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Abstract 
There is an ongoing challenge as to how best manage and understand 
‘big data’ in precision medicine settings. This paper describes the 
potential for a Linked Data approach, using a Resource Description 
Framework (RDF) model, to combine multiple datasets with temporal 
and spatial elements of varying dimensionality. This “AVERT model” 
provides a framework for converting multiple standalone files of 
various formats, from both clinical and environmental settings, into a 
single data source. This data source can thereafter be queried 
effectively, shared with outside parties, more easily understood by 
multiple stakeholders using standardized vocabularies, incorporating 
provenance metadata and supporting temporo-spatial reasoning. The 
approach has further advantages in terms of data sharing, security 
and subsequent analysis. We use a case study relating to anti-
Glomerular Basement Membrane (GBM) disease, a rare autoimmune 
condition, to illustrate a technical proof of concept for the AVERT 
model.
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Introduction
The availability of data has been growing exponentially in recent 
years1. This poses practical challenges with regard to seem-
ingly prosaic problems such as how to store the data, as well as 
more fundamental issues such as how best to organise datasets 
to facilitate subsequent analyses. In health settings, there are  
further specific challenges in management of sensitive patient 
data in the context of the introduction of the European Union  
General Data Protection Regulation (GDPR)2.

Anti-glomerular basement membrane (anti-GBM) disease 
is a rare autoimmune disease that is characterised by rapidly  
progressive kidney failure and bleeding from the lungs. It is  
caused by the development of an abnormal immune response 
to a protein that is expressed in these organs3. It affects about 
1 person per million per year and has a poor prognosis if not 
treated early. We have previously identified geographic and  
temporal clusters, strongly suggesting an environmental trigger4. 
However, the specific causes of these clusters have not been  
investigated.

Autoimmune diseases generally occur when an individual with 
a genetic predisposition encounters something in their envi-
ronment that triggers the immune system. Japanese clusters of  
diagnoses of Kawasaki disease, a related autoimmune disease, 
have been shown to exhibit clear links with the tropospheric 
wind direction which carries a specific species of Candida  
fungus from China5,6. It is therefore plausible that occurrence of  
anti-GBM disease could similarly relate to weather, pollution  
and/or infectious disease conditions. The rarity of this condition 
precludes use of classical case-control studies, mandating the 
development of novel approaches.

Attempting to identify potential environmental triggers of  
anti-GBM disease created the challenge of organising the data-
sets in a systematic and open manner, and of merging multiple  
environmental and patient-level datasets. We describe here the 
informatics techniques adopted to address this, developed as 
part of a larger project: Autoimmune Relapse Prediction using  
Multiple Parallel Data Sources, given the acronym “AVERT”. 
We used a series of steps to transform heterogenous data (most  
with a temporo-spatial component) from a variety of different  
formats into a single queryable data source. This single data  
source facilitates further insights through data enrichment, 
eases the application of machine learning approaches, allows for  

accurate data provenance and supports scientific data manage-
ment best practice according to the FAIR open data source  
principles7. The Resource Description Framework (RDF) data 
model8 proved an ideal framework for managing the data inte-
gration process. The aim of this paper is to provide a technical  
proof of concept of the model used, using the example of anti-
GBM disease, which has potential applicability in many health 
informatics settings. The next section sets out the context for this  
work and introduces concepts which may be familiar only to  
computer scientists.

Background
Evidence-based approaches to medical decision making rely on 
robust data and evidence9–11. The quantity of potentially usable  
data that may inform healthcare questions is increasing  
rapidly. However, significant practical challenges in accessing 
these data remain, which are frequently unstructured, and in  
assembling what is available into “sufficiently expressive and  
flexible representations”12 in order to facilitate further analysis.

The Semantic Web is an initiative to represent ‘resources’ (i.e.  
documents and things represented by these documents) on the 
World Wide Web in such a way as to facilitate data linkage and 
processing, thereby “better enabling computers and people to 
work in cooperation”13. This allows computer-based agents to  
‘understand’ data using ontologies14, which provide a vocabulary 
of basic concepts related to each other within a specific area of  
interest15 and describe concepts in codified, easily understood  
definitions. These vocabularies allow for lateral homonyms (i.e. as 
with a thesaurus) and the creation of hierarchical relationships16.

Linked Data can be considered as the combined set of best  
practice techniques to capitalise on the Semantic Web. Berners-Lee 
proposed four principles in order to achieve this:

1.    Use Uniform Resource Identifiers (URIs) as names for 
things.

2.    Use Hypertext Transfer Protocol (HTTP) URIs so that  
people can look up those names.

3.    When someone looks up a URI, provide useful infor-
mation, using the standards – for example, RDF and  
SPARQL (SPARQL Protocol and RDF Query Language).

4.    Include links to other URIs, so that they can discover  
more things.

A URI is a string of ASCII characters that can identify a  
unique resource, which could be a digital representation such 
as a song or a document, or a representation of a tangible  
physical object such as a person or a place. HTTP protocols 
allow for the URIs to be dereferenceable, meaning users can  
follow the URI link of a resource and retrieve information on  
that resource17.

