
Supervised learning of convex piecewise linear

approximations of optimization problems

Laurine Duchesne, Quentin Louveaux and Louis Wehenkel

University of Liege - Dept of EE&CS
Liege - Belgium

Abstract. We propose to use input convex neural networks (ICNN)
to build convex approximations of non-convex feasible sets of optimiza-
tion problems, in the form of a set of linear equalities and inequalities in
a lifted space. Our approach may be tailored to yield both inner- and
outer- approximations, or to maximize its accuracy in regions closer to the
minimum of a given objective function. We illustrate the method on two-
dimensional toy problems and motivate it by various instances of reliability
management problems of large-scale electric power systems.

1 Introduction

Mathematical optimization is a very rich framework allowing us to model lots of
practical problems. The tractability of an optimization problem depends on the
properties of the objective function and the feasible set. Non-convex problems
are often intractable whereas convex problems are tractable. In particular, linear
optimization, which is a subclass of convex problems, is a mature field where
problems with thousands of variables and constraints can be routinely solved
with efficient and reliable solvers [1].

In this paper, we propose to develop machine learning approaches that would
allow us to automatically build convex approximations of non-linear and/or non-
convex feasible domains in the form of a set of linear (and thus convex) con-
straints, in order to exploit the extremely efficient methods and solvers already
available for linear programs. If the obtained linear approximation of the feasible
set is an inner approximation (i.e. all the solutions belonging to this approxima-
tion are feasible), it would allow us to generate feasible solutions and, in the case
of a convex objective function, upper bounds of the minimal value of the original
problem. If it is an outer approximation (i.e. the approximation contains all the
feasible solutions of the original problem) it would provide lower bounds, also
in the case of a convex objective function. Note that this constraint on the ob-
jective function is not restrictive because generically, any optimization problem
minx f(x) s.t. x ∈ D may be rewritten as min(x,z) z s.t. z ≥ f(x), x ∈ D so that
any non-linear and/or non-convex optimization problem may be reduced to the
minimization of a linear (thus convex) function subject to a possibly non-convex
feasible set.

The ICNN [2] is a neural network with constraints on its parameters and
activation functions implying that the learnt input-output function h(x, θ) is a
convex function of the inputs x. While this method was originally proposed in a
regression context (e.g. to build convex approximations of objective functions of

optimization problems), we propose to use it in a classification setting in order
to build convex approximations of feasible sets of optimization problems. Note
that this approach can also be of interest in the context of convex feasible sets.
Using an ICNN would indeed allow us to enforce the convexity property when
using supervised learning to approximate a convex feasible set.

The rest of this paper is organized as follows. Section 2 presents the main
idea, i.e. the feed-forward ICNN model and our proposed adaptation to repre-
sent and learn convex approximations of a feasible domain, and how this learnt
convex approximation can be used effectively in an optimization problem if the
ICNN architecture is using piecewise linear activation functions such as ReLU or
leaky-ReLU. Section 3 presents some illustrative experiments, section 4 discusses
related works, and section 5 possible real-world applications and directions for
future work. Moreover, we provide an appendix which gives further details about
simulation experiments and mathematical proofs.

2 ICNNs for convex classification and optimization

We consider feed-forward networks as shown in Fig. 1, where x ∈ R
n denotes

the vector of inputs, θ = {W z
i ,W

x
i , bi}i=0,...,k−1 the set of parameters, and gi the

activation function used in the ith layer. The relationship between the inputs
and the outputs of layer i of such a model is thus recursively given by:

zi+1 = gi(W
z
i × zi +W x

i × x+ bi) for i = 0, ..., k − 1,

with z0 = 0 and (the outputs) h(x, θ) = zk.

! "# "$ %"&'(!

)*

)#

+(
, +-

, +&'-
,

+(
.

+-
.

+&'-
.

+&'(
,/0

+&'(
,/(

+&'(
./0

+&'(
./(

+0
.

10

1(1- %1&'-

!

!

Fig. 1: Representation of the layers of an ICNN with two outputs h0 and h1.
The weights W z, colored in green, are constrained to be non-negative.

Notice that compared to a classical feed-forward neural network, pass-through
layers connecting directly the input vector x to each layer have been added to
increase the representation power of these networks. In the ICNN model [2],
the weights W z

i for i = 1, ..., k − 1 are constrained to be non-negative and the
activation functions gi are constrained to be convex and non-decreasing. These
two conditions are sufficient to guarantee that the activations zi of each layer
and hence the outputs h(x, θ) are convex functions of the input vector x. In
the rest of this paper we will use (convex and non-decreasing) piecewise linear
activation functions gi (such as ReLU or leaky-ReLU).

