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Abstract: Thymus plays a fundamental role in central tolerance establishment, especially during
fetal life, through the generation of self-tolerant T cells. This process consists in T cells education
by presenting them tissue-restricted autoantigens promiscuously expressed by thymic epithelial
cells (TECs), thus preventing autoimmunity. Thymus infection by Coxsackievirus B (CV-B) during
fetal life is supposed to disturb thymic functions and, hence, to be an inducing or accelerating factor
in the genesis of autoimmunity. To further investigate this hypothesis, in our current study, we
analyzed thymic expression of autoantigens, at the transcriptional and protein level, following in
utero infection by CV-B4. mRNA expression levels of Igf2 and Myo7, major autoantigens of pancreas
and heart, respectively, were analyzed in whole thymus and in enriched TECs together along with
both transcription factors, Aire and Fezf2, involved in autoantigens expression in the thymus. Results
show that in utero infection by CV-B4 induces a significant decrease in Igf2 and Myo7 expression at
both mRNA and protein level in whole thymus and in enriched TECs as well. Moreover, a correlation
between viral load and autoantigens expression can be observed in the whole thymus, indicating a
direct effect of in utero infection by CV-B4 on autoantigens expression. Together, these results indicate
that an in utero infection of the thymus by CV-B4 may interfere with self-tolerance establishment in
TECs by decreasing autoantigen expression at both mRNA and protein level and thereby increase the
risk of autoimmunity onset.

Keywords: Coxsackievirus B4; in utero infection; thymus; thymic epithelial cells; central self-
tolerance; transcription factors; autoantigens; autoimmunity

1. Introduction

The thymus is an organ located in the anterior mediastinum just above the heart. It is
flattened, bilobed, and its principle role is the generation of mature T lymphocytes. It can
be divided into cortical and medullar regions, which are delimited by the corticomedullary
junction [1,2]. T lymphocytes, prior to being released into the circulation, must undergo
both positive and negative selection [3,4]. The first selection occurs in the cortex and
consists in the elimination of T cell precursors having a T cell receptor (TCR) with low
affinity to the Major Histocompatibility Complex (MHC) molecule (and preservation of
those with good affinity) [5]. During negative selection, autoantigens, representing each
body tissue and promiscuously expressed by medullar thymic epithelial cells (mTEC), will
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be presented by antigen presenting cells (APC) in a view to educate T cells to tolerate
their own body components, through the elimination of self-reactive T cells [6]. The
expression of those tissue-restricted autoantigens (TRAs) is essentially regulated by two
transcription factors, namely Aire (autoimmune regulator) and Fezf2 (forebrain expressed zinc
finger 2), playing a critical role in thymic negative selection [7].

Coxsackievirus B (CV-B) are ubiquitous and widespread viruses, belonging to the
species Enterovirus B, of the genus Enterovirus, of the family Picornaviridae. CV-Bs in-
fections are considered to be mild, nevertheless, they are also frequently implicated in
various acute and chronic pathologies, some of which have an autoimmune component,
such as myocarditis (reviewed by [8]), type 1 diabetes (T1D) (reviewed by [9]), Sjögren’s
syndrome [10], and certain neurological diseases (reviewed by [11]).

Autoimmunity is a process in which the body does not recognize its own components,
which leads to their destruction and attack by the immune system. This phenomenon is
the result of complex interactions between genetic, immunological, hormonal, and environ-
mental factors. Although autoimmune diseases usually have an asymptomatic beginning,
environmental factors, especially viral infection, can initiate an overt expression [12,13].
Their common denominator is the loss of tolerance to autoantigens, especially to those
widely expressed in the thymus during fetal life and a few days after birth, which manifests
through the appearance of autoreactive T cells that have escaped negative selection [13].

Numerous studies show that genetic or acquired dysfunction of the thymus in the
programming of central immune tolerance towards the Self, plays a decisive role in the
development of organ-specific autoimmune diseases (reviewed by [14]). More known as a
privileged immunological site, protected from infection and immune response, it is now
clearly recognized that the thymus is targeted by various pathogens, particularly viruses
(reviewed by [15,16]), able to alter both the structure and function of this primary lymphoid
organ (reviewed by [16,17]). These alterations are intimately related to one another and
will generally impact the consequences of the infection in the long term.

Among the six CV-B serotypes, CV-B4 seems to be the most involved in the pathogene-
sis of T1D (reviewed by [9]). Thus, this virus is the most used in experimental studies trying
to elucidate the physiopathological mechanisms leading to T1D (reviewed by [18]).CV-
B4 E2, most known as the diabetogenic strain, but revealed with a wide tropism [19,20],
can infect mouse total thymic cells in vitro [21], human and murine thymic epithelial
cells [22,23], as well as human and murine fetal thymus organ cultures [24,25]. A persistent
decrease in the expression of insulin-like growth factor 2 (Igf2), a major autoantigen of
the pancreas, in a cell line of murine thymic epithelial cells infected with CV-B4 E2, has
already been documented [23]. In utero infection of the mouse thymus by CV-B4 E2 was re-
cently documented, and significant anomalies of the different thymocyte populations were
revealed [26]. Altogether, these data considerably reinforce the hypothesis of the role of
CV-B4 infection of the thymus, especially in the fetal and neonatal life, in the development
of autoimmune pathologies.

The critical issue of possible fetal thymus involvement through vertical transmission
of CV-B and on the molecular mechanisms involved in the pathogenesis of autoimmune
diseases has been very poorly documented [27,28].

In our current study, we aim to evaluate the expression of autoantigens representing
target tissues during CV-B infections, namely Igf2 for the pancreas and myosin 7 (Myo7) for
the heart, together with both Aire and Fezf2 transcription factors in the whole thymus and
enriched TECs, which we also considered in our recently described murine model of in
utero CV-B4 infection.

2. Materials and Methods
2.1. Virus

The CV-B4 E2 strain (kindly provided by J. W. Yoon, Julia McFarlane Diabetes Research
Centre, Calgary, AB, Canada) was propagated in human epithelial type 2 (HEp-2) cells
(BioWhittaker, Walkersville, MD, USA) in Eagle’s minimum essential medium (MEM;
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GIBCO BRL, Invitrogen, Gaithersburg, MD, USA) supplemented with 10% heat-inactivated
fetal calf serum (FCS; GIBCO BRL), 1% (2 mM) L-glutamine (BioWhittaker), 1% non-
essential amino-acids (GIBCO BRL), 50 µg/mL streptomycin, 50 IU/mL penicillin (GIBCO
BRL), and 0.05% (2.5 µg/mL) fungizone (Amphotericin B; Apothecon, Amsterdam, The
Netherlands). Supernatants were collected 3 days post-inoculation (p.i.), clarified by
centrifugation at 4000× g for 10 min, divided into aliquots and stored at −80 ◦C. Virus
titers were determined on HEp-2 cells by limiting dilution assay for 50% tissue culture
infectious doses (TCID50) by the method of Reed and Muench [29].

2.2. Mice

Adult outbred Swiss albino mice (Pasteur Institute, Tunis, Tunisia) handled in the
animal facility of the Faculty of Pharmacy of Monastir, were used in this investigation. All
experiments were performed by following the standards of general ethics guidelines and
approved by the bioethics committee in the Higher Institute of Biotechnology of Monastir,
University of Monastir, Tunisia. Mice were housed with ad libitum access to food pellets
and tap water, and kept under controlled conditions. Mice were mated (four females per
male were caged together) until successful fertilization was noted. The day the vaginal
plug was observed was considered as the first day of gestation (day 1G).

2.3. Mice Inoculation and Follow-Up

Pregnant mice were inoculated randomly, either at gestational day 10 (day 10G,
9 dams) or 17 (day 17G, 6 dams), orally (by gavage) with 2 × 106 TCID50 of CV-B4 E2
contained in 200 µL culture medium. Age-matched offspring (fetuses and new-born pups)
from nine naive pregnant mice served as mock-infected negative controls. At each of the
different time-points (day 17G, and days 1 and 5 from birth), three litters of mice from
each experimental condition (Mock- or CV-B4-inoculated at day 10G or 17G) were killed
using isoflurane (Zoetis) and offspring’s thymuses were sampled (Figure 1). All samples
were washed with cold phosphate-buffered saline (PBS) and stored at −80 ◦C until RNA
or protein extraction.

2.4. TECs Isolation and Immunostaining

Thymic lobes were harvested from mice of the same litter for each group, washed in
cold PBS and transferred into cold DMEM (Invitrogen, Waltham, MA, USA) supplemented
with 10% heat-inactivated FCS (Invitrogen, Waltham, MA, USA), 20 mM HEPES, 50 µg/mL
streptomycin, 50 U/mL penicillin, and 0.05% (2.5 µg/mL) fungizone. Thymuses were
cut into small pieces and fragments were dispersed further via pipetting to remove the
majority of thymocytes. After removing the supernatant, the resulting thymic fragments
were subjected to two successive digestions with 125 µg/mL Liberase™ TL Research Grade
low Thermolysin concentration (Sigma-Aldrich, Darmstadt, Germany) and 50 µg/mL
DNase I grade II, from bovine pancreas (Roche Molecular Biochemicals, Basel, Switzerland)
in DMEM at 37 ◦C for 15 min, with pipetting in the middle of the incubation period.
The resulting supernatants were pooled and centrifuged. The resulting cell pellets were
resuspended in 6 mL Percoll (1.07 g/mL), and DMEM was gently overlayed over Percoll
and centrifuged at 500× g for 30 min at 4 ◦C with the brake off [30]. Interphase cells,
which contain APC including TECs, were collected and, after adding 5 mL of DMEM with
2% FCS, centrifuged at 500× g for 5 min at 4 ◦C [31]. Cell pellets were resuspended in
culture medium and submitted to TECs enrichment using the MagniSort™ Mouse CD45
Positive Selection Kit (Invitrogen, Waltham, MA, USA). Briefly, up to 108 cells/100 µL
were incubated with 20 µL of MagniSortTM Anti-Mouse CD45 Biotin B for 10 min at room
temperature. After that, 4 mL of cell separation buffer (PBS supplemented with 2% FCS, 1%
penicillin, and streptomycin) was added and cells were washed by centrifugation at 500× g
for 5 min. Cell pellets were resuspended and incubated for 10 min at room temperature
with 20 µL of MagniSortTM Positive Selection Beads A. Up to 2.5 mL of cell separation
buffer were added, and the tube was inserted into the 6-Tube Magnetic Separation Rack
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(Cell Signal, Denvers, MA, USA) and incubated for 5 min at room temperature. The
supernatant containing CD45- cells was collected and washed twice by centrifugation at
500× g for 5 min.

