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Abstract		

Attending	to	emotional	stimuli	is	often	beneficial,	because	they	provide	important	social	

and	environmental	cues.	Sometimes,	however,	current	goals	require	that	we	ignore	them.	

To	what	extent	can	we	control	emotional	distraction?	Here	we	show	that	the	ability	to	

ignore	emotional	distractions	depends	on	the	type	of	cognitive	control	that	is	engaged.	

Participants	completed	a	simple	perceptual	task	at	fixation	while	irrelevant	images	

appeared	peripherally.	In	two	experiments,	we	manipulated	the	proportion	of	trials	in	which	

images	appeared,	in	order	to	encourage	use	of	either	reactive	control	(rare	distractors)	or	

proactive	control	(frequent	distractors).	Under	reactive	control,	both	negative	and	positive	

images	were	more	distracting	than	neutral	images,	even	though	they	were	irrelevant	and	

appeared	in	unattended	locations.	However,	under	proactive	control,	distraction	by	both	

emotional	and	neutral	images	was	eliminated.	Proactive	control	was	triggered	by	the	

meaning,	and	not	the	location,	of	distracting	images.	Our	findings	argue	against	simple	

bottom-up	or	top-down	explanations	of	emotional	distraction,	and	instead	show	how	the	

flexible	use	of	cognitive	control	supports	adaptive	processing	of	emotional	distractors.	

Keywords:	Attention;	Emotion;	Cognitive	Control;	Distraction;	Frequency	
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Contrasting	Reactive	and	Proactive	Control	of	Emotional	Distraction		

Emotional	stimuli	are	important.	They	signal	potential	threats	and	rewards	and	so	

guide	adaptive	behaviour.	Perceptual	and	attentional	systems	prioritize	them,	as	

demonstrated	through	behavioural,	electrophysiological	and	neuroimaging	research	(for	

reviews	see	Carretié,	2014;	Okon-Singer,	Lichtenstein-Vidne,	&	Cohen,	2013;	Pourtois,	

Schettino,	&	Vuilleumier,	2013;	Yiend,	2010).	But	sometimes	we	need	to	ignore	an	

emotional	stimulus	so	we	can	get	on	with	the	task	at	hand.	We	might	need	to	block	out	a	

scowling	face	to	maintain	our	goal	of	giving	a	good	talk,	or	ignore	an	attractive	classmate	to	

concentrate	on	a	lecture.	Emotional	distractions	plague	us	all,	and	in	disorders	such	as	

depression,	anxiety,	and	addiction,	they	can	be	overwhelming	(Cisler	&	Koster,	2010;	De	

Raedt	&	Koster,	2010;	Field	&	Cox,	2008).	Non-emotional	distractors	are	known	to	disrupt	

performance	(Forster	&	Lavie,	2008a,2008b,	2016),	but	they	can	also	be	controlled	if	we	

know	to	expect	them	(Braver,	2012;	Müller,	Geyer,	Zehetleitner	&	Krummenacher,	2009)	

Can	we	ever	control	emotional	distractions	as	effectively	as	those	that	are	more	mundane?		

Cognitive	Control	of	Non-emotional	Distraction	

In	non-emotional	contexts,	entirely	irrelevant	stimuli	can	disrupt	performance	

(Forster	&	Lavie,	2008a,	2008b,	2016).	For	example,	Forster	and	Lavie	(2008a)	describe	an	

irrelevant	flanker	paradigm	in	which	participants	complete	a	letter	discrimination	task	near	

fixation,	while	irrelevant	images	(cartoon	characters)	appear	peripherally.	Even	when	the	

images	are	completely	task-irrelevant	and	appear	in	non-target	locations,	they	can	disrupt	

performance	(Forster	&	Lavie,	2008a,	2016)	as	long	as	the	participant’s	task	is	perceptually	

simple	(i.e.,	low	load;	Forster	&	Lavie,	2008b).	Even	under	low	load,	distraction	is	not	

obligatory,	though;	distractors	are	also	less	disruptive	when	they	appear	more	frequently.	In	
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Forster	and	Lavie’s	(2008a)	experiment,	images	were	significantly	less	distracting	when	they	

appeared	on	50%	compared	to	10%	of	trials.	Even	more	striking	distractor	frequency	effects	

can	be	seen	in	a	visual	search	paradigm	in	which	a	salient	distractor	singleton	is	presented	

on	a	proportion	of	trials.	Geyer	and	colleagues	(Geyer,	Müller	&	Krummenacher,	2008)	

report	that	salient	singletons	cause	distraction	when	they	appear	on	20%	or	50%	of	trials,	

but	distraction	is	completely	eliminated	when	they	appear	on	80%	of	trials,	despite	the	

singletons	being	more	salient	than	the	target	(Müller	et	al.,	2009).	Finally,	in	a	set	of	spatial	

cueing	experiments,	distractors	in	unattended	locations	slowed	responses	when	they	

appeared	rarely	(on	less	than	20%	of	trials)	but	not	when	they	appeared	frequently	(on	75%	

of	trials;	Neo	&	Chua,	2006).		

These	frequency	effects	are	analogous	to	those	seen	in	other	types	of	conflict	tasks,	

such	as	traditional	Stroop	or	flanker	tasks,	in	which	the	distracting	information	shares	

features	with	the	target	and	so	can	create	response	conflict.	In	such	tasks,	performance	

improves	when	the	proportion	of	conflict	trials	increases	–	an	effect	that	has	been	

attributed	to	increased	cognitive	control	when	conflicts	are	expected	(Botvinick,	Braver,	

Barch,	Carter,	&	Cohen,	2001;	Dishon-Berkovits	&	Algom,	2000;	see	reviews	in	Bugg,	2012;	

Bugg	&	Crump,	2012).	The	Dual	Mechanisms	of	Control	(DMC)	model	(Braver,	2012;	Braver,	

Gray	&	Burgess,	2007;	Braver,	Paxton,	Locke,	&	Barch,	2009)	provides	a	useful	framework	in	

which	to	interpret	the	effect	of	distractor	frequency	on	cognitive	control.	The	model	

proposes	that	people	fluctuate	between	reactive	and	proactive	modes	of	control	to	

maintain	goal-relevant	processing	when	conflicts	arise.	Reactive	control	processes	are	those	

that	occur	to	resolve	conflict	after	it	has	been	detected;	in	contrast,	proactive	control	

optimizes	control	settings	to	prevent	conflict	before	it	occurs.	Proactive	strategies	are	more	

effective,	but	they	are	resource-intensive.	Therefore,	the	model	holds	that	reactive	control	
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is	the	default	mode,	but	proactive	control	will	be	used	when	there	are	sufficient	benefits	or	

incentives	available	–	for	example,	when	frequent	distractors	are	expected,	or	when	

rewards	are	available	for	good	performance.	

Although	the	DMC	framework	is	often	invoked	to	explain	response-level	conflict	that	

can	occur	in	Stroop	or	flanker	tasks,	the	principles	of	reactive	and	proactive	control	apply	

across	“attention,	perception,	and	action	systems”	(Braver,	2012,	pp.	106).	In	the	context	of	

an	irrelevant	distractor	task,	reactive	control	comprises	mechanisms	that	occur	after	a	

distractor	has	been	selected,	such	as	disengagement.	In	contrast,	proactive	control	

mechanisms	act	prior	to	stimulus	onset,	altering	attentional	control	settings	to	enhance	the	

processing	of	targets	and/or	suppress	the	processing	of	distractors	(see	Geng,	2014	for	

further	discussion	of	reactive	and	proactive	control	of	distraction).	A	similar	explanation	for	

control	of	distractors	is	provided	by	Müller	and	colleagues,	who	describe	the	effects	of	

distractor	frequency	in	terms	of	a	Dimensional	Weighting	Account	(DWA;	Müller,	Heller	&	

Ziegler,	1995)	whereby	frequent	distractors	create	an	incentive	to	institute	effortful	top-

down	control	to	suppress	them1.		

The	Current	Study	

We	describe	here	two	experiments	that	were	conducted	to	determine	whether,	and	

how,	proactive	control	can	be	used	to	effectively	reduce	or	eliminate	distraction	from	

emotional	images.	We	used	the	irrelevant	distractor	paradigm	introduced	by	Forster	and	

Lavie	(2008a)	because	it	has	been	shown	to	produce	sizeable	and	robust	distraction	from	

task-irrelevant,	emotionally-neutral	distractors	(Forster	&	Lavie,	2008a,	2016),	and	therefore	
																																																													
1	It	is	not	our	intention	to	discriminate	between	the	DMC	and	DWA	models	of	cognitive	
control,	as	both	entail	similar	mechanisms.	We	focus	on	the	DMC	framework	because	it	is	a	
broader	theory	that	seeks	to	explain	cognitive	control	across	a	range	of	contexts,	but	our	
predictions	could	also	be	derived	from	the	DWA.	
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has	the	potential	to	enable	comparison	of	emotional	and	neutral	distraction.	We	thus	

modified	the	paradigm	by	including	both	emotional	and	non-emotional	distractor	images.	

We	manipulated	the	frequency	with	which	distractors	appear	to	encourage	the	use	of	either	

reactive	or	proactive	control.		

Although	frequent	distractors	are	expected	to	engage	proactive	control	in	non-

emotional	contexts,	it	is	not	clear	if	the	same	should	apply	when	distractors	are	emotional.	

