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Summary

Companies outsourcing road freight transportation services approach their procure-
ment plan based on a combination of long-term annual contracts with dedicated
carriers and spot-markets for immediate loads. This thesis proposes an integrated
planning framework considering tactical and operational decisions for logistics ser-
vices procurement. It allows individual shippers to formulate mid-term contractual
agreements with several transporters that could reduce some of the risks encoun-
tered in shipper-carrier business relationships, such as unavailability of transporta-
tion resources and high-market prices.

Contractual agreements are based on minimum commitment (MC) contracts, where
the shipper commits to a minimum business volume with certain regularity while
carriers offer low and stable rates regardless of market variations. The manage-
ment problem includes selecting among several contract proposals and deciding the
distribution planning for every period along the time horizon.

Real-life applications may arise in the context of commercial companies or logistics
firms with presence in widespread areas and subcontracting to multiple transporta-
tion and logistics service providers. The models are meaningful in dynamic envi-
ronments, where the contracts represent both an opportunity and risk due to high
demand and price variability. In the present work, the tactical planning framework
with minimum commitment contracts is studied in the field of e-commerce logistics
distribution from the perspective of an e-fulfilment company.

The mathematical problem is formulated with mixed-integer linear programs for
several variants of MC contracts, in their deterministic and stochastic form. Sev-
eral algorithmic methods are compared to prove efficiency in finding optimal or
applicable solutions to the problem. Numerical tests were performed in random
instances with well-defined parameter settings. Results are presented with perfor-
mance profiles evaluating algorithms in terms of computational time and solution
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quality. The analysis considers the economical advantages of approaching capacity
planning from a tactical point of view.
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Chapter 1

Introduction

The sector of freight transportation and logistics services is of vital importance for
the global economy. Several means of transport are responsible for the continuous
flow of materials and products traded globally. In spite of strict environmental poli-
cies and regulations controlling the effects of fuel consumption and gas emissions,
the freight transportation industry maintains a steady growth over the past years at
an average annual rate of 1.5% in Europe, moving nearly 9.2 billion tonnes-km per
day (within the EU zone) [Eurostat, 2020]. At the same time innovations in infor-
mation technology and web-based tools lead logistics companies to take advantage
of digitalization in order to improve their way of doing business, enhance opera-
tional performance, and provide higher quality of service. For instance, carriers
make use of on-line platforms, increasing in that way visibility and allowing to dis-
play resources available in specific lanes, thereby, reaching a larger base of potential
customers interested in transportation services.

In recent years, the intensified use of e-commerce channels is regarded as a de-
termining factor in the economic growth of the freight transportation sector, with
businesses and customers buying products on-line from a vast selection of sellers
worldwide. Likewise, numerous retailers and manufacturers rely increasingly on
e-markets as an alternative option of selling products at local and international mar-
kets. As some of the entry barriers to the use of e-channels such as high fees or
long lead times are lowered, more individuals and businesses find e-commerce op-
portunities attractive to acquire supplies, goods and services at acceptable costs.
Meanwhile, the demand for long-distance transportation and last-mile distribution
keeps expanding. Leading players in the e-commerce arena (e.g. Amazon, Alibaba)
continue to invest in physical assets, adding warehousing capacity and deploying
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fulfilment services around the globe and at the same time, working together with
logistics service providers (LSPs) in order to satisfy end-customer requests in terms
of fast shipping and low-cost delivery.

The effect of e-commerce motivates commercial companies to seek out for special-
ists in product distribution and order fulfilment. Outsourcing logistics services is a
common practice. Nowadays, most of the companies outsource domestic (74%) and
international (62%) transportation as well as warehousing services (63%) [Infosys,
2020]. Some of the benefits mentioned in the academic literature are economical
savings, efficient use of capital and resources, increased focus on main competences
and capabilities as well as quick introduction of products and service innovations
into the market. In addition to the management and operations of basic functions
(transportation, storage), logistics service providers can offer a wide range of com-
plementary solutions, including information-related and value-added services [Lai,
2004]. However, the extensive offer of outsourcing alternatives for freight trans-
portation makes it challenging to select suitable logistics partners and to manage
coordination among them, in some cases by different transport modes. Therefore,
LSPs often make decisions involving the movements and handling of products on
behalf of the shipper. A distinction of LSPs according to their core capabilities is
presented in Section 1.1.

Companies outsourcing road freight transportation services approach their procure-
ment plan based on a combination of long-term annual contracts (at least 1 year)
with dedicated carriers and through spot marketplaces for immediate services. In
both cases, the carrier selection criterion is primarily based on cost and taking into
account expected variations and uncertain outcomes of transportation requirements
in the future is not often analysed in contractual arrangements. A description of
common practices and theoretical frameworks in road freight transportation pro-
curement is described in Section 1.2. In practice, uncertain events can increase
considerably logistics costs. Furthermore, undefined or unclear specifications in
long-term contracts with respect to the shipper’s capacity requirements can cause
disruptions in the supply of transportation services. This is a major concern if we
consider that a delayed or unfulfilled order can result in the loss of clients and un-
dermine the shipper’s reliability. Some of the problems encountered in the literature
of transportation management regarding long-term business relationships between
shippers and carriers are introduced in Section 1.3

An opportunity arises to consider transportation procurement methods from a tac-
tical perspective (i.e., within a foreseeable horizon of several weeks but no longer
than one year) taking into account deterministic and probabilistic scenarios of the
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shippers’ requirements in the near future. This thesis proposes a tactical planning
approach for freight transportation management allowing to take preventive contrac-
tual decisions between a shipper and several carriers, for instance, when demand is
likely to change drastically and alternative sources may be costly or insufficient.
While planning methods aimed at the medium-to-long term are regularly studied
and applied in production and manufacturing, less attention is given to procurement
of logistics and transportation services. In that regard, this work attempts to provide
a different perspective on the subject separate from standard practices. As observed
by Huang & Xu [2013], transportation service procurement (TSP) mechanisms are
worth investigating as they could affect the trading volume and efficiency of the
freight market.

Given the mid-range planning horizon, our framework conceives contractual agree-
ments between a shipper and carriers of shorter duration than commonly used an-
nual contracts. The shortened length provides greater flexibility in adjusting trans-
portation requirements to contracted resources. The shipper can dismiss more fre-
quently certain contracts that are not being profitable, while at the same time diver-
sify its choice of dedicated carriers. In addition, the use of risk-sharing contracts
with minimum commitment conditions into the business agreement can be benefi-
cial for both parties by clarifying norms about capacity (vehicle) availability, fleet
utilization and shipping rates. Such conditions and terms may deal in part with
the shipper’s risks of unavailability of transportation resources and/or high market
prices. On the other hand, carriers may enforce a minimum level of capacity uti-
lization (e.g., volume, truck fleet) which guarantees a steady return on their assets
independent of the market variability. A brief characterization of risk-sharing mech-
anisms is presented in Section 1.4 and further detailed in Section 2.1.

In the present work, the tactical planning framework with minimum commitment
contracts is applied in the context of e-commerce logistics distribution. The shipper
is in practice an e-commerce third-party logistics (3PL) company subcontracting
with LSPs to support its distribution and delivery system. The selection of carriers
is based on contract prices on their operational lanes subject to satisfying minimum
commitment conditions. The shipper presents two main characteristics: it owns and
manages central warehouses (so called e-fulfilment centres) where multiple items
from multiple sellers are stored. In addition, it experiences large volumes of parcels
bought daily, that need to be delivered to buyers as soon as possible. Therefore,
full truck capacity provided by external carriers is best suited to ship parcels to-
wards customer areas. Before arrival, parcels are forwarded through consolidation
centres (i.e., cross-docking facilities where entering goods get sorted and placed
into outbounds vehicles) close to customer areas and delivered by authorized postal
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companies or last-mile delivery services to their destination points. The distribution
system so described represents a two-echelon supply chain network.

The distribution network design problem is similar to a multi-period facility location
problem. The mixed-integer linear mathematical programs developed aim at min-
imizing the total costs along a finite time horizon with time-varying demand. The
mathematical formulation integrates managerial decisions at two hierarchical lev-
els. At the tactical level, the shipper determines which carriers are able to provide
services, therefore what resources (truck capacity, facilities) can be used to ship and
redirect parcels upon arrival. At the operational level, the distribution plan dictates
which of the available carriers’ resources are functional in a certain period. Both,
contract and distribution plans are interdependent in the decision-making process.
A last purpose of this thesis is to derive algorithmic strategies to tackle the complex
structure of the problems based on various decomposition procedures. The structure
of the proposed mathematical models entails difficulties for solving large instances
of the problem. The solution strategies are built on non-exact and exact methods ap-
plied previously for other optimization problems. The uncertainty of the customers’
demand is also considered through several stochastic programming formulations.

The contributions of the thesis are summarized in Figure 1.1

Thesis Contributions

Integrated 
tactical-operational 
planning for TSP*

TSP Contracts 
with minimum 
commitments

Problem definition 
and resolution

Selection of carriers

Distribution 
Network Design

Purchase
 Commitment

Capacity 
Commitment

Mathematical 
Formulation

Solution 
Strategies

Deterministic Demand

Stochastic Demand

Heuristics

Exact methods

*TSP: Transportation services procurement

Figure 1.1: Thesis contributions
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1.1 Characterization of Logistics Service Providers

The range of LSPs is well diversified as some operate and manage physical assets
(transportation fleet, distribution centres, warehousing, equipment) while others act
as intermediaries, partially or totally subcontracting transportation requests to the
former type. The differentiation of logistics firms can be expressed according to
their service capabilities and core competences which lead them to compete in dif-
ferent market segments [Lai, 2004]. Hence, distinct actors in the logistics service
supply chain coexist and are interdependent with each other [Cui & Hertz, 2011]. A
characterization of LSPs is valuable to the thesis subject since it allows us to define
the nature of actors interested in approaching outsourcing of logistics services with
the purpose of finding cost-optimal solutions to distribution logistics in e-commerce.
Additionally, it gives a broader view of the applicability of the methods and models
studied in this thesis.

Logistics service providers can be classified in three categories: Carriers, Logistics
Service Intermediaries (LSI), and Third-Party Logistics companies (3PL) [Stefans-
son & Russell, 2008].

Carriers or transporters are agents that own and operate transportation assets [Mesa-
Arango & Ukkusuri, 2014]. In the context of road freight logistics, carriers are for
example trucking companies that conduct and operate resources (e.g. vehicles, ter-
minals, drivers) within a limited geographical coverage, from narrow to wide areas
[Cui & Hertz, 2011]. Their strategic capabilities and core competences stem from
the exploitation of resources to carry out operations in their dedicated networks
[Lai, 2004]. Carriers can vary in terms of size, service offerings and target cus-
tomers. More commonly, they offer standard transportation services for regular
use, although some may specialize in certain type of solutions investing in specific-
purpose vehicles. Carriers often have preference for setting up long-term (LT) con-
tracts with shippers by establishing fixed prices beforehand. LT contracts account
for more than 90% percent of business of asset-based carriers [Scott, 2018]. In that
sense, their fleet is mainly to cover their registered clients’ needs. Some carriers
even create strong alliances committing a large proportion of their resources to ded-
icated clients. Regardless of LT agreements, carriers seek alternative ways to cash
in using to the maximum their resource capacity. For example by tendering to one-
time jobs (or so-called loads) placed by unknown shippers in on-line auctions or
placing offers for potential jobs in free slot times and convenient routes, according
to their respective schedules, sometimes through logistics intermediaries who can
connect easily with numerous shippers in need of transportation services.
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Third-party logistics companies (3PLs) supply transportation services using either
their own physical assets or those from others [Lindsey et al., 2013]. A distinction
is made from those that rely completely on external resources (non-asset based). In
spite of owning several transportation assets, some 3PLs subcontract with carriers
when additional capacity is required [Mesa-Arango & Ukkusuri, 2014]. Regardless
of the differences in ownership, 3PLs have in common to coordinate and synchro-
nize different actors in the clients’ supply chain. An important feature of 3PLs is the
provision of value-added services beyond logistics functions, such as taking care of
administrative paperwork, freight safety protocols, customs clearance among other
activities. For doing so, 3PL companies invest in warehousing, and support inte-
gration of IT services with partners for smoother transition of physical flows and
information. Furthermore, 3PLs may invest capital in customized assets that ad-
dress specific transportation requirements of dedicated clients. The relationships
3PL-client can be considered as partnerships which are strongly developed with
time and have a long-term view. Their expertise, knowledge and specialized skills
are the primary intangibles available to shippers [Lindsey & Mahmassani, 2017].
Asset-based 3PLs have in common with carriers the use of spot markets as a mean
to promote leftover capacity, either directly or through intermediaries (LSI). There-
fore, 3PL providers can either supply capacity in the long-term or in spot markets
[Lindsey et al., 2013]. Some 3PL companies defined themselves as 4PL organiza-
tions or supply chain integrators that are responsible to manage several third-party
service providers of the same user [Buyukozkan et al., 2009]. Hence, 4PL, are ex-
amples of companies that manage logistics operations for their clients but rely also
on external providers for physical flows.

In contrast, logistics service intermediaries (LSIs) are non-asset based companies
specialized in linking carriers and shippers. Therefore, LSIs do not own any freight
assets [Lindsey & Mahmassani, 2017], but handle a vast network of carriers, 3PLs
and shippers. Their main goal is the consolidation of orders [Cui & Hertz, 2011],
i.e., the allocation of loads or shipments to available capacity from multiple sources.
There are several types of intermediaries in the market: brokers, forwarders or con-
solidators. [Coyle et al., 2010]. Brokers specialize in spot markets while forwarders
concentrate on consolidation of shipments. Handling large number of clients re-
duces LSIs capabilities to manage physical flows in specific supply chains [Cui &
Hertz, 2011]. The type of business relationship with clients can be considered as
a low-level partnership, in which coordination and planning are key activities but
do not necessarily involve integration and/or capital investment [Knemeyer et al.,
2003]. Therefore, their main assets and capabilities come from making use of deci-
sion support systems and IT technologies as well as a comprehensive knowledge of
procurement tactics in the field. The ability in processing, managing and transmit-
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ting real-time data is key for their strategic competitiveness.

Carriers

3PL
(N-A.B)

LSI

Commercial 
Clients

(A.B)

Short-term (one-time) services

Long-term contracted services

Asset based operators

Non-asset based operators

Carriers

3PL
(N-A.B.)

LSI

Commercial 
Clients

(A.B.)

Short-term (one-time) services

Long-term contracted services

Asset based operators – (A.B.)

Non-asset based operators – (N-A.B.)

Figure 1.2: Relationships between logistics service providers

In Figure 1.2 are represented the different types of logistics service providers de-
scribed above. Differentiation is made primarily between asset and non-asset based
actors where 3PLs can range from having none to several physical assets. The in-
terconnected links follows the direction from the requesting entity to the service
supplier. Links are also marked differently to show how business relationships are
usually established among players, either by long-term or short-term (one-time)
agreements.

In addition, collaborative alliances in each market segment are increasing [Cruijssen
et al., 2007]. Figure 1.2 intends to simplify the nature of actors and business rela-
tionships although in reality the range of logistics firms can be more complex and
further differences are presented in each market segment, for example regarding the
main logistics functions provided.
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1.2 Road Freight Transportation

Road transportation remains the most widely used mean of freight transportation
worldwide. It’s estimated that around 50% of goods are transported by road in the
European Union (EU) zone with more than 500 thousands enterprises performing
transportation and storage activities [Eurostat, 2020]. The range of trucking ser-
vices is separated in full truckload (FTL) and less-than-truckload (LTL) according
to capacity requirements of the shipper either for complete or partial vehicle use,
respectively. Full truckload (FTL) services (i.e., full utilization) is more adequate
for high-volume long-haul shipments, while LTL is intended for low-volume within
short as well as long distances. A FTL shipment is also characterized by following
a direct origin-destination path, while in LTL the shipment might be part of several
routes and stops before destination. The trucking market is predominantly used for
full truckload services, representing more than 78% of the total market [Caplice &
Sheffi, 2003]. In this thesis, FTL transportation is considered within applications
in the context of e-commerce distribution. For the concern of the study, a review
of long-term and short-term (or one-time) contract practices between carrier and
shippers is described next.

1.2.1 Long-Term Agreements

The most common formal commercial relationship between shippers and common
carriers is based on contractual agreements, that usually hold for one to two years
and sometimes longer [Caplice & Sheffi, 2003]. In that sense, the process of se-
lecting logistics partners can be categorised at the strategic level and as one of the
key success factors for a firm [Rekik & Mellouli, 2012]. Several mechanisms are
used to find trading partners and formalize annual agreements, such as catalogues,
negotiations and auctions as referred in Lafkihi et al. [2019]. Most regularly these
mechanisms are available through on-line platforms (e-marketplaces) or transport
management systems, which integrate strategic procurement tools between shippers
and carriers. In catalogues, services and prices are relatively fixed although subject
to negotiations [Lafkihi et al., 2019].

Among the most studied methods in the logistics business literature are auction
mechanisms. Generally, auctions are conducted by shippers (hence, in reverse-
form) for a determined lane (i.e., inter-cities). Interested carriers or intermediary
agents bid on either one or multiple loads of the same shipper. Thereafter, the
negotiation process with the winner determines conditions such as the contract du-
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ration. Nonetheless, auctions studied in theory can take different forms, regarding
the number of lanes offered, carrier allocation rules (one or several), bidding strat-
egy or number of rounds. Forward auctions managed by carriers are also subject to
analysis.

An extended area of research focuses on combinatorial auctions for freight trans-
portation procurement services, particularly for full truckload (FTL) transportation.
Studies make use of optimization models/OR techniques to determine auction win-
ners for bundles of trips. The decision is based on intrinsic synergies in FTL trans-
portation when combined loads could potentially reduce the cost of empty trips for a
given carrier (economies of scope). Some of these theoretical approaches were im-
plemented and applied successfully in practical contexts [Caplice & Sheffi, 2003].
Other combinatorial auction studies involve non-economic attributes into the deci-
sion process such as carriers reputation [Rekik & Mellouli, 2012] or service quality
levels [Buer & Pankratz, 2010].

Considering long-term procurement effects, shippers are not only driven by the price
of shipments, although it continues to be the main factor of carrier selection (in 60%
of the cases) [Mesa-Arango & Ukkusuri, 2014]. Similarly, for 3PL companies the
criteria to select carriers is inclined towards cost benefits [Patterson et al., 2010].
However, qualitative attributes are also taken into account like transport mode (rail,
road), fleet size, capacity flexibility and experience. Other factors of concern in the
selection process are performance attributes of carriers, such as service reliability,
damage/security risks and satisfaction rates with previous partners. On the contrary,
shipping times across destinations rarely imply a significant advantage in selecting
a service provider, since transit times are rather standardized and commonly known
by shippers [Patterson et al., 2010].

1.2.2 Short-Term Agreements

Short-term strategies are based on one-time transactions rather than contracts. Com-
panies turn to spot markets where the excess of capacity coincides with load requests
(i.e., shipping job). Hence, transactions take place at prices that are settled and gov-
erned by the market itself.

Although FTL transportation prices correlate with seasonality effects (e.g., a monthly
index is used in forecast analysis) and principal characteristics (travel time, vehicle
type), rates of services fluctuate constantly according to market dynamics (i.e., de-
mand and supply of transportation services). Therefore, shippers experience price
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uncertainty in the face of spot markets. In spite of its dynamic nature, the spot price
of a truckload is typically much higher than the corresponding contract price [Tsai
et al., 2011]. However little is known about the determinants of those prices [Scott,
2015].

Although the most commonly used alternative of outsourced transportation for com-
mercial companies are for-hire carriers (i.e., third-party providers) with long-term
contracts (in the US and Europe [Caplice, 2007]), the spot market is often utilized.
Spot markets are predominantly used by logistics service intermediaries [Scott,
2018]. In particular brokerage services (or 3PL brokers) grant access to electronic
marketplaces which are privately managed. The presence of intermediate agents is
estimated of main importance to clear the market effectively. Brokers can negotiate
better deals based on their market knowledge responding in that way to urgent or
last-minute loads.

Capacity in the spot market can be found by contacting carriers, by offering loads on
platforms, or by holding on-line auctions. Similar to annual procurement auctions,
spot markets let shippers run one-load or multi-load auctions in search of bidders
for urgent or on-demand requests. The short response time is likely to reduce the
number of participants.

Logistics service providers of different nature (asset/non-asset based) approach spot
loads offerings differently based upon individual interests: while intermediaries
(LSIs) are capable to bid more frequently at relatively high prices, trucking firms
bid less at more affordable prices [Scott, 2018]. The former focus on multiple trans-
actions with better margins, while the latter react to few loads with acceptable mar-
gins. On the other hand, the shipper’s allocation rule is merely based upon cost
reduction, unlike longer term agreements where additional attributes and qualities
are considered. One-time loads are often performed within 3 days after the auction
determines a winner and the business relationship ends once the job is done [Scott,
2018].

1.3 Issues Relative to Contracts in Transportation

Long-term contracts in transportation are subject to potential breaches regarding
conditions agreed upon initially. Two particular detrimental situations for the ship-
per’s interests might occur.

On one hand, some requests for shipments may be refused by the hired carrier.
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Even though, contractual prices for trucking services are binding in legal terms,
the responsibility to satisfy shipping requirements is usually not strictly imposed
[Caplice, 2007]. As a consequence, carriers may turn down shipments if trucks are
unavailable or in presence of market opportunities to haul at higher prices in the
spot market [Scott et al., 2017]. This could happen due to unplanned or unexpected
requirements caused by surging needs of load movements. The declination rate
could elevate up to 26% of requests [Caplice, 2007], which leads shippers to find
capacity elsewhere, possibly at unfavourable off-contract prices. In some cases,
urgent services are not guaranteed to be fulfilled on time [Lindsey & Mahmassani,
2017].

Sourcing capacity from spot market-places can be very expensive. The variation of
trucking rates for the same direct route can range from 75% to 200% of the “offi-
cial” rate [Brusset, 2010]. The variability of costs-per-mile can vary substantially
regardless of the distance travelled (more than twice the average costs according to
the observed data in [Lindsey et al., 2013]). In addition, contracting with logistics
intermediaries allowing access to trade platforms represents extra costs.

On the other hand, the set of prices pre-agreed during initial negotiations may not be
respected by carriers when circumstances allow opportunities to allocate resources
to higher bidders, which implies a lack of compliance from carriers to shippers and a
need to reinforce contractual provisions. For instance, in the context of agricultural
production, prices are tentatively agreed before a harvest season, but carriers (or
intermediaries) adjust at their convenience when the demand of transportation rises
close to the peak period [Brusset, 2010]. In such circumstances, the shipper bears
little control over its logistics costs and risks late deliveries at customers locations.

From a carrier’s perspective, long-term contracts do not specify the exact capacity
to hold available along the contract time. This capacity depends upon the shipper’s
requests, which can vary from one period to the next. Nonetheless, some shippers
guarantee relative volumes as opposed to absolute volumes to the carrier (e.g., a
percentage of truckload trips in a corridor) in exchange of securing capacity to some
extent. In that way, avoiding refusals for long-haul service requests [Lindsey &
Mahmassani, 2017].
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1.4 Risk-sharing Contracts

In the literature of operations management, several contract mechanisms are pro-
posed and studied to deal with supply chain uncertainties in buyer-supplier relation-
ships. The element of risk is always present under unknown outcome of demand or
purchasing prices. For that matter, special trade conditions are established for total
order quantities and final unit costs.

Different risk-sharing mechanisms like fixed commitment, quantity flexibility and
option contracts are extensively studied and applied in the literature for various
purposes. Such risk-sharing contracts differ in specifications about reservation and
execution terms. In the reservation phase, an initial agreement is made for a first
order at some price. In the execution phase, transactions are completed up to or
down to the final required quantities and pre-agreed costs.

The aforementioned mechanisms deal with potential risks in various way. For in-
stance, in fixed commitment contracts the initial reservation quantities and nego-
tiation prices are fixed and the total costs owed to the supplier. Hence, while the
cost is certain, the risks of shortage and excess inventory are assumed by the buyer
[Martı́nez-deAlbéniz & Simchi-Levi, 2005].

Flexibility contracts allow to modify the reservation order by increasing or decreas-
ing that quantity by some percentage, in this way, letting the buyer adjust its initial
requirement. Option contracts specify a tentative initial order and partial payment,
that could be then denied or accepted totally or to some extent. The buyer could
lose the initial payment, while the supplier risks to produce with low return and
hold unused inventory.

In the same way, several contract forms can be translated for procurement of freight
transportation services. Yet, unlike physical items, transportation capacity supplied
by common carriers is neither storable or salvageable. Also, the risk of shortage of
transportation capacity is always present for shippers and usually tackled through
spot markets. On the other hand, the risk of unused capacity is often run by carriers.
In that sense, the shipper could benefit from cost savings if the risk of empty or idle
vehicles is addressed or shared partially with logistics partners.

In the literature on transportation and logistics procurement, some alternative risk-
sharing mechanisms were formulated for the shippers’ benefits, like the use of
derivative contracts, (denominated truckload options [Tsai et al., 2011]), following
the example of stock options in finance markets [Tibben-Lembke & Rogers, 2006].
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Thus, the shipper earns the right to activate logistics resources at a given price but
is not obliged to make use of the option.

Separately, some authors mention the use and application of flexible terms in prac-
tice [Lindsey & Mahmassani, 2017]. Little attention is paid to fixed commitment
contracts with carriers, possibly due to the long-term nature of contracts.

1.5 Contextual Applications

In sum, this thesis addresses transportation procurement planning integrating tacti-
cal and operational decisions. The carrier selection and the distribution network de-
sign problems are handled in parallel. The combined approach in conjunction with
mid-term minimum commitment contracts attempt to resolve some of the problems
observed in shipper-carrier relationships in road freight transportation services.

In that way, the planning framework extends the range of alternatives established
in standard practices when companies decide to subcontract or outsource to third-
party LSPs, which generally consists in long-term strategic selection of partners
and/or one-time (load-by-load) services. At the same time, the shipper is involved
into actively deciding on the most suitable routes and pathways to move or collect
freight across the network of facilities, starting from origin points (e.g., central hubs,
distribution centres) to destinations. In that way, selecting the group of operators
that are integrated into the logistics network to cover widespread areas.

Real-life applications may arise in the context of large commercial companies with
multi-national presence, outsourcing to a wide variety of transportation and logis-
tics companies, including services like warehousing, trucking (LTL, FTL), freight-
forwarding (consolidation, cross-docking), parcel delivery and collection (returns).
Nonetheless, 3PLs or LSIs connecting directly with multiple operators (see Figure
1.2) could foresee cost benefits in application of multi-period agreements which
provide for instance minimum number of shipments.

Operational decisions (facility/route selection, vehicle routing, demand allocation)
taken into account for the flow and movement of shipments, determines in great
extent, the network flow optimization problem. In the present work, the models ad-
dress situations which feature multilevel distribution networks, with multiple origin-
destination paths. The models are meaningful in dynamic environments, where the
contracts represent both an opportunity and a risk due to high demand and price
variability. The former is typically encountered in e-commerce, and the latter in
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the market of full-truckload services, but could arise in different environments as
well, such as, more generally, parcel delivery. In such environments, the interaction
between tactical and operational decisions is more relevant.

In line with these elements, we look into the e-commerce logistics distribution from
a perspective of an e-fulfilment company in need of planning accordingly the re-
quired capacity to dispatch products in forecoming periods. The increasing diffi-
culty in solving larger instances of the problem leads to develop algorithmic strate-
gies based on decomposition of the structure of the mathematical models.

1.6 Thesis Contents

The outline of the thesis is summarized in Figure 1.3 and described as follows:

In Chapter 2, the literature review is proposed separately for the main aspects of the
problem studied. Namely, revision of risk-sharing contracts with minimum com-
mitments, procurement planning problems with supplier selection, network design
optimization problems with outsourcing alternatives and multi-period facility loca-
tion problems.

In Chapter 3, the description of the problem in the context of e-commerce fulfil-
ment is introduced. The network design problem is formulated as a distribution
network problem with minimum commitments (DNPMC). Minimum commitment
contracts are characterised with parametric notation according to their duration,
service, penalty costs, and commitment conditions. Generalities of the minimum
purchase commitment(MPC) contract are clearly defined and several formulations
for the DNPMC with different types of MPC contracts are derived. Insights on the
various mathematical models are discussed and analysed.

In Chapter 4, the multi-period distribution network problem (MDPC) is studied
for MPC contracts lasting for multiple periods, fixed service costs (no penalties)
and compulsory per period commitments. The mathematical representation, intro-
duced in chapter 3, is further analysed and solution methods based on decomposi-
tion strategies are developed and implemented for several instances of the problem.
Managerial insights and algorithmic performance results are provided following ex-
tensive computational experiments.

In Chapter 5, the stochastic programming formulation of the distribution network
optimization problem
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(DNPMC) is presented. The demand is modelled with a discrete probabilistic func-
tion and the minimum commitment contract in terms of capacity is introduced, min-
imum capacity commitment (MCC). Several two-stage and multi-stage stochastic
programs with fixed recourse are then derived according to variants of the MCC
contract and capacity reservation rules.

In Chapter 6, the stochastic multi-period distribution network problem with MCC
contracts (mDNP) is studied, in particular for MCC contracts lasting for multiple
periods, penalties, compulsory per period commitments and ex-ante capacity reser-
vation. Several heuristic strategies are proposed and tested over generated instances
of the problem. Managerial insights and algorithmic performance results are pro-
vided for several heuristics procedures.

Finally, in chapter 7 perspectives and conclusions of the thesis are presented.

Introduction
Chapter 1

Literature Review
Chapter 2

Conclusions and 
Research perspectives

Chapter 7

Mathematical Formulation
(Deterministic Models)

Chapter 3

Solution Methods
(Exact, Heuristics)

Chapter 4

Distribution network design
 with minimum purchase 

commitments

Mathematical Formulation
(Stochastic Models)

Chapter 5

Solution Methods
(Heuristics)
Chapter 6

Distribution network design
 with minimum capacity 

commitments

Figure 1.3: Thesis outline
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Chapter 2

Literature Review

The literature review is separated in several subtopics and classes of problems ap-
proached in this thesis.

Designing and planning distribution network flows over a long-term dynamic hori-
zon presents itself as one of the core subtopics. A part of it is concerned with the
allocation of transportation corridors to eligible transporters working under risk-
preventive minimum-commitment contracts. The decision-making procedure re-
sults in a finite selection of suppliers based on economical benefits in the long-term.
Each of these topics will be handled in a separate section.

Section 2.1 discusses bilateral agreements that include risk-sharing provisions in
buyer-supplier relationships. The supply chain literature describes under distinct
names (e.g., capacity reservation, quantity flexibility, minimum quantity, options)
several type of contracts sharing common characteristics. The literature on supply
contracts is filtered through its ability to be translated in terms of freight transporta-
tion service procurement and is categorized according to common parameters.

Section 2.2 presents a review of supplier selection methods in procurement plan-
ning. Most of the OR/supply chain management literature that investigates supplier
selection is applied in the context of manufacturing and commercial activities. In
addition to classical procurement costs (fixed set-ups, inventory, purchasing), some
applications take into account transportation costs and transport mode selection into
the decision process.

Section 2.3 focuses on network design problems that include some form of out-
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sourcing options in the decision making, meaning an external agent imposes an
unconventional (typically, nonlinear) cost function for services provided. An impor-
tant sub-theme in this area, addresses vehicle routing problems, which are generally
grounded in the operational level of managerial decisions for day-to-day planning.

Section 2.4 centers on multi-period facility location problems which take place at a
more strategic level. Particular interest is devoted to solution approaches and their
applicability in the context of e-commerce distribution logistics. A classification of
previous studies is proposed according to characteristics of each problem.

Section 2.5 discusses the particularities of e-commerce logistics distribution.

2.1 Supply Contracts with Risk-sharing Provisions

The literature on supply contracts provides managerial insights for tackling busi-
ness risks in buyer-supplier relationships, in the face of uncertain future market be-
haviour. Several applications model formal agreements in the presence of uncertain
demand and spot market costs. Setting up formal contracts in advance enables the
buyer to negotiate fixed prices with suppliers. By contrast, sourcing ’on demand’
from spot markets would entail risks of low market availability and high prices.

Reserving capacity through contracts requires to follow certain steps. For instance,
the buyer needs to signal approximately the future demand levels (without know-
ing them exactly) in order for the supplier to reserve adequate resources, to allocate
capacity and to prepare requests ahead in time. This estimation may not correctly
reflect the subsequent behaviour of the market. As a consequence, falling short can
require to consider sourcing alternatives on spot markets, which often entail higher-
than-contract costs. On the other hand, overestimating demand requirements may
result in excess inventory which, depending on the contractual agreement, may be
either charged to one of the parties or split among them. Both detrimental situations
arise, for example, in capital-intensive and high-tech industries with long lead times
([Spinler & Huchzermeier, 2006], [Jin & Wu, 2007]). In such industries, manu-
facturers are required to establish flexible mechanisms with suppliers, mitigating in
that way overproduction costs or lost sales. Likewise, suppliers demand profitable
conditions to commit production capacity regardless of the realized demand. These
considerations give rise to various risk-sharing mechanisms.

Two distinct perspectives can be found in the discussion of supply chain contracts
[Lariviere, 1999]. The first one deals with the design of contracts to achieve sup-
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ply chain coordination between two partner firms in a decentralized supply chain.
Setting up contract parameters in an appropriate way can provide a sufficient mech-
anism to achieve optimal global profitability, and to overcome inefficiency factors
such as information asymmetry (undisclosed data), risk-aversion or power imbal-
ance between players which motivate actions in their individual interest. In this
setting, contract parameters are usually treated as endogenous within the problem
formulation. Examples are found in Tsay [1999], Cachon & Lariviere [2005] and
Corbett et al. [2004].

The second stream of research focuses on determining optimal procurement plans
for a single firm with one or multiple suppliers, assuming that the general terms and
conditions of risk-sharing contracts are exogenously given. Examples are found, for
example, in Martı́nez-deAlbéniz & Simchi-Levi [2005], Lian & Deshmukh [2009],
Akbalik, Hadj-Alouane, Sauer, & Ghribi [2017]. This thesis falls in this type of
framework: it approaches procurement planning of transportation services (from a
single company perspective) under given terms of contracts.

Variants of contractual risk-sharing mechanisms are described in the literature un-
der different names: capacity reservation contracts ([Jin & Wu, 2007], [Akbalik et
al., 2017], [Li et al., 2020]), total minimum order quantity ([Bassok & Anupindi,
1997], [Chen & Krass, 2001]), quantity flexibility contracts ([Tsay, 1999], [Chen,
Hum, & Sun, 2001], [Lian & Deshmukh, 2009], [Heydari et al., 2020], [Li et al.,
2020]), option contracts ([Martı́nez-deAlbéniz & Simchi-Levi, 2005], [Spinler &
Huchzermeier, 2006], [Nosoohi & Nookabadi, 2016]). As a common feature, sup-
ply contracts with risk-sharing mechanisms specify general conditions at two mo-
ments in time, before and after the selling event, respectively. The procurement plan
accordingly follows a two-stage process (see Figure 2.1).

In the first stage, the buyer reserves some of the supplier’s capacity, based on its
expectations regarding future demand and sales. As a risk-protection mechanism
against lower-than-expected demand, the supplier may impose a minimum order
commitment (and hence, a minimum guaranteed payment) to the buyer for instance
to purchase a certain number of items, in order to cover at least the set-up costs
that it incurs. This commitment reduces the risk of business failure for the supplier
and stimulates it to invest in capacity. Thus, the supplier assign enough resources
to cover at least the expected demand of the buyer (i.e, the reservation level). The
supplier may also accept to designate more capacity than the reserved so as to earn
the benefits in case the buyer experiences higher-than-expected demand. In that
way, it concedes an additional safety stock. Consequently, the buyer enjoys a certain
degree of flexibility in ordering up to the allocated capacity level at same contract
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Figure 2.1: Two-stage procurement process

costs.

In the second stage, the demand is observed during the selling period and the buyer
submits its final order to the supplier. The final order can vary with respect to the
initial reservation in two ways: it can fall below the reservation level, R (but is
limited downwards by the minimum order commitment, m1), or it can rise above
the reservation level (while limited upwards by the supplier’s capacity allocated to
the buyer, m2). An additional pre-agreed convention may allow the buyer to order
with the same supplier at outside-commitments costs above the prepared capacity.
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2.1.1 Representation of Risk-sharing Provisions

A general class of two-stage risk-sharing mechanisms (involving several common
types) can be described with the following notations: The amount R denotes the
reservation level, that is, the estimated capacity utilization level to partially or com-
pletely fulfil the buyer’s future demand requirements. The forecast value of R is
complemented by the determination of two distinct parameters, setting on one side
the minimum order commitment (m1) with input value µ ∈ [0,1], (where m1 =R(1−
µ)) and on the other side the maximum supplier’s capacity allocated to the buyer
(m2) at contract prices (p1), with input value ω ∈ [0,∞), (where m2 = R(1+ω)).

A premium price for orders beyond m2 is denoted with p2. In addition, a fixed initial
payment independent of parameters m1 and m2, is defined as F0.