Figure 1. Schematic representation of the experimental schedule adopted to explore the effect of in
utero CV-B4 infection on transcription factors and autoantigens expression. Four mice females per
male were caged together until successful fertilization. The day of detection of the vaginal plug is
considered as the first day of gestation (day 1G). Pregnant mice were orally inoculated with CV-B4
E2, randomly, either at gestational days 10 (10G, 9 dams) or 17 (17G, 6 dams). Nine naive pregnant
dams served as mock-infected negative controls. Offspring’s thymuses were harvested at day 17G,
day 1, and day 5 from birth when mice were Mock- or CV-B4-inoculated at day 10G, and at day 1 and
5 from birth when mice were CV-B4-inoculated at day 17G. For each experimental condition (Mock-
or CV-B4-inoculated at day 10G or 17G) and each sampling point (day 17G and days 1 and 5 from
birth), thymuses were sampled from three litters of mice.

For immunostaining, isolated TECs were resuspended in cell separation buffer and
incubated with anti-CD16/CD32 Fc block 1:50 (clone 93, eBioscience, Bleiswijk, The Nether-
lands) during 15 min at 4 ◦C. Cells were then incubated with anti-CD45 FITC 1:100 (clone
104, BD biosciences, Allschwil, Switzerland) and anti-EpCAM/CD326 APC 1:100 (clone
G8.8, Biolegend, San Diego, CA, USA) during 30 min at 4 ◦C. Resulting preparations
contained about 80% of CD45−EpCAM+ cells (the reason we preferred to use the term
enriched TECs instead of isolated or purified) as determined by flow cytometry analysis
(data not shown).

2.5. RNA Extraction

Total RNA was extracted from washed thymuses and from enriched TECs by acid
guanidium thiocyanate-phenol-chloroform extraction procedure using Tri-Reagent (Sigma,
St. Louis, MO, USA), precipitated with isopropanol, and washed with 75% ethanol, as
described by Chomczynski and Sacchi [32]. Sterile nuclease-free water subjected to the
same extraction procedure served as negative control. For each kind of gene amplification,
appropriate positive controls (cited below) were also enrolled in each experiment. RNA
was submitted to DNase digestion, at 37 ◦C for 15 min, by DNase type I (Roche, Basel,
Switzerland) to eliminate contaminating genomic DNA, followed by enzyme heat inac-
tivation, at 85 ◦C for 8 min [33]. Purified RNA was dissolved in 30 µL of nuclease-free
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water (Ambion, Bleiswijk, The Netherlands), quantified using the Nanodrop 2000 (UV-Vis
Spectrophotometer; ThermoScientific, Waltham, MA, USA) and stored at −80 ◦C until use
in reverse transcription (RT).

2.6. Complementary DNA (cDNA) Synthesis

Total RNA was directly converted to cDNA using the M-MLV Reverse Transcriptase
(RT, Invitrogen, Waltham, MA, USA). cDNA synthesis was performed with approximately
500 ng of RNA in a final volume of 20 µL containing 20 U/µL of RT, 2.5 µM of anchored-
oligo(dT)18 primer (Roche, Basel, Switzerland), 60 µM of random hexamer primer (Roche),
20 U of RNase inhibitor (Promega, Walldorf, Germany), and 1 mM each deoxynucleoside
triphosphate (dNTPs, Promega, Walldorf, Germany).

According to the manufacturer’s protocol, secondary structures were denatured by
heating samples for 10 min at 65 ◦C in the presence of anchored-oligo(dT)18 primer, random
hexamer primer, dNTP mix, and water PCR grade in a final volume of 20 µL. Samples
were then cooled on ice immediately, then supplemented with 5X First-Strand Buffer, 0.1 M
dithiotrethol (DTT) and 40U of RNaseOUT™ Recombinant Ribonuclease Inhibitor, and
incubated at 37 ◦C for 5 min. One microliter (200 U) of M-MLV RT was added and each
sample was incubated at 25 ◦C for 10 min followed by 50 min at 37 ◦C. Finally, the enzyme
was inactivated by heating at 70 ◦C for 15 min. Two negative controls were performed in
each reaction: one without RNA and the other without enzyme (RT minus control allowing
the detection of eventual genomic DNA contamination).

2.7. Viral Load Quantification

To measure the viral load in whole thymuses and enriched TECs, 1 µL of cDNA was
used to quantify CV-B4 RNA by qPCR, which was performed with 2× Takyon™ No Rox
SYBR®MasterMixdTTP Blue (Eurogentec, Seraing, Belgium). The primer sequences used
were: forward primer EV1 5′-CAAGCACTTCTGTTTCCCCGG-3′ and reverse primer EV2
5′-ATTGTCACCATAAGCAGCCA-3′ [34]. AMPLIRUN®ENTEROVIRUS 71 RNA CON-
TROL (Vircell, Granada, Spain) was used as a standard for a calibration curve containing
5-point ranging from 1.26 × 104 to 1.26 copies/mL.

Each reaction consisted of 20 µL containing 1 µL of cDNA, 10 µL of TakyonMasterMix,
and 3 pmol of each primer. qPCR was run on iCycleriQ real-time detection system (Bio-
Rad, Hercules, CA, USA) using SYBR green detection with the following parameter: initial
denaturation at 95 ◦C for 10 min, followed by 40 cycles of (denaturation at 95 ◦C for 30 s,
annealing at 60 ◦C for 30 s, and elongation at 72 ◦C for 25 s). A melting curve from 55 to
95 ◦C was performed in each PCR reaction. Cyclethreshold (Ct) was defined as the PCR
cycle number that crosses an arbitrarily placed signal threshold.

2.8. Viral Genome Detection in Enriched TECs

The PCR was carried out with 3 µL of cDNA from TECs samples and 0.4 µM of each
primer 007 5′-ATTGTCACCATAAGCAGCCA-3′ and 008 5′-GAGTATCAATAAGCTGCTTG-
3′, generating a 414 base pairs (bp) fragment [19], in a total volume of 50 µL containing
1.25 U of GoTaq G2 Flexi DNA polymerase (Promega, Walldorf, Germany), 0.2 mM each
dNTP, and 2 mM MgCl2. The PCR mixture was subjected to a first denaturation step for
3 min at 94 ◦C, followed by 30 cycles of amplification, consisting of denaturation for 20 s
at 94 ◦C, annealing for 20 s at 60 ◦C, and extension for 30 s at 72 ◦C, followed by a final
extension step for 5 min at 72 ◦C.

PCR products were subjected to a subsequent semi-nested PCR with internal sense
primer 006 5′-TCCTCCGGCCCCTGAATGCG-3′ and anti-sense 007 generating a 155 bp
fragment [35]. A positive control (DNA amplified from the RNA extract of supernatant of
CV-B4 E2-infected HEp-2 cells) and a negative control (no DNA) were included in each
reaction.
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2.9. Car Expression

For Car transcripts detection in enriched TECs, 1 µL of cDNA was incorporated to the
same mixture and submitted to the same program as for viral genome detection by using
Car primers (Table 1). cDNA from the heart was used as a positive control.

Table 1. Primers sequences for qPCR.

Gene Forward Primer Reverse Primer Gene ID Amplicon Length (bp)

Oaz1 5’-GCCAATGAACGAGATCACTT-3′ 5′-GCTGTTTAAGATGGTCAGGTGA-3′ 18245 110
Aire 5′-GGTTCTGTTGGACTCTGCCCTG-3′ 5′-TGTGCCACGACGGAGGTGAG-3′ 11634 144
Fezf2 5′-GTGGCTCCCACCTTTGTACATTCA-3′ 5′-TCACGGTGACAGGCTGGGATTAAA-3′ 54713 121
Igf2 5′-GGGAGCTTGTGGACACGC-3′ 5′-GCACTCTTCCACGATGCCA-3′ 16002 107

Myo7 5′-TGCAAAGGCTCCAGGTCTGAGG-3′ 5′-GCCAACACCAACCTGTCCAAGT-3′ 140781 203
Car 5′-GGTTTGAGCATCACTACACCCG-3′ 5′-TTCAATGTCCAGTGGTCCCTGG-3′ 13052 114

2.10. qPCR Assay

qPCR for transcription factors and autoantigens expression was performed using 2X
Takyon™ No Rox SYBR® MasterMixdTTP Blue (Eurogentec, Seraing, Belgium) with the
same program as described for CV-B4 RNA quantification. Each reaction consisted of 20 µL
containing 1 µL of cDNA, 10 µL of TakyonMasterMix, and 3 pmol of each specific pair of
primers, Aire, Fezf2, Igf2, and Myo7, from Eurogentec (Table 1).