The	potential	for	emotional	stimuli	to	attract	or	capture	attention	has	been	demonstrated	in	

emotional	Stroop	(Phaf	&	Khan,	2007),	dot-probe	(Mogg,	Bradley,	De	Bono,	&	Painter,	

1997),	visual	search	(Öhman,	Flykt,	&	Esteves,	2001),	and	spatial	cueing	tasks	(Fox,	Russo,	&	

Dutton,	2002);	and	their	competitive	advantage	has	been	attributed	to	emotion-specific	

gain	control	mechanisms	that	are	at	least	partly	independent	of	classical	bottom-up	and	

top-down	attentional	mechanisms	(Pourtois	et	al.,	2013;	Viviani,	2013).	Indeed,	some	

authors	have	argued	that	attention	to	emotional	stimuli	might	be	“impenetrable	to	

cognitive	control”	(Öhman	&	Mineka,	2001,	p.	483;	see	also	Aue,	Geux,	Chauvigné	&	Okon-

Singer	2013;	Aue,	Chauvigné,	Bristle,	Okon-Singer,	&	Geux,	2016),	meaning	that	top-down	

processes	might	fail	to	regulate	responses	to	emotional	distractors.	Pessoa	(2009)	has	

further	argued	that	the	processing	of	high	arousal	emotional	stimuli	draws	on	“common	

pool	resources”	–	the	same	resources	that	are	recruited	for	executive	control	–	and	can	

therefore	disrupt	the	recruitment	of	control	processes.	If	so,	increasing	distractor	frequency	

may	not	engender	the	same	shift	to	more	effective	proactive	control	for	emotional	stimuli	

as	it	does	for	neutral	ones.	

A	further	question,	which	we	address	in	both	experiments,	concerns	the	effects	of	

valence	on	emotional	distraction.	Although	research	on	emotional	attention	is	dominated	
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by	the	study	of	negative	(specifically	threat-related)	stimuli,	positive	and	negative	images	

are	equally	engaging	when	equated	for	arousal	and	biological	relevance	(e.g.,	Most,	Smith,	

Cooter,	Levy,	&	Zald,	2007;	Vogt,	De	Houwer,	Koster,	Van	Damme,	&	Crombez,	2008).	We	

therefore	expected	they	would	be	equally	distracting	when	distractors	are	rare.	However,	

positive	and	negative	distraction	might	not	be	equally	well	controlled	when	distractors	are	

frequent.	Proactive	control	is	subject	to	motivational	factors	(Botvinick	&	Braver,	2015;	

Chiew	&	Braver,	2011),	and	because	positive	images	are	inherently	rewarding,	participants	

might	be	less	motivated	(or	less	able)	to	control	the	distraction	they	cause	than	they	are	

with	negative	images	(Gupta	et	al.,	2015;	Pearson,	Donkin,	Tran,	Most,	&	Le	Pelly,	2015).	If	

so,	then	positive	images	would	be	expected	to	cause	more	distraction	than	negative	images	

under	high	distractor	frequency.	

EXPERIMENT	1	

	 The	goals	of	Experiment	1	were	twofold.	Our	primary	goal	was	to	determine	the	

effect	of	distractor	frequency	(a	manipulation	of	cognitive	control)	on	both	emotional	

(positive	and	negative)	and	non-emotional	distraction.	To	that	end,	half	our	participants	

were	presented	with	distractor	images	on	25%	of	trials	(encouraging	reactive	control),	and	

half	were	presented	with	distractor	images	on	75%	of	trials	(encouraging	proactive	control).		

We	additionally	used	this	experiment	to	ensure	that	emotional	images	were	more	

distracting	than	neutral	images,	at	least	when	they	appeared	infrequently	(that	is,	under	

reactive	control	conditions).	Although	emotional	stimuli	are	commonly	claimed	to	demand	

attention,	some	studies	have	shown	that	they	do	not	do	so	when	they	are	task-irrelevant	

and	appear	in	non-target	locations	(Lichtenstein-Vidne,	Henik,	&	Safadi,	2007;	Okon-Singer,	

Tzelgov,	&	Henik,	2007;	Vromen,	Lipp,	&	Remington,	2015).	Given	that	we	are	concerned	
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with	the	effect	of	cognitive	control	manipulations	on	emotional	distraction,	it	is	important	

that	such	distraction	be	observed.		

Method	

Participants	

Participants	in	both	experiments	were	fluent	English	speakers	with	normal	or	

corrected	vision.	They	received	course	credits	or	movie	vouchers	in	exchange	for	their	

participation.	The	Human	Ethics	Committee	at	Victoria	University	of	Wellington	approved	

the	experiments.		

As	these	are	the	first	experiments	to	use	emotional	pictures	with	the	peripheral	

distractor	paradigm	(see	Stimuli	and	Procedure,	below),	we	had	no	prior	effect	size	to	use	in	

a	power	analysis.	We	therefore	used	data	from	a	pilot	experiment	(N	=	76;	none	of	whom	

participated	in	the	other	experiments	reported	here)	in	which	distractors	were	present	on	

50%	of	trials	to	estimate	the	sample	size	required	to	detect	emotional	distraction	(that	is,	

greater	distraction	from	emotional	than	from	neutral	images).	The	effect	size	of	emotional	

distraction	in	the	pilot	experiment	(dz	=	0.38)	indicated	44	participants	per	condition	to	

achieve	power	of	.80	to	observe	an	emotional	distraction	effect.	For	counterbalancing	

purposes,	we	ran	96	participants	(64	female;	mean	age	19.08	years,	SD	=	1.70)	who	were	

randomly	assigned	to	either	the	low	distractor	frequency	(N	=	48)	or	high	distractor	

frequency	(N	=	48)	condition.		

Stimuli	and	Procedure	

Participants	sat	in	a	dimly-lit	room,	in	separate	cubicles	(up	to	four;	participants	

could	not	see	each	other	or	any	screen	but	their	own),	viewing	24”	AOC	monitors	(refresh	
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rate	120	Hz,	resolution	of	1920	x	1080	pixels)	from	a	distance	of	57	cm.	Head	position	was	

stabilized	by	a	chin-rest.	Stimulus	presentation	and	response	collection	were	controlled	by	

Dell	Precision	T1700	computers,	using	E-prime	2.0	software	(Psychology	Software	Tools,	

Pittsburgh	PA).	

Visual	stimuli	were	presented	on	a	black	background.	Each	trial	began	with	a	white	

fixation	cross	at	the	center	of	the	screen	(random	duration	between	416	and	833	ms),	which	

was	replaced	by	the	100	ms	task	display	consisting	of	six	white	letters	arranged	in	a	circle	

around	fixation	(radius	1.75°).	A	target	letter	(“X”	or	“N”;	height	0.67°,	width	0.36°)	

appeared	in	one	location;	small	“o”s	(0.22°	x	0.22°)	occupied	the	other	five	locations.	On	a	

proportion	of	trials	(25%	or	75%,	depending	on	condition),	a	peripheral	distractor	image	

(6.68°	x	6.68°,	centered	at	6.68°	eccentricity)	was	presented	simultaneously	above	or	below	

the	letter	display.	Distractors	were	12	negative	(mutilations),	12	positive	(erotic	couples),	

and	12	neutral	(always	depicting	people)	images	selected	from	the	International	Affective	

Picture	System	(IAPS;	Lang,	Bradley,	&	Cuthbert,	2008)	(Figure	1).	Positive	and	negative	

images	were	chosen	to	be	similarly	high	in	arousal.	Because	there	are	sex	differences	in	

ratings	of	erotic	and	mutilation	images	(Lang	et	al.,	2008),	stimulus	sets	differed	slightly	for	

male	and	female	participants	to	ensure	similar	valence	and	arousal	ratings	overall	(Table	1).	

Images	were	matched	for	luminance	and	contrast	using	the	Shine	image	toolbox	in	Matlab	

(Willenbockel	et	al.,	2010).		

Participants	responded	during	a	1900	ms	window	following	stimulus	offset,	using	a	

key	press	to	indicate	which	letter	had	been	presented.	Participants	used	index	and	middle	

fingers	of	their	right	hand	to	press	“1”	and	“2”	(for	“X”	and	“N”,	respectively)	on	the	

keyboard’s	number	pad.	They	were	instructed	to	respond	as	quickly	as	possible	without	
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sacrificing	accuracy,	and	to	ignore	any	peripheral	images.	The	1900	ms	response	window	

elapsed	regardless	of	whether	a	response	was	made;	participants	then	received	visual	

feedback	for	100	ms	(“correct”	or	“incorrect”,	as	appropriate).	A	variable	inter-trial	interval	

(ITI),	equal	to	the	trial’s	initial	fixation	cross	duration,	preceded	the	next	trial.	

Participants	completed	8	blocks	of	48	trials,	each	consisting	of	four	repetitions	of	the	

12	possible	combinations	of	two	target-letters	(i.e.	“X”	or	“N”)	and	six	target	locations	

within	the	letter	array.	On	distractor-present	trials,	IAPS	images	were	randomly	presented	

above	or	below	the	display,	with	the	nearest	edge	appearing	3.34°	from	fixation.	Within	a	

block,	all	images	were	of	the	same	valence.	In	the	25%	condition	each	of	the	12	distractor	

images	was	presented	once	in	each	block;	in	the	75%	condition	each	distractor	image	was	

presented	three	times	in	each	block.	Trials	within	a	block	were	randomized	with	the	

constraint	that	all	12	images	were	presented	before	they	repeated.	The	eight	blocks	were	

separated	into	two	super-blocks	that	were	separated	by	a	5-minute	filler	task	(Sudoku).	In	

one	super-block,	the	sub-blocks	were	negative	and	neutral	(presented	in	ABBA	order),	and	

in	the	other	the	sub-blocks	were	positive	and	neutral	(presented	in	the	same	ABBA	order).	