Figure 2.2 shows a general scheme for a contract with parameters (m1,m2, p1, p2,F0)
settled in the reservation/commitment stage, previous to the selling season. In the
execution/adjustment stage the range of executable orders are given by V1 for orders
(Q) at the agreed contract price p1 and V2 for orders above m2, charged at p2.

V
2

m
2

p1

V
1

p
2

m1 R

F0

Reservation/
Commitment (I)

Execution/
Adjustment (II)

Guaranteed payment

Execution range at contract price p
1

Execution range at second price p
2

Q

Figure 2.2: Configuration of contract parameters and risk-sharing provisions

Following the characterization of a given contract with risk-sharing provisions, two
main features implicitly given are its guaranteed payment in the reservation (first)
stage and its level of flexibility at the execution (second) stage for orders.

• The guaranteed payment can be implied by the minimum order commitment (m1).
Indeed, suppliers may secure a minimum payment linked to m1 and the corre-
sponding contract price p1. Thus, the parameter m1 is strictly greater than 0,
by setting µ < 1 (e.g., in quantity flexibility contracts). In some other cases, the
buyer is not obliged to execute orders at any level (i.e., setting µ = 1, thus m1 = 0)
and can completely dismiss the available capacity m2, however, an initial (guar-
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anteed) payment F0 is stipulated. The value of F0 can be relative to the maximum
allocated capacity m2 (e.g., in options contracts). In a more restricted setting,
both fixed payment (F0) and minimum order commitment (m1) may be part of the
agreement. In Figure 2.2, the areas with long-spaced diagonal lines represent the
guaranteed payment for the supplier.

• Flexibility is characterized by µ and ω . When µ > 0 (hence, m1 < R), the buyer
may choose to order less than the reservation level R, as long as the ordered
quantity remains larger than m1. On the other end, when ω = ∞ the buyer can
order as much as needed at same contract prices, whereas when ω < ∞, quantities
requested by the buyer beyond m2 may be charged at a higher price, or may not be
available at all. Optionally, when ω = 0 the supplier does not accept to allocate
capacity beyond the reservation level. In Figure 2.2 the grey area represents the
range of execution for orders at contract prices p1 (V1), and the area with short-
spaced diagonal lines represent the range of execution for orders at a premium
prices p2 (V2).

The two-column table and graph in Figure 2.2 are used along this thesis to de-
scribe and differentiate the type of contracts with risk-sharing provisions applied
in the context of transportation procurement with multiple suppliers.

• When considering multi-period planning frameworks, a third defining character-
istic of a procurement contract is its duration. The contract provisions can be
specified in some contexts for a single period, with an eventual possibility to
renovate a contract under new first-stage conditions (m1,m2, p1, p2,F0). In other
contexts, some contract parameters like the minimum order commitment (m1), or
the maximum available capacity at contract price (m2) remain constant for mul-
tiple consecutive periods (while the contract is in effect), even though execution
orders (in the second-stage) can be placed independently for each period.

2.1.2 Supply Contracts in the Literature

According to the characterization made in the previous section, Table 2.1 displays a
classification of the literature on risk-sharing contracts
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Authors Name of contract Contract duration Commitment level Flexibility (m1 level) Flexibility (m2 level) Flexibility
Single Multiple F0 m1 m2 µ = 0 µ ∈ {0,1} µ = 1 ω = 0 ω ∈ {0,1} ω = ∞ (above m2 level)

Tsay [1999] Quantity flexibility x x x x x
Li et al. [2020] Capacity reservation x x x x x
Chen & Krass [2001] Minimum total order quantity x x x x x
Jin & Wu [2007] Capacity reservation x x x x x
Brusset [2009] Quantity flexibility x x x x x
Nosoohi & Nookabadi [2016] Options x x x x
Spinler & Huchzermeier [2006] Options x x x x x
Heydari et al. [2020] Quantity flexibility x x x x
Bassok & Anupindi [1997] Total minimum commitment x x x x x
Akbalik et al. [2017] Capacity reservation x x x
Lian & Deshmukh [2009] Quantity flexibility x x x x x
Martı́nez-deAlbéniz & Simchi-Levi [2005] Commitments with flexibilities x x x x x

Table 2.1: Classification of risk-sharing contracts

23



Only a few publications deal with risk-sharing contracts for the supply of trans-
portation and logistics services. Chen et al. [2001] consider flexible commitment
contracts proposed by a company which subcontracts warehousing space to third-
party service providers. Each client specifies a base (reservation) commitment for
storage space at the warehouse based on its expected demand. During the planning
period, any space used above the commitment level is charged at a premium price.
Along the multi-period horizon, the base capacity commitment can be adjusted ac-
cording to changing demand requirements.

A. Lim et al. [2006] incorporate minimum quantity commitment contracts into the
classical transportation model. The freight owner decides how much to allocate
shipments among multiple carriers, but a distinctive feature of the model is that
a minimum volume has to be achieved with each selected carrier. The contracts
provide the flexibility to assign as much load as wanted to any carrier, as long as the
minimum quantity is respected.

Brusset [2009] considers three type of multi-period contracts to choose from, in
order to establish a formal long-term relationship between a carrier and a supplier.
Apart from a simple price-only contract without commitments, contracts with min-
imum purchase commitments (per period or over several periods) can be mutually
selected based on numeric conditions of contract parameters. The presence of ran-
dom demand and transportation prices in spot markets is modelled by stochastic
processes.

In this thesis, the main focus is on optimizing transportation procurement costs for
a single company in a multi-period and multi-supplier setting. We consider mini-
mum commitments provisions expressed in two different metrics. The first metric
expresses the commitments in monetary units (purchase commitments), as it is ap-
propriately used in the presence of multiple products. (In transportation services,
different corridors can be considered as different products with distinct prices). This
contract holds similarities with the one of similar name described in Brusset [2009]
which is also inspired from Cachon & Lariviere [2005] in a manufacturer/supplier
context. A fixed fee is paid in advance to have got available some transportation
capacity but does not entail the shipper to make use of it. The second metric is
in terms of load or cargo units (capacity commitments) in order to account more
explicitly for the reservation of transportation or logistical capacity. This type of
quantity commitments is in the same vein as those described in A. Lim et al. [2006].

The separation in two type of metrics has two purposes : first to show an extensive
(but not exhaustive) diversity of contracts with risk-sharing provisions which can
result more or less advantageous in practical situations for modelling contractual
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relationships in transportation. Second, to show how the diversity affects the math-
ematical representation (MILP) of the distribution network optimization problem
under different contractual and contextual assumptions, in particular under stochas-
tic/deterministic demand.

2.2 Supplier Selection in Procurement Planning

In this section, we revise the literature on multi-period procurement planning prob-
lems taking into account supplier selection. The revision is motivated by its relation
with the tactical planning approach considered in this thesis, with the common ob-
jective of minimizing procurement costs. Differently we focus on procurement of
services (transportation) rather than raw material or end products but similarly in-
volving supplier (carrier) selection within a multi-period planning framework.

Supplier selection problems have been thoroughly studied in the context of produc-
tion and manufacturing. Basically, the problem consists in buying one or multiple
items offered by several candidate suppliers, of which a subset must be selected.
Hence, finding optimal replenishment policies. Each supplier presents individual
pricing schemes, which often includes volume and quantity discounts.

Following that description, several authors studied the single-item dynamic lot-
sizing problem with selection of suppliers (SDSP-LSP). The buying firm may con-
sider logistical and operational costs (inventory, handling, transportation, set-ups,
production time) as well as demand variability features (backlogging, shortage) in
the formulation of its cost minimization problem, leading to variants of similar prob-
lems.

Rosenblatt et al. [1998] examine a simplified case in which the demand is constant
in each period and the firm must decide the frequency and amount of quantities to
buy from each selected supplier. Zhao & Klabjan [2012] study the polytope associ-
ated with an MIP formulation of SDSP-LSP; they completely describe the polytope
in the uncapacited case, and they define valid inequalities in the capacitated case.
Tempelmeier [2002] incorporates different discount structures under all-units and
incremental policies. He develops a heuristic approach to be easily implemented in
practical settings. Bai & Xu [2011] extend the diversity of cost proposals to three
types of cost-structures including all-units, incremental, and multiple fixed costs.
Dynamic programming algorithms are developed to solve certain cases in poly-
omial time. Ghaniabadi & Mazinani [2017] extend the dynamic LSP with multiple
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suppliers to account for backlogging. A recursive formulation based on dynamic
programming is proposed for this problem. Burke et al. [2008] propose a single-
period LSP problem with three stages. First, the total order quantity is announced,
next the suppliers submit their pricing schemes and capacity limits, and finally the
buyer allocates quantity orders to the suppliers. Several discount schemes are con-
sidered such as linear, incremental and all-units. It was found that certain discount
forms raise more computational difficulty than others, in which case heuristic-based
algorithms are better suited. In a multi-product setting Xia & Wu [2007] combine
qualitative criteria and supplier’s discounts based on total business volume.

Some studies consider more detailed agreements with suppliers in the form of com-
mitments contracts, that is, minimum required order quantities when contracting
with a supplier. The delivery capacity may also be limited to a certain maximum
value. For example, Chauhan & Proth [2003] incorporate minimum and maximum
intervals of provisions for each supplier. Therefore, in case an order is received,
no less than a minimum quantity is dispatched. The restriction of minimum order
quantity serves to compensate for any fixed costs incurred in the supplier’s pro-
duction process, for example in batch-production manufacturing with fixed set-up
costs. In the same logic Awasthi et al. [2009] considers supplier restrictions on mini-
mum order quantities in addition to capacity limits, in the face of uncertain demand.
Similarly, Zhang & Zhang [2011] assume an environment with min and max order
levels and stochastic demand, in which a fixed cost is incurred whenever a supplier
is selected.

Capacity reservation contracts have also been investigated in conjunction with sup-
plier selection. Typically, a reservation (unitary) price is established beforehand. On
top of that, an execution price is charged for the final order. Hazra & Mahadevan
[2009] present the case of a buyer firm in need of capacity reservation from mul-
tiple sources in the face of demand uncertainty. A selection of suppliers together
with contract reservation prices are obtained taking into account several parameters
such as maximum capacity limit and minimum execution level. Park & Kim [2014]
consider a replenishment model for a single-product from one or multiple suppliers
under capacity reservation contracts. Akbalik et al. [2017] model the LSP problem
with capacity reservation contracts and multiple suppliers, for a single-item that
could be ordered per batches instead of units. An order quantity below a thresh-
old is paid at the reservation price, while additional quantities are paid at a higher
spot-market price.

A specific perspective on procurement planning involving shipping costs is found
in a few applications. Mansini et al. [2012] address the problem from the stand-
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point of a company willing to minimize its total procurement cost, including both
the purchasing cost of multiple products and the associated transportation costs.
The suppliers offer discounts depending on the quantity purchased. Moreover, the
transportation costs are based on truckload shipping rates which depend on the total
load volume. A paper by Jaruphongsa et al. [2005] includes transportation costs and
shipment mode selection in a single-item dynamic LSP model. Multiple suppliers
can be seen as transporters with distinct cost functions as well as lead times. The
authors propose dynamic programming algorithms which allow to solve efficiently
(in polynomial time) some special cases involving two transportation modes.

2.3 Network Optimization and Logistics Outsourcing Prob-
lems

In the domain of transportation and logistics, some applications in network design
problems involve the selection of shipping companies. In a formulation of the
freight allocation problem to multiple shipping alternatives, Qin et al. [2012] de-
scribe a procurement planning problem from a perspective of a large retail company
buying products overseas and requiring transportation across several lanes. Ship-
ping companies propose different cost structures with discounts according to the
total volume transported. The allocation of freight has to comply with restrictions
on minimum and maximum capacity allocation to every contract carrier in order
to guarantee business profitability. A heuristic algorithm is proposed that relies on
tabu search to solve instances of the problem.

As already mentioned in Section 2.1, A. Lim et al. [2006] consider minimum quan-
tity contracts in a transportation problem. An international commercial company
needs to ship customer’s cargo overseas through carriers, which demand a min-
imum volume as a legal obligation. This enriched transportation problem is no
longer solvable in polynomial time. The MIP formulation is enhanced with strong
inequalities and its resolution is approached by branch-&-cut and rounding heuris-
tics. In a complementary research [A. Lim et al., 2007], the minimum volume con-
straint is generalized to a number of containers. Linear and Lagrangian relaxation
procedures are applied to the modified formulation. The work in our thesis gener-
alizes this previous application in several ways. First, it considers facility selection
variables for the distribution network problem. Furthermore, the time dimension is
included to account for demand variability. Also, minimum quantity contracts have
a determined duration that extends over several periods of a tactical medium-term
planning horizon.
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In a different context, the main interest is focused on vehicle routing problems
(VRP) involving outsourcing alternatives (e.g., outside carriers). Beside the usual
difficulty of routing a set of vehicles, an additional challenge consists in allocating
ship-to locations to transport modes, either with private or public resources, with
the objective to minimize transportation costs. Problems of this nature contemplate
at least two transportation modes, primarily with the use of an internal fleet of ve-
hicles at lower operational costs than the external source. The resulting integrated
transportation planning problems deal with realistic managerial issues pertaining
to limited private capacity and demand variability. In a seminal paper, Ball et al.
[1983] consider a commercial firm that can service multiple customers with either
private or public carriers. The problem aims at finding an optimal fleet size subject
to limits on tour durations. More recently, similar problems are gathered under the
name of VRP with private fleet and common carrier (VRPPC), whereby a shipper
owning a limited fleet is interested in visiting multiple locations by subcontracting
part of the service to external carriers. The outside carrier is expected to conduct
LTL shipments from a central depot to the designated locations. Several variants of
the VRPPC have been studied. For instance, Diaby & Ramesh [1995] study a dis-
tribution problem with one private vehicle and with outside carrier service. Zapfel
& Bogl [2008] study an extension of the multi-period VRPTW with outsourcing
options. In their work, a company should assign internal and external resources
(drivers and trucks) to their routes. Krajewska & Kopfer [2009] contemplate two
types of subcontracting options. Stenger, Vigo, et al. [2013] extend the model to
include multiple central depots. Wang et al. [2014] diversify the type of subcon-
tractors. Apart from common carriers in the market, vehicles may be sourced from
allies in horizontal or vertical partnerships. Gham et al. [2017] cover vehicle rental
options. Tours are designed for private and rented vehicles while some locations
are left to outside carriers. To the best of our knowledge, multi-period or dynamic
models have not yet received interest in VRPPC applications.

Subcontracting transportation services entails cost-related agreements with avail-
able carriers. In classical approaches, the cost of trucking services is based on con-
stant or linear functions of distance and/or volume ([Chu, 2005], [Bolduc et al.,
2008]). More recent studies integrate volume discounts (i.e., non-linear costs). In
Stenger, Schneider, & Goeke [2013], subcontractors offer volume discounts when
they deliver larger amounts of packages, and a minimum demand volume is allo-
cated to the private fleet. Similarly, Dabia et al. [2019] propose a cost structure with
quantity discounts. In Gham et al. [2017] multiple external (LTL) carriers offer
volume discounts following independent cost functions.

The solution methodology for the VRPPC was initially based on heuristic methods
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([Chu, 2005], [Bolduc et al., 2007]) followed by metaheuristics: tabu search algo-
rithms ([Côté & Potvin, 2009], [Krajewska & Kopfer, 2009], [Euchi, 2017]), adap-
tive local neighbourhood search [Ziebuhr & Kopfer, 2014], iterated local search
([Castaneda et al., 2020]), variable neighbourhood search ([Stenger, Schneider, &
Goeke, 2013], [Gham et al., 2017]), perturbation procedures ([Bolduc et al., 2008]).
Some authors have attempted the use of exact methods ([Dabia et al., 2019]) or the
inclusion of dual-based valid inequalities ([Diaby & Ramesh, 1995]).

In the present thesis, we consider a class of network design problems related to
multi-period facility location models. Distinctively, the shipper relies entirely on
external carriers for FTL shipping services departing from central warehouses. El-
igible carriers propose different contract prices across a set of destinations. Linear
and non-linear cost schemes (based on full truckloads rates) are allowed with the
subcontractors. In addition, a minimum commitment payment (e.g., equivalent to
a minimum number of shipments) is warranted to subcontractors in exchange for
lower costs. The solution strategy developed in this work is based on decomposition
algorithms for both exact and heuristics methods. The next section (2.4) provides a
short literature review of multi-period location problems.

2.4 Multi-Period Facility Location Problems

In this section, the literature review focuses on multi-period facility location prob-
lems. Problems of this type are characterized by a finite planning horizon T , a set of
of candidate facilities I and directed arcs J, represented in a graph with nodes and
arcs, G = (N,A). For every t ∈ T , a subset of candidate nodes and arcs are func-
tional to perform logistics activities. The modelling of a distribution network design
problem comprises decisions about location of facilities and activation of distribu-
tion links (arcs) at each period of time. Conditions of parameters like demand or
costs change dynamically from one period to another. Therefore, decisions regard-
ing the network configuration are made per period in order to adjust adequately to
the variations of the cost and demand patterns. In fact, expected changes in busi-
ness and market conditions lead to redesign the logistics outlook (Cortinhal et al.
[2015]), adapting in that way to operational requirements in the near future. Unlike
single-period or ”static” location problems, multi-period network design schemes
capture the variations of key parameters.

Decisions about optimal location of logistics facilities can be made from scratch
(network design problems) or from a current state of operational locations (network
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redesign problems) Cortinhal et al. [2015]. Generally, problems of this nature in-
volve long-term strategic decisions taking into account future market expectations.
Clearly decisions at the strategic level have an impact on operational performance
and on logistics costs. For instance, the allocation of customer demand to serving
facilities is part of operational planning, but is influenced by network design deci-
sions [Contreras & Fernandez, 2012]. Indeed, transferring supplies or commercial
products to selling points entails transportation costs which are directly linked to the
distance between supply and delivery points. Also, closeness to customer areas can
be prioritized to improve responsiveness.

Multi-period facility location problems (MPFLP) allow a firm to expand or to reduce
its overall distribution capacity. In one way, scaling up through acquisitions or
construction of new buildings permits to increase the overall capacity and to reach a
larger customer base, as part of the commercial and logistics strategy. On the other
way, downsizing may entail closing or renting out unprofitable properties in certain
areas where conditions are not favourable. The degree of flexibility in opening,
modifying and closing can vary from one formulation of the problem to the next,
depending on a particular context and/or assumptions.

The process of restructuring or redesigning a supply network is usually assumed
to be subject to long lead times and considerable set-up costs. On one hand, cap-
ital investment is required to put in place new strategic assets (i.e., infrastructure,
equipment), which are expected to remain active for a relatively long time before
they return economic benefits. Therefore, within the formulation of network design
problems, authors may impose minimum conditions on the operability of facilities
once they are built or modified. Lead times are also considered in theoretical ap-
proaches. In other words, decisions are taken several periods ahead of time before
new locations are integrated and operational in the supply network.

A feature commonly found in the literature is the position of the decision-maker
as the owner and operator of facilities and distribution resources. It implies that
the concerned company runs in-house logistics and transportation, as opposed to
contracting with third-party service providers. It allows the model to handle trans-
portation (allocation) costs in a simple form, e.g., as being linearly dependent on
the quantity to be handled. On the other hand, making use of external transporta-
tion sources might lead to more complex, non-linear price schemes, or may require
compliance with further restrictions, like limited possibilities for the allocation of
customers based on the operability of sourcing companies in certain areas, or may
require to select among several transportation modes with different costs.

Tables 2.2 and 2.3 classify the literature on MPFLP’s according to different features
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of the problems, including the degree of flexibility in network design decisions (i.e.,
capacity expansion and reduction). Different contexts lead to determine different
assumptions in possible structure modifications. In a first type of situations (denoted
as ”1st Time Configuration” in the tables), new facilities can be opened and existing
facilities can be closed at any time of the planning horizon (”Open NF” and ”Close
EF” are allowed); but once opened or closed, a facility must remain in the same state
until the end of the horizon. Additional features may allow to expand (”Expand
EF”) or to reduce (”Reduce EF”) the capacity of existing facilities, but here again
only once in the horizon. In a second type of situations (denoted as ”2nd Time
Configuration”), two or more modifications of the same facility may be allowed over
the horizon. This enables to reopen, re-close or change the capacity of facilities. A
distinction is made between deterministic and stochastic mathematical formulation.

In the problems formulated in Chapters 3-6 of this thesis, it is assumed that can-
didate locations and distribution links are managed and operated by external car-
riers, but are accessible via fixed-duration leasing contracts with the carriers. A
minimum commitment is established beforehand in order to reserve capacity as
needed. Therefore, transportation resources (distribution links) and facilities are
eligible through signed contracts. The underlying distribution network can be mod-
ified, expanded or reduced from time to time; operational decisions in terms of fa-
cility locations and allocation of customers are planned accordingly. Transportation
capacity over available links is discretized per levels or modules, according to what
is required. Similar to Correia & Melo [2017], capacity decisions may be subject to
economies of scale.

In this context, contracts make it possible to ”open” (i.e., to gain access to) subsets
of facilities and links, corresponding to the regions of activity of certain carriers.
”Closing” of facilities implicitly takes place at the predefined expiration period of
a contract, although immediate renewal is always possible. In fact, it is possible to
renew an ongoing contract at any time further along the planning horizon. A similar
assumption is included in Dias et al. [2008] where locations remain open for at
least a predetermined number of periods. The possibility to lease transportation and
distribution resources from service providers allows firms to handle network design
decisions at a tactical, mid-term level, rather than the more traditional strategic,
long-term level. Thereby, large investment costs are replaced by periodic payments
in relation with the capacity used. The resulting increased flexibility is especially
beneficial in highly dynamic market conditions, like those outlined in Chapter 1.
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Authors/Year Network Dynamic Network Design Flexibility Solution Methodology
Configuration 1st Time Configuration 2nd Time Configuration

(Echelons) Open NF Expand NF Reduce EF Close EF Re-open EF Expand EF Reduce EF Close NF
Erlenkotter & Roy [1982] 1 x x Dual-based heuristic
Melachrinoudis & Min [2000] 2 x x MIP
Hormozi & Khumawala [1996] 1 x x x x MIP, dynamic programming
Canel et al. [2001] 3 x x x x B&B, dynamic programming
Dias et al. [2008] 2 x x x x Primal-Dual Heuristic
Albareda-Sambola et al. [2009] 1 x x x x Lagrangean Relaxation
Cortinhal et al. [2015] 3 x x x x MILP with additional inequalities
Melo et al. [2005] 1 x x x x x MILP
Jena et al. [2015] 1 x x x x x x x x MILP
S.-K. Lim & Kim [1999] 1 x x x x x x Lagrangean relaxation-based heuristic, B&C
Correia & Melo [2017] 1 x x x x x x x x MILP with additional inequalities

Table 2.2: Multi-period facility location problems - deterministic models

Authors/Year Network Dynamic Network Design Flexibility Solution Methodology
Configuration 1st Time Configuration 2nd Time Configuration

(Echelons) Open NF Expand NF Reduce EF Close EF Re-open EF Expand EF Reduce EF Close NF
Georgiadis et al. [2011] 3 x B&B
Albareda-Sambola et al. [2013] 1 x x Fix-and-relax-coordination (matheuristic)
Mohamed et al. [2020] 1 x x MILP
Aghezzaf [2005] 2 x x x Robust optimization, Lagrangean Relaxation
Zhuge et al. [2016] 1 x x x x MILP
Pimentel et al. [2013] 1 x x x x Lagrangean heuristic procedure

Table 2.3: Multi-period facility location problems - stochastic models
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2.5 E-commerce Logistics Distribution

As more companies turn to e-commerce incorporating on-line sales and home deliv-
ery services, the need for cost-efficient and short-time transportation is increasing.
However, the design of the underlying distribution process becomes more complex,
even though storage facilities for e-fulfilment share common features with tradi-
tional warehouses [Agatz et al., 2008]. In fact, the presence of a traditional dis-
tribution structure adds multiple alternatives for the design of the delivery process
in e-fulfillment. Moreover, the participation of companies into e-commerce chan-
nels entails opportunities to reach markets dispersed over larger geographical areas,
which leads to longer transportation distances between customers and storage sites
[Hesse, 2002].

The implementation of e-business strategies entails several modifications of the tra-
ditional distribution structure and network flows. For instance, an increasing need
for distribution capabilities with closeness to high-density areas and incorporation
of reverse flows supporting return policies. A general pattern is the rising establish-
ment of transshipment centres, including large warehousing facilities and distribu-
tion centres [Hesse, 2002]. Market trends lead to transform old logistics platforms
into high-throughput centres. The facility is more adequately adapted to support
materials flow and consolidate outgoing products efficiently rather than purposely
for storing functions [Hesse, 2002]. For instance, highly automated distribution
centres help Ikea to achieve fast and effective transshipment [Yu et al., 2016]. The
distribution center is composed of multiple docks for inbound and outgoing trucks,
favouring cross-docking (CD) functions. Nonetheless, warehousing with large in-
ventory capacity is still essential in a market inclined to fulfil the demand [Hesse,
2002].

The location of e-fulfilment centres in strategic points is also critical for the op-
erational performance. Preferable locations are those close to large bases of cus-
tomers in agglomerated areas. More likely, far from congested urban areas and
with easy access to highways and transportation corridors, in addition to relative
proximity to freight hubs (e.g., airports, seaports, logistics parks). For example,
Amazon positions its transportation hubs for distribution purposes in districts with
high population to reduce costs [Yu et al., 2016]. Other economical factors such as
tax exemptions may induce the location decision. Distribution costs are taken as a
priority but overall the main goal is to minimize total costs.

Different types of LSPs propose services to support multi-channel distribution for
their clients. Some logistics integrators invest in their own distribution centres
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(asset-based 3PL), which can provide a complete offer of solutions for clients sell-
ing through on-line platforms.Large e-retailers also decide to open and operate their
own distribution centres and delivery fleet for e-fulfilment. They may also rely on
the suppliers’ facilities to keep storage of product and reduce inventory costs. Fo-
cusing on this strategy (known as drop-shipping), the e-retailers rely entirely on the
suppliers for the delivery process and focus on sales and advertising [Agatz et al.,
2008]. Express delivery companies and couriers also expanded their operation and
located DCs facilities for effective transshipment of parcels. Therefore, multiple
alternatives of logistics companies can be consider in the distribution service design
for B2C e-commerce companies.

34



Chapter 3

Distribution Network Problems
with Minimum Purchase
Commitment Contracts

3.1 Introduction

In this thesis, we consider a tactical planning framework for procurement of freight
transportation services. In addition to selecting third-party logistics companies
with their own resources (asset-based carriers or 3PLs), the freight-owner (ship-
per) guides the movement of shipments that lead to minimize transportation costs.
This approach differs from procurement strategies where companies leave complete
responsibility to third-party operators about the way freight is directed from origin
to destination points (for instance, selecting the transport mode and route). In our
framework, the shipper considers multiple alternatives of asset-based companies
which have access to private resources and networks of facilities. Finally, contract-
ing with that combination which allows the shipper to minimize overall logistics
costs.

The application of multi-period planning gains relevance in contexts with fluctuat-
ing demand when transportation requirements vary considerably from one period
to another. The problem of serving multiple customers with fluctuating demand in
widespread areas arises, typically, in e-commerce or in similar environments. This
chapter discusses in more detail the context of the problem and the configuration of
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the proposed distribution network in Section 3.2.

A fundamental component of the tactical planning framework, aiming at the cost-
minimization objective, is to formalize mid-term contracts with carriers settling
fixed costs per service, on condition that carriers receive benefits in terms of min-
imum business transactions (e.g., advanced payment) and specificity about future
utilization of resources. Therefore, the contractual relationships are characterized
by minimum commitment (MC) contracts, which offer risk-preventive mechanisms
against market variabilities for both commercial agents. The planning framework is
not oriented itself toward finding optimal minimum commitments, but rather toward
selecting the most appropriate MC contracts from a pool of pre-designed agreements
with carriers. Terms and conditions of minimum commitment (MC) contracts are
described and expressed in parametric notation in Section 3.3. The parametric nota-
tion gives out numerous configurations, which helps to differentiate among several
types of MC contracts, that could be put in practice in the context of transporta-
tion procurement. The extent of possibilities fits into the description of well-studied
risk-sharing agreements in the literature.

The focal point of this chapter is about minimum purchase commitment (MPC)
contracts, discussed in Section 3.4. From Sections 3.5 to 3.10, we present math-
ematical MILP formulations for variants of the problem of outsourcing and plan-
ning transportation and distribution (T&D) with MPC contracts. The purpose is to
show the diversity of contractual mechanisms and their effects on the mathematical
representation of a classical distribution network optimization model (such as the
two-echelon location-allocation model).

The network optimization problem can be modelled as a multi-period facility lo-
cation problem (MPFLP). Unlike traditional MPFLPs based on long-term strategic
decisions for in-house operations, the tactical planning approach is based on tem-
porary accessibility of transportation and distribution (T&D) capabilities provided
by outside companies (carriers). Therefore, the eligibility of facilities is conditional
to the existence of contracts and the optimal distribution flows vary according to the
demand variations in customer areas. This class of network optimization problems
is denominated distribution network problems with minimum commitment contracts
(DNPMC).

The presented (MILP) models also demonstrate the mathematical structure sim-
ilarities between models and the easiness to adapt for different settings of MPC
contracts. Solving the mathematical models lead to assess the economical viability
with respect to a non-contract short-term planning strategy, such as relying on spot
markets. The chapter in itself does not address algorithmic questions related to the
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solution of the models. These questions will be the topic of Chapter 4. Section 3.10
summarizes the contents by presenting findings and conclusions.

3.2 Two-Echelon Distribution System

A 3PL fulfilment (also called integrator) company operates dedicated distribution
warehouses (DW) for the storage of products on behalf of multiple on-line sellers.
Purchase orders are placed by end-customers via e-commerce marketplaces. They
must be assembled into parcels and delivered within a few days. The warehouses
are located strategically close to logistics hubs such as seaports, airports and urban
logistics areas and are adequately equipped to hold inventory of a wide variety of
products from multiple sellers worldwide. Every warehouse is replenished with
equal range of products from regular sellers on a constant basis. Therefore, an order
can be served from any of these large warehousing facilities. The high-volume
of daily orders leaving the 3PL warehouses (outbounds flow) amounts to several
truckloads (FTL) per day to be shipped in direction of customer areas.

The distribution system is divided in two parts or echelons (see Figure 3.1) in which
first, parcels are directed towards cross-docking (CD) facilities (set I of size |I|)
at regional zones, before being forwarded to differentiated customers areas (set K
of size |K|). We assume that transportation in the first echelon and cross-docking
services are provided by outside carriers (set E of size |E|), however, the decisions
about the number and direction of FTL shipments are made by the shipper.

Customer Areas
Carrier's
Facilities Shipper's

Warehouses 

1st Echelon
Carriers (FTL Transportation)

 

2nd Echelon
Parcel delivery services
(Last mile distribution)

E-commerce
Sellers

Figure 3.1: Two-echelon distribution network layout
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In addition, the e-commerce integrator defines fast shipment delivery rules to guar-
antee express delivery times. First, it allocates each one of the externally operated
CD facility i ∈ I to the closest distribution warehouse, in order to reduce long-haul
transportation distances. So, every CD facility i only receives parcels from one
warehouse, nonetheless, a distribution warehouse can ship parcels towards multiple
cross-docking points (as observed in Figure 3.1). This basic rule reduces the type
of network design decisions in the two-echelon system (See Table 3.1). It considers
only flow capacity decisions between the sets of facilities in the first echelon and
disregards location of warehouses and allocation of CD points.

Network Design Decisions 1st-echelon 2nd-echelon
Outflow-Facility Location (Selection) x X
Inflow-Facility Allocation x X
Flow Capacity Selection X X

Table 3.1: Network design decisions

The combined services of long-haul transportation plus cross-docking is carried out
by the same operator in the candidate set E. Each carrier e ∈ E operates a subset
Ie of CD facilities, where ∪e∈EIe = I. The number of shipments (between DW →
CD lanes) and the truck fleet size define the level of transportation capacity (set L
of size |L|, as depicted in Figure 3.2) that every carrier has available. Note that the
capacity Ql for level l ∈ L determines also the space required at the CD facilities for
effective transshipment. Therefore, the cost of making use of a facility i is defined
by the capacity level l, Fi,l . This cost function (per facility) is staircase and marginal
costs might increase or decrease, even for an homogeneous set of vehicles.

Level Fleet  Capacity

1 Q
1

2 Q
2

3 Q
3

4 Q
4

... ...

c

c

c

Figure 3.2: Capacity levels
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As an additional feature, capacity levels could be differentiated per carrier e ∈ E,
assuming for instance different truck fleets or limited resources for each company.
In that case, the set Le ⊆ L would include only the capacity levels available for
carrier e. In the models presented in this and following Chapters 4, 5 and 6, it is
assumed that the capacity provided by any carrier is unlimited and enough to cover
the total demand potentially allocated to CD facilities (i.e., set Le = L ∀ e ∈ E).

After parcels are sorted out and consolidated per destination in CD facilities, par-
cel delivery companies charge a unit cost per volume/weight of parcels. Thus, the
shipping cost from outgoing facility i ∈ I to customer area k ∈ K is denoted Ui,k.
A second fast shipment delivery rule forbids the delivery of parcels from those CD
facilities which are far to customer areas. Therefore, a CD facility i can procure
service over a finite subset of customer areas Ki. Likewise, a customer area k is
designated to a subset of CD facilities Ik, from where it can be delivered.

In sum, the demands of customer area k ∈ K (Dt
k) have to be completely satisfied at

minimal cost. Several decisions have to be made by the shipper in every period t ∈
T . At the tactical level, it has to select carriers from the pool of eligible candidates E
to be included into its transportation network. More specifically, the periods where
contracts with selected carriers are valid, taking into account that a signed contract
gives access to a network of facilities for a temporary lapse of time. Contracts terms
and conditions (H,M,P) are further detailed in Section 3.3. The binary variables
α t

e, define whether to start the business agreement with carrier e at period t.

At a more operational level, the shipper determines network flow decisions. On one
hand, the binary variable vt

i,l defines whether or not to make use of cross-docking
facility i with entering transportation capacity at level l in period t (in which case
the predefined cost Fi,l is charged). The total payment due to carrier e is counted
with auxiliary cost variables ct

e and Λt
e, where t is the corresponding period. The

auxiliary cost ct
e helps to set a minimum payment owed to carrier e, given an initial

commitment (in monetary terms) and regardless from the services effectively pro-
vided to the shipper, while Λt

e defines the costs to pay above the commitment level.
On the other hand, the demand of customer area k is allocated to be delivered from
one or several CD facilities in Ik, with continuous variable qt

i,k.

The mathematical notation for the distribution network problem with minimum
commitment contracts (DNPMC) is summarized in Table 3.2.

39



Datasets and indices
Set Description Index
T Planning horizon t,n
E Candidate carriers e
I Cross-docking facilities i
K Customer areas k
Ie Network of facilities operated by carrier e i
Ik Network of facilities that can serve customer area k i
Ki Customer areas that can be served from facility i k
Ek Carriers that can serve customer area k e
L Capacity levels l

Input parameters
Symbol Description
He Duration of MC contracts with carrier e (number of periods)
Mt

e Commitment payment (in monetary units) with carrier e in period t
Pe Penalty rate charged to services provided above the commitment level
Ql Transportation and distribution capacity at level l (in transportation units)
Fi,l Service costs for shipping to facility i at capacity level l with contracts (e)
Dt

k Demand of customer area k in period t and scenario s (in transportation units)
Ui,k Unit transportation costs for delivery from facility i to area k (e)

Decision variables
Symbol Description
α t

e 1 if a contract with carrier e starts at period t, 0 otherwise.
vt

i,l 1 if facility i is operated at capacity level l, at period t, 0 otherwise.
qt

i,k Demand from customer area k allocated to facility i in period t (in transportation units)
ct

e Total payment charged by carrier e in period t
Λt

e Costs charged above commitment by carrier e at period t

Table 3.2: Mathematical notations for DNPMC

3.3 Minimum Commitment Contracts

The class of business agreements that formalize the relationships between the 3PL
company and outside carriers are minimum commitment contracts. Such contracts
take into account risk-sharing conditions that reduce the likelihood of negative situ-
ations in the business relationship. In general terms, a minimum degree of business
transactions is secured for the carrier in exchange of some transportation and logis-
tical capacity at fixed prices.

Two families of minimum-commitment contracts are considered in this thesis. In
this chapter and the next one, we focus on commitments made explicitly in monetary
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terms. This means a fixed payment is guaranteed to carriers. In Chapters 5 and 6,
we focus on commitments in terms of transportation capacity, which specify more
explicitly future requirements of the shipper in relation to carriers’ resources. Both
type of contracts have in common the definition of the commitment in homogeneous
units for an ensemble of logistics services. However, while the first stipulates ex-
plicitly financial benefits, the second clarifies operational utilization. The two types
may be in their own way useful in real applications according to the shipper-carrier
interests.