2.1 Convex set representation by an ICNN with two outputs

Among several possibilities, we decided to use an ICNN with two (scalar) outputs
h0 and h1 to create a binary classifier, where an input is associated to the target
class 0 if g(x, θ) = h1(x, θ)− h0(x, θ) ≤ 0.

With this choice, it is clear that the set D̃ of elements classified in class 0
by the ICNN is a convex subset of Rn, as soon as g(x, θ) is a convex function
of x. In order to ensure this, we use identity activation functions for the output
layer (gk−1(x) = x) and impose an additional constraint on the parameter vec-
tors W z,0

k−1 and W z,1
k−1 feeding the output layer of the ICNN: they should satisfy

component-wise the inequality

W z,1
k−1 ≥ W z,0

k−1. (1)

Notice that if we feed such a network with an extended vector xe = (x,−x) (or,
more generally xe = Ax), the input-output relationship remains convex in x.

2.2 Building a family of nested convex sets

To build a convex approximation of a set D ⊂ R
n, we assume that we have (or

that we can build) a dataset of input-output pairs D̂ = {xi, yi}ni=1, where each
input xi describes the coordinates of a point in R

n and where the corresponding
output yi = 0 if the point xi belongs to D and yi = 1 otherwise.

We propose to learn from the dataset D̂ the parameters θ of an ICNN classifier
which has as inputs xe = (x,−x), and by using the cross-entropy loss

loss(θ, x, y) = − log

(

exp(hy(θ, x))

exp(h0(θ, x)) + exp(h1(θ, x))

)

.

After training, we consider the whole family of (convex) sets

D̃λ = {x ∈ R
n|g(x, θ) = h1(x, θ)− h0(x, θ) ≤ λ},

with λ ∈ R, as candidate convex approximations of D.

2.3 Exploitation in the context of optimization

A convex ICNN classifier can be used to approximate the feasible set D of an
optimization problem. If the objective f(x) is convex, the approximated problem

min
x∈D̃λ

f(x), (2)

is then also convex. Furthermore, if the objective function f(x) is (piecewise) lin-
ear (and convex), and if all the activation functions gi used in the ICNN are piece-
wise linear, convex, and non-decreasing functions (such as ReLU(x) = max(0, x),
or leaky−ReLU(x) = max(0.01x, x)), we can show that the resulting optimiza-
tion problem reduces to a linear program (see section B of the appendix). In
general, we can use convex ICNN classifiers to approximate in a linear fashion
any non-convex part of the constraints and/or objective function of any opti-
mization problem. Solving (2) for an increasing sequence of λ values, would yield
a decreasing sequence of optimal values.

3 Illustrations

We consider some (convex and non-convex) toy problems where D ⊂ R
2. For

each one, we used a dataset of 20,000 labelled points. These points were sampled
uniformly in a square of length 10 centered at (0, 0); 16,000 were used to train
and 4,000 to test. We show results with ICNNs of 6 hidden layers and 50 neurons
per layer, and ReLU activations. The ADAM optimizer [3] with a learning rate of
10−3 was used to update the network parameters at each epoch. To enforce the
non negativity condition for the weightsW z, each negative element of the update
computed with the optimizer is set to 0 before the next iteration. Similarly, to
enforce the convexity constraint on the last layer, we set to 0 each pair of weights
for which the convexity condition (1) is not met. Before training, the inputs are
standardized based on their minimum and maximum values in the training set
to be in the range [0, 1].

Fig. 2 shows four regions D and their approximation D̃0 with an ICNN.
One can see that the convex region is well approximated by the ICNN. For the
non-convex domains, the ICNN provides a convex approximation D̃0 of D.

Fig. 2: The set D is represented in red and the approximated set D̃0 in blue.

(a) λ = −1.75 (b) λ = 0 (c) λ = 2.7

Fig. 3: Effect of λ on the D̃λ set.

It is possible to play with the size of the approximated region by modifying
the threshold λ in the definition D̃λ = {x ∈ R

n|h1(x)−h0(x) ≤ λ}. Fig. 3 shows
the approximated region D̃λ for various λ. We see that increasing the threshold
allows us to find outer approximations of D and decreasing the threshold allows
us to find inner approximations. With this method, the model needs only to be
learnt once and then the threshold can be manually adjusted to obtain inner or
outer approximations.