Order	of	super-blocks,	and	of	sub-blocks	within	super-blocks,	were	counterbalanced	across	

participants.	Participants	completed	12	practice	trials	without	distractors	before	the	

experimental	blocks,	to	familiarize	themselves	with	the	task.	To	encourage	participants	to	

adopt	the	intended	control	strategy	(reactive	or	proactive),	instructions	provided	at	the	

beginning	of	the	experimental	blocks	informed	them	of	the	frequency	with	which	

distractors	would	appear.	

After	the	experimental	task,	participants	completed	the	Attentional	Control	Scale	

(Derryberry	&	Reed,	2002),	the	Mini	Mood	and	Anxiety	Symptom	Questionnaire	(Casillas	&	



	

	

11	

Clark,	2000),	and	the	Kinsey	Scale	of	Sexual	Orientation	(Kinsey,	Pomeroy,	&	Martin,	1948).	

These	were	included	as	exploratory	measures	to	guide	future	research,	and	were	not	

considered	in	analyses.	

Data	Analysis	

Analyses	were	undertaken	only	after	all	data	were	collected.	Each	participant’s	mean	

response	time	(RT)	in	each	condition	was	calculated	for	correct	trials	only.	Response	times	

less	than	200	ms	from	stimulus	onset	were	excluded	as	anticipatory	responses.	The	primary	

dependent	variable	used	in	analyses	was	the	distraction	index	(calculated	in	each	block	as	

mean	RT	for	distractor-present	trials	minus	mean	RT	for	distractor-absent	trials).	Reported	

analyses	focus	on	distraction	indices	as	these	are	most	relevant	to	hypotheses;	however,	for	

completeness,	mean	accuracies,	response	times,	distraction	indices,	effect	sizes,	and	

confidence	intervals	for	all	conditions	are	reported	in	tables.	Reported	effect	sizes	for	paired	

comparisons	were	adjusted	for	the	correlation	between	measures,	yielding	effect	sizes	(drm)	

that	are	comparable	to	those	produced	in	independent	study	designs	(Cohen’s	ds;	Dunlap,	

Cortina,	Vaslow	&	Burke,	1996).	Effect	sizes	based	on	within-subject	differences	scores	(dz)	

are	used	for	sample	size	calculations.	Degrees	of	freedom	were	adjusted	for	heterogeneity	

of	variance	and	for	violations	of	sphericity	(Greenhouse-Geisser)	where	necessary.	Error	

bars	in	all	figures	are	95%	confidence	intervals,	adjusted	for	within-subject	comparisons	

(Morey,	2008)	where	appropriate.	

Results	and	Discussion	

Distraction	depended	critically	on	both	distractor	frequency	and	emotionality	(see	

Figure	2	and	Table	2).	As	predicted	by	the	DMC	model,	infrequent	images	caused	more	

distraction	than	frequent	ones;	this	was	true	for	emotional	as	well	as	neutral	images.	
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Furthermore,	although	emotional	images	were	more	distracting	than	neutral	ones	in	both	

low	and	high	frequency	conditions,	this	difference	was	substantially	attenuated	when	

distractors	were	frequent.		

These	conclusions	are	supported	statistically	by	Analysis	of	Variance	(ANOVA)	on	

distraction	indices.	Distraction	in	neutral	blocks	did	not	differ	across	the	negative	and	

positive	halves	of	the	experiment,	t(95)	=	.27,	p	>	.250,	drm	=	0.033,	so	neutral	blocks	were	

combined	to	create	one	distraction	index	for	neutral	trials.	Distraction	indices	were	then	

analysed	in	a	2-way	mixed	ANOVA	with	distractor	frequency	(low	vs.	high)	as	a	between-

subjects	factor,	and	valence	(negative,	neutral,	positive)	as	a	within-subjects	factor.	A	main	

effect	of	frequency	showed	that	overall	distraction	was	markedly	attenuated	in	the	high	

frequency	condition,	F(1,	94)	=	25.73,	p	<	.001,	ηp2	=	.215,	consistent	with	the	engagement	

of	proactive	control	when	distractors	were	expected	to	appear	frequently.	There	was	also	a	

main	effect	of	valence,	F(2,	188)	=	14.82,	p	<	.001,	ηp2	=	.136,	indicating	greater	distraction	

by	emotional	than	neutral	images.	Importantly,	frequency	interacted	with	valence,	F(2,	188)	

=	3.93,	p	=	.026,	ηp2	=	.040,	and	in	a	post-hoc	follow-up	analysis	with	the	quadratic	effect	of	

valence,	F(1,	94)	=	7.37,	p	=	.008,	ηp2	=	.0402.	In	the	low	frequency	condition,	neutral	images	

were	less	distracting	than	both	negative,	t(47)	=	3.71,	p	=	.001,	drm	=	0.532,	and	positive	

images,	t(47)	=	4.37,	p	<	.001,	drm	=	0.663,	which	did	not	differ,	t(47)	=	.10,	p	>	.250,	drm	=	

0.012.	In	the	high	frequency	condition,	neutral	images	were	also	less	distracting	than	both	

negative,	t(47)	=	2.36,	p	=	.022,	drm	=	0.501,	and	positive	images,	t(47)	=	2.35,	p	=	.023,	drm	=	

0.205,	which	did	not	differ,	t(47)	=	.18,	p	>	.250,	drm	=	0.036.	Crucially,	the	interaction	was	

driven	by	the	fact	that	the	difference	between	emotional	and	neutral	distraction	was	
																																																													
2	Because	we	entered	neutral	images	as	the	middle	level	of	the	valence	variable,	a	quadratic	
effect	was	expected	if	negative	and	positive	images	were	more	distracting	than	neutrals,	but	
did	not	differ	from	each	other.	
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significantly	attenuated	in	the	high	compared	to	the	low	frequency	condition	for	both	

negative	(15	ms	vs.	44	ms),	t(71.407)	=	2.17,	p	=	.033,	ds	=	0.443,	and	positive	images	(14	ms	

vs.	45	ms),	t(74.389)	=	2.64,	p	=	.010,	ds	=	0.539.		

Accuracy	was	very	high	overall	(M	=	96.22%,	SD	=	2.39)	and	did	not	differ	between	

conditions	(see	Table	3).	Distraction	indices	for	accuracy	were	analysed	in	a	2-way	ANOVA	

similar	to	that	used	for	RT	distraction	indices,	with	distractor	frequency	(low	vs.	high)	as	a	

between-subjects	variable,	and	valence	(negative,	neutral,	positive)	as	a	within-subjects	

variable.	No	main	effects	or	interactions	were	observed,	all	ps	>	.20,	ruling	out	explanation	

of	the	RT-based	effects	in	terms	of	speed-accuracy	tradeoffs.		

As	predicted	by	the	DMC	framework,	distraction	from	frequent	images	was	much	

lower	than	from	infrequent	ones.	This	finding	is	consistent	with	the	successful	engagement	

of	proactive	control	in	the	high-frequency	condition.	An	alternative	explanation	must	be	

considered,	though:	Repeated	exposure	to	images	in	the	high	frequency	condition	may	have	

reduced	the	images’	distraction	potency	through	habituation.	Across	the	experiment,	each	

image	was	presented	six	times	in	the	high	frequency	condition,	but	only	twice	in	the	low	

frequency	condition.	If	habituation	accounts	for	attenuated	distraction	in	the	high	

frequency	condition,	then	attenuation	should	not	be	apparent	at	the	beginning	of	the	

experiment,	before	habituation	could	occur.		

To	test	this	alternative	account,	distraction	indices	were	calculated	based	only	on	the	

first	12	distractor-present	and	distractor-absent	trials	of	the	experiment	(for	each	

participant,	these	were	either	positive,	negative,	or	neutral	distractor	trials,	and	so	image	

type	becomes	a	between-subjects	variable	in	this	analysis).	Note	that	images	were	never	

repeated	across	these	trials.	Because	there	were	no	effects	of	valence	in	either	frequency	
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condition	(p’s	>	.70	for	the	comparison	of	positive	and	negative	distraction	indices),	we	

maximised	power	by	collapsing	positive	and	negative	conditions	here	to	create	an	

“emotional”	image	category.	Distraction	indices	were	then	analysed	in	a	2	(emotional	vs.	

neutral	distractors)	x	2	(low	vs.	high	distractor	frequency)	between-subjects	ANOVA.	There	

was	a	main	effect	of	emotionality,	F(1,	92)	=	4.44,	p	=	.04,	ηp2	=	.046,	reflecting	greater	

distraction	from	emotional	than	from	neutral	images.	Although	the	interaction	with	

distractor	frequency	fell	short	of	significance,	F(1,	92)	=	2.55,	p	=	.11,	ηp2	=	.027,	(likely	due	

to	reduced	power	inherent	in	the	use	of	only	a	small	subset	of	trials	and	a	between-subjects	

manipulation	of	emotionality),	examination	of	Figure	3	clearly	shows	that	the	effect	of	

emotionality	is	driven	by	the	low	frequency	condition.	Specifically,	the	pattern	here	is	

consistent	with	that	seen	over	all	trials:	emotional	images	were	more	distracting	than	

neutral	images	under	low	distractor	frequency,	t(30.76)	=	2.20,	p	=	.04,	ds	=	0.449,	but	not	

under	high	distractor	frequency,	t(46)	=	0.48,	p	>	.250,	ds	=	0.139.	This	attenuation	in	the	

high	frequency	condition	is	not	consistent	with	a	habituation	account,	which	would	predict	

similar	distraction	in	low	and	high	distractor	frequency	conditions	at	the	beginning	of	the	

first	experimental	block.	High	distractor	frequency	thus	leads	to	good	control	of	emotional	

images,	even	before	any	image	repetition	has	occurred.	This	rapid	adoption	of	a	proactive	

strategy	may	have	been	facilitated	by	the	pre-experiment	instructions	we	provided	to	

participants	to	expect	distractors	to	appear	either	frequently	or	rarely.	