In our framework, the goal is not explicitly about contract design or contract config-
uration aiming at highlighting the most appropriate type of contract with respective
parameters values in benefit of the shipper. Differently, it is about to optimize the
transportation and distribution planning under given, predefined contractual provi-
sions. Regardless of the contract type, additional common terms and conditions are
subject to the accord and satisfaction of both parts, and are assumed to be previ-
ously agreed upon. They include, in particular, the terms and conditions regarding
contract duration, services costs, penalty rates (if applicable), commitment payment
policy and specifications. In this section, we describe each of these parameters that
constitute an overall MC agreement.

3.3.1 Duration (H)

The duration of the MC contract is stated beforehand, as well as restrictions about
renewals and termination. We assume that the planning horizon T is divided in
discrete periods of equal length (months, quarters, etc.), i.e., T = {1, . . . ,N}. In
the tactical planning framework for transportation and logistics procurement, which
occupies this thesis, MC agreements extend over more than one period, but are
shorter than long-term contracts: typically, they would extend for a few weeks, and
for at most one selling season. The contract duration could coincide with an H
number of consecutive periods during which the shipper carries out a review of its
logistics services requirements. If the contract duration differs per carrier, then it is
more specifically denoted by He for carrier e.

The (3PL) e-commerce integrator negotiates the conditions of mid-term MC con-
tracts with carriers. The shorter the contract, the greater flexibility the shipper has
to adjust transportation and distribution resources to forthcoming demand require-
ments. However, the minimum commitment level (M) can be negotiated in relation
with the contract duration. Carriers might impose high returns for short-term agree-
ments and soften obligations for longer deals. In any case, parameters H and M
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have to be previously agreed in accordance with each candidate carrier e, so as to
obtain one eligible contract (He, Me).

In the mathematical formulation, each parameter He enters the model as a fixed
value for each carrier e ∈ E. If a contract is to be renewed, this can only happen
after expiration of the current one, and the renewed contract extends again over He

periods. Cancellation or interruption are not allowed. In the particular case where
He = 1 (e.g., monthly planning review and one month service contract), the tactical
planning problem converts into a collection of independent single-period distribu-
tion network problems (sDNPMC). Otherwise, if He > 1, contracts last for more
than one period (at least for one carrier) and a multi-period (mDNPMC) formula-
tion is required.

3.3.2 Service and Penalty Costs (F,P)

Transportation and parcel consolidation services are combined together and priced
at fixed rates by the carriers accepting to work under MC contracts. This means full
truck-load (FTL) prices include together charges for transportation plus handling
of parcels at cross-docking points. The prices agreed contractually (denoted by the
generic parameter F) remain constant independently of market variations. Carriers’
services prices Fi,l are specified per shipping lane/facility (i ∈ I) and truck capacity
used (l ∈ L).

In addition, MC contracts may or may not stipulate higher prices for services pro-
vided by a carrier above the commitment level (M), assuming more capacity is
available. Comprehensibly, the carrier may charge an additional rate for services re-
quested beyond the initial commitment in order to cover unanticipated costs, such as
vehicle repositioning to the origin warehouse, or subcontracting services externally.

In our formulations, a parameter P defines the penalty or additional rate charged to
the shipper. If P = 0, then no penalty is imposed and the totality of services are paid
at contractual prices. Otherwise, if P is greater than 0, then the penalty is applied to
the costs incurred above the commitment level M. The value of P can be seen as an
adjustment factor as if services charged above commitment were off-contract and
requested through the spot market. Its value can also be specified as Pe for carrier e.
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3.3.3 Minimum Commitment (M)

As part of an MC contract, specifications related to the minimum commitment level
must be made clear. The minimum commitment is denoted with the generic param-
eter M. Once a contract is signed, the shipper is obliged to comply with this terms
in spite of market variations. In turn, carriers must respond to transportation and
cross-docking requirements. For simplicity, we assume any carrier has more than
enough available resources to respond to requests of the shipper.

Two distinct types of commitments are considered in this thesis. The minimum
purchase commitment (MPC) expresses M in monetary units, whereas the minimum
capacity commitment (MCC) expresses M in load/capacity units. Regardless of its
nature, the commitment works as a mechanism to gain access to transportation and
distribution resources at contract prices (F).

Moreover, in both cases, the commitment level M can relate either to the whole
duration of the contract (total commitment - MH) or to each individual period (per
period commitment - Mt). In addition, it can be specified for the complete network
of carrier e, (Me) or for each specific facility/shipping lane (Mi). Therefore, several
types of MC contracts can be derived (see Table 3.3).

MC Parameters Option 1 Option 2
Type Purchase Commitment (MPC) Capacity Commitment (MCC)
Duration (H) Single period (H = 1) Multi-period (H > 1)
Penalty Costs (P) No penalty (P = 0) Penalty (P > 0)
MC Conditions (M): Policy Per period (t) Over the contract duration (H)
MC Conditions (M): Specification Full carrier services (e) Specified per service (i)

Table 3.3: Characterization of MC Contracts

The nature of an MC contract is differentiated (in the present work) by the acronym
MPC or MCC followed by the list of parameters (H,P,M) with valid attribute val-
ues. These attributes have to be established according to the characteristics in Ta-
ble 3.3: (1) The duration of contracts, (2) whether a penalty is imposed for costs
above commitment or not, (3) the commitment policy (periodicity) and the specifi-
cation per service. For instance, a single-period MC contract based on per period
commitments, covering all carrier services, and with penalty costs is denoted - as
MPC(H = 1,P > 0,M = Mt

e).

For a given configuration of the parametric setting, one type of contract is obtained
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to model the business relationships between the shipper and candidate carriers. Each
particular contract is implemented into the mathematical modelling of DNPMC. In
this chapter we focus on MPC contracts specifying commitments for full carrier
services Me. (The study and implementation of MCC contracts together with con-
siderations of single-service commitments (Mi) are part of the contents of Chapter
5).

3.4 The Minimum Purchase Commitment (MPC) Contract

The minimum purchase commitment contract is a simple agreement between two
parties that specifies a minimum monetary transaction in exchange of products or
services during some period of time (e.g., one month, one semester). The buyer is
committed to pay a certain amount of money equivalent to a bundle of products or
services, in principle unspecified. Unless the supplier sells a single product/service
with unique cost, the bundle of products can take several forms depending on their
individual costs.

The guaranteed payment might be in relation with the expected amount of prod-
ucts/services to purchase or relative to a budget allocation limit. In any case, the
MPC agreed has to be paid, independent of the number of products/services finally
required. This initial agreement motivates the supplier to allocate resources so as
to fulfil the buyer’s requirements during the specified period. The MPC works as
a cover or entry fee which guarantees at least a minimum return on the supplier’s
assets. On the other hand, the buyer can profit from advantageous price schemes,
such as fixed contract prices and quantity-based discounts.

In the context of transportation and logistics services, the MPC contract is applied
to a business relationship between one shipper and one carrier. In the context of
e-commerce logistics distribution, the 3PL integrator acts as the shipper which ne-
gotiates MPC agreements with carriers for logistics services including long-haul
(FTL) transportation and cross-docking functions. As long as the MPC is satisfi-
able enough, the FTL carrier charges contract prices with favourable marginal costs
compared to the spot market.
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Figure 3.3: The minimum purchase commitment contract

The costs function associated with an MPC contract is represented in Figure 3.3 for
two services with respective marginal contractual costs (F1 > F2). The minimum
capacity utilization required to fulfil the MPC condition varies according to the
amount ordered for each service, showing the capacity levels (minQ, max Q) at
which the MPC is achieved if only one service is demanded. The marginal costs
may become higher after surpassing the MPC limit to account for the penalty rate (or
spot market costs) above the commitment level MPC. Note that if the supplier only
offers one type of service with a fixed marginal cost, the MPC could be translated
in capacity units. However, there might be discrepancies since logistical capacity is
often valued according to resource sizes (e.g, truckload or facility capacity).

In this chapter, we propose different mixed-integer programming (MILP) formu-
lations for distribution network problems DNPMC under various settings of MPC
contract parameters, in terms of duration (H), penalty rates (P), and minimum com-
mitment terms (M). This difference is further illustrated based on the discussion
made in Section 2.1.1 for a general class of two-phase supply contracts with risk-
sharing provisions. The illustrative graph is included in some of the models to
observe how the MPC contracts fits within the general configuration scheme. We
shall return to the case of minimum capacity commitments in Chapters 5 and 6.
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3.5 Single-period Distribution Network Problem
MPC(H = 1,P = 0,M = Me)

In its simplest setting, the MPC contract takes the form MPC(H = 1,P = 0,M =
Me): it lasts for a unique period of time (e.g., one month), the shipper can request
as much as services as it needs provided that the minimum payment (Me) is made.
No additional costs or higher rates apply regardless of the amount of transportation
and distribution services demanded. Note once again that, from the managerial
perspective, the MPC value Me may heavily impact the decisions made about the
selection of contracts.

Figure 3.4 shows the configuration of the MPC contract without penalty rates above
the commitment level Me. No minimum requests (m1) are enforced to the shipper,
and the shipper profits from unlimited capacity allocation (m2) at contractual costs
(Fi,l). The guaranteed payment for the carrier is implied by the minimum purchase
payment Me. In the execution phase, the range of capacity requests at contract prices
(V1) is maximum.

V
1

m
1

m
2

p
1

F
0

Commitment (I) Execution (II)

Figure 3.4: Configuration of an MPC contract without penalty rates

Considering contracts lasting for one determined period, the duration H can be
viewed as being equal to the length of the planning horizon T . It means that, for
a lengthy planning horizon (e.g., several months, one year), information about de-
mand of customer areas is aggregated without taking into account internal fluctu-
ations in that interval of time. After solving the single-period problem a new se-
lection of contracts (carriers) is chosen. Therefore, deciding to get involved with
certain carriers bears no consequences afterwards.

A slightly different perspective on the assumptions is that we consider a multi-
period planning framework for the same horizon T and each period of the planning
horizon can be handled independently without considering future conditions of the
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market or availabilities of transportation. This short-sighted perspective restricts the
mid-term tactical view of the problem, but we will see in Chapter 4 that the single-
period model can be algorithmically useful even when dealing with more complex
assumptions.

A mathematical formulation of the single-period DNPMC model is displayed here-
under:

Objective Function

min ∑
e∈E

ce + ∑
k∈K

∑
i∈Ik

Ui,k qi,k (3.1)

Constraints

∑
i∈Ik

qi,k = Dk ∀ k ∈ K (3.2)

∑
k∈Ki

qi,k ≤∑
l∈L

Ql vi,l ∀ i ∈ I (3.3)

qi,k ≤ Dk ∑
l∈L

vi,l ∀ i ∈ I, k ∈ K (3.4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
l∈L

vi,l ≤ αe ∀ i ∈ Ie, e ∈ E (3.5)

ce ≥Me αe ∀ e ∈ E (3.6)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ce ≥∑

l∈L
∑
i∈Ie

Fi,l vi,l ∀ e ∈ E (3.7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi,l ∈ {0,1} ∀ i ∈ I, l ∈ L (3.8)
αe ∈ {0,1} ∀ e ∈ E (3.9)
qi,k ≥ 0 ∀ i ∈ I, k ∈ K (3.10)

The objective function is shown on the top left side. The shipper’s goal is to mini-
mize the costs of transportation and distribution (T&D) services based on the two-
echelon distribution network system. The first-stage costs, charged by FTL carriers,
are expressed by auxiliary variables ce for each potential carrier (e ∈ E), while the
last-stage operations are performed by parcel delivery companies which charge a
fixed cost per unit (Ui,k) on each origin-destination route.

The group of constraints relates to transportation capacity location and demand al-
location. The demand Dk of every customer area has to be completely fulfilled
(Eq. 3.2). Trucking capacity in load units (e.g. tons) is set by levels Ql . Each
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level corresponds to a capacity limit equivalent to a truck fleet. The truck capacity
entering a cross-docking point (input flow) bounds the allocation to customer ar-
eas (output flow) (Eq. (3.3)). The output flow from a cross-docking facility i to a
destination k is limited by the availability of the facility and by the demand of the
destination (Eq. (3.4)). (When the vi,l variables take binary values, constraints in
Eq. (3.4) are implied by Eqs.(3.2)-(3.3), but they strengthen the linear relaxation of
the formulation.)

The second group of constraints (after the first dotted line) is linked to MPC con-
tracts conditions and permissions. The subset of cross-docking facilities Ie and their
potential inbound flows (according to the set of capacity levels L) are eligible only
if a contract with carrier e is signed (Eq. (3.5)) in which case, the commitment pay-
ment Me is charged (Eq. (3.6)). Then, a third group of constraints (after the second
dotted line) define auxiliary costs functions for first-stage transportation costs with
FTL carriers. The total cost of resource utilization is computed in Eq. (3.7). While
a contract is ongoing, the auxiliary variable (ce) for contract costs with carrier e is
either lower-bounded by the commitment payment Me or the total costs of services
effectively provided. Finally, at the bottom is defined the nature of binary (Eqs.
(3.8), (3.9)) and continuous (Eq. (3.10)) decision variables. Note that in this model,
it is mandatory to open at least some contracts in order to have access to carriers’
services.

The single-period formulation serves as a base on which more general models are
build upon.

3.6 Multi-period Distribution Network Problem
MPC(H > 1,P = 0,M = Mt

e)

Assume now that the shipper’s procurement planning of transportation and distribu-
tion (T&D) services is reviewed in each period and more frequently than mid-term
contracts (e.g., weekly planning and monthly contracts). Following that policy, the
planning horizon is divided in multiple periods t ∈ T wherein decisions are made.
The MPC contracts now take the form MPC(H > 1,P = 0,M = Mt

e). They extend
over several planning periods for all e∈E, but not longer than the full planning hori-
zon length: 1 < He ≤ N. The committed amount Mt

e must be at least paid in each
period t where a contract with carrier e is in force. No extra rates or penalty costs
apply, and resource utilization above the commitment is paid at contractual rates.
The representation in Figure 3.4 also applies in the multi-period setting. The only
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variation regards the guaranteed payment F0 which can vary per period according to
Mt

e. Nonetheless, the execution range for capacity requests remains unlimited.

The reviewing per period of T&D requirements allows the shipper to open or renew
MPC contracts in any period t ∈ T while others are still ongoing. Every new contract
adds up to the list of available T&D resources. In that way, it is possible to raise
capacity in periods where T&D requirements surge. Otherwise, when demand is
decreasing, some contracts can be left to expire without renewal.

When He > 1, decisions made in any period t ∈ T to open new contracts affect the
future state of available capacity and as a consequence, they also condition future
decisions made at the tactical level (selection of new contracts) and operational
level (location and allocation plan). The mathematical model requires to specify
decision variables in each period. In addition, some constraints handle the validity
of contracts across several periods.

The multi-period DNPMC model is presented below and described as follows. The
objective function (Eq. 3.11) minimizes total distribution costs along T . Transporta-
tion and distribution costs in the first and second echelon vary from one period to
another according to demand fluctuations and cost-efficient allocation of resources.

Location-allocation constraints (bottom-left equations) are similar to those of the
single-period model in Section 3.5 except for the added superscript t. The demand
Dt

k of every customer area has to be satisfied at all times (Eq. (3.12)), the flow
balance at cross-docking points is controlled with constraints in Eq. (3.13), while
the output is limited by constraints in Eq. (3.14).

The resources (transportation lanes and facilities) of carrier e can only be used at
period t if an MPC contract with e has been previously opened and is still in force
at period t. This is expressed by contraints (3.15): note that each binary variable
α t

e takes value 1 only for the starting period of a contract. On the other hand, the
value of the expression ∑

He−1
n=0 α t−n

e determines whether a contract with duration He

is still valid or not in period t. When this is the case, the commitment payment Mt
e is

simultaneously enforced in period t (Eq. 3.16). Eq. (3.17) expresses the assumption
that a new contract cannot be signed with a carrier until the previous one has expired.
(This modeling assumption could be simply removed in situations where it does
not apply.) The auxiliary cost function (Eq. 3.18) captures resource utilization
costs at contract prices Fi,l in the first stage of the distribution network. Binary and
continuous variables are defined by constraints (3.19)-(3.21).
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Objective Function

min ∑
t∈T

[
∑
e∈E

ct
e + ∑

k∈K
∑
i∈Ik

Ui,k qt
i,k

]
(3.11)

Constraints

∑
i∈Ik

qt
i,k = Dt

k ∀ k ∈ K, t ∈ T (3.12)

∑
k∈Ki

qt
i,k ≤∑

l∈L
Ql vt

i,l ∀ i ∈ I, t ∈ T (3.13)

qt
i,k ≤ Dt

k ∑
l∈L

vt
i,l ∀ i ∈ I, k ∈ K, t ∈ T (3.14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
l∈L

vt
i,l ≤

He−1

∑
n=0

α
t−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T (3.15)

ct
e ≥Mt

e

He−1

∑
n=0

α
t−n
e ∀ e ∈ E, t ∈ T (3.16)

He−1

∑
n=0

α
t−n
e ≤ 1 ∀ e ∈ E, t ∈ T (3.17)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ct

e ≥∑
l∈L

∑
i∈Ie

Fi,l vt
i,l ∀ e ∈ E, t ∈ T (3.18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vt

i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, t ∈ T (3.19)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (3.20)

qt
i,k ≥ 0 ∀ i ∈ I, k ∈ K, t ∈ T (3.21)

Observe that in this model, constraints (3.15)-(3.17) are the only ones linking sev-
eral planning periods together, and that the linkage is created by the contract vari-
ables α t

e: this reflects the fact that planning decisions are independently made in
successive periods, except for the contracting decisions which extend their effects
over the duration of the contracts. In particular, we do not consider the possibility
to carry inventory from one period to the next at the cross-docking facilities, nor to
delay, nor to advance the deliveries to the end customers. It should also be noted
that the beginning and the end of the planning horizon may require some adaptation
of the expression of the constraints, in order to account for the existence of contracts
taking their effects before period 1 or terminating after period N. For the sake of
simplicity and of clarity, we do not explicitly spell out these boundary conditions
here, nor in the following sections.
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This mathematical model is much more difficult to solve than the single-period
model in Section 3.5, since it does not only determines which candidate carriers
to choose, but also when to start business relationships that extend over multiple
periods. Several optimization algorithms for this model will be developed and eval-
uated in Chapter 4. In the remaining sections of the current chapter, we discuss a
few variants of the model which may prove of interest in different applied settings,
but which are not further explored in the thesis. The consideration of off-contract
prices in Section 3.8, however, will prove of interest when we discuss stochastic
models in Chapters 5 and 6.

3.7 Multi-period Distribution Network Problem
with Penalty Costs - MPC(H > 1,P > 0,M = Mt

e)

Considering further expansions of the multi-period DNPMC model, let us assume
now that the carriers charge penalty costs for resource utilization above commitment
(i.e., P > 0). The contract type takes the form MPC(H > 1,P > 0,M = Mt

e). The
penalty applies to the cumulative costs surpassing the MPC threshold. It can be
specified per carrier (Pe) as part of the individual pre-agreed conditions, as carriers
define themselves standard conditions for all their customers.

In comparison with the previous type, Figure 3.5 shows the configuration of the
MPC contract with penalty rates above the commitment level Me. Similarly, no
minimum requests (m1) are enforced to the shipper, but the carrier allocates limited
capacity (m2) at contractual costs (Fi,l). Observe that m2 depends on the specific de-
manded services, due to the fact that services differ in price. As illustrated in Figure
3.3 the limits of m2 are between the capacity obtained for the most expensive ser-
vice (minQ) and the least expensive service (maxQ) assuming linear marginal cost.
Above the undefined value m2, costs are penalized by factor Pe. The guaranteed
payment for the carrier is implied by the minimum purchase payment Me. In the
execution phase, the range of capacity requests at contract prices (V1) is limited by
m2, and with penalized costs (V2) is unlimited from there on. We can see that the
flexibility in requesting T&D capacity is maximum as in the previous models, but
comes at expense of two parameters, minimum payment Me and penalty rate Pe.
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Figure 3.5: Configuration of an MPC contract with penalty rates

Naturally, high penalties prevent the shipper from deviating from using resources
covered by the minimum commitment, while low penalties may not affect very
much the solution obtained with the model in Section 3.6. An optimal decision
must balance out between assuming additional charges and finding alternative ways
to ship parcels in the interest of minimizing costs.

As a consequence, the mathematical model entails several modifications. The ob-
jective function (3.11) has a similar expression as in the previous model. However,
the service costs ct

e charged by each contracted carrier e in period t consist now of
two components, as expressed by Eq. (3.22). First, the minimum payment Mt

e is
charged. Next, additional costs beyond Mt

e are computed through the introduction
of non-negative continuous auxiliary variables Λt

e: in view of constraints in Eqs..
(3.23) and (3.24), Λt

e captures the amount due to carrier e in period t, calculated at
the contract rates Fi,l , beyond the commitment payment. Because of constraint in
Eq. (3.15)), Λt

e is always set to 0 when there is no ongoing contract with carrier e
at period t. Otherwise, utilization costs for requested services apply and the com-
mitment payment Mt

e is subtracted to determine the value of Λt
e. It is again equal to

zero if utilization costs do not surpass the MPC with carrier e. Finally, the penalty
Pe is applied to Λt

e, obtaining in that way the second part of the total costs ct
e in

Eq. (3.22). Note that (3.22) could be equivalently written as an equality constraint,
since no other restriction applies to ct

e.

The remaining constraints are the same as in the model of Section 3.5, and include
the location-allocation constraints regarding demand satisfiability (Eq. (3.12)), the
flow balance constraints at cross-docking points (Eq. (3.13)), the upper bounds on
the outflow of parcels (Eq. (3.14)), the constraints expressing that the shipper access
to T&D services is conditioned by the existence of a valid contract (Eq. (3.15)), and
the restriction (Eq. (3.17)) on contract renewal.
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Objective Function

min ∑
t∈T

[
∑
e∈E

ct
e + ∑

k∈K
∑
i∈Ik

Ui,k qt
i,k

]
(3.11)

Constraints

∑
i∈Ik

qt
i,k = Dt

k ∀ k ∈ K, t ∈ T (3.12)

∑
k∈Ki

qt
i,k ≤∑

l∈L
Ql vt

i,l ∀ i ∈ I, t ∈ T (3.13)

qt
i,k ≤ Dt
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ct
e ≥Mt

e

He−1

∑
n=0

α
t−n
e +Λ

t
e(1+Pe) ∀ e ∈ E, t ∈ T (3.22)
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e ≤ 1 ∀ e ∈ E, t ∈ T (3.17)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vt

i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, t ∈ T (3.19)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (3.20)

qt
i,k ≥ 0 ∀ i ∈ I, k ∈ K, t ∈ T (3.21)

Λ
t
e ≥ 0 ∀ e ∈ E, t ∈ T (3.24)

Note that the same penalty rate is applied indistinctly for the whole group of logis-
tics services in Ie. In Chapter 5, we look at some models where the penalty rate
or the cost associated to services above the commitment level can be differentiated
per service i ∈ Ie. As a particular case, if no penalties are imposed by the carriers
(i.e., Pe = 0 for all e ∈ E), then the model is equivalent to the one in Section 3.6.
Otherwise, when Pe > 0 for some e, an optimal solution is likely to provide a higher
cost value, except in the possible situation where minimum purchase commitments
are not exceeded in any period.
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3.8 Multi-period Distribution Network Problem
with Penalty Costs - MPC(H > 1,P > 0,M = Mt

e) and
Off-Contract Services - (H = 1,P > 0,M = 0)

In previous models, an important assumption states that the shipper can only gain
access to the resources of a candidate carrier through MPC contracts (constraints
in Eq. (3.15)). As a result, the shipper must have at least some ongoing contracts
at every period. However, common carriers may also offer logistics services on-
demand without requiring a minimum cover payment, in which case T&D service
costs resemble those at the spot market. An off-contract service is represented with
the following attributes: (H = 1,P > 0,M = 0).

From the economic point of view, the shipper can foresee cost savings by avoiding
to get involved in additional MPC contracts in periods of low demand where parcels
can be distributed either by available contract resources or, if necessary, by spot
services. The values of Pe are key determinants for the selection of the procurement
plan. To understand this, assume that the penalty parameter Pe stands for the relative
difference between spot market rates and contract rates. For instance, for a given
service, the spot market price might be Fs while the same service under contract with
carrier e is charged at Fe. The relative difference is computed as Pe = (Fs−Fe)/Fe.
Hence, the multiplier (1+Pe) in constraint (3.22) is equal to Fs/Fe, and it can be
interpreted as an adjustment factor from contract rate to spot market prices. Low
values of Pe can lead to resort exclusively to single-period agreements. In turn, high
values entice the shipper to open MPC contracts and to use low-cost contractual
capacity as much as possible.

This motivates the consideration of models where, in any period, the shipper can
procure off-contract services from some of the candidate carriers: when compared
with the model formulated in the previous section (3.7), it means that penalty costs
apply above the commitment level, but that this commitment level can be viewed as
being zero (with all services charged at the spot price) when no contract is in force.

The multi-period DNPMC model can now be formulated as follows (although spot
prices are typically dynamic with time, we consider for simplicity that the parameter
Pe is constant over the planning horizon).
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Objective Function

min ∑
t∈T

[
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vt

i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, t ∈ T (3.19)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (3.20)

qt
i,k ≥ 0 ∀ i ∈ I, k ∈ K, t ∈ T (3.21)

Λ
t
e ≥ 0 ∀ e ∈ E, t ∈ T (3.24)

The mathematical model is almost identical to the model in Section 3.7. The only
difference is the removal of constraints (3.15) which prevented the shipper from
using carrier resources without a contract. The interpretation of the auxiliary cost
function Λt

e (Eq. 3.23) changes slightly, as it can now be positive even in the absence
of a contract with carrier e in period t (i.e., when ∑

He−1
n=0 α t−n

e = 0). It expresses costs
above commitment if there is an ongoing MPC contract at time t, or one-time service
costs if there is no MPC contract. In the former case, the guaranteed payment Mt

e is
deducted from the resource utilization costs and any excess value is then penalized
with parameter Pe by Eq. 3.22. In the latter case, only resource utilization costs are
charged and subject to the adjusted rate (1+Pe) in constraint (3.22). Note again that
parameter Pe is applied without difference in the services provided. This limitation
of the model may not reflect the conditions in transportation markets were spot
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prices are more linked to the demand in particular lanes, rather than decided by
carriers.

Formally, this model increases the space of feasible solutions of the model in Sec-
tion 3.7 and hence, can yield solutions with lower optimal cost. This is obviously
due to the additional possibility to resort to one-time services in order to meet dis-
tribution requirements.

In previous models, the MPC contract was looked at from the perspective of per
period minimum payments, arguably with restricted adaptability to transportation
requirements but more attractive from the carriers point of view. In the two follow-
ing models, we open the discussion to consider now a single MPC commitment pro-
longed over the contract duration rather than multiple MPCs, one for every period.
This type of agreement is motivated from applications in the literature (some exam-
ples can be found in Brusset [2010] and Bassok & Anupindi [1997]). Naturally, this
type of contracts can only be handled in a multi-period planning framework. Then,
He > 1. In a similar fashion of previous models, we derive two possibilities for the
costs of services once the commitments Me is achieved. Namely, without and with
penalty rates.

3.9 Multi-period Distribution Network Problem with
Total Minimum Purchase Commitment
MPC(H > 1,P = 0,M = MH

e )

Now consider the case in which the minimum purchase commitment (MPC) is de-
fined for the complete duration of the contract (He) instead of individual periods.
Disregarding penalty costs above the commitment level, contracts are of the form
MPC(H > 1,P = 0,M = MH

e ).

In comparison with the previous models, the shipper is not required to comply with a
minimum payment at every period covered by the contract. Instead, the MPC must
be attained over the contract duration He: the shipper may register some periods
with small transactions, while others are large enough to surpass the required global
payment MH

e by the expiration date.

As in Sections (3.5)-(3.7), we assume that an MPC contract is necessary to include a
carrier’s resources in the distribution network. Moreover, for notational simplicity,
we assume that MH

e does not depend on the period when the contract is signed (it
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could be replaced by MH,t
e ).

The DNPMC is now formulated as follows.

Objective Function

min ∑
t∈T

[
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ct

e ≥∑
l∈L

∑
i∈Ie

Fi,l vt
i,l ∀ e ∈ E, t ∈ T (3.18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, t ∈ T (3.19)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (3.20)

qt
i,k ≥ 0 ∀ i ∈ I, k ∈ K, t ∈ T (3.21)

The mathematical model resembles very closely the one in Section 3.6. The only
difference consists in replacing constraint (3.16) by constraint (3.25). In case a
contract is ongoing with a given carrier at period t, the shipper pays the carrier at
least for resource utilization costs (as expressed by constraint (3.18). When the
MPC (MH

e ) is higher than the total resource utilization costs over the whole contract
duration, the values of ct

e are adjusted to match the commitment payment MH
e (con-

straint (3.25)); recall that the binary variable α t
e only indicates when the contract is
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opened).

When compared with an equivalent minimum purchase commitment applied in ev-
ery period, that is, where Mt

e = MH
e /He for all t, the total minimum purchase com-

mitment clearly allows for greater flexibility and hence, for lower costs. This trans-
lates into the property that, with this uniform setting of Mt

e, any feasible solution of
the model in Section 3.6 is also feasible for the current model, but not vice-versa.

3.10 Multi-period Distribution Network Problem with
Total Minimum Purchase Commitment and Penalty
Costs - MPC (H > 1,P > 0,M = MH

e )

Finally, in this section, the previous model is extended to include penalty costs. So,
the mid-term contract is structured with parameters MPC(H > 1,P > 0,M = MH

e ).
Similar to the previous model in Section 3.9, the minimum payment MH

e can be
settled by adding up costs of services requested during the contract duration He.
The penalty Pe is applied to the cost of services requested above the commitment
level. In this formulation, an auxiliary variable µ t

e is introduced to represent the cost
of services above commitment for a contract starting in period t with carrier e. Note
the difference with auxiliary variable λ t

e used in previous models, which expresses
the costs above the commitment level for period t.

Likewise, a new auxiliary variable Bt
e is added, which determines the total costs paid

to carrier e for a contract starting in period t. It is equal to the pre-agreed MPC value
MH

e plus the costs µ t
e(1+Pe) charged above commitment (constraint in Eq. (3.27).

This results in the following non-linear DNPMC model wherein the modified objec-
tive function (3.26) includes a component for the total contract cost incurred with
carrier e, plus the cost of delivery to the end customers.
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Objective Function

min ∑
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µ
t
e ≥ 0 ∀ e ∈ E, t ∈ T (3.29)

Bt
e ≥ 0 ∀ e ∈ E, t ∈ T (3.30)

The costs charged by a contracted carrier in each period amount at least to the re-
source utilization costs (3.18). Moreover, Eq. (3.28) computes the costs above com-
mitment per contract starting in period t. In case a contract is open, total resource
utilization costs over all contract periods are compared with the minimum commit-
ment payment (MH

e ). If the sum (∑He−1
n=0 ct+n

e ) is larger than MH
e , then additional

charges are adjusted with the penalty rate. Otherwise, only the commitment pay-
ment is charged in ((3.27)).

Following its definition, µ t
e must be zero if no contract with carrier e starts in period
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t. Thus, the difference (∑He−1
n=0 ct+n

e −MH
e ) must be calculated only in case a contract

starts in period t, which justifies the multiplication by variable α t
e in Eq. (3.28). As

a consequence, the resulting formulation is non-linear as it involves the product of
two decision variables. It can be linearized by standard methods. Alternatively,
constraint in Eq. (3.28). could also be replaced by

µ
t
e ≥

[
He−1

∑
n=0

ct+n
e −MH

e

]
−κ(1−α

t
e) ∀ e ∈ E, t ∈ T,

where κ is a large enough constant (larger than (∑
He−1
n=0 ct+n

e −MH
e ) for all feasible

solutions).

Note that this formulation could be used to model problem in Section 3.9 when the
penalties Pe are equal to zero for all e ∈ E. However, this still results in a nonlinear
model and does not immediately boil down to the model of Section 3.9. Note also
that the current formulation does not allow to model off-contract requests (adjusted
with penalties Pe) by simply removing constraints in Eq. (3.15), as was the case
in Section 3.7. It is possible to claim a more complex structure, distinctive from
the previous ones. Notably the non-linearity or inclusion of a Big-M constraint
may complicate its computational resolution or inefficacy by standard optimization
solvers. However, as it was suggested, solving alternative models with different
conditions of contracts, like in Section 3.9 could serve as an starting point to obtain
valid lower bounds and feasible solutions, respectively.

3.11 Conclusions

This chapter presented a variety of models and mixed-integer linear programming
formulations for transportation capacity location problems with minimum purchase
commitment contracts. The formulations are built around a common core of con-
straints, but vary according to the terms of the contracts and to the features of the
cost function: presence or absence of penalties beyond the minimum purchase com-
mitment level, possibility or not to hire “spot” capacity without MPC contract, total
or per period purchase commitment.

In the next chapter, we will turn to the development of algorithms for the solution
of the model presented in Section 3.5, and to an evaluation of the performance of
these algorithms. We will return to more complex models involving off-contract
use of transportation and logistics facilities in Chapters 5 and 6, when we discuss
stochastic extensions of the problem.
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Chapter 4

Multi-Period Distribution
Network Problem with Minimum
Purchase Commitment (MPC)
Contracts

4.1 Introduction

In this chapter, we consider the distribution network problem arising in e-commerce
logistics from the perspective of an e-fulfilment agent, introduced in Section 3.2.
The relationships with logistics partners is made on the basis of an MPC contract
with specific attributes (H > 0,M =Mt

e,P= 0). This mathematical model was intro-
duced in Section 3.6 and is described in detail in Section 4.2 with added notes about
its complexity in Section 4.3. The present chapter is focused on solution strategies
for the multi period problem based on decomposition methods. First, the combi-
natorial benders algorithm is presented in Section 4.4 while a two-phase heuristic
is presented in Section 4.5. The experimental design taking into account multiple
instances of the problem is described in Section 4.6, and computational results are
detailed in Section 4.7. Finally, conclusions are provided in Section 4.8. The de-
scription of the problem is described as follows.

A logistics service intermediary known as the shipper acts on behalf of online sell-
ers for the distribution of products sold worldwide on the Internet. The shipper
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manages the inventory from warehouses where the sellers send their products on a
continuous basis. Then, this shipper is in charge of delivering parcels along time ac-
cording to customer orders. To do so, it relies on specialized carriers for long-haul
transportation, cross-docking operations at intermediate facilities and on parcel de-
livery services for last-mile transportation to customers areas. See Figure 4.1 for a
representation of the distribution network.

Figure 4.1: Distribution network layout

The focus of our work is on the optimization of the shipper’s decisions regarding
its multi-period contractual relations with the carriers (contract portfolio). The ship-
per’s planning process encompasses the selection of a sequence of contracts with the
carriers, together with the associated transportation plans, over multiple sub-periods
of a discrete time horizon. A contract with a particular carrier allows the shipper to
move its parcels to the carrier’s cross-docking facilities. We assume that the range
of services offered by the carriers is limited to long-haul road transportation from
the warehouses to their own facilities and to cross-docking operations (freight con-
solidation, vehicle un/loading...). Then, last-mile distribution of parcels from the
cross-docking facilities to customer areas is performed by parcel delivery services.

The total cost incurred by the shipper depends on several factors. First, each con-
tract with a given carrier, say carrier e, extends over a predefined duration, say He

periods (weeks, months), and stipulates a minimum purchase commitment Mt
e that

is a minimum due fee for each period t covered by the contract, independently of
the utilization of services. If the services requested at period t amount to a higher
monetary value than Mt

e, then the actual total cost is charged by the carrier to the
shipper. The minimum purchase commitment may vary in each period according
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to related expected demands issued from forecasts. When a contract with carrier e
expires (after He periods), it can be immediately renewed; but it cannot be modified
nor extended before its expiration date.

In order to fit with real-life marginal decreasing prices, the amount charged by each
carrier for transportation on a specific lane, from the warehouses to one of its cross-
docking facilities, is a function of the total volume of freight. More precisely, we
model it as a staircase function accounting for capacity levels, that is, the number
of full truckload (FTL) shipments needed, with a decreasing marginal cost for each
additional truck. We also assume that the number of FTL shipments to a facility
determines the operational costs incurred for handling and cross-docking functions
at this facility. Transportation of parcels from each cross-docking facility to each
related customer area is performed by a specialized operator which charge a fixed
rate (per distance and weight) for this last-mile parcel delivery service.

When trying to minimize its total distribution costs, the shipper tends to favor ship-
ping lanes/facilities which minimize transportation and handling costs. However,
e-commerce patterns and seasonality effects induce fluctuations of demand which
are likely to affect the optimal selection of carriers and cross-docking points in each
period, from a short term perspective. On the other hand, each contract ties the
shipper to a carrier for successive periods of time, and this implies that the contract
portfolio must be optimized from a mid-term perspective. These interactions be-
tween tactical and operational decision levels considerably increase the complexity
of the resulting planning problem, that we call hereafter the multi-period distribu-
tion network design problem with purchase-commitment contracts (MDPC).

4.2 Mathematical formulation

In this section, we propose a mixed-integer linear programming (MILP) formulation
of . We start with some definitions and notations (see also Table 4.1).

