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Abstract: For transient stability analysis of a multi-machine power system, the Extended Equal Area
Criterion (EEAC) method applies the classic Equal Area Criterion (EAC) concept to an approximate
One Machine Infinite Bus (OMIB) equivalent of the system to find the critical clearing angle. The
system-critical clearing time can then be obtained by numerical integration of OMIB equations. The
EEAC method was proposed in the 1980s and 1990s as a substitute for time-domain simulation for
Transmission System Operators (TSOs) to provide fast, transient stability analysis with the limited
computational power available those days. To ensure the secure operation of the power system, TSOs
have to identify and prevent potential critical scenarios through offline analyses of a few dangerous
ones. These days, due to increased uncertainties in electrical power systems, the number of these
critical scenarios is increasing, substantially, calling for fast, transient stability analysis techniques
once more. Among them, the EEAC is a unique approach that provides not only valuable information,
but also a graphical representation of system dynamics. This paper revisits the EEAC but from a
modern, functional point of view. First, the definition of the OMIB model of a multi-machine power
system is redrawn in its general form. To achieve fast, transient stability analysis, EEAC relies on
approximate models of the true OMIB model. These approximations are clarified, and the EAC
concept is redefined with a general definition for instability, and its conditions. Based on the defined
conditions and definitions, functions are developed for each EEAC building block, which are later
put out together to provide a full-resolution, functional scheme. This functional scheme not only
covers the previous literature on the subject, but also allows to introduce several possible new EEAC
approaches and provides a detailed description of their implementation procedure. A number of
approaches are applied to the French EHV network, and the approximations are examined.

Keywords: equal area criterion; Lyapunov criterion; transient stability; time-domain simulation

1. Introduction

To ensure the secure operation of the power system, Transmission System Operators
(TSOs) perform offline Transient Stability Analysis (TSA) for a few dangerous scenarios
and design remedial actions for the critical ones, i.e., the ones with lower Critical Clearing
Time (CCT) (CCT is the maximum fault elimination time without the system losing its
capability to recover a normal operating condition [1]). The reference technique for TSA is
time-domain simulation using numerical integration of the nonlinear differential equations
representing the system dynamic model. Time-domain simulation is flexible, and it can
consider a detailed model for almost any component of the power system. However, this
detail comes at a cost, a high computational time. Moreover, the time-domain simulation
cannot provide a direct indication of the CCT, thus the system equations should be solved
for different fault elimination times to search for the critical time. In the early 20th century,
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this was very restricting, even for transient stability analysis of a Single Machine connected
to an Infinite Bus (SMIB). This led to the development of another class of stability analysis
techniques, the direct method.

As one of the most interesting direct methods, the Equal Area Criterion (EAC) was
proposed in the 1930s and 1940s to assess the transient stability of the classical model of a
SMIB system in a simple and comprehensive way without a formal solution to the system
equations [2–4]. EAC was able to estimate the SMIB system Critical Clearing Angle (CCA)
with negligible computational time. Once the CCA has been calculated, the CCT can be
obtained by numerical integration of SMIB differential equations up to CCA.

EAC could provide a fast TSA and unique graphical representation of system dy-
namics. However, it was restricted to the classical model of a SMIB system. The idea
of Extended Equal Area Criterion (EEAC) was proposed in the late 1980s. It relies on
the observation that in loss of synchronism in a multi-machine power system, there is a
separation between generators into two groups. The critical group with increasing rotor
angles, and the non-critical group of remaining generators. EEAC replaces the generators
of the two groups by a two-machine system and then by a One Machine Infinite Bus (OMIB)
equivalent. It then applies the EAC concept to the OMIB equivalent model to estimate
its CCA.

The first techniques in the area were proposed under two main assumptions [5–8]:
(i) power system classical model is valid and (ii) the angles of machines within each of
the groups are equal to the center of angle of the group. These assumptions lead to a
time-invariant OMIB model on which the EAC can be applied. While a revised version of
this method was proposed in [9], the fact is that the OMIB model in not time-invariant. To
overcome this limitation, a piecewise time-variant method is proposed in [10,11]. Hybrid
methods have been proposed in the following years, coupling a time-domain transient
stability program with the equal-area criterion [12–16]. The other researches in the area are
mainly on the advanced applications of the concept [17–25], and its extension to consider
a more detailed generator model and the regulators [26,27], or to consider renewable
generation units [28] and AC/DC systems [29]. The various approaches proposed differ in
many respects, but they all rely on the same concept, the OMIB transformation.

These days, power systems are operating closer to their security limits and the un-
certainties are increasing. Thus, the list of scenarios to study is increasing substantially.
Therefore, though the recent significant reduction, time-domain simulation computational
time is still restrictive for the growing list of case studies, calling for fast, transient stability
analysis techniques once more. The EEAC, provides the possibility of a quick TSA, on a
large number of case studies, to filter the list of critical contingencies. The limited list of
critical contingencies can then be investigated in detail with time-domain simulations.

This paper revisits the EEAC with a modern functional point of view. In Section 2.1, it
redraws the concept of the OMIB model of a multi-machine power system and presents the
OMIB equations in their general form. The paper redefines the EAC concept in Section 2.2.
In Section 2.3, it clarifies the approximations required for the OMIB equivalent of a multi-
machine power system to enable fast TSA. It presents general definitions and conditions
for first-swing and backward-swing instability in Section 2.4. As a prerequisite of EEAC,
the proposed approaches for Critical Machines Identification (CMI) and Critical Cluster
Formation (CCF) are described in Section 3. Section 4 details Taylor series for estimation
of CCT from CCA. Each part is presented as a function with a detailed pseudocode. A
general full-resolution scheme is then presented in Section 5 that discusses the possible
combinations of the functions. It covers all the previous literature on the subject and
introduces interesting possibilities for several new approaches. Finally, a number of the
approaches are applied to two test systems to provide a detailed comparison.

2. Extended Equal Area Criterion

EAC relies on the concept of energy, and it coincides with the Lyapunov criterion
using the Lyapunov function the energy type [30]. Briefly, it states that the SMIB system is
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stable (in the first-swing) if after the fault the rotor angle does not increase continuously;
therefore, it reaches a maximum value and thereafter decreases. It can be shown that
the variations of the SMIB system rotor angle δ, is linked to the area between its input
mechanical power Pm and output electrical power Pe in δ− P plane. As shown in Figure 1,
the area has a positive portion for which Pm > Pe and a negative portion for which Pm < Pe.
The first portion is linked to the energy gained during rotor acceleration, and the second
portion is linked to the energy dissipated during rotor deceleration. If there is a δm after
which the sum of the areas between Pm and Pe becomes negative, the system is stable and
at δm the rotor angle starts to decrease. By increasing the fault elimination angle δe, we
reach an angle after which clearing the fault cannot maintain the system’s stability, i.e., the
sum of the different areas is always positive and the rotor angle increases continuously.
This critical angle is the CCA of the SMIB system. Once the CCA has been calculated, the
CCT can be obtained by numerical integration of SMIB differential equations up to CCA.

Figure 1. Equal area criterion for a synchronous generator connected to an infinite bus. There is a δm

after which the area becomes negative and δ starts to decrease, i.e., stable case.

For a multi-machine power system, the idea of EEAC was proposed in the late 1980s.
It belongs to a class of transient stability analysis methods that rely on the OMIB equivalent
model of the power system. The OMIB-based methods are based on the observation that
the loss of synchronism of a multi-machine power system originates from the irrevocable
separation of its synchronous generators into two groups: the Critical Cluster of generators
(CC) which push the system towards instability, and the remaining Non-critical Cluster
of generators (NC). These methods replace these two groups with a two-machine system
and then with an OMIB equivalent [1]. This section presents the OMIB-equivalent general
equations and discusses the approximations that let us estimate the CCA of the OMIB
model quickly and without a formal solution of its equations.

2.1. One-Machine Infinite Bus Concept and General Formulation

The OMIB can be considered as an approximate transformation of the multidimen-
sional state-space of multi-machine power system dynamics to a lower dimension space.
Based on the transformation approach, the resultant OMIB model can be a ‘time-invariant’
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or ‘time-variant’ equivalent of the power system. Time-invariant OMIB assumes that the
generators within each of the CR and NC groups are coherent. This transformation freezes
the relative angles of generators within each group at the fault instant for the during-fault
and the post-fault periods. Time-variant OMIB updates the relative angle of generators in
each group with respect to each other. The update can be done by estimating the generator
angles with simplified models, detailed time-domain simulation, or field measurements.
Despite the techniques employed for the transformation, all OMIB-based methods rely
on Conjecture 1, given below [1] (Note that the system loses synchronism as soon as the
first major generators’ separation occurs. The conjecture needs to be valid until the OMIB
loses its stability, and the generators within each of the CC and NC groups may split
subsequently into subgroups):

Conjecture 1. Loss of synchronism in a power system originates from the separation of its genera-
tors into two groups:

• The critical generators responsible for the loss of synchronism
• The non-critical generators

The transient stability behaviour of a multi-machine system may be inferred from that of an
OMIB properly derived from the above decomposition pattern into two groups.

The OMIB transformation involves the aggregation of the generators of the NC and CC
and the replacement of the two by an OMIB. The same reasoning that is used in mechanics
to introduce the concept of center of mass can be invoked for the definition of a Center of
Angle (COA) in a multi-machine power system. The COA δce can be defined as the inertia
weighted average of generator rotor angles [31]:

δce =
1

MT

n

∑
j=1

Miδi (1)

where Mi and δi are the inertia coefficient and the rotor angle of generator i, n is the number
of generators, and MT is the total inertia of the system:

MT =
n

∑
i=1

Mi

With generators’ separation to CR and NC sets, the Partial COA (PCOA) of each group
can be defined as follows:

δcr =
1

Mcr
∑

k∈CC
Mkδk

δnc =
1

Mnc
∑

l∈NC
Mlδl

(2)

where Mcr and Mnc represent the total inertia of the critical group and the non-critical
group, respectively:

Mcr = ∑
k∈CC

Mk

Mnc = ∑
l∈NC

Ml

Ignoring the generators’ damping, for each generator of the critical set, the generator
dynamics can be described in the form of the following swing equation:

Mk
ω0

d2δk
dt2 = Pmk − Pek ∀k ∈ CC (3)
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where Pm denotes the mechanical power, Pe is the electrical output power, and ω0 = 2π f0.
With summation over set CR equations:

∑
k∈CC

(
Mk
ω0

d2δk
dt2 ) = ∑

k∈CC
Pmk − ∑

k∈CC
Pek (4)

Considering Equation (2), we can rewrite this equation in the following form:

Mcr

ω0

d2δcr

dt2 = ∑
k∈CC

Pmk − ∑
k∈CC

Pek (5)

Similarly, with summation over set NC swing equations we have:

Mnc

ω0

d2δnc

dt2 = ∑
l∈NC

Pml − ∑
l∈NC

Pel (6)

Dividing both sides of Equations (5) and (6) by Mcr and Mnc, respectively, and subtracting
them we get:

1
ω0

(
d2δcr

dt2 −
d2δnc

dt2 ) =
∑k∈CC Pmk −∑k∈CC Pek

Mcr
− ∑l∈NC Pml −∑l∈NC Pel

Mnc
(7)

To derive the OMIB model, we define the OMIB angle δ as follows:

δ = δcr − δnc (8)

Multiplying both sides of Equation (7) by M = Mcr Mnc
MT

we reach to the OMIB model of a
multi-machine power system:

M
ω0

d2δ

dt2 = Pm − Pe (9)

where:

Pm =
Mnc ∑k∈CC Pmk −Mcr ∑l∈NC Pml

MT
(10)

Pe =
Mnc ∑k∈CC Pek −Mcr ∑l∈NC Pel

MT
(11)

The OMIB stability can be inferred from Conjecture 2, given below:

Conjecture 2. An OMIB is first-swing unstable, if after fault inception its angle increases contin-
uously with time. The OMIB CCA, if it exists, is the smallest fault elimination angle after which
clearing the fault cannot maintain system stability.

2.2. Extended Equal Area Criterion Concept

Let us consider a simple four-machine power system shown in Figure 2. For a short-
circuit fault in one of the transmission lines, the variations of generator angles with time
can be obtained using time-domain simulation, based on which one can judge the system
transient stability. For example, Figure 3 shows the angle variations of the four machines
for two different fault elimination times. The solid lines show the trajectories when the fault
is successfully cleared at fault elimination time t1

e , and the generator angles recover towards
stability. The dashed lines show the trajectories for a slightly larger fault elimination time t2

e ,
after which the generator angles diverge continuously, and the system losses its transient
stability.
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Figure 2. Simplified diagram of a four-machine power system.

Figure 3. Time-angle trajectories of the four-machine power system obtained by time-domain
simulation. Dashed and solid lines show unstable and stable trajectories, respectively.

The main idea behind the EEAC is to apply the classic EAC concept to the OMIB
equivalent of a multi-machine power system. Multiplying both sides of the swing equation
of Equation (9) by 2dδ/dt and integrating we get:

M
ω0

(
dδ

dt
)2 = 2

∫ δ

δ0

(Pm − Pe)dδ (12)

where δ0 is the OMIB equivalent initial pre-fault angle.
The above equation shows that the OMIB angle variation is linked to the area between

Pm and Pe. Consider Figure 4, which shows the δ − P and t − δ curves for the OMIB
equivalent of detailed model of the four-machine power system, when the fault is initiated
at t = 0 and corresponding δ0, and cleared at t1

e . The curves are obtained from time-domain
simulation results using OMIB equations in their general form. After the fault, δ starts to
increase. Based on Equation (9), as at the initial instant of the fault Pm > Pe, the change of δ
in t− δ plane is concave-up (the rate of change increases). At t1

e and corresponding δ1
e , the

fault is eliminated. A short moment after fault elimination, Pm < Pe and the curve in t− δ
plane becomes concave-down (δ is still increasing, but the rate of change is decreasing).
The OMIB angle δ will continue increasing until dδ/dt in Equation (12) becomes zero, i.e.,
the area between Pm and Pe becomes zero.

