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A machine learning approach 
for the factorization 
of psychometric data 
with application to the Delis Kaplan 
Executive Function System
J. A. Camilleri1,2*, S. B. Eickhoff1,2, S. Weis1,2, J. Chen1,2,3, J. Amunts1,2, A. Sotiras4 & 
S. Genon1,2

While a replicability crisis has shaken psychological sciences, the replicability of multivariate 
approaches for psychometric data factorization has received little attention. In particular, Exploratory 
Factor Analysis (EFA) is frequently promoted as the gold standard in psychological sciences. 
However, the application of EFA to executive functioning, a core concept in psychology and cognitive 
neuroscience, has led to divergent conceptual models. This heterogeneity severely limits the 
generalizability and replicability of findings. To tackle this issue, in this study, we propose to capitalize 
on a machine learning approach, OPNMF (Orthonormal Projective Non-Negative Factorization), 
and leverage internal cross-validation to promote generalizability to an independent dataset. We 
examined its application on the scores of 334 adults at the Delis–Kaplan Executive Function System 
(D-KEFS), while comparing to standard EFA and Principal Component Analysis (PCA). We further 
evaluated the replicability of the derived factorization across specific gender and age subsamples. 
Overall, OPNMF and PCA both converge towards a two-factor model as the best data-fit model. The 
derived factorization suggests a division between low-level and high-level executive functioning 
measures, a model further supported in subsamples. In contrast, EFA, highlighted a five-factor 
model which reflects the segregation of the D-KEFS battery into its main tasks while still clustering 
higher-level tasks together. However, this model was poorly supported in the subsamples. Thus, the 
parsimonious two-factors model revealed by OPNMF encompasses the more complex factorization 
yielded by EFA while enjoying higher generalizability. Hence, OPNMF provides a conceptually 
meaningful, technically robust, and generalizable factorization for psychometric tools.

As of late, research in psychological and medical sciences has been subject to a replication crisis1–4 that has 
infiltrated many disciplines interested in human behavior including differential psychology and cognitive 
neuroscience2,5–7. This crisis stems from the finding that a vast number of research results are difficult or impos-
sible to replicate8. Several contributing factors have been pointed out and possible solutions have been proposed. 
Among the contributing factors, the limited sample size and the flexibility in the choice of analysis appear to 
play an important role9–12. Specific choices in the sample selection, measure of interest, and the criteria for 
significance, together with specific criteria for evaluating the relevance or validity of the analysis’ outcomes 
are examples of factors that directly influence the final findings and conclusions of any study. This problem has 
been fully acknowledged and extensively discussed in the context of hypothesis-driven studies (i.e., testing a 
specific psychological effect), and potential solutions for the problem have been suggested. Pre-registration of 
confirmatory hypotheses has been recommended to limit a-posteriori choices driven by questionable practices 
such as p-hacking and data-fishing13. However, these practices are more difficult to implement in the case of 
exploratory studies of human behavior, where the analysis is data-driven rather than hypothesis-driven. This 
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applies to the search for latent structure in psychological data capitalizing on multivariate approaches. Actually, 
the replicability issue has been rarely raised in this domain, despite the influence of the choice of analysis on the 
findings has been often discussed14,15.

