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ABSTRACT 
 

The goal of this work is to develop a simple and systematic method to highlight the properties of filters for their 
application in temporal phase shifting interferometry. In this study, the effects of elementary filters (mean, gaussian and 
median masks) are analyzed. In order to compare those filters, correlation fringes were numerically synthesized and a 
Gaussian noise has been added. The advantages and the failures of each studied filtering mask have been enhanced 
thanks to the comparison of different profiles and fidelity functions. Finally, this study is applied to the filtering of a 
shearogram recorded in our laboratory. 
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1. INTRODUCTION 
 

In the last few years, temporal phase shifting interferometry (digital speckle pattern interferometry1, digital 
shearography2, fringes projection3,… ) has emerged as a new efficient technique for metrological applications (e.g. three 
dimensional shape measurement, surface displacements or strains…1-3). Those interferometric techniques yield a 
wrapped phase map. In order to obtain quantitative measurements, a complete elimination of noise in the wrapped phase 
map is an essential precondition. Moreover only a fringe pattern undisturbed by phase filtering guarantees successful 
use of the phase unwrapping method2, 4.  

 
Some researchers working on temporal phase shifting interferometry develop their own masks or transforms 

for filtering the phase map while others prefer using commercial softwares as an easier solution. The goal of this work is 
to develop a simple and systematic method to highlight the properties of filters in order to be easily transposed to the 
study of more complex filters and, consequently, encouraging researchers to create and study their own filtering 
software. 

 
In this work the effects of classical and elementary filters (mean, Gaussian and median masks) are analyzed. In 

order to compare those filters, correlation fringes were numerically synthesized. Gaussian noise has been added to these 
fringes with the aim of obtaining fringes similar to the ones obtained experimentally in speckle interferometry, i.e. the 
experimental technique for which filtering is essential. 
In order to compare objectively the filtered simulated fringes with the noiseless ones, different profiles showing the 
irradiance along the abscissa axis X for a fixed value of the ordinate Y have been extracted and then superimposed. A 
fidelity function has also been defined, it permits to quantify the correspondence between the noiseless simulated fringes 
and the ones obtained after filtering. The advantages and the failures of each studied filtering mask have thus been 
enhanced. Finally, this study is applied to the filtering of a shearogram recorded in our laboratory. 
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2. THEORY 

 
2.1. Filtering by mean, Gaussian and median masks 
 
 In temporal phase shifting interferometry, the wrapped phase map is generally filtered pixel by pixel thanks to 
the use of masks2, 4. The latter are usually square matrices of odd dimension n. The parity and dimension of the mask are 
justified by the essential role of the central element of the matrix. 
 
 An intuitive mask to use for filtering is the mean mask. The mask is moved around each pixel of the image and 
the irradiance of the considered pixel is replaced by a mean irradiance Im depending on the value of the weighting 
factors and the dimension n of the mask. The weighting factors, or coefficients, of the mean mask are unity. If K(i,j) is 
the value of the coefficient (i,j) of the mask, if g(i,j) is the irradiance of the pixel covered by the coefficient (i,j) of the 
mask and S, the sum of the weighting factors K(i,j), then the mean irradiance Im of the pixel covered by the central 
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 The mean mask has weighting factors K(i,j) equal to unity. In order to give more importance to the irradiance 
of the considered pixel, the literature2 proposes to use weighting factors K(i,j) distributed following a two dimensional 
Gaussian law and centered on the central element of the mask. This mask is then called “Gaussian mask” and its use is 
similar to the mean one (see Eq. (1)). 
 
 The wrapped phase map can also be filtered easily by a median filter. Contrary to the mean and Gaussian 
masks, the median mask is defined from the image itself and, hence, is different for each pixel of the image to be 
filtered. Indeed, the coefficient K(i,j) of the mask is imposed to be equal to the irradiance g(i,j), i.e. the irradiance of the 
pixel covered by the element (i,j) of the mask. When the mask relative to the considered pixel is built, its coefficients 
are sorted by ascending order in a vector. The irradiance of the central element of that sorted vector becomes the new 
irradiance for the analyzed pixel.  
 