4.2.1 Notations

The shipper’s decision problem involves selecting carriers from a set E of candidates
over a multi-period planning horizon T = {1,2, ...,N}. Every carrier e ∈ E operates
its own set of geographically dispersed facilities, Ie, each of which is equipped for
cross-docking operations. From the point of view of the shipper, the collection
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Datasets and indices

Set Description Index
T Planning horizon t,n
E Candidate carriers e
I Cross-docking facilities i
K Customer areas k
Ie Network of cross-docking facilities operated by carrier e i
Ik Network of cross-docking facilities that can serve customer area k i
Ki Customer areas that can be served from cross-docking facility i k
Ek Carriers that can serve customer area k e
L Capacity levels of cross-docking facilities l

Input parameters

Symbol Description
N Number of periods in the planning horizon (N = |T |)
He Duration of contracts with carrier e (number of periods)
Mt

e Minimum Purchase Commitment with carrier e at period t (e)
Ql Available capacity at level l (weight units)
Fi,l Cost for operating facility i at capacity level l (e)
Dt

k Demand of customer area k in period t (weight units)
Ui,k Unit transportation costs for delivery from facility i to area k (e per unit)

Decision variables

Symbol Description
α t

e 1 if a contract with carrier e takes effect at period t, 0 otherwise
vt

i,l 1 if cross-docking facility i is used at capacity level l in period t, 0 o.w.
qt

i,k Demand from customer area k allocated to facility i in period t (weight units)
ct

e Total fee due to carrier e in period t (e)

Table 4.1: Mathematical notations for the MDPC model

I = ∪e∈EIe forms the complete set of available cross-docking facilities. In order
to be allowed to use the facilities in Ie, the shipper must have previously signed
a contract with carrier e. The conditions applying to a contract with e include its
duration (He periods) and the minimum payment commitment (Mt

e) for every period
t ∈ T . If a contract with a carrier e is in effect during period t, then the total payment
due to e for period t, denoted ct

e, is at least equal to Mt
e or if it exceeds Mt

e, the costs
(handling and transportation) incurred during this period t.

For the long-haul part of the distribution network, the transportation and cross-
docking capacity which can be requested by the shipper at any carrier’ facility is
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discretized at increasing levels Q1,Q2, . . . ,QL. The capacity Ql at level l may be
typically equal to the total load capacity of l vehicles (expressed in weight units,
say, tonnes). Transportation and cross-docking services are then charged depending
on the capacity level requested at a given facility: the long-haul cost charged to the
shipper is Fi,l when facility i is used at level l.

For the parcel delivery part of the distribution network, we assume that the cus-
tomers are located in a set K of distinct areas, where each area is small enough to be
identified as a single point. The aggregated deterministic demand for parcels is Dt

k
(weight units) for period t in area k. Each customer area k ∈ K can only be served
on time but if needed in split deliveries from a subset of facilities, say Ik ⊆ I, which
are considered to be close enough to get an offer from a parcel delivery operator.
So conversely, vehicles departing from any facility i ∈ I can only deliver parcels to
a subset of customer areas, say, Ki ⊆ K. The unit cost of parcel delivery depends
on the distance travelled: Ui,k denotes the cost of transporting one weight unit from
facility i ∈ I to customer area k ∈ Ki.

The MILP model involves four families of decision variables for every period t ∈ T
in the planning horizon. First, α t

e is a 0-1 variable which takes value 1 if a contract
with carrier e ∈ E goes into effect in period t (and remains valid throughout periods
t, t +1,..., t +He−1). Next, vt

i,l is a 0-1 variable which takes value 1 if facility i ∈ I
is operated at level l ∈ L in period t. The continuous variable qt

i,k represents the
quantity of parcels (number of weight units) shipped from facility i ∈ I to customer
area k ∈ Ki in period t. Finally, as already introduced above, an auxiliary variable ct

e
stands for the total cost charged to the shipper by carrier e in period t.

4.2.2 Mixed-integer programming formulation

The multi-period distribution network design problem with purchase-commitment
contracts (MDPC) can now be formulated as follows.

In this formulation of , the objective function (4.1) has two components. The first
one computes the fees due to all carriers over the planning horizon. The second
one accounts for the parcel delivery costs. Constraints (4.2) enforce the demand
satisfaction for all customer areas in each period. Constraints (4.3) ensure that the
total demand allocated to a facility for the last mile-delivery does not exceed its se-
lected long-haul capacity level. Constraints (4.4) establish that a customer area k can
only be served from facilities belonging to carriers with ongoing contracts. (These
constraints are actually redundant with (4.2)-(4.3), but they reinforce the linear re-
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laxation of the formulation.) Constraints (4.5) and (4.6) determine the payment due
to carrier e in period t, taking into account the effective costs of services provided
and the minimum purchase commitments pre-agreed by ongoing contracts (that is,
any contract signed in one of the periods from t −He + 1 to t). Constraints (4.7)
express that a facility can be used only if there is a valid contract with its owner.
Constraints (4.8) specify that two contracts cannot simultaneously be in effect with
a same carrier.Note that in view of constraints (4.7) and (4.8), at most one capacity
level can be selected for each facility. The formulation is strengthened by the cover-
ing constraints (4.9) which guarantee, that each customer area is served by at least
one carrier. Finally, constraints (4.10)-(4.12) specify the range of the variables. We
denote by Zopt the optimal value of MDPC.

Objective function

min Z = ∑
t∈T

[
∑
e∈E

ct
e + ∑

k∈K
∑
i∈Ik

Ui,k qt
i,k

]
(4.1)

Constraints

∑
i∈Ik

qt
i,k = Dt

k ∀ k ∈ K, t ∈ T (4.2)

∑
k∈Ki

qt
i,k ≤∑

l∈L
Ql vt

i,l ∀ i ∈ I, t ∈ T (4.3)

qt
i,k ≤ Dt

k ∑
l∈L

vt
i,l ∀ i ∈ Ik, k ∈ K, t ∈ T (4.4)

ct
e ≥∑

l∈L
∑
i∈Ie

Fi,l vt
i,l ∀ e ∈ E, t ∈ T (4.5)

ct
e ≥Mt

e

He−1

∑
n=0

α
t−n
e ∀ e ∈ E, t ∈ T (4.6)

∑
l∈L

vt
i,l ≤

He−1

∑
n=0

α
t−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T (4.7)

He−1

∑
n=0

α
t−n
e ≤ 1 ∀ e ∈ E, t ∈ T (4.8)

∑
e∈Ek

He−1

∑
n=0

α
t−n
e ≥ 1 ∀ k ∈ K, t ∈ T (4.9)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (4.10)

vt
i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, t ∈ T (4.11)

qt
i,k ≥ 0 ∀ k ∈ K, i ∈ I, t ∈ T (4.12)
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4.3 Complexity

4.3.1 NP-hardness

For certain values of the parameters, the MDPC model reduces to the well-known
simple facility location problem (SPL; Ghiani et al. [2004]). Specifically, consider
the special case of MDPC where

• there is a single period: N = 1;

• there is a single carrier who can reach all the customer areas from all its
facilities: E = {e}, I = Ie, and Ki = K for all i ∈ I;

• the contract duration is equal to one period: He = 1;

• there is no purchase commitment: M1
e = 0;

• there is only one operating level (L = {1}) and Q1 is large enough to satisfy
the total demand.

Under these conditions, the shipper has no choice but to contract with the unique
carrier (α1

e = 1), and MDPC boils down to the problem of selecting the facilities
i ∈ I (i.e., the values of the variables v1

i,1) and the delivery quantities qi,k so as to
minimize the total cost of operating the facilities and of transporting the parcels:
this is exactly the definition of the simple facility location problem. Since the SPL
problem is NP-hard, so is MDPC.

The previous argument does not really tell us anything about the difficulty of han-
dling the contracts, since under its assumptions, the unique variable α1

e is trivially
set to 1 in all feasible solutions of model (4.1)-(4.12). An alternative argument,
therefore, might consider instead the following special case of MDPC:

• there is a single period: N = 1;

• each carrier e ∈ E owns a single facility, and each facility can reach all the
customer areas: E = I, Ie = {e}, and Ki = K for all i ∈ I;

• the contract duration is equal to one period: He = 1;

• there is only one operating level (L = {1}) and Q1 is large enough to satisfy
the total demand;

• there is no service cost for any of the facilities: Fi,1 = 0 for all i ∈ I.
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In this case, again, MDPC reduces to SPL, with the variables α1
e , e ∈ E, indicating

the contracts to be signed in order to be allowed to operate the associated facilities.

4.3.2 Decomposability

From a practical point of view, the difficulty of MDPC mostly stems from the in-
terrelationship among various subsets of decision variables. Indeed, the selection of
carrier contracts in each period t ∈ T (expressed by the values of the variables α t

e)
restricts the candidate facilities that can be used in period t (variables vt

i,l) and hence,
the quantities that can be shipped in the same period (variables qt

i,k). Moreover, the
contracts signed with carriers usually extend over several periods, and this creates a
linkage between the decisions made in successive periods.

These observations suggest that appropriate solution methodologies may be devel-
oped by relaxing some of the above-mentioned interrelationships, in various ways.
In particular, when feasible values are set for the decision variables α t

e, finding the
optimal values of (vt

i,l,q
t
i,k) becomes a time-separable sub-problem which is easier

to handle, even though it remains theoretically hard. This suggests that Benders
decomposition (Benders [1962]; Rahmaniani et al. [2017]) can be useful for tack-
ling the complex structure of the problem. An exact method based on this idea is
presented in Section (4.4).

Similarly, when we relax the constraints (4.6)-(4.9), which bind consecutive periods
over the duration of each contract, then the distribution sub-problem can be inde-
pendently tackled for each period. Section 4.5 describes a heuristic algorithm based
on this idea.

4.4 Combinatorial Benders Algorithm - (CBA)

We start this section with a brief review of combinatorial Benders approaches.

4.4.1 Benders with integer sub-problems

The classical Benders procedure for mixed-integer linear programming requires to
fix (iteratively) the value of all integer variables and to solve the remaining sub-
problem, which is by construction a linear programming problem with continuous
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variables. Then, duality theory allows the derivation of valid (feasibility or optimal-
ity) inequalities from the optimal solution of the sub-problem, and these inequalities
can be added as cuts to the formulation of the original master problem (see Rahma-
niani et al. [2017]).

In contrast, in some recent extensions of the classical approach, only a subset of
the integer variables are fixed (in our case, the α t

e variables), and the resulting sub-
problem is still an MILP problem. When this is the case, classical Benders cuts
cannot be used, due to the failure of duality relations, and different approaches need
to be applied.

Authors in Hooker & Ottosson [2003] coined the term combinatorial cuts and ap-
plied Benders-type decomposition methods for non-classical IP sub-problems by
developing an abstract theory of ”inference dual”. Similarly in Codato & Fischetti
[2006], combinatorial cuts were implemented in order to model and solve MIP prob-
lems involving logical implications. The cuts are so-called canonical cuts (see Balas
& Jeroslow [1972]) of the general form:

∑
j∈C

y j + ∑
j∈D

(1− y j)≥ 1 (4.13)

for some appropriate subsets C,D of indices.

Similar types of cuts appear as part of “nogood” learning techniques used in con-
straint programming together with mixed-integer programming. The main idea is
to find combinations of variable assignments that cannot be part of an optimal so-
lution, or nogood combinations (see Sandholm & Shields [2006]). Such techniques
can be embedded in a branch-and-cut framework in order to reduce the size of the
search tree.

Authors in Fakhri et al. [2017] proposed a Benders decomposition method with
integer sub-problems. Their work builds on ideas initially developed in Cordeau et
al. [2000] for closing the duality gaps of ILP problems. Here, the Benders procedure
is embedded in a branch-and-bound framework, and Benders cuts are inserted into
the formulation at every node, in addition to branching constraints.

Related ideas were proposed to handle applications arising in a variety of fields.
We only mention here a couple of examples. In Botton et al. [2013], the authors
investigate a survivable network design problem for which they propose to relax
the integer variables occuring in the Benders sub-problem. They characterize some
cases where this procedure is exact. For the general case, reinforced logic-based
cuts in the spirit of Hooker & Ottosson [2003] must in principle be generated, but
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this turns out to be unnecessary in the computational experiments.

In Gendron et al. [2016], authors also rely on combinatorial cuts for an integer
programming formulation of wireless LAN network design problem involving two
subsets of binary variables, say (x,y). In their approach, the master problem (MP)
includes all the variables of the original problem, but the integrality constraints are
relaxed on the x-variables. The Benders sub-problem is obtained by fixing the y-
variables to their optimal value in (MP), and by reinstating the x-variables as integer
variables. Canonical cuts of the form (4.13) are used to exclude previously visited
solutions.

For our MDPC model, we develop a similar decomposition strategy, making use of
combinatorial cuts that we add to the master problem in the course of the branch-
and-cut optimization process. The master problem is solved only once. The branch-
and-cut process stops at some nodes for evaluating integer solutions in the sub-
problem. This algorithmic approach, which differs from the iterative classical pro-
cedure, is known as a single-tree Benders procedure [Rahmaniani et al., 2017].

4.4.2 Decomposition

The mathematical formulation (4.1)-(4.12) of MDPC contains three main sets of
variables, respectively associated with the selection of contracts (binary variables
α t

e), the selection of facilities (binary variables vt
i,l), and the allocation of demand to

these facilities (continuous variables qt
i,k). The optimal value of the cost variables

ct
e is easily deduced from the values of the other variables.

We decompose this formulation into a master problem (MP), which is obtained
by relaxing the integrality constraints on the binary variables vt

i,l , and into a sub-
problem (SP), which is obtained by fixing the binary variables α t

e to valid values α̂ t
e

(see Figure 4.2) derived from the optimal solution of the MP.

Every time the MP generates a new array of values α̂ t
e (that is, a new tentative plan

of contracts), an additional combinatorial cut is introduced into the MP formulation.
The procedure stops when no new array of values α̂ t

e is eligible to be optimal. Let
us now describe this procedure in more detail. In the next sections, we denote by
Zinc the incumbent, or best-known value of a solution of MDPC at any time during
the procedure.
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Figure 4.2: Plan of contracts (valid values of α̂ t
e)

Master problem (MP)

The initial MP formulation is identical to the formulation (4.1)-(4.12), except that
the integrality constraints (4.11) are relaxed between 0 and 1 and replaced by

vt
i,l ∈ [0,1] ∀ i ∈ I, l ∈ L, t ∈ T. (4.14)

The relaxed variables vt
i,l are taken into account in the MP in order to guide the

search for good values of the contract variables α t
e. The MP is solved by a standard

branch-and-cut (B&C) procedure, and its formulation will additionally be enriched
by combinatorial cuts as explained later on.

In the course of solving the MP by branch-and-cut, (possibly many) feasible assign-
ments of binary values α̂ = (α̂ t

e : e ∈ E, t ∈ T ) are identified for the contract vari-
ables. We denote by ZR(α̂) the optimal value of the master problem when α is fixed
to α̂ (the subscript R reminds us that the vt

i,l variables are relaxed). If Zinc ≤ ZR(α̂),
then the usual principles of B&C guarantee that α̂ is dominated by the incumbent
assignment for the contract variables, and hence α̂ can be further discarded from
the search process, either by pruning, or by a combinatorial cut (see below). Oth-
erwise, a sub-problem SP(α̂) must be solved to evaluate the quality of the contract
plan modeled by α̂ , as explained next.
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Sub-problem (SP)

For each feasible assignment α̂ , the associated sub-problem SP(α̂) is generated by
setting α t

e to the value α̂ t
e in the formulation of MDPC, for all e ∈ E, t ∈ T . So,

SP(α̂) is an MILP model with objective function (4.1), with binary variables vt
i,l

and with continuous variables qt
i,k, ct

e. It includes constraints (4.2)-(4.5) and (4.11)-
(4.12), as well as constraints (4.6) and (4.7) which respectively boil down to the
following simple inequalities:

ct
e ≥

{
Mt

e if ∑
He−1
n=0 α̂ t−n

e = 1
0 otherwise

∀ e ∈ E, t ∈ T, (4.15)

∑
l∈L

vt
i,l ≤

{
1 if ∑

He−1
n=0 α̂ t−n

e = 1
0 otherwise

∀ i ∈ Ie, e ∈ E, t ∈ T. (4.16)

Constraints (4.15) and (4.16) respectively guarantee the minimum payment due to
carriers and the availability of facilities if and only if a contract is in effect at pe-
riod t.

Constraints (4.8)-(4.10) can be discarded from the sub-problem formulation. Note,
however, that the presence of the covering constraints (4.9) in the master problem
ensures that all customers can be served from the facility network available with
the plan of contracts represented by α̂ . In other words, the sub-problem SP(α̂) is
always feasible.

As mentioned in Section 4.3.2, a crucial feature of the sub-problem SP(α̂) is that
it is separable per period: indeed, for each t ∈ T , the optimal values (vt∗, qt∗, ct∗)
only depend on the contracts (α̂ t) that are active in period t. If we denote by ZSP(α̂)
the optimal value of SP(α̂), and by ZSP(α̂

t) the optimal value of the sub-problem
SP(α̂ t) arising in period t, then

ZSP(α̂) = ∑
t∈T

ZSP(α̂
t).

This property facilitates the solving of SP(α̂), and actually motivates the whole
decomposition scheme.

Combinatorial cuts

The optimal solution of SP(α̂) provides the best assignment (v∗, q∗, c∗) associ-
ated with the contracts defined by α̂ . In particular, it defines a feasible solution of
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MDPC, and its value ZSP(α̂) is an upper bound on the optimal value of MDPC. The
incumbent or best-known value, i.e., Zinc, is compared with ZSP(α̂) and is updated
if needed, that is, if ZSP(α̂)< Zinc. Moreover, a combinatorial cut of the following
type can be added to the MP formulation:

∑
t∈T

(
∑

e∈E:α̂ t
e=0

α
t
e + ∑

e∈E:α̂ t
e=1

(1−α
t
e)

)
≥ 1. (4.17)

This combinatorial cut removes the solution α̂ from the feasible space of MP. In
other words, the cut expresses that the contract plan α̂ has already been handled,
and therefore α̂ can be ruled out from the subsequent search process. The combina-
torial cut (4.17) is strengthened by disregarding the values α̂ t

e = 0 associated with
a contract in effect, but not taking place at time t. The values of these variables are
already implied from constraints (4.8). Therefore, the expression ∑

He−1
n=0 α t−n

e = 0
validates for 0-values when no contract is in effect at time t with carrier e. The
strengthened cut (4.18) is, in all cases, included into the formulation.

∑
t∈T

 ∑
e∈E:∑He−1

n=0 α
t−n
e =0

α
t
e + ∑

e∈E:α̂ t
e=1

(1−α
t
e)

≥ 1. (4.18)

Note that even though SP(α̂) is time-separable, the combinatorial cut (4.18) cannot
be split by period.

4.4.3 Algorithmic procedure

The overall combinatorial Benders algorithm (CBA) is sketched in Figure 4.3. Com-
mercial solvers enable the user to interrupt the MP branch-and-cut process at various
points to launch predefined routines for different purposes. In our algorithm, this
practical tool is used to conveniently launch the SP(α̂) model whenever a feasi-
ble integer solution α̂ meet certain conditions, as described by Algorithm 1. The
solution method for the SP is summarized below by Algorithm 2.

The addition of the combinatorial cut to the MP formulation rules out candidate α̂

from the feasible space, regardless if it is optimal for MDPC or not. The branch-
and-cut procedure continues searching for the best feasible solution until no feasible
candidates remain. When the solver stops, the optimality criterion is satisfied: the
relaxed value ZR(α̂) of any solution α̂ is above the incumbent value, which is there-
fore optimal (Zinc = Zopt). The lower bound obtained along the process by CPLEX
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Figure 4.3: Single-tree Combinatorial Benders algorithm

is associated to the MP formulation. Therefore, it is never larger than the optimal
value of the MP, which is in itself a LB for the MDPC model.

Algorithm 1: Single-tree Benders subroutine ( Feasible α̂ )

Input: α̂: Contract plan,
ZR(α̂): Optimal value of MP when α = α̂ ,
Zinc: Incumbent value of MDPC.

1 α ← α̂

2 if ZR(α̂)< Zinc then
3 solve sub-problem SP(α̂)
4 retrieve value ZSP(α̂) {see Algorithm 2}
5 if ZSP(α̂)< Zinc then
6 Zinc← ZSP(α̂)

7 add combinatorial cut (4.18) to MP

The sub-problem SP to be solved by Algorithm 1 is an MILP, and its solution can
take a significant amount of time. Moreover, it must be solved repeatedly. In order
to facilitate its solution, as suggested in Section 4.4.2, we decompose it per period,
and we sequentially solve the sub-problems SP(α̂ t) for each t ∈ T . This process can
be further accelerated as follows. For the contract plan α̂ and a period t, consider the
assignment α̂ t , that is, the restriction of α̂ to period t. It may very well happen (and
in fact, it frequently happens in practice) that α̂ t = α

t for another contract plan α

which was considered in a previous call to Algorithm 1: indeed, two contract plans
α̂ and α , aiming at delivering the required demand in each period, can involve
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the same carriers in period t, even if these carriers differ in some other periods
facing another demand. In such a case, obviously, ZSP(α̂

t) = ZSP(α
t). In view

of this observation, when solving SP(α̂), we find it advantageous to record each
assignment α̂ t , for each period t, together with its optimal value in a storage set Ωt .
When the same assignment α̂ t is found again in subsequent iterations, its value is
retrieved from the storage set, and do not lead to solve the sub-problem again for
that particular period t.

The resulting sub-problem procedure is described by the following pseudocode.

Algorithm 2: Sub-problem procedure

Input: α̂: Contract plan. α̂ t : Part of the contract plan assigned for period t.
Ωt : for each t ∈ T , storage sets of previously encountered contract
plans and their optimal values.

Output: ZSP(α̂): Optimal value of the sub-problem SP(α̂).
1 ZSP(α̂)← 0
2 for each t ∈ T do
3 if α̂ t ∈Ωt then
4 retrieve the optimal value ZSP(α̂

t)

5 else
6 solve SP(α̂ t)
7 add α̂ t and ZSP(α̂

t) to Ωt

8 ZSP(α̂)← ZSP(α̂)+ZSP(α̂
t)

9 return ZSP(α̂)

4.5 Relax-and-repair heuristic

In this section, we present a heuristic optimization algorithm based on a decompo-
sition of MDPC along the time dimension. The heuristic proceeds in two phases,
which respectively consist in solving a relaxation of the problem, then in “repairing”
the obtained solution to make it feasible.
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4.5.1 Phase 1 - Relaxation - (H1)

The idea of the first phase consists in relaxing the duration of the contracts to a
single period, that is, in assuming that He = 1 for all e ∈ E. An alternative way of
looking at this relaxation is as follows. Replace each occurrence of the expression
∑

He−1
n=0 α t−n

e in the formulation (4.1)-(4.12) by a single binary variable β t
e , and add

the constraints
He−1

∑
n=0

α
t−n
e = β

t
e ∀ e ∈ E, t ∈ T (4.19)

This obviously yields an equivalent formulation of MDPC, with the interpretation
that β t

e = 1 if and only if a contract with carrier e is in effect in period t. Now,
remove all constraints (4.19). In this way, we obtain a relaxation of MDPC where
the variables β t

e are not necessarily associated with contracts of duration He, but can
be viewed as describing contracts of duration 1. Let us denote this relaxed problem
as H1, and its optimal value as ZH1. Clearly, ZH1 is a valid lower bound for MDPC:
ZH1 ≤ Zopt .

The formulation H1 can be decomposed and solved independently for each pe-
riod t ∈ T . Let H1(t) define the single-period problem at period t and let ZH1(t) be
its optimal value. Then, ZH1 = ∑t∈T ZH1(t).

In order to avoid confusion, we stress that each sub-problem H1(t) involves the
binary decision variables β t

e in its formulation. Thus, it differs from the single-
period sub-problem SP(α̂ t

e) introduced in Section 4.4.2, which is associated with
fixed values of the variables α t

e. On the other hand, if β̂ t denotes the optimal value
of β t in the solution of H1(t), then, by definition, ZSP(β̂

t) = ZH1(t).

Algorithm 3: Relax-and-repair heuristic: Phase 1
Input: An instance of MDPC.
Output: ZH1: Lower bound on the optimal value of MDPC.

β̂ : A feasible contract plan for the relaxation of MDPC.
1 ZH1← 0
2 for each t ∈ T do
3 solve H1(t), obtain β̂ t ,ZH1(t)
4 ZH1← ZH1 +ZH1(t)

5 return ZH1, β̂ = (β̂ t : t ∈ T )
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4.5.2 Phase 2 - Repairing - (H2)

Consider now an optimal solution ŝ= (β̂ , v̂, q̂, ĉ) of problem H1. With a slight abuse
of terminology, we say that this solution is feasible for MDPC if the succession of
single-period contracts defined by (β̂ t

e, t ∈ T ) defines a collection of contracts with
initial durations He not necessarily equal to a single period, for each e∈ E (meaning
that there exists an assignment of values α̂ for the α-variables such that (α̂, β̂ )
satisfies constraints (4.19).) Note that this is very easy to check. When it happens to
be the case, then the solution ŝ (or more rigorously, (α̂, v̂, q̂, ĉ)) is necessarily optimal
for the original MDPC model as it satisfies constraints (4.9), that is, ZH1 = Zopt , and
the second phase of the heuristic simply returns this solution.

On the other hand, if the conditions on the contract durations He are not respected,
then the solution ŝ is infeasible for MDPC and ZH1 only provides a lower bound
for Zopt . The second phase then consists in “repairing” the infeasible solution to
transform it into a feasible one. The repair heuristic H2 iterates forward over peri-
ods t ∈ T . For each carrier e such that β̂ t

e = 0, it examines whether the single-period
contracts (β̂ t−1

e , β̂ t−2
e , . . .) opened in previous periods define a contract of duration

He (or a sequence of contracts of duration He). When this is not the case, the un-
finished contract can be either Completed up to He periods, or Removed. The incre-
mental cost of each option (∆CostC, ∆CostR) is estimated, and the least expensive
one is implemented.

We next give a more formal description of the resulting algorithm with descriptive
comments of in brackets.

The Completion option considers the number of periods needed for the unfinished
contract to get completed (i.e, He− r), starting from time t. Next, the local vari-
able CurrentCostC sums up the cost values ZSP(β̂

t)+ ...+ZSP(β̂
t+He−r−1) issued

from the last iteration or Phase 1. Then, the algorithm sets temporarily the values
β̂ t ,...,β̂ t+He−r−1 to one (1) and computes again the costs values ZSP(β̂

t), ...,
ZSP(β̂

t+He−r−1) by solving the sub-problems with the modified values. The differ-
ence is saved with parameter ∆CostC and the values are reset back to zero (0).

The Removal option considers the number of periods before the interruption of the
unfinished contract in time t, in order to get removed (i.e., r). Next, the local pa-
rameter CurrentCostR sums up the cost values ZSP(β̂

t−r), ...,ZSP(β̂
t−1). Then, the

algorithm sets temporarily the values β̂ t−r,...,β̂ t−1 to zero (0) and computes again
the costs values ZSP(β̂

t−r), ...,ZSP(β̂
t−1) by solving the sub-problem with the mod-

ified values. The difference is saved with parameter ∆CostR. Finally the smallest
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Algorithm 4: Relax-and-repair heuristic: Phase 2

Input: β̂ : A feasible contract plan for the relaxation of MDPC (H1)
Output: α̂H2: A feasible contract plan. ZH2: Value of the heuristic solution.

1 ZH2← ZH1
2 for each t ∈ T , t 6= 1 do
3 for each e ∈ E do
4 if β̂ t

e = 0 and β̂ t−1
e = 1 {/* potentially incomplete contract } then

5 s← t {/* s: the closest period to t such that

β̂ s
e = ...= β̂ t−1

e = 1}

6 while s > 1 and β̂ s−1
e = 1 do

7 s← s−1

8 r← (t− s) mod He {/* r: the elapsed duration of the

contract running at period t−1}
9 if r 6= 0 {/* the sequence β̂ s

e , . . . , β̂
t
e is not feasible} then

10 CurrentCostC← ∑
He−r−1
k=0 ZSP(β̂

t+k) {/* estimate extra

cost of completing the contract running at period t−1}

11 temporarily set β̂ t
e, . . . , β̂

t+He−r−1
e ← 1

12 NewCostC← ∑
He−r−1
k=0 ZSP(β̂

t+k)
13 ∆CostC← NewCostC−CurrentCostC
14 reset the previous values of β̂ t

e, . . . , β̂
t+He−r−1
e ← 0

15 CurrentCostR← ∑
r
k=1 ZSP(β̂

t−k) {/* estimate extra cost

of removing the contract running at period t−1}

16 temporarily set β̂ t−r
e , . . . , β̂ t−1

e ← 0
17 NewCostR← ∑

r
k=1 ZSP(β̂

t−k)
18 ∆CostR← NewCostR−CurrentCostR
19 reset the previous values of β̂ t−r

e , . . . , β̂ t−1
e ← 1

20 if ∆CostC ≤ ∆CostR then
/* { the completion option is preferred} */

21 β̂ t
e, . . . , β̂

t+He−r−1
e ← 1

22 ZH2← ZH2 +∆CostC

23 else
/* {the removal option is preferred} */

24 β̂ t−r
e , . . . , β̂ t−1

e ← 0
25 ZH2← ZH2 +∆CostR

26 return ZH2, α̂H2 {/* contracts defined by β̂}
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difference between ∆CostC and ∆CostR determines whether to complete or remove
the contract.

It may be interesting to note that in a ”real-world” setting, the heuristic could
be implemented in a rolling-horizon fashion. More precisely, we do not really
need to solve the problem over the complete horizon of N periods in order to
make decisions in any given period: indeed, the decisions in period t only de-
pend on the contracts signed in the previous periods and on the demand for periods
t, t + 1, . . . , t +max{He : e ∈ E}. Thus, the heuristic can be implemented with a
forecast horizon of max{He : e ∈ E} periods.

4.6 Experimental design and performance measures

We have conducted a series of experiments with different algorithms on multiple
sets of instances. This section first describes the set of instances that we generated,
then the algorithms, and finally the performance measures that we consider.

4.6.1 Instances

Data about the location of facilities and of customers, cost components, demand
forecast and contract terms were generated randomly according to the following
assumptions and parameter choices.

Location and scope of sites

• The shipper operates two warehouses.

• Cross-docking facilities and customer areas are randomly located in a two-dimensional
grid (1000×1000).

• The carriers’ facilities are randomly located in a centered area of the grid (700×
700).

• For each carrier e, the size of Ie is randomly chosen from the discrete uniform
distribution on an interval [i−, i+]: U [i−, i+] (see Table 4.2).

• Customers can only be served from carriers’ facilities that are within an Euclidean
distance of 500 units. No carrier may supply all customers.
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Service costs

• The long-haul cost and cross-docking services Fi,l for operating facility i at ca-
pacity level l is of the form Fi,l =Ci +Ti,l , where Ci is the fixed operational cost
of facility i, and Ti,l is the cost charged by the carrier for (full truckload) shipment
requiring l trucks from the shipper’s warehouses to facility i and for operating it
at level l.

• The fixed operational cost Ci is set randomly from a discrete uniform distribution
U [500,1000].

• The variable cost Ti,l for long-haul transportation is modeled by a staircase func-
tion with decreasing marginal costs. The cost for operating at level one, i.e., Ti,1,
is two times the Euclidean distance from facility i to the closest warehouse. When
operating at level l, a total discount of (l−1) percent is applied to the cost l×Ti,1.

• The cost charged by the parcel delivery company for transporting one unit of good
from facility i to customer area k, that is, Ui,k, is taken equal to the Euclidean
distance from i to k.

Customers demand

• The planning horizon is subdivided into three demand seasons, starting with low,
then high, and finally mid season. For each customer region k ∈ K and each
period t ∈ T , the demand quantity Dt

k (in weight units) is issued from a uniform
distribution which depends on the season: U [0.1,0.4] in low season, U [0.35,0.65]
in middle season, and U [0.6,0.9] in high season.

Contract terms and conditions

• In a given instance, all contracts have the same fixed duration He ∈ {2,3,4}, for
all carriers e ∈ E.

• Each carrier has enough available capacity to fulfill the demand of all the cus-
tomer areas that can be served from its facilities.

• The MPC Mt
e is equal to 10% of the total capacity reservation fee, that is, the

minimum fee that would be charged by carrier e at period t if it were assigned
all the demand (∑k:e∈Ek

Dt
k) that it can possibly handle through its network of

facilities
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The main parameters driving the size of instances are the number of carriers |E|,
the number of periods N = |T |, the number of customer areas |K|, and the range
[i−, i+] of the number of facilities per carrier. The instances are partitioned into
three classes according to the value of these parameters, namely small, medium and
large instances. In each class, 6 combinations of parameter values are considered
as displayed in Table 4.2. Moreover, we are also interested in analyzing the effect
of the contract duration on the hardness of the MDPC model. Hence, three differ-
ent values of He, namely, He = 2,3,4, are considered for each instance class. For
each combination of parameters (|E|, |T |, |K|, [i−, i+],He), a set of five randomized
instances of the same size are generated, for a grand total of 3× 6× 3× 5 = 270
instances.

Instances Small Medium Large
Carriers |E| 4 4 6 6 8 8 8 8 10 10 12 12 8 8 10 10 12 12
Periods |T | 4 6 6 8 8 10 8 10 10 12 12 14 8 10 10 12 12 14
Customers |K| 100 200 300
Facilities per carrier [i−, i+] [2,4] [3,5] [4,6]
Contract duration He 2,3,4 2,3,4 2,3,4

Table 4.2: Description of instance classes

4.6.2 Algorithms

The objective of the computational study is to evaluate the performance of different
algorithms for solving instances of the MDPC model. The algorithms under con-
sideration are those described in Sections 4.4 and 4.5, but as benchmarks, we also
tested two additional state-of-the-art generic algorithms, namely: CPLEX default
implementations of branch-and-cut and of Benders decomposition. In contrast with
our combinatorial Benders decomposition approach, CPLEX Benders decomposi-
tion classically separates the integer variables (α t

e, vt
i,l), which are included in the

master problem, from the continuous variables (qt
i,k), which are handled in the LP

sub-problem.

Thus, we consider four methods, respectively labeled as:

• (CP-B&C) - CPLEX Branch-and-Cut;

• (CP-Bend) - CPLEX Benders;

• (CBA) - Combinatorial Benders decomposition Algorithm (Section 4.4);
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• (H1 - H2) - Relax-and-repair heuristic (Section 4.5).

The algorithms were coded in Java using CPLEX 12.8 Concert Technology. All
tests were performed using four core processors Intel E5-2650 with 2.0 GHz and
16 GB of RAM (4GB/Core).

4.6.3 Performance measures

Each algorithm is run for at most 3600 seconds on each of the 270 instances. If an
algorithm terminates sooner, the computational time to completion and the optimal
value are recorded (all times are expressed in seconds); otherwise, performance
parameters like the best found solution value, the time to obtain it and the best
lower bound are recorded.

More precisely, the algorithms are compared based on two performance attributes:

- The efficiency of each algorithm A is measured by its total running time, and by
its running time until it obtains its best overall solution (within the time limit):

1. FA→ Running time up to termination of algorithm A.

2. BA→ Running time of algorithm A until it obtains its best solution.

- The effectiveness of algorithm A is measured by two distinct metrics, namely: the
gap with respect to the best lower bound provided by the algorithm itself, and the
gap with respect to the best solution found by any algorithm. Let QA be the best
value obtained by algorithm A, LA be the best lower bound obtained by A, and
Qbest be the best solution value obtained by any of our algorithms. Then:

1. GA = QA−LA

QA (×100%)→ Relative optimality gap obtained solely by algo-
rithm A.

2. ∆QA = QA−Qbest

QA (×100%)→ Relative gap of algorithm A with respect to the
best known value.

There always holds 0 ≤ GA ≤ 1 and 0 ≤ ∆QA ≤ 1. If an exact algorithm A (CP-
B&C, CP-Bend, CBA) terminates before the time limit or if H1 found a feasible
solution, then the best found solution is optimal and GA = ∆QA = 0.
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4.7 Computational results

We report in this section on the computational results obtained for instances of dif-
ferent sizes and with different contract durations.

4.7.1 Small size instances

A first overview of the results for the set of 90 small instances is displayed in Fig-
ure 4.4. On the left side, the bar chart (a) presents results with respect to the effi-
ciency criteria. For each algorithm, it shows the percentage of instances for which
the algorithm terminates within the time limit (3600 seconds). The average running
time (in seconds) for these instances is shown in parentheses. On the right side, the
bar chart (b) summarizes results in terms of the effectiveness criteria. It shows the
percentage of instances for which each algorithm A obtains the best overall solu-
tion (∆QA = 0). The first bar in Figure 4.4(b), marked “H1”, shows the percentage
of instances for which the contract-duration relaxed model yields a feasible (and
hence, optimal) solution in the first phase of the relax-and-repair heuristic H2 (see
Section 4.5). For each algorithm A, the average gap GA over the set of instances
for which A finds the best solution is shown in parentheses. On the other hand,
when A does not find the best solution, the average relative difference ∆QA to the
best-known value is displayed in parentheses.

