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A B S T R A C T   

Modern cities face challenges in responding to the needs of diverse groups, therefore urban space must be 
appropriately shaped to be as resident-friendly as possible. Particular attention needs to be paid to urban 
vegetation, which is an essential component of a suitable quality of life. Research to date has often relied on two- 
dimensional (2D) mapping of urban vegetation using remote sensing imagery and vegetation indicators, where 
greenery is evenly distributed regardless of the cubature. However, in reality, vegetation’s spatial and vertical 
structure varies, and the layers often overlap. In the current paper concerning Luxembourg City, we propose a 
novel 3D method exploring such indices as Vegetation 3D Density (V3DI) and Vegetation Volume to Building 
Volume (VV2BV). The goal of the study is to investigate the spatial relationship between the volume of vege
tation and of buildings in the rapidly developing Luxembourg City. The vegetation volume was calculated using 
airborne laser scanning point clouds (ALS LiDAR) processed into voxels (0.5 m). The volume of the buildings was 
calculated based on the results of 3D ALS LiDAR point cloud modelling. Proposed spatial indices were estimated 
for districts, for cadastral parcels, in a cell grid of 100 m and for each building individually, using a 100 m buffer. 
We found that in 2019, urban forests covered 1689 ha of Luxembourg City, accounting for 33 per cent of the 
entire administrative area. The 3D GIS analyses show that the total volume of vegetation (> 1.0 m above ground) 
was about 40 million m3, equating to 328 m3 of greenery per resident. The V3DI produced a value of 0.77 m3/m2. 
The overall VV2BV(%) index calculated for Luxembourg was 41.6 per cent. Only five districts of Luxembourg 
were characterized by a high value for the VV2BV index, which indicates areas with a high level of green 
infrastructure to contribute to health and a better quality of life.   

1. Introduction 

According to reports compiled by relevant agencies, by 2050, nearly 
70 per cent of the world’s entire population will be living in urban areas 
(United Nations, 2018). The rapid growth of the global urban population 
causes the dynamic development of cities (Xie et al., 2015), and hence 
the reduction of urban green spaces (UGS), which are increasingly 
coming under pressure. In turn, UGS are becoming a scarce resource in 
urban areas (Endreny, 2018). City dwellers benefit significantly from the 
vegetation defined as urban forests (UF); that is, ‘all the trees, forests, 

and associated vegetation, and ecosystem components growing in cities, 
towns, and communities where people live and work’ (Konijnendijk 
et al., 2006; Vogt, 2020). The 3D structure of UF plays an important role 
in cleaning the air, capturing rainwater and limiting the formation of an 
urban heat island (Clinton, 2003; Nowak and Van den Bosch, 2019). It is 
also a determinant of ecological processes and supplies multiple 
ecosystem services (Escobedo et al., 2019; Chen et al., 2020). Moreover, 
it contributes to improving residents’ physical and mental health (WHO, 
2019; Carrus et al., 2015) and their quality of life (Banzhaf et al., 2018): 
factors that are increasingly gaining attention in cities. People’s 
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awareness results in a greater focus being placed on factors such as the 
ecological balance, a clean environment and comfort when choosing a 
place to live in urban space (Cetin, 2019). However, urbanization and its 
sustainable management have become a major challenge (Wirtz et al., 
2021). Cetin (2015, 2019) presented an urban landscape planning 
approach, with management and design taking bioclimatic comfort into 
consideration, but there has been little other work in this area. Elements 
of the natural environment play an essential role in planning new areas 
intended for development, and this should be carefully analysed using 
the multi-criteria method to minimize the potential risk of disasters and 
their consequences (Kilicoglu et al., 2020a). According to the research 
by Kilicoglu et al. (2020b), the designation of new settlement areas 
mainly concerns short-term costs based on the independent decisions of 
local authorities, with little reference to scientific study. The spatial 
distribution of UF and their associated ecological services may signifi
cantly impact on environmental justice at the city level (Selmi et al., 
2020). To obtain a comprehensive understanding of the urban envi
ronment in fast-growing cities, monitoring of the urban vegetation at 
various levels of detail and in relation to built-up areas is required. 
Current research is mostly limited to the two-dimensional (2D) spatial 
distribution of urban vegetation and buildings (Shekhar and Aryal, 
2019), while the vertical structure and the three-dimensional (3D) in
terrelationships between them are less frequently analysed (Mitchell 
et al., 2016). The lack of proper 3D indices limits the ability to manage 
landscapes at a city level effectively. 

Typically, urban vegetation monitoring is performed only in public 
spaces, using traditional ground-based inventory methods. However, 
such surveys are costly, labour intensive and infrequently updated. In 
addition, there are difficulties in obtaining continuous data over large 
areas, such as citywide, including private properties. The assessment of 
urban forest parameters is accordingly increasingly being performed 
using remote sensing data (García et al., 2018; Lafortezza and Giannico, 
2019). Researchers focus on measuring in a 2D perspective — for 
example, canopy cover, tree density and vegetation indices (VIs) — 
using multispectral satellite imagery and aerial photography (Baines 
et al., 2020; Zennure et al., 2016). One of the most widely known VIs is 
the Normalized Difference Vegetation Index (NDVI), which has been 
used for the classification of vegetation and non-vegetation areas with 
Ground Sampling Distance (GSD), from under a metre to a kilometre 
(Gao et al., 2020). Schöpfer et al. (2005) proposed a Green Index for 
urban vegetation, expressed as the ratio of the total green area (m2) to 
the size (m2) of the city, calculated using image classification and NDVI 
values (Abutaleb et al., 2020). Estimating the urban tree canopy, defined 
as the city area covered by the tree crowns (Parmehr et al., 2016), and 
detecting changes in urban forests (Kaspar et al., 2017; Zięba-Kulawik 
and Wężyk, 2019) are crucial in order to understand the extent of a 
community’s forests or single tree resources (USDA, 2019). Neverthe
less, information about the vertical structure cannot be obtained directly 
from multispectral or even hyperspectral imagery (Nelson et al., 2017). 

The 3D biometrical parameters of urban vegetation can be explored 
using point clouds (x, y, z) that are a product of Light Detection and 
Ranging (LiDAR). LiDAR is a breakthrough technology offering photon 
(laser) penetration through the tree and shrub canopy layer down to the 
ground level to obtain returns (echoes) that provide a description of the 
vertical structure of vegetation (Matasci et al., 2018; Wężyk et al., 2016). 
Various VIs derived from airborne laser scanning (ALS) and point cloud 
processing have been used to estimate the height of UF (Alexander et al., 
2018; Plowright et al., 2016), leaf area index (LAI) (Klingberg et al., 
2017) and the biomass of greenery (Dalponte et al., 2018; Singh et al., 
2015). However, the volume of tree crowns is very difficult to precisely 
measure, mostly due to their irregular shapes. The spatial distribution of 
urban VIs based on ALS LiDAR was presented for the whole of Krakow 
city in the MONIT-AIR project (Bajorek-Zydroń and Wężyk, 2016), 
pointing out municipality districts with a relatively low and those with a 
relatively high quality of life. In that study, the Canopy Height Model 
(CHM) was used to estimate the urban forest volume for the entire city, 

with the model cut-off at the mean height of the crown base. However, 
the results can be questioned due to the complex structure of UF, in 
which single trees or groups of similar trees can be treated individually. 
The tree crown base height, calculated as an average value for all the 
urban trees, seems to be an inadequate measurement. 