The Resource Description Framework (RDF), is a graph based 
data model that allows data to be represented in the form of a 
triple – comprising a subject, predicate and object (for example,  
“Patient 1”-“has date of birth”-“20-10-1985”). When used in  
conjunction with ontology building languages, such as RDFS and  

            Amendments from Version 1

This version includes some improvements in wording - in 
particular:

•    Clarifying that the role of this paper is to show how 
multiple data sources can be tied together (rather than 
also reporting on the subsequent analyses made possible 
by this approach).

•    Specifying the tradeoffs of a bespoke versus existing 
ontology (new Table 2)

See referee reports

REVISED
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OWL (see below) it is possible to build rich, structured,  
semantic models to describe data:

1.    RDF Schema (RDFS)18 is a collection of terms (classes 
and properties) that can be used to build simple ontolo-
gies for describing domains of knowledge. It allows basic  
axioms to be declared about data which supports limited 
reasoning over the data.

2.    The Web Ontology Language (OWL)19 is another  
collection of terms for building ontologies; however, it 
is more expressive than RDFS and allows declaration of  
more complex axioms. These complex axioms facilitate 
more in depth reasoning and inconsistency checking over 
data.

The RDF model, RDFS and OWL are all W3C standards. 
These standards are set by the World Wide Web Consortium, an  
organisation which develops protocols and guidelines to “ensure 
the long-term growth of the Web”. As a W3C recommenda-
tion, RDF comes with other specific advantages in terms of  
recognition and compatibility, including packages in the R  
statistical software environment, such as Redland20, to allow  
interaction with the data. In the example above a previously 
described and well-known ontology definition of “has date of  
birth” (e.g. schema:birthDate) could be used, making the triple  
easily understandable.

A database that stores RDF data is known as a triplestore.  
Triplestores facilitate efficient data storage of multiple sets of 
RDF data, which would otherwise prove cumbersome. Most  
triplestores provide a means to access data through querying.  
Querying is done with the SPARQL query language, the W3C  
recommended query language for RDF data.

GeoSPARQL (an Open Geospatial Consortium standard) allows  
for “common representation of geospatial RDF data and the  
ability to query and filter on the relationships between geospa-
tial entities”. It provides an ontology for representing geospatial  
RDF data, but also an extension of the SPARQL query language 
to formulate geospatial queries (e.g., to retrieve all cities in a  
particular country, or to identify all patients within a given  
radius). Therefore, the GeoSPARQL standard allows for more  
powerful querying of spatial data.

By recording the data’s provenance and metadata, relationships 
between fields can be explicitly highlighted and understood  
more easily, showing how rules were derived, by whom and 
when. Such provenance is vital given the necessarily limited 
human oversight when using machine learning techniques, and to 
ensure traceability between the producers and consumers of the 
derived information21. The PROV Ontology (PROV-O)22 is another 
W3C standard which has been designed to represent provenance  
information in this way. This is of increasing importance in the 
context of Europe’s upcoming General Data Protection Regulation 
(GDPR)23.

Tabular data (e.g. CSV and TSV files) can be transformed into 
RDF format through a process known as “uplift”14. This process  

specifies explicitly how data within a table should be repre-
sented in RDF, and how it should be described according to an  
ontology. Uplift is carried out using R2RML (another W3C  
recommendation22), which is a language for expressing cus-
tomized mappings from tabular form and relational databases  
into RDF. Such RDF files can be enriched through the linking 
of datasets. For example, using GeoSPARQL, one can ascertain  
which county a given set of coordinates is within, and then 
link to that county with the coordinate triple in the RDF file. If  
required, this enriched dataset can be converted back into  
tabular format (e.g. CSV), which would now include this county 
location data. Transformation of RDF data back into tabular  
format is called “downlift”14, and in many cases this step is  
required to allow for further data analysis by many statistical  
software applications.

Development and methods
While clinical and environmental datasets could in principle be 
linked in a single flat file or relational database using temporo-
spatial fields, given their large and disparate nature, a systematic  
approach based on RDF to manage their integration is more  
effective. This allows temporal or spatial data of differing granu-
larities to be stored in their original format, helping to document 
their provenance. For example, three different datasets may be  
available weekly, daily and hourly – in RDF they can be stored 
in their original format, whereas in a single tabular file human 
judgement would be required as to how to ‘fill in the gaps’. RDF 
approaches also facilitate sharing of the data to support similar  
geo-medical research in the future. Models of meteorological 
and pollution conditions (Table 1) were identified and included 
in subsequent analyses, alongside two live national datasets on  
notifiable disease infection (the Computerised Infectious Disease 
Reporting [CIDR] and Influenza-like illnesses [ILI] databases).