3.1 Considering an objective function when learning the ICNN

In an optimization context, it is of interest to guide the learning of the ICNN in
order to improve the approximation close to the minimum values of the objective
function. For that, one possibility is to exploit the objective function f(x) in
the definition of the loss function used when training the classifier, by giving
less weight to elements of the training set farther from the optimum, and thus
induce the learnt approximation D̃0 to be tighter near to the sought optimum.
More details about this procedure can be found in section C of the appendix.

Fig. 4 shows decision boundaries thus obtained for different objective func-
tions. We see that the approximation is indeed tighter close to the unconstrained
optimum and actually approaches the constrained optimum very well.

−4 −2 0 2 4
x1

−4

−2

0

2

4

x2

(a) f(x) = (x1 + 3.5)2 + (x2 − 2)2

−4 −2 0 2 4
x1

−4

−2

0

2

4
x2

(b) f(x) = (x1)2 + (x2 − 2.5)2

Fig. 4: Left parts of (a) and (b): training weights wy,f (blue/dark blue: wy,f = 1;

white: wy,f = 0.2). Right parts: resulting D̃0, where red and black crosses
indicate respectively the unconstrained and the constrained minimum of f(x).

4 Related works

This work is not the first one to exploit the particular properties of ICNNs in
the context of optimization problems. ICNNs have been used for complex phys-
ical systems control [4, 5, 6], to learn the objective function of an optimization
problem and/or its constraints. In these papers, the considered case-studies
are convex. Using ICNNs is therefore a way to exploit the prior knowledge of
convexity while offering tractable control methods.

Similar to our method, ICNNs are used [7] in the context of non-convex
optimization. The authors developed an algorithm called the Convex Differ-
ence Neural Network that expresses the learnt function as a difference of convex
functions, so that they can use Difference of Convex programming techniques in
problems where their algorithm has been used to learn objective functions and
constraints of optimization problems.

Compared to this research, our method learns convex (actually linear) ap-
proximations of non-convex optimization problems, at the cost of possibly larger
approximation errors but with the advantage that much more efficient and scal-
able optimization solvers can be used.

5 Conclusions and future works

We propose to use ICNNs to learn convex approximations of feasible sets of
general optimization problems. This approximation reduces to a series of linear
inequalities when ReLU activation functions are used, and we showed how the
model may yield outer or inner approximations and/or tight approximations in
regions near the optimum of a given objective function.

The next step is to test this method on practical non-convex optimization
problems. Depending on the context in which this method could be applied, the
found solution could be used directly or as a warm-start point for solving the
non-convex problem. It can also be used to compute lower or upper bounds of
the optimal solution when the learnt approximation is built so as to obtain an
outer or an inner approximation of the feasible region.

Another direction of research is to consider the case where the feasible set D
to be approximated depends on some external parameters ξ. In electric power
systems, for instance, the secure region of operation depends on load and renew-
able generation levels and so ξ could represent the realizations of these exogenous
uncertainties. One could then learn a convex approximation of the parameter-
ized domain D(ξ) with an ICNN that would have both x and ξ as inputs while
being constrained to be convex only in x (in [2] such models are called Partially
Input Convex NNs). If the ICNN is able to capture the relationship between the
shape of the feasible region and the parameters ξ, then it could largely speed up
the solving of this type of problems with varying ξ values, once it is learnt.

A further direction of research would consider distributed optimization prob-
lems, where the proposed approach could be used to enable various agents to
learn and exchange convex approximations of their subsets of constraints and
their sub-objectives. This would be of extremely high relevance to the field of
multi-area electric power systems planning and operation.

References

[1] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

[2] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In International

Conference on Machine Learning, pages 146–155. PMLR, 2017.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[4] Yize Chen, Yuanyuan Shi, and Baosen Zhang. Optimal control via neural networks: A
convex approach. arXiv preprint arXiv:1805.11835, 2018.

[5] Yize Chen, Yuanyuan Shi, and Baosen Zhang. Data-driven optimal voltage regulation
using input convex neural networks. Electric Power Systems Research, 189:106741, 2020.

[6] Shu Yang and B Wayne Bequette. Optimization-based control using input convex neural
networks. Computers & Chemical Engineering, 144:107143, 2021.

[7] Parameswaran Sankaranarayanan and Raghunathan Rengaswamy. CDiNN-convex differ-
ence neural networks. arXiv preprint arXiv:2103.17231, 2021.