New types of voxel-based indices have been developed recently, 
based on LiDAR point clouds, and these have also been used for forest 
inventory purposes (Sumnall et al., 2016). Using this approach, the 
LiDAR point cloud is split along the vertical and horizontal axes to create 
volumetric pixels (3D), known as voxels, describing the spatial and 
volumetric distribution of vegetation (Hancock et al., 2017). 
Voxel-based (3D) VIs have an advantage over standard 2D indices, 
because they are based on a point cloud representing information about 
different strata of vegetation and offer the potential to precisely describe 
the occurrence of trees and shrubs in XYZ space (Pearse et al., 2019). In 
an urban environment, Casalegno et al. (2017) presented a study of a 
new generation of high-resolution, data-driven spatial techniques that 
model the 3D landscape in the research of ecological connectivity. 
Casalegno et al. (2017) compared the structural and functional con
nectivity using a traditional 2D method and 3D full-waveform ALS 
LiDAR point cloud converted into 1.5m × 1.5m x 0.5 m (x, y, z) voxel to 
calculate the volume of urban vegetation. The 3D spatial analyses 
showed greater accuracy than traditional 2D raster maps, especially 
regarding the fragmentation of UF. Anderson et al. (2018) also presented 
the visualization and analysis of vegetation by voxels. However, the 
technique is not yet widespread in architectural and planning processes, 
because the products generated are often too complicated for 
decision-makers and city planners to use. Transforming models into 
easy-to-interpret indices appears an ideal solution to implement them at 
a city’s decision-making level. 

The Grand Duchy of Luxembourg offers a fully open data platform for 
scientists and citizens aspiring to become smart and sustainable. The 
capital of the country — Luxembourg City — is a developed centre at the 
heart of Europe, and an important business hub. It is subject to pro
gressive urbanization, which may threaten sustainable development by 
replacing urban green spaces with built-up areas. The urgent challenges 
faced by urban planners in Luxembourg include optimizing the use of 
undeveloped land stock for construction needs, and identifying green 
zones in the urban landscape. The rapid development of cities raises an 
essential question about how built-up areas affect the prevailing struc
ture of vegetation in urban areas. In the context of these changes, the 
monitoring of green spaces and of the spread of built-up regions appears 
necessary. The concept of spatial indices based on 3D ALS point clouds 
allows for a synthetic representation of spatial features such as buildings 
and vegetation volumes, and their 3D density. It also helps us to analyse 
the interactions between the areas covered by greenery and the 
increasingly larger built-up areas in cities. The use of voxels as the basis 
for spatial indices describing the vegetation structure is the unique 
feature of such analyses. 

In the current paper, we propose a 3D spatial indices to monitor the 
volume of vegetation and the built-up areas of Luxembourg City. We use 
a voxel-based approach and 3D buildings models generated from an ALS 
LiDAR point cloud. Our overarching goal is to determine the relationship 
in order to develop 3D indices that can assist in future recommendations 
for supporting the city districts’ sustainable development and presenting 
the current state of liveability. We compared the results of 3D GIS spatial 
analyses with population statistics to find out the environmental situa
tion of residents as an essential component of the quality of life and to 
indicate possible deficits of vegetation in urban space at the district 
level, in a grid cell of 100 m or in relation to individual buildings. 

For the purposes of the study, we defined the following key 
objectives:  

1) to estimate the volume of urban vegetation using a voxel-based 
approach and the volume of buildings based on ALS LiDAR 3D 
models; 
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2) to determine the distribution of urban forests (UF) in 3D space and to 
provide city planners with knowledge useful to maintain or improve 
the environmental friendliness of the city;  

3) to define 3D indices for the Vegetation 3D Density Index (V3DI) and 
Vegetation Volume to Building Volume Index (VV2BV), to study the 
spatial distribution of these features; 

4) to determine the vegetation volume per resident and make recom
mendations for the future spatial distribution of urban greenery in 
the context of existing infrastructure;  

5) to investigate the ratio of 3D building density and 3D vegetation 
density at the city scale to indicate the direction for future sustain
able city development. 

2. Material and methods 

2.1. Study area 

The Grand Duchy of Luxembourg is a landlocked country in Western 
Europe, bordered by Germany, Belgium and France. Luxembourg is 
characterized by a developed economy and one of the world’s highest 
population growth rates, placing major pressure on its territory (Deco
ville and Feltgen, 2018). According to STATEC data (National Institute 
of Statistics and Economic Studies of the Grand Duchy of Luxembourg), 
626,108 people lived in Luxembourg in 2020, including 122,273 resi
dents in the capital (STATEC, 2020). Projections suggest that Lux
embourg’s population may exceed one million by 2080, meaning that 
the percentage growth rate will stay at the level of 1.16 per cent over the 
next 60 years (EUROSTAT, 2017). Luxembourg City as a main place to 

work for citizens and cross-borders workers (200,000 per day) is the 
magnetic centre of the country. These hyper-concentrated flows and the 
complexity of urban green areas were the principal reasons to choose 
Luxembourg City for the study. The city’s total area is 51 km2, divided 
into 21 districts according to the cadastre database (Fig. 1). The 
topography of the city is very complex and heterogeneous, as it is 
located on different height levels between the two valleys of the Alzette 
and Petrusse rivers. The municipal forests cover about 20 per cent of the 
city (1,055 ha) and are managed by the Forest Department and Nature 
Conservation Agency (VDL, 2014). The city also has its own Park 
Department, responsible for maintaining all urban green spaces and 
seven public parks (141 ha), covering about 3 per cent of Luxembourg 
City (PAG, 2020). 

2.2. Datasets 

In the current study, we used LiDAR point clouds from an airborne 
laser scanning (ALS) programme for the Grand Duchy of Luxembourg 
(free access: Luxembourg Government’s Open Data; data.public.lu), 
obtained in February 2019. This is ‘leaf-off data’, meaning that there was 
no foliage on the canopy of deciduous trees. Leaf-off ALS point cloud 
better describes the diversity of crown shapes than the leaf-on equiva
lent, through the dipper penetration of the overtopped canopy and 
detection of lower branches (Davison et al., 2020). Luxembourg City’s 
mean density of the ALS point cloud was 25 pts/m2 (RMSE: XY = 6 cm; Z 
= 3 cm). The acquired ALS LiDAR point clouds (LAZ) were classified 
according to the ASPRS standard (USGS, 2020). 