Each PCR reaction also included a reverse transcription negative control (without RT)
to confirm the absence of genomic DNA and a no-template negative control to check for
primer-dimers.

mRNA levels were normalized to those of Oaz1, recently identified as the most stable
housekeeping gene in our experimental model [30].

Relative gene expression was calculated as follows [36]:

Relative gene expression = 2−∆∆Ct

With ∆∆Ct = ∆Ctinfected − ∆Ctcontrol

And ∆Ct = Cttarget gene − CtOaz1

2.11. Western Blotting Analysis

Total proteins were extracted from the thymus with 200 µL RIPA buffer (Thermo
Scientific, Waltham, MA, USA) supplemented with completed proteinase inhibitor cocktail
(Pierce, Waltham, MA, USA). Lysates were incubated at 4 ◦C for up to 1 h with swirling,
then centrifuged to remove DNA and cell debris at 12,000× g during 30 min at 4 ◦C.
Protein concentrations were measured by bicinchoninic acid (BCA) protein assay kit (Pierce,
Waltham, MA, USA).

Twenty micrograms of total proteins were loaded on 5–12% SDS gel electrophoresis
and transferred to nitrocellulose membrane (Amersham Hybond, Darmstadt, Germany).
The membranes were blocked for 1 h with 5% skim milk powder (Sigma, St. Louis, MO,
USA) diluted in Tris-buffered saline with 0.1% Tween-20 (TBS-T).

Membranes were cut horizontally to detect each protein separately. The blots were
incubated overnight with primary antibodies against VINCULIN, AIRE, FEZF2, MYO7,
and IGF2 at 4 ◦C, with gentle agitation (Table 2). Blots were then incubated for 1 hour
with secondary antibody, Anti-rabbit IgG HRP-linked antibody (Cell Signaling Technology,
Leiden, The Netherlands).

The bands corresponding to the tagged proteins were detected using chemilumi-
nescence (SuperSignal West Femto Maximum Sensitivity Substrate, Thermo Scientific,
Waltham, MA, USA) and acquired on ImageQuant289 LAS4000 (GE Healthcare, Mache-
len, Belgium). Quantification of band intensity was performed with the ImageJ software.
VINCULIN was used as loading control and for relative quantification.
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Table 2. Antibodies used for Western blot.

Antibody Host Species Dilution Clone Reference Supplier Tagged Protein
Size (kDa)

VINCULIN Rabbit 1/500 42H89L44 AB-2532280 Thermofisher Scientific 124
AIRE Rabbit 1/1000 Polyclonal PA5-24554 Thermofisher Scientific 57
FEZF2 Rabbit 2/1000 Polyclonal A05051 Thermofisher Scientific 50
IGF2 Rabbit 1/500 OAAB07463 OAAB07463 BosterBio 20

MYO7 Rabbit 4/1000 Polyclonal PA1-936 Aviva Systems Technology 220

2.12. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 5 software (San Diego, CA,
USA). The unpaired t-test was used for expression level (fold change) analysis in CV-B4- vs.
mock-infected samples. p value < 0.05 was considered to represent a statistically significant
difference. * p value < 0.05, ** p value < 0.01, *** p value < 0.001, and **** p value < 0.0001.
The Spearman’s correlation test was used to analyze the correlation between the viral
load and autoantigens expression in whole thymus in a given time point. Spearman’s
r > 0: positive correlation; Spearman’s r < 0: negative correlation. To correct for multiple
testing, data were then analyzed using the Benjamini-Hochberg (BH) test, which is defined
by PBH = p*nbp/j, where p is the original (uncorrected) p-value, nbp is the number of
computed p-values in total, and j is the rank of the original p-value (when p-values are
sorted in ascending order).

3. Results
3.1. In Utero CV-B4 Infection of Offspring’s Thymuses
3.1.1. Viral Load in Whole Thymus

Before addressing the issue of genes expression, we first began by checking the
infection in each sampled offspring’s thymus. The intensity of the infection was evaluated
through measurement of CV-B4 RNA copy numbers in the different harvested offspring’s
thymuses. Our results showed that when the virus inoculation was performed at day
10G, 82% of thymuses were positive, while about only 46% of thymuses were positive
following inoculation at day 17G. Here, we should underline that only those samples
positive for viral RNA were included in the analysis of genes expression compared to
mock-infected controls. Then, the intensity extent of the infection was evaluated through
measurement of CV-B4 RNA copy numbers in the different harvested offspring’s thymuses.
Most elevated viral loads, ranging between 4 × 104 and 9 × 104 copies per 100 ng of total
RNA, were recorded in samples at day 1 and 5 from offspring born to dams inoculated at
day 10G (Figure 2a). Thymuses harvested from fetuses presented a lower level of CV-B4
RNA, ranging from 2073 to 8215 copies, comparable to those from offspring born to dams
inoculated at day 17G and harvested at day 1 (ranging from 4373 to 15,040) or 5 (ranging
from 8000 to 12,000).

3.1.2. CV-B4 RNA Detection in Enriched TECs

Viral load in enriched TECs was equally quantified by RT-qPCR, but no trace of virus
infection could be detected. Then, we used semi-nested PCR for its higher sensitivity but,
as shown in Figure 2b, we still failed to detect CV-B4 RNA.

The expression of Car, the common receptor for CV-B and adenovirus, was assessed
in enriched TECs (as well as in whole thymus and thymocytes) in an attempt to explain
their supposed non-infectability. Indeed, Car transcripts were detected in whole thymus,
thymocytes, and heart (used as a positive control), but not in enriched TECs (Figure 2c).
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Figure 2. CV-B4 RNA quantification and detection in whole thymus and enriched TECs. (a). Viral
RNA load in the whole thymus of offspring from CV-B4 E2-inoculated dams. Thymuses collected at
different time-points (n = 6–13) were submitted to RNA extraction and then to viral RNA quantifi-
cation by RT-qPCR. Results are expressed as copy numbers/100 ng of total RNA and represented
as means ± SD. CV-B4 10G (H): thymus harvested from mice born to dams inoculated with CV-B4
at Day 10 of gestation; CV-B4 17G (�): thymus harvested from mice born to dams inoculated with
CV-B4 at Day 17 of gestation. (b). Gel electrophoresis for CV-B4 RNA detection in enriched TECs by
semi-nested PCR. (c). Gel electrophoresis for Car transcripts detection in enriched TECs, thymocytes
and heart by PCR. M: Molecular weight ladder (100 bp); TECs (CV-B4): Enriched TECs harvested
from in utero infected offspring; TECs (Mock): Enriched TECs harvested from age-matched controls;
S: Sample; T+: Positive control (CV-B4 RNA); T−: Negative control (water PCR grade).
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3.2. Transcription Factors and Autoantigens Transcripts in Whole Thymus

A couple of transcription factors (Aire and Fezf2) and autoantigens (Igf2 and Myo7)
were then selected for RNA quantification by RT-qPCR in mock-infected and confirmed
CV-B4-infected offspring’s thymuses.

As illustrated in Figure 3, in utero CV-B4 infection did not induce any significant
change in the level of Aire and Fezf2 transcripts. Virus inoculation at day 10G led to
decreased amount of Aire transcripts at day 17G and day 5, and of Fezf2 at day 5, but
variations were not significant.

Figure 3. Transcription factors and autoantigens transcripts in the whole thymus. Complementary DNA obtained from
mock- and CV-B4-infected thymuses (n = 5–7), harvested at different time-points, was submitted to quantification of Aire,
Fezf2, Igf2, and Myo7 transcripts by qPCR. Transcripts levels were normalized to those of Oaz1. Relative gene expression
in CV-B4 E2- vs. mock-infected thymuses was calculated, as described in Section 2, and expressed as 100 ×mean 2−∆∆Ct

values ± SD. The unpaired t-test was used for statistical analysis. ** p < 0.01. Mock (•) mock-infected thymuses harvested at
different time points, from fetuses at day 17 of gestation (day 17G), and newborns at day 1 and day 5 from birth. CV-B4
10G (H): thymus harvested from mice born to dams inoculated with CV-B4 at day 10 of gestation; CV-B4 17G (�): thymus
harvested from mice born to dams inoculated with CV-B4 at day 17 of gestation.

On the contrary, a significant decrease in the level of Igf2 transcripts was observed at
day 17G (p = 0.0058) and day 1 (p = 0.004), following CV-B4 inoculation at day 10G, and at
day 1 (p = 0.0079) following CV-B4 inoculation at day 17G.
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Similarly, for Myo7, a significant decrease in transcripts level was detected at day 17G
(p = 0.0025), day 1 (p = 0.0022), and day 5 (p = 0.008), following CV-B4 inoculation at day
10G, and only at day 1 (p = 0.0079) following virus inoculation at day 17G.

3.3. Transcription Factors and Autoantigens Transcripts in Enriched TECs

Then, we chose to quantify transcripts of the same transcription factors and autoanti-
gens in the cells in which they are expressed, namely TECs, which were obtained by
purification and enrichment from whole thymuses (Figure 4).