As shown, the area can be divided to two portions. The positive area is where Pm > Pe
and the OMIB acceleration in Equation (9) is positive. The negative area is where Pm < Pe
and the acceleration is negative. As shown, the negative area does not necessarily start
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after fault elimination. If, as in Figure 4, there is a δm after which the sum of the areas
between Pm and Pe becomes negative, the system is first-swing stable. The δm at which the
sum of the areas becomes zero and δ starts to decrease is the return angle δr.

Figure 5 shows the δ− P and t− δ curves for the same scenario, but with a slightly
larger fault elimination time t2

e . Similar to the previous case, a short moment after fault
elimination, Pm < Pe and the variations in t− δ plane becomes concave-down, i.e., OMIB
decelerates. However, a δm cannot be found after which the area becomes negative. There-
fore, δ increases and reaches δu at time tu. After this point, Pm > Pe, the OMIB starts to
accelerate again, δ increases continuously, and the system loses its first-swing stability.

Figure 4. OMIB δ− P and t− δ curves defined by the swing equation for a first-swing stable case.

Figure 5. OMIB δ− P and t− δ curves defined by the swing equation for a first-swing unstable case.

It might occur that at the initial instant of the fault Pm is lower than Pe. In this case, δ
will start to decrease. Based on Equation (9), as Pm < Pe following the fault, the change of δ
in t− δ plane will be concave-down. At the point where Pe becomes lower than Pm, due to
fault elimination, decreased electrical power, or increased mechanical power, the variations
of δ become concave-up, but it will decrease until an angle δm is reached, at which dδ/dt in
Equation (12) becomes zero. If there cannot be a δm which satisfies this condition, δ will
decrease continuously and the system will be ‘backward-swing unstable’.

The EEAC method relies on the general swing equation of Equation (9) in conjunction
with the traditional EAC concept to provide fast transient stability assessment. In this
equation, Pm can be calculated by substituting the mechanical powers of synchronous
generators of critical and non-critical sets in Equation (10). Without considering the
governor controls, Pm is a known parameter equal to its pre-fault value. However, Pe
in Equation (11) depends on the electrical power of synchronous generators, which are
functions of their variable angles.

Let us consider Figure 3 which shows the angle trajectories of the four-machine power
system subjected to a short-circuit fault and cleared at two different elimination times. It
can be seen that for any time instant of the during-fault period, trajectories of generator
angles are similar for different te. However, for the post-fault period, they depend on
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te. In other words, with an exact simulator of the system, for each generator, and for
the during-fault period, we can calculate the trajectory of its angle with respect to time.
However, for a post-fault period the trajectory depends on δe, and thus on te.

Let us consider the OMIB δ− P curves in Figure 6 plotted for the same fault scenario
and the two different fault elimination times. For the during-fault period, as the variation
of each generator angle with respect to time can be defined uniquely, the variations of the
electrical power of each generator with respect to time can be uniquely defined. Therefore,
as shown, the δ− P curves for different te coincide in the during-fault period. However,
for a post-fault period, the variations of each generator angle with respect to time depend
on te. Therefore, the variations of the OMIB Pe with δ depend on the fault elimination
time. Consequently, as shown, for the post-fault period the δ− P curves are different and
dependent on δe.

The problem is that we intend to apply the EAC on the OMIB model to find the critical
clearing angle, as the smallest δe after which the area between Pm and Pe is always negative.
However, the post-fault Pe of the OMIB model is uncertain and dependent on δe. Therefore,
the area itself depends on δe. The scientific question here is how to find the critical clearing
angle using uncertain δ− P curves which are dependent on the clearing angle.

In response to this question, an approach could be to obtain δc iteratively. Using
hybrid EAC and time-domain techniques, such as Single-Machine Equivalent (SIME), δc
can be obtained iteratively by examining different clearing times. SIME uses a generalized
OMIB model and infers its parameters from the multi-machine temporal data. These data
can be obtained either from time-domain transient stability simulations (Preventive SIME)
or from real-time measurements (Emergency SIME) [1].

However accurate, the iterative approach may not satisfy the computation speed
requirements for fast TSA. Therefore, some approximation in OMIB equations is proposed
which enable the direct and rapid estimation of CCA.

2.3. Approximations for Rapid Estimation of CCA

All OMIB-based transient stability analysis methods rely on the observation that the
loss of synchronism involves the irrevocable separation of generators into two groups:
critical generators and non-critical generators [1]. Among the general class, the ones which
are able to provide a direct estimation of the CCA are all based on some assumptions
and approximations. As the first and common assumption, these approaches model the
synchronous generators as a constant voltage behind the transient reactance, as shown in
Figure 7.

To discuss the further assumptions, let us consider that for each critical generator
δi = δcr + ξi, and for each non-critical generator δj = δnc + ξ j, where ξi and ξ j show the
angular offset of each generator in set CR and NC from their respective PCOA δcr and δnc.
As described in Appendix A, by considering the classical model of synchronous generators,
the equation for OMIB electrical power becomes:

Figure 6. Dependence of post-fault OMIB power on te. The δ− P curves are not necessarily sinusoidal.
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Figure 7. Representation of a synchronous generator by a constant voltage behind transient reactance.

POMIB
e =

Mnc

MT
∑

k∈CC
∑

i∈CC
[gkicos(ξk − ξi) + bkisin(ξk − ξi)]

− Mcr

MT
∑

l∈NC
∑

j∈NC
[gl jcos(ξl − ξ j) + bl jsin(ξl − ξ j)]

+
Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
[gkjcos(δ + ξk − ξ j)]

+ ∑
k∈CC

∑
j∈NC

[bkjsin(δ + ξk − ξ j)]

(13)

where gij = EiEjGij and bij = EiEjBij, Ei is the constant voltage behind direct axis transient
reactance in the classical model of generator i, and Bij and Gij are the real and imaginary
parts of the element of row i and column j of the admittance matrix reduced to synchronous
generator internal nodes.

The first approximate technique for rapid estimation of CCA assumes that for all
generators ξk and ξl are zero, which means that the δi of each generator is equal to its
corresponding PCOA [6,7,9]. In this paper, this approach is referred to as Zero Offset OMIB
(ZOOMIB). As described in Appendix A, with this assumption, the post-fault electrical
power in Equation (13) becomes purely sinusoidal and is no longer dependent on δe:

POMIB
e = PC + Pmaxsin(δ− v) (14)

where, as discussed in Appendix A, PC, Pmax, and v are constant values for the ZOOMIB
model.

As a second approximation approach, instead of using PCOA for all generators, it is
possible to assume that the angle offsets are constant and equal to their pre-fault values. In
this paper, this approach is referred to as Constant Offset OMIB (COOMIB). As described
in Appendix A, similar to considering zero offsets, also with this assumption, the post-fault
electrical power in Equation (13) becomes purely sinusoidal, independent of δe and in the
form of Equation (14).

ZOOMIB and COOMIB are both time-invariant models which freeze the generator
angle offsets at the fault inception instant. However, the fact is that the angle offsets are
not constant. In response to this limitation, a piecewise time-variant method is proposed
in [10,11]. This approach, usually referred to as Dynamic OMIB (DOMIB), first makes an
initial estimation of δc and δu. It then specifies some points between δ0 and δu, and simulates
the generator angle trajectories by individual Taylor series described in Appendix C.2. Having
the generator angles at each point, DOMIB updates the angle offsets and it considers
an updated curve with constant offsets between the points. As shown in Figure 8, this
approach leads to a piecewise sinusoidal δ− P curve.
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Figure 8. Schematic representation of DOMIB with two added update points (two during-fault
intervals and two post-fault intervals). Dashed lines show the initial ZOOMIB (or COOMIB) δ− P
curves and solid lines show the updated DOMIB curves.

The most interesting point about the time-invariant and piecewise time-variant ap-
proaches is that the assumption of zero or constant ξi values makes the post-fault Pe of
the OMIB model independent of δe. Therefore, the variations of post-fault Pe with δ can
be defined uniquely. The merit is that EAC can be applied on the unique δ− P curves to
obtain the critical clearing angle. Table 1 compares the assumptions and approximations of
different methods based on the OMIB equivalent.

Table 1. A comparison between the assumptions of different OMIB equivalents.

Assumptions and Approximations True OMIB ZOOMIB COOMIB DOMIB

Separation of generators to CC
and NC X X X X

OMIB Pe(δ) and Pm(δ) have only one
value for each δ

× X X X

Classical model for synchronous
generators × X X X

Constant offsets between generator
angles and their receptive PCOA × X X X (a)

Zero offsets between generator
angles and their receptive PCOA × X × ×

(a) DOMIB updates the constant offsets between generator angles.
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With the sinusoidal Pe in Equation (14), the area between Pm and Pe among an initial
angle δi and a final angle δ f can be obtained as follows:

A = Pm − Pc(δ
f − δi) + Pmax[cos(δ f − v)− cos(δi − v)] (15)

2.4. Definition and Conditions of OMIB Stability

This section presents definitions and conditions for OMIB stability, that are based on
three main assumptions: (1) generators’ separation to critical and non-critical groups, (2)
independence of the post-fault OMIB equivalent electrical power of the clearing time, and
(3) for any δ there is only one possible value for Pe and Pm. These definitions and conditions
provide a basis for defining a general function for CCA calculation.

Definition 1 (first-swing instability). An OMIB is first-swing unstable if and only if after fault
inception its angle increases continuously with time.

Definition 2 (conditions for critical clearing angle for first-swing instability). Let δ be the
angle of the OMIB equivalent of a power system. After a fault, the critical clearing angle δc is the
angle that satisfies the following conditions:

AD(δ0, δ) > 0 ∀ δ ∈ [δ0, δc] (16)

AD(δ0, δc + εδ) + AP(δc + εδ, δ) > 0 ∀ δ ∈ [δc + εδ, δmax] (17)

∀ δ′c ≤ δc ∃ δm ∈ [δ′c, δmax] | AD(δ0, δ′c) + AP(δ
′
c, δm) ≤ 0 (18)

where AD and AP are the area between Pm and during or post-fault Pe, and εδ denotes a very small
positive angle increment.

The condition in Equation (16) checks the attainability of δc. The condition in
Equation (17) states that by clearing the fault at δc + εδ, dδ/dt will remain positive for
any δ above δc, i.e., continuously increasing angle. The condition of Equation (18) states
that for clearing angles less than or equal to δc, the system remains stable.

Definition 3 (backward-swing instability). An OMIB is backward-swing unstable if and only
if after fault inception its angle decreases continuously with time.

Definition 4 (conditions for critical clearing angle for backward-swing instability). Let δ be
the angle of the OMIB equivalent of a power system. After a fault, the critical clearing angle δc is
the angle that satisfies the following conditions:

AD(δ, δ0) < 0 ∀ δ ∈ [δc, δ0] (19)

AD(δc − εδ, δ0) + AP(δ, δc − εδ) < 0 ∀ δ ∈ [δmin, δc − εδ] (20)

∀ δ′c ≥ δc ∃ δm ∈ [δmin, δ′c] | AD(δ
′
c, δ0) + AP(δm, δ′c) ≥ 0 (21)

In this case, the direction of angle variations is backward. The condition in
Equation (19) checks the attainability of δc. The condition in Equation (20) states that
by clearing the fault at δc − εδ, dδ/dt will remain negative for any δ below δc, i.e., contin-
uously decreasing angle. The condition in Equation (21) states that for clearing angles
greater than or equal to δc the system remains stable.

Theorem 1 (equivalency of first-swing instability and negative backward-swing instability).
Let OMIB denote a one machine infinite node equivalent of a power system and let OMIB− denote
an OMIB at which the signs of electrical power, mechanical power, and angles are negated. The
OMIB model of the power system is backward-swing unstable, if and only if the OMIB− model



Energies 2021, 14, 7259 12 of 48

is first-swing unstable. The critical clearing angle for the OMIB is equal to the negative of the
equivalent OMIB− critical clearing angle.

Proof of Theorem. Considering that A(δa, δb) = −A(δb, δa), by negating the signs of
electrical power, mechanical power and angles in the conditions of Definition 2 for the
critical clearing angle of a first-swing unstable OMIB we get:

AD(δ,−δ0) < 0 ∀ δ ∈ [−δc, −δ0] (22)

AD(−δc − εδ,−δ0) + AP(δ,−δc − εδ) < 0 ∀ δ ∈ [−δmax, −δc − εδ] (23)

∀ δ′c ≥ δc ∃ δm ∈ [−δmax, δ′c] | AD(δ
′
c,−δ0) + AP(δm, δ′c) ≥ 0 (24)

These equations represent the conditions for the critical clearing angle of a first-swing
unstable OMIB−. Considering δmin = −δmax, the above conditions are equivalent to the
conditions of Definition 4 for the critical clearing angle of a backward-swing unstable
OMIB. Therefore, the critical clearing angle for the first-swing stability of OMIB− is equal
to the negative of the critical clearing angle for the backward-swing stability of OMIB.

2.5. The EEAC Functions

In previous sections, we discussed the concept of EEAC, OMIB general equations, and
approximations that enable one to have uniquely defined Pe and Pm curves for all δ. We
also presented general definitions and conditions for OMIB stability.