The cadastral shapefiles (boundaries of the city, districts and 

Fig. 1. Location of the study area: (a) Top left: location on the map of Europe, bottom left: Grand Duchy of Luxembourg borders. (b) Aerial orthophoto map (CIR) of 
Luxembourg City with administrative borders. 
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cadastral parcels in 2019) were used to estimate the volume of vegeta
tion for urban units and per resident. The population data for 
Luxembourg City in 2020 was compiled based on an extract from the 
national register (National Registry of Natural Persons), which indicates 
the respective number of registered persons per post code. We combined 
the available open data: point layer with georeferenced postal addresses 
and population per post code database. Additionally, in order to esti
mate the 2D area of vegetation (i.e., the biologically active surfaces in 
the city), we used colour-infrared (CIR) orthophotos (0.20 m GSD, ac
quired on 22 August 2019, data.public.lu). 

2.3. Methods 

The development of the 3D indices of Luxembourg City’s urban form 
initially required analysing the ALS LiDAR point clouds to estimate the 
volume of vegetation and buildings. The data obtained was subsequently 
fused to compute the indices of Vegetation 3D Density Index (V3DI), 
Buildings 3D Density Index (B3DI) and ratio of the Vegetation Volume to 
Building Volume (VV2BV). The proposed 3D indices were also analysed 
in terms of the spatial distribution of the Luxembourg City population. 
The workflow of the performed analysis is illustrated in Fig. 2. 

In addition to analysing 3D LiDAR point clouds to estimate the vol
ume of vegetation, we also examined the 2D area covered by trees and 
shrubs. For this purpose, we used CIR orthophotos with spectral 
reflectance in the near-infrared (NIR) and red band to calculate the 
Normalized Difference Vegetation Index (NDVI), which has a value 
range from -1 to 1. Because green vegetation has a high reflectance in 
NIR and a low value in red (absorption by chlorophyll), the NDVI value 
for vegetated areas is nearly +1.0. The bare soil has similar reflectance 
in NIR and red, so the NDVI value is close to 0.0. We created classes 
based on the NDVI value divided into non-vegetation (-1.0 ≥ NDVI >
0.3) and 2D vegetation (0.3 ≤ NDVI ≤ 1.0). 

2.3.1. Estimation of the urban volume of vegetation and buildings 
We estimated the urban volume using ALS LiDAR point clouds 

(ASPRS standard) classified as: ground (2), low vegetation (3), medium 
vegetation (4), high vegetation (5) and buildings (6). Urban vegetation 
was classified by height above the ground, into low vegetation (1.0 m – 
2.5 m), medium vegetation (2.5 m – 5.0 m) and high vegetation (> 5.0 
m). 

We used all the vegetation classes to generate voxels, showing the 3D 
arrangement of the urban vegetation structure. The voxel size is defined 
by the user and depends on the density of the data and the desired level 
of abstraction. In our study, the size of the voxels corresponds to 0.5m ×
0.5m x 0.5 m and is based on the ALS point cloud density (Fig. 3), as 
proposed Hancock et al. (2017) and Crespo-Peremarch et al. (2018). The 
voxelization process was carried out using RStudio and the lidR package: 
Airborne LiDAR Data Manipulation and Visualization for Forestry Ap
plications with the function lasvoxelize, which generates voxels (cubic 
pixels) from a LiDAR point cloud. The required steps comprised voxe
lization and multiplication of the voxel’s count by the volume of a single 
voxel to compute the total volume of vegetation. We computed the 
voxels that contain all the input points. The number of voxels is directly 
proportional to the vegetation volume, calculated by multiplying the 
number of voxels by the volume of one voxel (described by the resolu
tion used as the input to the function). 

The results are presented as a 0.5 m GSD (ground sample distance) 
raster and selected sample plots as the 3D visualizations. The 2D maps 
show the sum of voxels placed above each of the grid’s rectangular re
gions to calculate the entire volume of the analysed greenery. The 3D 

Fig. 2. Flowchart of the indices calculation based on LiDAR point cloud (2019).  

Fig. 3. Process of voxelization: ALS LiDAR point cloud and voxels (size 0.5 × 0.5 × 0.5 m).  
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visualization shows the original LiDAR point clouds and the calculated 
voxels to confirm visually that the 3D shape matches the expectations. 
The volume of vegetation is also presented in raster as a sum of voxels 
and in the grid with cells of a spatial resolution of 100 m. A sensitivity 
analysis was performed for different cells to determine the appropriate 
grid size (i.e., 50 m, 75 m, 100 m, 200 m and 300 m). 

To determine the volume of buildings [m3] in Luxembourg City, we 
used ALS point clouds from the classes 2 (ground) and 6 (buildings), to 
extract the footprints of buildings. We then generated digital height 
models such as the Digital Surface Model (DSM) of buildings, Digital 
Terrain Model (DTM) and normalized Digital Surface Model of buildings 
(nDSM_buildings), as a difference of rasters that represents the relative 
heights of buildings. Models were generated with a 0.5 m GSD grid using 
Area Processor in FUSION software, USDA Forest Service (McGaughey, 
2015). To estimate the built-up area (classified into residential and 
non-residential uses) we used the proposed volumetric descriptor of 
Building 3D Density Index (B3DI). For further details on these compu
tations, see Zięba-Kulawik et al. (2020). 

2.3.2. 3D vegetation indices 
We propose the Vegetation 3D Density Index (V3DI) as a way to 

quantify urban forests using voxels [m3] based on ALS LiDAR point 
clouds at the city scale, expressed as (Eq. (1)): 

V3DI =
VV

S
=

∑m
i=1 Vvox

S
(1)  

where VV indicates the total volume of vegetation [m3], Vvox the volume 
of a single voxel in AOI, m the number of voxels (low, medium and 
height vegetation) and S the area of investigation [m2]. 

For Luxembourg City, we used the voxel-based method to estimate 
the total vegetation volume in 2019. The process of voxelization (i.e., 
converting the point cloud data into volume elements in a 3D array set in 
the computer memory) was based on classifications of ALS point clouds 
(vegetation classes: 3, 4, 5; ASPRS). The volume of vegetation was 
calculated in a raster (GSD 0.5 m) and in a grid with a cell size of 100 m, 
as the sum of voxels. The V3DI was calculated at the city and the district 
scale, and per cadastral parcel in the city. 

Other volumetric concepts for the spatial 3D urban structure express 
the index of volume of vegetation to the total volume of vegetation and 
the buildings volume (Tompalski, 2012). The Vegetation Volume to 
Building Volume (VV2BV%) is expressed as (Eq. (2)): 

VV2BV% =
VV

VB + VV
∗ 100 (2)  

where VV is the total volume of vegetation and VB the total volume of 
buildings. 

The values of the VV2BV index can be presented as percentage data. 

They can be calculated for any areas, — such as city districts — for grids 
with specific cell size or for individual objects (taking into account the 
zones around them, the so-called equidistant with a given radius). The 
VV2BV includes low, medium and high vegetation as a sum of voxel 
volumes and single building volume. 

This index was developed as four variants:  

a) VV2BV CELL (%) - the index value is determined for a grid with 100 m 
cell size;  

b) VV2BVBUILDING (%) - the index value for each building individually at 
100 m equidistant;  

c) VV2BVPARCEL(%) - the index for each cadastral parcel;  
d) VV2BVDISTRICT(%) - the index for Luxembourg City districts. 