To	determine	whether	there	might	still	be	a	differential	reduction	in	distraction	over	

the	course	of	the	experiment	that	could	account	for	the	effects	of	distractor	frequency,	we	

repeated	the	analysis	but	included	the	first	12	distractor	present	and	absent	trials	of	Block	1,	

and	the	last	12	distractor	present	and	absent	trials	of	Block	4	(i.e.,	the	first	and	last	blocks	of	
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a	super-block;	as	Block	4	always	had	the	same	type	of	distractor	image	as	Block	1).	The	main	

effects	of	distractor	frequency,	F(1,	92)	=	10.740,	p	=	.001,	ηp2	=	.105,	emotionality,	F(1,	92)	=	

7.201,	p	=	.009,	ηp2	=	.073,	and	their	interaction,	F(1,	92)	=	3.958,	p	=	.050,	ηp2	=	.041	parallel	

the	effects	in	the	main	experiment.	There	was	a	marginal	effect	of	block,	F(1,	92)	=	2.997,	p	

=	.087,	ηp2	=	.032,	reflecting	a	modest	decrease	in	distraction	over	the	course	of	the	first	

super-block.	Importantly,	this	effect	of	block	did	not	interact	with	any	other	effects	(all	p’s	>	

.352),	meaning	that	it	cannot	account	for	the	effects	of	distractor	frequency	on	either	

emotional	or	neutral	distraction.	

In	summary,	performance	in	the	low	frequency	condition	shows	that	emotional	

images	can	be	more	distracting	than	non-emotional	ones,	even	if	they	are	task-irrelevant	

and	appear	in	unattended	locations.	But	the	high	frequency	condition	shows	that	distraction	

from	both	emotional	and	neutral	images	can	be	well	controlled	when	they	are	expected	to	

appear	frequently.	Although	there	was	still	a	small	emotional	distraction	effect	(that	is,	

significantly	greater	distraction	from	emotional	than	neutral	images)	in	the	high	frequency	

condition,	it	was	markedly	attenuated	compared	to	that	observed	in	the	low	frequency	

condition.	The	effect	of	distractor	frequency	is	consistent	with	that	seen	in	other	(non-

emotional)	conflict	tasks	such	as	Stroop	or	flanker	paradigms,	in	which	increasing	

proportions	of	conflict	trials	are	associated	with	reduced	interference	as	a	function	of	

proactive	control	(Bugg	&	Crump,	2012),	and	in	visual	search	experiments	in	which	salient	

singletons	are	distracting	when	they	appear	rarely,	but	can	be	suppressed	when	they	appear	

frequently	(Müller	et	al.,	2009).	Our	findings	suggest	that	the	DMC	framework	can	be	

extended	to	predict	distraction	in	emotional	contexts.	In	Experiment	2,	we	further	
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investigate	the	nature	of	the	proactive	control	that	is	applied	when	frequent	distractors	are	

expected.	

EXPERIMENT	2	

Proactive	control	is	not	a	mechanism	in	and	of	itself;	it	is	a	collective	term	for	a	set	of	

mechanisms	that	optimize	performance	when	challenges	are	anticipated	or	there	are	

incentives	for	control	(Braver,	2012).	What	specific	mechanism(s)	support	the	effective	

control	of	emotional	and	neutral	distraction	when	distractors	appear	frequently?		

One	possibility	is	that	proactive	control	is	location-based:	when	distractors	are	

frequent,	participants	may	alter	attentional	settings	to	enhance	visual	processing	at	target	

locations	and	inhibit	processing	at	distractor	locations	(Foxe	&	Snyder,	2011;	Geng,	2014).	

By	this	logic,	high-frequency	distractors	–	both	neutral	and	emotional	–	lose	potency	in	the	

high	frequency	condition	because	their	potential	locations	receive	insufficient	processing	to	

trigger	attentional	capture.	Importantly,	this	location-based	hypothesis	suggests	that	

proactive	control	mechanisms	should	not	be	sensitive	to	the	meaning	of	irrelevant	images,	

just	to	their	presence.	Alternatively,	activation	of	proactive	control	may	be	based	on	

meaning	rather	than	location:	the	resources	for	distractor	suppression	may	be	recruited	

only	if	meaningful	images	are	expected	to	appear	frequently.	

To	distinguish	between	these	alternatives	we	repeated	the	high	and	low	frequency	

conditions	of	Experiment	1	but	included	a	third	condition,	in	which	distracting	images	were	

also	presented	on	75%	of	trials;	however,	of	those,	one	third	(25%	of	trials)	were	intact	

images,	and	two	thirds	(50%	of	all	trials)	were	pixelated	scrambles	of	the	same	images.	

Therefore,	although	the	overall	frequency	of	distractors	in	this	combined	condition	was	

equivalent	to	that	in	the	high	frequency	condition,	only	25%	of	trials	featured	an	intact	(i.e.,	
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meaningful)	distractor,	as	in	the	low-frequency	condition.	If	proactive	control	is	location-

based	and	driven	by	the	anticipation	of	any	distractor,	then	distraction	in	the	combined	

condition	(for	both	intact	and	scrambled	images)	should	be	well	controlled	–	just	like	it	was	

in	the	high	frequency	condition	in	Experiment	1.	However,	if	proactive	control	mechanisms	

are	recruited	only	when	meaningful	distractors	are	expected	to	appear	frequently,	then	

distraction	caused	by	the	infrequent	intact	images	in	the	combined	condition	should	more	

closely	resemble	that	caused	by	meaningful	images	in	the	low	frequency	condition.	

Method	

Participants	

123	participants	(85	females;	mean	age	=	19.12,	SD	=	2.49)	were	randomly	assigned	

to	one	of	three	possible	conditions:	low	distractor	frequency	(N	=	40),	high	distractor	

frequency	(N	=	41)	or	combined	distractors	(N	=	42).	One	participant	who	did	not	follow	

instructions	was	replaced	with	another	in	the	same	condition,	and	is	not	included	in	the	final	

participant	count	or	demographics,	nor	in	any	analyses.	Sample	size	calculations	were	based	

on	the	critical	comparison	between	the	difference	in	emotional	compared	to	neutral	

distraction	in	the	low	frequency	(M	=	45	ms,	SD	=	68	ms)	and	high	frequency	(M	=	14	ms,	SD	

=	37	ms)	conditions	from	Experiment	1	(capturing	the	frequency	x	valence	interaction).	The	

effect	size	(ds	=	0.56)	led	to	an	estimated	sample	of	40	participants	per	condition	to	achieve	

power	of	.80.		

Stimuli	and	Procedure	

Pixel-scrambled	versions	of	the	IAPS	images	used	in	Experiment	1	were	created	by	

dividing	each	image	into	1296	squares	and	rearranging	them	randomly.	Scrambling	removed	
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all	recognizable	elements	while	keeping	overall	color	and	luminance	constant.	Stimuli	and	

task	were	otherwise	identical	to	those	in	Experiment	1,	except	that	target	letters	were	“K”	

(replacing	“X”)	or	“N”.		

Participants	completed	three	counterbalanced	blocks	of	96	trials,	with	a	different	

image	valence	(positive,	neutral,	or	negative)	in	each	block.	Distractors	appeared	on	25%	of	

trials	in	the	low	frequency	condition	and	on	75%	of	trials	in	the	high	frequency	condition.	In	

the	combined	condition,	distractors	appeared	on	75%	of	trials,	but	1/3	of	these	were	intact	

images	(25%	of	trials)	and	2/3	were	scrambled	images	of	the	same	valence	(50%	of	trials).	As	

in	Experiment	1,	trials	were	presented	in	random	order	within	a	block,	with	the	constraint	

that	images	(intact	and	scrambled)	were	not	repeated	until	they	had	all	been	presented.	

Participants	were	again	instructed	to	expect	distractors	on	either	25%	or	75%	of	

trials.	Prior	to	the	experimental	blocks,	they	completed	24	practice	trials	on	which	

scrambled	distractors	were	presented	at	the	same	distractor	proportion	that	they	would	

experience	in	the	experimental	blocks.	This	experience	with	the	appropriate	distractor	

frequency	during	the	practice	trials	was	intended	to	further	encourage	use	of	either	a	

reactive	or	proactive	strategy	from	the	outset	of	the	experiment.	

Data	were	analysed	as	in	Experiment	1.	

Results	and	Discussion	

Despite	minor	changes	in	design	and	blocking	procedure,	results	replicated	those	of	

Experiment	1	for	the	low	and	high	distractor	frequency	conditions:	infrequent	images	were	

overall	more	distracting	than	frequent	ones,	and	emotional	images	were	more	distracting	

than	neutral	images	in	the	low	distractor	frequency	condition	only.	Importantly,	in	the	
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combined	condition,	intact	images	produced	similar	distraction	to	those	in	the	low-

frequency	condition,	a	pattern	that	is	consistent	with	meaning-based	but	not	with	location-

based	deployment	of	proactive	control	(Figure	4	and	Table	4).		