Step by step approach to model building
Figure 1 illustrates the series of steps in development of the  
AVERT model, which were adopted to: obtain the relevant  
datasets, represent them in RDF, enrich the data using different  
processes, and then represent the enriched data in a format that 
would enable analysis.

Step 1: Obtaining and understanding datasets. Gaining ready 
and regular access to relevant datasets is a recurring, and  
underappreciated, challenge in analytics projects. It requires  
background knowledge and understanding of which datasets 
are available, permission for their use where required, careful  
selection of appropriate data sources, and the ability to handle 
data of differing formats. The datasets transformed into RDF in  
this case study are summarised in Table 1. Patient-level data was 
defined as described previously4. Data that describe elements 
of a person’s environment, on the other hand, were based upon  
external datasets, including:

•    data directly recorded from weather stations (Weather1);

•    modelled estimates of weather and pollution (Weather2,  
Pollution);

•    counts (CIDR) and rates (ILI) of infectious diseases in  
specific areas.
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Figure  1. The  approach  to  transform  siloed  tabular  datasets  into  RDF,  and  back  into  enriched  file  for  analyses,  Adapted  from  
Debruyne et al.6. Only a sample of files used are shown.

Table 1. Initial datasets uplifted into RDF triple store. *Computerised Infectious Disease Reporting, ~Local Health 
Organisation, #Influenza-like illness, +European Centre for Medium-Range Weather Forecasts, = European Monitoring 
and Evaluation Programme, > Meteorological Synthesizing Centre - West. NA = Not applicable

Dataset Temporal 
data level

Geospatial data level Initial Size Format Source Freely 
available 
online?

Clinical patient 
description

Daily Town/ Townland 14KB CSV Medical records No

CIDR* Weekly LHO~ area 286KB CSV Health Service 
Executive

No – required 
formal 
agreement

ILI# Weekly National 15KB CSV Health Service 
Executive

No – required 
formal 
agreement

Weather1 Daily Linked to weather station 
location file

25MB 
(cumulative)

One CSV 
file per 
station

Met Éireann Yes

Weather 
station location

NA Coordinates 3KB CSV Met Éireann Yes

Weather2 Daily 0.75°*0.75° grid 4.72GB netCDF Sample from 
ECWMF+ ERA-

Interim dataset

Yes

Pollution Daily 50*50km grid 8.75GB 
(cumulative)

One 
netCDF file 
per year

EMEP= MSC-W> Yes

Ordnance 
Survey of 
Ireland

NA Authoritative boundaries 
at various levels: Barony; 
City/county council; 
County; Electoral division; 
Local electoral area; 
Municipal district; Parish; 
Rural area; Townland

419 MB RDF data.geohive.ie Yes

Most datasets had some form of temporal component, albeit 
at different granularities, and all had some form of location  
encoded. These different geospatial data levels are more  
challenging to reconcile than temporal ones given the wide  
range of formats and concepts used.

Weather stations have a location (latitude and longitute) collated 
from the Irish weather service (Met Éireann). Historical daily 
weather datasets were available for download for each weather 
station, with variables such as precipitation levels, mean wind  
speed and max/min temperature included.

Patient CSV
file Uplift CSV files to

RDF format, using
R2RML

Record
provenance
information

Spatial mapping in
YASGUI

Suitable for
sharing and
dissemination

Create suitable
ontology

Pre-processing of data
Initial standalone
files obtained
(examples)

Place this
generated RDF file
in a triplestore

Downlift into
suitable format

Analysis, for
example in R

Generate
SPARQL/
GeoSPARQL
queriesWeather 

CSV file

Pollution
netCDF file

Convert address
to WKT/
coordinate format

Convert to CSV
format (required
Python script)
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Both European Centre for Medium-Range Weather Forecasts 
(ECWMF) and European Monitoring and Evaluation Programme 
(EMEP) datasets were downloaded in NetCDF (Network Com-
mon Data Format) format, initially at a European continent-wide 
level. Such datasets are a set of interfaces for array-oriented data 
access and for storing and retrieving multidimensional data,  
which are common in meteorological, climate and GIS studies; 
they are typically very large and require specialist software to 
open. These NetCDF files subsequently needed to be transformed 
into CSV format before uplifting; this transformation was carried 
out using a Python script which made use of a specific library for 
accessing NetCDF encoded data. As our study was only concerned 
with Ireland, only relevant coordinates were transformed into  
CSV. As a result, their filesizes reduced considerably, from  
8.7GB and 4.7GB to 76MB and 23MB respectively.

While these datasets were publicly available, others required  
liaison with public health officials in order to gain access to 
them. Infectious disease data (CIDR) and Influenza Like Illness 
(ILI) location data are not encoded in any standard geospatial  
format. CIDR data24 are reported weekly at both “Local Health 
Office” (LHO) level – which broadly corresponds to county 
level (though counties Dublin and Cork were divided further).  
The ILI dataset is compiled from a sample of family doctors  
around the country to provide an estimate of the national near- 
real time weekly rate of presentation of respiratory syndromes 
that could be influenza, and cannot be drilled down to at a more  
local level.

