72[№] ANNUAL MEETING OF THE EUROPEAN FEDERATION OF ANIMAL SCIENCE

SCIENTIFIC SOLUTIONS TO DIFFERENT DEMANDS ON THE LIVESTOCK SECTOR

DAVOS - SWITZERLAND

30 AUGUST - 3 SEPTEMBER 2021

Relationship between proxies of nitrogen use efficiency for dairy cows in early lactation

Y. Chen, C. Grelet, S. Vanderick, N. Gengler

- (1) Protein in the feed is the most expensive raw material
- (2) After feed protein enters the cow body,It is mainly metabolized in different forms of nitrogen (N), such as amino acids, ammonia, urea, etc.

(Aguirre-Villegas et al., 2017)

(3) N use efficiency (NUE) =
$$\frac{\text{Milk N}}{\text{N intake}}$$
 (dairy cow)

(Wattiaux, 2014)

According to the literature, only from 15% to 45% of the N intake of cows is converted into milk N

Where did the N intake go?

NUE⁴

(%)

31

32

30

44

39

44

42

	Animal		NUE, g	g∕g		
	N ²	n	Mean±SD	Min	Max	
Publication and study						D:1
Cantalapiedra-Hijar et al., 2015						Diet-
Study No.1 (ID#1)	Growing beef cattle (36)	34	0.235±0.045	0.152	0.324	
Study No.2 (ID#2)	Dairy cows (5)	18	0.320±0.033	0.265	0.392	A EDI (IIIZ)
Cantalapiedra-Hijar et al., 2016						AFBI (UK)
Study No.3 (ID#3)	Dairy cows (16)	16	0.270±0.032	0.217	0.320	High C
Cabrita et al., 2014						Ingn C
Study No.4 (ID#4)	Dairy cows (9)	24	0.296±0.042	0.232	0.394	Low C
Study No.5 (ID#5)	Dairy cows (9)	25	0.295±0.031	0.239	0.368	Ct and and
Study No.6 (ID#6)	Dairy cows (9)	20	0.341±0.031	0.294	0.397	Standard
Cheng et al., 2011						AU (DK)
Study No. 7 (ID#7)	Dairy cows (9)	18*	0.261±0.053	0.177	0.347	ne (Bh)
Cheng et al., 2013a						High starch
Study No. 8 (ID#8)	Non-lactating sheep (6)	15	0.011±0.147	-0.140	0.175	II: I
Cheng et al., 2013b						riigii sugar
Study No. 9 (ID#9)	Dairy cows (15)	15	0.207±0.040	0.149	0.279	Standard
Cheng et al., 2014						
Study No. 10 (ID#10)	Dairy cows (16)	16	0.201±0.026	0.159	0.274	UCD (IE)
Cheng et al., 2016						Standard
Study No. 11 (ID#11)	Dairy goats (8)	16	0.131±0.018	0.102	0.164	Standard
Total		217	0.243±0.095	-0.140	0.392	

(Cantalapiedra-Hijar et al., 2018)

(Grelet et al., 2020) ₃

(Adapted from Spek et al. 2013)

However, many proxies may represent the N use efficiency (NUE) of cows

However, many proxies may represent the N use efficiency (NUE) of cows

We select below four proxies of NUE to do this study:

- (1) Predicted N use efficiency (PNUE) = $\frac{\text{Milk N}}{\text{Predicted N intake}}$
- (2) Predicted N losses (PNL) = Predicted N intake Milk N
- (3) Predicted N intake (PNintake)
- (4) Milk urea concentration (MU)

• (1) explore the curves for four proxies of NUE in the first 50 days in milk

• (2) estimate the heritability of four proxies of NUE

• (3) analyze the relationship between four proxies of NUE

3.1 Material

- Time: from 2012 to 2019
- Place: Walloon Region of Belgium
- DIM : from 5 to 50

Parity_class	1	2 (2 to 5)	Total
Records	44,321	99,274	143,595
Cows	35,350	42,468	53, 660

The records inclued mid-infrared spactra, parity, milk yield, and milk urea concontration (MU)

3.2 Methods

3.2 Methods

Predicted models of the PNUE, PNL, PNintake

J. Dairy Sci. 103:4435–4445 https://doi.org/10.3168/jds.2019-17910

© 2020, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Potential of milk mid-infrared spectra to predict nitrogen use efficiency of individual dairy cows in early lactation

C. Grelet,¹ © E. Froidmont,¹ © L. Foldager,^{2,3} © M. Salavati,⁴* © M. Hostens,⁵ C. P. Ferris,⁶ © K. L. Ingvartsen,² © M. A. Crowe,⁷ © M. T. Sorensen,² J. A. Fernandez Pierna,¹ A. Vanlierde,¹ © N. Gengler,⁸ © GplusE Consortium,[†] and F. Dehareng¹[‡] ©

Multiple-traits repeatability model

J. Dairy Sci. 104 https://doi.org/10.3168/jds.2020-18849

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Estimation of genetic parameters for predicted nitrogen use efficiency and losses in early lactation of Holstein cows

Y. Chen,¹ S. Vanderick,¹ R. R. Mota,¹ C. Grelet,² GplusE Consortium,* and N. Gengler¹ C.

4.1 Results

4.1 Results

Heritability of the four proxies are from low to moderate, ranging from 0.08 to 0.17