The	factor	of	distractor	type	(intact	or	scrambled)	was	manipulated	only	in	the	

combined	condition,	so	the	full	experimental	design	could	not	be	analysed	in	a	single	

ANOVA.	Rather,	we	ran	four	analyses	that	were	planned	a	priori,	each	targeting	a	different	

question.	The	first	compared	distraction	in	the	low	and	high	distractor	frequency	conditions,	

to	verify	that	we	had	replicated	Experiment	1;	the	second	and	third	analyses	compared	

distraction	from	intact	images	in	the	combined	condition	to	that	in	the	low	and	high	

frequency	conditions,	respectively,	in	order	to	determine	whether	it	differed	significantly	

from	either	of	them.	The	fourth	analysis	compared	distraction	from	intact	and	scrambled	

images	within	the	combined	condition,	to	determine	whether	control	differed	for	

meaningful	and	meaningless	distractors.	

In	the	first	analysis,	comparison	of	the	high	and	low	frequency	conditions	revealed	

the	same	main	effects	of	frequency,	F(1,	79)	=	13.57,	p	<	.001,	ηp2	=	.147,	and	valence,	F(2,	

158)	=	3.49,	p	=	.033,	ηp2	=	.042,	as	were	observed	in	Experiment	1.	Although	the	interaction	

between	distractor	frequency	and	valence	was	not	significant,	F(2,	158)	=	2.23,	p	=	.135,	ηp2	

=	.025,	the	quadratic	interaction	was,	F(1,	79)	=	3.99,	p	=	.049,	ηp2=	.048.	In	the	low	

frequency	condition,	neutral	images	were	less	distracting	than	both	negative,	t(39)	=	2.97,	p	

=	.005,	drm	=	0.513,	and	positive	images,	t(39)	=	2.29,	p	=	.028,	drm	=	0.379,	which	did	not	

differ,	t(39)	=	.24,	p	>	.250,	drm	=	0.029.	In	the	high	frequency	condition,	there	was	no	

distraction	from	either	emotional	or	neutral	images	(see	distraction	indices	in	Table	4).		
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Because	the	high	and	low	frequency	conditions	here	are	close	replications	of	the	

high	and	low	frequency	conditions	in	Experiment	1	(with	only	minor	changes	in	block	

structure),	we	combined	effect	sizes	for	distraction	indices	in	a	mini	meta-analysis.	Across	

experiments,	the	low	frequency	conditions	produced	significant	distraction	for	negative,	d	=	

0.416,	95%	CI	[.201,	.630],	positive,	d	=	0.354,	95%	CI	[.142,	.566],	and	neutral	images,	d	=	

0.219,	95%	CI	[.011,	.427].	In	the	high	frequency	conditions,	no	distraction	was	observed	for	

any	image	type	(negative	images,	d	=	.122,	95%	CI	[-.085,	.328];	positive	images,	d	=	0.106,	

95%	CI	[-.098,	.311];	neutral	images,	d	=	0.050,	95%	CI	[-.154,	254]).	While	emotional	images	

were	slightly	more	distracting	than	neutral	images	in	Experiment	1,	the	meta-analysis	shows	

that	emotional	distraction	in	the	high	frequency	condition	is	not	robust.	The	meta-analysis	

strengthens	our	conclusion	that	emotional	images	are	more	distracting	than	neutrals	under	

conditions	that	promote	reactive	control	(i.e.	low	distractor	frequency),	but	also	that	both	

emotional	and	neutral	images	can	be	effectively	controlled	when	expectations	bias	control	

toward	proactive	mechanisms.	

	 The	second	comparison,	of	the	intact-combined	and	low	frequency	conditions,	

showed	only	a	main	effect	of	valence,	F(2,	160)	=	4.56,	p	=	.012,	ηp2	=	.054.	Neutral	images	

were	less	distracting	than	both	negative	images,	t(81)	=	2.55,	p	=	.013,	drm	=	0.340,	and	

positive	images,	t(81)	=	2.60,	p	=	.011,	drm	=	0.322,	which	did	not	differ,	t(81)	=	.08,	p	>	.250,	

drm	=	0.009.	Importantly,	condition	did	not	interact	with	valence,	F(2,	160)	=	.60,	p	>	.250,	ηp2	

=	.007,	nor	with	the	quadratic	effect	of	valence,	F(1,	80)	=	1.12,	p	>	.250,	ηp2	=	.014,	meaning	

that	the	pattern	of	greater	distraction	from	emotional	than	neutral	images	did	not	differ	

between	the	two	conditions.		
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In	contrast,	our	third	comparison	of	the	intact-combined	and	high	frequency	

conditions	revealed	only	a	main	effect	of	condition,	F(1,	81)	=	6.60,	p	=	.012,	ηp2	=	.075,	

reflecting	greater	distraction	from	intact	images	in	the	combined	than	in	the	high	frequency	

condition.	Distraction	from	intact	images	in	the	combined	condition	therefore	more	closely	

resembles	that	of	the	low	frequency	than	of	the	high	frequency	condition.	

Our	final	analysis	focused	on	the	combined	condition	alone,	to	compare	distraction	

caused	by	intact	and	scrambled	images.	If	proactive	control	is	directed	to	specific	locations	

(but	not	content),	then	we	expect	both	intact	and	scrambled	images	to	be	similarly	

controlled.	However,	as	can	be	seen	on	the	right	side	of	Figure	4,	even	within	the	same	

block	of	trials,	intact	images	caused	distraction	but	scrambled	versions	of	the	same	images	

did	not.	A	3	(Valence:	negative,	neutral,	positive)	x	2	(Distractor	Type:	intact,	scrambled)	

repeated	measures	ANOVA	on	distraction	indices	showed	only	a	main	effect	of	distractor	

type,	confirming	that	intact	images	were	significantly	more	distracting	than	scrambles,	F(1,	

41)	=	26.04,	p	<	.001,	ηp2	=	.388.	Intact	images	of	all	valences	produced	significant	

distraction,	but	scrambles	did	not	(Table	4).		

The	excellent	control	of	scrambles	–	in	the	context	of	distraction	by	intact	images	

presented	in	the	same	block	–	is	somewhat	surprising.	In	combined	blocks,	participants	

could	not	anticipate	what	type	of	image	would	appear.	It	is	clear	that	they	adopted	a	control	

strategy,	as	scrambles	produced	no	distraction	whatsoever.	However,	that	strategy	appears	

to	be	flexible	enough	to	eliminate	distraction	from	irrelevant	scrambles	while	still	allowing	

disruption	by	infrequent	intact	images.	We	return	to	this	issue	in	the	General	Discussion.	

Because	the	scrambles	were	constructed	from	the	intact	images,	their	control	also	argues	
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against	an	explanation	of	emotional	distraction	in	terms	of	low	level	visual	features	such	as	

colour	or	luminance.	

Accuracy	was	very	high	overall	(M	=	96.51%,	SD	=	2.63;	see	Table	5).	Distraction	

indices	for	intact	image	accuracies	were	analysed	in	a	2-way	ANOVA	with	valence	(negative,	

neutral,	positive)	as	a	within-subjects	variable,	and	distractor	frequency	(low,	high,	

combined)	as	a	between-subjects	variable.	We	observed	a	main	effect	of	valence,	F(2,	240)	

=	7.54,	p	=	.001,	ηp2	=	.059	that	did	not	interact	with	distractor	frequency,	F(4,	240)	=	1.58,	p	

=	.180,	ηp2	=	.026.	This	small	effect	was	in	the	opposite	direction	to	that	which	would	

suggest	a	speed-accuracy	trade-off,	and	is	consistent	with	that	seen	in	RTs;	that	is,	less	

distraction	from	neutral	(M	=	-1.22%,	SD	=	4.76,	drm	=	0.25)	than	from	positive	(M	=	0.37%,	

SD	=	4.41,	d	=	0.08)	or	negative	images	(M	=	0.85%,	SD	=	4.58,	drm	=	.019),	which	did	not	

differ.		

GENERAL	DISCUSSION	

Emotional	distractors	can	be	more	potent	than	neutral	ones.	But	we	are	not	slaves	to	

distraction;	when	we	expect	them	to	appear	frequently,	both	emotional	and	neutral	

distractors	can	be	effectively	controlled.	Our	findings	suggest	that	reactive	and	proactive	

control	mechanisms	deal	with	emotional	distractions	differently.	

We	used	a	distractor	frequency	manipulation	to	encourage	either	a	reactive	control	

strategy	(when	distractors	were	rare)	or	a	proactive	control	strategy	(when	distractors	were	

frequent).	In	other	conflict	paradigms	such	as	the	Stroop	task,	a	high	proportion	of	conflict	

(i.e.,	incongruent)	trials	induces	a	proactive	control	strategy	(Bugg,	2012;	Bugg	&	Crump,	

2012;	Gonthier,	Braver,	&	Bugg,	2016),	and	similar	effects	of	distractor	frequency	are	

observed	in	spatial	attention	tasks	(e.g.,	Geyer	et	al.,	2008).	In	both	experiments	reported	
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here,	infrequent	emotional	images	–	both	positive	and	negative	–	were	more	distracting	

than	non-emotional	ones,	despite	being	entirely	irrelevant	to	the	task	and	appearing	in	

unattended	locations.	We	therefore	show	clear	evidence	that	irrelevant	emotional	

distractors	can	capture	attention,	at	least	under	experimental	conditions	in	which	few	of	

them	are	expected.	However,	both	emotional	and	neutral	distraction	were	effectively	

eliminated	(as	indicated	by	the	meta-analysis)	when	irrelevant	images	appeared	frequently,	

suggesting	that	proactive	mechanisms	are	effective	at	controlling	both	emotional	and	non-

emotional	distraction.	Positive	images	were	controlled	as	effectively	as	negative	ones,	even	

though	we	might	expect	participants	to	be	less	motivated	to	ignore	them	(Botvinick	&	

Braver,	2015;	Gupta	et	al.,	2015).	Our	findings	show	that	the	predictions	of	the	DMC	

framework	can	be	extended	to	emotional	contexts.		