Two basic functions are required for OMIB stability evaluation. The first function,
as shown in Figure 9, takes the CC, NC, the reduced system admittance matrix, and the
synchronous generators’ data to calculate the OMIB model based on the specified type
(ZOOMIB, COOMIB, or DOMIB). The output of this function is the OMIB inertia coefficient,
Pm and Pe defined by Pc, Pmax, and v as in Equation (14). For DOMIB, the constants defining
Pe will be different for each interval. The function should be called to form the pre-fault,
during-fault, and post-fault OMIB equivalents when required. A pseudocode is presented
in Appendix B, Algorithm A1, which details the process of the OMIB function.

- CC: set of names of critical machines
- NC: set of names of non-critical machines

- type of OMIB (ZOOMIB, COOMIB or DOMIB)
- reduced system admittance matrix

- synchronous generators data
- synchronous generators angles for DOMIB

OMIB
Inputs Outputs

- OMIB electrical power 
for each interval 

- OMIB mechanical power
- OMIB inertia coefficient

Figure 9. Schematic representation of the OMIB function to form the OMIB equivalent model based
on the specified type.

The second main function is a function using the conditions presented in the previous
section to find the CCA of the developed OMIB models. As shown in Figure 10, this
function takes the during-fault and pre-fault OMIB models as inputs. It also requires two
input parameters: the angle step size ∆δ and the maximum integration limit δmax. The idea
is to start at the OMIB initial angle δ0 and to increase the fault elimination angle by an
angle increment ∆δ to find δc as the smallest fault elimination angle after which for any
δm ≤ δmax the area between Pe and Pm is positive.
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- OMIB during-fault electrical 
power for each interval 

- OMIB post-fault electrical 
power for each interval 

- OMIB mechanical power
- OMIB inertia constant

CCA
Inputs Outputs

Parameters

- critical clearing angle
- return angle
- direction of angular deviations (`forward 
swing' or `backward swing')

- the type of the case detected (`always stable', 
`always unstable' or `potentially stable')

: angle step size
: maximum integration limit

Figure 10. Schematic representation of CCA function to find the CCA of the equivalent OMIB model.

There are some exceptional cases that should be considered to avoid unreasonable
results. The first case might happen when the maximum post-fault electrical power is less
than the OMIB mechanical power Pm. In such a case, the area between Pm and Pe is always
positive and the system is unstable. Even if the maximum post-fault electrical power is
more than Pm, there might be other situations where the system is always unstable. As
shown in Figure 11a, the area between Pm and Pe might be such that even for δc = δ0 it
is always positive. Another exceptional case might happen for less severe disturbances,
where the maximum during-fault electrical power is much more than Pm. In such cases,
shown in Figure 11b, the system will remain stable even without removing the fault.

(a) (b)
Figure 11. Exceptional case: (a) the sum of the areas is always positive and (b) system is always
stable.

The function should be able to handle such cases and also backward-swing instability.
It outputs the direction of angular deviations, ‘first-swing’ or ‘backward-swing’; the type
of the case detected, ‘always stable case’, ‘always unstable case’, or ‘potentially stable case’;
and the critical clearing angle. A pseudocode is presented in Appendix B, Algorithm A2,
which details the process of CCA function.

3. Critical Machines Identification and Critical Cluster Formation

In a multi-machine power system, transient stability phenomena are governed by the
critical machines, i.e., the set of machines responsible for the loss of synchronism following
a large disturbance. Up to now, we have assumed that the critical cluster CC and the
non-critical cluster NC are known. However, identification of the CC is one of the first steps
of the EEAC algorithm and a prerequisite of OMIB equivalent model formation. Different
OMIB equivalents can be formed for different possible sets of CC and NC. The true sets of
CC and NC will be the ones with the smallest CCT. The reasoning behind this is that adding
any critical machine of the true CC to the true NC, or adding any non-critical machine of
the true NC to the true CC, will lead to slower OMIB dynamics, i.e., higher CCT.

For a power system with n generators, the true CC can be identified by examining
all possible combinations of n generators, i.e., 2n − 1 candidates to find the ones with the
smallest CCT. This exhaustive process would, however, be computationally demanding.
The other solution is to find of a limited list of candidate critical generators in a CMI process.
Then, in a CCF process, different pairs of CC and NC can be formed. An OMIB equivalent
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should be formed for each pair. The OMIB with the smallest CCT corresponds to the true
pair of CC and NC. The next subsections present different methods for CCI and CCF.

3.1. Critical Machines Identification

All the techniques proposed for CMI are designed to provide a ranked list of critical
machines to limit the number of possible combinations. Some are based on indices which
rank the list of machines based on a criterion calculated for the fault inception time. Some
others are based on a pre-estimation of CCT, to obtain the generators’ t− δ trajectories,
and to rank them based on their estimated rotor angles at an appropriate time after fault
inception.

3.1.1. Acceleration Criterion

In the earlier stages of the EEAC development, the first approach for CMI was based
on the initial accelerations the generators acquire at the disturbance inception [6,7,9].
According to this so-called “accelerations criterion”, generators likely to be critical were
considered to be those with the largest initial accelerations. For a given contingency,
this approach first ranks the generators in a decreasing order of their initial accelerations
calculated using Equation (A32) immediately following the fault inception.

Despite the encouraging results of this approach, the studies revealed difficulties of
two types [9]. First, cm needs to be limited to avoid computational intractability. This may
lead to unacceptable results for stability cases involving several critical generators. Second,
it may happen that some generators not appearing at the top of the initial acceleration
list experience considerable variations in their rotor angles after clearing the fault and
eventually become unstable. In such cases, the initial acceleration criterion is not valid.

3.1.2. Composite Criterion

To improve the acceleration criterion, the “composite criterion” is proposed in [9].
The “composite criterion” relies on the initial accelerations together with the generators’
pre-fault electrical distance to the fault to better identify the critical generators. It also
considers the post-fault electrical distance of the generators to the fault to obtain a sense of
the post-fault network.

To define it in the form of a criterion to rank the generators, for each generator k we
can write:

CCk =
γk|t=0+

distprek + distpostk

(25)

where γk|t=0+ is generator k initial acceleration, and distprek and distpostk denote the pre-
and post-fault electrical distances to the fault bus f , calculated as follows:

distk = zkk + z f f − 2zk f (26)

where zij is the magnitude of the element of row i and column j of non-reduced system
impedance matrix Ẑ.

The composite criterion was shown to perform better than the acceleration criterion
in ranking the generators [9]. Nevertheless, it requires inversion of the bus admittance
matrix to find Ẑ and to calculate the electrical distances. Moreover, calculation of electrical
distance would be problematic when network splitting happens after fault clearance.

3.1.3. Trajectory Criterion

The trajectory criterion is proposed in [10,11] to rank the generators in order of their
criticality. It is conjectured that the degree of criticality of a given generator is directly
proportional to the magnitude of its rotor angle observed at an appropriate instant of
time, in its evolution along an appropriate trajectory. The appropriate trajectory is a near-
critically cleared one, i.e., cleared at a time nearly above the actual CCT, and the appropriate
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observation time is defined as the time to reach the unstable equilibrium point of the OMIB
equivalent of the power system.

The estimation of the generators’ appropriate trajectory can be obtained by numerical
integration. In [10,11], however, the Taylor series is employed as a quick substitute. Having
an initial estimation of the CCT and the observation time, the trajectories can be obtained
using individual Taylor series detailed in the Appendix C.

3.2. Critical Cluster Formation

The CMI gives a ranked list of critical machines. The aim of CCF is to form different
combinations of CC and NC. The combinations should be later evaluated to identify the
true combination of the clusters. Different techniques are proposed to form the clusters. A
simple approach is to consider all possible combinations of critical machines as possible
CCs [6,8,9]. A more efficient technique is presented in [10]. This technique selects cm
candidate CCs composed of the first from the top, the first two from the top, . . ., up to all
cm machines in the CC set.

3.3. CMI and CCF Functions

Three methods are discussed for CMI. As shown in Figure 12, for the acceleration
criterion, the CMI function inputs the synchronous generators’ data, their initial angle,
and the during-fault system admittance matrix to provide a ranked list of generators based
on calculated initial accelerations. For the composite criterion, the function also needs the
pre-fault and post-fault system admittance matrix and the index of the fault bus (for line
faults a virtual node should be added at the fault location) in the matrices to calculate
the distances in Equation (26). For trajectory criterion, the reduced post-fault system
admittance matrix, the fault elimination time, and the observation time are required. The
individual Taylor series is employed to obtain the generators’ angle trajectory and to rank
them based on their angles at the observation time. In this paper, the observation time is
defined as the time to reach the OMIB return angle. After ranking the generators with any
of the criteria, the generators which are close to the top generator based on a predefined
threshold are selected as critical ones and are outputted as a ranked list. A pseudocode is
presented in Appendix B, Algorithm A6, which details the process of the CMI function.

The CCF function, as shown in Figure 13, receives the ranked list of the critical
generators and forms different candidate pairs of CC and NC. A pseudocode is presented
in Appendix B, Algorithm A7, presenting one simple method, among others, for CCF.

CMI
Inputs Outputs

Parameters

- ranked set of names of 
synchronous machines 
identified as critical

CMI threshold
    : system base frequency

- synchronous generators data and initial angle
- type of CMI (acceleration, composite or trajectory criterion)

- reduced during-fault system admittance matrix
- reduced post-fault system admittance matrix  (for trajectory criterion)

- observation time and fault elimination time (for trajectory criterion)
- pre-fault and post-fault system admittance matrix  (for composite criterion)

- index of the faulted bus in system admittance matrix  (for composite criterion)

Figure 12. Schematic representation of CMI function to find the ranked list of critical synchronous
generators.

CCF
Inputs Outputs

- set of pairs of CC and NC
- ranked set of names of synchronous 

machines identified as critical
- synchronous generators  names

Figure 13. Schematic representation of CCF function to form the candidate CCs and NCs.



Energies 2021, 14, 7259 16 of 48

4. Integration

The EAC, despite all the information it provides, cannot directly give an indication
of CCT which is of interest in transient stability studies. The CCT may be assessed by
integrating the dynamics of the OMIB up to the point where it reaches CCA. In principle
any numerical integration algorithm can be used. In [5–10], however, the Taylor series
is employed as a handy and quick substitute for numerical integration. In the context of
EAC-based methods, the Taylor series expansion can be applied to the OMIB equivalent of
a power system, or to an individual generator to obtain its rotor angle evolution with time.
The equations and the process of the Taylor series is presented in Appendix C.

As shown in Figures 14 and 15, despite the integration techniques employed, two main
functions are required. The angle-to-time function inputs the OMIB equivalent model, the
initial angle, the initial angular speed, and a desired angle (e.g., the CCA). It integrates the
OMIB equations interval by interval to find the time and angular speed associated to the
desired angle. The pseudocodes presented in Appendix B, Algorithms A8 and A9, present
the details of this process with the Taylor series. As discussed in [9], for large departures of
the desired angle from the initial angle, the Taylor series estimation may be inaccurate or
may fail to give a result.

The Trajectory function, inputs the generators’ data, their initial angle, during-fault
and post-fault reduced system admittance matrices, the fault elimination time, and the
desired final time of an individual generator’s angle trajectory. It also receives the desired
number of during-fault and post-fault intervals as input parameters. The function specifies
some time instants based on the number of intervals and the time spans. It then calculates
each individual generator’s angle and angular speed interval by interval to reach the
desired final time. The outputs will be the time instants, and the generator’s angle and
angular speed at each time. The pseudocodes presented in Appendix B, Algorithms A10
and A11, detail this process with Taylor series.

angle-to-time
Inputs Outputs

- desired time at the given 
desired angle

- desired angular speed at 
the given desired angle

- OMIB electrical power for each interval 
- OMIB mechanical power

- OMIB inertia constant
- initial angle

- initial angular speed
- desired angle

Figure 14. Schematic representation of angle-to-time function to find the time and angular speed
associated with a desired angle.

TrajectoryInputs Outputs

- interval time instants
- synchronous generators angles at 
each time instant

- synchronous generators angular 
speed at each time instant

- synchronous generators data and initial angle
- reduced during-fault system admittance matrix

- reduced post-fault system admittance matrix
- fault elimination time

- end of trajectory time span

Parameters

d: number of during-fault intervals
p: number of post-fault intervals

Figure 15. Schematic representation of Trajectory function to find synchronous generators’ angle
trajectory in time.

5. Combining Algorithms for a Full-Resolution Scheme

The functions presented in the previous sections can be combined in different ways
to provide an estimation of the CCT. The main functions include CCF and CMI, which
can be based on acceleration, composite or trajectory criteria; OMIB which can be of type
ZOOMIB, COOMIB, or DOMIB; CCA to estimate the critical clearing angle of the OMIB;
angle-to-time to find the time corresponding to an OMIB angle; and Trajectory to find
the trajectory of generator angles in time. These functions provide an insight to rethink
the schemes proposed in previous literature, and to think of new schemes for direct CCT
estimation.
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The first step for any TSA technique is the preparation of the synchronous generators
and the network data, and the formation and reduction of admittance matrices for pre-fault,
during-fault, and post-fault states. EEAC relies on the classical model of the power system.
Synchronous generators will be modeled with the classical model, and the admittance
matrices include the loads and the generators’ direct axis transient reactance. Admittance
matrix reduction can be done by Kron method considering that all the nodes have zero
injection currents except the internal nodes of synchronous generators.

The first and the simplest EEAC scheme that was proposed in [5,6,8] is as presented
in Figure 16. The types are mentioned within green parenthesis, while the variable pa-
rameters are shown within red parenthesis. The pseudocodes presented in Appendix B,
Algorithm A12, present the details of the basic-eeac scheme.