Authoritative linked data borders of several Irish geographic  
level geospatial units have been published online by the  
Ordnance Survey of Ireland (OSI), such as those of counties, 
electoral districts (small sub-divisions of counties) and so on.  
These boundary data (available here) was used to help with the 
grouping of data on a spatial level (e.g. CIDR data is reported at 
the county level, weather and pollution data only have latitude 
and longitude coordinates). The OSI data allows, for example, 
the identification of all weather and pollution data for a patient’s  
county.

Because of the presence of sensitive data, the patient dataset had 
been de-identified, and patient addresses were only available to 
analysts at town/townland (a smaller village-scale) level. This  
location was approximated to a single point (latitude and lon-
gitude coordinate), using the centroid of the townland as found 
in Google Maps. LHO data were not suitable to represent as a  
single point, and not all their borders were available in the OSI  
boundary dataset. ILI data, on the other hand, was only available 
at a national level. While this meant that no manual construc-
tion of areas was required, it meant that more granular spatial  
analyses were not possible.

Step 2: Knowledge representation. Where large amounts of 
data are available and necessary, it becomes crucial to consider 
how best to organise the data into a suitable format to support  
subsequent reliable and scalable statistical analyses (Figure 2). 
Taking time to ensure that the analyst has fully understood and  
explicitly described the data landscape has obvious similarities  
to soft-systems methodologies in operational research25.

Entity-relationship diagrams are a useful way of structuring the 
underlying relationships between fields, and can help to clarify 
the most appropriate ontologies to use to allow meaningful 
data linkage. Existing ontologies can, to a certain extent, be  
mixed and matched to create a set of definitions that fit the  
data’s needs. There are advantages and disadvantages of using cre-
ating bespoke ontologies (assuming the choice is available), sum-
marised in Table 2.

We attempted to use an ‘in between’ approach that utilised  
existing ontologies where possible, and referred to existing 
ontologies to improve the data’s interoperability. The derived  
ontology required using multiple levels. Each anti-GBM  
diagnosis (our ontology deemed this an ‘observed fact’) is  
associated with a date, a location and other data specific to the  
individual patient. For patients themselves, a well-known 
generic ontology for describing people – FOAF (“Friend of a  
friend” ) – was used to specify certain attributes, such as gender.  
However, others, such as smoking status, occupation category  

Figure 2. Model of links between diagnosis (“observed fact”) and other fields in patient dataset, and ontologies used to map these.
Prefix definitions - avert: <http://data.avert.ie/avert#>; geo: <http://www.opengis.net/ont/geosparql#>; xsd: <http://www.w3.org/2001/
XMLSchema#>.

avert:withPatient

avert:Patient geo:Feature xsd:dateTime xsd:string

xsd:string xsd:string xsd:string xsd:string xsd:string

xsd:stringxsd:string

xsd:dateTime

xsd:string

foaf:based_near

xsd:string

geo:Featurexsd:stringxsd:string

foaf:gender

avert:hasLocation

avert:anca avert:cluster avert:hasAddress

avert:occupation

avert:hasAddress

avert:packYears

avert:dateSymptomOnset

avert:smoking avert:syslnv

avert:seaLevelavert:dualPos avert:elisa

avert:observedAtDate

avert:ObservedFact
avert:Patient
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Table 2. Advantages and disadvantages of using an existing ontology or creating a bespoke one.

Use existing Ontology Create Bespoke Ontology

Advantages Reusing existing (possibly well known) ontologies will 
make our data more interoperable which help with the 
“Interoperable” clause of the FAIR principles.

Creation of a bespoke ontology 
allows us to model our data in an 
efficient manner.

Disadvantages Existing ontologies may not offer the most efficient way 
to model our data – increasing complexity which leads to 
reduced performance in data retrieval.

Creation of a bespoke ontology 
would reduce interoperability of 
our data.

or results of medical tests, are not covered by this and hence  
were specified in an ontology designed specifically for this  
study.

Step 3: Uplift. An R2RML declarative mapping was used to 
tranform each CSV file into RDF format. This explicitly maps 
the meaning of data fields, following the ontologic model  
developed in the prior stage. Data can also be formatted at this  
stage to align with existing standards; for example, in the anti-
GBM study dates were converted to standard yyyy-MM-dd  
format at this stage, and field definitions were clarified, such as  
Gender=0 in the patient CSV file being defined as ‘Female’.

In the ontology depicted in Figure 2, ‘observed fact’ comprises 
dateTime, Location, and Patient. Each of these fields is them-
selves defined modularly and in reference to each other, with 
location for example being defined as being made up of the  
longitude and latitude fields of the patient dataset.