Task-irrelevant	emotional	information	therefore	appears	to	be	prioritized	under	

reactive	control,	but	not	under	proactive	control.	We	speculate	that	these	two	modes	of	

control	allow	for	flexibility	in	the	response	to	emotional	distractors.	When	they	appear	

rarely,	emotional	distractors	may	carry	important	information	that	should	override	ongoing	

processing.	It	is	therefore	adaptive	for	distraction	in	reactive	contexts	to	be	stimulus-driven.	

However,	when	distractors	–	even	emotional	ones	–	appear	frequently,	and	without	

consequence,	their	informational	value	is	limited.	In	these	contexts,	proactive	mechanisms	

allow	for	control	of	both	emotional	and	non-emotional	distraction	and	so	facilitate	goal-

relevant	processing.	

A	dynamic	shift	in	the	control	of	emotional	distraction	may	well	account	for	some	

discrepancies	that	have	appeared	in	the	literature	regarding	the	ability	of	emotional	images	

to	capture	attention,	where	some	studies	find	that	irrelevant	emotional	images	that	occur	
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outside	the	focus	of	attention	can	disrupt	processing	(Fox,	Dutton,	Yates,	Georgiou,	&	

Mouchlianitis,	2015;	Junhong	et	al.,	2013;	Yates,	Ashwin,	&	Fox,	2010),	but	others	show	they	

do	not	(Lichtenstein-Vidne	et	al.,	2012;	Okon-Singer	et	al.,	2007;	Vromen	et	al.,	2015).	A	

systematic	manipulation	of	proportion	conflict	may	furthermore	shed	light	on	the	

modulation	of	other	emotional	effects	such	as	those	revealed	with	emotional	Stroop,	visual	

search,	or	spatial	cueing	paradigms.	Task	demands	may	determine	the	extent	to	which	

reactive	or	proactive	control	mechanisms	are	engaged,	and	consequently	whether	or	not	

emotional	distraction	is	observed.	Although	we	manipulated	distractor	frequency	to	alter	

control	strategy	in	the	present	experiments,	other	factors	like	difficulty,	feedback,	testing	

environment,	or	incentives	for	performance	might	be	equally	important	in	determining	

control.	For	example,	a	recent	study	in	our	lab	(Maddock,	Harper,	Carmel	&	Grimshaw,	

submitted)	shows	that	financial	rewards		(which	are	thought	to	encourage	use	of	proactive	

control;	Botvinick	&	Braver,	2015)		can	also	attenuate	emotional	distraction.	One	advantage	

of	interpreting	emotional	distraction	effects	within	the	DMC	framework	(Braver,	2012)	is	

that	it	makes	clear	predictions	about	when	emotional	distraction	should	(and	should	not)	be	

observed.		

Although	we	believe	these	to	be	the	first	studies	to	use	the	frequency	of	emotional	

distractors	to	manipulate	cognitive	control,	several	recent	studies	using	different	paradigms	

point	to	an	important	role	for	control	processes	in	determining	the	extent	of	emotional	

distraction.	Some	evidence	comes	from	a	study	by	Augst	and	colleagues	(Augst,	Kleinsorge	

&	Kunde,	2014,	Experiment	4),	who	examined	the	effect	of	a	central	distractor	image	on	

ability	to	compare	flanking	targets	in	a	line-orientation	matching	task.	Although	distractors	

were	present	on	every	trial,	they	manipulated	the	proportion	of	emotional	and	neutral	

distractors	within	a	block	such	that	the	dominant	image	type	was	present	on	80%	of	trials.	
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An	interaction	of	distractor	valence	and	context	was	broadly	consistent	with	our	findings	

here	–	images	were	more	distracting	when	they	were	of	the	rare	valence	than	the	dominant	

valence.	However,	in	contrast	to	our	finding	that	distractor	frequency	has	clear	effects	on	

control	of	emotional	images,	their	effects	were	driven	predominantly	by	the	effect	of	

context	on	performance	when	distractors	were	neutral,	not	emotional.	Specifically,	

response	times	to	trials	with	negative	or	positive	distractors	were	the	same	regardless	of	

their	proportion	within	a	block,	but	response	times	on	trials	including	neutral	distractors	

were	greater	when	they	were	rare	than	when	they	were	frequent.	At	present	there	are	so	

few	studies	on	control	of	emotional	distraction	that	it	is	premature	to	speculate	on	the	

causes	of	variability	across	studies,	and	further	studies	using	different	paradigms	will	be	

important	for	establishing	how	experimental	parameters	affect	control.		

Shifting	to	temporal	attention,	Most	and	colleagues	(Most,	Chun,	Widders	&	Zald,	

2005)	used	a	variant	of	the	attentional	blink	paradigm	to	show	that	threatening	images	

interrupt	processing	of	a	subsequent	target	image	–	an	effect	called	emotion-induced	

blindness.	However,	some	participants	(those	low	in	harm	avoidance)	were	able	to	use	

foreknowledge	of	the	target	identity	to	reduce	emotional	distraction.	Most	and	colleagues	

argue	that	knowledge	about	the	target	allowed	those	participants	to	adopt	a	specific	

attentional	set	–	that	is,	a	proactive	control	strategy	–	that	enhanced	target	processing	and	

attenuated	distractor	processing.		

Our	findings	are	therefore	consistent	with	others	suggesting	that	proactive	control	

can	be	used	to	reduce	the	impact	of	emotional	distractors	when	they	are	irrelevant	to	our	

goals.	However,	they	stand	in	contrast	to	findings	reported	by	Aue	and	colleagues	(Aue	et	

al.,	2013,	2016),	who	show	that	proactive	control	does	not	facilitate	attention	to	emotional	
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stimuli	when	they	are	goal-relevant.	Their	participants	performed	a	visual	search	task	in	

which	a	discrepant	target	was	either	a	spider	or	a	bird.	Pre-cueing	the	identity	of	the	target	

(a	manipulation	that	should	trigger	proactive	control	to	guide	search)	facilitated	detection	

of	target	birds,	but	had	no	effect	on	detection	of	target	spiders.	It	is	possible	that	under	

conditions	in	which	emotional	stimuli	are	goal-relevant	their	processing	is	already	prioritized	

(Lichtenstein-Vidne,	Henik,	&	Safadi,	2012;	Vromen,	Lipp,	&	Remington,	2015),	making	

further	manipulations	of	control	unnecessary.	We	note	that	proactive	control	is	not	a	

unitary	mechanism,	and	the	type	of	control	recruited	to	aid	search	for	a	target	maybe	be	

very	different	from	that	recruited	to	suppress	a	distractor.	Further	comparisons	across	

experimental	paradigms	and	task	parameters	will	be	useful	for	testing	the	boundary	

conditions	of	cognitive	control	in	emotional	contexts.	

How	might	higher	distractor	frequency	facilitate	proactive	control?	The	combined	

condition	in	Experiment	2	provides	some	clues.	Here	we	tested	whether	effective	control	of	

distractors	in	the	high	frequency	condition	was	based	on	inhibition	of	potential	distractor	

locations	(Foxe	&	Snyder,	2011;	Geng,	2014).	If	so,	both	scrambled	and	intact	images	should	

have	been	effectively	controlled	in	the	combined	condition.	Instead,	intact	images	produced	

distraction	equivalent	to	that	in	the	low	frequency	condition,	but	scrambled	images	

produced	no	distraction	at	all.	The	effective	control	of	both	emotional	and	neutral	images	in	

the	high	frequency	condition	therefore	depends	on	the	frequent	presentation	of	meaningful	

content.		

Although	these	findings	allow	us	to	rule	out	location-based	suppression	as	the	

mechanism	by	which	proactive	control	reduces	distraction,	several	non-exclusive	

alternatives	remain.	One	possibility	is	that	proactive	control	enables	rapid	disengagement	
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from	distractors	(Theeuwes,	2010;	see	also	Geng,	2014).	We	think	this	is	unlikely	to	be	the	

case	in	our	experiments	though,	as	both	high	frequency	intact	images	and	scrambles	in	

Experiment	2	produced	no	observable	distraction,	suggesting	that	they	did	not	engage	

attention	at	all.	An	alternative	distractor-based	explanation	is	that	proactive	mechanisms	

might	allow	participants	to	rapidly	(perhaps	pre-attentively)	categorize	distractors	as	

meaningless	scrambles	or	intact	meaningful	images	(Li,	VanRullen,	Koch	&	Perona,	2002;	

Peelen,	Li	&	Kastner,	2009),	and	then	either	suppress	them	or	select	them	for	further	

processing.	According	to	this	view,	images	could	be	suppressed	if	they	were	meaningless	

scrambles	(in	the	combined	condition),	or	if	they	were	intact	images	that	occurred	

frequently	(in	the	high	frequency	condition),	but	could	be	selected	for	further	processing	in	

the	case	of	an	infrequent	intact	image	(in	either	the	low	frequency	or	combined	condition).	