Figure 4. Transcription factors and autoantigens transcripts in enriched thymic epithelial cells. Whole thymuses were
harvested, at different time-points, from offspring born to mock- and CV-B4-infected dams. Thymuses from fetuses or
neonates of the same litter (n = 5–12) were pooled and subjected to TECs isolation. Transcripts levels for Aire, Fezf2, Igf2, and
Myo7, in enriched TECs, were determined by RT-qPCR and normalized to those of Oaz1. Relative gene expression in TECs
from CV-B4 E2- vs. mock-infected thymuses was calculated, as described in Section 2, and expressed as 100 × mean 2−∆∆Ct

values ± SD. The unpaired t-test was used for statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001. Mock (•) TECs from
mock-infected thymuses harvested at different time points, from fetuses at day 17 of gestation (day 17G), and newborns at
day 1 and day 5 from birth. CV-B4 10G (H): TECs from thymus harvested from mice born to dams inoculated with CV-B4 at
day 10 of gestation; CV-B4 17G (�): thymus harvested from mice born to dams inoculated with CV-B4 at day 17 of gestation.
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Interestingly, our results showed a significant decrease in the level of Aire transcripts
at day 17G (p = 0.0041) and day 1 (p = 0.0056) from birth, following inoculation at day 10G.
A decrease in Aire transcripts was also observed at day 5 following inoculation either at
day 10G or 17G, but differences were not significant compared to controls.

Similarly, Fezf2 transcripts were significantly decreased at day 17G (p = 0.0013), day 1
(p = 0.0055), and day 5 (p = 0.0278), following virus inoculation at day 10G, but only at day
5 (p = 0.0476) following virus inoculation at day 17G.

For Igf2, a significant decrease was noted at day 17G (p = 0.0001) and day 1 (p = 0.0057),
following inoculation at day 10G. Following inoculation at day 17G, that decrease became
significant only at day 5 (p = 0.0278) from birth.

As concerns Myo7 transcripts, they were significantly decreased at day 17G (p = 0.0013)
and day 1 (p = 0.0007), following virus inoculation at day 10G, and at day 1 from birth
(p = 0.0369) when the virus was inoculated at day 17G.

3.4. Western Blot Analysis for Transcription Factors and Autoantigens Proteins

Relative protein levels of AIRE, FEZF2, IGF2, and MYO7 were investigated by Western
Blot in whole thymus as shown in Figure 5.

Analysis revealed that relative AIRE and FEZF2 protein levels did not change follow-
ing infection compared to mock-infected thymuses.

Relative IGF2 protein levels were, however, significantly lower at day 17G (p = 0.0179),
day 1 (p = 0.018), and day 5 (p = 0.0357), following inoculation at day 10G, and at day 1
(p = 0.0286) following inoculation at day 17G compared to those in age-matched negative
controls. Relative IGF2 protein level seems also decreased in thymuses sampled at day 5,
following inoculation at day 17G, but the difference was not significant.

Similarly, the relative MYO7 protein levels were significantly decreased following
inoculation at day 10G at different times of sampling (day 17G, p = 0.0179; day 1, p = 0.0286;
and day 5, p = 0.029), and only at day 1 (p = 0.0286) following inoculation at day 17G.

3.5. Correlation between Viral Load and Transcription Factors and Autoantigens Transcripts Levels
in the Thymus

To better assess the effect of CV-B4 infection on the expression of our selected autoanti-
gens and transcription factors, we explored an eventual correlation between the observed
variations and the viral load, by using Spearman’s correlation test. Multiple comparisons
were corrected by means of the Benjamini–Hochberg method.

As illustrated in Figure 6, no correlation was shown between viral load and Aire and
Fezf2 level expression. A negative correlation (Spearman’s r < 0) was observed between viral
load and Igf2 transcripts level at day 17G (r =−0.796, PBH = 0.0066) following inoculation at
day 10G, and at day 1 (r =−0.813, PBH = 0.0042) following inoculation at day 17G. Similarly,
a negative correlation was observed between viral load and Myo7 transcripts level at day
17G (r = −0.869, PBH = 0.0006) and day 5 (r = −0.922, PBH < 0.0001), following inoculation
at day 10G, and at day 1 (r = −0.895, PBH = 0.0022) following inoculation at day 17G.
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Figure 5. Transcription factors and autoantigens protein expression in the whole thymus. (a) Representative blots depicting
the expression levels of AIRE, FEZF2, IGF2, and MYO7 proteins in CV-B4- and mock-infected thymus sampled at day 1.
(b) Relative expression of AIRE, FEZF2, IGF2, and MYO7 determined by Western blot analysis. Proteins obtained from
mock- and CV-B4-infected thymuses (n = 3–5), harvested at different time-points, were submitted to AIRE, FEZF2, IGF2, and
MYO7 quantification by Western-blot analysis. Proteins levels were normalized to those of VINCULIN used as a loading
control. Relative protein levels in CV-B4 E2- vs. mock-infected thymuses are represented as mean ± SD. The unpaired t-test
was used for statistical analysis. * p < 0.05. Mock (•): mock-infected thymuses harvested at different time points, from
fetuses at day 17 of gestation (day 17G), and newborns at day 1 and day 5 from birth. CV-B4 10G (H): thymus harvested
from mice born to dams inoculated with CV-B4 at day 10 of gestation; CV-B4 17G (�): thymus harvested from mice born to
dams inoculated with CV-B4 at day 17 of gestation.



Microorganisms 2021, 9, 1537 13 of 20

Figure 6. Relationship between viral load and transcription factors, Aire (a) and Fezf2 (b), and autoantigens transcripts, Igf2
(c) and Myo7 (d), in the thymus. For each harvested thymus (CV-B4-infected or age-matched control), transcription factors
and autoantigens transcripts together with the corresponding viral load were measured and plotted in the same graph. To
better assess the effect of infection on transcription factors and autoantigens expression, an eventual correlation between
both parameters was evaluated using the Spearmen’s correlation test. r is the Spearman’s correlation coefficient. p-values
were corrected according to the Benjamini–Hochberg procedure (PBH). Thymuses harvested at day 17G (Day 17G (10G) (•)),
day 1 (Day 1 (10G) (N)) or day 5 (Day 5 (10G) (�)) from mice born to dams inoculated (or mock) with CV-B4 at day 10 of
gestation; thymuses harvested at day 1 (Day 1 (17G) (H)) or day 5 (Day 5 (17G) (�)) from mice born to dams inoculated (or
mock) with CV-B4 at day 17 of gestation. x and y axis were log-scaled.

4. Discussion

The incidence of autoimmune diseases is continuous and rapidly increasing world-
wide, hence the need to multiply the efforts to fight this major health problem. The
implementation of preventive and therapeutic strategies requires a good comprehension
of the different factors and pathophysiological mechanisms behind each pathology. Our
team has a long-standing (nearly twenty years) interest on the role of enteroviruses, es-
pecially CV-B, shown as major environmental triggers, in the pathogenesis of T1D. We
were essentially working on the elucidation of the pathophysiological mechanisms of
CV-B4 infection leading to T1D. Infection of the thymus, as the central site of immune
self-tolerance establishment, is one of the most important hypotheses we are exploring. As
mentioned in the introduction, results obtained from our investigations performed in vitro
strongly confirmed our hypothesis [21–25]. We also showed that CV-B4 can infect and even
persist in the thymus during the course of a systemic infection of outbred mice inoculated
by the oral route [19]. The ability of CV-B4 to infect the thymus in utero, a period during
which the thymus most actively fulfils its functions of T cell education and maturation,
was, however, the remaining question.

A few years ago, we described how CV-B4 E2 inoculation of Swiss albino mice at day
10G or day 17G has an effect on pregnancy outcome and on offspring [37]. In addition,
CV-B4 can reach offspring’s thymus and disturb T cell differentiation [26]. Hence, we felt
this is the ideal model to pursue our investigations about the role of CV-B4 infection of the
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fetal and neonatal thymus in the genesis of autoimmunity. The current paper addresses
the issue of an eventual effect of in utero CV-B4 infection on the expression of selected
autoantigens and transcription factors in the thymus.

Autoantigens, also referred to as promiscuous genes, tissue-specific self-antigens or
tissue-restricted antigens (TRA), are essential in the process of establishment and mainte-
nance of central tolerance. TRA are promiscuously expressed by medullary TECs [36] and
presented to thymocytes to be educated. In fact, during the central tolerance establishment
process, in fetal and neonatal life, immature T cells are educated to recognize and discrimi-
nate foreign antigens from the body’s own components. T cells recognizing autoantigens
are eliminated through a mechanism known as negative selection of autoreactive cells. Aire
or and Fezf2 are two transcriptional controllers that drive the expression of many TRA [37].

It is obvious that we had to begin our investigation by checking thymus infection
before addressing the issue of genes expression. For a more accurate analysis, we chose
to include only samples positive for viral RNA. As previously reported [26], vertically
transmitted CV-B4 reached an important proportion of offspring’s thymuses, especially
following inoculation at day 10G. In addition, viral load assessment by RT-qPCR showed
higher values following inoculation at day 10G than at day 17G.

Conversely, enriched TECs showed negative results for viral RNA detection, either by
RT-qPCR or RT-semi-nested-PCR. We thought that TECs infection would have occurred
and left quickly after inoculation, before the first sampling that was performed 7 days
after inoculation at day 10G and about 4 days after inoculation at day 17G. Nevertheless,
we failed to detect CV-B4 RNA in the thymus of fetuses harvested 48 h after inoculation
(data not shown). In a recent study, viral RNA was detected only in the pancreas of
CV-B4-inoculated Swiss mice, but not in sorted total thymic cells isolated after enzymatic
digestion [38].

Hence, we wondered if those TECs express the specific receptor for CV-B4, namely
CAR (Coxsackievirus and Adenovirus Receptor), the common receptor for CV-B1 to 6 and
adenovirus 2 and 5 [39]. Car transcripts were detected in heart (used as a positive control),
whole thymus, thymocytes, and in cells of the interphase following Percoll isolation, but not
in TECs obtained after enrichment by CD45 Positive Selection kit. We speculate that cells
other than TECs were Car+ in the interphase since the latest contains heterogeneous cells
known as APC [31]. The absence of Car expression in those TECs is in favor of their non-
infectability and, therefore, may explain the failure to detect CV-B4 RNA. CV-B4 infection
of neonatal murine TECs was, however, previously documented, but it was observed
in vitro, in a continuous cell line (MTE4–14) of medullar origin derived from an inbred
mouse strain (C3H/J) [23]. Nevertheless, we cannot totally exclude the presence of CAR
and viral RNA in our TECs since any detection method, regardless of its sensitivity, has
limits. Moreover, the behaviour of viruses in primary cells is poorly understood. Viruses
can undergo changes in primary cells (such as loss of sequences) that can further interfere
with their detection.

