modifications [44, 45]. To investi-
gate the origin of the reduced replicative fitness of RecMNYV,
i.e. RecE in this study, we investigated its genetic variant
spectrum via MiSeq Illumina sequencing and matched its
consensus sequence against those of its parental strains. The
sole ORF1/2 recombination breakpoint [31] was confirmed,
with ORF1 (NS1/2 to NS7) of RecE mapping against WU20,
while ORFs 2 (VP1), 3 (VP2) and 4 (VF1) aligned homolo-
gously with CW1 sequences. A single C7245T point mutation
and consequent introduction of a stop codon (Gln->Stop187)
in ORF3 of RecE was shown to have caused a substantial
functional truncation in the middle of a predicted VP2 stem-
loop structure [46]. Minor capsid protein VP2, encoded by
all caliciviruses, is located at the interior of the viral capsid
and bound to a conserved motif in the shell domain of major
capsid protein VP1. It is postulated to be involved in MuNoV
encapsidation via an interaction with viral genomic RNA
[17] and acidic regions of VP1 [47] and is held to regulate
expression and stability of VP1 in HuNoVs [48]. Feline
calicivirus VP2 forms a portal-like assembly following host
cell receptor engagement [49]. VP2 integrity has previ-
ously been shown to be essential for productive replication
of infectious feline calicivirus and attempts at producing

infectious viruses after adding stop codons were previously
unsuccessful [50]. To confirm the putative deleterious effect
of point mutation C7245T in the context of a homologous
recombinant background, albeit non-lethal, we implemented
DNA-based reverse genetics to rescue both RecMNV_, an
inter-MNV chimeric virus representing a perfect ‘carbon
copy’ recombinant of parental WU20 and CW1 sequences,
and RecE ., ..., a ReeMNV C7245T mutant. Plaque size
comparison of inter-MNV chimeric viruses RecMNV_ and
RecE, ..., indicated a deleterious effect of the C7245T muta-
tion on replicative fitness of RecE ., .., viral progenies by a
near factor four diminution of viral plaque sizes. Plaque size
diameters are proportional to the number of cells that a virus
lyses in a given time period. Their size is therefore related to
virus productivity and cell-to-cell spread and their analysis
is a well-established measure of viral fitness [19, 51-55]. The
smaller lysis plaques of VP2 truncated RecE, indicating an
inhibition of viral spread, are in line with the recent hypoth-
esis that intact calicivirus VP2 functions as a channel for viral
genome release from the endosome into the cytoplasm of a
host cell [49]. A viral fitness cost was further confirmed by

lower infectious titres of RecE . ,,op-

While initial imprecise recombination events present an
evolutionary bottleneck and can induce a fitness cost, they
may be followed by a stage of resolution optimizing viral
fitness [43, 56]. We here report on a significant increase of
plaque size between early and late progenies of recombinant
MuNoV RecMNYV, demonstrating a replicative fitness regain
of the initially disadvantaged RecMNV after successive in
vitro passaging. The fitness regain was additionally confirmed
by differences in the kinetics of viral replication between RecE
and RecL shown via a standardized virus production and
supported by one-step and multi-step growth curve analyses.
Titres of RecL at 24 h p.i. were two orders of magnitude (2
log10) higher than those of RecE and approached those of
the parental strains at high m.o.i. To investigate the genetic
changes that favoured the selection of viruses with faster repli-
cation kinetics and a large plaque phenotype, we obtained
the near-complete genomic sequence of RecL. Comparison
of RecE and RecL showed the C7245T mutation previously
identified in RecE to be maintained in RecL. In addition, two
non-synonymous nucleotide changes occurred within NS1/2
and a non-synonymous one in ORF2. NGS analysis allowed
us to follow the evolution of ReceMNV on a population level,
showing not only the apparition of two of the variants at
consensus level but also suggesting the positive selection and
ultimate establishment of mutations initially represented at
sub-consensus level within the population (T697C present
at 3.39% in RecE and at 99.59% in RecL; A586G present at
1.54% in RecE and at 72.22% in RecL).