Such	a	mechanism	is	consistent	with	the	signal	suppression	hypothesis	(Gaspelin,	Leonard	&	

Luck,	2015,	2017;	Sawaki	&	Luck,	2010)	which	holds	that	salient	stimuli	generate	an	

obligatory	“attend-to-me”	signal,	which	can	be	suppressed	before	an	attentional	shift	occurs	

if	such	a	shift	would	be	contrary	to	top-down	goals.	Although	the	signal	suppression	

hypothesis	has	been	tested	in	the	context	of	salient	color	singletons,	emotional	stimuli	are	

also	salient	stimuli	that	might	be	subject	to	similar	top-down	control	under	some	

circumstances.	

Finally,	proactive	control	might	act	by	enhancing	the	processing	of	targets	(Egner	&	

Hirsch,	2005)	so	that	they	compete	more	effectively	against	distractors	(Desimone	&	

Duncan,	1995).	Such	enhancement	could	be	graded	according	to	expectations	about	

distractors.	For	example,	in	the	high	frequency	condition	in	which	distractors	are	expected	

to	appear	often	and	have	limited	informational	value,	target	enhancement	might	be	

maximal,	leading	to	minimal	processing	of	distractors.	In	the	combined	condition,	in	which	
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intact	distractors	are	potentially	important	(because	they	are	rare),	enhancement	might	be	

graded	so	that	intact	images,	but	not	scrambles,	are	able	to	compete	with	targets.	It	is	

difficult	to	distinguish	between	distractor-based	and	target-based	mechanisms	on	the	basis	

of	behavioural	data	alone,	and	so	electrophysiological	methods	that	are	able	to	separate	

their	effects	(Gaspar	&	McDonald,	2014;	Hickey,	Di	Lollo,	&	McDonald,	2009;	Hilimire,	

Mounts,	Parks,	&	Corballis,	2011)	will	be	valuable	in	identifying	the	specific	mechanisms	that	

produce	effective	control.		

Although	the	exact	mechanisms	underlying	proactive	control	over	irrelevant	

distractors	remain	to	be	elucidated,	we	show	here	that	they	can	operate	effectively	over	

both	neutral	and	emotional	images.	A	key	aspect	of	our	experimental	design	is	that	

distractors	were	blocked	by	valence.	Although	participants	did	not	know	exactly	when	or	

where	a	distractor	might	appear,	they	could	predict	its	emotional	value.	We	used	this	

blocking	procedure	to	maximise	any	potential	emotional	distraction,	as	stronger	emotion	

effects	are	sometimes	observed	with	blocked	than	with	mixed	presentation	(e.g.,	in	

emotional	Stroop	tasks;	Williams,	Matthews,	&	MacLeod,	1996,	and	in	visual	search	with	

emotional	distractors;	Devue,	Bepolsky,	&	Theeuwes,	2011).	Our	findings	therefore	require	

replication	using	a	mixed	presentation	format,	to	determine	whether	similarly	effective	

control	is	possible	when	participants	cannot	predict	the	nature	of	an	upcoming	distractor.		

Our	blocking	procedure	does	raise	the	interesting	possibility	that	participants	

tailored	their	cognitive	control	to	the	type	of	distractor	they	expected.	Specifically,	blocks	

with	emotional	distractors	may	have	required	more	effortful	control	than	blocks	with	

neutral	distractors.	Psychophysiological	measures	that	can	provide	direct	evidence	of	

proactive	control,	such	as	pre-trial	EEG	alpha	suppression	(Mazaheri,	DiQuattro,	Bengson,	&	
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Geng,	2011)	or	pupil	dilation	(Chiew	&	Braver,	2013),	will	be	useful	in	further	investigations	

probing	control	mechanisms	to	determine	whether	they	are	emotion-specific.	

Another	factor	in	our	design	is	that	expectations	about	upcoming	distractors	were	

manipulated	by	controlling	the	frequency	with	which	they	appeared.	In	other	conflict	

paradigms	(e.g.,	Stroop,	flanker	tasks),	increasing	the	proportion	of	conflict	trials	is	thought	

to	engage	voluntary	and	global	proactive	control	mechanisms	that	are	sustained	across	

trials	(for	a	review,	see	Bugg	&	Crump,	2012).	However,	control	might	also	be	triggered	

more	locally	by	the	presence	of	a	distractor	on	a	preceding	trial	through	a	mechanism	of	

conflict	adaptation	(Botvinick,	Braver,	Barch,	Carter,	&	Cohen,	2001),	which	of	course	occurs	

more	often	in	the	high	frequency	condition.	The	experiments	we	report	here	were	not	

designed	to	probe	sequential	trial	effects,	which	could	be	used	in	future	work	to	determine	

the	relative	contributions	of	both	types	of	control.		

Although	high	frequency	distractors	led	to	better	control	overall,	the	confidence	

intervals	show	that	people	varied	considerably	in	their	level	of	distraction	under	both	

reactive	and	proactive	conditions.	The	DMC	framework	suggests	that	the	use	of	proactive	

versus	reactive	control	is	not	only	determined	by	task	or	situational	factors,	but	also	by	

individual	or	group-level	differences	in	the	use	of	control.	Variability	might	therefore	reflect	

individual	differences	in	ability	to	control	distraction	generally	(Forster	&	Lavie,	2016).	

Alternatively,	it	might	reflect	differences	in	how	effectively	people	deploy	proactive	control	

(Braver,	2012),	or	in	their	motivation	to	do	so	(Botvinick	&	Braver,	2015).	While	we	don’t	

focus	on	individual	differences	here,	our	experimental	approach	should	be	useful	for	

exploring	why	emotional	distractions	are	merely	a	nuisance	for	some,	but	can	be	

debilitating	for	others.	Emotional	distraction	has	been	implicated	in	a	number	of	disorders	
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including	depression,	anxiety,	and	addiction	(Cisler	&	Koster,	2010;	De	Raedt	&	Koster,	2010;	

Field	&	Cox,	2008),	and	has	been	interpreted	as	both	a	bottom-up	attentional	bias	and	a	

top-down	failure	of	control.	The	paradigm	we	have	described	here,	which	yields	robust	

emotional	distraction	under	reactive	conditions,	but	effective	control	under	proactive	

conditions,	should	therefore	be	very	useful	for	probing	the	mechanisms	that	drive	

emotional	distraction	in	these	pathological	conditions.	

By	examining	emotional	distraction	through	the	lens	of	cognitive	control	we	find	the	

answer	to	a	real-life	puzzle.	Emotional	stimuli	are	everywhere.	If	they	always	distracted	us,	

how	would	we	get	anything	done?	The	Dual	Mechanisms	of	Control	framework	provides	an	

elegant	solution.	Emotional	stimuli	are	important,	but	they	aren’t	“magic”	(see	Pourtois	et	

al.,	2013).	Their	ability	to	distract	us	depends	on	the	flexible	interplay	between	proactive	

mechanisms	that	allow	us	to	focus	on	our	goals,	and	reactive	mechanisms	that	keep	us	

sensitive	to	novel	threats	and	rewards.		
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Table	1	

	Mean	valence	and	arousal	ratings	(SD)	for	images	presented	to	male	and	female	
participants	

	 Valence	 Arousal	

	 Negative	 Neutral	 Positive	 Negative	 Neutral	 Positive	

Men	 1.83(.18)	 4.97(.31)	 7.09(.36)	 6.43(.41)	 3.15(.42)	 6.39(.51)	

Women	 1.64(.21)	 5.01(.34)	 6.23(.52)	 6.53(.42)	 3.07(.32)	 6.31(.29)	

	 	 	 	 	 	 	

Note.	Ratings	taken	from	published	norms	for	men	and	women	(Lang	et	al.,	2008).	Valence	scaled	
from	1	(pleasant)	to	9	(unpleasant);	arousal	scaled	from	1	(low)	to	9	(high).		

IAPS	image	numbers	used	for	female	participants	were:	neutral	=	2026,	2102,	2221,	2305,	2393,	
2397,	2411,	2512,	2593,	2595,	2745.1,	2840;	negative	=	3015,	3030,	3059,	3103,	3131,	3140,	3150,	
3159,	3550.1,	9253,	9405,	9420;	positive	=	4658,	4659,	4660,	4668,	4680,	4690,	4693,	4694,	4695,	
4697,	4698,	4800.		