The VV2BVCELL(%) can be explained by imagining the single cell and 
how the characteristic of urban 3D forms affects the index’s value. In a 
situation when buildings completely dominate in a cell, the VV2BV 
index will have values close to 0 per cent. Cells with a low value for the 
VV2BV index mean that the volume of buildings is significantly larger 
than that of the vegetation. We term these ‘low index cells’. By contrast, 
cells with a high value for the index mean that the volume of vegetation 
is larger than that of buildings, and we term these ‘high index cells’. In a 
scenario in which the index is close to 50 per cent, the proportion of 
buildings to vegetation is well balanced, and if there is only one small 
building surrounded by a forest in one cell, the VV2BV index will have a 
value close to 100 per cent. To identify cells, plots or districts with low 
and high values for the VV2BV index, we used the natural breaks (Jenks) 
classification method to determine the intervals objectively. 

Based on urban volume and population data assigned to each post 
code in Luxembourg City, we estimated the volume of vegetation per 
resident (VPRV) and the volume of buildings per resident (VPRB) for 
each district in the city and in a grid (100 m). These estimates were used 
to quantify the population exposure to vegetation in different parts of 
the city, and to make recommendations for the future distribution of 
urban greenery in the context of existing buildings. 

2.3.3. Plot scale validation 
An accuracy assessment of the voxel-based approach was carried out 

by selecting 50 sample trees throughout the entire city, taking into ac
count the proportion of coniferous trees (20 per cent) and deciduous 
trees (80 per cent) linked to the characteristics of urban vegetation. 
Sample trees were located in diverse environments, including forests, 
parks, gardens, scrubland, roadside, solitary locations or hedges. The 
volume of a single tree crown was estimated by using voxels (0.5 m) and 
by the traditional method of fitting regular geometry similar to the 
crown shape and calculating the volume of the solid (Korhonen et al., 
2013; Liu et al., 2006; Wezyk et al., 2008). For each tree, we measured 

Fig. 4. Fitting the shape of the tree crown to the cone (a) and ellipsoid (b) vs. voxels (0.5 m) generated on a point cloud of the conifer and deciduous tree crown.  
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parameters such as total height (H), crown base height (CBH) and crown 
diameter (CD) in two perpendicular directions (N-S/W-E). Alternatively, 
using ALS point cloud and a cross-section tool (MicroStation V8i, 
Bentley), it was possible to fit the geometric solid into the points as 
signal returns from the tree crown (Fig. 4). The average point cloud 
density in the vegetation class ranged from 25 to 114 pts/m2, allowing 
for precise measurements and the best possible matching of geometric 
solids. However, in the case of irregular crowns, this was notably diffi
cult. The volume of coniferous and deciduous trees was calculated using 
the cone or ellipsoid empirical formulas, respectively, adjusting the 
variables to the parameters of trees (Estornell Borja Velázquez-Martí 
et al., 2018; Meng et al., 2018; Wężyk et al., 2012). The agreements 
between the traditional geometric solids (used as ground truth) and the 
ALS-generated voxels were visually compared for each sample tree to 
assess the relative information content of the different methods, and the 
overall accuracy was calculated. 

Due to the fact that CHM is often used to analyse the height and 
volume of vegetation, we checked that the results of the voxels were 
similar to this approach when considering volume estimation on a 
citywide scale and for the sample plots. The processing was started by 
generating the CHM from the point cloud for the classes of ground (2) 
and vegetation (3, 4, 5) with 0.5 m resolution using Area Processor in 
FUSION software, ver. 3.70 (USDA Forest Service). The volume of 
vegetation on CHM was calculated using ArcGIS (Esri) with the Surface 
Volume tool, which calculates the volume of the region between a sur
face and a reference plane. The average tree crown base height was 
approximately 6.0 m in the scale of the entire city (computed from 200 
sample plots, as described in the paragraph below), so the cut-off plane 

was set at this level, and the volume of vegetation based on CHM was 
calculated above this plane. 

In addition to analysing the entire city, we also selected sample plots 
in order to focus on the specificity of individual groups of trees. We 
created 200 circular sample plots (Nowak et al., 2003) with a radius of 
11.28 m (400 m2 area) in Luxembourg City, and tested the relationship 
between the above-described methods. To select the plots, we followed 
the Urban Forest Inventory guidelines (USDA Forest Service, 2019), 
which indicate that circular sample plots with the area of 400 m2 are 
appropriate to estimate stand volume, tree density and ecosystem ser
vices (Ghiasi et al., 2020; Nowak et al., 2003, 2008). The sample plot 
locations were selected randomly within the urban forests layer, and 
defined by two features: height (H) and canopy cover (CC), calculated as 
a 10.0 m raster map based on ALS LiDAR point clouds using FUSION 
(McGaughey, 2015). Each variable was split into classes, with H into five 
classes with a 5.0 m range (10–35 m) and CC into four classes using a 25 
per cent range. To compare the match between CHM and the V3DI 
calculation based on voxel methods, we fitted a simple linear regression 
model for the values produced for sample plots, the estimated parame
ters and the coefficient of determination to describe how closely the 
methods match. We subsequently performed the same analysis on the 
sample plots’ subsets to check whether the methods generate better 
results in specific conditions. 

3. Results 

The results of the analyses are presented at different levels of detail: 
for the entire city, divided into districts, divided into cadastral parcels 

Fig. 5. Map of urban vegetation (H > 1.0 m) in Luxembourg City based on ALS LiDAR (2019): (a) Ville Haute district – city centre; (b) Rollingergrund and Eich – 
northern districts. 
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and in a 100 m raster. The frequency plots (30 bins) had the same dis
tribution for the tested cell sizes (50 m, 75 m and 100 m), except the 200 
m and 300 m sample, where a local concentration appears for the vol
ume of vegetation. We observe a significant difference between the first 
and second bin for all distributions. The difference is especially impor
tant for the 50 m cell size, where the ratio of the first to the second is 

higher than 2:1. The same hotspots appear in terms of vegetation volume 
in all five presented maps (Appendix A, Fig. A1). However, the maps 
with a resolution of 200 m and 300 m are very coarse and tend to 
aggregate areas that appear clearly separated at the 100 m cell size. 

In terms of the land cover structure, based on CIR orthophotos the 
analysis shows that 2,783 ha (54 per cent of the entire of Luxembourg 

Fig. 6. Map of the vegetation volume (VV; GSD 0.5 m) and raster (100 m) as the sum volume of voxels.  

Fig. 7. Map of 3D spatial distribution of VV (100 m raster, 3D view of Luxembourg City).  
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City) constituted 2D biologically active surfaces (including grass, 
meadows, agricultural crops and trees) in 2019. Meanwhile, based on 
the ALS LiDAR point cloud, we calculated that 3D urban vegetation 

(height > 1.0 m) covered 1,689 ha, or some 33 per cent of the entire 
administrative area of Luxembourg City (Fig. 5). 

3.1. Volume of vegetation 

During the project, we developed the spatial database of the volume 
of vegetation (VV) in 2019, and maps representing the distribution of VV 
(GSD 0.5 m and 100 m; Figs. 6 and 7 ). We counted all the vegetation 
voxels inside the study area, assuming that a single voxel was 0.125 m3 

(0.5 m). The study shows that total volume of vegetation (H > 1.0 m) in 
Luxembourg City was approximately 40 million m3. 