The scheme starts by identifying the critical machines (Here, the CMI is done with
acceleration criterion, but it can also be done with composite criterion) and forming a
set of CCs and a set of NCs. It then evaluates each pair of CC and NC. For each pair, it
first forms the pre-fault, during-fault, and post-fault OMIB equivalents (Here, the OMIB
models are derived with ZOOMIB assumptions, but they can also be derived with COOMIB
assumptions). Having the OMIB equivalents defined, the CCA function is applied to find
the CCA of the pair under consideration. Then, the CCT is calculated as the time to reach
the CCA. After repeating these steps for each pair, the true CC and true NC are identified as
the ones with minimum CCT. The algorithm finally returns the CCT, the identified clusters,
the CCA and the angular speed, and the observation time as the time to reach the return
angle δr from δ0 and may later be used for subsequent calculations.

(threshold)

CMI
(Acc)

CCF

OMIB
(ZOOMIB)

CCA

angle_
to_time

Input data
for each pair 
of CC and NC

CCT, CC, NCselect the pair 
with minimum 

CCT

(??, ?max)

Figure 16. The basic scheme to estimate the CCT with EEAC.

When an estimation of the CCT is made with the basic-eeac, the estimation can be
improved in many ways. One approach can be as shown in Figure 17. Having a first
estimation of CCT and observation time, the Trajectory function can be used to estimate
the individual generator’s angles for d during-fault and p post-fault intervals within δ0
to δmax. With these estimated angles, the OMIB function can be recalled to make a better
estimation of the OMIB equivalent model with DOMIB model assumptions. Then, the
CCA function can be applied to the updated OMIB model to estimate the CCA, and the
angle-to-time function can be employed to calculate the refined CCT.

CCT, CC, NC
Trajectory OMIB

(DOMIB)
CCA

angle_
to_time

(d, p)

CCT, CC, NC

(??, ?max)

Figure 17. First refinement scheme to improve the estimation of the CCT.

The above refinement process just re-estimates the CCT and does not update the
estimate of the CC and NC. The second refinement process shown in Figure 18 uses the
calculated CCT to find the individual generator angle trajectories and to rank them based
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on their angles at the estimated observation time. It then runs the CCF function to form
a set of CCs and a set of NCs, and evaluates each pair of CC and NC. For each pair, it
first forms the pre-fault, during-fault, and post-fault DOMIB equivalents. The CCA and
angle-to-time functions are then applied to estimate the CCT for each pair. Finally, the
pair with the minimum CCT is identified as the true pair (Here, the OMIB models are
derived with DOMIB assumptions, but they can also be derived with ZOOMIB or COOMIB
assumptions.).

CCT, CC, NC CMI
(Traj)

CCF

OMIB
(DOMIB)

CCA

angle_
to_timeTrajectory

for each pair 
of CC and NC

CCT, CC, NCselect the pair 
with minimum 

CCT

(??, ?max)

(threshold)

(d, p)

Figure 18. Second refinement scheme to improve the estimation of the CCT.

Figure 19 shows a more sophisticated scheme. This scheme was proposed in [10].
Similar to the second refinement scheme, this scheme relies on the ‘trajectory’ CCI. However,
for each pair of the CC and NC, it first forms a ZOOMIB equivalent, applies the angle-
to-time function, and obtains the generator angle trajectories. It then forms a DOMIB
equivalent model using the obtained trajectories, applies the CCA function on the model,
and calculates the CCT corresponding to each obtained CCA. Finally, the pair with the
smallest CCT is identified as true CC and NC. The pseudocodes presented in Appendix B,
Algorithm A13, present the details of the third refinement scheme. The pseudocodes of the
other refinement schemes are simplified versions of this scheme and are not presented.

CCT, CC, NC CMI
(Traj)

CCF

OMIB
(COOMIB)

CCA

angle_
to_time

Trajectory

OMIB
(DOMIB)

CCA

angle_
to_time

(d, p)

Trajectory

(threshold)

for each pair 
of CC and NC

CCT, CC, NCselect the pair 
with minimum 

CCT

(??, ?max) (??, ?max)

(d, p)

Figure 19. Third refinement scheme to improve the estimation of the CCT.

The interesting point about this functional point of view of the EEAC is that the output
of the basic-eeac is identical to the inputs and outputs of all three refinement schemes
discussed. Therefore, as shown in Figure 20, these schemes can be repeated after each
other to achieve the desired accuracy. As shown, after running the basic-scheme or each
of the refinement functions, it is possible to terminate the calculations and output the
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estimated CCT and CC. We define each path from the input to the outputs as a branch. As
ZOOMIB and COOMIB equivalents, and acceleration and composite CCIs can be used
interchangeably, there are four possible combinations and thus four variants for each
branch in Figure 20. Each branch has a different computational time which is a function
of the system scale, the short-circuit scenario, and the chosen values for parameters. The
parameters of each branch can be optimized to achieve the best performance in terms of
CCT estimation accuracy and the computational time.

Text

Input data basic-scheme

refinement1

refinement2

refinement3

refinement1

refinement2

refinement3

refinement1

refinement2

refinement3

refinement1

refinement2

refinement3

CCT, CC

Figure 20. Possible schemes to apply the EEAC concept to make an estimation of the CCT and
the CC.

6. Simulation Studies and Discussions

This section presents the results for the application of the EEAC method on two
test systems. The first is the four-machine system discussed before. The second is the
French EHV power system with more than 400 synchronous machines, 2900 transmission
lines, and 8800 transformers. Applying the EEAC on the four-machine system helps to
investigate its approximations in detail, while studies of the French network helps to
evaluate its performance for a real-life, large-scale network. For both test systems, the
EEAC results are compared against time-domain simulations.
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6.1. Four-Machine System

The considered scenario for the first test system, shown in Figure 2, is a three-phase
short-circuit fault at one of the transmission lines, which is cleared by opening the line
circuit breakers. As shown in Figure 3, for this case study, there is a clear separation
between the NC generators and CC generators with increasing angles. A correct estimation
of CC and NC allows us to evaluate the effect of assumptions of OMIB equivalent models,
and also the effect of considering the classical model for synchronous generators.

To evaluate the assumptions, Figure 21 represents the δ − P curves obtained with
ZOOMIB- and DOMIB-equivalent models. The curves are compared against the δ− P
curves obtained from the time-domain simulation results, with the classical model for
synchronous machines, and with the detailed model with regulators, i.e., speed governor
and automatic voltage regulator. For time-domain simulation results, the angles and
powers are obtained using Equations (8), (10), and (11).

As can be seen, the OMIB δ− P curve obtained with ZOOMIB assumptions is close to
simulation results with the classical model. However, the modified piecewise curves ob-
tained with DOMIB assumptions are much closer. As all the approximate OMIB equivalent
models are based on the classical model of synchronous generators, the results they pro-
vide do not necessarily match the result obtained with the detailed model with regulators.
However, the estimations of CCA are still close.

To better highlight the differences in estimations, Table 2 compares the CCT and CCA
values obtained with different OMIB model assumptions against the values obtained from
time-domain simulations. The Taylor series is employed to estimate the CCTs with the
OMIB equivalents. In comparison with the results obtained with the classical model, the
results obtained with ZOOMIB and COOMIB assumptions are acceptable. There is a clear
improvement in the results obtained with DOMIB assumptions, and they are close to the
classical model results. By considering a detailed model in simulations, the estimation
errors increase; however, the DOMID still performs better.

Figure 21. Comparison of the δ − P curves obtained with ZOOMIB and DOMIB models with
time-domain simulations.

Table 2. A comparison between time-domain simulation results with the results obtained with
different OMIB equivalent assumptions and Taylor series.

Model CCA (rad) CCT (ms)

ZOOMIB 1.084 199.58
COOMIB 1.085 199.96
DOMIB 1.038 189.15
Time-domain with classical model 1.036 187
Time-domain with detailed model 0.937 160
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6.2. French Network

This section briefly discusses the results of several fault scenarios considered in
the French network. The considered scenarios are three-phase short-circuit faults on
transmission lines, on bus-bars or on transformers. The French network covers several
voltage levels. The faults are applied at different locations of the network, some close
to large power plants on 400 kV, others on 225 kV portions of the network. The model
considered for synchronous machines is a detailed model with regulators.

As discussed in Section 5, the functions presented in the previous sections can be com-
bined in different ways to provide an estimation of the CCT. For each fault scenario, four
of the possible schemes are examined, the basic scheme shown in Figure 16, and the basic
scheme followed by the refinement schemes shown in Figures 17–19. The pseudocodes of
these schemes are presented in Appendix B. For the basic scheme, the acceleration criterion
is used for CMI. The scheme is evaluated with ZOOMIB and COOMIB assumptions.

The results are obtained by considering certain default values for parameters. How-
ever, the parameters can be optimized to find more accurate results. The considered values
for angle step size ∆δ and maximum integration limit δmax are 0.1 and 360 degrees, respec-
tively. Five intervals are considered for each of the during-fault and post-fault periods, and
50% is considered as the threshold for CMI.

The error in CCT calculation is calculated as follows:

Error =
CCTa − CCTe

CCTa × 100 (27)

where CCTe and CCTa are the estimated CCT with EEAC and Taylor series, and the actual
CCT obtained from the time-domain simulations, respectively.

Table 3 compares the CCT values obtained with time-domain simulations against
the basic scheme with ZOOMIB and COOMIB assumptions. Table 4 compares the CCT
values obtained with time-domain simulations against the refined schemes for the same
fault scenarios. As discussed in Section 2.5, there are some exceptional cases that should
be considered to avoid unrealistic results. In both tables, ‘stable’ denotes the detection of
an ‘always stable’ case, and ‘unstable’ denotes the detection of an ‘always unstable’ case
(see Figure 11). For each of the considered case studies, the error percentage (Error) is
calculated using Equation (27). Figures 22 and 23 compare the number of cases in each
Error interval.

It is better for TSO to be more conservative and have an estimated CCT lower than
the actual CCT, than having higher values. In other words, the TSO prefers to have a
positive Error rather than a negative Error. As can be seen in the tables and the figures,
with the basic scheme and ZOOMIB model assumptions, the errors are mainly positive,
while with COOMIB assumptions fewer cases have a high negative Error. The refined
schemes produce more accurate results for some fault scenarios. However, as discussed,
the use of DOMIB assumptions modifies the estimation towards the classical model and
the results are not necessarily close to the results obtained with the detailed model. On
average, the basic scheme with ZOOMIB assumptions has better estimations than the other
schemes. The first and third refined scheme decrease the maximum error, but all refined
schemes have a larger error on average. Moreover, for more cases they detect an exception
and do not provide a result.

The results show that a more complicated scheme does not necessarily provide more
accurate results, while it might involve more computational time. For the case studies
considered, the average computation time for basic schemes with ZOOMIB or COOMIB
assumptions was around 30 s, while it was around 45, 70, and 100 s for the first, second,
and third refined schemes, respectively. Moreover, the basic scheme does not identify any
scenario as stable, thus less risk for the TSO.
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Table 3. A comparison between time-domain simulation results with the results obtained with
different basic schemes for the French network.

Time-Domain Basic Scheme ZOOMIB a Basic Scheme COOMIB b

Scenario CCT (ms) CCT (ms) Error (%) CCT (ms) Error (%)

1 231 323.71 −40.13 324.46 −40.46
2 159 238.16 49.79 242.21 −52.33
3 173 151.72 −12.30 155.49 10.12
4 277 240.49 −13.18 263.37 4.92
5 106 122.71 15.76 124.27 −17.24
6 258 unstable c —- unstable —-
7 227 159.41 −29.78 167.35 26.28
8 225 203.00 −9.78 210.20 6.58
9 195 216.84 11.20 221.99 −13.84
10 205 234.20 14.24 239.63 −16.89
11 184 202.48 10.04 207.15 −12.58
12 198 227.26 14.78 232.42 −17.38
13 182 201.31 10.61 205.15 −12.72
14 189 217.11 14.87 221.58 −17.24
15 267 286.32 7.24 295.36 −10.62
16 259 279.33 7.85 288.07 −11.22
17 258 280.43 8.69 288.68 −11.89
18 159 18.74 −88.21 57.62 63.76
19 135 136.73 1.28 132.62 1.76
20 119 233.84 96.50 222.42 −86.90
21 98 217.54 121.98 202.96 −107.11
22 95 77.97 −17.93 68.14 28.27
23 104 81.34 −21.78 73.70 29.14
24 120 111.19 −7.34 104.83 12.64
25 124 116.86 −5.76 110.56 10.84
26 105 79.86 −23.95 72.64 30.82
27 129 125.42 −2.78 122.28 5.21
28 129 126.42 −2.00 122.28 5.21
29 129 124.75 −3.30 120.43 6.65
30 122 112.53 −7.76 106.80 12.46
31 126 115.95 −7.98 110.49 12.31
32 140 146.38 4.56 143.14 −2.25
33 142 148.51 4.58 145.43 −2.42

minimum d 95 18.74 1.28 57.62 1.76
maximum d 277 323.71 121.98 324.46 107.11
mean d 168.76 173.70 21.50 175.12 21.88

a Basic scheme with acceleration criterion for CMI and ZOOMIB assumptions for OMIB equivalent. b Basic
scheme with acceleration criterion for CMI and COOMIB assumptions for OMIB equivalent. c An ‘always unstable
case’ is detected. d Scenarios detected as stable or unstable are not considered in calculations. Absolute values are
considered.
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(a) (b)
Figure 22. Number of cases in each Error percentage interval for the basic scheme (a) with ZOOMIB
assumptions and (b) with COOMIB assumptions

(a) (b) (c)
Figure 23. Number of cases in each Error percentage interval for the refined schemes (a) first
refinement scheme, (b) second refinement scheme, and (c) third refinement scheme.

Table 4. A comparison between time-domain simulation results with the results obtained with different refined schemes for
the French network.