Then, we evaluated the expression of selected autoantigens and transcription factor
in both total thymus and enriched TECs. Autoantigens, also referred to as promiscuous
genes, tissue-specific self-antigens or tissue-restricted antigens (TRA), are essential in the
process of establishment and maintenance of central tolerance. TRA are promiscuously
expressed by medullary TECs [40] and presented to thymocytes to be educated. In fact,
during the central tolerance establishment process, in fetal and neonatal life, immature
T cells are educated to recognize and discriminate foreign antigens from the body’s own
components. T cells recognizing autoantigens are eliminated through a mechanism known
as negative selection of autoreactive cells.

Gene expression was analyzed until day 5 after birth, since most autoantigens are
expressed in the thymus at the highest level during the embryonic period and expression
declines few days after birth [41]. As mentioned below, TRA expression during that period
is essential for the establishment of long-lasting self-tolerance [42].
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For qPCR analysis, we used Oaz1 as an internal control gene, as we recently demon-
strated that it is the most stable in the thymus, among other tested housekeeping genes,
during development of Swiss albino mice and following their in utero infection by CV-
B4 [30].

Until now, only two independent transcriptional factors, AIRE and FEZF2, regulated
by distinct signaling pathways and promoting the expression of different classes of proteins,
have been recognized to orchestrate the expression of a wealth of TRA in medullary
TECs [7,43,44]. Aire is a member of the zinc-finger gene family, whose expression is
regulated by Tumor Necrosis Factor (TNF) family members, RANK, and CD40 signaling
pathway, and that indirectly/epigenetically regulates Aire-dependent TRA through AIRE
interaction with nuclear proteins [44]. Aire mutation induces autoimmune polyglandular
syndrome type 1 in patients and Aire knockout mice [45,46]. Fezf2, also known as Zfp312
and Fezl, expression is however under regulation of Lymphotoxin β receptor (LTβR)
signaling axis, and directly regulates Fezf2-dependent TRA through FEZF2 binding on the
gene promoter. Mice lacking Fezf2 in mTECs displayed severe autoimmune symptoms [42].
In humans, no association has been reported between Fezf2 mutations and autoimmune
disease, but rather with symptoms like autism and neoplastic diseases [47–49].

Regarding the choice of the autoantigens to be analyzed, we took into account that
CV-B4 E2 is commonly known as a diabetogenic strain, but it has also been shown to target
several tissues [19,20]. However, since the most frequent autoimmune manifestations in-
volving CV-B concern pancreas and heart (reviewed in [26]), one autoantigen representative
of each of those two tissues was retained, namely Igf2 and Myo7, respectively.

Igf2 belongs to the insulin family of polypeptide growth factors and constitutes the
dominant polypeptide, inside that family, to be found in the thymus [50]. A genetic defect in
intrathymic expression of Igf2 is associated with autoimmune diabetes in BBDP (BioBreeding
Diabetes Prone) rats, which may contribute to the absence of central T cell self-tolerance to
the insulin hormone family [51]. Insulin-related peptides are under AIRE control and are
transcribed in the murine mTECs according to a precise hierarchy (Igf2 > Igf1 > Ins2 > Ins1).
Such hierarchical profile suggests an association with a higher immunological tolerance to
Igf2 and a lower tolerance to insulin (reviewed in [52]).

Similarly, cardiac myosin is considered as the dominant autoantigen in autoimmune
heart disease, mainly myocarditis and dilated cardiomyopathy. Myo7 gene encodes the beta
heavy chain subunit of cardiac myosin. Our choice of Myo7 is based on its predominant
expression in medullary TECs and other thymic cell subtypes [53].

At the practical level, gene expression was analyzed until day 5 after birth, since most
autoantigens are expressed in the thymus at the highest level during the embryonic period
and expression declines a few days after birth [42]. As mentioned below, TRA expression
during that period is essential for the establishment of long-lasting self-tolerance [43].

For qPCR analysis, we used Oaz1 as an internal control gene, as we recently demon-
strated that it is the most stable in the thymus, among other tested housekeeping genes,
during the development of Swiss albino mice and following their in utero infection by
CV-B4 [30].

Results of quantification in the whole thymus showed a notable effect of in utero
CV-B4 infection on the level of Myo7 and Igf2 transcripts, but not on that of Aire and Fezf2.
Ins2 and Myo6 transcripts were also quantified, but not detected (data not shown). In fact,
as mentioned above, Ins2 is not a dominant member of the insulin family to be expressed
in the thymus, and its expression in murine thymus begins after birth [42]. As regards
Myo6, our results are in agreement with those of Lv et al. [53], who reported the absence
of Myo6 expression in the whole thymus and purified thymic cell subsets from B6, NOD,
and DQ8+NOD mice. Similarly, an absence of Myo6 expression in the human thymus was
noted, vs. a high level in the heart [53,54].

Due to the expression of those genes being restricted to mTECs that represent a
minority among total thymic cells [55], we judged that it would be more accurate to
analyze their expression in enriched TECs. It was necessary to pool different thymuses
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from the same litter to obtain a sufficient number of cells for transcripts analysis. Two
coupled techniques (Percoll and CD45 positive selection) were used to obtain the most
pure TECs suspension. After TECs enrichment, the difference in expression compared to
control mice became more evident. Indeed, relative amounts of Aire and Fezf2 transcripts
were found to be significantly diminished, especially following inoculation at day 10G.
As regards Igf2 and Myo7 transcripts, they were also decreased following CV-B4 infection,
with, in some points, more significant differences than those observed in the whole thymus.

Then, considering the fact that the infection may have an impact on different levels
of host gene expression, mainly during mRNA synthesis [56,57] and/or during proteins
production and maturation [58], the amount of proteins encoded by our four genes was
assessed using Western blot. In line with RT-qPCR results, analysis at the protein level
revealed a decrease in IGF2 and MYO7 amounts in the whole thymus, following CV-B4 E2
infection, with no significant effect on AIRE and FEZF2. Unfortunately, protein extraction
from enriched TECs, or from the organic phase of Trizol extraction, generates a very low
yield, which prevents us from performing Western blot on those samples. A decrease
in relative amounts of Igf2 transcripts and IGF-2 protein in CV-B4 E2-infected MTE4–14,
a murine TEC line of medullar origin [59], was however already documented by our
team [23].

Correlation analysis revealed that most of the observed variations in relative gene
expression, especially following inoculation at day 10G, correlate negatively with the
matched amount of RNA copies found in the whole thymus harvested at different time
points. In other words, Igf2 and Myo7 transcripts level decreased with the increase of the
viral load in the infected thymus.

The effect of CV-B4 in utero infection of the thymus on transcription factors and
autoantigens expression, especially in TECs for which we could not prove the infection,
might be indirect via epigenetic regulation [60–62]. Similar to our results, a downregulation
of IGF2 expression in enriched TECs of mice following CV-B4 infection was observed,
despite the absence of a proof of infection of those cells, which raises this hypothesis [38].
Indeed, demethylation of DNA was one of the suggested mechanisms of epigenetic control
of autoantigens expression in murine mTECs, such as Igf2 [63]. We should also note that Aire
expression is regulated by RANK/CD40 pathways, while Fezf2 is regulated by the LTβR
pathway [44]. A loss in LTβR was reported as a cause of a reduction of Fezf2 expression
in mTECs [64]. Since Lta, Ltb, and Light are known as LTβR ligands [64], interference of
CV-B4 infection with any of those regulation pathways may contribute to a disturbance
in Fezf2 and FEZF2-dependent TRA expression. It has been suggested that infection can
alter signaling pathways via indirect effects such as the host-mediated immune (INF,
Interleukin, TNF) and hormonal response [65]. Indeed, that indirect regulation may occur
by mediators of the immune response against the infection, such as type I interferon (IFN)-
α [66]. It has been reported that in vitro IFN-α or IFN-β treatment down-regulates Igf2
expression [67–69]. Irradiated CV-B1 interaction with Toll-like receptors induces a normal
production of IFN-α, IFN-β, and IFN-γ, suggesting that CV-B does not require replication
within cells to induce IFNs expression [66].

Another putative mechanism is that, following infection, increases or decreases in
certain microRNAs (miRNAs) are also known to interfere with gene expression, enhancing
inflammatory T cell development and consequently promoting autoimmunity [70]. In-
terestingly, enterovirus infection may play a role in miRNAs alteration [71]. It has been
shown that mTEC maturation, and Aire, Fezf2, and autoantigens expression are regulated
by miRNAs [60]. TNF family cytokines, LTBR, RANK, and CD40, were found as some
of the potential target genes of miRNAs [63]. CV-B infection may interfere with those
genes or genes coding for their ligands, leading to a dysregulation of FEZF2, AIRE, and
autoantigens expression [72].

Finally, thymic crosstalk, known as the interaction between thymocytes and TECs,
is essential for maturation and differentiation of both cell types [63]. Thymic crosstalk is
mediated by TNF family cytokines expressed in thymocytes and their receptors expressed
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in mTEC [63]. In our recent studies, we noted a significant effect of CV-B4 in utero infection
of the thymus on T cell maturation/differentiation and thymic output, which may interfere
with thymocytes–TEC interactions, therefore, inhibiting mTEC functions, and mainly
transcription factors and autoantigens expression [26,73].