2.2. Effects of the different filtering masks 
 
 In order to highlight the advantages or failures of different filtering masks, it is possible to compare their long-
term effects on a wrapped phase map obtained experimentally. However, in that case, the profile of noiseless fringes is 
unknown and, consequently, any conclusion about which mask is the most efficient cannot be drawn. The literature4, 5 
thus suggests synthesizing numerically a wrapped phase map as a reference and then adding a Gaussian noise. The goal 
of this work is to find out which mask is the most efficient with regard to the reduction of noise but without loss of 
information. 
 
 It is necessary to use comparison tools to enhance the differences between filtered images and the reference 
phase map. The first one is the simple visualization of the filtered phase map. It permits a qualitative analysis of filtering 
but is mainly subjective. In order to compare objectively the filtered simulated fringes with the noiseless ones, different 
profiles showing the irradiance along the abscissa axis X for a fixed value of the ordinate Y will be extracted and then 
superimposed. Finally, the filtering techniques will be compared quantitatively thanks to the fidelity function F of the 
filtered images5, defined as follows: 
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where Ifilt(x,y) is the irradiance distribution of the considered filtered image and Iref(x,y), the irradiance of the noiseless 
simulated wrapped phase map. The sums are carried out on all the pixels of the images. In short, the fidelity function 
permits to quantify the correspondence between the noiseless simulated fringes and the ones obtained after filtering. 
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3. RESULTS AND DISCUSSION 

 
3.1. Influence of the filtering place 
 
 Fig. 1.a and Fig. 1.b represent respectively the synthesized correlation fringes and the same ones where a 
Gaussian noise has been added. The simulation program was realized with the LabView® software (National 
Instruments). For image processing, the image is converted in a matrix. The value of the element (x,y) of the matrix, in 
grey levels, corresponds to the irradiance of the pixel (x,y) in the detector. The simulated images have 512 pixels x 512 
pixels and 256 grey levels. Fig. 2 shows a cut of the images shown in Fig. 1.a and Fig. 1.b along the abscissa axis X for 
an arbitrary ordinate Y. The ordinate Y is fixed at the value 250 pixels for all the following profiles. 
 
 

 
 

Fig. 1. a) Simulated correlation fringes (reference image)        b) Correlation fringes of Fig. 1.a disturbed by a Gaussian noise. 

Fig. 2. Profiles of the reference fringes in Fig.1.a (continuous 
line) and the reference fringes disturbed by a Gaussian noise 
in Fig. 1.b (dotted line). 
 

Fig. 3. Profiles of fringes filtered three times by a mean mask 
of dimension 5. Filtering place: phase map (dotted line), 
sine/cosine (continuous line). 
 

The dotted line of Fig. 3 shows the effect of a mean mask of dimension 5 applied three times on the disturbed 
phase map of Fig. 1.b. This profile shows that the filtering induces an important loss of phase steps: the initial sawtooth 
function seems to become sinusoidal. This effect makes the phase unwrapping process hard to realize, even impossible. 

X 

Y 

a) b) 
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In order to avoid this problem, the literature2, 4 suggests filtering the numerator and denominator of the 
distribution tan∆(x,y), where ∆(x,y) is the considered wrapped phase distribution in temporal phase shifting 
interferometry. Indeed, those numerator and denominator correspond respectively with sine and cosine functions, the 
filtering will mainly induce their smoothing. The phase steps will be rebuilt when the function arctan is applied on the 
filtered distribution tan∆(x,y), this is confirmed by the continuous line in Fig. 3. In agreement with these observations, in 
the following the filtering will be applied on the numerator (sine) and denominator (cosine) of tan∆ . 
 
3.2. Design of a new simulated wrapped phase map 
 
 The disturbed correlation fringes simulated above yield filtered fringes similar to the reference ones and, thus, 
don’t reveal the effects of the different masks. That is due to their profile linearity but also to their low spatial 
frequency. The new numerically synthesized wrapped phase map will contain a signal that will be impaired by the 
filtering process. The study of that disrepair will permit to highlight the qualities and defects of the different masks. In 
order to analyze the filter behaviour with regard to a wide range of spatial frequencies, the signal added to the first 
simulated fringes is chosen rectangular. Fig. 4 shows the new simulated reference correlation fringes (Fig. 4.a), the same 
ones disturbed with a Gaussian noise (Fig. 4.b) and the corresponding profiles (Fig. 4.c). 
 