Time-
Domain First Refinement Scheme a Second Refinement Scheme a Third Refinement Scheme a

Scenario CCT (ms) CCT (ms) Error(%) CCT (ms) Error(%) CCT (ms) Error(%)

1 231 unstable b —– 586.39 −153.85 stable c —–
2 159 235.91 −48.37 235.91 −48.37 235.86 −48.34
3 173 132.53 23.39 132.53 23.39 133.18 23.02
4 277 262.31 5.30 262.31 5.30 265.41 4.18
5 106 119.10 −12.36 119.10 −12.36 119.10 −12.36
6 258 unstable —– unstable —– unstable —–
7 227 161.43 28.89 150.50 33.70 unstable —–
8 225 208.27 7.43 197.83 12.08 unstable —–
9 195 232.52 −19.24 232.52 −19.24 unstable —–
10 205 255.70 −24.73 255.70 −24.73 245.51 −19.76
11 184 215.32 −17.02 215.32 −17.02 201.38 −9.44
12 198 249.73 −26.12 249.73 −26.12 241.21 −21.82
13 182 212.02 −16.49 212.02 −16.49 194.26 −6.73
14 189 236.59 −25.18 236.59 −25.18 229.82 −21.60
15 267 306.82 −14.91 306.82 −14.91 unstable —–
16 259 299.81 −15.76 299.81 −15.76 294.38 −13.66
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Table 4. Cont.

Time-
Domain First Refinement Scheme a Second Refinement Scheme a Third Refinement Scheme a

Scenario CCT (ms) CCT (ms) Error(%) CCT (ms) Error(%) CCT (ms) Error(%)

17 258 failed —– 354.87 −37.54 294.26 -14.05
18 159 48.41 69.55 stable —– stable —–
19 135 129.99 3.71 129.99 3.71 unstable —–
20 119 209.06 −75.68 209.06 −75.68 209.73 −76.25
21 98 187.45 −91.28 187.45 −91.28 188.22 −92.06
22 95 52.14 45.12 stable —– stable —–
23 104 55.27 46.85 stable —– stable —–
24 120 100.46 16.29 100.46 16.29 94.12 21.57
25 124 105.90 14.60 105.90 14.60 99.90 19.43
26 105 53.55 49.00 stable —– stable —–
27 129 107.96 16.31 104.46 19.02 unstable —–
28 129 107.96 16.31 104.46 19.02 unstable —–
29 129 105.74 18.03 101.42 21.38 unstable —–
30 122 89.31 26.79 84.40 30.82 unstable —–
31 126 92.79 26.36 88.10 30.08 unstable —–
32 140 130.88 6.51 128.05 8.53 122.12 12.77
33 142 132.88 6.42 130.16 8.34 120.40 15.21

minimum d 95 48.41 3.71 84.40 3.71 94.12 4.18
maximum d 277 306.82 91.28 586.39 153.85 294.38 92.06
mean d 168.76 161.26 27.13 197.21 29.46 193.46 25.43

a Basic scheme with ZOOMIB assumptions for OMIB equivalent plus a refinement scheme. b An ‘always unstable case’ is detected. c An ‘always stable
case’ is detected. d Scenarios detected as stable or unstable are not considered in calculations. Absolute values are considered.

7. Conclusions

These days, due to increased uncertainties in electrical power systems, there are an
increasing number of transient stability scenarios that are of concern. Therefore, TSOs need
fast TSA techniques to filter the scenarios and to identify the critical ones with lower CCT for
detailed analysis. EEAC was proposed in the late 1980s as a promising and fast TSA method.
However, despite the encouraging results and approaches presented through several
papers, it was difficult to obtain a synthetic view of the key building blocks upon which
the EEAC was built. This paper has revisited the EEAC from scratch. It has presented its
very basic concept, the detailed equations, and the idea behind the approximations for fast
TSA. New definitions and conditions have been defined for approximate models forward
swing and backward swing stabilities. Based on these definitions and conditions, functions
were developed for each EEAC building block, together with detailed pseudocodes. The
idea was to propose a general full-resolution functional scheme that not only covers all the
previous literature on the subject, but also introduces interesting possibilities for several
new approaches.

Our studies show that the accuracy of the EEAC, though acceptable, depends on
the selection of the sequence of functions and parameters. Once the optimal sequence
of functions and parameters has been identified, the EEAC can serve as an effective tool
for contingency filtering. It had reduced the time required for the analysis of a fault
scenario in the French network from around 15 minutes for time-domain simulation
to just a few seconds. However, further studies are required to design result quality
indicators to tag cases where EEAC may not perform well. Moreover, the EEAC equations
should be developed to consider non-synchronous generation units (e.g., windfarms) and
HVDC links.
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Abbreviations
The following abbreviations are used in this manuscript:

TSO Transmission System Operator
TSA Transient Stability Analysis
EAC Equal Area Criterion
EEAC Extended Equal Area Criterion
OMIB One-Machine Infinite Bus
SMIB Single Machine connected to an Infinite Bus
SIME Single-Machine Equivalent
CCT Critical Clearing Time
CCA Critical Clearing Angle
CMI Critical Machines Identification
CCF Critical Cluster Formation
CC Critical Cluster of generators
NC Non-critical Cluster of generators
COA Center of Angle
PCOA Partial Centre of Angle
ZOOMIB Zero Offset OMIB
COOMIB Constant Offset OMIB
DOMIB Dynamic OMIB

Appendix A. OMIB Electrical Power with the Classical Model

The classical model of a power system considers a constant-voltage-behind-transient-
reactance model for synchronous generators. In this model of the system, by dividing
the network nodes to n synchronous generator internal nodes and r remaining nodes, the
relationship between the bus voltages, nodal current injections, and the network admittance
matrix is given by: [

Ĩn
0

]
= Ŷ

[
Ẽn
Ṽr

]
(A1)

where Ẽn denotes the synchronous generators’ internal voltage behind their transient
reactance, Ĩn is the generators’ current, and Ṽr denotes the voltages of the remaining
network nodes. Ŷ is the network admittance matrix which includes the load impedances
and generator transient reactances. This matrix can be partitioned as follows:[

Ŷnn Ŷnr
Ŷrn Ŷrr

]
To obtain the electrical power, first we find the reduced admittance matrices by

eliminating all the nodes except for the internal nodes of the synchronous generators. The
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reduction can be achieved through matrix operations considering that all the nodes have
zero injection currents except for the source nodes. By eliminating Ṽr we have:

Ĩn = ŶredẼn (A2)

where:
Ŷred

= Ŷnn − ŶnrŶ
−1
rr Ŷrn

In a power system with n synchronous generators, to calculate the output electrical
power of each one we can write:

Pei = Re[Ẽi Ĩi
∗
]

= Re[Ẽi

n

∑
j=1

(Ẽjŷij)
∗]

(A3)

where Ẽi = Ei∠δi is the voltage behind direct axis transient reactance of the synchronous
generator i, and ŷij = yij∠θij is the element of row i and column j of the reduced admittance
matrix.

Therefore, for each generator we have:

Pei = Re[
n

∑
j=1

(EiEj∠(δi − δj)(Gij − jBij))] (A4)

where Gij and Bij are conductance and susceptance parts of the admittance element of row
i and column j.

Expanding Equation (A4) and separating the real and imaginary parts we get:

Pei =
n

∑
j=1

EiEj[Gijcos(δi − δj) + Bijsin(δi − δj)] (A5)

For each generator k of set CR we can rewrite Equation (A5) in the following form:

Pek = ∑
i∈CC

EkEi[Gkicos(δk − δi) + Bkisin(δk − δi)]

+ ∑
j∈NC

EkEj[Gkjcos(δk − δj) + Bkjsin(δk − δj)]
(A6)

We can consider that for each critical generator δi = δcr + ξi, and for each non-critical
generator δj = δnc + ξ j, where ξi and ξ j show the angular deviation of each generator in
sets CR and NC from their respective PSOA δcr and δnc. Therefore, for each generator k of
set CR we can write:

Pek = ∑
i∈CC

EkEi[Gkicos(ξk − ξi) + Bkisin(ξk − ξi)]

+ ∑
j∈NC

EkEj[Gkjcos(δcr − δnc + ξk − ξ j) + Bkjsin(δcr − δnc + ξk − ξ j)]
(A7)

Similarly, for each generator l of set NC we can write:

Pel = ∑
i∈CC

ElEi[Glicos(δl − δi) + Blisin(δl − δi)]

+ ∑
j∈NC

ElEj[Gl jcos(δl − δj) + Bl jsin(δl − δj)]
(A8)
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Considering δi = δcr + ξk and δj = δnc + ξ j, we have:

Pel = ∑
i∈CC

ElEi[Glicos(δnc − δcr + ξl − ξi) + Blisin(δnc − δcr + ξl − ξi)]

+ ∑
j∈NC

ElEj[Gkjcos(ξl − ξ j) + Bl jsin(ξl − ξ j)]
(A9)

Substituting Equations (A7) and (A9) in Equation (11), we have:

POMIB
e =

Mnc

MT

[
∑

k∈CC
∑

i∈CC
EkEi[Gkicos(ξk − ξi) + Bkisin(ξk − ξi)]

]
+ ∑

k∈CC
∑

j∈NC
EkEj[Gkjcos(δcr − δnc + ξk − ξ j) + Bkjsin(δcr − δnc + ξk − ξ j)]

− Mcr

MT

[
∑

l∈NC
∑

i∈CC
ElEi[Glicos(δnc − δcr + ξl − ξi) + Blisin(δnc − δcr + ξl − ξi)]

]
+ ∑

l∈NC
∑

j∈NC
ElEj[Gkjcos(ξl − ξ j) + Bl jsin(ξl − ξ j)]

(A10)

To have a simpler form of equation, by considering gij = EiEjGij and bij = EiEjBij, we have:

POMIB
e =

Mnc

MT
∑

k∈CC
∑

i∈CC
[gkicos(ξk − ξi) + bkisin(ξk − ξi)]

− Mcr

MT
∑

l∈NC
∑

j∈NC
[gl jcos(ξl − ξ j) + bl jsin(ξl − ξ j)]

+
Mnc

MT
∑

k∈CC
∑

j∈NC
[gkjcos(δcr − δnc + ξk − ξ j) + bkjsin(δcr − δnc + ξk − ξ j)]

− Mcr

MT
∑

l∈NC
∑

i∈CC
[glicos(δnc − δcr + ξl − ξi) + blisin(δnc − δcr + ξl − ξi)]

(A11)

Considering that Mnc+Mcr
MT

= 1, Equation (A11) can be written as follows:

POMIB
e =

Mnc

MT
∑

k∈CC
∑

i∈CC
[gkicos(ξk − ξi) + bkisin(ξk − ξi)]

− Mcr

MT
∑

l∈NC
∑

j∈NC
[gl jcos(ξl − ξ j) + bl jsin(ξl − ξ j)]

+
Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
[gkjcos(δ + ξk − ξ j)]

+ ∑
k∈CC

∑
j∈NC

[bkjsin(δ + ξk − ξ j)]

(A12)

Appendix A.1. Considering Zero Rotor Angle Offsets with Respect to PCOA

In this section, we simplify the Pe for the OMIB model by considering zero rotor angle
offsets. The assumptions are:

ξi = ξ j = 0 : ∀i ∈ CC, ∀j ∈ NC (A13)
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With these assumptions, we can simplify Equation (A12) to the following form:

POMIB
e =

Mnc

MT
∑

k∈CC
∑

i∈CC
gki −

Mcr

MT
∑

l∈NC
∑

j∈NC
gl j

+
Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkjcos(δ) + ∑

k∈CC
∑

j∈NC
bkjsin(δ)

= PC + Ccos(δ) + Dsin(δ)

(A14)

On the other hand, in general we have:

Ccos(δ) + Dsin(δ) = Pmaxsin(δ− v)

⇒ Pmax(sin(δ)cos(v)− cos(δ)sin(v)) = Ccos(δ) + Dsin(δ)

⇒ C = −Pmaxsin(v), D = Pmaxcos(v)

⇒ Pmax =
√
(C2 + D2), v = − tan−1(C/D)

The equation for Pe becomes:

POMIB
e = (PC + Pmaxsin(δ− v)) (A15)

where:

PC =
Mnc

MT
∑

k∈CC
∑

i∈CC
gki −

Mcr

MT
∑

l∈NC
∑

j∈NC
gl j

Pmax =
√
(C2 + D2)

v = − tan−1(C/D)

C =
Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkj

D = ∑
k∈CC

∑
j∈NC

bkj

where PC, Pmax, and v are dependent on Mnc, Mcr, and gij, i.e., constants.