From there, each predicate must be defined. For example,  
gender is defined as foaf:gender. Because FOAF is a well known 
ontology, there should be no ambiguity subsequently as to what 
definition of ‘female’, for example, is used if the data is shared 
in future. This process was carried out for each field that was  
intended to be transformed to RDF. Once uplifted to RDF, the 
data consists of a series of triples. For example, a weather station 
(with the URI “http://data.avert.ie/weather_station/Mullingar%20
Automatic%20Weather%20Station%(AWS)”) is both a ‘Feature’  
(with the geometry (i.e. WKT location) of -7.362222222, 
53.53722222) and a ‘Weather Station’ (with the label “Mullingar 
Automatic Weather Station (AWS)”). Each of these pieces of  
information constitutes a queryable triple related to the station, 
and which can in turn be related to other datasets. The number  
of triples thus grows rapidly, as does their analytical power  
through such linking.

Step 4: Enriching the RDF data. When in RDF format, the  
data can thereafter be further processed in order for it to be  
enriched by creating ontological relationships that add depth and 
meaning to the data. For example, the closest weather station 
to each patient could be identified using a GeoSPARQL query  
containing a geospatial function (which is processing inten-
sive). The results of such a query can then be inputted to the 
data so there is now a direct link between patients and weather  
stations – reducing the need to perform another geospatial  
function in order to determine this information.

Data for associated weather stations can thereafter be more  
easily accessed for each patient, to allow analysis of the weather 
conditions for each person’s address in the period prior to diag-
nosis. The locations of weather stations included in the analysis 
are shown in Figure 3, visualised on the YasGUI web client26,  
which allows geographic data to be visually represented on a map.

Since we were using the OSI boundary dataset, and since most of 
the other datasets used contained a geospatial element (usually a 
point), we used GeoSPARQL for subsequent querying at various 
levels, for example:

•    Geographical; e.g. “Given a patient’s location, find the region 
(county, townland, etc.) in which that patient resides”;

•    Temporo-spatial; e.g. “Retrieve weather and pollution  
records within the specific region of the country over a  
specific date range.”

Complex federated queries; e.g. “Given each patient’s loca-
tion, retrieve the nearest weather and pollution readings 
within a specific date range around the patient’s diagno-
sis date, but excluding patients with a specific comorbidity”. 
YasGUI visualisations of this data are possible for such  
queries, potentially generating new insights. The OSI border 
dataset allow for queries to be run on the data which would  
otherwise not be practicable, and across multiple datasets. The  
previous study of these anti-GBM cases4 carried out the analy-
sis at the level of counties, but the AVERT model allows for the 
investigation of whether clusters occurred in smaller areas, or 
straddled county boundaries, for example. The time, date and 
identity of the author of the query can be recorded using the 
PROV-O ontology, as can similar information regarding the  
mapping and links to underlying models.

Step 5: Downlift and analyses. Once all data has been transformed 
into RDF and enriched, it can be explored in its entirety. This  
exploration may lead to specific data that investigators wish to 
perform a detailed analysis over. In some situations, RDF may  
not be a suitable form to perform this analysis, therefore it must 
be downlifted to a less expressive form such as CSV. In the case  
study, an enriched CSV file was created from the RDF data, which 
could subsequently be easily analysed in R. For each patient  
record, prior weather and pollution data could be collated into a 
single file. In general, after one round of analyses, modellers 
may subsequently wish to alter which fields to analyse, the fields’  
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Figure 3. Locations of weather stations used for analysis, generated using GeoSPARQL analysis of RDF triplestore, and visualised 
using YasGUI.

definitions, revisit queries, or may realise that new interpreta-
tions of how the data were mapped are necessary. Thereafter, the  
analysis may become an iterative process until a final statistical 
model is agreed upon. Alternative approaches to CSV files - such 
as Jupyter notebooks - may facilitate better retention of provenance 
data, and may become more common in future.

Discussion
This paper has demonstrated a pragmatic standards-based solu-
tion to integrating temporo-spatial environmental data with  
patient-level information in order to address an epidemio-
logical research question. The technique is modular, allowing  
additional data sources, such as smartphone derived telemetry, 
biomarker information or other environmental factors, such as 
radon exposure, to be incorporated later, and can be applied to a 
diverse range of applications.

Several prior publications have addressed the use of RDF 
approaches to improve biomedical data annotation. Mayer  
et al., for example, use an RDF schema to assist in labelling 

the quality standards of medical websites27. Another paper by  
Mayer et al. describes a platform to automatically generate  
metadata descriptions that can be used to label the trustworthi-
ness of the content of medical websites28. This metadata can  
be accessed through standard search engines, and the fact that  
the data are machine readable allows for more targeted querying,  
as well as potentially advancing interoperability.