NS1/2, the least conserved NoV NS protein [47, 57], is
involved in replication complex formation by associating
with components of the endocytic and secretory pathway
together with co-localizing NS4 [47, 58-60]. For MuNoVs, a
single amino acid change in NS1/2 has been shown to induce
a fitness gain in form of colonic tropism and persistence [61].
Here we demonstrate gain of replicative fitness in cell culture
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Fig. 4. Lysis plaque analysis, plague size comparison and analysis of viral progeny titres of infectious inter-MNV chimeric viruses
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via acquisition of two non-synonymous NS1/2 mutations.
Interestingly the 5'-proximal G234A mutation rescued the
fitness cost mediated by 3'-proximal C7245T to higher levels
than T697C. It has previously been demonstrated that physical

interactions between the 5" and 3’ ends of the NoV genomic
RNA, which are sequence-mediated and further stabilized by
cellular proteins, contribute to RNA circularisation and play
a role in viral replication [62]. Sequence complementarity
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has been shown to direct 5'-3' end contacts; it is therefore
intriguing that the C7245T mutation was followed by G234A,
restoring complementarity (A-T to G-C) to a putative pairing.

In addition to non-synonymous mutations, synonymous
mutations may also substantially impact viral fitness via
non-neutral epistatic effects influencing RNA stability and
splicing [20, 63] and silent tuning for increased adaptability
[44, 64-66]. Since VP2 has been suggested to interact not only
with the internal acidic domains of the calicivirus virion, but
also with viral RNA [17, 50}, the synonymous A5864G VP1
mutation is interesting in that it might have facilitated interac-
tions between C7245T mutated VP2 and the viral genome.

To investigate the effect of the two non-synonymous NS1/2
mutations as well as the synonymous A5864G ORF2 (VP1)
mutation on replication deficient RecE , .., thus mimicking
the natural genetic shift of RecMNV populations during serial
passaging, inter-MNV chimeric viruses, RecMNVC72 ST G2
ReCMNV(C7245T,T697C)’ ReCMNV(T7Z45T7A5864G and ReCL(C7245T7G234A7
Tes7c_asssacy CAITYIng individual and combined mutations were
rescued via reverse genetics; the two previously described
proxy measurements for replicative viral fitness indicated
not only an augmentation of fitness for all three individual
mutants but also a cumulative beneficial effect in which the
replicative fitness of RecMNV__ was not only matched by
ReCL a5 a23n o7 asssacy (as indicated by similar viral titres)
but surpassed as regards lysis plaque size.

Additional factors such as the presence of different numbers
of defective interfering particles can influence the fitness of
different virus populations [67] and might have mediated
differences between the RecE and RecL populations. This
hypothesis was however not supported as Ct values for virus
samples of similar titres obtained from a two-step RT qPCR
analysis targeting the 5'-end of the MuNoV genome [31] were
identical (results not shown).

Conclusion

Our results show that when a recombination event initially
disadvantages a nascent chimeric NoV, an initial fitness cost
precipitated by this genetic shift can be regained in vitro via
genetic drift. Sporadic but regular emergence of HuNoV
recombinant field strains may be explained with the help of
this in vitro proof-of-concept model. In vivo, putative replica-
tive disadvantages mediated by recombination events, can be
compensated by other advantages at the level of competitive
or the transmissive fitness (e.g. ‘coat switching’), giving the
virus time to regain its replicative fitness and even become
dominant over its parental strains [29]. Indeed, for NoVs in
the field the ability of the viral polymerase to switch templates
at the start of ORF2 is considered advantageous, helping
viruses to escape the evolutionary bottlenecks of host immune
responses by the acquisition of a novel antigenic VP1 [30];
these recombinant viruses probably represent only subset
of those that are actually generated, and are the ones that
are maintained in the viral population after a rigorous func-
tional selection and accumulation of adaptive point muta-
tions. It is important to identify which parts of the genome

are specifically prone to mediate fitness adaptation and to
provide information for the production of effective detection
and surveillance tools for the screening of emerging NoV
strains, including recombinant ones. This study may serve asa
starting point for the further development of iz vitro HuNoV
recombination studies in robust cell-culture systems to allow
generation and detection of recombinants and elucidation of
as yet unresolved mechanics of NoV recombination.
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Supplementary material

Supplementary Table S1

Primers used in the construction of inter-MNYV chimeric plasmid RecMNVce

A) Insertion of Notl restriction site into pT7: MNV 3Rz for pT7: MNV 3’Rz M53 Notl generation

Name Sequence Length Position in

(nt) pT7: MNV 3’Rz
3848F 5" GAAGCCCTGGACATTTAAGAAGGCTTG 37 27 3848 - 3874
IGUC3716 53" CTGCTGAGCGTTCCT GCGGCCGCTCAGCATCCATTGTTC 3° 36 5008 — 5046
IGUC3715 5" GAACAATGGATGCTGAGCGGCCGCAGGAACGCTCAGCAG 3° 36 5008 — 5064
6042R 3" CGATCTCCAGTTGCCCAGAGAAATCG 5 26 6042 - 6067

Notl restriction site marked in bold and underlined.