Figure 4.4: Performance of algorithms on small instances

Another look at the results is provided in Figure 4.5 and Figure 4.6, which display
the performance profile of each algorithm for the criteria FA, BA, GA, and ∆QA.
The performance profile can be viewed as the empirical distribution function of the
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performance criterion of interest [Dolan & Moré, 2002]. More precisely, for an
algorithm A, a criterion CA, and a value x on the horizontal axis, the performance
profile indicates the percentage of instances for which CA ≤ x. The profiles allow
for easy visualization and comparison of the performance of different algorithms
over a range of instances (in the present case, the collection of 90 small instances).

Figure 4.5: Efficiency: performance profile of total running time FA and of running
time until best found solution BA - small instances

Figure 4.6: Effectiveness: performance profile of optimality gap GA and of gap to
best known value ∆QA - small instances

The relax-and-repair heuristic generates the optimal solution for approximately 53%
of the instances in its Phase 1 H1, by relaxing the contract-duration constraints
alone. Moreover, this percentage climbs to 73% after repairing infeasibilities in
Phase 2 H2 (Figure 4.4(b) and Figure 4.6). For the remaining instances, the heuristic
provides suboptimal solutions with a relative gap (GH2 or ∆QH2) smaller than 1%
for most of the small instances (Figure 4.6).
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CPLEX methods prove optimality and terminate in less than one hour for almost all
small instances (97% for B&C, 93% for CPLEX Benders), but they are naturally
slower than the heuristic H1-H2 (Figure 4.5). Finally, the combinatorial Benders al-
gorithm (CBA) terminates in 61% of the cases only (Figure 4.4(a) and Figure 4.5),
although it generally finds the optimal value within the time limit (for 86% of the
instances, see Figure 4.4(b) and Figure 4.6), in about the same time as both CPLEX
methods. Its main weakness resides in slightly weaker lower bounds which do not
completely close the optimality gap, as evidenced by the value of the optimality
gap: GCBA = 0.44% on average when CBA finds the optimal solution (see also Fig-
ure 4.6). It is interesting to observe, however, that the performance profile of ∆QA

lies lower for the heuristic H2 than for CBA, which means that CBA is generally
able to find better feasible solutions.

Algorithmic performance per instance size

Figure 4.7 and Figure 4.8 present more detailed information regarding the algorith-
mic performance as a function of size parameters, as described in Table 4.2. For
every sample of 5 instances in each class of small instances, the average value of
FA, BA, GA, and ∆QA is calculated and reported. In Figure 4.5, the white bar shows
the total completion time (FA), while the internal black bar is the time until the best
solution is found (BA).

In terms of efficiency, the heuristic method is fast in obtaining a feasible solution,
and its running time grows slowly with respect to size increments (Figure 4.7(a)).
The CPLEX methods (Figure 4.7(c,d)) are able to achieve the optimal value in rel-
atively short time, but nonetheless, their completion time tends to increase rapidly
with the size of the instances. Whereas instances with 6 carriers and 6 periods
are solved in less than 8 (respectively, 10) seconds by CP-B&C (respectively, CP-
Bend), the average running time increases to 202 (respectively, 496) seconds when
the horizon is expanded to 8 periods, and to 1134 (respectively, 1338) seconds when
8 carriers and 10 periods are considered. This increasing trend is even more pro-
nounced for the CBA algorithm (Figure 4.7(b)), although the running time of CBA
until the best solution gets found is considerably shorter than its completion time,
as we already observed.

In Figure 4.8, the white bar depicts the optimality gap derived independently by each
method (GA), whereas the internal black bar represents the relative difference to the
best found value (∆QA). Note again that CPLEX actually provides the optimal value
for most of the instances. If we compare the two tailor-made algorithms, we see that
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the gap GA is smaller on average for the heuristic than for CBA: 0.04%, 0.34%
and 0.53% vs. 1.48%, 1.55% and 1.25% for the three largest parameter values,
respectively. In contrast with this, the relative difference ∆QA to the best found
solution is smaller for CBA (0.00%, 0.02% and 0.10% for the largest parameter
values) than for the heuristic (0.014%, 0.24% and 0.38%, respectively), meaning
that CBA generally finds better solutions.

Figure 4.7: Efficiency (total computational time FA and running time BA until best
solution) of algorithms as a function of parameter values for small instances

(|E|, |T |) (4,4) (4,6) (6,6) (6,8) (8,8) (8,10)
Algorithm FA BA FA BA FA BA FA BA FA BA FA BA

H1-H2 30 30 133 133 75 75 207 207 242 242 268 268
CBA 3 1 16 3 528 5 3306 22 3600 733 3600 1057
CP-B&C 1 1 15 12 8 6 202 95 308 212 1134 958
CP-Bend 1 1 11 7 10 7 496 62 1532 277 1338 111

Table 4.3: Numeric values for efficiency measures (FA, BA) in small instances
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Figure 4.8: Effectiveness (optimality gap GA and gap ∆QA to best known value) of
algorithms as a function of parameter values for small instances

(|E|, |T |) (4,4) (4,6) (6,6) (6,8) (8,8) (8,10)
Algorithm GA ∆QA GA ∆QA GA ∆QA GA ∆QA GA ∆QA GA ∆QA

H1-H2 0% 0% 0.07% 0.02% 0.12% 0% 0.04% 0.01% 0.34% 0.24% 0.53% 0.38%
CBA 0% 0% 0% 0% 0.1% 0% 1.48% 0% 1.55% 0.02% 1.25% 0.1%
CP-B&C 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0.04% 0%
CP-Bend 0% 0% 0% 0% 0% 0% 0.02% 0% 0.06% 0% 0.06% 0%

Table 4.4: Numeric values for effectiveness measures (GA, ∆QA) in small instances
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4.7.2 Medium size instances

Figures 4.9, 4.10 and 4.11 present the aggregated results for the set of medium size
instances, with the same conventions as in the previous section.

Figure 4.9: Performance of algorithms on medium instances

For most of the instances, none of the exact methods is able to terminate, and hence
to prove optimality, within one hour. The heuristic method always terminates be-
fore the time limit and for 55.2% of the instances, it obtains a solution that is at
least as good as the one given by the exact methods and even exact for 8% of the
instances solved by H1. Among exact methods, the combinatorial algorithm CBA
provides the best feasible solution faster than either of the CPLEX methods (per-
formance profile BCBA in Figure 4.10). However the lower bound computed by the
CBA method alone remains relatively weak, which translates into values of GCBA

between 1.9% and 3.5% (performance profile GCBA in Figure 4.11).

Figure 4.10: Efficiency: performance profile of total running time FA and of running
time until best found solution BA - medium instances
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Figure 4.11: Effectiveness: performance profile of optimality gap GA and of gap to
best known value ∆QA - medium instances

Algorithmic performance per instance size

A more detailed presentation of the results is shown in Figures 4.12 and 4.13 for
different size parameters and performance criteria. The heuristic method computes
a feasible solution rather fast (less than 1300 seconds), and maintains a slow increase
in running time as the instance parameters (E,T ) grow larger (Figure 4.12(a)). The
CBA algorithm identifies its best feasible solution early in the search process, almost
independently of the parameters’ size black bar in Figure 4.12(b)). Comparing to
the time CPLEX’s methods finds their best found solution (black bar in Figures
4.12(c,d)), it appears the CBA achieves its best found solution (within 1 hour) in
less time. In fact, CPLEX’s methods tend to improve continuously their incumbent
solution, closing slowly the gap with their respective LBs.

In terms of solution quality, we observe that the heuristic method has a very small
integrality gap, below 0.29% on average for all values of the size parameters. This
means, in particular, that the lower bound computed in the first phase of the heuristic
is always very tight.

On the other hand, the optimality gap GA derived by the CBA method fluctuates
around 2.5% for all medium size instances (Figure 4.13(b)). The small value of ∆QA

for this algorithm (at most 0.15%) suggests, however, that the solution it returns is
usually close to optimal.
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Figure 4.12: Efficiency (total computational time FA and running time BA until best
solution) of algorithms as a function of parameter values for medium instances

(|E|, |T |) (8,8) (8,10) (10,10) (10,12) (12,12) (12,14)
Algorithm FA BA FA BA FA BA FA BA FA BA FA BA

H1-H2 276 276 523 523 602 602 594 594 1007 1007 1231 1231
CBA 3600 1949 3600 1454 3600 915 3600 1340 3600 1625 3600 1794
CP-B&C 3313 2436 3600 3111 3600 3483 3600 3479 3600 2789 3600 3029
CP-Bend 3600 2949 3600 3458 3600 3469 3600 3552 3600 3567 3600 3582

Table 4.5: Numeric values for efficiency measures (FA, BA) in medium instances

In contrast with CBA, the optimality gap computed by CPLEX methods tends to
increase along with the instance size. It even attains a larger value than CBA’s
gap for the largest instance size (|E|, |T |) = (12,14) (Figure 4.13(c,d)), a trend that
will be confirmed in Section 4.7.3. CP-B&C, in particular, fails to find a good
feasible solution, reason why the average relative gap ∆QA steadily increases with
the instance size.
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Figure 4.13: Effectiveness (optimality gap GA and gap ∆QA to best known value) of
algorithms as a function of parameter values for medium instances

(|E|, |T |) (8,8) (8,10) (10,10) (10,12) (12,12) (12,14)
Algorithm GA ∆QA GA ∆QA GA ∆QA GA ∆QA GA ∆QA GA ∆QA

H1-H2 0.08% 0.03% 0.23% 0.14% 0.19% 0.09% 0.15% 0.07% 0.29% 0.09% 0.24% 0.04%
CBA 2.25% 0.05% 2.32% 0.10% 2.42% 0.05% 2.19% 0.13% 2.55% 0.07% 2.44% 0.16%
CP-B&C 0.17% 0.01% 0.42% 0.04% 0.54% 0.09% 0.52% 0.15% 1.23% 0.52% 1.86% 1.14%
CP-Bend 1.3% 0.19% 1.47% 0.21% 1.65% 0.21% 1.83% 0.5% 2.48% 0.8% 2.65% 0.99%

Table 4.6: Numeric values for effectiveness measures (GA, ∆QA) in medium in-
stances

4.7.3 Large size instances

The results of our tests on instances of large size are shown in Figures 4.14, 4.15 and
4.16. The trends observed for medium size instances are again present and accen-
tuated here. Even though its completion time increases consistently, the heuristic
method H2 is the only one for which instances (93%) terminates within one hour of
running time, and it delivers the best solution for more than 90% of the instances.

91



The value of the heuristic solution is equal to the lower bound computed in the first
phase for 4.4% of the large instances only, but the optimality gap GH2 is smaller
than for any other method, and actually always smaller than 0.5%.

Figure 4.14: Performance of algorithms on large instances

Only our Combinatorial Benders Algorithm is sometimes able to match or to im-
prove the solution found by H2 (for about 16% of the large instances). Moreover,
interestingly, CBA usually finds it best solution faster than any other method, in-
cluding the heuristic.

When applied to large size instances, CPLEX branch-and-cut frequently fails to
detect a single feasible solution, as opposed to the classical Benders decomposition
which is always able to find one. However, the lower bound provided by CPLEX
B&C is tighter than by CPLEX-Benders.

Figure 4.15: Efficiency: performance profile of total running time FA and of running
time until best found solution BA - large instances
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Figure 4.16: Effectiveness: performance profile of optimality gap GA and of gap to
best known value ∆QA - large instances

Algorithmic performance per instance size

Figure 4.17 and Figure 4.18 displays more detailed information. For these large in-
stances, it is actually important to jointly examine the running time of the algorithms
and the quality of the solutions that they produce.

The heuristic method takes on average less than 50 minutes (3000 seconds) to solve
even the largest instances involving 12 carriers and 14 periods. This includes the
time to solve the contract-duration relaxation and to perform the second-phase repair
mechanism. The computational time is seemingly more affected by the number of
carriers than by the number of periods. The cost of the solutions provided by the
heuristic comes within 0.22% of the optimal cost in all cases (0.11% on average),
and is always extremely close to the cost of the best solution found by any other
method. These observations remain valid for all large instances.

As we already noted, the CBA algorithm reaches its best feasible solution faster
than the heuristic (within 1900 seconds in all cases), especially for larger instance
sizes. Its optimality gap GCBA lies between 3% and 4%, but the relative gap ∆QCBA

to the best found value is much smaller, around 0.15% on average, and smaller than
0.28% for all subclasses.

Regarding the CPLEX methods, CP-B&C takes a lot of time to obtain what turns
out to be a poor feasible solution for the largest instance sizes. As the size of param-
eters increases, CP-B&C reaches a point where it is unable to find a good feasible
solution, in spite of a decent lower bound obtained at the root node (Figure 4.18(c)).

In the course of its iterations, CP-Benders keeps improving its best incumbent solu-
tion until the time limit is reached. In general, however, it eventually returns (after
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3600 seconds) a feasible solution which is far from the best known one, and the
value of both gaps GCP−Bend and ∆QCP−Bend steadily increases with the instance
size.

Figure 4.17: Efficiency (total computational time FA and running time BA until best
solution) of algorithms as a function of parameter values for large instances

(|E|, |T |) (8,8) (8,10) (10,10) (10,12) (12,12) (12,14)
Algorithm FA BA FA BA FA BA FA BA FA BA FA BA

H1-H2 646 646 1080 1080 2110 2110 2045 2045 2918 2918 2881 2881
CBA 3600 1204 3600 1867 3600 1623 3600 1544 3600 1466 3600 1676
CP-B&C 3600 3463 3600 2319 3600 2847 3600 2651 3600 1688 3600 1360
CP-Bend 3600 3581 3600 3577 3600 3578 3600 3583 3600 3554 3600 3473

Table 4.7: Numeric values for efficiency measures (FA, BA) in large instances
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Figure 4.18: Effectiveness (optimality gap GA and gap ∆QA to best known value) of
algorithms as a function of parameter values for large instances

(|E|, |T |) (8,8) (8,10) (10,10) (10,12) (12,12) (12,14)
Algorithm GA ∆QA GA ∆QA GA ∆QA GA ∆QA GA ∆QA GA ∆QA

H1-H2 0.04% 0% 0.06% 0.01% 0.22% 0.02% 0.13% 0% 0.13% 0.01% 0.2% 0.01%
CBA 3.04% 0.08% 2.99% 0.08% 3.46% 0.08% 3.30% 0.19% 3.62% 0.21% 3.43% 0.28%
CP-B&C 0.49% 0.13% 1.11% 0.65% 23.92% 23.25% 55.97% 55.63% 74.16% 73.93% 78.74% 78.6%
CP-Bend 3.37% 1.84% 3.93% 2.26% 5.32% 3.23% 7.41% 5.6% 10.75% 8.7% 12.30% 10.36%

Table 4.8: Numeric values for effectiveness measures (GA, ∆QA) in large instances

4.7.4 Variations of contract duration

In this section, we examine the behavior of the computational time with respect to
variations in the contract duration (He = 2, 3, 4) for the subclass of small instances,
in which case it is possible to visualize the effect on the completion time (most of
medium and large size instances cannot be solved within the allocated time limit
and hence are not suited for this analysis). The contracts establish the only linkage
among different periods (via constraints (4.7)-(4.9) of the MILP formulation) and
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hence, at first sight, they represent a main complexifying component of the MDPC
model. On the other hand, some of the algorithmic methods are based on a decom-
position of the problem per time period, and it is unclear if the efficiency of these
algorithms is considerably affected by the value of He.

Figure 4.19: Variation of the computational time with respect to the contract dura-
tion

The heuristic algorithm, in particular, is based in its first phase on the relaxation
of the contract duration, and hence this phase is insensitive to the value of He. It
could be argued that, when He gets larger, the first phase H1 is more likely to result
in infeasible contract plans, so that the repair mechanism H2 has to be called more
frequently in the second phase. But conversely, when a contract with carrier e is
signed at period t (α t

e = 1), its consequences extend over more period, and hence
the decision space is reduced when He increases. The overall result of these effects
is hard to predict.

Experimentally, the multi-chart displayed in Figure 4.19(a) does not show any con-

96



sistent trend. The heuristic tends to run longer when He increases from 2 to 3 pe-
riods, for all instance sizes. But the differences are less noticeable when He is
extended from 3 to 4 periods, and for some instance sizes (2 out of 5) the computa-
tional time even decreases.

The trend is also unclear for the combinatorial Benders algorithm (CBA), because it
fails to terminate for most of the instances under consideration. For those instances
that are solved to optimality, the running time decreases when He varies from 2 to 4
periods.

A similar observation applies for the performance of the CPLEX branch-and-cut
method: there is little change in the computational time when He increases, except
in the case of the largest instance size (8, 10) for which it is significantly reduced.
On the other hand, with CPLEX Benders, the average computational effort shows a
clearer trend to diminish when He increases, especially when extending the contract
duration from 2 to 3 periods.

4.8 Conclusions

In this study we proposed a mathematical formulation to model the distribution
network design problem under minimum-purchase commitment. The multi-period
formulation is proven to be challenging for state-of-the-art algorithms when datasets
increase in size, particularly if the decision-maker considers multiple carriers and
separates the horizon in several periods. Aiming at producing satisfactory solutions
for larger instances, we developed a solution methodology taking advantages of the
decomposable structure of the mathematical model. Our developed algorithms were
tested in several instances accounting for size variations and compared with CPLEX
algorithms in two main performance criteria.

The exact solution methodology makes use of combinatorial cuts added while solv-
ing a relaxed version of the model by branch and cut. Compared with CPLEX meth-
ods, our exact methodology stays behind in terms of the resolution time for small in-
stances. However, for larger instances it produces more satisfactory results overall,
with better quality solutions in less computational time. Therefore, outperforming
CPLEX in both, branch-and-cut and Benders procedures. It proves the usefulness
of our algorithmic approach, which could be further developed and enriched with
additional strategies, like our heuristic method for enhancing weak lower bounds.
Also, it shows a difficulty faced by CPLEX in realizing the decomposable struc-
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ture of a multi-period problem. A separate analysis can be done from the classical
Benders procedure, where the decomposition in integer and continuous variables do
not seem to deliver satisfactory results from medium size instances on. Instead, the
combinatorial Benders decomposition with a mixed-integer sub-problem is able to
obtain better results.

In general, the heuristic methodology from medium size to larger instances was
proven not only more efficient by terminating in less time but also producing better
quality solutions than any other exact method in one hour. This demonstrates the
power of the relaxation which produces tight lower bounds to the objective function
and the effectiveness of the simple mechanism of repairing an infeasible solution
that violates contract-term constraints. An even better solution might be obtained by
including local search algorithms. It was revealed that the contract-term parameter,
which enlarge constraints linking several periods, produce little to no effect applying
branch-and-cut, while it generates a positive effect applying decomposition methods
and is more likely to increase the heuristics’ solving time.

In the following Chapters 5 and 6, we examine a different type of capacity reserva-
tion mechanisms beyond the purchase commitment requirement expressed in capac-
ity terms.The minimum capacity commitment is motivated from quantity flexibility
contracts. These are based on reserving some resource capacity (e.g., a number of
truckloads), while letting additional capacity to be charged at a higher cost. Such
flexible options become particularly meaningful when the environment features sig-
nificant uncertainty with regard to demand or cost parameters. Stochastic models
that take uncertainty into account are also part of the analysis in next Chapters.
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Chapter 5

Distribution Network Problems
with Stochastic Demand and
Minimum Capacity Commitment
Contracts

5.1 Introduction

In Chapter 3, distribution network design problems arising in the context of e-
commerce logistics were described and modelled in the presence of minimum pur-
chase commitment (MPC) contracts and under the assumption of deterministic data.
The use of MPC contracts grants access to transportation and distribution (T&D)
services within a carrier’s network, for a limited time. The shipper commits to
paying at least a pre-agreed amount in exchange for transportation and distribution
services at contract prices. However, the MPC contract does not specify manda-
tory use (take-it policy) of resources/capacity made available by the initial payment.
Therefore, the shipper may decide to disregard partially or totally available capacity
in periods where it does not require it, at his convenience.

In this chapter, we consider contract arrangements between the shipper and carri-
ers which enforce a minimum commitment in terms of transportation and facility
(throughput) capacity to be used in exchange for attractive contract costs, presum-
ably lower and more stable than those offered by alternative sources like spot mar-
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kets. This implies that a minimum amount of logistics services, expressed in load/-
cargo units, are requested along the contract duration and indirectly guarantee to the
carrier a minimum payment for the services provided. By specifying a minimum
utilization of capacity, the carrier has a better estimation of resources to reserve in
order to fulfill the shipper’s minimum requirements than in the case of minimum
purchase commitment expressed in monetary units. This class of contracts are de-
nominated minimum capacity commitment (MCC) contracts.

In addition, the present chapter addresses the uncertainty of customer demand. In-
deed, with the recent surge of e-commerce and fast dynamic evolution of demand,
it becomes increasingly difficult to predict with reasonable certainty the demand for
goods and products purchased on-line. Although variations along the year might be
attributed to seasonal effects and predicted to some extent, the uncertainty regard-
ing individual decisions of consumers is more difficult to capture. In this work, we
assume that the aggregated demand of customer areas in successive periods can be
modelled as discrete random variables, which give rise to random scenarios over the
course of the horizon.

In the deterministic case, the e-commerce fulfilment company is certain of the total
T&D capacity required to satisfy customer orders in a certain period, regardless of
the carriers used to that end. Once a network of contract carriers is established, it
is possible to determine the least-cost distribution plan and to request T&D services
accordingly. When dealing with stochastic demand, however, the shipper faces ad-
ditional challenges in order to completely satisfy the demand while attempting to
minimize its total costs. The total capacity required might differ depending on the
observed scenario and the least-cost distribution plan varies accordingly.

Additional assumptions will have to be explicitly specified regarding the restric-
tions placed by carriers on the timing of the preparation and allocation of T&D
resources. In some cases, the carriers may be able to fulfill the shipper’s requests
immediately (i.e, without lead time) after they are stated; in other cases, the carriers
may need sufficient time in order to respond effectively to the shipper’s requests.
Therefore, the shipper may or may not be required to communicate to the carrier
the capacity needed along specific lanes or at specific facilities early in the planning
process. These additional assumptions can be incorporated into the business agree-
ment, as part of the contractual conditions. Naturally, this affects the sequence of
the decision-making process. Both cases are considered further in this chapter in the
development of two-stage stochastic programming formulations of distribution net-
work design problems with minimum commitment contracts (DNPMC). They will
give rise to different models where decisions will be separated according to whether
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they are made before or after random demand is observed.

In our framework, the optimization of DNPMC models is not aimed at generating
the optimal parameters for MCC contracts, but instead it helps to find the most suit-
able selection from a set of different alternatives that were previously conceived.
This chapter is restricted to modelling and to formulating different situations which
may be encountered in practical applications. The sequence of the contents is as
follows. In Section 5.2, the family of contracts labelled as minimum commitment
contracts (MCC) is further described and its terms are expressed in parametric nota-
tion. Similar to the MPC, three main parameters describe the nature of the contracts.
Section 5.3 proposes a mathematical model for the uncertainty of the demand. In
Section 5.4, the general form of two-stage stochastic problems is briefly reviewed.
Several configurations of the MCC contract are considered to derive different math-
ematical formulations of the stochastic DNPMC according to their conditions and
specifications. Some implications of working under a type of contract are discussed
from a mathematical modelling perspective. Two families of problems are distin-
guished according to reservation/requests terms. In Section 5.5, we assume T&D
requests can be made after the demand is realized, whereas in Section 5.6 T&D re-
quests should be made before the real demand is known. In the final Section 5.7 we
summarize the contents. Solution approaches for one of the models in Section 5.6
will be developed and tested in Chapter 6.

5.2 The Minimum Capacity Commitment Contract - MCC

The minimum capacity commitment contract (MCC) here described represents again
a risk-sharing mechanism in business agreements between buyers and suppliers. In
general terms, the buyer commits to purchasing at least a certain amount of prod-
ucts or services. Even if the supplier provides multiple products/services, the total
minimum order quantity is stated in homogeneous units (e.g., number of items,
volume, weight, etc.) therefore, minimum order quantities for each individual pro-
duct/service are not clearly specified. As a consequence, the minimum payment is
not quantifiable. This repeats in several periods throughout the contract duration.

In the context of freight transportation services, the minimum commitment (M) can
be expressed in terms of capacity or load units, for instance transportation capac-
ity (say, a number of full truck-loads) or storage capacity at facilities (say, total
volume/weight handled). A carrier operating on multiple lanes and/or facilities is
notified of the minimum freight volume that the shipper intends to move across its
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complete network during the contract time. Considering the two-echelon distribu-
tion network (as described in Section 3.2), each shipping lane/cross-docking facility
combination at the first distribution level represents a distinct service with its own
cost function, whose value depends on the amount of freight handled. In exchange
for the secured level of business, carriers agree to charge contract prices for services
requested, up to the commitment level or more.

Several types of MCC contracts can be derived according to the classification dis-
played in Table 3.3. The main contract qualities are its (1) duration, (2) penalty
costs, (3) commitment policy (periodicity) and commitment specification (differen-
tiation per services). Terms and conditions are summed up by the generic parame-
ters (H, P, M), denoting the attributes of a contract.

As in Chapter 3, the contract duration can be for one planning period (He = 1), or
extend over multiple planning periods (He > 1). Penalty rates may (P > 0) or may
not (P = 0) apply to service costs charged above the commitment level. The com-
mitment M can be imposed for each period (M = Mt) or for to the whole duration of
the contract (M = MH). Additionally, it can be specified per service (lane/facility) i
(M = Mi) or for the totality of services provided by each carrier e (M = Me).

A graphical representation of the cost functions associated with an MCC contract
is shown in Figure 5.1, for two distinct services 1,2 with different marginal con-
tractual costs, namely F1 < F2. The commitment in capacity units (MCC) covers
both services (i.e., M = Me). The marginal cost above the commitment level MCC
is higher, to reflect for instance the higher cost on the spot market modelled by a
penalty rate P on costs F1 and F2. Note that the final payment to be made by the
shipper depends on the capacity allocated to each service, either 1, or 2. An abso-
lute minimum (guaranteed) payment can be, however, computed on the basis of the
cheaper service.

Let us express some of the common characteristics of the proposed MCC contracts,
in relation with the two-phase procurement procedure for contracts with risk-sharing
provisions (described in Section 2.1.1). In the first phase is negotiated the configu-
ration of contract parameters (m1,m2, p1, p2,F0) explained next:

In the proposed MCC contracts, a common characteristic is to neglect an advanced
payment (F0 = 0), distinctive of MPC contracts. The minimum order (service or
capacity requests in transportation) level, (denoted as m1) is the commitment value
Me (or Mt

e specified per period). The price agreed for service requests (indicated as
p1) is related with input parameters Fi,l . Differently, the maximum capacity avail-
able (referred to as m2) is up to the contract attribute P. Likewise, the penalty value
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Figure 5.1: The minimum capacity commitment contract

Pe defines the price of service requests above level m2 (p2). In the execution phase,
capacity requests take place in the execution interval V1: orders between m1 and m2,
and/or execution interval V2: orders above m2 . Note that in the two-stage stochas-
tic problem, the first stage relates with the phase of parameter definition and the
second-stage with the execution phase. In the presenting models, we differentiate a
certain type of MCC contract (with given attributes) through a common configura-
tion graph as in Figure 2.2 (introduced in Section 2.1.1).

5.3 Stochastic Representation of the Demand

In the mathematical representation of the distribution network problems with deter-
ministic demand (Chapters 3 and 4), we have used a parameter Dt

k representing the
demand of customer area k ∈ K in period t ∈ T . In the stochastic formulation, the
demand of area k at time t is modelled as a discrete random variable dt

k with values

in the set St
k = {D

t,1
k , . . . ,Dt,|St

k|
k }, taking value Dt,s

k with probability pt,s
k .
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The demand of all areas in period t is represented by the random vector dt =
(dt

1,d
t
2, . . . ,d

t
κ), where κ = |K|. A particular demand scenario at time t is there-

fore defined as a vector of possible demand realizations in period t, one realization
for each area. In other words, a demand scenario at time t is a vector of the form
Dt,s = (Dt,s1

1 , . . . ,Dt,sκ

κ ) where s = (s1, ...,sκ) and sk ∈ {1, . . . , |St
k|} for k = 1, . . . ,κ .

We denote by St the set of feasible scenarios at period t. Its size is at most equal to
|St

1|× . . . |St
κ |.

For simplicity, we often refer to the vector s itself as the demand scenario at time t.
So, we write s ∈ St in the mathematical models to denote a feasible scenario s at
period t.

The unconditional probability of realization of scenario s at time t is denoted as pt,s:
it is the joint probability of the area-specific demand realization (Dt,s1

1 , . . . ,Dt,sκ

κ ).
Hence, ∑s∈St pt,s = 1. Finally, a complete demand scenario is a vector Ds = (D1,s1

,
. . . ,DT,sT

) specifying the demand of all areas over all periods of the planning hori-
zon. Again, we use the shorthand s = (s1, . . . ,sT ) for the complete demand scenario
Ds, and we denote by S the set of all complete demand scenarios.

5.4 Two-stage Stochastic Model with Fixed Recourse

The stochastic problems presented in this chapter belong to the general class of two-
stage stochastic programs. Decisions taken in the first stage are in the presence of
uncertainty of random events (i.e, without full information), while decisions made in
the second stage (also called corrective actions or recourse decisions) are dependent
on realizations of the random events.

The two-stage stochastic linear program with fixed recourse is formulated as follows
(see Beale [1955]; Dantzig [1955]; our description is based on Birge & Louveau
[2011]):

minz = cT x+Eξ

[
minq(ω)T y(ω)

]
subject to Ax = b

T (ω)x+Wy(ω) = h(ω)

x ∈ X ,y(ω) ∈ Y
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Here, the first stage decision variables are represented by the vector x and the sec-
ond stage variables by the vector y(ω), which depends on the random vector ω ∈Ω.
The constraints x ∈ X ,y(ω) ∈ Y may express, for example, that the variables must
take nonnegative, or integer values. The vectors b,c and the matrix A are associated
with the variables x. The random vector ω potentially influences all components of
(q(ω),T (ω),h(ω)), which are gathered in the random vector ξ . Eξ denote mathe-
matical expectation with respect to ξ .

For a given vector x and a given realization of ω , the second-stage value function is
defined as

Q(x,ξ (ω)) = min
y
{q(ω)T y |Wy = h(ω)−T (ω)x, y(ω) ∈ Y}.

It determines y(ω) as the solution of a linear program. Then, the two-stage stochas-
tic linear program can be rewritten as the equivalent deterministic program

minz = cT x+Eξ [Q(x,ξ (ω)]

subject to Ax = b

x ∈ X

As we will see, in the distribution network design problem (DNPMC) with stochas-
tic demand, the random components in ξ only consist of the right-hand side vector
h(ω). This vector depends on the random demand scenarios Ds, for s ∈ S. The
values of q and T are non-stochastic.

In DNPMC, decisions about contract opening/renewals are considered to be taken
before realization of the demand: naturally, contracts are always formalized be-
fore their starting period. The corresponding decision variables, therefore, will be
first-stage binary variables. Also, the cost vector c will be absent (i.e., no fee is
explicitly charged for opening a new contract). Regarding the selection of trans-
portation lanes and distribution facilities, two different types of assumptions can be
formulated. In Section 5.5, is assumed that this type of decisions are taken with
full information about the demand: hence, they are scenario-dependent. In Section
5.6, those decisions are taken ex-ante or in anticipation of random events, implying
that reservation of capacity is made in advance, without full information about the
demand. Then, additional recourse actions for satisfying customer demand may be
allowed in the final distribution plan for each given scenario. As a common feature
in both type of models, the second-stage value function is a mixed integer-linear
program. All models share a similar objective function aimed at minimizing the
expected distribution costs along the horizon T .
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In a single-period stochastic DNPMC, decisions are taken only once prior and once
after realization of the demand. In a multi-period problem, on the other hand, first-
stage decisions and corrective actions must be taken repeatedly at each time t, which
gives rise to multi-stage stochastic problem. In this case, nonanticipativity of future
demand scenarios is strictly enforced by not linking first-stage variables to future
realizations of the demand. An important feature of the models, however, is that
none of the decisions made at period t depend on previous realizations of the demand
either. This is due to the fact that the demand must be fully satisfied at every period,
and that neither inventory nor backlogged demand are carried over from one period
to the next. In other words, the realization of a demand scenario in period St does
not affect, in any form, the decisions regarding opening/renewal of contracts in the
next periods (t +1, ..., |T |), nor the capacity reservation plans in those periods. As a
result, non-anticipativity constraints do not need to be explicitly modelled; however,
constraints expressing the duration of each contract will link consecutive periods.

This observation distinguishes our models from those described by classical scenario-
trees for multi-stage stochastic problems. The decision-making process for DNPMC
is more adequately represented as in Figure 5.2.

t = 1 t = 2 t = 3

S1 S2 S3

s1

s2

s3

s4

s1

s2

s1

s2

s3

s4

Figure 5.2: Scenario-tree for the stochastic DNPMC problem

The contract decisions in period t, rather than the outcomes of random events in
periods 1, ..., t, influence the initial state of the system in period t +1. In the follow-
ing, we present general notation (datasets, parameters, decision variables) for the
two subgroups of DNPMC problems, namely with capacity reservation (requests
made before demand realizations) and without capacity reservation (requests made
after demand realizations).
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Commitment Contracts with Demand Uncertainty

Due to the stochastic character of the demand, business agreements may lay down
conditions on reservation of capacity in the face of uncertainty, before the realiza-
tion of random events.

In the deterministic case, studied in Chapter 3, reservation terms were not explic-
itly stated, as part of the MPC agreements. The certainty about the demand allows
the shipper to make T&D requests at any point in time. In other words, once a
selection of destination points and capacity levels (i.e., cross-docking facilities and
truck fleet) is defined by the shipper (with variables vt

i,l) the shipper is free to no-
tify this information when the carrier requires, in line with its resources planning
schedule for period t, and the fact of notifying in advance or not does not influence
the logistics costs. Indeed, the values of vt

i,l determine enough capacity to fulfil the
deterministic transportation demand.

Under stochastic demand the total expected costs are affected by whether or not this
condition is imposed. If the carrier need the shipper to announce and specify ser-
vices in advance (of time t), this decision is taken under uncertainty of future events.
In that situation, it may occur that the specified capacity (vt

i,l) is not sufficient to de-
liver all purchase orders. An alternative source such as spot markets, are commonly
used for urgent one-time loads.

Alternatively, the shipper may be allowed to request T&D capacity after a scenario
of demand is observed, in which case vt,s

i,l reflects the capacity associated with sce-
nario s and the alternative source is not necessary. Reservation is part of the contrac-
tual agreements and denoted with attribute R. Note that R does not imply an input
value, but can be considered as a an additional contractual feature of the business
context along with the triad (H,P,M), however, variables vt

i,l determine the reserva-
tion level (i.e., the reservation for a service i ∈ Ie is given by the solution value of
variable vt

i,l)

Nonetheless, the reserved capacity can alternatively be viewed as an endogenously
determined commitment (rather than exogenously given, as it has been the case for
M). General mathematical notation for parameters and datasets presented in all
stochastic models are summarized in Table 5.1. Decision variables for the first fam-
ily of stochastic models in Section 5.5 are introduced in Table 5.2.
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Datasets and indices

Set Description Index
T Planning horizon t
E Candidate carriers e
I Cross-docking facilities i
K Customer areas k
Ie Network of facilities operated by carrier e i
Ik Network of facilities that can serve customer area k i
Ki Customer areas that can be served from facility i k
Ek Carriers that can serve customer area k e
L1 Capacity levels when using contracts with carriers in stage 1 l
L2 Capacity levels when using contracts with carriers in stage 2 l
St Demand scenarios in period t s
S Demand scenarios over the planning horizon s

Input parameters

Symbol Description
He Duration of contract with carrier e (number of periods)
Me Minimum capacity commitment level agreed with carrier (in load units) e
Ql Standard transportation and distribution capacity at level l (in load units)
Fi,l Service costs for shipping to facility i at capacity level l with contracts (e)
F̄i,l Service costs for shipping to facility i at capacity level l with penalty costs (e)
Dt,s

k Demand of customer area k in period t and scenario s (in load units)
Ui,k Unit transportation costs for delivery from facility i to area k (e)
Pe Penalty costs applied to costs charged above the commitment level
pt,s Probability of scenario s in period t

Table 5.1: Notations: Datasets and parameters for stochastic DNPMC problems

Decision variables
Single Period Model

Symbol Description
αe 1 if a contract with carrier e takes effect, 0 otherwise . (Stage 1)
vs

i,l Capacity purchased under contract related to facility i at level l (Stage 2)
qs

i,k Demand from customer area k allocated to facility i in scenario s (Stage 2)
cs

e Total distribution costs charged by carrier e in scenario s (Stage 2)

Multi Period Models
α t

e 1 if a contract with carrier e takes effect at period t, 0 otherwise. (Stage 1)
vt,s

i,l Capacity purchased under contract related to facility i at level l and scenario s at period t (Stage 2)
qt,s

i,k Demand from customer area k allocated to facility i in scenario s at period t (Stage 2)
ct,s

e Total distribution costs charged by carrier e in scenario s at period t (Stage 2)
Λ

t,s
e Total costs charged for capacity utilization above the commitment level Me (Stage 2)

Table 5.2: Decision variables for models in Section 5.5
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5.5 Stochastic Models with Capacity Request under
Demand Certainty

In the mathematical formulations presented in this section is assumed that con-
tracted carriers are able to provide transportation and distribution (T&D) services
on-demand without preparation time. This means, carriers can arrange and allocate
resources without the need for reservation. Therefore, the shipper can request ser-
vices with certainty about the demand. After a contract plan is decided for period
t, is possible to determine the least-cost distribution plan comprising lanes/facilities
selection and demand allocation decisions, one for every possible demand scenario
s∈ St in period t. The decision-making follows the sequence illustrated in figure 5.3
for a planing horizon composed of 2 periods.