5. Conclusions

In summary, this study underscores the pronounced effect of CV-B4 E2 in utero infec-
tion of mouse thymus, on the expression of selected transcription factors and autoantigens
involved in tolerance establishment. A decrease in Igf2 and Myo7 expression was evident in
infected thymuses at both the transcriptional and protein level. In addition to the decrease
in Igf2 and Myo7 transcripts, a decrease in Aire and Fezf2 transcripts was evident in enriched
TECs. To the best of our knowledge, this is the first study evaluating transcription factors
and autoantigens expression in the whole thymus and TECs in the context of any in utero
infections. An important lack of Aire and Fezf2 transcription factors would likely induce
the development of AID. With regard to the defect in Igf2 and Myo7 expression, it is likely
supposed to break tolerance to the pancreas (β cells) and heart (myocardium), respectively.
Complementary studies are being conducted along this line in our laboratory, in an attempt
to make a link between those observations and an eventual appearance of such suggested
autoimmune manifestations in the long term.

Author Contributions: A.H. conceptualized the study and prepared the manuscript. H.J. (Habib Jmii)
helped in mice husbandry, inoculation and dissection. A.H., H.M. (Hélène Michaux), C.T., A.C. and C.R.
performed the experiment. H.M. (Henri Martens) and D.H. helped analyze and interpreted the data.
H.J. (Hela Jaïdane), M.A. and V.G. supervised the study and corrected the manuscript. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Ministère de l’EnseignementSupérieuret de la RechercheSci-
entifique, LR99ES27, Tunisia, and GIGA-I3 Research—Center of Immunoendocrinology, University of
Liege, Belgium. A.H. received a mobility grant provided by Ministère de l’EnseignementSupérieuret
de la RechercheScientifique, Tunisia, also an Erasmus+ scholarship from University of Liege. Also
supported by SPW-Recherche THYDIA 181013.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Ethics Committee of Comité d’Éthique de la Recherché
en Sciences de la Vie et de la Santé (CER-SVS/ISBM 024/2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: We thank Dayana Abboud and Stéphanie Vandevoorde from Laboratory of
Molecular Pharmacology (University of Liege, Liege, Belgium) for assisting on western blot technique.
We also thank the “Plateforme de recherche” of Faculty of Medecine of Tunis for performing Flow
cytometry technic.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Miller, J.F. Burnet oration. The thymus then and now. Immunol. Cell Biol. 1994, 72, 361–366. [CrossRef] [PubMed]
2. Miller, J.F. The golden anniversary of the thymus. Nat. Rev. Immunol. 2011, 11, 489–495. [CrossRef] [PubMed]
3. Sebzda, E.; Mariathasan, S.; Ohteki, T.; Jones, R.; Bachmann, M.F.; Ohashi, P.S. Selection of the T cell repertoire. Annu. Rev.

Immunol. 1999, 17, 829–874. [CrossRef]
4. Takahama, Y. Journey through the thymus, stromal guides for T-cell development and selection. Nat. Rev. Immunol. 2006, 6, 127.

[CrossRef]
5. Benoist, C.; Mathis, D. Positive selection of the T cell repertoire, where and when does it occur? Cell 1989, 58, 1027–1033.

[CrossRef]
6. Van den Berg, H.A.; Molina-París, C. Thymic presentation of autoantigens and the efficiency of negative selection. Comput. Math.

Methods Med. 2003, 5, 1–22. [CrossRef]

http://doi.org/10.1038/icb.1994.54
http://www.ncbi.nlm.nih.gov/pubmed/7835979
http://doi.org/10.1038/nri2993
http://www.ncbi.nlm.nih.gov/pubmed/21617694
http://doi.org/10.1146/annurev.immunol.17.1.829
http://doi.org/10.1038/nri1781
http://doi.org/10.1016/0092-8674(89)90501-1
http://doi.org/10.1080/102736620310001604910


Microorganisms 2021, 9, 1537 18 of 20

7. Klein, L. Aire gets company for immune tolerance. Cell 2015, 163, 794–795. [CrossRef]
8. Fairweather, D.; Stafford, K.A.; Sung, Y.K. Update on coxsackievirus B3 myocarditis. Curr. Opin. Rheumatol. 2012, 24, 401–407.

[CrossRef]
9. Jaïdane, H.; Sauter, P.; Sané, F.; Goffard, A.; Gharbi, J.; Hober, D. Enteroviruses and type 1 diabetes, towards a better understanding

of the relationship. Rev. Med. Virol. 2010, 20, 265–280. [CrossRef]
10. Triantafyllopoulou, A.; Moutsopoulos, H.M. Autoimmunity and coxsackievirus infection in primary Sjögren’s syndrome. Ann. N.

Y. Acad. Sci. 2005, 1050, 389–396. [CrossRef] [PubMed]
11. Tracy, S.; Gauntt, C. Group B coxsackievirus virulence. In Group B Coxsackieviruses; Springer: Berlin/Heidelberg, Germany, 2008;

pp. 49–63.
12. Molina, V.; Shoenfeld, Y. Infection, vaccines and other environmental triggers of autoimmunity. Autoimmunity 2005, 38, 235–245.

[CrossRef]
13. Tsai, S.; Santamaria, P. MHC class II polymorphisms, autoreactive T-cells, and autoimmunity. Front. Immunol. 2013, 4, 321.

[CrossRef]
14. Geenen, V.; Bodart, G.; Henry, S.; Michaux, H.; Dardenne, O.; Charlet-Renard, C.; Martens, H.; Hober, D. Programming of

neuroendocrine self in the thymus and its defect in the development of neuroendocrine autoimmunity. Front. Neurosci. 2013, 7,
187. [CrossRef]

15. Savino, W. The thymus is a common target organ in infectious diseases. PLoS Pathog. 2006, 2, e62. [CrossRef]
16. Nunes-Alves, C.; Nobrega, C.; Behar, S.M.; Correia-Neves, M. Tolerance has its limits, how the thymus copes with infection.

Trends Immunol. 2013, 34, 502–510. [CrossRef]
17. Jaïdane, H.; Sané, F.; Hiar, R.; Goffard, A.; Gharbi, J.; Geenen, V.; Hober, D. Immunology in the clinic review series, focus on type 1

diabetes and viruses, enterovirus, thymus and type 1 diabetes pathogenesis. Clin. Exp. Immunol. 2012, 168, 39–46. [CrossRef]
[PubMed]

18. Jaïdane, H.; Sané, F.; Gharbi, J.; Aouni, M.; Romond, M.B.; Hober, D. Coxsackievirus B4 and type 1 diabetes pathogenesis:
Contribution of animal models. Diabetes Metab. Res. Rev. 2009, 25, 591–603. [CrossRef] [PubMed]

19. Jaïdane, H.; Gharbi, J.; Lobert, P.E.; Lucas, B.; Hiar, R.; M’Hadheb, M.B.; Brilot, F.; Geenen, V.; Aouni, M.; Hober, D. Prolonged
viral RNA detection in blood and lymphoid tissues from coxsackievirus B4 E2 orally-inoculated Swiss mice. Microbiol. Immunol.
2006, 50, 971–974. [CrossRef] [PubMed]

20. Kibrick, S.; Benirschke, K. Acute aseptic myocarditis and meningoencephalitis in the newborn child infected with Coxsackie
virus group B, type 3. N. Engl. J. Med. 1956, 255, 883–889. [CrossRef] [PubMed]

21. Jaïdane, H.; Gharbi, J.; Lobert, P.E.; Caloone, D.; Lucas, B.; Sané, F.; Dziorek, T.; Romond, M.B.; Aouni, M.; Hober, D. Infection
of primary cultures of murine splenic and thymic cells with coxsackievirus B4. Microbiol. Immunol. 2008, 52, 40–46. [CrossRef]
[PubMed]

22. Brilot, F.; Chehadeh, W.; Charlet-Renard, C.; Martens, H.; Geenen, V.; Hober, D. Persistent infection of human thymic epithelial
cells by coxsackievirus B4. J. Virol. 2002, 76, 5260–5265. [CrossRef]

23. Jaïdane, H.; Caloone, D.; Lobert, P.E.; Sané, F.; Dardenne, O.; Naquet, P.; Gharbi, J.; Aouni, M.; Geenen, V.; Hober, D. Persistent
infection of thymic epithelial cells with coxsackievirus B4 results in decreased expression of type 2 insulin-like growth factor. J.
Virol. 2012, 86, 11151–11162. [CrossRef]

24. Brilot, F.; Geenen, V.; Hober, D.; Stoddart, C.A. Coxsackievirus B4 infection of human fetal thymus cells. J. Virol. 2004, 78,
9854–9861. [CrossRef]

25. Brilot, F.; Jaïdane, H.; Geenen, V.; Hober, D. Coxsackievirus B4 infection of murine foetal thymus organ cultures. J. Med. Virol.
2008, 80, 659–666. [CrossRef]

26. Jaïdane, H.; Halouani, A.; Jmii, H.; Elmastour, F.; Abdelkefi, S.; Bodart, G.; Michaux, H.; Chakroun, T.; Sane, F.; Mokni, M.; et al.
In-utero coxsackievirus B4 infection of the mouse thymus. Clin. Exp. Immunol. 2017, 187, 399–407. [CrossRef]

27. Iwasaki, T.; Monma, N.; Satodate, R.; Kawana, R.; Kueata, T. An immunofluorescent study of generalized Coxsackievirus B3
infection in a newborn infant. Pathol. Int. 1985, 35, 741–748. [CrossRef] [PubMed]

28. Lozovskaia, L.S.; Osipov, S.M.; Zubkova, I.V.; Soboleva, V.D. Study of vertical transmission of coxsackie group enteroviruses in
the etiology of congenital immunodeficiencies. Vopr. Virusol. 1997, 42, 175–179. [PubMed]

29. Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [CrossRef]
30. Halouani, A.; Jmii, H.; Michaux, H.; Renard, C.; Martens, H.; Pirottin, D.; Mastouri, M.; Aouni, M.; Geenen, V.; Jaïdane, H.