We used data for sample trees and simple geometric models to 
calculate the reference volume, which was compared with the voxel- 
based method. We achieved a relatively high correlation (R2 = 0.96) 
and Mean Absolute Percentage Error = 19.9 per cent (Fig. 8). As 
observed, the more regular and close to a cone or ellipsoid the shape of 
the crown, the smaller the difference. Moreover, two trees with a similar 
crown volume calculated by the voxel method could have different 
volumes calculated with the solids approach. The shape of the crowns 
differed significantly, which resulted in a worse fit of the geometric 
figure. The volume calculated from the voxels was always lower than 
from the calculated formula for geometric solids for each sample tree. 

The results are presented below for the vegetation volume obtained 
from 200 sample plots located in Luxembourg City using different ap
proaches: voxel and CHM based. A visual interpretation of the methods 
is provided in Fig. 9. Detailed results for the randomly selected plots for 
both methods are attached in Appendix B. 

Fig. 8. Comparison of VV based on geometric solid approach with volume 
derived from the voxels. 

Fig. 9. Visualization of the results of ALS LiDAR processing: (a) ALS point cloud colorized by RGB aerial photographs; (b) ALS point cloud colorized by elevation 
above ground; (c) voxels (0.5 m); (d) Canopy Height Model (GSD 0.5 m; front view) with grey line representing the crown base height; (e) vegetation volume based 
on voxels (0.5 m) - top view; (f) CHM elevation (top view). 
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Fig. 10. Map of spatial distribution of Vegetation 3D Density Index (V3DI) per cadastral parcel and per Luxembourg City districts.  

Fig. 11. Map of spatial distribution of VV2BVBUILDING(%) and VV2BVCELL(%) for Luxembourg City in 2019.  
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Assuming that the two measurement methods (voxel and CHM) were 
yielding exactly the same results, the linear regression would have a 
slope equal to 1 and the intercept equal to 0, with the coefficient of 1.0. 
Comparing the values generated by the two models, the measurements 
delivered different results, with 40 per cent of the variance in the CHM 
being explained by the variance in the voxel. By analysing each cover 
class separately, it was possible to conclude that the two methods have a 
relatively good match for class 4, with a canopy cover of 0–25 per cent 
(R2 = 0.61). For this class, the slope of 3.63 shows that the CHM is 
producing much larger estimations of vegetation volume for the specific 
sample plot. Nevertheless, it is only a difference of scale, as the intercept 
is relatively small with a value of 0.01. For the other cover classes, 1 
(75–100 per cent), 2 (50–75 per cent) and 3 (25–50 per cent), the co
efficients of determination did not indicate essential correlation with R2 

values, which were equal to 0.03, 0.07 and 0.24, respectively. The two 
models agree on the relative values computed; that is, if sample plot A 
has a V3DI double that of sample plot B in CHM, it will have a similar 
proportional difference in the voxel. A possible explanation for the dif
ference can be easily visualized by looking at the example where trees 
are located close to each other (Fig. 9). The CHM method will generate 
an overestimated V3DI value, as the tree models combine to form a 
cumulative volume. The voxel approach takes the individual tree 
structure into consideration, while CHM estimates the value for the 
entire model of connected trees, most often with an average crown base 
cut-off for the whole area, not for each tree or group of trees 
independently. 

In view of the above, the volume of vegetation calculated by the 
CHM model for a larger area provides different results depending on the 

cut-off height of the model (mean height of the crown base). For 
Luxembourg City, where the average tree crown base height was 6.0 m, 
the volume of vegetation based on CHM was estimated at 57 million m3. 

3.2. Vegetation 3D Density Index (V3DI) 

The overall value of the Vegetation 3D Density Index (V3DI) calcu
lated for Luxembourg City and based on the voxel approach was 0.77 
m3/m2. The greenest districts with the highest V3DI (> 1.0) were 
Rollingergrund, Eich and Dommeldange, located towards the northern 
part of the city where forests are the dominant land cover class. De
ficiencies in urban greenery, with V3DI < 0.40, can be observed in the 
southern city districts, such as Merl-Sud, Hollerich, Merl-Nord and 
Cessange, which are the main residential areas of Luxembourg. The 
vegetation volume analysis for individual parcels shows that 3.5 per cent 
of them had values of V3DI > 2.0, implying a high proportion of vege
tation. These are usually large parcels on the outskirts of the city for 
forestry purposes. For 17.3 per cent of the parcels, the V3DI had a value 
between 0.5 and 1.0, while 79.2 per cent had a V3DI < 0.5, implying a 
low proportion of vegetation volume. The latter was noticeable mainly 
in the southern parts of the city that are already the most urbanized 
(Merl), currently under development (Gasperich) or still presenting 
more suburban characteristics with the presence of agricultural fields in 
Cessange (Fig. 10). 

3.3. Vegetation Volume to Building Volume (VV2BV) 

The Vegetation Volume to Building Volume (VV2BV(%)) defines the 
volume of vegetation per a given part of the city space in relation to the 
volume occupied by buildings. The mean value of the VV2BV(%) index 
calculated for the entire of Luxembourg City was 41.6 per cent. We 
valorized the city area by dividing it into a 100 m grid (VV2BVCELL(%)), 
and to assess the natural conditions for every single building, we used 
the VV2BVBUILDING(%) index (Fig. 11). For each cadastral parcel, we 
calculated VV2BV PARCEL(%) and for city-wide districts, the VV2BV DIS

TRICT(%) index (Fig. 12). 
For Luxembourg City, we found ~34 per cent of low index cells 

(VV2BV < 29.6 per cent) and ~53 per cent of high index ones (VV2BV >
74 per cent), meaning that most cells had a positive building-to- 

Fig. 12. Map of spatial distribution of VV2BVPARCEL(%) and VV2BVDISTRICT(%).  

Table 1 
Statistics of VV2BVCELL(%) index.  

Natural Breaks Break values [%] Elements in class 

1 0.0 – 29.6 1,782 
2 29.7 – 74.0 651 
3 74.1 – 100.0 2,781  

Sum 5,214  
Mean 61.8  
Median 86.5  
Std. dev. 41.4  
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vegetation ratio. The remaining cells (12 per cent) were in a state of 
near-equilibrium for the index (29.6 per cent < VV2BV < 74 per cent). 
Table 1 shows the count for elements in the classes (Jenks natural 
breaks) of mean, median and standard deviation for the VV2BVCELL(%) 

index. With this classification, the high and low index cells values ac
count for 88 per cent of the entire analysis. 

Analysing parcels across Luxembourg City, our study shows that ~68 
per cent of them were characterized by a low index (VV2BV < 19.7 per 
cent). Only ~23 per cent of them can be classified as high index cells 
(VV2BV > 66.6 per cent), indicating a significant volume of greenery 
relative to that of buildings. Parcels with the highest VV2BV index (close 
to 100 per cent) account for 18 per cent — usually wide forest areas with 
detached and scattered houses. The statistics of VV2BV in the ‘cadastral 
parcel’ variant are presented in Table 2. 