Feuille1

Page 1

Decision-Making t = 0 t = 1 t = 2

First Stage

 - Selection of new contracts:  - Selection of new contracts:

Second Stage

 - Request for T&D services  - Request for T&D services

- Demand allocation :

Demand Realizations

Starting from period 1 with
carrier e →

Starting from period 2 with
carrier e →

Specify service i at level l for
period 1 given scenario
realized s1 →

Specify service i at level l for
period 2 given scenario
realized s2 →

- Demand allocation 

Last-mile delivery plan in
period 1 for demand
scenario s1 →

Last-mile delivery plan in
period 2 for demand
scenario s2 →

Figure 5.3: Multi-stage stochastic decision-making under MCC contracts without
capacity reservation

5.5.1 First stage

Before information about the demands is known, the shipper may initiate business
relationships with contract carriers from the set of candidates E, starting from the
next period. The decision variable α t

e ∈ {0,1} determines whether or not to un-
dertake an optional contract with carrier e ∈ E from period t. Every new contract
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expands the network of logistics facilities and resources taken into account in the
distribution planning problem (Second-stage). For simplicity, the accessible capac-
ity with a particular carrier is considered unlimited, however different prices may
apply depending on the volume of services requested. Furthermore, the MCC con-
tract forces the shipper to utilize resources to at least the capacity commitment level.

As shown in Figure 5.3, the multi-period approach requires to consider establish-
ing new relationships at each time t, taking into account ongoing contracts and the
demand probabilistic function. The stochastic demand may lead to change or mod-
ify the arrangement of contracts accordingly, with the purpose to minimize overall
expected costs.

In principle, low-demand scenarios (requiring not much capacity) lead to avoid mul-
tiple active contracts at the same time, since the total capacity committed, might be
underused or not used at all. On the other hand, high-demand scenarios encour-
age to activate several contracts, making sure to utilize fully purchased capacity at
contract prices and profiting from cost-savings as a result of an extensive network
of facilities/resources. Nonetheless, other factors such as individual service costs,
penalties or parcel delivery costs may also affect the volume of contracts. In gen-
eral, dealing with multiple probabilistic scenarios S as well as multiple alternatives
in E increase the difficulty in determining an optimal selection of carriers.

5.5.2 Second stage

After the demand is realized in period t, it is up to the shipper to request trans-
portation and distribution capacity in order to completely deliver customers’ orders.
The second-stage problem consists in determining the least-cost distribution plan
for each possible scenario s ∈ St , taking into account T&D resources enabled by
active contracts. Second-stage decision variables (vt,s

i,l , qt,s
i,k) account for selection of

shipping lane plus transportation and customer demand allocation, respectively. In
the multi-stage framework, both types of operational decisions at time t correspond
to recourse actions, which are taken independently from the outcome of the demand
in previous periods (i.e., s1, ...,st−1). This characteristic is explained by the fact
that the demand is always completely satisfied. Therefore, the distribution planning
problem can be treated independently in every period t ∈ T , conditioned only by the
active contracts opted in the first-stage.

Figure 5.4 (based on Akbalik et al. [2017]) depicts an example of a multi-period
procurement plan with carrier e following an MCC contract without need of reser-
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vation. In this particular example, the levels of capacity increase linearly (e.g.,
homogeneous fleet of vehicles), and the minimum commitment M with carrier e
throughout the contract duration is the same in all periods.

MCC  

Capacity
levels (L)

tContract duration 

Additional 
capacity at cost:  

Capacity
purchased at cost: 

(M e
t )

p1=F i ,l

p2=F i , l (Pe)

(H e)

Figure 5.4: The MCC contract - capacity reservation

5.5.3 Single-period Distribution Network Problem:
MCC (H = 1,P = 0,M = Me)

In this mathematical representation the relationships between the shipper and car-
riers are established by contracts of the form MCC (H = 1, P = 0, M = Me). The
duration is agreed for a single period with all carriers (i.e., He = 1 ∀ e ∈ E), penalty
costs do not apply regardless of the utilization level, and the commitment level Me

bears on the complete carrier’s network e. Taking into account these assumptions,
the configuration of the MCC contract is given in Figure 5.5:

V
1

m
1

m
2p

1

Execution (II)Commitment (I)

Cap.

Figure 5.5: Configuration of an MCC contract without penalty rates
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A signed contract enables unlimited capacity in transportation lanes/facilities (m2 =
∞) at contract prices (p1 = Fi,l in the model). Hence, penalties are not considered.
The minimum service requests pre-agreed is set in capacity units (m1 = Me). In the
execution step, capacity requests (handled by vs

i,l variables) range over V1 = [Me,∞).
The area with diagonal lines, indicates the minimum capacity level, while the shaded
area shows the interval V1 along which the shipper could execute orders.

The mathematical formulation for the DNPMC is presented below.

Objective Function

min ∑
s∈S

ps

[
∑
e∈E

cs
e + ∑

k∈K
∑
i∈Ik

Ui,k qs
i,k

]
(5.1)

Constraints

∑
i∈Ik

qs
i,k = Ds

k ∀ k ∈ K, s ∈ S (5.2)

∑
k∈Ki

qs
i,k ≤∑

l∈L
Ql vs

i,l ∀ i ∈ I, s ∈ S (5.3)

qs
i,k ≤ Ds

k ∑
l∈L

vs
i,l ∀ i ∈ Ik, k ∈ K, s ∈ S (5.4)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
l∈L

vs
i,l ≤ αe ∀ i ∈ Ie, e ∈ E, s ∈ S (5.5)

∑
i∈Ie

∑
l∈L

Ql vs
i,l ≥Me αe ∀ e ∈ E, s ∈ S (5.6)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cs

e = ∑
l∈L

∑
i∈Ie

Fi,l vs
i,l ∀ e ∈ E, s ∈ S (5.7)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
qs

i,k ≥ 0 ∀ k ∈ K, i ∈ I, s ∈ S (5.8)

vs
i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, s ∈ S (5.9)

αe ∈ {0,1} ∀ e ∈ E (5.10)

The objective function (5.1) aims to minimize the expected transportation and distri-
bution costs. It comprises first, cost of FTL carriers represented with auxiliary vari-
ables cs

e for candidates in E and second, last-mile parcel delivery services charged
at fixed unit costs Ui,k. According to the discrete probabilistic distribution of the de-
mand, the value of the objective function can be computed. A single set of demand
scenarios S is foreseen.
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The first group of constraints regard transportation capacity and demand allocation
decisions. The satisfaction of the demand is enforced for all customer areas in every
demand scenario (Eq. (5.2)). The distribution output flow of facility i is limited
according to the incoming transportation capacity, specified per levels Ql (Eq. (5.3))
. Each level corresponds for instance to a number of trucks. A customer area k can
only be served from facilities operated by contracted carriers (Eq. (5.4)). This last
set of constraints help to reinforce the linear relaxation formulation.

The second group of constraints (placed after the first dotted line), express condi-
tions and permissions linked to MCC contracts. A valid contract allows to use a
carrier’s network, in which case only one transportation capacity level per facility
i can be selected (Eq. (5.5)) and the minimum capacity commitment must be at-
tained (Eq. (5.6)). In this formulation is compulsory to open MCC contracts to meet
distribution requirements. The total costs for capacity utilization with carrier e in
scenario s are computed with the auxiliary cost function in Eq. (5.7). Finally, con-
straints in Eqs. (5.8)-(5.10) specify the range and nature of decision variables. Note
that parameters paired with second-stage variables (i.e., contract costs per service
(Fi,l) and capacity levels (Ql) are independent of random events (Fixed Recourse).

Note that setting the contract parameter Me = 0, ∀ e ∈ E, removing in that way
restrictions on resource utilization renders unnecessary the use of contract selection
variables. This implies, every carrier can be selected without implication in the total
cost function. The stochastic model can be split per scenario s ∈ S and multiple
single-period deterministic models can be solved separately.

Considering only one scenario (|S|= 1) of the demand (e.g., taking the expected de-
mand value for each area k), produces a similar version of the deterministic DNPMC
model introduced in Chapter 3, for the single-period DNP problem with MPC con-
tracts (Section 3.5). It differs just in terms of the type of commitment enforced by
Eq. (5.6). Unlike the model in Section 3.5, the set of constraints in Eq. (5.7) is stated
as an equality.

The above formulation serves as a basis which is slightly modified in the following
models presented in this section.
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5.5.4 Multi-period Distribution Network Problem:
MCC (H > 1,P = 0,M = Mt

e)

The multi-period model becomes necessary if contracts last for several periods of
the shipper’s per period procurement review. The duration is agreed upon indi-
vidually per carrier (He > 1 for candidate e in set E). Under this assumption, the
shipper may consider contracts of the form MCC (H > 1,P = 0,M = Mt

e). In this
framework, potential carriers provide unlimited capacity at contract costs on the
condition that capacity requests amount to a minimum commitment level agreed for
each contract period Mt

e. This implies that, penalty costs after reaching the mini-
mum commitment do not come into effect (P = 0). The commitment is expressed
in load/capacity units without specifying T&D services at a given location of the
carrier’s network. The complete formulation is presented as follows:

Objective Function

min ∑
t∈T

∑
s∈St

pt,s

[
∑
e∈E

ct,s
e + ∑

k∈K
∑
i∈Ik

Ui,k qt,s
i,k

]
(5.11)

Constraints

∑
i∈Ik

qt,s
i,k = Dt,s

k ∀ k ∈ K, t ∈ T, s ∈ St (5.12)

∑
k∈Ki

qt,s
i,k ≤∑

l∈L
Ql vt,s

i,l ∀ i ∈ I, t ∈ T, s ∈ St (5.13)

qt,s
i,k ≤ Dt,s

k ∑
l∈L

vt,s
i,l ∀ i ∈ Ik, k ∈ K, t ∈ T, s ∈ St (5.14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
l∈L

vt,s
i,l ≤

He−1

∑
n=0

α
t−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T, s ∈ St (5.15)

∑
i∈Ie

∑
l∈L

Ql vt,s
i,l ≥Me

He−1

∑
n=0

α
t−n
e ∀ e ∈ E, t ∈ T, s ∈ St (5.16)

He−1

∑
n=0

α
t−n
e ≤ 1 ∀ e ∈ E, t ∈ T (5.17)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ct,s

e = ∑
l∈L

∑
i∈Ie

Fi,l vt,s
i,l ∀ e ∈ E, t ∈ T, s ∈ St (5.18)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
qt,s

i,k ≥ 0 ∀ k ∈ K, i ∈ I, t ∈ T, s ∈ St (5.19)

vt,s
i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, t ∈ T, s ∈ St (5.20)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (5.21)
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The mathematical formulation is similar to the one presented in the previous sec-
tion. The time dimension (superscript t) is added to decision variables in both stages,
defining a multi-stage stochastic problem (as in Figure 5.3). The stochastic parame-
ter of the demand is also specified per period, capturing in that way time-dependent
fluctuations. The set of scenarios is then specified individually per time t, St , in
which the probability of scenario s at time t is pt,s.

As a consequence, the expected cost minimization function (5.11) accounts for mul-
tiple periods, separating costs of first and second echelon of the distribution layout.
A noticeable difference with respect to the single-period model regards the addi-
tion of Eq. (5.17) stipulating to validate a contract from its starting period up to its
expiration, without possibility of cancellation, nor extension before it is finished.
Therefore, the right side of Eqs. (5.5), (5.6) are modified in Eqs. (5.15), (5.16) to
express validity of a contract in time t. These set of constraints, link decision vari-
ables α t

e for consecutive periods, which makes the multi-period model not separable
or not decomposable.

The model here described serves as a generalization of the multi-period determin-
istic model introduced in Section 3.6 and further described in Chapter 4, with same
contract conditions, but different type of commitment. The solution methods de-
veloped in Chapter 4 (Combinatorial Benders, Relax-and-Repair Heuristic) can be
adapted to the stochastic problem given similar contract conditions. Both proce-
dures having in common to separate the overall problem in two phases. First, de-
termining a solution for contract related variables (α t

e) in the master problem/re-
laxation phase. Second, finding a solution for second-stage variables (qt,s

i,k,v
t,s
i,l ) in

the corresponding sub-problem/repairing phase. The increased difficulty will come
from solving the recourse problem for multiple scenarios of demand, taking into
account capacity allocation variables vt,s

i,l are integer.

The L-shaped method is also commonly known to tackle two-stage stochastic mod-
els with decomposition structures. However its classical formulation is only valid
for linear programs. The combinatorial approach may prove useful in dealing with
integer variables in both first and second-stage of the stochastic problem.

5.5.5 Multi-period Distribution Network Problem with Penalty Costs:
MCC (H > 1,P > 0,M = Mt

e)

In this version of the multi-period problem, we consider a variant of the MCC con-
tract assuming now that carriers impose additional costs on the capacity used above
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the commitment. The contract takes the form MCC (H > 1,P > 0,M = Mt
e). Un-

der this policy, the shipper adds up T&D capacity to the distribution network at
contract costs, up to a fixed limit. In addition, unlimited capacity is available at
higher off-contract costs (adjusted by penalties). The penalty cost is specified per
carrier (Pe) related to standard practices to each individual firm, and is charged on
the capacity used above the minimum commitment level (Mt

e). Certainly, taking
into account penalties, the MCC level Me could represent with more fidelity the
exact requirements that the shipper intends to use with a certain carrier, instead of
a minimum (best-case scenario) which will just be sufficient to have access to un-
limited services. This difference in costs presents a problem when the demand is
stochastic, since random events could lead to one of the two sub-optimal situations,
underutilised capacity or overpriced capacity.

V
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p
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V
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p
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Commitment (I) Execution (II)

Cap.

Figure 5.6: Configuration of and MCC contract with penalty rates)

The configuration of an MCC contract with penalty rates is depicted in Figure 5.6.
The minimum level of service requests m1 is the commitment Me. Carriers provide
limited capacity in transportation lanes/facilities at contract prices (p1 = Fi,l). This
limit is also according to Me, (m2 = Me). Service costs above level m2 are adjusted
by the penalty rate Pe (p2 = Fi,l(Pe)). Note that the penalty rate Pe should be stated
in monetary units (per unit of capacity), instead of as a percentage to the difference
with respect to the commitment level, as it was the case in Section 3.7, for the MPC
contract. In the execution step, capacity requests at p1 are enforced (V1 = [Me], long-
spaced lined area) while capacity requests at p2 range in the interval V2 = [Me,∞)
(short-spaced lined area). This decision is handled by variables vt,s

i,l .

The mathematical model is presented as follows.
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Objective Function

min ∑
t∈T

∑
s∈St

pt,s

[
∑
e∈E

ct,s
e + ∑

k∈K
∑
i∈Ik

Ui,k qt,s
i,k

]
(5.11)

Constraints

∑
i∈Ik

qt,s
i,k = Dt,s

k ∀ k ∈ K, t ∈ T, s ∈ St (5.12)

∑
k∈Ki

qt,s
i,k ≤∑

l∈L
Ql vt,s

i,l ∀ i ∈ I, t ∈ T, s ∈ St (5.13)

qt,s
i,k ≤ Dt,s

k ∑
l∈L

vt,s
i,l ∀ i ∈ Ik, k ∈ K, t ∈ T, s ∈ St (5.14)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
l∈L

vt,s
i,l ≤

He−1

∑
n=0

α
t−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T, s ∈ St (5.15)

Λ
t,s
e ≥ ∑

i∈Ie
∑
l∈L

Ql vt,s
i,l −Mt

e

He−1

∑
n=0

α
t−n
e ∀ e ∈ E, t ∈ T, s ∈ St (5.22)

He−1

∑
n=0

α
t−n
e ≤ 1 ∀ e ∈ E, t ∈ T (5.17)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ct,s
e ≥∑

l∈L
∑
i∈Ie

Fi,l vt,s
i,l +Λ

t,s
e Pe ∀ e ∈ E, t ∈ T, s ∈ St (5.23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qt,s
i,k ≥ 0 ∀ k ∈ K, i ∈ I, t ∈ T, s ∈ St (5.19)

vt,s
i,l ∈ {0,1} ∀ i ∈ I, l ∈ L, t ∈ T, s ∈ St (5.20)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (5.21)

Λ
t,s
e ≥ 0 ∀ e ∈ E, t ∈ T, s ∈ St (5.24)

The mathematical formulation above differs from the previous model by including
an auxiliary variable Λ

t,s
e , that computes the capacity used above the commitment

level in Eq. (5.22). It is declared distinctly per carrier e, period t and scenario s.
The non-negativity of variable Λ

t,s
e is also enforced by Eq. (5.24), which implies

that the commitment Mt
e is always satisfied. In addition, the auxiliary cost function

in Eq. (5.23) regarding the total costs due to carrier e, adds the penalty rate to every
additional unit of capacity.

The model here described is clearly a generalized model which can be easily con-
verted to the particular case of non-penalized contracts (Pe = 0). Furthermore, re-
moving constraints in Eq. (5.15) allows to request off-contract capacity with any
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carrier. This capacity is penalized and charged at higher than contract prices.

Note also that the penalty Pe is assumed to be established individually per carrier
and applied without distinction of the services required. The penalty could be re-
lated to each particular service i according to their individual costs. For so doing,
the minimum commitments should be stated per service (Mt

i : ∀ i ∈ Ie, t ∈ T ) as
well as the parameter (Pi : ∀ i ∈ I). Finally, the variable Λ

t,s
e can be modified to

Λ
t,s
i to account for the extra capacity utilized for service i period t and scenario s.

Constraints (5.22), (5.23) and (5.24) are replaced by constraints (5.25), (5.26) and
(5.27):

Λ
t,s
i ≥∑

l∈L
Ql vt,s

i,l −Mt
i

He−1

∑
n=0

α
t−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T, s ∈ St (5.25)

ct,s
e ≥∑

l∈L
∑
i∈Ie

Fi,l vt,s
i,l + ∑

i∈Ie

Λ
t,s
i Pi ∀ e ∈ E, t ∈ T, s ∈ St (5.26)

Λ
t,s
i ≥ 0 ∀ i ∈ I, t ∈ T, s ∈ St (5.27)

A similar conversion could be applied for the deterministic models in Section 3.7
and 3.8. Note that when the capacity commitment is stated per service Mi, it is
possible to translate it in monetary terms according to the MCC level l (i.e., Fi,l).
The specification of the commitment per service restricts the alternatives for taking
decisions at the operational level given that some utilization of capacity is enforced
for each service. The next family of stochastic models handles the possibility to
maintain the shipper’s flexibility to decide where to allocate the committed capacity,
while carriers set higher-prices above the MCC level per service.

5.6 Stochastic Models with Capacity Request under
Demand Uncertainty

In the following sections, we consider the case when contracted carriers ask shippers
to request capacity with anticipation in order to grant lower rates. The shipper
must then reserve the required services in the presence of uncertainty about the
demand, knowing that the minimum capacity commitment (MCC) must be satisfied.
Otherwise, late requests are also accepted at a higher off-contract rates with any
candidate carrier.
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A distinction is made between first-stage and second-stage decision variables. In
general, for this class of problems the first-stage comprises decisions on contract
openings and/or reservation of T&D services which take place before the demand is
observed. Second-stage decisions are based on the outcome of the demand, and con-
sists in requesting additional capacity upon necessity in order to fulfil completely
customer orders, and allocating the demand to distribution facilities. In that way,
the definite distribution plan for scenario s ∈ St is determined. Note that the dis-
tribution plan is partially sketched in the first-stage and then it is completed in the
second-stage. The sequence of decision-making is illustrated in Figure 5.7 for a
two-period planning horizon and further described below.

Feuille1

Page 1

Decision-Making t = 0 t = 1 t = 2

First Stage

 - Selection of new contracts:  - Selection of new contracts:

 - Request for T&D services  - Request for T&D services

Second Stage
- Demand allocation :

Demand Realizations

Starting from period 1 with
carrier e →

Starting from period 2 with
carrier e →

Specify service i at level l for
period 1 →

Specify service i at level l for
period 2 →

- Request for additional T&D
services:   

- Request for additional T&D
services:   

Specify service i at level l for
period 1, given scenario
realized s1 →

Specify service i at level l for
period 1, given scenario
realized s2 →

- Demand allocation 

Last-mile delivery plan in
period 1 for demand
scenario s1 →

Last-mile delivery plan in
period 2 for demand
scenario s2 →

Figure 5.7: Multi-stage stochastic decision-making under MCC contracts with
capacity reservation

5.6.1 First stage

Besides formalizing new business relationships which grant access to T&D services
in the carrier’s network, the shipper must reserve capacity ahead in time with con-
tracted carriers, before the demand is known. Once a contract becomes effective in
time t it is allowed to request services in advance from that same period. Therefore,
the possibility to reserve is attached to a formal agreement in force. Under the de-
scribed situation, first stage decisions are represented with variables α t

e for contract
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openings and vt
i,l for capacity reservation, specified per service (i.e., shipping lane

cross-docking point) and level. In accordance to contract stipulations, the total ca-
pacity used must reach at least the corresponding commitment level (M). However,
the reserved capacity must be paid at pre-agreed contracts rates Fi,l .

5.6.2 Second stage

Second-stage decisions are represented with variables wt,s
i,l for the additional capac-

ity and qt,s
i,l for the allocation of demand. Both variables characterize recourse ac-

tions linked to a determined scenario. The recourse function defines the additional
expected costs taking into account the distribution of the demand. After the demand
is realized, it is possible to decide whether or not to request additional capacity from
the list of candidate carriers E in order to satisfy transportation requirements. Late
requests are priced differently (presumably following spot market rates) and can be
estimated by some penalty rate P which defines off-contract costs for each service
and capacity level F̄i,l = Fi,l(1+P), where P can be seen as an adjustment factor
associated with the proportional difference with respect to spot market costs. The
penalty rate can be differentiated per carrier Pe. The factor P has a relevant effect
on the shipper’s decisions about how much to reserve in the first-stage. Assuming
for instance that P = 1, the best decision is to wait until the demand is realized
and to ask for the capacity that is needed. In that sense, the contract relationship is
considered to have penalty P > 0. On the contrary, a sufficiently large value of P en-
courages the shipper to secure enough capacity in advance to reduce the likelihood
of paying at expensive rates.

Figure 5.8 depicts an example of a procurement planning solution for an MCC con-
tract with capacity reservation. The reservation level R is placed above the minimum
commitment initially established (Me), and can vary according to demand expecta-
tions. Capacity up to R is priced at contract costs, and above at off-contract costs.

The developed models hereafter differ in terms of two MCC contracts attributes.
More exactly, the contract duration (H) and minimum commitment level (M). In
Table 5.3 common notation is introduced for decision variables presented for this
family of stochastic models.
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Figure 5.8: The MCC contract with capacity reservation

Decision variables

Single Period Model
Symbol Description
αe 1 if a contract with carrier e takes effect, 0 otherwise. (Stage 1)
vi,l Capacity purchased under contract related to facility i at level l (Stage 1)
ws

i,l Capacity purchased off-contract related to facility i at level l and scenario s (Stage 2)
qs

i,k Demand from customer area k allocated to facility i in scenario s (in transportation units) (Stage 2)
cs

e Total distribution costs charged by carrier e in scenario s

Multi Period Models
α t

e 1 if a contract with carrier e takes effect at period t, 0 otherwise. (Stage 1)
vt

i,l Capacity purchased under contract related to facility i at level l at period t (Stage 1)
wt,s

i,l Capacity purchased off-contract related to facility i at level l and scenario s at period t(Stage 2)
qt,s

i,k Demand from customer area k allocated to facility i in scenario s at period t and(in transportation units) (Stage 2)
ct,s

e Total distribution costs charged by carrier e in scenario s at period t

Table 5.3: Decision variables for models in Section 5.6

5.6.3 Single-period Distribution Network Problem with Capacity
Reservation: MCC(H = 1,P > 0,M = 0,R)

Consider a contract mechanism of the form MCC(H = 1,P > 0,M = 0,R). The
contractual agreement is established for a single period H = 1, in which the capacity
commitment (M) is not stipulated. However, the carrier requires to be notified the
capacity to use before period t, so as to reserve resources. The reservation level is
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modelled as a decision to make in the formulation handled by variables vi,l upon
which the R level depends, then R(vi,l).

Figure 5.9 depicts the configuration of an MCC contracts with reservation requi-
sites. The single-period agreement, does not stipulate a condition on the mini-
mum capacity utilization (m1 = 0), and the maximum capacity available is equal
to the reservation level (m2 = R(vi,l)), which grants contract prices (p1 = Fi,l). Ad-
ditional capacity is always possible in unlimited quantities at higher off-contract
costs (p2 = F̄i,l) In the execution step, it is decided the capacity to take at p1 in in-
terval V1 = [0,R(vi,l)], and at p2 in the interval V2 beyond the reservation level. This
execution range is handled by variables ws

i,l in the model.
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Figure 5.9: Configuration of an MCC contract with capacity reservation

By relaxing completely the minimum commitment (Me = 0), providing in that way
greater flexibility to the shipper, reduces the DNPMC formulation to a single-period
planning problem. This follows assumptions about the acquired capacity not being
available for consecutive periods and the demand being always satisfied. There-
fore, the mathematical formulation for the planning horizon T can be separable in
multiple two-stage stochastic problems, one for every t ∈ T . Moreover, the use of
contract variables (α t

e) becomes irrelevant since they do not incur any costs. Ba-
sically, a relationship with a carrier is activated whenever the shipper decides on
using its resources either in the first or second stage. In this setting, the applica-
tion of lower ’contract’ rates is more related to the act of reservation rather than the
formalization of an MCC contract.

The two-stage stochastic problem is formulated in the following mathematical form.
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Objective Function:

min ∑
s∈S

ps

[
∑
e∈E

cs
e + ∑

k∈K
∑
i∈Ik

Ui,k qs
i,k

]
(5.1)

Constraints

∑
i∈Ik

qs
i,k = Ds

k ∀ k ∈ K, s ∈ S (5.2)

qs
i,k ≤ Ds

k

(
∑

l∈L1

vi,l + ∑
l∈L2

ws
i,l

)
∀ i ∈ I, k ∈ K, s ∈ S (5.28)

∑
k∈Ki

qs
i,k ≤ ∑

l∈L1

Ql vi,l + ∑
l∈L2

Ql ws
i,l ∀ i ∈ I, s ∈ S (5.29)

∑
l∈L1

vi,l ≤ 1 ∀ i ∈ I (5.30)

∑
l∈L2

ws
i,l ≤ 1 ∀ i ∈ I, s ∈ S (5.31)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cs

e = ∑
l∈L1

∑
i∈Ie

Fi,l vi,l + ∑
l∈L2

∑
i∈Ie

F̄i,l ws
i,l ∀ e ∈ E, s ∈ S (5.32)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi,l ∈ {0,1} ∀ i ∈ I, l ∈ L1 (5.33)
ws

i,l ∈ {0,1} ∀ i ∈ I, l ∈ L2, s ∈ S (5.34)

qs
i,k ≥ 0 ∀ k ∈ K, i ∈ I, s ∈ S (5.8)

The model formulation suffers several modifications with respect to the structure
shown in models in Sections 5.5.3-5.5.5. The objective function (5.1) is similar
with a global purpose of minimizing total expected distribution costs. However, the
total costs per carrier (cs

e) follow the auxiliary costs function in Eq. (5.32) which
comprises two terms for capacity requests in the first and second stage, respectively.
The recourse function now takes into account additional capacity (ws

i,l) linked to
scenario s.

The first set of constraints (before the first dotted line) are related to network design
decisions. The first three assure demand satisfaction (Eq.(5.2)), limit the outflow/in-
flow from facilities towards customer areas (Eq.(5.28)) and limit the total outflow
from each cross-docking facility (Eq. (5.29)) to the total capacity entering facility i
in both stages. Note that the sum between parenthesis in Eq.(5.28) can take either
value zero, one, or two. In the latter case, the outflow is not completely restricted by
the value of the demand, however by constraints (Eq.(5.2)) this is implied. Nonethe-
less, constraints in Eq. (5.28) aid to reinforce the linear relaxation of the problem.
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In this model capacity utilization in the first stage (reserved before demand realiza-
tion) is not restricted upon a valid contract. Naturally, at most one level per service
i ∈ I can be selected (Eq. (5.30)), also for capacity requests in the second stage (Eq.
(5.31)). As mentioned constraint in Eq. (5.32) simply helps to differentiate total
costs per carrier and per scenario, while holding the same objective function form.
The last set of constraints in Eqs. (5.33), (5.34) and (5.8) specify the range nature
of variables.

5.6.4 Single-period Distribution Network Problem with Capacity
Reservation: MCC(H = 1,P > 0,M = Me,R)

In this version of the stochastic DNPMC, a condition is imposed on the minimum
capacity level requested by the shipper. The MCC contract with capacity reservation
takes the form (T = 1,P > 0,M = Me,R). The contract remains valid for a single-
period. Besides to early capacity reservation, the shipper must comply with a min-
imum resource utilization level (Me). Then, the reserved capacity must be at least
the Me level agreed upon so as to benefit from contract rates Fi,l . Alternatively, the
shipper can always purchase capacity at off-contract costs (F̄i,l). The binary variable
regarding contract opening is included to differentiate contract carriers from which
capacity reservation is allowed.
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Figure 5.10: Configuration of an MCC contract with capacity reservation and mini-
mum commitment

Figure 5.10 illustrates the configuration of the MCC contract type. In the first step,
the contract parameter Me defines the minimum capacity utilization (m1 = Me) for
the shipper. The maximum capacity available at contract price (p1 = Fi,l) depends
upon a given reservation, which is obtained from a solution for variables vi,l , (m2 =
R(vi,l)). Service costs outside reservation (p2) are modelled with input parameters
F̄i,l . Note that if no contract is taking place at time t with carrier e, R = 0 and any
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service requests is charged at p2. For the second step, the execution of capacity
requests at p1 range in the interval V1 = [Me,R(vi,l)]. On the other end, capacity
requests at p2 are considered unlimited beyond level R(vi,l), which is obtained from
the solution of variables ws

i,l .

In sum, for a single period the decision making follows. In the first-stage decisions
are made about selecting MCC contracts with a subset of potential carriers and
reserving therein the capacity level to use at determined shipping lanes/facilities. In
the second stage, recourse decisions are taken about extra capacity needed from any
carrier (with or without contract) and demand allocation. The MILP model takes
the form:

min ∑
s∈S

ps

[
∑
e∈E

cs
e + ∑

k∈K
∑
i∈Ik

Ui,k qs
i,k

]
(5.1)

Constraints

∑
i∈Ik

qs
i,k = Ds

k ∀ k ∈ K, s ∈ S (5.2)

qs
i,k ≤ Ds

k

(
∑

l∈L1

vi,l + ∑
l∈L2

ws
i,l

)
∀ i ∈ I, k ∈ K, s ∈ S (5.27)

∑
k∈Ki

qs
i,k ≤ ∑

l∈L1

Ql vi,l + ∑
l∈L2

Ql ws
i,l ∀ i ∈ I, s ∈ S (5.28)

∑
l∈L2

ws
i,l ≤ 1 ∀ i ∈ I, s ∈ S (5.31)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
i∈Ie

∑
l∈L1

Ql vi,l ≥Me αe ∀ e ∈ E (5.35)

∑
l∈L1

vi,l ≤ αe ∀ i ∈ Ie, e ∈ E (5.36)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cs

e = ∑
l∈L1

∑
i∈Ie

Fi,l vi,l + ∑
l∈L2

∑
i∈Ie

F̄i,l ws
i,l ∀ e ∈ E, s ∈ S (5.32)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi,l ∈ {0,1} ∀ i ∈ I, l ∈ L1 (5.33)
ws

i,l ∈ {0,1} ∀ i ∈ I, l ∈ L2, s ∈ S (5.34)

qs
i,k ≥ 0 ∀ k ∈ K, i ∈ I, s ∈ S (5.8)

αe ∈ {0,1} ∀ e ∈ E (5.10)

The mathematical model builds upon the previous formulation in Section 5.6.3. It
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includes decision variables αe (Eq. (5.10)) and constraints (Eq. 5.35) enforcing the
minimum capacity level (Me). The right of reservation is now exclusive upon con-
tract validation, by constrains (Eq. (5.36)). As a particular case, if the commitment
level is set to zero (Me = 0 : ∀ e ∈ E) the model can adopt the form of the previous
one in Section 5.6.3. From this observation, it is clear that the optimal value of
function (Eq. (5.1)) is as high in this model as in the model of Section 5.6.3.

5.6.5 Multi-period Distribution Network Problem with Capacity
Reservation: MCC(H > 1,P > 0,M = Me,R)

In this section, the multi-period stochastic DNPMC integrates contracts of the form
MCC (H > 1,P > 0,M = Me,R). The contracts lasts for several consecutive periods
of the planning horizon T . While the contract is in effect with carrier e, the shipper
should submit early requests of transportation and distribution services, equivalent
to at least the predetermined capacity Mt

e. In that way, the shipper secures service
costs and avoid the risks of overpriced services. On the other hand, the carrier se-
cures resource utilization for several periods. However, in a fluctuating and dynamic
market environment, the length of contracts may restrict the flexibility of the ship-
per in adjusting transportation capacity required to the expected needs, which may
lead to overpay for the capacity available (Mt

e).

Considering stochastic demand, the multi-period stochastic DNPMC is described
next. The formulation maintains the same structure as the single-period model in
Section 5.6.4. It adds the time dimension to account for mid-term duration of con-
tracts for several planning periods (He) and variability of the random distribution of
the demand. The multi-period model includes constraints in Eq. (5.17) to represent
the validity of a contract in period t with expression (∑He−1

n=0 α t−n
e ). Thereby, adding

it to constraints in Eq.(5.41) to comply with minimum capacity utilization and to
Eq. (5.42) to allow for reservation in the first-stage.

The formulation presented here above generalizes previous models for DNPMC
with MCC contracts plus capacity reservation. It takes into account the possibility
to separate decisions in multiple periods of the planning horizon in a multi-stage
framework.
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Objective Function:

min ∑
t∈T

∑
s∈St

pt,s

[
∑
e∈E

ct,s
e + ∑

k∈K
∑
i∈Ik

Ui,k qt,s
i,k

]
(5.11)

Constraints

∑
i∈Ik

qt,s
i,k = Ds

k ∀ k ∈ K, t ∈ T, s ∈ St (5.12)

qt,s
i,k ≤ Dt,s

k

(
∑

l∈L1

vt
i,l + ∑

l∈L2

wt,s
i,l

)
∀ i ∈ I, k ∈ K, t ∈ T, s ∈ St (5.38)

∑
k∈Ki

qt,s
i,k ≤ ∑

l∈L1

Ql vi,l + ∑
l∈L2

Ql wt,s
i,l ∀ i ∈ I, t ∈ T, s ∈ St (5.39)

∑
l∈L2

wt,s
i,l ≤ 1 ∀ i ∈ I, t ∈ T, s ∈ St (5.40)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∑
i∈Ie

∑
l∈L1

Ql vt
i,l ≥Mt

e

He−1

∑
n=0

α
t−n
e ∀ e ∈ E, t ∈ T (5.41)

∑
l∈L1

vt
i,l ≤

He−1

∑
n=0

α
t−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T (5.42)

He−1

∑
n=0

α
t−n
e ≤ 1 ∀ e ∈ E, t ∈ T (5.17)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ct,s

e = ∑
l∈L1

∑
i∈Ie

Fi,l vt
i,l + ∑

l∈L2

∑
i∈Ie

F̄i,l wt,s
i,l ∀ e ∈ E, t ∈ T, s ∈ St (5.42)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vt

i,l ∈ {0,1} ∀ i ∈ I, l ∈ L1, t ∈ T (5.43)

wt,s
i,l ∈ {0,1} ∀ i ∈ I, l ∈ L2, t ∈ T, s ∈ St (5.44)

qt,s
i,k ≥ 0 ∀ k ∈ K, i ∈ I, t ∈ T, s ∈ St (5.19)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (5.21)

5.7 Conclusions

In this chapter, several variants of the stochastic DNPMC are introduced and their
respective mixed-linear programming formulations described. The mathematical
formulations include decisions made in the first-stage under uncertainty and in
the second-stage. The models build upon simpler versions characterized by less-
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stringent conditions on resource/capacity utilization. The models presented exhibit
a common structure that is extended to more general versions, which integrate more
stringent conditions of the MCC agreement. The stochastic formulation of the de-
mand led to make further assumptions about the appropriate timing of decisions
made in the presence of random events and the way recourse actions are deployed
to satisfy relevant features of the problem.