Housekeeping Gene Expression in the Fetal and Neonatal Murine Thymus Following Coxsackievirus B4 Infection. Genes 2020, 11,
279. [CrossRef]

31. Stoeckle, C.; Rota, I.A.; Tolosa, E.; Haller, C.; Melms, A.; Adamopoulou, E. Isolation of myeloid dendritic cells and epithelial cells
from human thymus. JoVE 2013, 79, e50951. [CrossRef] [PubMed]

32. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal. Biochem. 1987, 162, 156–159. [CrossRef]

33. Dotti, I.; Bonin, S. DNase treatment of RNA. In Guidelines for Molecular Analysis in Archive Tissues; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 87–90.

34. Leparc, I.; Aymard, M.; Fuchs, F. Acute, chronic and persistent enterovirus and poliovirus infections, detection of viral genome by
semi-nested PCR amplification in culture-negative samples. Mol. Cell. Probes 1994, 8, 487–495. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cell.2015.10.057
http://doi.org/10.1097/BOR.0b013e328353372d
http://doi.org/10.1002/rmv.647
http://doi.org/10.1196/annals.1313.090
http://www.ncbi.nlm.nih.gov/pubmed/16014556
http://doi.org/10.1080/08916930500050277
http://doi.org/10.3389/fimmu.2013.00321
http://doi.org/10.3389/fnins.2013.00187
http://doi.org/10.1371/journal.ppat.0020062
http://doi.org/10.1016/j.it.2013.06.004
http://doi.org/10.1111/j.1365-2249.2011.04558.x
http://www.ncbi.nlm.nih.gov/pubmed/22385235
http://doi.org/10.1002/dmrr.995
http://www.ncbi.nlm.nih.gov/pubmed/19621354
http://doi.org/10.1111/j.1348-0421.2006.tb03874.x
http://www.ncbi.nlm.nih.gov/pubmed/17179665
http://doi.org/10.1056/NEJM195611082551902
http://www.ncbi.nlm.nih.gov/pubmed/13369733
http://doi.org/10.1111/j.1348-0421.2008.00002.x
http://www.ncbi.nlm.nih.gov/pubmed/18352912
http://doi.org/10.1128/JVI.76.10.5260-5265.2002
http://doi.org/10.1128/JVI.00726-12
http://doi.org/10.1128/JVI.78.18.9854-9861.2004
http://doi.org/10.1002/jmv.21016
http://doi.org/10.1111/cei.12893
http://doi.org/10.1111/j.1440-1827.1985.tb00615.x
http://www.ncbi.nlm.nih.gov/pubmed/2994361
http://www.ncbi.nlm.nih.gov/pubmed/9304299
http://doi.org/10.1093/oxfordjournals.aje.a118408
http://doi.org/10.3390/genes11030279
http://doi.org/10.3791/50951
http://www.ncbi.nlm.nih.gov/pubmed/24084687
http://doi.org/10.1016/0003-2697(87)90021-2
http://doi.org/10.1006/mcpr.1994.1070
http://www.ncbi.nlm.nih.gov/pubmed/7700271


Microorganisms 2021, 9, 1537 19 of 20

35. Zoll, G.J.; Melchers, W.J.; Kopecka, H.; Jambroes, G.; van der Poel, H.J.; Galama, J.M. General primer-mediated polymerase chain
reaction for detection of enteroviruses, application for diagnostic routine and persistent infections. J. Clin. Microbiol. 1992, 30,
160–165. [CrossRef]

36. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method.
Methods 2001, 25, 402–408. [CrossRef] [PubMed]

37. Jaïdane, H.; Halouani, A.; Jmii, H.; Elmastour, F.; Mokni, M.; Aouni, M. Coxsackievirus B4 vertical transmission in a murine
model. Virol. J. 2017, 14, 16. [CrossRef] [PubMed]

38. Michaux, H.; Halouani, A.; Trussart, C.; Renard, C.; Jaïdane, H.; Martens, H.; Geenen, V.; Hober, D. Modulation of IGF2 Expression
in the Murine Thymus and Thymic Epithelial Cells Following Coxsackievirus-B4 Infection. Microorganisms 2021, 9, 402. [CrossRef]
[PubMed]

39. Bergelson, J.M.; Cunningham, J.A.; Droguett, G.; Kurt-Jones, E.A.; Krithivas, A.; Hong, J.S.; Horwitz, M.S.; Crowell, R.L.; Finberg,
R.W. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275, 1320–1323. [CrossRef]

40. Kyewski, B.; Klein, L. A central role for central tolerance. Annu. Rev. Immunol. 2006, 24, 571–606. [CrossRef]
41. Kermani, H.; Goffinet, L.; Mottet, M.; Bodart, G.; Morrhaye, G.; Dardenne, O.; Renard, C.; Overbergh, L.; Baron, F.; Beguin, Y.;

et al. Expression of the growth hormone/insulin-like growth factor axis during Balb/c thymus ontogeny and effects of growth
hormone upon ex vivo T cell differentiation. Neuroimmunomodulation 2012, 19, 137–147. [CrossRef]

42. Yang, S.; Fujikado, N.; Kolodin, D.; Benoist, C.; Mathis, D. Regulatory T cells generated early in life play a distinct role in
maintaining self-tolerance. Science 2015, 348, 589–594. [CrossRef]

43. Mathis, D.; Benoist, C. Aire. Annu. Rev. Immunol. 2009, 27, 287–312. [CrossRef] [PubMed]
44. Takaba, H.; Morishita, Y.; Tomofuji, Y.; Danks, L.; Nitta, T.; Komatsu, N.; Kodama, T.; Takayanagi, H. Fezf2 orchestrates a thymic

program of self-antigen expression for immune tolerance. Cell 2015, 163, 975–987. [CrossRef] [PubMed]
45. Anderson, M.S.; Venanzi, E.S.; Klein, L.; Chen, Z.; Berzins, S.P.; Turley, S.J.; Von Boehmer, H.; Bronson, R.; Dierich, A.; Benoist, C.;

et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 2002, 298, 1395–1401. [CrossRef]
46. Akirav, E.M.; Ruddle, N.H.; Herold, K.C. The role of AIRE in human autoimmune disease. Nat. Rev. Endocrinol. 2011, 7, 25.

[CrossRef]
47. Sanders, S.J.; Murtha, M.T.; Gupta, A.R.; Murdoch, J.D.; Raubeson, M.J.; Willsey, A.J.; Ercan-Sencicek, A.G.; DiLullo, N.M.;

Parikshak, N.N.; Stein, J.L.; et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism.
Nature 2012, 485, 237–241. [CrossRef]

48. Kwan, K.Y. Transcriptional dysregulation of neocortical circuit assembly in ASD. Int. Rev. Neurobiol. 2013, 113, 167–205.
49. Shu, X.S.; Li, L.; Ji, M.; Cheng, Y.; Ying, J.; Fan, Y.; Zhong, L.; Liu, X.; Tsao, S.W.; Chan, A.T.; et al. FEZF2, a novel 3p14 tumor

suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma.
Carcinogenesis 2013, 34, 1984–1993. [CrossRef]

50. Geenen, V.; Achour, I.; Robert, F.; Vandersmissen, E.; Sodoyez, J.C.; Defresne, M.P.; Boniver, J.; Lefebvre, P.; Franchimont, P.
Evidence that insulin-like growth factor 2 (IGF2), is the dominant thymic peptide of the insulin superfamily. Thymus 1993, 21,
115–127. [PubMed]

51. Kecha-Kamoun, O.; Achour, I.; Martens, H.; Collette, J.; Lefebvre, P.J.; Greiner, D.L.; Geenen, V. Thymic expression of insulin-
related genes in an animal model of autoimmune type 1 diabetes. Diabetes Metab. Res. Rev. 2001, 17, 146–152. [CrossRef]
[PubMed]

52. Michaux, H.; Martens, H.; Jaïdane, H.; Halouani, A.; Hober, D.; Geenen, V. How does thymus infection by coxsackievirus
contribute to the pathogenesis of type 1 diabetes? Front. Immunol. 2015, 6, 338. [CrossRef] [PubMed]

53. Lv, H.; Havari, E.; Pinto, S.; Gottumukkala, R.V.; Cornivelli, L.; Raddassi, K.; Matsui, T.; Rosenzweig, A.; Bronson, R.T.; Smith, R.;
et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Investig. 2011, 121,
1561–1573. [CrossRef]

54. Gotter, J.; Brors, B.; Hergenhahn, M.; Kyewski, B. Medullary epithelial cells of the human thymus express a highly diverse
selection of tissue-specific genes colocalized in chromosomal clusters. J. Exp. Med. 2004, 199, 155–166. [CrossRef] [PubMed]

55. Derbinski, J.; Schulte, A.; Kyewski, B.; Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the
peripheral self. Nat. Immunol. 2001, 2, 1032–1039. [CrossRef] [PubMed]

56. Taylor, L.A.; Carthy, C.M.; Yang, D.; Saad, K.; Wong, D.; Schreiner, G.; Stanton, L.W.; McManus, B.M. Host gene regulation during
coxsackievirus B3 infection in mice, assessment by microarrays. Circ. Res. 2000, 87, 328–334. [CrossRef]