The spatial distribution of VV2BV at the city districts level indicated 
high values for the VV2BV index in the districts of Kockelscheuer, 
Rollingergrund, Eich, Pulvermuehl and Dommeldange. By contrast, 
districts with a low index (VV2BV < 21 per cent) constituted 38 per cent 
and include Hollerich, Ville Haute, Grund, Merl-Nord, Merl-Sud, Basse 

Table 2 
Statistics of VV2BVPARCEL(%) index.  

Natural Breaks Break values [%] Elements in class 

1 0.0 – 19.7 18,251 
2 19.8 – 66.5 2,458 
3 66.6 – 100.0 6,246  

Sum 26,955  
Mean 28.6  
Median 5.8  
Std. dev. 39.5  

Fig. 13. Diagram of VV2BVDISTRICT(%).  

Fig. 14. Map of the VV per resident in Luxembourg City: districts (left) and as a 100 m raster (right).  
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Petrusse, Limpertsberg and Bonnevoie. These are districts in the city 
centre, as well as residential and office areas, in which the number of 
new buildings and increasing green infrastructure should be considered 
(Fig. 13). 

3.4. Volume of vegetation and buildings per resident 

The overall volume of vegetation per resident (VPRV) for 
Luxembourg City was approximately 328 m3/dweller. The highest 
exposure to vegetation volume for the population was in the Kock
elscheuer and Rollingergrund districts (VPRV > 2000 m3/resident). 
These are associated with vast areas of urban forests with different 
canopy cover and stand age. A satisfactory level of VPRV (> 300 m3/ 
resident) in relation to other districts was maintained in Dommeldange, 
Pulvermuehl, Eich, Hamm, Clausen, Gasperich, Cessange, Neudorf and 

Weimerskirch. In other districts, particular emphasis should be placed 
on new tree planting along with the increasing number of inhabitants. 
The lowest VPRV index (< 40 m3/resident) was in the Hollerich district, 
which is related to this area having one of the highest development rates, 
and thus the largest number of inhabitants (Fig. 14). 

The volume of buildings per resident (VPRB) was initially calculated 
for all building types in the city districts and in a 100 m raster (Fig. 15). 
The highest values (VPRB > 900 m3/resident) were found for neigh
bourhoods with offices, business facilities and hotels (Gasperich, Neu
dorf and Ville Haute). For residential buildings, the values were between 
116 m3/resident in Kockelscheuer and 812 m3/resident in the Ville 
Haute district (Appendix C). The high values in the centre are due to 
parcels with large establishments classified in the cadastre database as 
residential (e.g. hotels and warehouses), with a small number of people 
per postal address (about three people). Other districts had a similar 

Fig. 15. Map of the volume of buildings per resident for Luxembourg City: districts and as a 100 m grid.  

Fig. 16. Correlation among driving features. 
Note: *means the correlation coefficient is significant at p-level < 0.05. 
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VPRB index, with a median among all districts of 250 m3/resident. 
In Fig. 16, we present the correlation between the driving features. 

The results show that the vegetation volume is weakly negatively cor
rected with the building volume and the population count (coefficients 
equal to -0.39 and -0.29, respectively). This indicates that as the vege
tation volume increases, the building volume and the population count 
decrease. By comparison, the building volume is moderately positively 
correlated with the population count (coefficient equals 0.52). 

4. Discussions 

Urban forests show considerable spatial complexity, and their dis
tribution can be observed in both 2D and 3D space. The volume of trees 
is an essential variable in forest economy and urban forest management, 
although the non-solid structure of tree crowns poses challenges to 
straightforward measurement using traditional field inventories. Due to 
the difficulties in computing 3D UF, many studies have focused on 
mapping using remote sensing observations and 2D indices, ignoring the 
vertical structure of urban forests. In the 2D approach, vegetation is 
treated as evenly distributed, regardless of the cubature (as shown in 
Fig. 5), and it is not surprising that this interpretation is distorted. 
Indices such as NDVI account for the presence or absence of vegetation, 
but do not show the 3D structure, which is especially important in urban 
areas where layers of vegetation often overlap each other. Research into 
greenery in different cities has demonstrated that a higher percentage of 
the green landscape is observed in 2D than in 3D structures, because the 
most significant part of the greenery comprises lawns (Casalegno et al., 
2017). Using LiDAR, a technology that provides 3D information, we are 
able to describe the volume of vegetation in the urban fabric. The 3D 
methods allow for the examination of heterogeneous vertical structures 
with undergrowth. However, the 2D mapping methods involve a lower 
cost and could be useful for analysis of less-differentiated vegetation 
structures — mainly biologically active surfaces — without division into 
vertical objects. In particular, using satellite imagery and 2D indices can 
be helpful for greenery management, change detection and assessing 
disease (in simple mapping), and for spatial planning in cities. The 3D 
method offers an advantage in the measurement of urban ecosystems, 
because of the resolution and vertical information that allow recon
structing the real form of UF. This is especially important for calculating 
health benefits or other ecosystem services (Casalegno et al., 2017). A 
study of vegetation connectivity in urban landscapes has shown that 3D 
models are more realistic than 2D because all layers of vegetation are 
connected in the latter case, which is not always true (Casalegno et al., 
2017). Some studies have demonstrated the utility of a voxel-based 
method for forest inventory, as it can provide greater predictive power 
than standard metrics (Pearse et al., 2019). The 3D methods are not 
invasive and can be implemented for urban trees management on pri
vate properties that are difficult to access for measurement, but are a 
very significant source of ecosystem services in cities (Klobucar et al., 
2021). However, both methods transversely connected could remain in 
use for vegetation studies, as both have disadvantages that could be 
minimized through complementarity. 

There are many methods available to calculate the volume of tree 
crowns. Some studies suggest approaches for estimation of the volume of 
urban forests using the CHM computed from an ALS LiDAR point cloud 
of vegetation and information about the average height of the tree crown 
base (Wężyk and Miodońska, 2016). Our analyses show that the volume 
based on the CHM model for the entire city of Luxembourg was 
approximately 42.5 per cent higher than the volume calculated based on 
the voxel approach. This may indicate an overestimation when using the 
CHM method, due to the cut-off of the model at a suggested average 
crown base height. Nevertheless, the average value in urban forests does 
not show a considerable variation in the vegetation structure, and the 
CHM model also has other drawbacks in this case. There are often 
challenges in applying various methods, even at a basic level, because 
the actual crown volume remains unknown. Hence, it is difficult to 

analyse the accuracy of the assessment, and this is frequently based on 
references or the expected variability of repeated observations (Zhu 
et al., 2021). Moreover, a direct measurement of crown volume in the 
field is unfeasible, but other crown variables (length, base height, 
diameter, radius and projected area) are used as support (Korhonen 
et al., 2013). To assess the accuracy of the applied method, in the current 
study we used a relatively easy reconstruction of the tree crown through 
a simple approximation of the geometric shape and estimating the vol
ume. This is the most commonly used method, especially for large areas, 
although it requires the generalization of irregular crown shapes. The 
choice of the appropriate form for the solid is relatively subjective, and it 
depends on the tree species, treatments performed in the past, eco-types, 
biometric features and the researcher’s assessment (Coder, 2000). 
However, it is still questionable whether the methods that define the tree 
crown as the form surrounding it — ignoring the tiny cavities in the 
surface — are more precise than a point cloud. 