 

Fig. 4. New simulated fringes: 
  
 
 
3.3. Effects of the different filtering masks 
 
3.3.1. Effect of the mean mask 
 

Fig. 5 shows the profile of the reference wrapped phase map and the profile of the fringes filtered 40 times (a 
long-term effect is studied) by a mean mask of dimension 5. In this figure, it can be seen that the mean filter acts like a 
low-pass filter: edges of the rectangular signals are smoothed and the noise removed. Elimination of high spatial 
frequencies yields noiseless images but induces a loss of contrast of the signal fringes (Fig. 7.a and Fig. 7.b). A slight 
displacement of the phase steps is sometimes induced (Fig. 5). The mean filter behaviour is due to the average realized 
during the filtering process (section 2.2). 

 
 The fidelity function versus the number of filterings applied to the wrapped phase map is presented in Fig. 6 for 
different dimensions n of the mean mask. In the Fig. 6, it is shown that for any dimension of the mean mask, the graph 
of the fidelity versus the number of filterings has the same behaviour: the fidelity increases till a maximum, “the optimal 
fidelity Fopt”, and then decreases. The range of increasing fidelity corresponds with the noise elimination while its 
decrease depicts the loss of high frequencies of the rectangular signal. The fidelity curve (Fig. 6) also teaches the higher 
the filter dimension, the narrower the range of the optimal fidelity. Moreover, if the filter dimension is high, then the 
optimal fidelity is reached for a low value of the number of filterings. On the other hand, in the studied example, for any 
dimension of the mean mask, the optimal fidelity reaches 97.4 %.  

a) Reference fringes b) Fringes of Fig. 4.a disturbed by 
a Gaussian noise 

c) Profiles of fringes in Fig. 4.a (continuous 
line) and Fig. 4.b (dotted line). 

a) b) c) 
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Finally, it is noted (see Fig.7) that when the optimal fidelity is reached, the filtered wrapped phase map are 

quasi-identical for any dimension of the used mean mask. As an example, the Fig. 7.a and Fig. 7.b present the wrapped 
phase map filtered respectively 37 times by a mean mask of dimension 3 and 4 times by a mean mask of dimension 7. 
The corresponding profiles are shown in Fig. 7.c.  

 
 
 
 

 
 

Fig. 7. Correlation fringes at the optimal fidelity Fopt=97.4 %. 
 
 
 
 
3.3.2. Effect of the Gaussian mask 
 
 The profiles of reference fringes and fringes filtered 40 times by a Gaussian mask of dimension 5 and a 
variance σ2=0.1 and σ2=0.2 pixels2 are presented in Fig. 8. It is shown in this figure that the Gaussian filter produces the 
same effects then the mean mask but with a more slowly elimination, in terms of the number of filterings, of the high 
spatial frequencies. This behaviour permits a better conservation of the rectangular signals but induces a less significant 
reduction of noise. The fringes filtered by a Gaussian mask are thus more contrasted but more disturbed by noise 
compared with the ones obtained after filtering by a mean mask. 

Fig. 5. Profile of the reference fringes (continuous line) 
and the ones filtered 40 times by a mean mask of 
dimension 5 (dotted line). 

Fig. 6. Evolution of the fidelity versus the number of 
filterings for mean masks of dimension: 3, 5, 7, 9 and 15. 

a) Correlation fringes filtered 37 times 
by a mean mask of dimension 3. 

a) b) c) 

b) Correlation fringes filtered 4 times 
by a mean mask of dimension 7. 

c) Profiles of the Fig. 7.a and Fig. 7.b: 
they are superimposed. 
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 The influence of the standard deviation σ on the Gaussian mask effect has been studied and it was observed 
that if the variance σ2 increases, then high frequencies are removed more quickly (see Fig. 8). Indeed, if σ2 has a high 
value, then the weight of the central element of the mask will be similar to the other K(i,j) coefficients (see Eq. (1)) and, 
hence, the Gaussian filter will converge towards a mean filter of the same dimension. Consequently, in order to use the 
Gaussian filter for its own properties and not for the properties of the mean filter, it is recommended to use the Gaussian 
mask with a low variance (e.g. σ2=0.2 pixels2). 
 