Appendix A.2. Considering Constant Rotor Angle Offsets with Respect to PCOA

In this section, we simplify the Pe for the OMIB model by assuming that ∀i ∈ CC, ∀j ∈
NC, ξi, and ξ j are not necessarily zero, but that they are constant with respect to δ. With
this assumption, we can simplify Equation (A12) to the following form:

POMIB
e = PC+

Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkj[cos(δ)cos(ξk − ξ j)− sin(δ)sin(ξk − ξ j)]

+ ∑
k∈CC

∑
j∈NC

bkj[sin(δ)cos(ξk − ξ j) + cos(δ)sin(ξk − ξ j)]

(A16)
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= PC +
Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkjcos(δ)cos(ξk − ξ j)

− Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkjsin(δ)sin(ξk − ξ j)

+ ∑
k∈CC

∑
j∈NC

bkjsin(δ)cos(ξk − ξ j)

+ ∑
k∈CC

∑
j∈NC

bkjcos(δ)sin(ξk − ξ j)

where:

PC =
Mnc

MT
∑

k∈CC
∑

i∈CC
[gkicos(ξk − ξi) + bkisin(ξk − ξi)]

− Mcr

MT
∑

l∈NC
∑

j∈NC
[gl jcos(ξl − ξ j) + bl jsin(ξl − ξ j)]

By separating sine and cosine terms we have:

⇒ POMIB
e = PC+

[
Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkjcos(ξk − ξ j) + ∑

k∈CC
∑

j∈NC
bkjsin(ξk − ξ j)]cos(δ)

+ [−Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkjsin(ξk − ξ j) + ∑

k∈CC
∑

j∈NC
bkjcos(ξk − ξ j)]sin(δ)

(A17)

= PC + Ccos(δ) + Dsin(δ)

The equation for Pe becomes:

POMIB
e = (PC + Pmaxsin(δ− v)) (A18)

where:

PC =
Mnc

MT
∑

k∈CC
∑

i∈CC
[gkicos(ξk − ξi) + bkisin(ξk − ξi)]

− Mcr

MT
∑

l∈NC
∑

j∈NC
[gl jcos(ξl − ξ j) + bl jsin(ξl − ξ j)]

Pmax =
√
(C2 + D2)

v = − tan−1(C/D)

C = ∑
k∈CC

∑
j∈NC

bkjsin(ξk − ξ j) +
Mnc −Mcr

MT
∑

k∈CC
∑

j∈NC
gkjcos(ξk − ξ j)

D = ∑
k∈CC

∑
j∈NC

bkjcos(ξk − ξ j)−
Mnc −Mcr

MT
∑

k∈CR
∑

j∈NC
gkjsin(ξk − ξ j)

where PC, Pmax, and v are dependent on Mnc, Mcr, gij, bij, and ξi, i.e., constants.

Appendix B. Pseudocodes

This appendix presents the pseudocodes of all the algorithms discussed.
Algorithm A1 pseudocode details the function to compute the OMIB model. The

function is designed for the DOMIB model, but it can be applied for COOMIB or ZOOMIB,
which are similar to DOMIB but with only one interval. It inputs a data class of s generators
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including their name, inertia constant, internal voltage, mechanical power, and their initial
and final angles for n intervals. It also requires the system admittance matrix to be reduced
to generators’ internal nodes, and the sets of critical and non-critical generators. The
function should be recalled for each pre-fault, during-fault, and post-fault periods. For
each period, the pseudocode first estimates OMIB Pm and M, which are constant values.
Then, for each time interval in the considered period, it estimates the OMIB angle at
the beginning and end of the interval, and the terms defining its electrical power in that
interval.

Algorithm A1 Forming the OMIB equivalent of a multi-machine power system

OMIB (S, Ŷred
, CC, NC, type, range)

Input
1. S: data of synchronous generators considering the classical model

· S[j].name: generator j name: str
· S[j].M: generator j inertia constant: float
· S[j].E: generator j internal voltage magnitude: float
· S[j].Pm: generator j mechanical power: float
· S[j].δi[i]: generator j initial angle of interval i: float
· S[j].δ f [i]: generator j final angle of interval i, set to δmax by default: float

2. CC: set of names of critical synchronous generators: set of str
3. NC: set of names of non-critical synchronous generators: set of str

4. Ŷred
: reduced system admittance matrix: matrix of complex numbers

5. type: type of OMIB approximation, ‘ZOOMIB’ for zero offset, ‘COOMIB’ for constant
offset, and ‘DOMIB’ for dynamic: str

6. range: a 2-tuple of the numbers of the first and last intervals in the considered period,
set to (1, 1) be default: tuple of int

Output
1. P: OMIB power

· P[i].δi: initial angle of interval i: float
· P[i].δ f : final angle of interval i: float
· P[i].Pc: constant electrical power in interval i: float
· P[i].Pmax: maximum electrical power in interval i: float
· P[i].v: angle shift in interval i: float
· P.Pm: mechanical power: float

2. M: OMIB inertia constant: float
1: s← length(S): number of synchronous generators
2: G← real part (Ŷ)
3: B← imaginary part (Ŷ)
4: for j = 1 : s do:
5: for k = 1 : s do:
6: b[k, j] = S[k].E · S[j].E · B[k, j]
7: g[k, j] = S[k].E · S[j].E ·G[k, j]
8: end for
9: end for
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Algorithm A1 Cont.

10: Mcr = ∑j∈CC S[j].M
11: Mnc = ∑j∈NC S[j].M
12: MT = Mcr + Mnc
13: M = Mcr Mnc

MT

14: P.Pm = 1
MT

(
Mnc ∑j∈CC S[j].Pm −Mcr ∑j∈NC S[j].Pm

)
15: n = range[−1]− range[1] + 1 : number of intervals in considered period
16: for i = 1 : n do:
17: interval = range[1] + i− 1: interval number in the trajectory
18: δi

cr =
1

Mcr
∑j∈CR(S[j].M · S[j].δi[interval])

19: δ
f
cr =

1
Mcr

∑j∈CR(S[j].M · S[j].δ f [interval])
20: δi

nc =
1

Mnc
∑j∈NC(S[j].M · S[j].δi[interval])

21: δ
f
nc =

1
Mnc

∑j∈NC(S[j].M · S[j].δ f [interval])

22: P[i].δi = δi
cr − δnc

i

23: P[i].δ f = δ
f
cr − δ

f
nc

24: for j = 1 : s do:
25: if type == ‘ZOOMIB’ then
26: ξ[j] = 0
27: else if S[j].name ∈ CR then
28: ξ[j] = S[j].δi[interval]− δi

cr
29: else
30: ξ[j] = S[j].δi[interval]− δi

nc

31: end for
32: C = ∑

k∈CR
∑

j∈NC

(
b[k, j] · sin(ξ[k]− ξ[j]) +

Mnc −Mcr

MT

(
g[k, j] · cos(ξ[k]− ξ[j])

))
33: D = ∑

k∈CR
∑

j∈NC

(
b[k, j] · cos(ξ[k]− ξ[j])− Mnc −Mcr

MT

(
g[k, j] · sin(ξ[k]− ξ[j])

))
34: P[i].Pc =

Mnc
MT ∑

k∈CR
∑

j∈CR

(
g[k, j] · cos(ξ[k]− ξ[j]) + b[k, j] · sin(ξ[k]− ξ[j])

)
−

35: Mcr
MT

∑k∈NC ∑j∈NC

(
g[k, j] · cos(ξ[k]− ξ[j]) + b[k, j] · sin(ξ[k]− ξ[j])

)
36: P[i].Pmax =

√
(C2 + D2)

37: P[i].v = − tan−1(C/D)

38: end for
39: return P, M

Algorithm A2 pseudocode details the function to compute the CCA of an OMIB
model. To perform correctly, this function has certain conditions over the interval angles of
the input data:

• P[i + 1].δinitial = P[i].δ f inal : the intervals are continuous, the end of an interval corre-
sponds to the beginning of the next one

• P[i].δinitial < P[i].δ f inal : the interval angles increase monotonically
• δmax ≥ PP[n].δ f inal : the post-fault intervals include the maximum angle
• δ0 ≤ PD[1].δinitial : the during-fault intervals include the initial angle

The algorithm inputs the during-fault and post-fault OMIB equivalent models. For
each period, the OMIB model includes its mechanical power, its angle at the beginning
and at the end intervals, and the terms defining its electrical power in each interval. For
ZOOMIB or COOMIB types of the OMIB equivalent, there is only one interval for each
period. The algorithm starts from an initial angle δ0. It first checks the direction of the
angular deviations. If a ‘backward-swing’ case is detected, as discussed in Section 2.4,
the algorithm negates the sign of electrical power, mechanical power, and OMIB angles.
The search for the critical clearing angle starts from the initial angle δ0 with an increment
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∆δ. With two loops, for any fault elimination angle angle δe, the algorithm searches for a
return angle δr as a δm at which the sum of the areas become negative. If a δr is found, the
algorithm increases the δe. The search continues until finding δc, as the first δe after which
for any δm ≤ δmax the sum of the areas is always positive. A ‘potentially stable case’ refers
to a case where the system stability can be maintained by removing the fault at an angle
below the identified δc. The algorithm can also identify an ‘always stable case’ at which
for δe = δ0 system is unstable, and an ‘always stable case’ at which for δe = δmax system is
stable. Algorithms A3–A5 serve Algorithm A2 as auxiliary functions.

Algorithm A2 Calculation of critical clearing angle of an OMIB model
CCA (PD, PP)

Input
1. PD: vector of OMIB during-fault power

· PD[i].δi: initial angle of interval i: float
· PD[i].δ f : final angle of interval i: float
· PD[i].Pc: constant electrical power in interval i: float
· PD[i].Pmax: maximum electrical power in interval i: float
· PD[i].v: angle shift in interval i: float
· PD.Pm: mechanical power: float

2. PP: vector of OMIB post-fault power

· PP[i].δi: initial angle of interval i: float
· PP[i].δ f : final angle of interval i: float
· PP[i].Pc: constant electrical power in interval i: float
· PP[i].Pmax: maximum electrical power in interval i: float
· PP[i].v: angle shift in interval i: float
· PP.Pm: mechanical power: float

Output
1. dflag: presents the direction of angular deviations, ‘first-swing’ or ‘backward-swing’:

str
2. tflag: indicates the type of the case detected, ‘always stable case’, ‘always unstable

case’ or ‘potentially stable case’: str
3. δ : for a ‘potentially stable case’ δ gives the critical clearing angle, for an ‘always stable

case’ it gives δmax, and for an ‘always unstable case’ it gives δ0: float
4. δr : for a ‘potentially stable case’ δ gives the return angle, for an ‘always stable case’ it

gives δmax, and for an ‘always unstable case’ it gives δ0: float
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Algorithm A2 Cont.
Parameter

1. ∆δ : angle step size: float
2. δmax : maximum integration limit: float

1: dflag← ‘first-swing’
2: direction← 1
3: termination← False
4: δ0 ← PD[1].δi

5: Pe, Pm = compute-power(PD, δ0)
6: if Pm < Pe then
7: dflag← ‘backward-swing’
8: direction← -1
9: PD=negation(PD)

10: PP=negation(PP)

11: δ← δ0
12: δr ← δ0
13: δm ← δ + ∆δ
14: while δ < δmax & termination=False do
15: AD=compute-area (PD, δ0, δ)
16: while δm ≤ δmax & termination=False do
17: AP=compute-area(PP, δ, δm)
18: if AD + AP ≤ 0 then
19: δc=direction ·δ
20: δr=δm
21: termination← True
22: δm ← δm + ∆δ

23: end while
24: if δm > δmax then
25: if δc = δ0 then
26: tflag← ‘always unstable case’
27: δr=direction ·δ0
28: termination← True
29: Pe, Pm = compute-powers(PP, δr)
30: if Pm ≤ Pe then
31: tflag← ‘potentially stable case’
32: termination← True
33: δr=direction ·δr

34: δ← δ + ∆δ
35: δm ← δ + ∆δ

36: end while
37: if δ ≥ δmax then
38: tflag← ‘always stable case’
39: δc=direction ·δmax
40: δr=direction ·δmax

41: return dflag, tflag, δc, δr
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Algorithm A3 Finding the area between Pm and Pe for desired δa and δb

compute-area (P, δa, δb)
Input

1. P: vector of OMIB power

· P[i].δi: initial angle of interval i: float
· P[i].δ f : final angle of interval i: float
· P[i].Pc: constant electrical power in interval i: float
· P[i].Pmax: maximum electrical power in interval i: float
· P[i].v: angle shift in interval i: float
· P[i].Pm: mechanical power in interval i: float

2. δa: desired initial angle: float
3. δb: desired final angle: float

Output
1. A : area: float

1: n← length(P): number of intervals in considered period
2: j← 1
3: A← 0
4: termination← False
5: for i = 1 : n do
6: if P[i].δi ≤ δa then
7: P[i].δi ← δa
8: j← i
9: end for

10: while j ≤ n & termination=False do
11: if P[j].δ f > δb then
12: P[j].δ f ← δb
13: A+ = (P[j].Pm − P[j].Pc)(P[j].δ f − P[j].δi) + P[j].Pmax[cos(P[j].δ f − P[j].v) −

cos(P[j].δi − P[j].v)]
14: termination← True
15: A+ = (P[j].Pm − P[j].Pc)(P[j].δ f − P[j].δi) + P[j].Pmax[cos(P[j].δ f − P[j].v) −

cos(P[j].δi − P[j].v)]
16: j← j + 1
17: end while
18: return A
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Algorithm A4 Finding electrical and mechanical powers at any desired angle δ

compute-power (P, δ)
Input

1. P: vector of OMIB power

· P[i].δi: initial angle of interval i: float
· P[i].δ f : final angle of interval i: float
· P[i].Pc: constant electrical power in interval i: float
· P[i].Pmax: maximum electrical power in interval i: float
· P[i].v: angle shift in interval i: float
· P.Pm: mechanical power: float

2. δ: desired angle: float
Output

1. Pe: electrical power at the desired angle δ: float
2. Pm: mechanical power at the desired angle δ: float

1: n← length(P): number of intervals in considered period
2: j← 1
3: flag← ‘not found’
4: Pm = P.Pm
5: while j ≤ n do
6: if P[j].δi ≤ δ < P[j].δ f then
7: Pe = P[j].Pc + P[j].Pmaxsin(δ− P[j].v)
8: flag=‘found’
9: end while

10: if flag = ‘not found’ then
11: Pe = P[n].Pc + P[n].Pmaxsin(δ− P[n].v)
12: return Pe, Pm

Algorithm A5 Returning the negated values of power vector elements
negation (P)

Input
1. P: vector of OMIB power

· P[i].δi: initial angle of interval i: float
· P[i].δ f : final angle of interval i: float
· P[i].Pc: constant electrical power in interval i: float
· P[i].Pmax: maximum electrical power in interval i: float
· P[i].v: angle shift in interval i: float
· P.Pm: mechanical power: float

Output
1. P− : negated vector of power

1: for i = 1 : length(P) do
2: P−[i].Pc = −P[i].Pc
3: P−[i].Pmax = −P[i].Pmax
4: P−[i].v = −P[i].v
5: P−[i].δi = −P[i].δi

6: P−[i].δ f = −P[i].δ f

7: end for
8: P−[−1].δ f = δmax
9: P−.Pm = −P.Pm

10: return P−
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Algorithm A6 pseudocode details the function to identify a ranked list of critical
generators. The inputs are the type of identifier, the synchronous generators’ data class,
system admittance matrices, and the index of the faulted bus in the admittance matrix,
which helps to find the electrical distance to the fault.