A Introduction

This appendix is organized as follows.
In section B, we provide the mathematical proof that the approximated prob-

lem
min{f(x)} s.t. x ∈ D̃λ,

with f(x) piecewise linear and convex and D̃λ a convex feasible set approximation
built according to the method described, can be written as a linear program, in
the case of piecewise linear, convex, and non-decreasing activation functions.

In section C, we describe how we adapted the loss function of the ICNN
in order to improve the quality of the approximation in regions close to the
optimum.

B Proof: min
x∈D̃λ

f(x) can be reduced to a linear program

We consider a convex ICNN classifier used to approximate the feasible set D
of an optimization problem. Let us show that if the objective function f(x)
is piecewise linear and convex, and if all the activation functions gi used in
the ICNN are piecewise linear, convex, and non-decreasing functions (such as
ReLU(x) = max(0, x), or leaky − ReLU(x) = max(0.01x, x)), the resulting
optimization problem

min{f(x)} s.t. x ∈ D̃λ,

reduces to a linear program. We first notice that if f(x) is piecewise linear and
convex, then

min{f(x)} s.t. x ∈ D̃λ

may also be rewritten as

min{z} s.t. z ≥ aTj x+ bj , ∀j = 1, . . . , l;x ∈ D̃λ,

where the set of inequalities z ≥ aTj x + bj , ∀j = 1, . . . , l represent the epigraph

of f(x). We thus need only to prove that D̃λ may itself also be represented by
a set of linear (in)equalities.

For simplicity, we prove this in the case of ReLU activation functions but
the result can be extended to any other choice of piecewise linear, convex and
non-decreasing activation functions.

First, let us consider the domain P which is the set of points (x, z0, . . . , zk−1)
such that

z0 = 0, (3)

and
∀i = 0, . . . k − 2 : zi+1 = max(W z

i × zi +W x
i × x+ bi, 0) (4)

and

(W z,1
k−1 −W z,0

k−1)× zk−1 + (W z,1
k−1 −W x,0

k−1)× x+ b1k−1 − b0k−1 ≤ λ. (5)

Note that the projection on x of the domain P , projx(P), corresponds to D̃λ.
When the max function is replaced with a set of equations, the equivalent for-
mulation of the constraints in P becomes

(W z,1
k−1 −W z,0

k−1)× zk−1 + (W z,1
k−1 −W x,0

k−1)× x+ b1k−1 − b0k−1 ≤ λ, (6)

zi+1 = 0 + s0i for i = 0, . . . , k − 2 (7)

zi+1 = W z
i × zi +W x

i × x+ bi + szi for i = 0, . . . , k − 2 (8)

s0i s
z
i = 0 for i = 0, . . . , k − 2 (9)

s0i , s
z
i ≥ 0 for i = 0, . . . , k − 2 (10)

z0 = 0, (11)

where we introduce slack variables s·i to express that zi+1 is either equal to 0 or
to W z

i × zi +W x
i × x+ bi for i = 0, . . . , k − 2.

All the constraints in P are linear, except equation (9). However, we can show
that this nonlinear equation is not necessary regarding our purpose because the
projection on x of a relaxed version of the domain P , that we call Q and for
which all the constraints defining Q correspond to a set of linear equations, is
also equal to D̃λ.

Lemma 1. We are given the parameters of an ICNN using ReLU as activation
functions and learnt to build a convex approximation D̃λ of the feasible set D.
Consider the set P defined as

P =
{

(x, z1, . . . , zk−1, s
0
0, . . . , s

0
k−2, s

z
0, . . . , s

z
k−2)|

(W z,1
k−1 −W z,0

k−1)× zk−1 + (W z,1
k−1 −W x,0

k−1)× x+ b1k−1 − b0k−1 ≤ λ, (12)

zi+1 = 0 + s0i ∀i = 0, . . . , k − 2, (13)

zi+1 = W z
i × zi +W x

i × x+ bi + szi ∀i = 0, . . . , k − 2, (14)

s0i s
z
i = 0 ∀i = 0, . . . , k − 2, (15)

s0i , s
z
i ≥ 0 ∀i = 0, . . . , k − 2, (16)

z0 = 0} . (17)

The set Q, which is defined as P but where constraint (15) is removed, i.e.
defined as

Q ={(x, z1, . . . , zk−1, s
0
0, . . . , s

0
k−2, s

z
0, . . . , s

z
k−2)| (18)