One of the major challenges concerning the voxels method based on 
an ALS point cloud is understanding the green space exploration concept 
and the appropriate size of voxels. Human perception and how we 
precisely define the vegetation volume in an urban environment at 
different levels is debated in research and, for this reason, difficult to 
compare and analyse. Lecigne et al. (2018) and Yan et al. (2019) showed 
that the voxelization process is conducive to determining the volume of 
irregular tree crowns. However, it is worth emphasizing that the selec
tion of the voxel size substantially influences the analysis and results of 
both the crown structure and the volume. Therefore, a compromise 
needs to be found in selecting the optimal voxel parameters. In addition, 
for the voxel-based method, the period of LiDAR data acquisition is also 
significant. The results of the volume calculations are more reliable 
when using LiDAR point clouds obtained in the leaf-off period (from 
November to April, in Europe), during which most native deciduous 
trees are leafless (Wężyk et al., 2016). This allows the laser photons to 
penetrate almost freely into the lower branches and limbs. Sometimes, 
the trunk, undergrowth and even the ground are freely accessible. The 
advantage of laser scanning during the leaf-off period is, above all, the 
precise determination of the ground and the vertical structure of trees, 
including the detection of the base of the crown, which is crucial for the 
accurate calculation of the crown volume (based on voxels). In the case 
of ALS data for Luxembourg (obtained in February in the leaf-off 
period), we had a highly dense point cloud with the characteristics of 
the first return of 25 per 1 m2. This means that on average, the crown 
was sampled every 20 × 20 cm, and the likelihood of hitting twigs was 
very high. Each laser beam had several echoes (returns), which enabled 
the reconstruction of the 3D crown structure and precise counting of 
voxels. 

In recent studies, LiDAR data has appeared to offer the most reliable 
and consistent results as reference data when analysing the crown vol
ume (Korhonen et al., 2013; Miranda-Fuentes et al., 2015; Yan et al., 
2019). However, field measurements are still important as references 
(Zhu et al., 2021). Fernández-Sarría et al. (2013) used ground-level 
measurements and geometric models as benchmarks when estimating 
individual tree volume using a terrestrial point cloud (the convex hull 
method and voxel-based method) with coefficients of determination 
greater than 0.78. To test the accuracy of various methods (for example 
CHM and voxels) or to show a tendency to overestimate or underesti
mate the calculation of the vegetation volume, it would be necessary to 
make accurate 3D models of trees on sample plots, for example by using 
terrestrial or mobile laser scanning (TLS, MLS). Du et al. (2019) pro
posed a skeleton-based approach to accurately three-dimensionally 
reconstruct tree branches from point clouds for individual trees. 
Models can be used to precisely estimate tree attributes and help 
determine the accuracy of other methods. In the future, 3D models of 
trees should be produced in various classes of stand cover and for 
different tree species. The calculation of the exact volume of trees based 
on TLS point clouds and precise 3D modelling has already been carried 
out by Wężyk et al. (2015); however, on individual monumental trees. 
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At a larger scale, some studies — mainly in forestry — prove the greater 
ability of TLS data to penetrate the lower parts of ‘more open’ canopy 
vertical layers (Hilker et al., 2010). Insufficient detection of the inferior 
branches of trees by ALS can cause an underestimation of crown volume 
by up to 24.7 per cent on average compared with field measurement 
(Korhonen et al., 2013). This tendency was confirmed by Estornell et al. 
(2015) for medium point density clouds of around 4 pts/m2. However, 
ALS data are better for assessing the upper canopy, especially for 
large-scale studies, and can be more easily acquired than TLS data. The 
rapid development of laser scanning with the use of mobile hand-held 
scanners or unmanned aerial vehicles (UAVs) in cities could be a solu
tion to fill the data gaps. The fusion of 3D point clouds and geospatial 
data should be given greater consideration with regard to urban forests. 

In the current study, we have presented 3D indices to describe urban 
forests and the ratio between vegetation and the overall urban forms in 
terms of distribution: respectively, the Vegetation 3D Density Index 
(V3DI) and the Vegetation Volume to Building Volume (VV2BV), 
conceptually referring to the 2D Green Index (Schöpfer et al., 2005; 
Senanayake et al., 2013). Schöpfer et al. (2005) proposed the factors for 
a ‘weighted green quality’, stretched into a range of 0 and 1 in a 100 m 
GSD raster. The range of values below 0.25 indicate low green quality (i. 
e., respectively, a high percentage of multi-story buildings or low dis
tance), moderate green quality takes the value 0.25 to 0.5, high green 
quality 0.5 to 0.75 and very high green quality 0.75 to- 1. In line with 
Schöpfer’s green quality weights, in Luxembourg City — based on 3D 
indices — over 55 per cent of the tested cells (100 m) would indicate 
high green quality and about 30 per cent low green quality. Research 
conducted by Russo and Cirella (2018) suggests an ideal vegetation 
value of 50 m2 per city inhabitant, with at least 9 m2 of green space per 
individual. In its concern for public health, the World Health Organi
zation (WHO, 2019) produced a document on the subject, stating that 
every city should have a minimum of 9 m2 of green space per person. An 
optimal amount would be between 10 and 15 m2 per inhabitant (for 
example, the Italian planning law requires 18 m2 of green area per 
person in new developments). However, the canopy cover or urban 
green per resident calculated by a 2D approach (based on satellite im
agery, orthophotos RGB/CIR or NDVI) is a more straightforward method 
than 3D, and it does not sufficiently explain the real structure and vol
ume of vegetation (Campagnaro et al., 2019). Accordingly, new indices 
are necessary in order to understand the urban structure in 3D space, 
thus proposing methods that could be used for sustainable planning of 
future housing estates in harmony with nature. 

Comparing the area of UGS with WHO guidelines, Luxembourg City 
has a high proportion of 2D greenery, as well as the range of high 
vegetation (H > 1.0 m), which per capita constitute respectively, 228 m2 

and 138 m2 per resident. By comparison, the volume of vegetation 

calculated with ALS LiDAR is 328 m3 per resident. A similar high 3D 
vegetation index per unit area can be found in one of the most forested 
areas of Beijing, the Shijingshan district, which covers 86 km2 (He et al., 
2013). At the scale of the whole city, Luxembourg seems to be relatively 
well stocked in terms of the area covered by vegetation (H > 1 m), 
comprising 33 per cent of the city’s total area. However, there are still 
intensely urbanized areas in some districts — Ville Haute, Basse Petruss, 
Hollerich, Limpertsberg and Grund (Zięba-Kulawik et al., 2020) — 
where the lack of greenery is noticeable (V3DI in these districts has the 
lowest values, of < 0.5 m3/m2). 