B) Sequencing of pT7: MNV 3’Rz M53 Notl

Name Sequence Length Position in
(nt) pT7: MNV 3’Rz
4450F 5" GCCCTTGCACCACACAGCTGAATAGTTTGG 3’ 30 4450 - 4479

C) PCR amplification of WU20 ORF1

Name Sequence Length Position in
(nt) pT7: MNV 3’Rz
IGUC3720 5" GCTCACTAGTTAATACGACTCACTATA 62 11784 — 11810/35
GTGAAATGAGGATGGCAACGCCATCTTCTGCGTCC 37
1GUC3721 5" GACTGCTGAGCGTTCCTGCGGGGTCTCAGCATCC 3° 34 5015/30 — 5048

WU20 sequences marked in bold and underlined. Overlap with pT7: MNV 3’Rz in Roman script.

D) Sequencing of lab-generated inter-MNV chimeric plasmid RecMNV,,

Name Sequence Length Position in

(nt) pT7: RecMNV. 3’Rz
IGIC164 S’ATGACCATGATTACGCCAAGCTCCCCAATACGC 37 33 11491 - 11523
LLBPIR 3’ GCAGACGGCGGCGCCAGGA & 19 500-5018
LLBP2F 5" CAAAGGAGCCCGTAGTGGGGT 37 21 400 - 420
LLB2R 3’ AGTGCCTTCATAAATTCGGCCCC 5° 23 1323 -1345
LLBP3F 5" AGACCCAGTGCCCGCCCTG 3° 19 1220 - 1238
LLB3R 3’ GGCGGTCACCTTGCCAGCGT 5° 20 2140 - 2159
LLBP4F 5" CACCAAAACCATTGGCGCCACT 3° 22 2039 - 2060
LLB4R 3* GGAAACCGGGGCCTCAAAGCT 5° 21 2979 — 2999
LLBP5F 5" TTCAGGTGGCGACATCCGCG 3’ 20 2879 — 2898
LLB5R 3 CGGTTCTCGATGGCATCGCAAACC §° 24 3800 — 3823
LLBP6F 5" AGAGAGTGGATGGCCCCTCCTTG 3’ 23 3700 - 3722
LLB6R 3 CCGTAGCGCTTCAGTACCATAGTG 5° 24 4619 — 4642
LLBP7F 5" CAGGAACCGCCTTCATCGGTG 3° 21 3940 — 3960
LLB7R 3" AGGGTGGTACAAGGGCAACAACC 57 23 5421 — 5443
LLBPSF 5" CCCTACCTTGCCCACCTCTCAG 3’ 22 5323 - 5344
LLB8R 3’ TGGTGTCCTGAAAACCGTAGATGG 57 24 6245 — 6268
LLBP9F 5" AACGCGGACCAGGCCCCCTA 37 20 6145 - 6164
LLB9R 3" TGGTTAGCGGTGTAGTACCGC 57 21 7064 — 7084
LLBPIOF 5’ TCAAAACGGCGCAGCTCCAGG 3° 21 6964 — 6984
LLB410R 3" CCATTCGCCATTCAGGCTGCG 57 21 7700 — 7720
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Supplementary Table S2

Primers used for site-directed mutagenesis of inter-MNV chimeric plasmid RecMN V.

Name Sequence Length Position in

(nt) pT7: ReceMNV. 3'Rz
7227F 5’"GACCATACGCCGGCGACTTAAGGCACCTACACGAACG 3 37 7227 - 7263
7487R 3" GCCCTCGAGGGTCCCATTCGCC 5 21 7487 — 7507
LLB11755F 5" GTACCGGTCCGGAATTCCCG 37 20 11755 - 11774
LLB697R 3" GAGATCTTCGCCCTCTTCAGCCAAGTGTCTTTAATCC 5° 37 679715
LLB697F S’GGATTAAAGACACTTGGCTGAAGAGGGCGAAGATCTC 37 37 679 —-715
LLB1894R 3'GATCTGGCCCGGGCAGCATCCACTACAGGGCTCTCAGC 5° 38 1881 - 1918
LLB11755F 5" GTACCGGTCCGGAATTCCCG ¥° 20 1175511774
LLB234R 3" TCAGCACGCGTGCATCACTTCGCGTCACGGGGAGCCC 57 36 216 -252
LLB234F 5" GGGCTCCCCGTGACGCGAAGTGATGCACGCGTGCTGA 37 36 216252
LLB1894R 3’GATCTGGCCCGGGCAGCATCCACTACAGGGCTCTCAGC 57 38 1881 — 1918
LLB5744F 5" TCGACTTGCCCGTGATACAGCCGCGGCTGTGCACG 37 35 5744 - 5778
LLB5864R 3I’AGCAGGGTCCCATCAACGCGCACCCTTCCATTCTGCC 5° 36 5846 — 5882
LLB5864F 5" GGCAGAATGGAAGGGTGCGCGTTGATGGGACCCTGCT 37 36 5846 — 5882
LLB6699R 3’CCCATCAGGCCACCTCCAATCGCTCC 5° 26 6699 — 6724