The Open European Nephrology Science Centre project (OpEN.
SC) study29 takes this further, using an RDF approach to  
generate a common data model from multiple standalone clinical  
datasets, and to facilitate querying across these by researchers. 
Datasets were derived from patients undergoing kidney trans-
plantation across 18 sites, each with their own data formats and  
structures. These were subsequently uplifted into RDF. The  
authors’ aim was to have a common data model for clinical data, 
then to integrate the data and provide a convenient intelligent 
retrieval interface. This has much in common with the Bio2RDF 
project30, which attempted to integrate multiple biological  
data sources using semantic web technologies. They built a large 
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triplestore describing human and mouse genomes, and provide 
a case study of how to perform a federated query across these to  
identify diseases associated with individual genes on a specific 
pathway. A further paper by Hochheiser et al.12 describes the  
process of mapping clinical datasets into a computational infra-
structure, allowing for future extraction and examination of  
patient-level data at various levels of abstraction. One of the key 
advances of the AVERT model compared to these papers is that 
it is not confined to clinical settings, and that linking these with  
environmental datasets requires more explicit consideration of  
time and place, and hence temporo-spatial reasoning.

Other studies have addressed the related issues of interoperabil-
ity and data sharing over recent years, and argued firmly for them 
to be considered explicitly. The FAIR (findability, accessibility,  
interoperability and reuse) data principles7 provide a frame-
work for sharing data in a way that maximises its use and reuse. 
They emphasise the importance of allowing machines to auto-
matically discover, process and integrate digital objects. Suitable  
approaches to data management include, but are not confined 
to, RDF; the guidelines are not proscriptive in this regard.  
Instead, they advocate that data siloes can be searched and  
integrated, building towards a future where machines may begin 
to “understand” and “make a useful decision regarding data  
it has not encountered before”. Sansone et al., in a paper about 
the ISA (investigation/study/assay) metadata framework31 also  
argue for the inseparability of data management and data  
sharing, and the benefits that could be derived from a “data  
communing” culture. As with the FAIR principles and the 
OpEN.SC study, the ISA paper emphasises the risk that smaller 
projects may become data siloes if specific efforts are not  
made to address interoperability. Data provenance is also of 
utmost importance as the environment moves towards a future 
of “machine actionability”7. In this regard, the OpEN.SC 
study highlighted that RDF has specific provenance strengths 
as it “is particularly useful for storing metadata about shared  
resources”29.

One innovative approach that matched high resolution  
geo-location data and real-time health data was the Flutrack  
study32, which mapped self-diagnoses of influenza-like illness 
on Twitter. The authors had found that open-source systems 
and shared methodologies were not widely used in health  
informatics and public health, as they are at “an early stage in 
the development of modular and interoperable practices”. The 
data protection issues surrounding handling of patient data also  
present a very substantial obstacle to progress in this direction.  
They are nonetheless hopeful that such trends will continue to 
develop in future, as there is no reason (or moral justification) 
to try to maximise customer lock-in in public health settings.  
They advocate for increased use of such technologies to 
allow the development of “an ecosystem of applications and  
services”.

Our proposed AVERT model provides a framework for highlight-
ing how the existing “ecosystem” of languages, software and  
W3C standards can be combined into a package of approaches, 
and to describe the advantages of doing so, shown in Figure 4. 

This may be considered a step towards the aims of approach 
of the Hochheiser project12, which attempted “to develop a  
generalizable computational infrastructure that will facilitate the  
extraction, manipulation, and use of these deep phenotypes, 
combining them with genomic data to drive discovery and  
precision medicine”. This ‘package of packages’ can be used to 
integrate standalone files, query across them and generate new 
analysable, enriched files featuring the most relevant variables 
in a common format. Furthermore, the AVERT model attempts 
to do so while adhering to the FAIR principles. The model was  
developed as part of a specific study, described in the section  
below, but will have applicability in broader health informatics 
settings. The model developed organically, with packages chosen  
based upon what we believed would work for the specific  
circumstances of the case study. As such it was not intended to 
be a systematic process, and did not investigate or list all poten-
tial such approaches. For other studies that intend to achieve  
similar outcomes in different circumstances, pragmatism and 
human judgement may be similarly required to ensure that the  
most appropriate packages are used for that data environment.

A key challenge was understanding how best to facilitate tempo-
ral and spatial reasoning, i.e. representing the target data sources 
in four dimensions. But tensions also exist between ensur-
ing security of confidential patient data, whilst being commit-
ted to the principles of open data, data sharing, re-use of data  
resources and research transparency. While the open linked data 
principle can be considered a public good, the fact that it allows 
data to be more easily accessed and understood may create  
unintended consequences. Previously, sensitive data may have  
been unwittingly protected due to the difficulty of accessing  
it and linking across data siloes. As technology breaks these 
walls down, data managers will need to seriously consider what  
issues can be traded off and where suitable firewalls need to be 
created. A clear data management plan is strongly advisable in 
such circumstances to minimise the risk of accidental sharing 
of private information. In the longer term, common standards  
(possibly including legislation) for the sharing of health data  
should continue to be developed in order to facilitate a more  
predictable and secure environment to do so.