 The low speed of high frequencies elimination drives to a fidelity that increases more slowly then the one 
obtained with the mean mask, as it is shown in Fig. 9. Consequently, the use of a Gaussian mask requires an important 
number of filterings to reach the optimal fidelity Fopt. Indeed, in Fig. 9 the optimal fidelity is not yet reached after 40 
filterings for low σ2 values but for high σ2 (i.e. 0.4 or 0.8 pixels2) Fopt is reached and has the same value that the one 
obtained with the mean mask of the same dimension. 
 
 Fig. 10 shows that for a Gaussian mask with a variance σ2=0.2 pixels2, the fidelity is independent of the mask 
dimension. Because the variance is low, elements located at the edges of the mask of dimension n=5, 7, 9,… have 
negligible irradiance. Hence their weight is negligible in the average realized during the filtering process. This is 
confirmed by  Fig. 11 that shows the profiles of fringes filtered by Gaussian masks of dimension 3, 5, 7 and a variance 
σ2=0.2 pixels2. Hence, for σ2=0.2 pixels2, the only criterion for the choice of the mask dimension is the time spent to 
filter. As the duration of filtering decreases with the mask dimension, the dimension 3 is recommended for using the 
Gaussian filter. 
 
 Finally, it can be observed in Fig. 8 that the Gaussian filter induces a displacement of the phase steps. The 
latter is greater if the variance value is weak. This effect is due to the noise elimination: for a weak variance, noise is 
higher so it affects more significantly the average realized during the filtering process. The weight of noise in the 
average induces the slight displacement of the phase steps. 
 
 
 

Fig. 8. Profiles of reference fringes and fringes filtered 40 
times by a Gaussian mask of dimension 5 and a variance 
σ2=0.1 and 0.2 pixels2. 

Fig. 9. Evolution of the fidelity versus the number of 
filterings for a mean mask of dimension 5 and Gaussian 
masks of dimension 5: σ2=0.2, 0.4 and 0.8 pixels2. 
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3.3.3. Effect of the median mask 
 
 Fig. 12 shows the profiles of reference fringes and fringes filtered 40 times by a median mask of dimension 5. 
The median mask reduces noise more efficiently then the Gaussian mask but less then the mean mask. However, it is 
shown in Fig. 12 than the median mask preserves the slopes of rectangular signals better than the two masks studied 
previously. The correlation fringes filtered by the median mask have the higher contrast, as it is shown in Fig. 14. The 
high contrast obtained by the median mask is a significant advantage. Nevertheless, it appears that the median mask 
propagates the errors. Indeed, if an error covers an important number of pixels, then the filtering propagates it instead of 
its elimination, e.g. in Fig. 14.b the black fringes are rounded on the edges of the image and this effect grows with the 
number of applied filterings. Because of this parasitic effect, in practice, the number of filtering with the median mask 
must be limited (e.g. about 3 times). 

 
 
 
 
 

Fig. 10. Evolution of the fidelity versus the number of 
filterings for Gaussian masks of variance σ2=0.2 pixels2, for 
dimensions n=3, 5 and 7: the fidelity curves are 
superimposed. 

Fig. 11. Profiles of fringes filtered by Gaussian masks of 
variance σ2=0.2 pixels2 and dimensions n=3, 5 and 7: the 
three profiles are superimposed. 

Fig. 12. Profile of the reference fringes (continuous line) 
and the ones filtered 40 times by a median mask of 
dimension 5 (dotted line). 

Fig. 13. Evolution of the fidelity versus the number of 
filterings for median masks of dimensions n=3, 5, 7, 9 
and a mean mask of dimension n=7. 
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 The fidelity versus the number of filterings and for different dimensions of the mask is presented in Fig. 13. 
Contrary to the mean and Gaussian masks, the optimal fidelity Fopt varies with the dimension of the median mask. It is 
shown in Fig. 13 that Fopt is higher for a median mask of dimension 7 then for median masks of dimensions 3, 5 or 9. 
Moreover the decrease of the fidelity, after having reached Fopt, is less significant for the median mask than for the mean 
mask. Indeed, after some filterings, the main effect of the median mask is the propagation of errors while the mean filter 
still averages the irradiance of the pixels. 
 
 Fig. 14 shows the reference fringes and the ones filtered the number of times corresponding to the optimal 
fidelity for each studied mask.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14. a) Reference fringes.   b) Correlation fringes filtered 7 times by a median mask of dimension 7.   c) Fringes filtered 4 times 
by a mean mask of dimension 7.   d) Fringes filtered 40 times by a Gaussian mask of dimension 5, σ2=0.2 pixels2.   The images are 
filtered the number of times corresponding to the optimal fidelity for each studied mask. 
 