Site of inserted mutation marked in bold and underlined.

Strategy for site-directed mutagenesis of inter-MNV chimeric plasmid RecMNV,:

To engineer an ORF3 insert with C—T mutation at nt 7245 by overlap mutagenic PCR, PCR1 used plasmid pT7: RecMNV..
3'Rz as template, with 7277F (mutagenesis primer containing a unique Mrel restriction site) and 7487R as primers. The

resulting product contained Mrel and NheHI restriction sites flanking the mutation at position 7245.

To engineer an ORF1 insert with C—T mutation at nt 697 by overlap mutagenic PCR, PCR1 and PCR2 used plasmid pT7:
RecMNVce 3’Rz as template, with either LLB11755Fw and LL697Rev, or LL697Fw and LLB1894Rev as primers. The
resulting products, named LLB11755Fw/LL697Rev and LL697Fw/LLB1894Rev, respectively, were purified and used as the
template for the PCR3 with LLB11755Fw and LLB1894Rev as primers. Since Rsrll and Srfl restriction sites were within the
LLB11755Fw and LLB1894Rev region, the product of PCR3 contained these two sites as well, flanking the inserted mutation.

To engineer an ORF1 insert with G—A mutation at nt 234 by overlap mutagenic PCR, PCR1 and PCR2 used plasmid pT7:
RecMNVee 3’Rz as template, with either LLB11755Fw and LL234Rev, or LL234Fw and LLB1894Rev as primers. The
resulting products, named LLB11755Fw/ LL234Rev and LL234Fw/LLB1894Rev, respectively, were purified and used as the
template for the PCR3 with LLB11755Fw and LLB1894Rev as primers. Since RsrIl and Sr/l restriction sites were within the
LLB11755Fw and LLB1894Rev region, the product of PCR3 contained these two sites as well, flanking the inserted mutation.

To engineer an insert with A—G mutation at nt 5864 by overlap mutagenic PCR, PCR1 and PCR2 used plasmid pT7:
RecMN Ve 3'Rz as template, with either LL5744Fw and LL5864Rev, or LL5864Fw and LL6699Rev as primers. The resulting
products, named LL5744Fw/LL5864Rev and LL5864Fw/LL6699Rev, respectively, were purified and used as the template for
the PCR3 with LL5744Fw and LL6699Rev as primers. Since Sacll and Bsml restriction sites were within the LL5744Fw and
LL6699Rev region, the product of PCR3 contained these two sites as well, flanking the mutation.
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Supplementary Figure F1
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Graphical representation of the murine norovirus genome in which the positions of the four consensus-
level point mutations present in early and late recombinant murine norovirus progenies, RecE and RecL

(GenBank accession numbers KU743153 and KU743152), are indicated.
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Discussion - Perspectives

The accumulation of point mutations (genetic drift) and viral recombination (genetic shift), and
the interplay of these two pivotal evolutionary processes, are key mechanisms shaping the evolutionary
dynamics and diversity of NoVs.

Increasing evidence indicates that recombination modifies NoV pathogenesis and fitness and
contributes to the evolution of emerging HuNoV strains (Ludwig-Begall et al., 2018). The emergence
(or re-emergence) of NoV strains may have far-reaching practical consequences for routine diagnostics,
typing, and epidemiological surveillance (difficulties generating sequence data from certain
recombinant NoV strains were recently reported (Bonura et al., 2021)). NoV evolution in general, and
recombination in particular, may further impact the development of vaccines (putatively necessitating
regular updates of vaccine valencies) and the administration of antivirals (escape recombination may
rescue virus populations from artificially-induced error catastrophe scenarios). It may also have
considerable clinical implications should nascent strains display increased morbidity or be responsible

for changes in disease severity.