57. Ylipaasto, P.; Kutlu, B.; Rasilainen, S.; Rasschaert, J.; Salmela, K.; Teerijoki, H.; Korsgren, O.; Lahesmaa, R.; Hovi, T.; Eizirik, D.L.;
et al. Global profiling of coxsackievirus-and cytokine-induced gene expression in human pancreatic islets. Diabetologia 2005, 48,
1510–1522. [CrossRef] [PubMed]

58. Lee, J.J.; Seah, J.B.K.; Chow, V.T.K.; Poh, C.L.; Tan, E.L. Comparative proteome analyses of host protein expression in response to
Enterovirus 71 and Coxsackievirus A16 infections. J. Proteom. 2011, 74, 2018–2024. [CrossRef]

59. Lepesant, H.; Pierres, M.; Naquet, P. Deficient antigen presentation by thymic epithelial cells reveals differential induction of T
cell clone effector functions by CD28-mediated costimulation. Cell. Immunol. 1995, 161, 279–287. [CrossRef]

60. Ucar, O.; Rattay, K. Promiscuous gene expression in the thymus, a matter of epigenetics, miRNA, and more? Front. Immunol.
2015, 6, 93. [CrossRef] [PubMed]

http://doi.org/10.1128/jcm.30.1.160-165.1992
http://doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://doi.org/10.1186/s12985-017-0689-5
http://www.ncbi.nlm.nih.gov/pubmed/28143615
http://doi.org/10.3390/microorganisms9020402
http://www.ncbi.nlm.nih.gov/pubmed/33672010
http://doi.org/10.1126/science.275.5304.1320
http://doi.org/10.1146/annurev.immunol.23.021704.115601
http://doi.org/10.1159/000328844
http://doi.org/10.1126/science.aaa7017
http://doi.org/10.1146/annurev.immunol.25.022106.141532
http://www.ncbi.nlm.nih.gov/pubmed/19302042
http://doi.org/10.1016/j.cell.2015.10.013
http://www.ncbi.nlm.nih.gov/pubmed/26544942
http://doi.org/10.1126/science.1075958
http://doi.org/10.1038/nrendo.2010.200
http://doi.org/10.1038/nature10945
http://doi.org/10.1093/carcin/bgt165
http://www.ncbi.nlm.nih.gov/pubmed/8337706
http://doi.org/10.1002/dmrr.182
http://www.ncbi.nlm.nih.gov/pubmed/11307180
http://doi.org/10.3389/fimmu.2015.00338
http://www.ncbi.nlm.nih.gov/pubmed/26175734
http://doi.org/10.1172/JCI44583
http://doi.org/10.1084/jem.20031677
http://www.ncbi.nlm.nih.gov/pubmed/14734521
http://doi.org/10.1038/ni723
http://www.ncbi.nlm.nih.gov/pubmed/11600886
http://doi.org/10.1161/01.RES.87.4.328
http://doi.org/10.1007/s00125-005-1839-7
http://www.ncbi.nlm.nih.gov/pubmed/15991020
http://doi.org/10.1016/j.jprot.2011.05.022
http://doi.org/10.1006/cimm.1995.1037
http://doi.org/10.3389/fimmu.2015.00093
http://www.ncbi.nlm.nih.gov/pubmed/25784915


Microorganisms 2021, 9, 1537 20 of 20

61. Derbinski, J.; Gäbler, J.; Brors, B.; Tierling, S.; Jonnakuty, S.; Hergenhahn, M.; Peltonen, L.; Walter, J.; Kyewski, B. Promiscuous
gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 2005, 202, 33–45. [CrossRef]

62. Tomofuji, Y.; Takaba, H.; Suzuki, H.I.; Benlaribi, R.; Martinez, C.D.P.; Abe, Y.; Morishita, Y.; Okamura, T.; Taguchi, A.; Kodama, T.;
et al. Chd4 choreographs self-antigen expression for central immune tolerance. Nat. Immunol. 2020, 21, 892–901. [CrossRef]

63. Akiyama, T.; Shinzawa, M.; Qin, J.; Akiyama, N. Regulations of gene expression in medullary thymic epithelial cells required for
preventing the onset of autoimmune diseases. Front. Immunol. 2013, 4, 249. [CrossRef] [PubMed]

64. Takaba, H.; Takayanagi, H. The mechanisms of T cell selection in the thymus. Trends Immunol. 2017, 38, 805–816. [CrossRef]
[PubMed]

65. Tedford, E.; McConkey, G. Neurophysiological changes induced by chronic Toxoplasma gondii infection. Pathogens 2017, 6, 19.
[CrossRef]

66. Yang, K.; Puel, A.; Zhang, S.; Eidenschenk, C.; Ku, C.L.; Casrouge, A.; Picard, C.; Von Bernuth, H.; Senechal, B.; Plancoulaine, S.
Human TLR-7-,-8-, and-9-mediated induction of IFN-α/β and-λ is IRAK-4 dependent and redundant for protective immunity to
viruses. Immunity 2005, 23, 465–478. [CrossRef] [PubMed]

67. Der, S.D.; Zhou, A.; Williams, B.R.; Silverman, R.H. Identification of genes differentially regulated by interferon α, β, or γ using
oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 1998, 95, 15623–15628. [CrossRef] [PubMed]

68. Vitale, G.; Van Koetsveld, P.M.; De Herder, W.W.; Van Der Wansem, K.; Janssen, J.A.; Colao, A.; Lombardi, G.; Lamberts, S.W.;
Hofland, L.J. Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells.
Am. J. Physiol. Endocrinol. Metab. 2009, 296, E559–E566. [CrossRef]

69. Van Koetsveld, P.M.; Vitale, G.; Feelders, R.A.; Waaijers, M.; Sprij-Mooij, D.M.; De Krijger, R.R.; Speel, E.J.; Hofland, J.; Lamberts,
S.W.; De Herder, W.W.; et al. Interferon-beta is a potent inhibitor of cell growth and cortisol production In Vitro and sensitizes
human adrenocortical carcinoma cells to mitotane. Endocr.-Relat. Cancer 2013, 20, 443–454. [CrossRef] [PubMed]

70. Theofilopoulos, A.N.; Kono, D.H.; Baccala, R. The multiple pathways to autoimmunity. Nat. Immunol. 2017, 18, 716–724.
[CrossRef] [PubMed]

71. Cui, L.; Qi, Y.; Li, H.; Ge, Y.; Zhao, K.; Qi, X.; Guo, X.; Shi, Z.; Zhou, M.; Zhu, B.; et al. Serum microRNA expression profile
distinguishes enterovirus 71 and coxsackievirus 16 infections in patients with hand-foot-and-mouth disease. PLoS ONE 2011, 6,
e27071. [CrossRef]

72. Passos, G.A.; Mendes-da-Cruz, D.A.; Oliveira, E.H. The Role of Aire, microRNAs and Cell–Cell Interactions on Thymic
Architecture and Induction of Tolerance. Front. Immunol. 2015, 6, 615. [CrossRef]

73. Halouani, A.; Jmii, H.; Bodart, G.; Michaux, H.; Renard, C.; Martens, H.; Aouni, M.; Hober, D.; Geenen, V.; Jaïdane, H. Assessment
of Thymic Output Dynamics After in utero Infection of Mice with Coxsackievirus B4. Front. Immunol. 2020, 11, 481. [CrossRef]
[PubMed]

http://doi.org/10.1084/jem.20050471
http://doi.org/10.1038/s41590-020-0717-2
http://doi.org/10.3389/fimmu.2013.00249
http://www.ncbi.nlm.nih.gov/pubmed/23986760
http://doi.org/10.1016/j.it.2017.07.010
http://www.ncbi.nlm.nih.gov/pubmed/28830733
http://doi.org/10.3390/pathogens6020019
http://doi.org/10.1016/j.immuni.2005.09.016
http://www.ncbi.nlm.nih.gov/pubmed/16286015
http://doi.org/10.1073/pnas.95.26.15623
http://www.ncbi.nlm.nih.gov/pubmed/9861020
http://doi.org/10.1152/ajpendo.90770.2008
http://doi.org/10.1530/ERC-12-0217
http://www.ncbi.nlm.nih.gov/pubmed/23507702
http://doi.org/10.1038/ni.3731
http://www.ncbi.nlm.nih.gov/pubmed/28632714
http://doi.org/10.1371/journal.pone.0027071
http://doi.org/10.3389/fimmu.2015.00615
http://doi.org/10.3389/fimmu.2020.00481
http://www.ncbi.nlm.nih.gov/pubmed/32300341

	Introduction 
	Materials and Methods 
	Virus 
	Mice 
	Mice Inoculation and Follow-Up 
	TECs Isolation and Immunostaining 
	RNA Extraction 
	Complementary DNA (cDNA) Synthesis 
	Viral Load Quantification 
	Viral Genome Detection in Enriched TECs 
	Car Expression 
	qPCR Assay 
	Western Blotting Analysis 
	Statistical Analysis 

	Results 
	In Utero CV-B4 Infection of Offspring’s Thymuses 
	Viral Load in Whole Thymus 
	CV-B4 RNA Detection in Enriched TECs 

	Transcription Factors and Autoantigens Transcripts in Whole Thymus 
	Transcription Factors and Autoantigens Transcripts in Enriched TECs 
	Western Blot Analysis for Transcription Factors and Autoantigens Proteins 
	Correlation between Viral Load and Transcription Factors and Autoantigens Transcripts Levels in the Thymus 

	Discussion 
	Conclusions 
	References