Note: stand errors for h2 of all are less 0.01

Range of genetic corrlations between the four proxies is from -0.77 to 0.99

Trait ¹	PNUE1	PNL1	PNintake1	MU1	PNUE2+	PNL2+	PNintake2+	MU2+
PNUE1	0 01 ²	-0.77 ± 0.03	-0.51 ± 0.05	0.02 ± 0.06	0.73 ± 0.04	-0.61 ± 0.05	-0.38 ± 0.05	-0.02 ± 0.05
PNL1		0.01	0.94 ± 0.07	-0.14 ± 0.06	-0.55 ± 0.04	0.81 ± 0.03	0.80 ± 0.03	-0.09 ± 0.05
PNintake1			2.01	-0.14 ± 0.06	-0.35 ± 0.05	0.76 ± 0.03	0.87 ± 0.04	-0.10 ± 0.05
MU1				2.01	-0.10 ± 0.05	-0.01 ± 0.05	-0.05 ± 0.05	0.99 ± 0.01
PNUE2+					2.04	-0.79 ± 0.03	-0.46 ± 0.04	-0.14 ± 0.04
PNL2+							0.90 ± 0.05	0.03 ± 0.04
PNintake2+								-0.02 ± 0.04
MU2+								

¹Trait: PNUE1 - Predicted N use efficiency in primiparous cows; PNL1 - Predicted N losses in primiparous cows; PNintake1 - Predicted N intake in primiparous cows; MU1 - Milk urea concentration in primiparous cows; PNUE2+ - Predicted N use efficiency in multiparous cows; PNL2+ -Predicted N losses in multiparous cows; PNintake2+ - Predicted N intake in multiparous cows; MU2+ - Milk urea concentration in multiparous cows.

²: \pm standard error.

Genetic corrlation between Predicted N use efficiency and Predicted N losses

	PNL1	PNL2+
PNUE1	-0.77 ± 0.03	-0.61 ± 0.05
PNUE2+	-0.55 ± 0.04	-0.79 ± 0.03

Genetic corrlation between Predicted N use efficiency and milk urea concentration

	MU1	MU2+
PNUE1	0.02 ± 0.06	-0.02 ± 0.05
PNUE2+	-0.10 ± 0.05	0.02 ± 0.04

Genetic corrlation between Predicted N losses and Predicted N intake

	PNintake1	PNintake2+
PNL1	0.94 ± 0.07	0.80 ± 0.03
PNL2+	0.76 ± 0.03	0.90 ± 0.05

Genetic corrlation between milk urea concentration

	MU1
MU2	0.99 ± 0.01

Rang of phenotypic correlations between the four proxies is from -0.43 to 0.63

. .

Trait ¹	PNUE1	PNL1	PNintake1	MU1	PNUE2+	PNL2+	PNintake2+	MU2+
PNUE1	2							
PNL1	-0.43 ± 0.01							
PNintake1	-0.29 ± 0.01	0.58 ± 0.01						
MU1	0.08 ± 0.01	-0.16 ± 0.01	-0.16 ± 0.01	-				
PNUE2+	0.19 ± 0.01	-0.11 ± 0.01	-0.04 ± 0.01	0.00 ± 0.01				
PNL2+	-0.11 ± 0.01	0.18 ± 0.01	0.16 ± 0.01	-0.02 ± 0.01	-0.47 ± 0.00	V		
PNintake2+	-0.03 ± 0.01	0.15 ± 0.01	0.17 ± 0.01	-0.02 ± 0.01	-0.23 ± 0.00	0.63 ± 0.01	Vias	
MU2+	0.01 ± 0.01	-0.04 ± 0.01	-0.04 ± 0.01	0.15 ± 0.01	0.06 ± 0.00	-0.10 ± 0.00	-0.09 ± 0.00	V

¹Trait: PNUE1 - Predicted N use efficiency in primiparous cows; PNL1 - Predicted N losses in primiparous cows; PNintake1 - Predicted N intake in primiparous cows; MU1 - Milk urea concentration in primiparous cows; PNUE2+ - Predicted N use efficiency in multiparous cows; PNL2+ -Predicted N losses in multiparous cows; PNintake2+ - Predicted N intake in multiparous cows; MU2+ - Milk urea concentration in multiparous cows.

²: \pm standard error.

Phenotypic correlation between Predicted N use efficiency and Predicted N losses

	PNL1	PNL2+
PNUE1	-0.43 ± 0.01	-0.11 ± 0.01
PNUE2+	-0.11 ± 0.01	-0.47 ± 0.00

Phenotypic correlation between Predicted N losses and Predicted N intake

	PNintake1	PNintake2+
PNL1	0.58 ± 0.01	0.16 ± 0.01
PNL2+	0.15 ± 0.01	0.63 ± 0.01

5 Conclusions

- (1) The curves for Predicted N use efficiency (PNUE) , Predicted N losses (PNL) , Predicted N intake (PNintake) , and milk urea concentration (MU)
 - (2) The PNUE, PNL, PNintake, and MU have low or moderate heritability in early lactation
 - (3) The correlations between
 - PNUE and PNL are high negative
 - PNUE and MU are low
 - PNinatke and PNL are high positive

6 Advantage and limit

- Advantage
 - Predicted using mid-infrared spectroscopy
 - Cheap
 - Large scale

- Limit
 - Predicted N use efficiency (PNUE), Predicted N losses (PNL), and Predicted N intake(PNintake) are only available for the early lactation

Acknowledgments

Genotype plus Environment Integration for a more sustainable dairy production system

Thank you for your attention

yansen.chen@doct.uliege.be