Despite its importance, the mechanisms involved in NoV recombination remain relatively
understudied. The conceptual model presented in Chapter 1 (page 67) and in the Objectives of this thesis
(page 77) outline the various steps, including their respective putative drivers and constraints, to be

successfully bypassed for the generation of a viable recombinant NoV.

While many predictive risk factors constitute confirmed aspects of NoV biology and their role
in the context of recombination may thus reliably be inferred, others represent unknown variables that
remain to be elucidated. In an update of the previous conceptual model, Figure 12 recapitulates the NoV
recombination checkpoints, host coinfection, single cell coinfection, recombination, and functional
selection, and attributes a colour code to indicate the level of confidence associated with their drivers
and constraints based on perusal of pertinent literature and the experimental in vitro results obtained in

this thesis.
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Figure 12. Conceptual model of steps, drivers and constraints of norovirus recombination.

(A) gives an overview of the different recombination steps and accompanying host, virus, or
environmental drivers and constraints (predictive risk factors). (B) and (C) focus on putative
drivers and constraints of both non-replicative recombination and template-switch-mediated
recombination, respectively. Blue shading indicates that putative drivers and
constraints represent confirmed aspects of norovirus biology (according to pertinent
literature). Green shading indicates confirmation of putative drivers and constraints
as obtained in the context of this thesis. Yellow shading indicates a degree of
uncertainty either as regards the current state of the art or the interpretation of experimental
results of the thesis. APC: antigen-presenting cells; p.i.: persistently infected; NoV: norovirus
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Host coinfection may be dependent on spatial and temporal overlap of strain-distributions and
host immune responses; Chapter 1.6.3 of this thesis describes how epidemiological analyses of
contaminated foodstuffs (Méade et al., 2013), waste-water treatment plants (Blanco Fernandez et al.,
2011), environmental waters (da Silva Polo et al., 2016), and filter-feeding molluscs grown in effluent-
contaminated breeding grounds (Campos et al., 2017; Razafimahefa et al., 2019) have demonstrated
overlapping NoV strain-distributions. The strain dependent differences in the induction of protective
immune responses (Zhu et al., 2013), antigenic diversity and known lack of heterotypic cross-protection
between certain NoV genogroups, genotypes and strains (Rockx et al., 2005a) that confound the
determination of immunity duration (Cates et al., 2020) are discussed in chapter 1.6.4; chapter 1.6.6
discussed the clinical analyses that have shown that patients can be infected by more than one NoV
strain and that this is indeed a common occurrence in persistently infected individuals (Brown et al.,
2017). It appears that, owing to the particularities of NoV epidemiology and transmission, host

coinfection thus presents a relatively easily surmountable barrier to NoV recombination.

Cell coinfection, the ultimate prerequisite to viral recombination, depends on factors influencing
the within-host distribution of viruses to target cells, thereby limiting or increasing the likelihood of
cellular coinfections. In the case of NoVs, true coinfection may be facilitated either by synchronous
uptake through consumption of contaminated food or drink (specifically bivalve molluscs carrying
mixed virus loads) and/or promoted by other factors directing synchronous uptake of enteric viruses into
both host and cell, such as multi-virion binding to intestinal bacteria (Erickson et al., 2018; Jones and
Karst, 2018) (see also chapter 1.9.2). However, true coinfection of cells is likely to be a rare event and

delayed secondary infections are typically a more probable occurrence.

In the event of an asynchronous infection, the uptake of multiple viruses into a single cell is
dependent on factors that may limit consecutive entry of more than one virus particle per cell in a process
known as superinfection exclusion (chapter 2.1.6). Superinfection exclusion is defined as the ability of
an established virus to prevent a secondary infection by the same or a closely related virus (Folimonova,
2012); the primary infecting virus may render cells refractory to subsequent infection through
interference at various stages of the replicative cycle of the secondary invader in a time-dependent
manner. Viral pre-and post-entry blocks have been described for a number of RNA viruses (Adams and
Brown, 1985; Bergua et al., 2014; Bratt and Rubin, 1968; Claus et al., 2007; Huang et al., 2008; Johnson,
2019; Lee et al., 2005; Tscherne et al., 2007; Zhou et al., 2019); hitherto, NoVs have not been listed

amongst them.
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In Study 1, we determined the effect of a temporal separation of in vitro infections with the two
homologous parental MuNoV strains MNV-1 WU20 and CW1 on the composition of MuNoV
populations and demonstrated that a time interval from one to two hours onwards between two
consecutive NoV infections allows establishment of a barrier that reduces or prevents superinfection;
this first demonstration of time-dependent viral interference for NoVs has clear implications for NoV
epidemiology, risk assessment, and potentially treatment.