A popular exploratory method widely used in psychological research is exploratory factor analysis (EFA), 
which has been introduced in the field by Spearman16. It aims to reduce a number of observed variables to fewer 
unobserved factors in order to identify a hidden structure in the data and to facilitate interpretability14. In a 
conceptual or theoretical perspective, these structures are used as constructs in sophisticated models describ-
ing different aspects of human behavior. The established models and structures are then considered as a ground 
theory on which following studies can build to further characterize human behavior. For example, studies have 
built on derived factorial models of executive functioning to establish relationships with other aspects of human 
behavior17, to examine genetic influences18, or to propose neural substrates19 of this cognitive function. In that 
context, an exploratory factor analysis is generally used to identify latent structure in a set of behavioral variables, 
such as a test battery, and the derived structure then serves as a model which is usually a-priori imposed on a new 
dataset using a confirmatory factorial analysis12. Nevertheless, as noted by Treiblmaier and Filzmoser14, many 
factor solutions can be derived from one correlation matrix and the final solution represents just one of many 
possible choices. Analyses methods, such as the EFA, involve a number of choices that require the researcher 
to make crucial decisions that have a substantial impact on the results and subsequent interpretation20–23. Such 
decisions include the number of factors to retain and the criteria used to select this, the type of rotation applied, 
and the interpretation of the resulting factor solution24. These are choices, that, in addition to the data collection 
aspects such as sample size and test battery, can have an influence on any type of study. Consequently, the lack 
of replicability of factorizations in the literature has been reported in a number of fields. For instance, one can 
point out the diverse and inconsistent factor solutions proposed for psychiatric scales25; personality scores26, 
and executive functioning27–31. In this context, and considering the broader framework of the replication crisis 
in psychological research, it appears necessary to question the utility and generalizability (i.e., the external 
validity) of exploratory approaches to identify latent structure in psychological tools. Traditionally, Principal 
Component Analysis (PCA) has also been used for the investigation of the latent structure of behavioral data. 
To date, the literature is not in agreement as to which method is most appropriate in the context of behavioral 
data. Many authors argue against the use of PCA mainly because this is considered to be solely a data reduction 
method and not a true method of factor analysis in a psychological sciences perspective32–35. However, other 
authors disagree36,37. Generally, the main point of debate concerns the perspective in which the factorization is 
applied. As aforementioned, EFA specifically aims to identify hypothetical constructs (also referred to as factors, 
dimensions, latent variables, synthetic variables or internal attributes). In the behavioral sciences, these latent 
dimensions are assumed to be unobservable characteristics of people. Accordingly, the factors derived from an 
EFA are expected to have a theoretical validity. In contrast, PCA aims to provide a summary representation of the 
original variables into components, without having the specific aim to reflect theoretical constructs. Given their 
different aims, EFA and PCA have different ways of conceptualizing sources of variance in measured variables. 
EFA assumes that factors are not perfectly reflected by the measured variables, and thus distinguishes between 
variance in measures due to the common factors and variance due to unique factors. On the other hand, PCA 
does not make such a distinction and the resulting components contain a combination of common and unique 
variance38. Considering this distinction further implies that EFA factors are assumed to reflect latent constructs, 
and thus should not be expected to vary across subsamples. In contrast, from a data-science perspective, PCA 
and data reduction approaches in general, could be expected to provide different representations depending 
on the datasets by extracting a simplified representation of the data. Given these differences between the two 
approaches, the choice of one approach over the other can influence the result, perpetuating the problem of 
replicability in the identification of latent structures.

Executive functioning is one of the most studied psychological concepts in psychology and is continuously 
examined in cognitive neuroscience. Executive functioning refers to processes central to coordinated, goal-
directed behavior and is thought to play a major role in a wide range of different psychiatric and neurological 
diseases39. However, despite its significance, the true nature of executive abilities remains rather elusive. One 
of the main reasons for this is that executive functioning is not a single process but rather a “macro-construct” 
encompassing various aspects of mental functioning40. Moreover, the lack of a clear formal definition of execu-
tive functioning is also due to the nature of the aspects that constitute it, the relationship among these and their 
contribution to the overall concept41. As a result, there is a constant interest in the study of the structure of 
executive functioning and its relationship with other traits and behaviors17. Throughout the years, several neu-
ropsychological tests have been designed to capture and measure different executive abilities. However, the meas-
urement of executive functioning poses several challenges41–44 including the fact that executive functioning tests 
tend to be inherently impure29. Executive functioning operates on other cognitive processes, and thus any score 
derived from an executive functioning task will unavoidably include systematic variance that can be attributed 
to non-executive functioning processes associated with that specific task context42,44. This latter issue is referred 
to as the task impurity problem and is addressed by using factor analytical techniques. These map the shared 
variance between tests of executive functioning to a set of latent variables, providing a cleaner estimate of these 
higher-order cognitive abilities than the individual tests42,45. Consequently, numerous studies have investigated 
the latent structure of executive functioning using different factorization methods and executive functioning bat-
teries. However, the different studies have resulted in diverse findings and conceptual models27–31. The long-term 
study of factors, or components, of executive functioning is thus particularly illustrative of the plurality of latent 
structures that can be derived from factorization methods in psychological research for a particular concept.