Our results show that at the municipality level, the trend of V3DI was 
higher in the northern part of the city (Fig. 17). This concentration of 
vegetation volume could partially be explained by the semi-natural 
areas maintained by the authorities in the landscape or zoning plans, 
with no significant proportion of building volume (districts: Roll
ingergrund, Eich) and where the process of urbanization is not finalized 
(the districts of Weimerskirch, Neudorf and Hamm). The topographic 
heterogeneity is also one of the very important aspects of Luxembourg, 
preventing the building-up process and ultimately saving the urban 
forest (Pfaffenthal and Clausen). The concentrations of greenery volume 
close to the city borders in the south are mainly represented by Kock
elscheuer Park and parts of the forest areas in Cessange. The analysed 
VV2BV index highlighted large groups of urban areas without significant 
vegetation volume, especially in the city’s centre and its Hollerich dis
trict neighbourhood. The same relationship was observed close to the EU 
institutions, where the highest voluminous skyscrapers are located. 
These hotspots should be taken into consideration in urban planning, as 
they are regions sensitive in terms of future vertical or horizontal 
expansion of buildings. This should be compensated for in the first step 
by the implementation of significant green volume to keep the balance 
and harmony, as observed in the Hamm, Clausen and Cessange districts. 
With regard to the volume of vegetation per resident, the northern 
districts that are not very populous retain their first rank. Some of them 
are influenced profoundly by two significant Natura 2000 (habitats 
directive) protection zones, which nevertheless stay under pressure. 
According to a study by Chetan and Dornik (2020), Luxembourg was the 
second ranking country in the EU in terms of the highest recorded land 
changes in Natura 2000 sites. Despite the new strict law implemented in 
2018 on nature and natural resources protection (Official Journal of the 
Grand Duchy of Luxembourg, 2018), some biotop losses are observed in 
the country. However, strategic environmental assessment for the city 
indicates the need for ecological spaces to improve the 
climatic-recreational situation for the population and rebuild the con
nections via corridors with neighborhood municipalities’ biotopes and 
habitats. 

The building density can be directly mapped to the need for UGS — 

Fig. 17. Comparison of Buildings 3D Density Index (B3DI) and Vegetation 3D Density (V3DI) Index in Luxembourg City districts.  
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with lower density, the demand for green spaces is correspondingly 
lower, while a higher population results in greater utilization of existing 
green spaces and the pressure to make more available. Consequently, 
cities have to balance the natural environment with human development 
to create sustainable and liveable cities (Pauleit et al., 2005). However, 
in a study on UGS in 300 cities in Europe, Fuller and Gaston (2009) and a 

European Union team (2018) proved that contrary to the ideal scenario 
described above, the proportion of green areas is not related to the size 
of a city’s population. 

Future work should investigate the relationship between 3D urban 
forestry and its complex influence on the urban environment and micro- 
climate. This should especially consider Urban Heat Islands (UHI), air 

Fig. A1. Map of the spatial distribution of the volume of vegetation in different grid sizes (50, 75, 100, 200, 300 m).  
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quality and humidity retention, as all are the main drivers — embedded 
in the European Green City index — of resilient and suitable city 
development. In addition, the socio-economic, environmental in
terrelationships, and dependencies could be analysed in 3D spaces, 
leading to research into ecosystem services, quality of life and well- 
being indices, and their analysis at a city or a global scale. 

5. Conclusion 

Due to the increasingly widespread use of LiDAR technologies, 3D 
point clouds present valuable spatial information about buildings and 
vegetation, clearly and synthetically, thus offering a tool for extracting 
features that are challenging to determine by traditional methods. One 

Fig. A2. The frequency plots of the volume of vegetation for different grid sizes.  
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Fig. B1. Canopy Height Model of sampling plots.  
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Fig. B2. Volume of vegetation based on voxel approach.  
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of the major challenges concerning urban forests in recent years is the 
estimation of the volume of vegetation, with ALS LiDAR technology 
being more widely used and accurate on a larger scale, while at a lower 
cost than ground-based measurements such as Terrestrial Laser Scan
ning (TLS) or field surveys. Due in particular to the very rapid progress 
in acquiring LiDAR point clouds initiated by individual countries, or to 
techniques of dense matching of multiple overlapping aerial/UAV dig
ital photographs (with data fusion of existing ground ALS LiDAR class), 
there was a need to define volumetric indices that would allow the 
comparison of results on a larger scale and facilitate management. In 
growing conurbations such as Luxembourg, the monitoring of the 
accessibility and type of greenery, together with the ratio of built-up and 
vegetation volume is very important in order to maintain a durable 
balance. The rapid development of cities raises an essential question 
about how built-up areas affect the changing volume of vegetation in 
urban areas. 

Estimating the volume of tree crowns on a city-wide scale is a chal
lenge in the traditional urban forest inventory due to the diverse 
structure. New technologies allow for a better approach to determining 
the volume of urban tree crowns than by fitting the shape of the tree 
crowns to regular geometric solids and using calculations based on 
volumetric formulas. We have presented a method to calculate the 
volume of vegetation based on ALS LiDAR point cloud using voxels (0.5 
m). The advantage of the voxel-based approach is the ability to analyse 
irregular urban tree crowns at a city level or more broadly. The process 
of voxelization transforms point clouds into a set of 3D objects (voxels) 
that best describe the structure. The sum of the voxels described in the 
class of vegetation provides information about its volume. Using data for 
sample trees as a reference and estimating volume by fitting the shape of 
the tree crown to a cone or ellipsoid yielded higher volume vegetation 
values than the voxels for each tree. 

We proposed a Vegetation 3D Density Index (V3DI) and Vegetation 
Volume to Building Volume Index (VV2BV) to indicate the direction for 
sustainable city development and make recommendations for the future 
distribution of urban greenery in the context of existing buildings. At the 
city scale, Luxembourg is relatively well-supplied in terms of biologi
cally active surfaces, which constitute more than half of the entire city. 
According to the EnRoute (Enhancing Resilience of Urban Ecosystems 
through Green Infrastructure) report, managed by the European 

Commission, the assessment revealed that core cities in Europe are on 
average around 40 per cent covered with urban green infrastructure 
(Maes et al., 2019). Taking into account the higher vegetation (> 1.0 m), 
covering a third of the whole administrative area of Luxembourg City, 
the overall city-wide 3D vegetation index is also high. However, atten
tion should be paid to the proportion of green infrastructure relative to 
the built-up part in some neighbourhoods. The mean value of the VV2BV 
(%) index for the entire city shows that the ratio of vegetation to 
buildings is not well balanced in many places. Districts with a low index 
are found in the city centre, as well as residential and office areas. The 
development of green infrastructure should be considered in these areas. 
It seems particularly important to conduct relevant analyses in rapidly 
developing cities. Therefore, the city must be prepared to be managed 
sustainably, providing residents with green spaces close to where they 
live. 

The results of this study create a new way of visualizing and pre
senting 3D data for future urban green infrastructure planning. The 3D 
indices allow us to identify areas with insufficient green volume or a 
disturbed ratio of built-up areas to greenery, which require immediate 
attention. The approach applied gives an idea of the possibilities for 
improving urban forms, and indicates places or even whole cities’ green 
deficits to facilitate the transition to more sustainable, Climate Neutral 
and Smart Cities by 2030 framed within European Climate Pact (2020). 
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