Viral interference has been shown to be an active, virus-controlled process in various RNA virus
infections (Bratt and Rubin, 1968; Folimonova, 2012; Huang et al., 2008); examples for superinfection
exclusion as directed by positive sense RNA viruses include the cleavage of incoming NS precursors by
pre-existing proteases of primary infecting hepatitis C virus (Tscherne et al., 2007) or the dual pre- and
post-entry blocks to superinfection launched by bovine viral diarrhoea virus within an hour post primary
infection (Lee et al., 2005). Host-cell mediated processes may also intervene in viral interference, this both
by induction of the intrinsic intracellular antiviral IFN system (see chapter 1.6.4) and/or activation of
cellular RNA silencing. Type I and type Il IFNs have been shown to inhibit translation of MuNoV proteins
in RAW264.7 macrophage cells (Changotra et al., 2009). In analogy to an IFN pre-treatment of cells, is it
possible that the priming of cellular IFN responses via primary infecting WU20 may have initiated
interference with superinfecting CW1 in the context of the asynchronous infections performed in Study 1.
While skewed input to output ratios of infectious viruses and genomic copies in Study 1 hinted at a role for
DIPs or DI RNAs in mediating superinfection exclusion by induction of RNA silencing and the homology-
dependent degradation of incoming RNA molecules, these results must be interpreted cautiously since
superinfection inhibition may be multifactorial and/or occur at different stages of the viral cycle. Future
work will focus on the mechanics and temporal dynamics of NoV interference (pre- or post-entry mode of
action analysis), thus aiming to further a deeper understanding of superinfection exclusion and ultimately

its influence on NoV recombination both in vitro and in vivo.

In a follow-up project to Study 1, utilisation of a lab-generated GFP-tagged (or FLAG-tagged)
MuNoV infectious clone in co- and superinfection experiments may help elucidate how superinfection
exclusion, which has been shown to be overcome by various viral mechanisms after a period of adaptation
in vivo (Lee et al., 2005; Webster et al., 2013; Zou et al., 2009), plays a role in preventing NoV co-infection
in vitro. Briefly, a reporter-tagged MuNoV will be generated via insertion of a green fluorescent protein
(GFP) reporter gene into a plasmid containing wild type CW1 cDNA under control of a truncated T7
polymerase promoter. Following a construction protocol for gene expression plasmids previously described
for HuNoVs (Katayama et al., 2014), the GFP gene will be cloned into ORF1 between NS3 and NS4 of the

MuNoV genome (this corresponds to a tolerated insertion site between the NTPase and 3A-like protein in
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HuNoVs). The DNA-based reverse genetics system (Arias et al., 2012b; Yunus et al., 2010) described in
chapter 1.9.3 of this thesis will be used for recovery of viable infectious viruses carrying the GFP tag.
Following virus rescue, cultured murine macrophage cells will be infected synchronously or
asynchronously with two homologous MuNoV strains (primary infection: WUZ20; superinfection: GFP-
tagged MNV1-CW1), using staggered superinfection times of 30 minutes to 24 hours to then trace
superinfection exclusion by the simple exigency of localising GFP-tagged superinfecting virus via
fluorescence microscopy. In circumvention of a possible entry block, synchronous and asynchronous
transfection of MuNoV strains may also be investigated.

While mixed populations of co- and superinfecting MuNoVs MNV-1 WU20 and CW1 were
identified after plaque picking and amplification of viral progenies, not a single viable recombinant virus
was isolated from the molecular screening process performed on a total of 864 plague-picked infectious
progenies (36 plagues x 24 conditions of co- or superinfection). Mathijs et al., 2010, previously
demonstrated isolation of MuNoV recombinant RecMNYV from an infectious centre assay involving mixed
infections of WU20 and CW1 and screening of 332 progeny virions, thus demonstrating that recombination
is mechanistically possible between these viruses (Mathijs et al., 2010). Importantly, RecMNV was shown
to exhibit a viral fitness loss as evidenced by changed viral replication kinetics and smaller lysis plaque
sizes in comparison to its two parental strains (also see Study 2). The absence of viable recombinants in
Study 1 does thus not necessarily imply that recombination did not occur when viral coinfection was not
impeded by superinfection exclusion. Rather, it may reflect a bias in the methodology where isolation of
single viruses relied on plaque picking; if nascent recombinant viruses experienced a loss of replicative
fitness similar to that of RecMNV, they may have been “overlooked” in the screening process and/or lost
in viral replication steps. To avoid a similar bias in follow-up assays, limiting dilutions may be considered
as an alternative for the isolation of single viruses. Future studies could further leverage population-level
deep sequencing to analyse how the viral interference effects pinpointed here may influence the generation
of non-viable NoV RNA recombinants (and thus ultimately influence the chances of viable recombinant