For trajectory criterion, the algorithm uses the Trajectory function to estimate the
angles of individual generators at the observation time as the criterion. For the other two
criteria, the algorithm first calculates generators’ initial acceleration. If the criterion is
acceleration, the initial accelerations are taken as the criterion. Otherwise, the pre-fault
and post-fault distances to fault are estimated to calculate the composite criterion. Finally,
the generators for which the calculated criterion is close to that of the top generator based
on a predefined threshold are selected as critical generators, and a sorted list of them is
outputted.

Algorithm A6 Critical machines identification

CMI (S, Ŷred
dur, Ŷred

post, Ŷ pre, Ŷ post, type, f , tobs, te)
Input

1. S: data of synchronous generators considering the classical model
· S[j].name: generator j name: str
· S[j].M: generator j inertia constant: float
· S[j].E: generator j internal voltage magnitude: float
· S[j].Pm: generator j mechanical power: float
· S[j].δi[1]: generator j initial angle of the first interval: float

2. type: type of CMI technique, ‘Acc’ for acceleration criterion, ‘Comp’ for composite
criterion and ‘Traj’ for trajectory criterion: str

3. Ŷred
dur: reduced during-fault system admittance matrix: matrix of complex numbers

4. Ŷred
post: reduced post-fault system admittance matrix: matrix of complex numbers

5. Ŷ pre: pre-fault system admittance matrix: matrix of complex numbers
6. Ŷ post: post-fault system admittance matrix: matrix of complex numbers
7. f : index of the faulted bus in system admittance matrix, set to 1 by default: int
8. tobs: observation time for the trajectory criterion, set to 0 by default: float
9. te: fault elimination time for the trajectory criterion, set to 0 by default: float

Output
1. CM: ranked set of names of synchronous generators identified as critical: set of str

Parameter
1. f0 : system base frequency: float
2. threshold : CMI threshold: float

1: CM ← ∅
2: s← length(S): number of synchronous generators
3: criterion[j]← 0, j = 1, . . . , s
4: ω0 = 2π f0
5: if type == ‘Traj’ then

6: t, S.δi, S.δ f , S.ωi, S.ω f = Trajectory(S, Ŷred
dur, Ŷred

post, te, tobs)

7: criterion = S.δ f

8: else
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9: for j = 1 : s do:

10: Pe = S[j].E ·
s

∑
k=1

(
S[k].E · |Ŷred

dur[j, k]| · cos(S[j].δi[1]− S[k].δi[1]−∠Ŷred
dur[j, k])

)
11: acc = ω0

S[j].M (S[j].Pm − Pe)

12: if type == ‘Acc’ then
13: criterion[j] = acc
14: else
15: Ẑpre = inverse of Ŷ pre

16: Ẑpost = inverse of Ŷ post

17: distpre = |Ẑpre[j, j]|+ |Ẑpre[ f , f ]| − 2|Ẑpre[j, f ]|
18: distpost = |Ẑpost [j, j]|+ |Ẑpost [ f , f ]| − 2|Ẑpost [j, f ]|
19: criterion[j] = acc

distpre+distpost

20: end for
21: for j = 1 : s do:
22: if criterion[j] > threshold ·max(criterion) then
23: append S[j].name to CM
24: end for
25: sort CM in decreasing order of criterion
26: return CM

Algorithm A7 pseudocode details the function to form different candidate CCs and
NCs. This pseudocode represents a simple method among others. For cm critical machines,
the algorithm selects cm candidate CCs composed of the first from the top, the first two
from the top, ..., up to all cm machines in the CC set. It outputs the set of candidate CCs
and the set of candidate NCs.

Algorithm A7 Critical clusters formation
CCF (S.name, CM)

Input
1. S.name: set of names of synchronous generators: set of str
2. CM: ranked set of names of synchronous generators identified as critical: set of str

Output
1. SCC: sets of CC: sets of str
2. SNC: sets of NC: sets of str

1: cm← length(CM): number of critical machines
2: for j = 1 : cm do:
3: SCC[j]=CM[1:j]
4: SNC[j]=S.name not in SCC[j]
5: end for
6: return SCC , SNC

Algorithm A8 pseudocode details the function to estimate the time associated with a
desired angle for the OMIB model. The function angle-to-time updates the time and OMIB
angular speed interval by interval up to reaching the desired time associated to the desired
angle. This function relies on Algorithm A9 pseudocode which presents the GTS function.
For each interval, this function employs the Taylor series equations to find the time and
angular speed associated to a desired angle using the interval initial values.



Energies 2021, 14, 7259 38 of 48

Algorithm A8 Finding the time and angular speed associated to a desired angle for the
OMIB model using the global Taylor series
angle-to-time (P, M, δdes, δi, ωi)

Input
1. P: OMIB power

· P[i].δi: initial angle of interval i: float
· P[i].ωi: initial angular speed of interval i: float
· P[i].Pc: constant electrical power in interval i: float
· P[i].Pmax: maximum electrical power in interval i: float
· P[i].v: angle shift in interval i: float
· P.Pm: mechanical power: float

2. M: OMIB inertia constant: float
3. δdes: OMIB desired angle: float
4. δi: initial angle for Taylor series initialization: float
5. ωi: initial angular speed for Taylor series initialization: float

Output
1. tdes: desired time at the given desired angle: float
2. ωdes: desired angular speed at the given desired angle: float

1: n← length(P): number of intervals in considered period
2: for i = 1 : n do
3: if P[i].δ f > δdes then
4: tdes, ωdes = GTS (P, M, δdes, δi, ωi, i)
5: else if i < n then
6: t[i + 1], P[i + 1].ωi = GTS (P, M, P[i + 1].δi, δi, ωi, i)
7: δi = P[i + 1].δi

8: ωi = P[i + 1].ωi

9: end for
10: return tdes, ωdes

Algorithm A10 pseudocode details the function to estimate the generators’ angle
trajectory in time. The function Trajectory updates the generator angles interval by interval
up to a final time. This function relies on the function ITS, detailed in Algorithm A11
pseudocode, which employs Taylor series equations for each individual generator to find
a desired angle and angular speed in an interval at a desired time and using the initial
values.
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Algorithm A9 Global Taylor series to find the OMIB time and angular speed associated
with a desired angle, starting from an initial angle, time and angular speed
GTS (P, M, δdes, δi, ωi, i)

Input
1. P: OMIB power

· P[i].Pc: constant electrical power in interval i: float
· P[i].Pmax: maximum electrical power in interval i: float
· P[i].v: angle shift in interval i: float
· P.Pm: mechanical power: float

2. M: OMIB inertia constant: float
3. δdes: OMIB desired angle: float
4. δi: initial angle for Taylor series initialization: float
5. ωi: initial angular speed for Taylor series initialization: float
6. i: interval number at which the Taylor series equations are initialized: int

Output
1. tdes: desired time at the given desired angle: float
2. ωdes: desired angular speed at the given desired angle: float

Parameter
1. f0: system base frequency: float

1: ω0 = 2π f0
2: Pe = P[i].Pc + P[i].Pmax · sin(δi − P[i].v)
3: dγ

dδ = −ω0
M P[i].Pmax · cos(δi − P[i].v)

4: d2γ
dδ2 = ω0

M P[i].Pmax · sin(δi − P[i].v)

5: d3γ
dδ3 = − dγ

dδ

6: dδ
dt = ω0 ·ωi

7: d2δ
dt2 = ω0

M (P.Pm − Pe)

8: d3δ
dt3 = dγ

dδ ·
dδ
dt

9: d4δ
dt4 = d2γ

dδ2 · ( dδ
dt )

2 + dγ
dδ ·

d2δ
dt2

10: d5δ
dt5 = d3γ

dδ3 · ( dδ
dt )

3 + dγ
dδ ·

d3δ
dt3 + 3 d2γ

dδ2 · d2δ
dt2 · dδ

dt

11: tdes = positive real root of
(
(δi − δdes) +

1
2

d2δ
dt2 t2 + 1

6
d3δ
dt3 t3 + 1

24
d4δ
dt4 t4)

12: ωdes = ωi +
1

ω0

( d2δ
dt2 tdes +

1
2

d3δ
dt3 tdes

2 + 1
6

d4δ
dt4 tdes

3 + 1
24

d5δ
dt5 tdes

4)
13: return tdes, ωdes

Algorithm A12 clarifies the steps of the basic scheme for estimations of CCT with
EEAC. The algorithm inputs the synchronous generators’ data, the admittance matrices, the
type of the OMIB equivalent which can be of the ZOOMIB or COOMIB type for the basic
EEAC, the type of CMI, and the index of the faulted bus if the CMI criterion is ’composite’.
Besides the inputs, the algorithm also requires certain parameters: system base frequency
as a constant parameter, and variable parameters including CMI threshold, angle step size,
and maximum integration limit for CCA function. The algorithm starts by identifying
the critical generators and forming a set of cm CCs (SCC) and a set of NCs (SNC). It then
evaluates each pair of CC and NC. For each pair it first forms the pre-fault, during-fault
and post-fault OMIB equivalents. The initial angle δ0 is defined as the intersection point of
the pre-fault OMIB electrical power and the mechanical power. Then, the boundaries of
the OMIB equivalents of during-fault and post-fault states are set to δ0 and δmax.
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Algorithm A10 Finding synchronous generators’ angle trajectory in time using an individ-
ual Taylor series

Trajectory (S,Ŷred
dur,Ŷred

post,te,tend)
Input

1. S: data of synchronous generators considering the classical model
· S[j].M: generator j inertia constant: float
· S[j].E: generator j internal voltage magnitude: float
· S[j].Pm: generator j mechanical power: float
· S[j].δi[1]: generator j initial angle of the first interval: float

2. Ŷred
dur: reduced during-fault system admittance matrix: matrix of complex numbers

3. Ŷred
post: reduced post-fault system admittance matrix: matrix of complex numbers

4. te: fault elimination time: float
5. tend: end of trajectory time span: float

Output
· S.δ f : generators’ final angle of all intervals: vectors of float
· S.ω f : generators’ final angular speed of all intervals: vectors of float
· S.δi: generators’ initial angle of all intervals: vector of float
· S.ωi: generators’ initial angular speed of all intervals: vectors of float
· t: intervals time instants: vectors of float

Parameter
1. d: number of during-fault period intervals: int
2. p: number of post-fault period intervals: int

1: t[1]← 0
2: s← length(S): number of synchronous generators
3: S[j].ωi[1]← 0, j = 1, . . . , s
4: for i = 1 : d do
5: t[i + 1] = t[i] + te/d
6: S[j].δ f [i], S[j].ω f [i] = ITS(S,Ŷred

dur,t[i + 1],i)
7: S[j].δi[i + 1]← S[j].δ f [i], j = 1, . . . , s
8: S[j].ωi[i + 1]← S[j].ω f [i], j = 1, . . . , s
9: end for

10: for i = d + 1 : d + p do
11: t[i + 1] = t[i] + (tend − te)/p
12: S[j].δ f [i], S[j].ω f [i] = ITS(S,Ŷred

post,t[i + 1],i)
13: S[j].δi[i + 1]← S[j].δ f [i], j = 1, . . . , s
14: S[j].ωi[i + 1]← S[j].ω f [i], j = 1, . . . , s
15: end for
16: return S.δi, S.δ f , S.ωi, S.ω f , t
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Algorithm A11 Individual Taylor series to find generators’ angle and angular speed at a
desired time, starting from an initial angle and angular speed

ITS (S,Ŷred
,tdes,i)

Input
1. S: data of synchronous generators considering the classical model

· S[j].M: generator j inertia constant: float
· S[j].E: generator j internal voltage magnitude: float
· S[j].Pm: generator j mechanical power: float
· S[j].δi[i]: generator j initial angle of interval i: float
· S[j].ωi[i]: generator j initial angular speed of interval i: float

2. Ŷred
: reduced system admittance matrix: matrix of complex numbers

3. tdes: desired time: float
4. i: interval number at which the Taylor series equations are initialized: int

Output
· δdes: synchronous generators’ angle at the given desired time: vector of float
· ωdes: synchronous generators’ angular speed at the given desired time: vector of float

Parameter
1. f0: system base frequency: float

1: s← length(S): number of synchronous generators
2: ω0 = 2π f0
3: for j = 1 : s do:

4: Pe = S[j].E ·
s

∑
k=1

(
S[k].E · |Ŷred

[j, k]| · cos(S[j].δi[i]− S[k].δi[i]−∠Ŷred
[j, k])

)
5: dγ

dδ = ω0
S[j].M S[j].E ·

s

∑
k=1

(
S[k].E · |Ŷred

[j, k]| · sin(S[j].δi[i]− S[k].δi[i]−∠Ŷred
[j, k])

)
6: d2γ

dδ2 = ω0
S[j].M S[j].E ·

s

∑
k=1

(
S[k].E · |Ŷred

[j, k]| · cos(S[j].δi[i]− S[k].δi[i]−∠Ŷred
[j, k])

)
7: d3γ

dδ3 = − dγ
dδ

8: dδ
dt = ω0 · S[j].ωi[i]

9: d2δ
dt2 = ω0

S[j].M (S[j].Pm − Pe)

10: d3δ
dt3 = dγ

dδ ·
dδ
dt

11: d4δ
dt4 = d2γ

dδ2 · ( dδ
dt )

2 + dγ
dδ ·

d2δ
dt2

12: d5δ
dt5 = d3γ

dδ3 · ( dδ
dt )

3 + dγ
dδ ·

d3δ
dt3 + 3 d2γ

dδ2 · d2δ
dt2 · dδ

dt

13: δdes[j] = S[j].δi[i] + dδ
dt tdes + 1

2
d2δ
dt2 tdes2

+ 1
6

d3δ
dt3 tdes3

+ 1
24

d4δ
dt4 tdes4

14: ωdes[j] = S[j].ωi[i] + 1
ω0

( d2δ
dt2 tdes + 1

2
d3δ
dt3 tdes2

+ 1
6

d4δ
dt4 tdes3

+ 1
24

d5δ
dt5 tdes4)

15: end for
16: return δdes, ωdes

Having the OMIB equivalents defined within δ0 to δmax, CCA is applied to find the
CCA and the return angle of the pair under consideration. Then, tc and ωc are calculated
as the time to reach δc from δ0, and the angular speed at δc. Similarly, tr and ωr can be
calculated as the time to reach δr from δc, and the angular speed at δr. After repeating these
steps for each pair, the true CC and the true NC are identified as the ones with minimum
tc. The algorithm finally returns the CCT, the identified clusters, the CCA and the angular
speed, and the observation time as the time to reach δr from δ0.