In the next chapter, we focus on the algorithmic development and solution method-
ologies for one of the most complex and interesting models, namely, the model
presented in Section 5.6.5, attempting to find efficiently close-to-optimal solutions,
particularly when dealing with large instances of the problem.
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Chapter 6

Multi-Period Distribution
Network Problem with Stochastic
Demand and Minimum Capacity
Commitment (MCC) Contracts

6.1 Introduction

In this chapter we focus on the multi-period stochastic problem presented in Sec-
tion 5.6.5 of chapter 5. The context of the problem is similar to the one presented in
chapter 4. The decision-maker is represented by an intermediary logistics company
- also known as the shipper - providing warehousing and home delivery services to
e-commerce sellers. However, transportation services such as truckload (FTL) and
last-mile parcel delivery are outsourced to specialized carriers and postal compa-
nies. The outbound distribution layout is separated in two legs as depicted in Figure
6.1. In the first leg, FTL carriers transport parcels to intermediate cross-docking
facilities while in the second leg postal companies deliver parcels to customers.
Cross-docking facilities are operated independently by carriers and multiple geo-
graphical areas should be served at every time period.
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Figure 6.1: Distribution network layout

The planning horizon is divided in a discrete number of periods where the demand
of products is dynamic and subject to uncertainty. Therefore, it fluctuates from
one period to another following discrete probability distributions. Business agree-
ments between the shipper and carriers are modelled by minimum capacity commit-
ment (MCC) contracts which establish conditions regarding contract duration, min-
imum service levels and additional costs. The proposed MCC contract is intended
to favour both parties by mitigating the risk of capacity shortage and high-prices
for the shipper and underutilized resources for the carriers, due to random events.
No formal agreements are subscribed with postal companies assuming unlimited
available capacity at fixed rates.

The shipper’s objective is to minimize the expected value of its transportation and
distribution costs in the medium to long term, taking into account uncertainty of
the demand and contracting options with candidate carriers. The stochastic problem
is explained in detail in Section 6.2. The cost-minimization problem is modelled
in the form of a stochastic MILP presented in Section 6.3. Algorithmic methods
developed are described in Section 6.4. The experimental design and computational
tests are presented in sections 6.5 and 6.6, respectively. Finally, conclusions are laid
out in Section 6.8.
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6.2 Stochastic Problem

The optimization problem of consideration in this chapter is denominated the multi-
period distribution network design problem with stochastic demand and minimum
capacity commitment contracts, mDNP MCC, or in simple form it is referred as
mDNP. The problem is formulated as a multi-stage stochastic MILP. At every pe-
riod the decision-making sequence is followed in two stages. A more detailed de-
scription before and after the occurrence of random events is described hereunder.

6.2.1 First Stage

In the first stage the shipper considers decisions at the tactical level.

Transportation capacity required to haul parcels to regional cross-docking points is
contracted to external carriers via minimum capacity commitment contracts, which
could be signed at any planning period and remain valid up to the expiration date.
The shipper needs to decide whether or not to open new contracts so as to expand
its current distribution network.

As described in Section 5.2, MCC contracts declare conditions that vary in terms of
time, costs and service requirements. The contract applied in this context is MCC
(H > 1, P > 0, M = Mt

e,R) which stands for contracts lasting for several planning
periods, penalty costs for additional capacity above the reservation level, and pe-
riodic commitment over the complete carrier’s network. The term off-contract is
used here to refer to capacity purchased with penalty rates, presumably in associa-
tion with spot-market prices. As part of the risk-sharing conditions, transportation
capacity has to be reserved with anticipation, that means in advance of demand re-
alization and specified per shipping lane in the carrier’s network. In that way, the
shipper can profit from lower contractual costs. These conditions apply from the
period the contract begins.

Alongside opening new contracts, the shipper needs to determine the capacity level
(e.g., fleet of trucks, load space) to reserve in a particular lane, unknowing the result-
ing demand. Notice that the commitment Mt

e could be satisfied by capacity requests
in both stages. However, under the assumption of higher off-contract costs in the
second-stage, it results more economically beneficial to satisfy the MCC in the first
stage, at contractual costs. Therefore, the minimum capacity commitment deter-
mines a minimum on the reservation level (i.e, Mt

e ≤ Rt
e). The reservation plan only

has effect for the immediate planning period independent of the realized demand
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scenario, meaning that excess of reserved capacity can not be utilized later and
shortage of capacity has to be handled from the alternative sourcing option. Hence,
once the demand has been completely fulfilled for one period, a new reservation
plan is made for the subsequent one.

6.2.2 Second Stage

In the second stage decisions are taken at the operational level.

At this stage the demand of the current period is revealed and known with certainty,
we assume that it corresponds to one of the possible scenarios from the discrete
probabilistic distribution. The shipper takes recourse actions based on the realiza-
tion of random events. In response to the revealed demand, two main decisions are
taken.

On one side, the additional capacity to request (from any candidate carrier) in case
the reserved capacity with contracted carriers is insufficient to fulfil customers’ or-
ders. Therefore, the capacity available in shipping lanes can be expanded. The
additional capacity is unlimited and we can assume that the maximum purchasable
capacity (max. Ql : l ∈ L2) respond to any scenario of demand. On the other side, the
definite distribution plan is completed after determining the way parcels are carried
from the shipper’s warehouses through cross-docking facilities, and finally to cus-
tomer areas. The flow of parcels is limited by the transportation capacity acquired
in first-leg lanes. In the last leg, parcels are delivered by postal companies.

6.3 Mathematical Modelling for the Multi-stage Stochastic
mDNP MCC Model

The multi-stage stochastic MILP model presented in Section 5.6.5 is repeated here,
for the sake of completeness, with additional comments regarding the interpretation
of feasible solutions. The mathematical notation is summarized in Table 6.1.
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Datasets and indices
Set Description index
T Planning horizon t,n
E Candidate carriers e
I Cross-docking facilities i
K Customer areas k
Ie Cross-docking facilities operated by carrier e i
Ik Cross-docking facilities that can serve customer area k i
Ki Customer areas that can be served from facility i k
Ek Carriers that can serve customer area k e
L1 Capacity levels using contracts with carriers in stage 1 l
L2 Capacity levels using contracts with carriers in stage 2 l
St Demand scenarios in period t s

Input parameters
Symbol Description
N Number of periods in the planning horizon (N = |T |)
He Duration of contracts with carrier e (number of periods)
Mt

e Capacity commitment with carrier e in period t (in load/cargo units)
Ql Service capacity at level l (in load/cargo units)
Fi,l Service costs for shipping to facility i at capacity level l

at reservation costs
F̄i,l Service costs for shipping to facility i at capacity level l

with penalty costs
Dt,s

k Demand of customer area k in period t and scenario s (in cargo units)
Ui,k Parcel delivery costs (per unit of load) from facility i to area k
pt,s Probability of scenario s in period t

First stage decision variables
Symbol Description
α t

e 1 if a contract with carrier e starts at period t, 0 otherwise.
vt

i,l 1 if shipping lane to facility i is reserved at capacity level l
(from a contracted carrier) in period t, 0 otherwise.

Second stage decision variables
Symbol Description
wt,s

i,l 1 if shipping lane to facility i is used without reservation at
capacity level l in period t in scenario s, 0 otherwise.

qt,s
i,k Demand of customer area k distributed from facility i in period t

and scenario s (in load/cargo units)
ct,s

e Total payment due to carrier e at period t and scenario s

Table 6.1: Mathematical notation for the mDNP MCC model
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Objective Function:

min ∑
t∈T

∑
s∈St

pt,s

[
∑
e∈E

ct,s
e + ∑

k∈K
∑
i∈Ik

Ui,kqt,s
i,k

]
(6.1)

Constraints

∑
i∈Ik

qt,s
i,k = Ds

k ∀ k ∈ K, t ∈ T, s ∈ St (6.2)

qt,s
i,k ≤ Dt,s

k

(
∑

l∈L1

vi,l + ∑
l∈L2

wt,s
i,l

)
∀ i ∈ I, k ∈ K, t ∈ T, s ∈ St (6.3)

∑
k∈Ki

qt,s
i,k ≤ ∑

l∈L1

Ql vi,l + ∑
l∈L2

Ql wt,s
i,l ∀ i ∈ I, t ∈ T, s ∈ St (6.4)

∑
i∈Ie

∑
l∈L1

Ql vt
i,l ≥Mt

e

He−1

∑
n=0

α
t−n
e ∀ e ∈ E, t ∈ T (6.5)

∑
l∈L1

vt
i,l ≤

He−1

∑
n=0

α
t−n
e ∀ i ∈ Ie, e ∈ E, t ∈ T (6.6)

He−1

∑
n=0

α
t−n
e ≤ 1 ∀ e ∈ E, t ∈ T (6.7)

∑
l∈L2

wt,s
i,l ≤ 1 ∀ i ∈ I, t ∈ T, s ∈ St (6.8)

ct,s
e = ∑

l∈L1

∑
i∈Ie

Fi,l vt
i,l + ∑

l∈L2

∑
i∈Ie

F̄i,l wt,s
i,l ∀ e ∈ E, t ∈ T, s ∈ St (6.9)

α
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (6.10)

vt
i,l ∈ {0,1} ∀ i ∈ I, l ∈ L1, t ∈ T (6.11)

wt,s
i,l ∈ {0,1} ∀ i ∈ I, l ∈ L2, t ∈ T, s ∈ St (6.12)

qt,s
i,k ≥ 0 ∀ k ∈ K, i ∈ I, t ∈ T, s ∈ St (6.13)

The objective function (Eq. (6.1)) in the MILP minimizes the expected total cost
of transportation services for distribution and delivery of parcels, during the whole
planning horizon. The two components of the cost function account for expectation
of total payment to carriers in separation to parcel delivery charges. The stochastic
formulation takes into account probabilities of time-dependent scenarios of demand.

The set of constraints in Eq. (6.2) guarantee complete order fulfilment for all cus-
tomer areas in every period, independent of the demand scenario. Constraints in
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Eq. (6.3) enable delivery only from facilities used for cross-docking. Constraints in
Eq. (6.4) ensure that the total transportation capacity entering a cross-docking facil-
ity covers the orders delivered from that facility. Constraints in Eq. (6.5) force the
minimum capacity commitment with a contracted carrier. Constraints in Eq. (6.6)
express that capacity reservation in the first stage is allowed if there is a valid con-
tract, in which case at most one capacity level is selected per shipping lane. Con-
straints in Eq. (6.7) make sure that at most one contract is ongoing with any carrier
at any time. Constraints in Eq. (6.8) specify at most one capacity level per lane in
the second stage. Constraints in Eq. (6.9) determine the payment due to a carrier
for services provided on and off contracts. Finally, constraints in Eqs. (6.10)-(6.13)
specify the range and nature of variables.

A feasible solution ŝ = (α̂, v̂, q̂, ŵ, ĉ) of the problem can be broken down in two
managerial perspectives. At the broader tactical perspective, a feasible solution
for decision variables α t

e determines the contracts schedule with selected carriers
along T . A candidate solution (α̂ = α̂ t

e : e ∈ E, t ∈ T ), is therefore denominated
the contract plan. Likewise, a solution (v̂ = v̂t

i,l : i ∈ I, l ∈ L1, t ∈ T ) determines the
capacity reservation plan with each carrier under contract.

Any contract plan (α̂) that conforms with constraints (6.7), and which satisfies con-
ditions about the duration of contracts (He), provides a feasible solution for the
tactical problem. An open contract injects directly some level of capacity available
with carriers, in their respective networks. Clearly, a feasible solution α̂ has an ef-
fect on decisions made at a more operational level. In addition, a feasible solution
v̂, defines the capacity reserved in certain lanes with contracted carriers Et ⊆ E,
where Et is the subset of carriers with ongoing contracts in period t. The feasibility
of a capacity reservation plan is linked with constraints (6.5) and (6.6) that force
capacity reservation to reach at least the commitment level Me with carriers in Et .

After demand realization, decisions at the operational level are recourse actions,
which are dependent on the scenario of demand. A feasible solution for the capacity
requested off-contract (ŵ = ŵt,s

i,l : i ∈ I, l ∈ L2, t ∈ T,s ∈ St) as a consequence of
shortage, is decided upon scenario s ∈ St and reservation plan v̂. Similarly, the last-
mile distribution plan to customer areas (qt,s

i,k) is configured according to the capacity
level available in the set of lanes I (given by v̂ and ŵ) at period t and under scenario
s.
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6.4 Algorithmic Development

From a computational point of view, an MIP solver can make use of built-in general
purpose algorithms to obtain an optimal solution of the mathematical model for any
instance of the problem. However as the size of the instances grows, this results in
prohibitively long computing times, as we will see in the sections reporting on nu-
merical experiments. Therefore, it becomes useful to develop tailor-made heuristic
methods adapted for the mDNP problem, that lead to solve large instances in rea-
sonable time. In this section, the algorithmic methods implemented to solve the
mDNP problem are described. The general idea behind the proposed heuristics is
to reduce the difficulty of the complete model by relaxing some of its constraints or
assumptions. Two main strategies based on well-known methodologies are applied
in this context.

A first approach is to apply a rolling horizon procedure (RHP). Rolling horizon
decision-making is a common managerial practice for making decisions in a dy-
namic stochastic environment [Sethi & Sorger, 1991]. It is commonly applied
to multi-period planning problems in practical contexts. It consists in reducing
discrete-time problems to smaller sub-problems with shorter time horizons. RHP
procedures are used for real-time applications where data is updated in continuous
basis for future parameters, but can also be viewed as providing a meta-heuristic
framework for the solution of multi-period problems. This is the point of view that
we shall adopt.

A second approach is based on relax-and-repair heuristics. These kind of heuristics
have been used widely in MILP models with applications in different areas like
production planning, lot-sizing and scheduling problems. The general purpose is to
decompose the monolithic model into easier to solve sub-models in order to obtain
good feasible solutions [Nabil & van den Heuvel, 2019] in a decreased amount
of time. The effectiveness highly depends on the way the problem is decomposed.
Three heuristics methods will be developed using different relaxations of the model.

Let now introduce mathematical notation for the methods described in this section.
In order to represent the decomposition structure of the model, an auxiliary decision
variable β t

e ∈ {0,1} is included in the model described in Section 6.3, in order to
indicate the status of contracts with a carrier e in period t (similar to the transfor-
mation performed in Section 4.5). The variable validates or not a contract according
to the following relationship :
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He−1

∑
n=0

α
t−n
e = β

t
e ∀ e ∈ E, t ∈ T (6.14)

β
t
e ∈ {0,1} ∀ e ∈ E, t ∈ T (6.15)

If the binary variable β t
e takes value 1, it means that an MCC contract with carrier e

is in effect in period t, otherwise, it takes value 0. Replacing Eq. (6.7) in the original
formulation by Eqs. (6.14, 6.15) and then replacing ∑α t−n

e by β t
e in Eqs. (6.5) and

(6.6) yields an alternative equivalent model formDNP. The proposed methods make
use of sub-models stemming from the alternative equivalent model, after relaxing or
removing some constraints and/or fixing some decision variables to a given value.
The equivalent mDNP formulation is also referred to as the complete model.

Before introducing the algorithmic methods, the distinction between sub-models is
summarized as follows:

DNP(W t)DNP(W t)DNP(W t): Distribution network problem for the planning window W starting from
period t.
Model resulting from shortening the planning horizon T to W t where t indicates the
first planning period. Depending on the size of W t , the resulting sub-model may
account for a single or multiple consecutive periods.

sDNP(t)sDNP(t)sDNP(t): Single-period distribution network problem for period t.
Model resulting from applying a relaxation on the duration of contracts, as if He = 1
instead of their real duration. It converts the mDNP into multiple single-period prob-
lems, sDNP(t) for every t ∈ T . In this sub-model, variables α t

e become unnecessary
as their value can be deduced from the value of β t

e . Therefore, equations (6.14) and
(6.10) can be removed.

mRDNPmRDNPmRDNP: Multi-period relaxed distribution network problem.
Model resulting from relaxing integrality conditions for off-contract capacity vari-
ables (Eq. (6.12)) as if wt,s

i,l were continuous instead of binary. The mRDNP model
is yet not decomposable per period.

sRDNP(t)sRDNP(t)sRDNP(t): Single-period relaxed distribution network problem for period t.
Model resulting from relaxing both contract lengths (He = 1) and off-contract ca-
pacity variables (wt,s

i,l ≤ 0). The mDNP converts into multiple single-period relaxed
problems - sRDNP(t) for every t ∈ T . Here again, constraints related to α t

e (6.14),
(6.10) are not necessary.

The following sub-models come from fixing values of the first-stage variables (β t
e,v

t
i,l):
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β̂ specifies a complete solution for the status of contracts on the planning horizon
T . More specifically β̂ t is the solution values for period t. Likewise, v̂ specifies a
feasible and complete solution for the reservation plans on T , in accordance with β̂ ,
and v̂t is concretely for period t.

sDNP(t, β̂ t)sDNP(t, β̂ t)sDNP(t, β̂ t): Single-period distribution network problem for period t given contract
plan β̂ .
Model resulting from obtaining a feasible solution β̂ for first-stage variables β t

e . The
fixation of contract variables according to β̂ converts the mDNP model into multiple
single-period problems sDNP(t, β̂ t). A solution for variables (v) in the first stage
and second stage (w,q,c) are yet to determine for each period t ∈ T .

sDNP(t,s, β̂ t , v̂t)sDNP(t,s, β̂ t , v̂t)sDNP(t,s, β̂ t , v̂t): Single-period distribution network problem for period t and sce-
nario s, given contract plan β̂ and capacity reservation plan v̂.
Model resulting from obtaining a feasible solution β̂ and v̂, for first-stage variables
β t

e and vt
i,l . The resulting sub-models are associated to a certain demand scenario

s ∈ St and period t ∈ T . Recourse variables (w,q,c) can be separately determined
for each sub-model.

6.4.1 Rolling Horizon Procedure - (RHP)

The RHP strategy consists in reducing the planning horizon T with length n to a
shorter planning window W ⊂ T of fixed size r (r < n). For every period t, the
time window W rolls over and accounts for periods in {t, t + 1, ..., t + r− 1} = W t

(indexed τ). This yields a sub-model with the shortened time horizon, aiming at
minimizing the total expected costs.

After solving the sub-problem associated with time window W t denoted as DNP(W t),
the solution associated with variables in the first stage (β̂ , α̂, v̂) and second stage
(q̂, ŵ, ĉ) for period t is put into effect, while the solution obtained for the next peri-
ods is discarded. However, the validity of contracts implied by decisions made in
periods 1, ..., t is enforced by fixing the corresponding variables to their appropriate
values. if the solution value for variable α t

e is 1, then the values for β t+1
e , ...,β t+He−1

e
are set to 1 in the subsequent sub-problems.

More specifically, the sub-problem for period t can be denoted as DNP(W t ,Eτ)
where Eτ ⊆ E is the subset of carriers with ongoing contracts in periods τ ∈W t .
Note that the sub-model DNP(W t ,Eτ) is not decomposable, since time-linking con-
straints (in Eq. (6.14)) still apply. Given an optimal solution of DNP(W t ,Eτ), we
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denote as Zt the cost incurred in period t under this optimal solution (that is, the
value of the cost function (6.1) corresponding to period t).

The parameter r enters as an input value in the algorithm to configure the length of
the planning window. This value is fixed for every sub-model DNP(W t ,Eτ). During
the algorithmic process, the time window unfolds one period at a time and the subset
Eτ is continuously updated for all τ in the time window W t . The information about
the remaining validity of an ongoing contract at time t needs to be passed for every
new DNP(W t ,Eτ). Therefore, variables α t−n

e for n∈{0, ...,He−1} are fixed to their
respective values given in preceding models. These are also required to account for
constraints in Eq.(6.15). The structure of the algorithm is described in the following
pseudocode (Algorithm 5).

Algorithm 5: Rolling Horizon Procedure

Input: r: Time window length.
Eτ : Subset of carriers with contracts initiated before period 1 and

still
ongoing at period τ , for τ = 1, . . . ,He−1.

1 t← 1, ZRHP← 0, W t ←{1, ...,r}
2 while t ≤ N do
3 for τ ∈W t , e ∈ Eτ do
4 fix variable β τ

e = 1

5 solve DNP(W t ,Eτ) to optimality
6 ZRHP← ZRHP +Zt

7 retrieve the solution values for α t
e, e ∈ E (stage 1)

8 for each e ∈ E do
9 if α t

e = 1 then
10 for s = t +1, . . . , t +He−1 {/*iterates until the expiration

period} do
11 Es← Es∪{e}

12 t← t +1

The downside of the RHP comes from disregarding information beyond the time
window (W t). This may yield sub-optimal solutions in comparison with taking into
account the complete planning horizon T . In the mDNP, this is equivalent to ignore
effects of the demand from time t + r in the sub-problem DNP(W t ,Eτ) at time t.
As an advantage, shortening the number of periods allows to reduce the input data
involved in each sub-model. Therefore, even if there are several sub-models to solve
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in sequence (as many as the number of periods n) the total computational time to
find an optimal solution is expected to be reduced overall.

In managerial terms, decisions at the tactical level about opting for new contracts
(α t

e) have mid-term effects since they have to remain open until completion. Oper-
ational decisions, such as, the reserved capacity vt

i,l and the recourse actions (wt,s
i,l ,

qt,s
i,k) are taken accordingly, but do not have mid-term effects. The solutions obtained

for periods {t + 1, ..., t + r− 1} at time t are subject to modifications as the rolling
horizon unfolds, but serve as a guide to look at potential actions into the future.
The RHP could be considered as a myopic strategy with reduced visibility of fu-
ture events and the window length r can be adapted according to the required time
to find an optimal or close-enough solution, since large values of r may require a
significant computing time.

6.4.2 Contract Length Relaxation - (CLR)

In this first relax-and-repair heuristic, MCC contracts are considered to last for a
single-period (He = 1, ∀ e ∈ E). In that way, the complete model is decomposable
per period and handled as a sequence of independent two-stage stochastic problems
(sDNP(t), ∀ t ∈ T ). The description of the algorithm is presented in pseudocode
(Algorithm 6).

In the first phase, each single-period problem sDNP(t) is solved iteratively to opti-
mality. The optimal value Z(sDNP(t)) is aggregated ∑t∈T Z(sDNP(t)) to generate
a valid lower bound LB1 for the mDNP. In each period a solution for variables β t

e is
obtained (i.e., β̂ t). The complete contract plan β̂ is still to be checked for feasibility
and adjusted in case of rupture of contracts.

In the second phase the feasibility checking procedure iterates through every period
starting from the second (in the first period is not possible to determine infeasibility
of a contract plan solution). At each period t ∈ T , the algorithm goes through every
carrier e∈E and checks if a contract has been initiated but not continued as required.
This takes place whenever an interrupted contract is detected (i.e., β̂ t

e = 0 but β̂ t−1
e =

1) . The elapsed duration h of the contract is computed to verify its feasibility (h
should be a multiple of He).

The repairing procedure consists in extending unfinished contracts for 1 period.
When the algorithm detects an unfinished contract, it is enforced to continue for
period t (set β̂ t

e = 1). After checking for all carriers e ∈ E, if any extensions were
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Algorithm 6: Contract Length Relaxation

/* Phase 1: Single-Period Problems */

1 ZCLR← 0
2 for each t ∈ T do
3 solve sDNP(t)
4 retrieve Z(sDNP(t)), β̂ t

5 ZCLR← ZCLR +Z(sDNP(t))

6 LBCLR← ZCLR

/* Phase 2: Repairing Procedure */

Input: β̂ : Relaxed contract plan for the planning horizon
7 for each t ∈ T, t 6= 1 do
8 for each e ∈ E do
9 if β̂ t

e = 0 and β̂ t−1
e = 1 then

10 compute h {/* h : number of consecutive periods with

β̂ t−h
e = . . .= β̂ t−1

e = 1}
11 if h mod He 6= 0 then
12 β̂ t

e ← 1 {/* Set values to complete contract}

13 if contract infeasibility then
14 solve sDNP(t, β̂ t)
15 update ZCLR

made, the sub-model sDNP(t, β̂ t) is solved taking into account the modified contract
plan β̂ t .

The CLR heuristic is a simpler version of the Relax-and-repair heuristic described
in Chapter 4 for the MDPC problem. While the relaxation is made in the same
terms, the repairing phase here, only chooses to complete contracts to comply with
initial conditions for He, but does not consider the option to reverse this choice.
The decision to disregard contract removals comes first from results in preliminary
tests wherein the repairing procedure yielded better costs by completing instead of
removing the unfinished contract. A second advantage is the acceleration of the re-
pairing procedure given that only one sub-problem sDNP(t, ˆβ t) is solved associated
with infeasibilities found in period t. Since the focus of the solution methodology is
in comparing algorithmic methods performance, the simple CLR heuristic appears
to provide the best cost vs. time trade-off for our purpose.
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6.4.3 Off-contract Capacity Variables (wt,s
i,l ) Relaxation - (WR)

In this section, we describe a second relax-and-repair heuristic based on a different
relaxation of the complete formulation. The set of constraints in Eq. (6.12) is re-
laxed to the continuous form of variables wt,s

i,l

wt,s
i,l ≥ 0 ∀ i ∈ I, l ∈ L2, t ∈ T, s ∈ St (6.16)

In that form, recourse variables regarding off-contract capacity wt,s
i,l are modelled as

continuous. As a consequence, the problem consists in solving sub-model mRDNP.
It remains a multi-stage stochastic problem with time-linking constraints, which is
not decomposable per period. It is clear that the optimal value for the mRDNP is
at most as high as the optimal value for the complete formulation. Hence, a lower
bound can be derived if the optimal value is obtained (LBWR). The computational
effort taken to solve the mRDNP model is expected to be reduced compared to the
complete mDNP model, while the loss in quality with respect to the optimal solution
requires to be measured.

After resolution of the mRDNP, the solution values for variables wt,s
i,l need to be

translated into integer values to conform with appropriate levels of capacity. For
that matter, a repairing procedure is implemented. The WR algorithm is described
in pseudocode (Algorithm 7).

Algorithm 7: Off-Contract Capacity Relaxation

/* Phase 1: Multi-Period Problem */

1 solve mRDNP
2 retrieve Z(mRDNP), β̂

3 LBWR← Z(mRDNP)

/* Phase 2: Repairing Procedure */

Input: β̂ Contract plan for the planning horizon
4 ZWR← 0
5 for each t ∈ T do
6 solve sDNP(t, β̂ t)

7 ZWR← ZWR +Z(sDNP(t, β̂ t))

In order to repair the infeasibility in constraints (6.12), the solution obtained for
the contract status variables (β̂ ) is retrieved from the first phase and used as in-
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put parameters for the repairing procedure. Integrality conditions (Eq. (6.12)), for
variables wt,s

i,l are reinserted.

After variables β t
e are fixed, the sub-model is now decomposable per period. The

sDNP(t, β̂ t) addresses the cost-minimization problem for the sequence of two-stage
distribution network models for every period t. Note that decision variables (v,w,q),
including first-stage variables vt

i,l , are reoptimized by solving sDNP(t, β̂ t). The
aggregation of the optimal values of sDNP(t, β̂ t) equals the total value obtained
with the WR heuristic method (ZWR).

6.4.4 Contract Length and wt,s
i,l Variables Relaxation - (CLWR)

In this section, we describe a third relax-and-repair heuristic method that mixes
both relaxations previously presented. Hence, the contract is assumed valid for a
single-period (He = 1 for every carrier), while wt,s

i,l variables are continuous. Under
these assumptions, the single period contract allows the decomposition of the com-
plete formulation per period. The single-period problems sRDNP(t) for all t ∈ T ,
are solved in sequence. The algorithmic procedure finds optimal solutions for the
sRDNP(t), thus producing tentative values for the variables β ,v,w and q.

Similar to the CLR method (Heuristic 1), the relaxed contract plan β̂ needs to be
checked to verify it conforms with the actual contracts durations He. Therefore, in
the repairing procedure contracts are forced to remain in effect until their expiration
time. In addition, variables w have to be transformed into their integer form. The
algorithm is summarized in pseudocode (Algorithm 8).

The repairing procedure uses the feasibility checking step described previously in
the CLR method (Heuristic 1). It scans through the relaxed contract plan obtained
from the first phase. At every occurrence of an inappropriately interrupted contract,
it extends its validity for the current period t and the contract status variable β t

e is
set to 1. If a contract infeasibility is detected, the sDNP(t, β̂t) is solved taking into
account the modified relaxed contract plan (β̂t) and enforcing integrality conditions
for variables wt,s

i,l . Solving to optimality the sDNP(t, β̂t) model returns integer val-
ues for the first-stage variables vt

i,l and the second-stage variables wt,s
i,l , as well as a

feasible solution for variables qt,s
i,k.

In comparison with the model described in Section 6.4.2, the first phase deals with
the sRDNP models which returns clearly a less tight lower bound (LBCLWR) than the
one obtained by solving the sDNP models (LBCLR). This comes with the benefit of
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Algorithm 8: Contract Length and Off-Contract Capacity Relaxation

/* Phase 1: Single-Period Problems */

1 ZCLWR← 0
2 for each t ∈ T do
3 solve sRDNP(t)
4 retrieve Z(sRDNP(t)), β̂ t

5 ZCLWR← ZCLWR +Z(sRDNP(t))

6 LBCLWR← ZCLWR

/* Phase 2: Repairing Procedure */

Input: β̂ : Relaxed contract plan for the planning horizon
7 for each t ∈ T, t 6= 1 do
8 for each e ∈ E do
9 if β̂ t

e = 0 and β̂ t−1
e = 1 then

10 compute h {/* h : number of consecutive periods with

β̂ t−h
e = . . .= β̂ t−1

e = 1}
11 if h mod He 6= 0 then
12 β̂ t

e ← 1 {/* Set values to complete contract}

13 if contract infeasibility then
14 solve sDNP(t, β̂ t)
15 update ZCLWR

shorter computational time, which might affect the effectiveness or applicability of
a certain heuristic. The computational experiments shed lights on this trade-off.

6.5 Experimental Design

The experimental study intends to evaluate and compare the computational perfor-
mance of several methods including standard off-the-shelf practices and tailor-made
heuristic approaches applied to the mDNP problem. Two performance criteria are
taken into account to assess the efficiency and quality of alternative methods.

From one point of view, the completion time is registered to measure the algo-
rithm’s efficiency and capacity to finish within the testing time (3 hours). At the
same time, the relative gap (with respect to the best known lower bound) is com-
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puted as an indicator of the quality of the solution provided by a certain algorithm
in the time limit. To account for data size effects in the performance metrics, com-
putational tests were performed on different instance sizes of the mDNP problem.
The classification by categories is defined in our experimental design with different
values of input parameters ( see Table 6.4 further ).

In the following, we introduce the notation and characterization of algorithmic
methods and performance metrics as presented later in the numerical results. Then,
the experimental design applied in order to generate instances of the problem is
described. Finally, results are presented in the form of performance profiles. In
real-life contexts decision makers are interested in the applicability of the meth-
ods with restricted decision-making time, for instance in a weekly or daily periodic
planning agenda. Analysis and comparison of results in performance metrics and
insights from a managerial standpoint are laid down at the end of the section.

6.5.1 Algorithms

In this section, we summarize the solution strategies tested in the performance anal-
ysis. Algorithmic methods are classified into two groups so as to better represent
computational results and to conduct further analysis separately.

The first group considers methods which have in common to apply, in some way,
general-purpose algorithms for MIP problems. In that group, a first approach con-
sists in solving the complete stochastic mDNP model by applying the B&C algo-
rithm with default settings embedded in a commercial solver in our case CPLEX
12.8.

A second approach is to use the rolling horizon procedure RHP, iteratively per
planning period using the same default B&C algorithm. Preliminary tests were
made with different time window sizes (r =1,2,...,He), showing that the computa-
tional time was significantly affected to solve the sub-model related with time t
(DNP(W t ,Eτ ), but the best-found value Zt did not improve or even resulted in an
overall worse solution ZRHP for longer time windows. This is associated with the
fact, that DNP(W t ,Eτ) models with longer time windows take more time to be
solved, therefore, their optimal value is not completely achieved within the testing
time limits, affecting the quality of the best-found solution obtained. In view of the
initial tests and for comparison analysis with algorithmic methods of different na-
ture, we select a single-period window (r = 1), which runs the fastest and appears to
provide as good quality solutions as the rest of the time windows r. From the man-
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agerial standpoint, this implies that tactical decisions are based only on the demand
information for the next selling period.

A third standard approach consists in solving the complete mDNP problem with
deterministic (expected) values of the demand. This deterministic approach solves
a simplified model with a single demand scenario in the second stage, which might
increase the computational capacity to solve large instances. In any case, it is as-
sumed that the underlying distribution of the demand is well represented by a dis-
crete probabilistic function, following the description in Section 5.3 and a finite
number of scenarios are possible. Therefore, the solution given by a deterministic
approach is assessed ex post by computing its expected cost. Both, the RHP and
deterministic approach can be considered as heuristics disregarding certain aspects
of the model and providing upper bounds to the optimal value.

Standard methods are summarized in Table 6.2.

Name Method
STO Stochastic model solved by CPLEX branch & cut by default.
RHP Rolling horizon procedure with single time window, r = 1
EVD Deterministic (expected demand) model solved by CPLEX branch & cut by default.

Table 6.2: Standard methods

The second group involves tailored heuristics based on the decomposition structure
of the mDNP problem. The group includes relax-and-repair heuristics described in
Section 6.4, namely, contract length relaxation (CLR), off-contract capacity vari-
ables relaxation (WR) and double relaxation (CLWR). These methods have in com-
mon their separation in two phases and their decomposition of the sub-problem in
the second phase. CPLEX is also used as the optimization software to deal with the
sub-problems in each heuristic algorithm.

Relax-and-repair heuristic methods are summarized in Table 6.3.

Name Method
CLR Contract length relax-and-repair heuristic
WR Integer variables (wt,s

i,l ) relax-and-repair heuristic
CLWR Contract length and Integer variables (wt,s

i,l ) relax-and-repair heuristic

Table 6.3: Relax-and-repair heuristics
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For notation we refer to set A as the group of algorithms mentioned above (i.e.,
A = STO, RHP, EVD, CLR, WR, CLWR) and to a given algorithm a ∈ A. An
alternative separation of algorithms A can be made between exact and approximate
methods. From the six algorithmic methods, only the default B&C solver (STO)
guarantees to return the optimal value of mDNP. The remaining methods find valid
and feasible solutions (hence, upper bounds on the optimal value) but are unable
to guarantee optimality. However, the feasibility checking step mentioned in some
relax-and-repair heuristics, applied to the relaxed solution may prove optimality in
case it satisfies all model constraints. On the other hand, a valid lower bound can
be retrieved either by the CPLEX’s B&C algorithm or by relax-and-repair heuristics
from their relaxation in the first-phase. The tightest (largest) lower bound is selected
as a reference to compare upper bounds given by each of the methods.

6.5.2 Performance measures

The performance metrics are described and computed in the following terms:

• Completion Time (Fa) : The computational time is limited to 3 hours for every
instance. As a result two possibilities may occur, either algorithm a manages
to finish before the time limit or not. In the first case, the complete stochastic
model (STO) method returns the optimal value while in the second case, it does
not prove optimality. Regardless of the situation, the best-solutions found in the
testing time can be compared in terms of quality. In addition, the completion rate,
defined as the percentage of instances terminated by algorithm a sheds light on
how fast an heuristic/exact method is able to find a solution.

• Relative Gap Percentage (Ga) : The gap is computed as the relative difference
between the best value found by algorithm a - (Za), and the best known lower
bound (LBbest). This difference is shown in percentage relative to best found
value. The determination of the lower bound is computed by finding the tightest
LB from either one of the methods that return a valid lower bound: LBbest =
max{LBSTO,LBCLR,LBWR,LBCLWR}.
For every instance the tightest lower bound is used in the calculations of the
relative gap for algorithm a: Ga = Za−LBbest

Za ∗ 100, where Za is the best solution
value obtained by method a.

The LB given by CLWR (LBCLWR) is not considered due to its double relaxation.
Indeed, the optimal value for the sDNP(t) in the CLR method is tighter than the one
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for the sRDNP(t) in the CLWR method. On top of that, the solution of the mRDNP
model with time-linking constraints in the WR method also offers a tighter bound
than the complete solution given by sRDNP(t) : ∀ t ∈ T . Therefore, for comparison
purposes only the CLR and WR heuristics are considered.

6.5.3 Instance Parameters

The algorithms described in Section6.5.1 were tested on a variety of random in-
stances. Instances are classified depending on the value of input parameters, more
specifically length of the planning horizon, number of candidate carriers, number of
customer areas and number of logistics services (transportation lanes/cross-docking
facilities) per carrier ( |T |, |E|, |K|, |Ie| ).

The classification with respective parameter values is detailed in Table 6.4.