Figure 4. AVERT ecosystem and its “life course”.
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With regards to the case study, despite de-identification of the 
patient data, potentially distinguishing features remain, such 
as the patient’s date of birth or location. Given the rarity of  
anti-GBM disease it would be straightforward to re-identify  
specific patients given this information. Even if these fields are  
removed, linked data such as nearest weather station may give 
enough background information for data to be compromised  
in this way. Furthermore, it is difficult to envisage a flawless 
approach for linking data. For example, the approach described 
in ‘Step 4’ of linking patient environmental conditions with 
those of the nearest weather stations using GeoSPARQL and OSI 
geospatial data was potentially limited, although there is some 
value in such parsimony and in using only the ‘gold-standard’ 
of direct measurements taken at such locations. As the mapping  
algorithm was written in-house, the limitations and provenance 
of the model could at least be fully understood, and revised later 
if necessary. In contrast, the alternative approach of using the  
imputed estimates of weather available from the ECWMF  
would mean that these must be taken at face value (given 
that they were developed externally). This is counter to the  
principle of data provenance. On the other hand, these may well 
be more reliable than the ‘nearest weather station’ approach, 
are available at much finer granularity and have been validated.  
There is therefore an inevitable tension between deciding which 
dataset is more trustworthy.

Commonly agreed interoperable standards could be used, to  
develop a longer term “information commons” approach to 
facilitate further understanding of anti-GBM disease (or other  
diseases) by other researchers31. Provenance will play a role 
here, helping, not only to engender trust in highlighting the 
links between abstracted models and source data12, but also to  
describe how analyses were carried out and reducing the ‘black 
box’ risks when using machine learning techniques. However, 
this will not necessarily answer the question of what constitutes a  
more ‘trustworthy’ source in every setting.

In contrast with the prior literature, this project had the addi-
tional challenge of incorporating environmental conditions 
alongside clinical data, and using these data in predictive mod-
els. Where possible, all representations of data have followed 
existing W3C and community standards, in order to ensure data 
compatibility, understanding and face validity. Allowing sharing 
of these data may help to derive solutions to such issues more  

quickly through collaboration with external groups, or even  
independently. RDF approaches also facilitate more meaningful  
querying than would otherwise be possible28,33, and subsequently 
more meaningful statistical and machine learning analyses.

Conclusions
We have described the development of a model which can be  
used to uplift tabular data (from a variety of sources) into a  
common RDF format. From this it can:

1.    Be converted back into a tabular format via downlifting, 
enriched by incorporation of external data sources and  
reasoning algorithms.

2.    Be managed in a codified format that follows well  
understood ontologies, facilitating sharing and under-
standing by both external groups and machine learning  
scenarios.

A clear advantage of the AVERT model when compared to  
standalone, siloed tabular files is that the integration of data in 
RDF, alongside the use of SPARQL allows complex querying of 
data to be much more easy to understand and manage. While some  
matching of tabular files in various granularities may be possi-
ble across CSV files, federated queries would eventually become  
impractical as they became more complex. Merging data-
sets in the manner espoused in this paper should instead 
help to ensure that the data is managed effectively the risk of  
human error is reduced. Once data are linked, it may lead to new 
opportunities for understanding causal mechanisms. Some of 
these may be simple tools, such as facilitation of visualisations, 
or more complex, such as supporting the use of machine learning  
approaches.

Software availability
All software tools are listed in Table 3 below.

Archived version of the Python conversion scripts are available 
from Zenodo: http://doi.org/10.5281/zenodo.134552534

Scripts available under a CC BY-SA 4.0 licence

Data availability
A description of all datasets used, including their availability and 
how they can be accessed, is presented in Table 4.

Table 3. All software tool used.

Tool Link License

Parliament Triplestore http://semwebcentral.org/frs/?group_id=159 BSD License

R2RML Implementation https://opengogs.adaptcentre.ie/debruync/r2rml MIT License

Python conversion Scripts https://www.scss.tcd.ie/~almeehan/avert/python_scripts/ GNU General 
Public License
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Table 4. All datasets with availability and access information.

Dataset Organisation Description Availability To access

Clinical 
patient 
description

Rare Kidney 
Disease 
Registry & 
Biobank

Patient-specific 
characteristics 
for all cases 
of anti-GBM in 
Ireland over the 
study period

While the underlying patient 
data is de-identified, 
because of the rareness 
of the condition, it is not 
possible in practice to fully 
anonymise the dataset. 
Individuals could potentially 
be re-identified quite easily, 
through variables such their 
diagnosis date or location 
(which, even if removed 
could be surmised from links 
with weather stations).