(W z,1
k−1 −W z,0

k−1)× zk−1 + (W z,1
k−1 −W x,0

k−1)× x+ b1k−1 − b0k−1 ≤ λ, (19)

zi+1 = 0 + s0i ∀i = 0, . . . , k − 2, (20)

zi+1 = W z
i × zi +W x

i × x+ bi + szi ∀i = 0, . . . , k − 2, (21)

s0i , s
z
i ≥ 0 ∀i = 0, . . . , k − 2, (22)

z0 = 0}, (23)

is therefore a relaxation of P . We now prove that the projection on x of the set
P is equal to the projection on x of the set Q:

projx(P) = projx(Q). (24)

Proof. 1. projx(P) ⊆ projx(Q) is obvious since Q is a relaxation of P .

2. We now prove projx(P) ⊇ projx(Q). Consider (x, z, s0, sz) ∈ Q. If
(x, z, s0, sz) ∈ P , the result follows. Assume now that (x, z, s0, sz) /∈ P . It
is always possible, by following Algorithm 1, to build from a set of points
(x, z, s0, sz) in Q but not in P , a set of points (x, z̄, s̄0, s̄z) in P with the
same x, which proves the result.

Algorithm 1: Update (x, z, s0, sz) ∈ Q such that (x, z̄, s̄0, s̄z) ∈ P .

Result: (x, z̄, s̄0, s̄z) in P
// Initialization

(x, z̄, s̄0, s̄z) = (x, z1, . . . , zk−1, s
0
0, . . . , s

0
k−2, s

z
0, . . . , s

z
k−2) ;

for j = 0 : k − 2 do

if s̄0j > 0 and s̄zj > 0 then

∆ := min(s̄0j , s̄
z
j);

ŝ0j = s̄0j −∆;

ŝzj = s̄zj −∆;

ẑj+1 = 0 + ŝ0j ;

// or ẑj+1 = W z
j × z̄j +W x

j × x+ bj + ŝzj
if j < k − 2 then

ŝzj+1 = s̄zj+1 +W z
j+1(z̄j+1 − ẑj+1);

(z̄j+1, s̄
0
j , s̄

z
j , s̄

z
j+1) = (ẑj+1, ŝ

0
j , ŝ

z
j , ŝ

z
j+1);

else

(z̄j+1, s̄
0
j , s̄

z
j) = (ẑj+1, ŝ

0
j , ŝ

z
j);

end

end

end

Let us show that (x, z̄, s̄0, s̄z), built from (x, z, s0, sz) ∈ Q with Algo-
rithm 1, belongs to P . For that we proceed iteratively and we show that
at each iteration, the updated vector still belongs to Q. At the end of
the iterations, since by construction (x, z̄, s̄0, s̄z) satisfies constraint (15),
(x, z̄, s̄0, s̄z) ∈ P .

Let j be the smallest index such that s0j > 0 and szj > 0.

Consider the point (x, z̄, s̄0, s̄z), obtained after j iterations with Algorithm
1. We can readily see that this point belongs to Q. Indeed, compared to
the point (x, z, s0, sz) ∈ Q, the only constraint with a different realization
of the left-hand-side or right-hand-side is constraint (21) for i = j and
i = j + 1. The constraint is nevertheless still valid in both cases:

• i = j: By definition of z̄j+1, the constraint holds with equality.

• i = j + 1: We have that z̄j+1 < zj+1 since s̄·j < s·j by construction.
Furthermore, given that W z

j+1 > 0, W z
j+1 × zj+1 > W z

j+1 × z̄j+1.

Therefore,

zj+2 ≥ W z
j+1×zj+1+W x

j+1×x+bj+1 > W z
j+1×z̄j+1+W x

j+1×x+bj+1

and the constraint holds.

Note that in case j = k − 2, the right-hand-side of constraint (19) is also
impacted. However, since (W z,1

k−1 −W z,0
k−1) ≥ 0,

(W z,1
k−1 −W z,0

k−1)z̄k−1 < (W z,1
k−1 −W z,0

k−1)zk−1 ≤ λ,

where the last inequality holds because (x, z, s0, sz) ∈ Q. Therefore,
(x, z̄, s̄0, s̄z) ∈ Q.

Observe that, if (x, z̄, s̄0, s̄z) /∈ P , there exists j̄ > j such that s0
j̄
> 0 and

sz
j̄
> 0. We can again decrease the value of zj̄+1 in order to make one of the

slacks tight. We obtain the result by applying the procedure repeatedly.
Since there is a finite number of indices, the procedure can be applied at
most k − 1 times until we obtain (x, z̄, s̄0, s̄z) ∈ P .