 
3.4. Experimental part 
 
 The three filtering masks studied previously (mean, Gaussian and median masks) have been tested by filtering 
an experimental wrapped phase map recorded in our laboratory thanks to an interferometric experimental setup of 
shearography2, 6, 7 (or “Digital Shear Speckle Pattern Interferometry”). 
 

A set of 4 interference patterns, phase shifted the ones compared to the others, have been recorded in varying 
the voltage applied to the phase modulator, i.e. a liquid crystal variable retarder in our case. The latter was chosen 
because the interferometer is based on the separation of the polarization states TE (Transverse Electric) and TM 
(Transverse Magnetic). The shearographic experimental setup is shown in Fig. 15.  

a) b) 

c) d) 
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The light comes from a Nd-Yag laser diode (λ=532 nm). The object speckle pattern has been produced by 
retroscattering of the incident light on a steel plate (30 cm x 30 cm x 1 mm). The interferograms, more precisely the 
shearograms, recorded by a CMOS camera come from the interference between the object speckle wavefront and the 
same speckle wavefront shifted spatially along the X direction thanks to the shearing element. The latter is a coated 
prism (from “Edmund Optics”) separating the two polarization modes thanks to the coating and a thin glass window 
glued on it.  
 

We worked in an out-of-plane digital shearography arrangement (Fig. 15)2, 6, 7. The wrapped phase map has 
been obtained thanks to a four increments algorithm applied to the phase shifted recorded shearograms in two states of 
the steel plate: an initial state (steel plate at rest) and a loaded state (plate loaded centrally). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15. Shearographic experimental setup for the recording of an experimental wrapped phase map. 
 
 Fig. 16.a shows an experimental shearogram recorded thanks to the setup presented in Fig. 15. This shearogram 
(Fig. 16.a) has been filtered by the different masks studied before: mean, Gaussian and median masks. As predicted by 
the section 3.3 , with regard to the elimination of noise, the mean filter is the most efficient (see Fig. 16.b) and the worse 
is the Gaussian mask. After a high number of filterings by a Gaussian mask, the experimental wrapped phase map looks 
like the one filtered just a few times by a mean mask. On the other hand, even if the median mask well preserves the 
contrast of fringes, after some filterings the errors on the edges of the image and other due to saturation of the pixels of 
the CMOS camera grow and make the filtered wrapped phase map difficult to manage for quantitative measurements. 
 
 In this study, it is thus the mean mask applied at the sine/cosine location in the filtering process (section 3.1) 
and just a few times (e.g. less than 5 times with a mask of maximum dimension 7) that yields the best results as well for 
removing noise and preserving the phase information as for the shortest filtering time. Fig. 16.b shows the shearogram 
from Fig. 16.a filtered 4 times by a mean mask of dimension 7 and Fig. 16.c, the corresponding profile. The masks 
studied in this work are elementary so they can be used easily and developed very quickly to filter data in laboratory. 
However, important improvement to filter data can be done by using more complex mask (e.g. anisotropic mask)8 or 
transforms (e.g. Fourier or wavelet transform,…)5, 9 and, in that case, the simple and systematic method developed in 
this work in order to evaluate the filters can be applied and appear useful. 
 
 

4. CONCLUSION 
 
 In conclusion a simple and systematic method to study the behaviour of filters in order to use them in temporal 
phase shifting interferometry has been developed. The effects of elementary filters: mean, Gaussian and median masks, 
have been highlighted thanks to the analysis of profiles and fidelity functions between numerically synthesized 
reference fringes and the same ones disturbed by a Gaussian noise and next filtered by the studied filtering masks. On 
the other hand, the studied filters have been tested on an experimental wrapped phase map recorded in our laboratory. 
Finally, this study can be easily transposed to enhance the effects of more complex filters. 
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Fig. 16. a) Experimental shearogram recorded on the setup of Fig. 15.   b) Shearogram of Fig.16.a filtered 4 times by a mean mask 
(section 3.3.1) of dimension 7.   c) Profiles of the experimental fringes in Fig. 16.a (dotted line) and the ones filtered in Fig. 16.b 
(continuous line). 
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