Requests to share aggregated information will be 
considered on a case by case basis. Contact Principal 
Investigator: mlittle@tcd.ie

CIDR

Health 
Protection 
Surveillance 
Centre, Health 
Service 
Executive

Shared national 
information 
system to 
manage 
surveillance 
and control 
of infectious 
diseases

Data requests are assessed 
on a case-by-case basis. Contact hpsc@hse.ie

ILI

Health 
Protection 
Surveillance 
Centre, Health 
Service 
Executive

Irish sentinel 
GP influenza-
like illness 
consultation 
rates per 
100,000 
population by 
week

Data are published in weekly 
reports.

http://www.hpsc.ie/a-z/respiratory/influenza/
seasonalinfluenza/surveillance/influenzasurveillancereports/

Weather1 Met Éireann Historical 
datasets Free to download https://www.met.ie/climate/available-data/historical-data

Weather 
station 
location

Chronic 
disease 
informatics 
group, TCD

File manually 
created by this 
paper’s authors 
using latitude 
and longitudes 
given for each 
weather station 
in Met Éireann 
historical 
datasets

Free to download https://www.scss.tcd.ie/~almeehan/avert/Weather_
Observing_Stations.xlsx

Weather2

European 
Centre for 
Medium-Range 
Weather 
Forecasts 
(ECMWF)

ERA-Interim 
dataset Free to download http://apps.ecmwf.int/datasets/data/interim-full-daily/

levtype=sfc/

Pollution

European 
Monitoring 
and Evaluation 
Programme 
(EMEP)

MSC-W Free to download http://emep.int/mscw/index_mscw.html

Ordnance 
Survey of 
Ireland

Ordnance 
survey of 
Ireland

Linked Data 
Fragments 
client

Free to query http://client.geohive.ie/
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this topic. Benefits are mostly understood and agreed upon, no need to reiterate them here 
once again. 
 
A weather station is both a feature (with geo coordinates) and a weather station - that’s 
cool; but how do you use it? It's not clear from the explanation how that benefits the query 
writer. Can you provide an example?  
 

2. 

FOAF is not the only ontology that they could have used - MeSH and other ontologies could 
have been reused (see https://bioportal.bioontology.org/) for "smoking" and many of the 
other terms that the authors probably ended up re-creating in their ontology 
 

3. 

Where is the ontology/owl/R2ML file? Can't find the link. You can make it available through 
bioportal (link above) if you don't want to host it yourself. Bioportal would also find 
mappings to other ontologies like MeSH that are very relevant for the use case described 
 

4. 

This link is broken in the article, I think there's an extra space before ".pdf" across multiple 
datasets. 
 

5. 

The authors create an enriched csv for analysis after RDF, that’s useful. Proving a Jupyter 
notebook that can be used to SPARQL the data and generate the tabular format would be 
even better as the provenance would not be lost (which it currently is). Analysis performed 
on the uplifted CSV files is not FAIR as the authors claim because of this detachment of the 
RDF representation to the CSV uplifted version. Check out RDFlib for python access to 
SPARQL  
 

6. 

Very good point about the sensitivity of the data being currently protected by the presence 
of blockers to data accessibility. Would be interested in knowing how the authors would 
address this problem in the future.  
 

7. 

Evaluation is completely missing. The authors claim "facilitates quicker and more intuitive 
searching" but provide no timed queries to support this argument. It is "quicker" and "more 
intuitive" than what? Provide a comparison, a metric, something that supports this 
argument. There are clever ways to evaluate the intuitiveness of a SPARQL vs SQL query and 
the performance time but the authors didn't use any. I think this is a critical factor missing 
from this article.  
 

8. 

So were the authors able to test some hypothesis based on the integrated data that 
supports the motivating argument (KD and environmental pollutants)? What type of queries 
did they do? Did those give them some interesting insights? The paper is incomplete 
without mentioning what the integrated data was actually used for. Need more details on 
how this approach compares against a traditional data warehouse or any other graph 
database.  
 

9. 

Where's the final RDF dataset/ SPARQL endpoint? I understand that there are privacy 
concerns with this data but I fail to see how the data is FAIR if there's no way for other to 
access the data and interoperate with it. (note that FAIR does not mean open; FAIR data can 
be behind a paywall or a authentication service). If patient privacy is a concern, the authors 
can/should anonymize it. I don't think that the temporal/spacial weather data has privacy 
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concerns. At least the SPARQL endpoint for that should be made available (or at least an 
RDF dump).
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If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
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Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
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The article describes how different data sources can be transformed into RDF, over which different 
types of reasoning processes can be run to retrieve information. These reasoners are well 
developed and powerful. Once information is retrieved, it can be transformed (downlifted) for 
analysis by other tools. The use of RDF and open tools allows for data linkage using widely 
accepted standards, though caution must be taken regarding de-identification of data. 
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The article provides sufficient detail for others to replicate its results, and the justification for using 
RDF and semantic web frameworks is well justified (namely the ability to query the linked data 
using a powerful query language). The method itself is sound, and builds on many years of 
research into semantic web technologies. 
 
The paper does not present results per se, but rather describes a method, which is easily 
reproducible by others given the details in the paper. 
 
The only concern I have is with regards to the performance of the method in the sense that 
running some queries over semantic web data is computationally very intensive; no discussion of 
the computational complexity of the approach was provided, and some indication of what queries 
can, or cannot be run in the context of the information that one attempts to retrieve would be 
useful.
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