Algorithm A13 clarifies the steps of the third refinement scheme for estimations of
CCT with EEAC. The steps of the other two refinement schemes are not presented due to
their similarity.
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Algorithm A12 Basic scheme for EEAC

basic-eeac (S, Ŷred
dur, Ŷred

post, Ŷ pre, Ŷ post, typeOMIB, typeCMI , f )
Input

1. S: data of synchronous generators considering the classical model
· S[j].name: generator j name: str
· S[j].M: generator j inertia constant: float
· S[j].E: generator j internal voltage magnitude: float
· S[j].Pm: generator j mechanical power: float
· S[j].δi: generator j initial angle: float

2. Ŷred
dur: reduced during-fault system admittance matrix: matrix of complex numbers

3. Ŷred
post: reduced post-fault system admittance matrix: matrix of complex numbers

4. Ŷ pre: pre-fault system admittance matrix: matrix of complex numbers
5. Ŷ post: post-fault system admittance matrix: matrix of complex numbers
6. typeOMIB: type of OMIB equivalent model, ‘ZOOMIB’ for zero offset OMIB, and

‘COOMIB’ for constant offset OMIB: str
7. typeCMI : type of CMI technique, ‘Acc’ for acceleration criterion, and ‘Comp’ for

composite criterion: str
8. f : index of the faulted bus in system admittance matrix for ’composite’ CMI, set to 1

by default: int
Output

1. CCT: critical clearing time: float
2. CC: set of names of synchronous generators identified as critical: set of str
3. NC: set of names of synchronous generators identified as non-critical: set of str
4. δc: OMIB critical clearing angle: float
5. ωc: OMIB angular speed at critical clearing angle: float
6. tobs: observation time (the time to reach the return angle): float

Parameter
1. f0: system base frequency: float
2. threshold: CMI threshold: float
3. ∆δ: angle step size: float
4. δmax: OMIB maximum integration limit: float

1: s← length(S): number of synchronous generators

2: CM = CMI (S, Ŷred
dur, Ŷred

post, Ŷ pre, Ŷ post, ‘Acc’)
3: SCC, SNC = CCF (S.name, CM)
4: cm← length(CM): number of critical sets
5: for k = 1 : cm do
6: CC = SCC[k]
7: NC = SNC[k]
8: PO, M = OMIB (S, Ŷ pre

red , CC, NC, ‘ZOOMIB’)

9: PD, M = OMIB (S, Ŷdur
red , CC, NC, ‘ZOOMIB’)

10: PP, M = OMIB (S, Ŷ post
red , CC, NC, ‘ZOOMIB’)

11: δ0 = sin−1(PO [1].Pm−PO [1].Pc
PO [1].Pmax

)
+ PO[1].v

12: PD[−1].δ f = δmax
13: PP[−1].δ f = δmax
14: PD[1].δi = δ0
15: PP[1].δi = δ0
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16: dflag, tflag, δc[k], δr [k] = CCA (PD, PP)
17: tc[k], ωc[k]=angle-to-time (PD, M, δc[k], δ0, 0)
18: tr [k], ωr [k]=angle-to-time (PP, M, δr [k], δc[k], ωc[k])
19: end for
20: CCT = min(tc)
21: index = index of CCT in tc
22: True-CC= SCC[index]
23: True-NC= SNC[index]
24: δc = δc[index]
25: ωc = ωc[index]
26: tr = tr [index]
27: tobs = CCT + tr
28: return CCT, True-CC, True-NC, δc , ωc, tobs

Algorithm A13 Third refinement scheme for EEAC
refinement-3 (CCT, CC, NC, δc, ωc, tobs)

Input
1. CCT: critical clearing time: float
2. CC: set of names of synchronous generators identified as critical: set of str
3. NC: set of names of synchronous generators identified as non-critical: set of str
4. δc: OMIB critical clearing angle: float
5. ωc: OMIB angular speed at critical clearing angle: float
6. tobs: observation time (the time to reach the return angle): float

Output
1. CCT: critical clearing time: float
2. CC: set of names of synchronous generators identified as critical: set of str
3. NC: set of names of synchronous generators identified as non-critical: set of str
4. δc: OMIB critical clearing angle: float
5. ωc: OMIB angular speed at critical clearing angle: float
6. tobs: observation time (the time to reach the return angle): float

Parameter
1. f0: system base frequency: float
2. threshold: CMI threshold: float
3. ∆δ: angle step size: float
4. δmax: OMIB maximum integration limit: float
5. d: number of during-fault intervals for DOMIB or for generators’ angle trajectory

calculation: float
6. p: number of OMIB post-fault intervals for DOMIB or for generators’ angle trajectory

calculation: float
1: s← length(S): number of synchronous generators

2: CM = CMI (S, Ŷred
dur, Ŷred

post, Ŷ pre, Ŷ post, ‘Traj’ , tobs)
3: SCC, SNC = CCF (S.name, CM)
4: cm← length(CM): number of critical sets
5: for k = 1 : cm do
6: CC = SCC[k]
7: NC = SNC[k]
8: PO, M = OMIB (S, Ŷ pre

red , CC, NC, ‘ZOOMIB’)

9: PD, M = OMIB (S, Ŷdur
red , CC, NC, ‘ZOOMIB’)
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Algorithm A13 Cont.

10: PP, M = OMIB (S, Ŷ post
red , CC, NC, ‘ZOOMIB’)

11: δ0 = sin−1(PO [1].Pm−PO [1].Pc
PO [1].Pmax

)
+ PO[1].v

12: PD[−1].δ f = δmax
13: PP[−1].δ f = δmax
14: PD[1].δi = δ0
15: PP[1].δi = δ0
16: dflag, tflag, δc, δr = CCA (PD, PP)
17: tc, ωc=angle-to-time (PD, M, δc, δ0, 0)
18: tr, ωr=angle-to-time (PP, M, δr, δc, ωc)
19: tobs = tc + tmax

20: S.δi, S.δ f , S.ωi, S.ω f , t = Trajectory (S,Ŷred
dur,Ŷred

post,tc,tobs)

21: PO, M = OMIB (S, Ŷ pre
red , CC, NC, ‘COOMIB’)

22: PD, M = OMIB (S, Ŷdur
red , CC, NC, ‘DOMIB’, (1, d))

23: PP, M = OMIB (S, Ŷ post
red , CC, NC, ‘DOMIB’, (d + 1, d + p))

24: δ0 = sin−1(PO [1].Pm−PO [1].Pc
PO [1].Pmax

)
+ PO[1].v

25: PD[−1].δ f = δmax
26: PP[−1].δ f = δmax
27: PD[1].δi = δ0
28: PP[1].δi = δ0
29: dflag, tflag, δc[k], δr [k] = CCA (PD, PP)
30: tc[k], ωc[k]=angle-to-time (PD, M, δc[k], δ0, 0)
31: tr [k], ωr [k]=angle-to-time (PP, M, δr [k], δc[k], ωc[k])
32: end for
33: CCT = min(tc)
34: index = index of CCT in tc
35: True-CC= SCC[index]
36: True-NC= SNC[index]
37: δc = δc[index]
38: ωc = ωc[index]
39: tr = tr [index]
40: tobs = CCT + tr
41: return CCT, True-CC, True-NC, δc , ωc, tobs

Appendix C. Taylor Series Expansion

The following subsections provide the Taylor series equations for the OMIB equivalent
model and for an individual generator.

Appendix C.1. Taylor Series for OMIB Equivalent

A Taylor series is a series expansion of a function about a point. A one-dimensional
Taylor series of a differentiable function f (x) about a point x = a is given by:

f (x) = f (a) +
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 +
f ′′′(a)

3!
(x− a)3 + ... (A19)

The series is employed to relate the rotor angle evolution of OMIB model with time.
Forming the Taylor series about an initial angle δi (corresponding to time ti) and truncating
it after the t4 term yields:

δ(t) = δ

∣∣∣∣
ti
+

dδ

dt

∣∣∣∣
ti

t +
1
2

d2δ

dt2

∣∣∣∣
ti

t2 +
1
6

d3δ

dt3

∣∣∣∣
ti

t3 +
1

24
d4δ

dt4

∣∣∣∣
ti

t4 (A20)



Energies 2021, 14, 7259 45 of 48

This polynomial equations can help to estimate the time to reach a predefined angle
from δi. The derivatives of δ with respect to time can be obtained as follows:

dδ

dt

∣∣∣∣
ti
= ω0ω

∣∣∣∣
ti

(A21)

d2δ

dt2

∣∣∣∣
ti
= γ

∣∣∣∣
ti
=

ω0

M
(Pm − Pe

∣∣∣∣
ti
) (A22)

d3δ

dt3

∣∣∣∣
ti
=

dγ

dt

∣∣∣∣
ti
=

dγ

dδ

∣∣∣∣
ti
(

dδ

dt

∣∣∣∣
ti
) (A23)

d4δ

dt4

∣∣∣∣
ti
=

d2γ

dt2
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ti
=

d2γ

dδ2
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ti
(

dδ

dt

∣∣∣∣
ti
)2 + γ

∣∣∣∣
t=ti

dγ

dδ
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ti

(A24)

where, by considering the sinusoidal form of Equation 14 for Pe, we have:

dγ

dδ

∣∣∣∣
ti
= −ω0

M
Pmaxcos(δ

∣∣∣∣ti − v)

d2γ

dδ2

∣∣∣∣
ti
=

ω0

M
Pmaxsin(δ

∣∣∣∣
ti
− v)

At ti = 0+, the angular speed ω = 0 and the polynomial of Equation (A20) can be
solved to estimate the time to reach a predefined angle from δi. However, as can be seen in
Equation (A21), for the next time intervals, ω should also be estimated. This can be done
by forming a Taylor series for ω:

ω(t) = ω

∣∣∣∣
ti
+

dω

dt
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ti

t +
1
2

d2ω

dt2

∣∣∣∣
ti

t2 +
1
6

d3ω

dt3

∣∣∣∣
ti

t3 +
1

24
d4ω

dt4

∣∣∣∣
ti

t4 (A25)

The derivatives of ω with respect to time can be obtained as follows:

dω

dt

∣∣∣∣
ti
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1
ω0

γ
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ti
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) (A26)
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where dγi
dδ

∣∣∣∣
t=ta

and d2γi
dδ2

∣∣∣∣
t=ta

can be calculated using the equations below Equations (A24)

and d3γ
dδ3

∣∣∣∣
ti
= − dγ

dδ

∣∣∣∣
ti

.

To obtain the evolution of OMIB δ and ω with time, Equations (A20) and (A25) should
be updated together. The obtained values at each time instant should be employed to
initialize the Taylor series for the next time step.
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Appendix C.2. Taylor Series for an Individual Generator

Expanding the Taylor series about the generator k initial angle δk, at time ti, and
truncating it after the t4 term, we have:

δk(t) = δk

∣∣∣∣
ti
+

dδk
dt
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1
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d2δk
dt2
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1
6

d3δk
dt3
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ti

t3 +
1

24
d4δk
dt4
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ti

t4 (A30)

The derivatives of δk can be obtained as follows:

dδk
dt
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(A31)
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where, considering the classical model for synchronous generators we have:

Pek
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ti
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n
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[EkEjyijcos(δk
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where n is the number of generators.
At ti = 0+, the angular speed ωk = 0 and the polynomial of Equation (A30) can be

solved to estimate δk for the next time instant. However, to obtain the generator angles for
the next intervals, the generators’ angular speed at their initial time needs to be estimated.
The Taylor series expansion of ωk can be formed to obtain the evolution of each generator
angular speed with time:

ωk(t) = ωk
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The derivatives of ωk can be obtained as follows:
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where dγk
dδ

∣∣∣∣
ti

and d2γk
dδ2

∣∣∣∣
ti

can be calculated as described below Equation (A34) and d3γk
dδ3

∣∣∣∣
ti
=

− dγk
dδ

∣∣∣∣
ti

.

To obtain the evolution of δk and ωk with time, Equations (A30) and (A35) should be
updated together. The obtained values at each time instant should be employed to initialize
the Taylor series for the next time step.
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