Category |T | |E| |K| |Ie|
Small 8 6 50 3
Medium 10 8 100 3
Large 10 12 200 4

Table 6.4: Classification of datasets per size

Input values regarding the demand of customer areas in their respective scenarios
Dt,s

k were generated according to the following specifications:

• We assume the shipper owns two e-fulfilment warehouses for inventory of prod-
ucts sold by multiple clients.

• Customer areas are categorized in three different sizes. Thus, the expected value
of demand of products changes from one to another customer area according to
their size.

• The seasonality and variability of the demand is represented by two demand sea-
sons (High, Low) fluctuating dynamically along the time horizon. Every period
is predetermined to either one of the two possible demand seasons. The demand
values in a high-demand seasons are twice as much larger than in low-demand
seasons.
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• At every period, there are two possible demand scenarios in St = {s1,s2} with a
given probability. Hypothetically, in the first scenario (s1) customers’ purchasing
behaviour is based on forecast, which is more likely to occur. The second sce-
nario (s2) is generated from a potential situation where customer orders amount
to larger-than-predicted values by a certain margin. The probability of scenario
s1 is equal to 0.85, while for scenario s2 it is 0.15.

• The quantities demanded in scenario s2 are twice as much those demanded in sce-
nario s1. The differences in scenario s2 are applied to all customer areas without
exception. Scenario s2 is considerably less likely to occur but likely enough to
affect the expected distribution costs in the long-term. Meaning that random ef-
fects on the purchasing habits affect all customer areas at the same time. In other
words, it is supposed that the difference in the total demand between s1 and s2, is
distributed evenly among all customers.

Parameters about contract conditions (He, P, Mt
e) and extra-capacity costs (F̄i,l) were

configured according to the following criteria :

• The duration of contracts He is set to 3 periods for each carrier e.

• The minimum commitment level in load units (Mt
e) is established separately for

each carrier e and period t, computed as a proportion of the maximum capacity
that can be requested in a scenario s1 of forecast demand. This proportion is set
to 15% and remains fixed in all periods. Due to variability of the demand, the
minimum commitment level varies accordingly.

• The penalty cost P for capacity after reservation is set to 50% of the rates paid
under an MCC contract. In other terms, services off-contract are paid 1.5 times
higher than contract costs. (i.e., F i,l = 1.5 Fi,l)

• Contractual services costs Fi,l were generated following a similar procedure de-
scribed in Section 4.6.1 based on the Euclidean distance of two randomly gener-
ated points in a square matrix of dimension [1000 x 1000]. The fixed costs for
facility utilization is disregarded. The cost for operating at level one, i.e., Fi,1, is
twice the Euclidean distance from facility i to the closest warehouse.

• Similarly, the cost charged by the parcel delivery company for transporting one
unit of good from facility i to customer area k, that is, Ui,k, is taken equal to the
Euclidean distance from i to k.
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6.6 Computational Results

6.6.1 Lower bounds

As it was mentioned, a valid lower bound (LB) can be obtained either by solving
the stochastic model by CPLEXs B&C (STO algorithm) or by one of the relax-
and-repair methods (CLR, WR) in their first ’relaxed’ phase. In case CPLEX fails
to prove optimality within the time limit, the tightest (max. value) lower bound is
used to measure the relative gap and to compare the solution quality of algorithmic
methods. As a general rule when the sub-model in the first relaxed phase fails to
produce the optimal solution, is not taken into account to determine LBbest .

In order to provide insights on the tightness of relaxed models and its closeness with
the optimal value, a comparison is made between the lower bounds obtained by each
method in every instance. The bar chart in Figure 6.2 represents the percentage of
instances for which a method gets the best lower bound.

Figure 6.2: Comparison of Lower bounds among algorithmic methods

According to the results in Figure 6.2 the best lower bound varies according to the
instance category. For the small size category, the STO method returns the best
lower bound in every instance tested. In fact, for 20% of small instances it achieves
the optimal value (Figure 6.3 bottom-right side), while for the remaining 80% the
relative gap is lower than 0.24%. However, the outlook differs when instances get
bigger.

For the medium size category, results are divided. Only 20% of times CPLEX gives
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the best lower bound while having obtained the optimal solution in only ≈7% of
cases. The WR method achieves the best lower bound for a similar percentage
(20%) out of 47% of times that the relaxed model mRDNP terminates. Thus, some-
times solving the mRDNP problem yields to tighter lower bound in the medium size
category. The relaxed models sDNP(t) in the CLR method terminate always in the
time limit and return the best lower bound for most of instances (60%). Thus, the
single period models provide an even tighter value. For the large size category, the
tendency leans clearly towards the CLR relaxation which gets the best lower bound
in every instance, while the WR relaxation is unable to terminate on time, and the
STO model obtains weaker values.

6.6.2 Algorithmic Performance

The focus of this chapter is to display computational results of algorithmic methods
regarding performance metrics measuring the efficiency (Fa) and solution quality
(Ga). Following the classification of algorithms in Section 6.5.1, results are pre-
sented first for standard methods (STO, EVD, RHP) followed by tailored heuristics
(CLR, WR, CLWR). As a benchmark between both strategies, the RHP is included
in all comparative graphs.

Graphs are presented in the form of performance profiles, which are cumulative
distributions of performance metrics (Fa, Ga) based on the empirical results. More
precisely, for an algorithm a, a criterion (say Fa), and a value x on the horizontal
axis, the performance profile indicates the percentage of instances for which Fa≤ x.
In terms of the computational time Fa, the maximum value (upper limit - U) of x is
the testing time (3 hrs), while for the percentage gap Ga, the maximum value of x
is 4%. The profiles allow for easy visualization and comparison of the performance
of different algorithms over a range of instances (in our experimental design, the
collection of 15 small/medium instances and 10 large instances).

Note that if an algorithm a generates performance values lower than U for all in-
stances, is possible to notice the worst-case value x. Otherwise, is possible to check
the percentage of instances for which the performance value is lower or higher than
U . This opens our discussion of results for standard and tailored methods, sepa-
rately.
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Standard Methods

In Figure 6.3 results are presented for the computational time (Fa) of standard algo-
rithms. The comparative graphs are shown in order from left to right, respectively,
for small, medium and large instances. As instances get bigger, it is possible to
observe the trend or evolution in performance profiles for each method.

For small instances, the optimal solution of the complete stochastic model mDNP by
CPLEX (STO method) is obtained before 3 hrs. on roughly 20% of the instances.
For the expected value deterministic method (EVD) this proportion of terminated
instances is ≈73% and for the rolling horizon procedure (RHP) it is 100%. In the
worst-case the RHP method ends in ≈0.53 hrs.
For medium instances, the percentage of completed instances decreases to ≈7%
(STO) and ≈13% (EVD). The RHP still terminates in all instances but the worst-
case value increases to 2.3 hours, however about 93% of instances finish within 1
hr.
For large instances, the STO and EVD methods fail to complete even one instance
within the time limit, while the RHP terminates in ≈90% of cases.

Figure 6.3: Computational Time for Standard Methods

In Figure 6.4 results are presented for the relative gap (Ga) in a similar way

For small instances, all standard methods achieve with certainty a gap lower than
the upper limit (4%). The STO method has its performance profile above others,
indicating a larger probability to provide lower gaps. The worst-case performance
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value of Ga is approximately 0.24% for STO, 1.80% for EVD and 1.20% for RHP.
For medium instances the performance profiles get lowered. The STO and RHP
methods produce similar performance or percentage of instances for gaps less than
≈1.2%. For larger gaps, RHP outperforms STO, increasing the percentage of in-
stances. The worst-case gap of Ga for RHP is about 2.27%, for EVD 3.86% and for
STO is beyond limit in ≈7% of cases.
For large instances, performance profiles for the STO and EVD methods are con-
siderably decreased while the RHP maintains similar shape with respect to medium
sizes. The gap provided by STO is lower than 4% in only ≈30% of instances, and
by EVD in only ≈50%. The RHP method returns a gap percentage of 1.22% in the
worst-case.

Figure 6.4: Gap Percentage for Standard Methods

Taking into account performance profiles for both metrics, it is noticeable that the
RHP profile outperforms other methods in almost every graph. For large-size in-
stances, the difference is significant in time and quality. Nonetheless, in small
instances, the STO method is more likely to provide better quality solutions even
though it is unlikely to finish before the time limit. The EVD method is outper-
formed by the RHP approach both in time and quality in every instance size, al-
though compared with the STO method is expected to provide better quality solu-
tions for large instances.
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Tailored Methods

Results are now presented for the set of tailored heuristic methods, comprising
relax-and-repair heuristics (CLR, WR, CLWR). The RHP is also included for com-
parison purposes with respect to standard methods.

In Figure 6.5 for small instances, it is noticed that all heuristic methods are able
to finish rapidly within the time limit. Most of the performance profiles overlap
each other indicating similar computational times. However the CLR and CLWR
profiles are slightly faster than the RHP and WR ones. In the worst-case, the CLR
and CLWR methods end in ≈0.57h and ≈0.18h, respectively, while for the RHP
and WR methods these values are ≈0.56h and ≈ 0.53h. For medium-size instances,
performance profiles for the CLR, CLWR and RHP methods are mildly lowered but
still overlap each other, however the WR performance is considerably decreased and
the method terminates for about 47% of instances. This indicates more sensibility to
larger datasets. For large-size instances the profiles are distant from each other and
a clear dominance is visible: the CLWR and CLR methods always complete within
the time limit, with a worst-case time of 1.86h and 2.0h, respectively. In turn, the
RHP fails to finish in ≈10% of cases, while the WR method always used up time
completely.

Figure 6.5: Computational Time for Heuristics Methods

From the perspective of the solution quality, Figure 6.6 shows that in small instances
all tailor-made methods follow similar patterns, however, the WR performance is a
little above the rest. In the worst-case the WR method obtains a gap of≈0.67%, the
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Figure 6.6: Gap Percentage for Heuristics Methods

RHP ≈1.20%, while the CLR and CLWR methods ≈3.69% both. For medium size
instances all performance profiles are lowered with small differences among them.
Yet, the WR method (capacity relaxation) is slightly better overall, particularly with
respect to the CLR, and CLWR methods. However, the worst-case gap is fairly sim-
ilar for all methods. For the WR, CLWR and RHP it is about 2.54%, 2.38% and
2.27% respectively, while the CLR worst-case gap is beyond 4%. For large size
instances, the RHP performance profile is shown to be above others. The CLR and
CLWR performance profiles overlap directly each other while the WR gap perfor-
mance is notoriously decreasing in quality. The worst-case gaps are then, 1.57% for
the RHP, 2.04% for the CLR and CLWR methods, and 3.0% for the WR method.

Comparing both performance metrics, it is possible to make several observations.
Methods including contract length relaxations (CLR, CLWR) show very similar
performance in both metrics, however the CLWR method is faster in large instances.

This shows that the solution (contract plan) issued from the first phase is likely to
be similar with either relaxed or non-relaxed w binary variables. However as it is
expected solving the mRDNP model accelerates the process while solving the sec-
ond phase impacts less in the computational time. In view of these results, it is
recommendable to opt for a double relaxation (CLWR), specially as instances in-
crease in size. WR is highly sensitive to the instance size in terms of the completion
time. Similar to complete models (STO, EVD), WR fails to terminate for any large
instance within time limit. This indicates the difficulty raised by time-linking con-
straints for general-purpose algorithms in spite of the relaxation of some integer
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variables.

6.6.3 Algorithmic Results

Running the complete model (STO) for large instances of the problem with general-
purpose algorithms results in poor quality solutions, therefore some features of the
problem have to be overlooked. However, neglecting the stochastic nature of the
demand with the use of the ’expected-value’ deterministic model doesn’t provide
an advantage at computational level. This shows the inherent difficulty in dealing
with the multi-period aspect of the problem due to mid-term contracts, even with
deterministic demands.

Alternatively, considering a shortened time horizon disregarding future demand be-
havior, as in the RHP, turns out to be more efficient computationally specially when
instances increase in size. The RHP procedure does not only terminate faster but
also yields better solutions while taking into account the stochastic modelling of the
demand. Thus, removing the effect of future demand helps to reduce the complexity
induced by a long planning horizon. In sum, the RHP outperforms other standard
methods (EVD, STO) both in computational time and quality. Nonetheless, the
RHP method alone does not provide a valid lower bound.

Relax-and-repair heuristics exploit the decomposition nature of the model after sort-
ing out first-stage decision variables. They show to be effective in finding good
solutions by relaxing some constraints of the model. The relaxation of off-contract
capacity variables WR does not affect the computational time significantly. How-
ever, WR lags behind in providing competitive (short-gap) solutions as instances
grow in size. The relaxation of contract lengths CLR does accelerate the computa-
tional process to a larger extent and is also able to return relatively good solutions
for any instance size. By mixing both relaxations in CLWR, the computation of first
stage variables is even faster, while holding good quality solutions overall. In sum
the double-relaxed CLWR method outperforms the single CLR method by a small
margin, consuming less time in obtaining solutions of similar quality. Neverthe-
less, the CLR method obtains tighter lower bounds for large instances. The same
can be said of the WR method, however WR holds a small advantage over CLR in
small-to-medium instances in terms of quality.

For the comparative analysis, it is possible to decide an appropriate approach de-
pending on the instance size and performance criteria. For small to medium size
instances it will be appropriate to solve the complete full horizon model with a
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general purpose algorithm (STO) or relaxing off-contract capacity variables (WR)
yields close-to-optimal solutions. For medium to large instances the best alterna-
tives are to apply a rolling horizon procedure (RHP) which is likely to return best
quality solutions or run a double-relaxed heuristic CLWR that proves to be faster
than any other. The advantage with the CLWR heuristic model is its possibility to
derive multiple solutions from its repairing phase by deciding differently upon un-
finished contracts in the relaxed solution. CLWR could be coupled with local search
algorithms that take advantage of its fast computation. In general, relax-and-repair
algorithms could be enhanced with meta-heuristics that explore further the solution
space with single modifications of the contract plan solution.

Taking into account stochasticity in the mathematical model or discretizing capacity
per levels does not add up to the difficulty of the problem as much as contracts last-
ing for multiple durations. It proves time-linking constraints play an important role
in the complexity of the problem. Decomposition strategies solving single-period
problems are able to focus on the distribution network optimization at the expense
of working on sub-optimal contract plans from relaxed formulations. Further devel-
opment of algorithms could emphasize the efficient solution of single-period (two-
stage) stochastic problems to handle even larger datasets.

6.6.4 Value of the stochastic solution

The value of the stochastic solution (VSS) is defined as the possible gain from solv-
ing the stochastic model as opposed to solving a deterministic approximation of it. It
is an indicator that assesses the value of knowing and using probability distributions
of uncertain parameters. In this study, we are interested in knowing the utility of us-
ing a discrete distribution of the demand in the network design problem (DNPMC).
On the contrary, estimating and modelling the demand as a deterministic parameter
could imply an economic loss in the long-term.

Following the categorization of instances (Table 6.4) and methods in our experi-
mental design, the VSS is calculated for each size category with respect to standard
procedures used commonly in practice (EVD, RHP), which make use of stochas-
tic modelling of the demand. For every instance the relative difference between a
stochastic approach and the deterministic model is computed and averaged over all
instances of similar size. Let J be the set of instances of similar size indexed by j,

then: V SS = 1
|J| ∑ j∈J

Z∗DET
j −Z∗STO

j

Z∗STO
j

The economic savings of modelling the demand as a stochastic quantity varies ac-

157



cording to the instance size due to the limited testing time. Results are shown in
table 6.5 for every instance size.

Category STO RHP
Small 1.06% 0.82%
Medium -0.06% 0.46%
Large -1.88% 2.90%

Table 6.5: Relative value of the stochastic solution on average

For small size instances, the complete stochastic model returns economical savings
in the time horizon (|T |= 8 periods). More exactly, the deterministic model entails
a cost increase of 1.06% over the stochastic one. Taking into account that the EVD
method gets the optimal value in≈73% of times, this margin is an accurate estimate
of the potential benefits from solving the stochastic model for the long-term. In
the same way, the benefits from implementing the rolling horizon approach (with
r = 1) is estimated to yield 0.82% of economical savings on average, as compared
to the EVD approach . The difference in margins (0.24%) represents the average
benefit from taking into account the complete horizon as opposed to a single-period
planning window.

The outlook looks different when instances increase in size. For medium and large
instances opting for solving the complete stochastic model up to the testing time re-
turns a negative VSS. In either size the solver does not prove optimality and running
the deterministic model is more likely to result in a more profitable solution. For
large-size instances the VSS goes down to -1.88%. Indeed, the higher the compu-
tational effort is spent in solving the stochastic model the worse is the sub-optimal
solution value. In contrast, the rolling horizon approach is more likely to finish
or find close-to-optimal solutions for the sDNP(t,β t) sub-models. In that frame-
work, the stochastic approach is likely to improve on the deterministic solution. For
large-size instances the average benefit is about 2.9%.
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6.7 Managerial Insights

6.7.1 Value of mid-term MCC contracts

In addition to the value of the stochastic solution, it is possible to assess the value
of including mid-term contracts with minimum commitments. For that purpose, we
compare results in term of costs (best-found solution) with respect to two alternative
strategies. First, we consider that the shipper adopts a spot-market strategy sourcing
capacity for the immediate period once the demand is realized (i.e. at off-contract
prices). This strategy provides full flexibility to request capacity to the extent that
is required, but in practice involves the risk of low resource availability which often
translates in high market prices.

This strategy removes the stochastic component of the problem and reduces to solv-
ing the single-period distribution network problem sDNP(t,s, β̂ t , v̂t) for each period
t ∈ T and scenario s ∈ St , where the values for the contract plan β̂ t , and capacity
reservation plan v̂t are set to zero. Subsequently, we calculate the weighted costs
according to the probability of scenario s, for each period t. The total costs over T
are compared with respect to the optimal or best-found expected value taking into
account MCC contracts and the difference determined in percentage and averaged
over all instances of the same size category.

As described in the experimental design, the parameter P that determines off-contract
prices was given a value of 1.5, which is equivalent to say, FTL prices are 50%
higher for immediate unreserved loads. Results are summarized in Table 6.6.

Category Spot-market planning Mixed long-term/spot planning Single-period contracts
Small 7.87 % 2.91 % - 0.50 %
Medium 8.46 % 1.92 % - 0.83 %
Large 11.45 % 2.00 % - 0.93 %

Table 6.6: Value of mid-term MCC contracts

In addition to have access to spot-market capacity as ultimate recourse, a second
strategy consists in fixing long-term contracts with only a subset of carriers, that
lasts for the complete horizon T . Hence, the shipper adopts a mixed long-term/spot-
market planning strategy.

Indeed, a common feature of the optimal solutions after solving the mDNP problem
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with single-period MCC contracts, showcase a small group (i.e., 0, 1 or 2) of carri-
ers permanently contracted along T , while others are signed temporarily for some
periods (usually across high-demand periods). Based on this observation, we estab-
lish these subsets of carriers as permanent, from which capacity can be requested
before demand realization (and respecting commitment Mt

e) throughout T . Hence,
the contract duration for permanent carriers is He = |T |.

The above situation can be handled by solving the single-period distribution network
problem for period t, sDNP(t, β̂ t), where the values β̂ t are set to 1 for permanent
carriers and 0 for the rest. This mixed short-and-long term strategy reduces the
flexibility in adjusting the distribution system according to the resulting demand, but
in practice lowers the risk of low resource availability, given that an initial capacity
is already in place throughout T . Similarly, we compute the difference in cost in
percentages and averaged over all instances of the same size category (see results in
Table 6.6).

Lastly, in order to measure the impact of multi-period MCC contracts as opposed
to a single-period MCC contract, the negative difference in cost with respect to the
latter optional plan is computed and reported in percentage terms. Representing a
lower bound, this single-period solution is obtained from the relaxation phase during
the CLR heuristic procedure.

From Table 6.6, it is possible to observe the economical benefits of opting for a
procurement strategy with mid-term MCC contracts. In comparison with a strat-
egy based only on requesting transportation capacity on-demand (according to the
realized scenario), there is a substantial difference in the average gap. Optimal solu-
tions obtain on average costlier values above 7.97%, 8.46% and 11.45% for small,
medium and large instances, respectively. Incorporating now, some long-term deals
with MCC agreements with few carriers allows to obtain considerable cost reduc-
tions, however, the optimal cost values (on average) remain larger by 2.91%, 1.92%
and 2.00%, for small, medium and large instances, respectively. Thus, including
mid-term agreements achieves an important decrease in long-term costs.

In general, larger values of He entails additional costs. By considering only long-
term contracts (i.e, He = |T |), it is possible to see the maximum effect that the
configuration of the parameter can have. On the other hand, if mid-term MCC con-
tracts are pre-agreed for a single-period ideally (i.e, He = 1), then an improvement
of less than 1% could be achieved.
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6.7.2 Structure of solutions

After running several tests over various instances, some information can be drawn
regarding the structure of the solutions obtained. As a side note, we consider only
the best found solution, regardless of from which method it was obtained. We define
some output parameters to characterize certain aspects of the decision variables.

Considering general information about carriers selection, we compute the number
of permanent as well as occasional carriers and determine the percentage over the
complete set size |E| (averaging over instances of same size category). On top of
that, the percentage of carriers selected for off-contract services with a distinction
made for low demand (LD) and high demand (HD) periods. The maximum, mini-
mum, and average values are reported in Table 6.7. These values hint an idea of the
amount of operators that are finally selected from the complete pool of candidates
and their frequency.

From Table 6.7, the percentage of permanent carriers is (on average) not higher
than 15% and at most 25% (medium-size instances), while in some cases not one
single carrier is selected for the whole horizon. The number of occasional car-
riers is slightly higher but not surpassing 30% on average (large-size instances),
however, it can reach up to 66.7% of candidates. It is also observed that, for
any instance, at least some occasional carriers are selected to work under MCC
contracts. The percentage of carriers selected for off-contract services vary a lot
depending on the realized scenario and demand period. In scenarios with larger-
than-predicted demand (s2), the selection of carriers is on average 67.2% (small),
60.4%(medium) and 77.9%(larges) for low demand periods,while it raises to 86.1%
(small), 86.5%(medium) and 87.5 (larges), for high-demand periods. This shows
the utility in having a second optional strategy as recourse, even if it implies higher
service costs.

In addition, we define parameters highlighting information regarding resource uti-
lization under both alternatives: MCC contracts and off-contract services.

The triggering effect of the MCC level is measured by computing the difference
between the total capacity (trucks) requested or reserved before demand realiza-
tions and the pre-agreed capacity commitment Mt

e. For every instance, when an
MCC contract is ongoing at period t, we measure the difference between the capac-
ity effectively requested (before demand realization) and the pre-agreed capacity
commitment Mt

e, which is the least value. Then, we calculate this difference in
percentage terms to determine how far is the utilization from the commitment level.
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Category Small Medium Large
Parameter max min avg max min avg max min avg
Permanent Carriers (%) 16.7% 0% 10% 25% 0% 14.6% 0% 0% 0%
Occasional Carriers (%) 66.7% 16.7% 27.8% 25% 12.5% 18.8% 30% 30% 30%
Off-contract Carriers (LD, s2) (%) 83.3% 50% 67.2% 95.8% 43.8% 60.4% 85% 75% 77.9%
Off-contract Carriers (HD, s2) (%) 100% 66.6% 86.1% 100% 75% 86.5% 90% 80% 87.5%

Table 6.7: Output parameters : carrier selection data
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Small Medium Large
Parameter max min avg max min avg max min avg
Cap. utilization above MCC (LD) 30.9% 63.3% 48.4% 33.3% 21.2% 28.3% 14.9% 12.5% 13.6%
Cap. utilization above MCC (HD) 33.3% 87.5% 54.3% 68.4% 20.5% 32.4% 28.4% 12.8% 17.3%

Table 6.8: Output parameters : capacity utilization above commitment

Small Medium Large
Parameter LD HD LD HD LD HD
Cap. utilization with MCC contracts (scenario s1) 75.3% 92.8% 74.2% 92.0% 77.6% 94.1%
Cap. utilization off-contract (scenario s1) 24.7% 7.2% 25.8% 8.0% 22.4% 5.9%
Cap. utilization with MCC contracts (scenario s2) 47.4% 50.1% 49.6% 46.7% 47.1% 48.9%
Cap. utilization off-contract (scenario s2) 52.6% 49.9% 50.4% 53.3% 52.9% 51.1%

Table 6.9: Output parameters : capacity utilization between MCC contracts and off-contract services

163



Once again, a distinction is made between low (LD) and high (HD) demand periods.
This measure is reported for maximum, minimum and average values in Table 6.8,
taking into account instances of same size category.

From Table 6.8, it is possible to observe that the capacity utilization above com-
mitments decreases as the instance size grows. Indeed, the commitment level is
determined from the potential demand to be allocated to one carrier (approx. ratio
customers |K|/number of carriers |E|), which increases from one to the next cate-
gory. Therefore, it becomes more stringent for the shipper to satisfy the pre-agreed
level Mt

e. However, there is always some slack of capacity effectively used even
for large instances, which demonstrates the incorporation of the capacity initially
committed into the operational solution. Also, it is notable that the difference is
slightly higher in periods of larger demand. The above information exemplifies
how the tactical planning framework could be used as an adaptive negotiation tool
for the shipper so as to offer the largest possible minimum commitments without
deteriorating shipper’s costs.

Finally, information about the balance between the capacity requested before (i.e.
by contracts) and after demand realization (i.e. off-contract) is given in percentages.
A distinction is made in terms of both, the period seasonality and scenario. Results
are summarized in table 6.9.

Table 6.9 features a similar behaviour for the indicated parameters regardless of the
instance size. When the scenario of demands equals the predicted values (s1), the
proportion of capacity used from MCC contracts is considerably higher than from
off-contract services. This difference is accentuated in high-demand periods, with
values around 92.8%(small), 92.0% (medium) and 94.1%(large) on average. Differ-
ently, when the scenario results in larger demands than expected (s2) the percentage
is equally divided between both type of sources, independent from the seasonality.

6.8 Conclusions

The stochastic mDNP problem was introduced in this chapter. For its resolution
several algorithmic methods were tested and compared in different settings of the
problem. The computational results were presented in comparative performance
profiles for two main performance criteria: completion time and best found value,
testing separately their speed and quality.

In this study, the selection of carriers is based on the costs-savings criterion, involv-
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ing decisions at the tactical and operational level. MCC contracts define clear lia-
bilities for both parties including conditions on capacity reservation and utilization
on specific shipping lanes/facilities of the distribution network. As an alternative
procurement strategy the mathematical representation permits to request capacity
off-contract which represents the alternative short-term planning strategy. The in-
terested shipper may also consider multiple candidate carriers and/or contract al-
ternatives with different parameter settings, like duration, service costs and penalty
costs.

From the computational study, it was possible to observe possible economical ad-
vantages by modelling uncertainty of the demand as opposed to the expected value
deterministic model. In a small size setting (with 8 carriers and 6 periods), benefits
claimed were about 1% which for a large 3PL firm moving a large amount of freight
may be significant in the long term. This margin is not clear as the size of instances
increase due to computational limitations. However, with very limited time (like
taking decisions daily), heuristic approaches are better suited to find good quality
solutions.

In effect, the computational difficulty increases rapidly with the size of input pa-
rameters, such as number of carriers, periods and customers, and could be difficult
to solve in practice in short planning periods. In particular, dealing with multiple
demand scenarios per period can be computationally challenging. However, the
stochastic model presents the particularity that decisions made at any period are in-
dependent from previous realizations of the demand (the random vector of scenarios
St is linked to each period). Hence, taking into account several scenarios of demand
to period t increase the size of the model linearly rather than exponentially.

In order to solve the multi-period model in reasonable time, certain aspects need to
be neglected to allow to find better solutions of the problem. Notably, disregarding
distant future information of the demand or assuming single-period contracts prove
to be effective. Further modelling development could account for uncertainty in
other unpredictable parameters like transportation costs in spot-market rates which
are volatile and subject to random changes.
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Chapter 7

Conclusions, Limitations and
Perspectives

7.1 Conclusions

In this thesis, we studied multi-period distribution network problems with mini-
mum commitment contracts (DNPMC). The purpose of the network optimization
problem is to minimize total costs of transportation and distribution over a planning
horizon. The tactical planning works as an alternative approach to common prac-
tices for freight transportation procurement, such as long-term deals and one-time
services. It balances out the flexibility to adapt logistical capacity to fluctuating
demands (due to seasonality effects) and stable services costs. Mid-term contracts
with minimum commitment provisions are proposed as a win-win strategy with
transporters, in order to tackle potential shipper’s risks, such as limited vehicle ca-
pacity and high prices (in spot markets). In that framework, we consider a 3PL
company in the business of e-commerce fulfilment, that subcontracts with outside
partners.

We present the mathematical representation (MILP) of the DNPMC problem in
Chapter 3 and prove that it can be adapted for several types of minimum commit-
ment (MC) agreements with distinct attributes, regarding the duration, commitment
type, and penalty rates. Moreover, a more general formulation was included that
exemplifies the integration of several procurement options, for instance to denote
a carrier working under two contractual settings. The diversification of portfolio
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is beneficial due to its potential in reduce further logistics costs, however, multiple
options increase the difficulty in finding good quality solutions.

In Chapter 4, the algorithms developed for MDPC take advantage of the decompos-
able structure of the problem. Their convenience was shown in comparison with
state-of the-art solvers, which are not well-suited to the characteristics of the mod-
els, particularly, its multi-periodicity and mixed-integer and linear features. This
difficulty extends to the standard Benders algorithm, where the partition in complex
(integer) and soft (linear) variables does not produces satisfactory results, in terms
of computational timing and/or solution quality for MDPC.

Therefore, we propose an implementation of the combinatorial Benders algorithm
(CBA) that separates only a subset of its integer variables, and left to the sub-
problem to deal with a decomposable MILP. Numeric results in exhaustive tests,
show the convenience of the approach, especially, in solving large instances of the
problem as compared to general-purpose B&C and Benders algorithms. Moreover,
a heuristic method based on the relaxation of time-linking constraints provides even
better results. On one hand, it significantly improves the lower bounds obtained
from the commercial solvers’ algorithms. On the other hand, it generates better
quality solutions for large instances of the problem. This indicates that the difficulty
in solving the multi-period DNPMC problem comes primarily from the intercon-
nection of constraints linking periods related to contract duration rather than dealing
with binary variables linked to the specification of capacity utilization.

In Chapter 5, the mathematical modelling was extended to the case of demand un-
certainty. Considering the situation where capacity requests are placed as the de-
mands realized (scenario-dependent), decisions in the first stage comprises only
carrier selection. The stochastic modelling produces higher cost advantages in the
situation where reservation is required. The shipper is not obliged to meet a min-
imum commitment level to gain access to resources. Instead, it could simply an-
nounce the capacity to use in advance. The consideration of reservation in place of
commitments as a way to negotiate better prices, can be handled in a single-period
two-stage stochastic model. The multi-period DNPMC is reasonable with an MCC
contract of multi-period duration. Thereby, forcing the shipper to comply with min-
imum requests for consecutive periods in addition to reservation requisites.

The algorithmic development in Chapter 6 is based on the developed methods (in
Chapter 4) for the deterministic DNPMC problem and explore further possibilities
to tackle the MILP. We compare several solution approaches to solve the mDNP MCC.
Trying to solve the complete stochastic mDNP MCC model results in poor quality
solutions. Notably, for large instances up to 12 candidate carriers and 10 periods.
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A better approach is to solve parts of the multi-period model independently like in
the rolling horizon procedure or to relax some of the constraints and then correct
the values of a given solution to make it feasible, like in relax-and-repair heuristics.
Ultimately, four strategies were compared to show their performances in terms of
quality and time. Among these, the RHP stands out for finding the best quality so-
lution within the testing time limit, and the double relaxation CLWR strategy turns
out to be the fastest. The CLR heuristics turns out tied in second place for both
criteria (over large instances). The WR heuristic based on the relaxation of integer
variables is not favourable for large instances. Once again, It shows the intrinsic
difficulties related to time-linking constraints in the mDNP model.

7.2 Limitations

The implementations of the studied models may present several challenges. Two
main aspects concern the collection of data and the difficulty in finding optimal (or
close-to) solutions by implementing algorithmic procedures.

The most relevant data concerns precise information about customers’ demands and
service (FTL, cross-docking) costs at different periods in the future. The first one
might be difficult to predict accurately, nonetheless, the stochastic models allow
to represent the distribution of the demand with multiple scenarios. The underly-
ing probability distribution could be approximated for instance by making use of
sample average approximation (SAA) methods, that deal with continuous probabil-
ity functions. More elaborated forecasting models could be useful to update and
reduce error margins in the predictions for periods in the future. The price of truck-
loads for a given lane is highly dynamic. In long-term contracts, prices given by
carriers are often private and difficult to access. Moreover, prices associated to one
lane vary for each carrier. Spot market prices are also hard to track, although some
mathematical models may address forecasting methods, as in [Budak et al., 2017].

A second difficulty comes from the willingness of carriers (or LSPs), to agree upon
a pre-fixed set of prices for specific services under the premise of acceptable busi-
ness volume, in the short-to-mid term. In that regards, the parameters of duration
(H) and respective commitments values (M) might result from a series of bids until
a common agreement is accepted and satisfy both parties. In fact, the mathematical
model can serve as an analytical tool for the shipper in order to determine accept-
able conditions, such as, the largest MCC or MPC values that it can afford so as to
generate cost savings in the long-term. The application of the model as an negotia-
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tion tool with multiple partners might present itself some challenges in terms of the
computational effort to retrieve good quality solutions in short time.

The possibility of solving large instances of the mathematical model (e.g., multiple
carriers/contracts alternatives, several demand scenarios and/or for an exhaustive
customer base), is directly linked with the computational capacity at hand. Based
on the numeric results, making use of the commercial solver CPLEX to solve large
instances of the multi-period DNPMC model does not yield good bounds. An ad-
vantage of decomposition methods such as the contract length relaxation also lies
in the possibility to solve in the first phase several sub-problems, which can be allo-
cated to different machines. Due to the tactical perspective of the studied problems
(i.e., planning periods of one or several weeks), the time allowed to solve the tactical
plan is large enough to obtain a good quality solution with standard computational
resources. If the computational time is short, more efficient methods like the appli-
cation of heuristics are proven to be a better alternative.

This is also the most suitable alternative, in case the decision-maker should solve
the problem under different conditions to try for example different values of com-
mitments/duration. Hence, the computation can be accelerated by the means of
non-exact methods. A more detailed resolution strategy may combine the rolling
horizon procedure with relax and repairing heuristics in order to obtain the best
benefits in terms of efficiency and solution quality.

7.3 Perspectives

The underlying distribution network model with two-echelons was inspired from the
domain of e-commerce, but could be applied more generally in other supply chain
contexts for an agent dealing with outsourcing or subcontracting logistics services
to outside providers. For instance, it could be extended in multi-period vehicle rout-
ing problems with private fleet and common carriers referred in the literature review.
Applications could be extended, for example, to hub-location problems in contexts
where finding appropriate hub-and-spokes facilities lead to the optimization of com-
mercial flows in wide-areas, implying long-distance transportation.

The utility of the CBA algorithm might be tested in MILP models with distinct sub-
set of integer variables, for which a subset complicates its resolution to a greater
extent and/or, a possible fixation of integer variables (to certain values) allows
to decompose or treat sub-models separately. Further developments, might be in
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the direction of applying acceleration strategies or faster resolution methods to the
single sub-problems sDNP(t, β̄ t). In our case, algorithmic strategies for location-
allocation models could be included into the single-tree Benders approach. A dif-
ferent direction goes to strengthen combinatorial cuts to restrict even further the
solution space, by for instance, pruning the selection of a carrier based on domi-
nance rules.

Heuristics developed in Chapters 4 and 6 for the deterministic and stochastic DNPMC
models, could be enhanced by implementing different reparation rules in the second-
phase. Simple rules like, totally removing or enforcing incomplete contracts could
yield to poor quality solutions, while evaluating both possibilities, (like in Heuris-
tic 4.5) may be time-consuming. It may be interesting to assess different rules for
the eligibility, for instance, in consideration of the difference with respect to the
pre-agreed duration. Moreover, a local search procedure can explore the space of
possible corrected solutions (from the one relaxed), focusing on subgroups of in-
complete contracts that are overlapped in time and therefore, the decision of ex-
cluding/including one of them affect the usefulness for the rest. In general, a local
search procedure can be embedded in meta-heuristic framework.

The contract type and its corresponding parameter values (He, Me, Pe) are considered
to be stated or known a priori to the network optimization problem. That means the
agreement process (without any obligation) takes place beforehand, which returns
as an output eligible contracts. The utility of the models could be extended as a
negotiation tool to analyse the implication of possible values of contract parameters.
Another perspective could be to make use of the optimization model to determine
optimal parameter values before negotiation (i.e.,as endogenous variables). The
stochastic DNPMC model in the study of capacity requests ahead in time provides a
possibility in that direction. The study of combined types of commitment contracts
may also be possible in an integrated model.

Interestingly, the applicability and utility of the algorithmic methods could be tested
with real-data provided from the e-commerce industry. Notably, input values for
realistic probability functions for demand scenarios and truckload estimation prices
at spot markets. The dynamic nature of spot market prices could be also modelled
as stochastic parameter.
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