We can thus state that projx(P) = projx(Q).

Note that this lemma can be extended to other activation functions, as long
as they are convex, piecewise linear and non-decreasing. It can thus be applied to
leaky-ReLU activation functions. It is also still valid at the limit, for an infinite
number of pieces and so it is valid for any smooth convex and non-decreasing
activation function.

Consequently to Lemma 1, given an objective function that only depends on
x, we have the following result.

Corollary 2. Given an ICNN using ReLU as activation functions and learnt to
build a convex approximation D̃λ of the domain D,

min f(x)

s.t. (W z,1
k−1 −W z,0

k−1)× zk−1 + (W z,1
k−1 −W x,0

k−1)× x+ b1k−1 − b0k−1 ≤ λ

zi+1 = max(W z
i × zi +W x

i × x+ bi, 0) for i = 0, . . . , k − 2

z0 = 0 (25)

is equivalent to

min f(x)

s.t. (W z,1
k−1 −W z,0

k−1)× zk−1 + (W z,1
k−1 −W x,0

k−1)× x+ b1k−1 − b0k−1 ≤ λ

zi+1 ≥ 0 for i = 0, . . . , k − 2

zi+1 ≥ W z
i × zi +W x

i × x+ bi for i = 0, . . . , k − 2

z0 = 0. (26)

Indeed, the domain P is equivalent to the feasible set of problem (25) while Q
is equivalent to the feasible set of problem (26). Since the projection of these two
sets on the x space is equivalent, i.e. projx(P) = projx(Q), then the feasible set
of solutions regarding x and thus the optimal solution x∗ of the two optimization
problems are the same.

Therefore, minx∈D̃λ
f(x) reduces to a linear program if the objective function

f(x) is (piecewise) linear (and convex), and if all the activation functions gi used
in the ICNN are piecewise linear, convex, and non-decreasing functions.

C Experiments: considering an objective function values

when learning the ICNN

We detail in this section how the training-loss function can be adapted to con-
sider the value of the optimization objective function when training the ICNN
classifier, in order to improve the quality of the approximation D̃0 in regions close
to the optimum. Notice that in order to implement these methods, we assume
that for each element i of the training set, we also know the value fi = f(xi) of
the objective function (in addition to the input xi and the output yi indicating
constraint satisfaction of xi w.r.t. D).

In order to force the learnt approximation D̃0 to be better in regions where
the constrained optimum might be located, we give a higher weight in the loss
function to input-output samples with smaller associated values of f . Thus, the
loss function for an observation x of class y and corresponding to an objective
value f would be given by:

loss(θ, x, y, f) = wy,f ×

[

− log

(

exp(hy(θ, x))

exp(h0(θ, x)) + exp(h1(θ, x))

)]

,

where wy,f would depend both on the true class of the sample and on the value
of the objective function for this sample.

We tested two methods to compute the weights wy,f .
The first method is such that the weights vary linearly between two bounds

with the objective function:

wy,f = wmin
y +

fmax
y − f

fmax
y − fmin

y

(wmax
y − wmin

y),

where fmax
y and fmin

y are respectively the maximum and minimum values of the

objective function among the training samples with label y, and wmin
y and wmax

y

for y ∈ {0, 1} are four hyper-parameters that can be tuned.
The other method that we tested is such that the weights wy,f take only two

values per class y, a high value when the (x, y, f) tuple corresponds to a “small
enough” value of the objective function f(x), and a lower value otherwise:

wy,f = 1Ay
(f)wmax

y + (1− 1Ay
(f))wmin

y ,

where wmax
y and wmin

y are the two values the weights of the training samples with
label y can take and 1Ay

(·) is the indicator function indicating if the sample
corresponds to a “small enough” value of f for class y. On can imagine various
possibilities to define each one of the two sets Ay so that it focuses on the “small
enough” f -values of the corresponding class y.

In the paper, only the results of the second method are shown. In these
computations, the set A0 (of elements of class 0 with “small enough” f) was
defined so as to contain the 10% training elements of class 0 (x ∈ D) showing the
smallest values of f ; this comes together with a weight wmax

0 = 1 and wmin
0 = 0.2.

On the other hand, for class 1, we used wmax
1 = wmin

1 = 1 so that the choice of
the set A1 has no impact in this case.