virus generation under the application of selective pressures in vivo).

The experimental workflow, notably the order of infection (primary infection: WU20; secondary
infection: CW1), was not reversed in the set of experiments presented in Study 1, the assumption being that
due to their identical growth curves, high levels of sequence similarity, and the similar input Ct values of
the viral progenies used (results not shown), the effects would simply mirror those already observed.
However, future confirmation of the reported interference effects might benefit from an inversion of the

experimental workflow, the use of input viruses from viral passages with deviating infectious titres to Ct
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values (this to account for a putative bias of interfering viral particles), and the use of other MuNoV strains
to be juxtaposed against either WU20 or CW1.

Novel in vitro systems for HuNoV culture (HIE cultures and BJABs as described in chapter 1.9.2)
as well as in vivo MuNoV and/or HuNoV platforms (adult or neonatal mice (chapter 1.5.3) and zebrafish
larvae (chapter 1.9.1), respectively) which may more closely mirror natural conditions in co- and
superinfection assays, may further be utilised to gain a more differentiated picture of how cell coinfection,
the second step in the recombination pathway, is accomplished by NoVs. In vivo models in particular,
involving either the co-infection of mice with MuNoVs or that of zebrafish with HuNoVs, may provide
insights into how host immune systems, different subsets of host cells, and also the presence of gut

microbiota may positively or negatively impact the occurrence and outcome of NoV recombination.

The third step, generation of a recombinant NoV genome, is typically considered to occur in a
replicative process following a framework which combines the copy-choice model of homologous
recombination via mid-replication RdRp template switch with an internal initiation mechanism for
subgenomic synthesis at the highly conserved ORF1/ORF2 overlap corresponding to the junction of RdRp
and capsid sequences (Bull et al., 2007, 2005; Ludwig-Begall et al., 2018) (discussed in chapter 2.3).
Sequence analysis of field HuNoV strains has overwhelmingly shown the predominant recombination
breakpoint to lie in the highly conserved ORF1/ORF2 overlap (both sequence similarity and the presence
of a subgenomic RNA promoter at this locus suggest a similarity-assisted model of NoV recombination;
see chapters 2.1.4 and 2.3) and both the standardized NoV nomenclature and current genotyping assays are
designed to accommodate this recombination hotspot. However, atypical recombination breakpoints have
also been observed (Ludwig-Begall et al., 2018). Recombination in the absence of an obvious RNA
promoter or triggering secondary structure has been suggested to indicate that, at atypical recombination
sites, recombination may have occurred by other mechanisms than those that induce a breakpoint in or
around the ORF1/2 overlap (Bull et al., 2007). The possibility of non-replicative recombination, involving
self-ligation or host-factor-mediated joining of randomly cleaved RNA strands, has been demonstrated for
other positive-sense single-stranded RNA viruses (Biining et al., 2017; Gallei et al., 2004; Galli and Bukh,
2014; Lowry et al., 2014), and may be considered in this context. An RdRp-independent mechanism of
RNA recombination remains unproven for NoVs and was not examined in the context of this thesis. Future
assays to elucidate the possibility of non-replicative NoV recombination may follow an experimental design
used to prove RNA recombination in the absence of viral replication of pestiviruses, which allowed the
generation of recombinant viral genomes following cotransfection of noninfected cells with various pairs

of mutagenised nonreplicable RNA derivatives (Gallei et al., 2004).
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By whichever way a recombinant NoV genome is ultimately generated, it is by no means a foregone
conclusion that the process will result in a replicating recombinant NoV; recombination typically entails
significant modifications to a single viral genome and may thus elicit a replicative fitness cost which must
be compensated via the adaptive capacity of a nascent recombinant virus for it to survive in a viral
population. Indeed, studies in various RNA viruses have shown that circulating recombinants probably only
represent a subset of those that are actually generated, and are the ones that are maintained in the viral
population after a rigorous functional selection, having bypassed this fifth and final step of successful RNA
virus recombination (Bagaya et al., 2017; Banner and Mc Lai, 1991; Lowry et al., 2014).