IAPS	image	numbers	used	for	male	participants	were:	neutral	=	2026,	2102,	2104,	2221,	2393,	2397,	
2411,	2512,	2593,	2595,	2475.1,	2840;	negative	=	3000,	3015,	3053,	3060,	3069,	3071,	3080,	3100,	
3120,	3130,	3131,	9410;	positive	=	4645,	4650,	4653,	4658,	4660,	4666,	4669,	4680,	4690,	4692,	
4693,	4698	

	

	 	



	

	

41	

Table	2	

Mean	RT	and	Distraction	Indices	(with	SDs)	for	Experiment	1,	in	ms	

Condition	 Distractor	
Present	

Distractor	
Absent	

Distraction	
Index	

	

t	

	

drm	

95%	CI	

Lower				Upper	

Low	Frequency	(N	=	48)		 	 	 	 	 	 	 	

Negative	 657	(165)	 588	(95)	 69	(95)	 5.04***	 .371	 41	 96	

Neutral		 609	(106)	 585	(90)	 24	(36)	 4.80***	 .228	 14	 35	

Positive	 651	(145)	 581	(89)	 70	(80)	 6.04***	 .438	 47	 93	

	 	 	 	 	 	 	 	

High	Frequency	(N	=	48)	 	 	 	 	 	 	 	

Negative	 581	(101)	 568	(93)	 13	(32)		 	2.86**	 .131	 4	 22	

Neutral		 576	(91)	 578	(85)	 -2	(28)	 0.45	 .02	 -10	 6	

Positive	 581	(105)	 569	(90)	 12	(36)	 	2.31*	 .112	 2	 23	

	

Note:	Distraction	index	=	[RT	(distractor	present)	–	RT	(distractor	absent)].	t-values	and	effect	
sizes	are	from	paired	comparisons	of	distractor-present	to	distractor-absent	trials,	and	indicate	
whether	images	caused	significant	distraction	in	that	condition.	95%	confidence	intervals	
surround	the	distraction	index,	in	ms	

*p	<	.05,	**p	<	.01,	***p	<	.001	
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Table	3	

Mean	Percent	Accuracy	and	Distraction	Indices	(with	SDs)	for	Experiment	1	

Condition	 Distractor	
Present	

Distractor	
Absent	

Distraction	
Index	

	

t	

	

drm	

95%	CI	

Lower	Upper	

Low	Frequency	(N	=	48)		 	 	 	 	 	 	 	

Negative	 96.18	(5.21)	 96.64	(2.54)	 0.46	(5.04)	 0.64	 .108	 -1.00	 1.93	

Neutral		 96.57	(2.74)	 96.11	(3.04)	 -0.46	(3.01)	 1.07	 .160	 -1.34	 0.41	

Positive	 94.79	(5.86)	 95.89	(3.30)	 1.10	(5.31)	 1.44	 .219	 -0.44	 2.64	

	 	 	 	 	 	 	 	

High	Frequency	(N	=	48)	 	 	 	 	 	 	 	

Negative	 96.12	(3.00)	 96.09	(4.97)	 -0.03(4.59)	 -0.04	 .007	 -1.36	 1.30	

Neutral		 95.93	(2.95)	 96.66	(3.24)	 0.72	(3.86)	 1.30	 .233	 -0.40	 1.84	

Positive	 96.41	(3.50)	 96.87	(3.70)	 0.46	(4.66)	 0.69	 	.129	 -0.89	 1.82	

	

Note:	Distraction	index	=	[accuracy	(distractor	absent)	–	accuracy	(distractor	present)].	t-values	
and	effect	sizes	are	from	paired	comparisons	of	distractor-present	to	distractor-absent	trials,	and	
indicate	whether	images	caused	significant	distraction	in	that	condition.	95%	confidence	
intervals	surround	the	distraction	index,	in	ms	

*p	<	.05,	**p	<	.01,	***p	<	.001	
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Table	4	
	
Mean	RT	and	Distraction	Indices	(with	SDs)	for	Experiment	2,	in	ms	

Condition	 Distractor	
Present	

Distractor	
Absent	

Distraction	
Index	

	

t	

	

drm	

95%	CI	

Lower			Upper	

Low	Frequency	(N	=	40)		 	 	 	 	 	 	 	

Negative	 610	(97)	 564	(73)	 46	(51)		 5.69***	 .488	 30	 62	

Neutral	 594	(99)	 571	(80)	 23	(36)	 4.00***	 .217	 11	 34	

Positive	 613	(132)	 568	(81)	 45	(66)	 4.26***	 .273	 23	 65	

	 	 	 	 	 	 	 	

High	Frequency	(N	=	41)	 	 	 	 	 	 	 	

Negative	 586	(100)	 575	(95)	 11	(49)	 1.48	 .115	 -4	 27	

Neutral	 577	(82)	 570	(81)	 7	(32)	 1.42	 .087	 -3	 17	

Positive	 580	(84)	 571	(80)	 9	(28)	 1.94	 .104	 0	 18	

	 	 	 	 	 	 	 	

Combined	Intact	(N	=	42)	 	 	 	 	 	 	 	

Negative	 606	(116)	 577	(80)	 29	(61)	 3.14**	 .246	 10	 48	

Neutral	 586	(90)	 567	(77)	 19	(38)	 3.30**	 .218	 7	 31	

Positive	 599	(117)	 569	(92)	 30	(49)		 4.02***	 .250	 15	 45	

	 	 	 	 	 	 	 	

Combined	Scrambled	(N	=	42)	 	 	 	 	 	 	

Negative	 577	(90)	 577	(80)	 0	(39)	 0.04	 .003	 -12	 12	

Neutral	 568	(76)	 567	(77)	 1(28)	 0.39	 .022	 -7	 10	

Positive	 571	(97)	 569	(92)	 2	(33)	 0.31	 .017	 -9	 12	

	

Note:	Distraction	index	=	[RT	(distractor	present)	–	RT	(distractor	absent)].	t-values	and	effect	sizes	
are	from	paired	comparisons	of	distractor-present	to	distractor-absent	trials,	and	indicate	whether	
images	caused	significant	distraction	in	that	condition.	95%	confidence	intervals	surround	the	
distraction	index,	in	ms.		

*p	<	.05,	**p	<	.01,	***p	<	.001	
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Table	5	

Mean	Accuracy	(percent)	and	Distraction	Indices	(with	SDs)	for	Experiment	2	

Condition	 Distractor	
Present	

Distractor	
Absent	

Distraction	
Index	

t	 d	 95%	CI	

Lower			Upper	

Low	Frequency	(N	=	40)		 	 	 	 	 	 	 	

Negative	 96.04	(4.71)	 96.46	(3.27)	 0.42	(3.96)	 0.67	 .099	 -0.85	 1.68	

Neutral	 97.19	(3.70)	 96.56	(3.27)	 -0.63	(3.40)	 -1.16	 .178	 -1.71	 0.46	

Positive	 96.87	(3.86)	 97.01	(2.89)	 0.14	(3.36)	 0.26	 .040	 -0.93	 1.21	

	 	 	 	 	 	 	 	

High	Frequency	(N	=	41)	 	 	 	 	 	 	 	

Negative	 96.75	(4.17)	 97.56	(3.36)	 0.81	(4.38)	 1.19	 .213	 -0.57	 2.20	

Neutral	 97.36	(2.69)	 96.85	(4.54)	 -0.51	(4.2)	 -0.77	 .131	 -1.85	 0.83	

Positive	 96.38	(3.30)	 97.87	(3.38)	 1.49	(3.48)	 2.74**	 .447	 0.39	 2.59	

	 	 	 	 	 	 	 	

Combined	Intact	(N	=	42)	 	 	 	 	 	 	 	

Negative	 96.13	(5.24)	 97.42	(3.56)	 1.29	(5.33)	 1.57	 .283	 -0.37	 2.95	

Neutral	 98.02	(3.35)	 95.54	(6.20)	 -2.48	(6.04)	 2.66*	 .480	 -4.36	 -0.60	

Positive	 96.53	(5.03)	 96.03	5.04)	 -0.50	(5.76)	 -0.56	 .099	 -2.29	 1.30	

	 	 	 	 	 	 	 	

Combined	Scrambled	(N	=	42)	 	 	 	 	 	 	

Negative	 96.13	(3.00)	 97.42	(3.56)	 1.29	(3.77)	 2.22*	 .390	 0.12	 2.46	

Neutral	 96.08	(2.95)	 95.54	(6.20)	 -0.55	(5.93)	 -0.60	 .107	 -2.39	 1.30	

Positive	 96.68	(3.22)	 96.03	5.04)	 -0.65	(4.97)	 -0.84	 .149		 -2.19	 0.90	

	

Note:	Distraction	index	=	[accuracy	(distractor	absent)	–	accuracy	(distractor	present)].	t-values	
and	effect	sizes	are	from	paired	comparisons	of	distractor-present	to	distractor-absent	trials,	and	
indicate	whether	images	caused	significant	distraction	in	that	condition.	95%	confidence	intervals	
surround	the	distraction	index,	in	ms.		

*p	<	.05,	**p	<	.01	
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Figure	1.	Trial	procedure	in	both	experiments.	Distractors	could	appear	either	above	
or	below	the	target	display.	Only	intact	images	were	presented	in	Experiment	1;	both	
intact	and	scrambled	images	were	presented	in	Experiment	2.	Image	shown	is	for	
display	purposes;	actual	images	were	drawn	from	the	International	Affective	Picture	
System	(IAPS;	Lang,	Bradley,	&	Cuthbert,	2008).	Displays	not	to	scale.		
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Figure	2.	Distraction	for	participants	in	the	low	(N	=	48)	and	high	(N	=	48)	frequency	conditions	of	
Experiment	1.	Error	bars	are	95%	confidence	intervals	for	within-subject	comparisons.	

	

	 	

Figure	2.	Distrac/on	for	par/cipants	in	the	low	(N	=	48)	and	high	(N	=	48)	frequency	
condi/ons	of	Experiment	1.	Error	bars	are	95%	confidence	intervals	for	within-subject	
comparisons.	
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Figure	3.	Distraction	across	initial	trials	of	Experiment	1.	Distraction	was	calculated	using	only	the	
first	12	distractor-present	and	distractor-absent	trials	in	the	first	block,	and	presented	as	a	
function	of	emotionality	under	high	and	low	distractor	frequency	(N	=	24	per	condition).	Error	
bars	are	95%	confidence	intervals.	
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Figure	4.	Distraction	indices	in	Experiment	2.	Results	are	shown	for	the	low	(N	=	40),	high	(N	=	41)	
and	combined	(N	=	42)	frequency	conditions.	In	the	combined	condition,	participants	saw	intact	
(25%)	and	scrambled	(50%)	distractors.	Error	bars	are	95%	confidence	intervals	for	within-subject	
comparisons.	
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