Study 2 aimed to characterise the adaptive capacity of previously in vitro generated WU20-CW1
recombinant MuNoV RecMNYV, thus investigating how the accumulation of point mutations through
successive viral passaging may compensate for initial replicative fitness losses incurred during
recombination processes. By comparing the replicative fitness and genetic characteristics of RecMNV
progenies at early and late stages of an adaptation experiment, replicative fitness regain of the recombinant
was demonstrated between viral progenies prior to and post serial in vitro passaging. Observable phenotypic
profiles of viral fitness were associated to population-level genetic modifications. Fitness loss of RecMNV
was thus linked to a C7245T mutation and functional VP2 (ORF3) truncation; individual and cumulative
compensatory effects of one synonymous VP1 (OFR2) and two non-synonymous NS1/2 (ORF1)
consensus-level mutations acquired during successive rounds of in vitro replication were demonstrated,
suggesting that interactions of viral proteins and/or RNA secondary structures of different ORFs may play

a role in the regulation of replicative fitness after a recombination event.

A caveat of the Study 2 NGS approach, whereby whole consensus genome sequences of RecE and
RecL were derived from the alignment of fragmented and trimmed MiSeq reads (circa 300 bp read length)
via de novo assembly, is the underlying assumption for all consensus-level mutations to be present on the
same viral genome. While viral populations (or quasispecies) typically cluster around a modal master
sequence, it is not necessarily a given that consensus-level SNPs actually accumulate on a single viral
genome rather than being dispersed amongst the members of the viral population. To investigate linkage or
dispersion of consensus-level SNPs within RecE and RecL populations, it would thus be interesting to apply
a nhanopore-based sequencing approach that allows analysis of complete viral genomes and differentiation
of viral variants (with respect to both consensus- and subconsensus level SNPs) (Reuter et al., 2015; Riaz
etal., 2021).

Irrespective of whether mutations are coupled on a single viral genome or are dispersed amongst
the viral progeny, this in vitro proof-of-concept study simulated successful adaptation (genetic drift) of a

nascent NoV population after recombination (genetic shift).
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The model demonstrates that an initial fitness cost precipitated by genetic shift can be regained via
genetic drift of a recombinant NoV. It serves to conceptualise how the emergence of recombinant HUNoV
field strains, held to represent an adapted and functionally selected subset of all generated NoV
recombinants, may be regulated by an interplay between the two evolutionary processes of recombination
and point mutation accumulation. In vivo, putative replicative fitness costs of nascent HuNoV recombinants
may be temporarily compensated by other advantages at the level of competitive or transmissive fitness; a
nascent virus may regain its replicative fitness via point mutation accumulation and, having undergone a

process of functional selection, become dominant within a viral population.

This study may serve as a starting point for the development of in vitro or in vivo HuNoV
recombination studies in robust culture systems and will further the identification of NoV genome segments
specifically prone to fitness adaptation mediation. HUNoV in vivo models to study NoV recombination and
adaptation following recombination may involve infection of zebrafish (as described above). Further
studies concerning the adaptation of a MuNoV recombinant to in vivo conditions, may feasibly build on
prior work performed by Mathijs et al., involving the infection of Balb/cByJ mice with RecMNV; the
RecMNV populations resulting from the 48- and 72-hour in vivo infections (Mathijs et al., 2016) merit
attention with regard to population-level genomic changes putatively incurred during several rounds of viral

replication in an immunocompetent host.

The knowledge gained via in vitro and in vivo studies involving various model systems will provide
a more complete picture of the interplay between NoV genetic shift and drift and will provide information

for the effective detection and screening of emerging recombinant NoV strains.

In conclusion, this thesis aimed to provide a deeper understanding of the steps, drivers and
constraints of NoV recombination via implementation of the in vitro MuNoV model. It served to provide a
comprehensive overview of the recombination checkpoints to be bypassed and, in investigating both
superinfection exclusion as well as functional selection, provided novel insights into prerequisite processes

both before and after the generation of a recombinant NoV genome.

It would seem remiss to end this thesis without at least a nod to the father of evolution and | close

with a quote by Charles Darwin who wrote, in a statement particularly apt to NoVs, that:

“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the

one that is the most adaptable to change.”
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