In the clinic, the most popular way of assessing executive functioning is by using test batteries that evaluate 
the diverse higher-order abilities through multiple tests44. One such test battery that has become increasingly 
common in clinical practice, as well as in research, is the Delis–Kaplan Executive Function System46. The D-KEFS 
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is one of the first normed set of tests developed specifically to assess executive functioning. It consists of nine tests 
comprising traditional and newly developed tests covering a wide spectrum of verbal and non-verbal executive 
functions, which are all designed to be stand-alone instruments that can be administered individually or together 
with other D-KEFS tests. Past studies have used different methods to attempt to evaluate the latent structure of 
this particular battery, identifying some evidence of diverse latent factors explaining performance on individual 
tests17,45,47,48. In summary, the D-KEFS represents a widely used psychological tool with applications in clinical 
settings, but for which different factorizations could be proposed in the healthy population.

Considering the heterogeneous factorization results in the literature of executive functioning and psychol-
ogy in general, generalizability should be a crucial criterion of validity in order to reach a conceptual consensus 
in psychological sciences. However, as can be seen in the study of executive functioning, a plethora of models 
exists. In the context of a replicability crisis in psychological sciences, the heterogeneity of models is particularly 
problematic. The use of different models that examine different aspects of interindividual variability prevents 
comparison and integration across studies. However, practically evaluating generalizability is hard due to lack 
of data (and lack of funding support for replicability evaluation). This is particularly the case for factorization 
analyses, which require large sample sizes for each evaluation. Nevertheless, internal cross-validation can be 
used to give insight on how the model will generalize to unseen data that are not used for model derivation. As 
a common approach in the machine learning field, cross-validation consists of the partitioning of a dataset into 
subsets. The analysis is then performed on one subset (the training set) and validated on the other subset (the 
test set) across multiple runs with different training and test sets.

In recent years, the increased use of machine learning approaches has emphasized the use of internal cross-
validation to increase robustness and to estimate generalizability to an independent dataset. This has led to 
the popularization of novel methods, which can also be used as factorization techniques, thus offering a novel 
perspective for behavioral sciences. While these novel approaches are commonly perceived as lacking interpret-
ability and validity when compared to classical statistical approaches, some methods have been developed with 
the purpose of increasing these aspects by adding additional constraints. One such method, the OPNMF (or 
Orthonormal Projective Non-Negative Matrix Factorization), provides a relatively higher interpretability as 
compared to more traditional methods, such as the classic NMF. OPNMF was recently used to identify a robust 
and generalizable factor structure of Positive and Negative Syndrome Scale (PANSS) data from participants 
with schizophrenia25. The new factor-structure was moreover shown to more reliably relate to specific brain 
functions than the original PANSS subscales, demonstrating the usefulness of this OPNMF approach49. This 
technique could hence significantly contribute to the definition of robust factorization of psychological variables, 
in particular for widely used psychological tools, such as standard neuropsychological batteries, socio-affective 
questionnaires and clinical scales.

The motivation of this study was two-fold. Firstly, given the importance of generalizability in the identification 
of latent structures, one main goal of the present study was to compare the factorization obtained when using a 
machine learning approach (OPNMF) with a cross-validation scheme, with the factorization derived from more 
traditional approaches that tend to lack the generalizability aspect, in particular EFA, but also PCA. Furthermore, 
a second motivation of this study was to better understand the nature of EF and the tasks commonly used to 
investigate it. To this end, we capitalized on a large open access dataset of healthy adult scores of the D-KEFS 
provided by the Enhanced Nathan Kline Institute – Rockland Sample. This dataset is heterogenous in covering 
the whole adult life span, providing a good gender balance and including participants from the whole population 
(including different ethnicities), thus making it optimal for this study in which generalizability is central. EFA and 
PCA were here performed by using standard statistical techniques as implemented in open access statistical tools 
such as JASP50. Furthermore, the choice of the optimal number of factors or components for these traditional 
approaches was based on recent guidelines in the field, while the choice of the optimal number of components 
for OPNMF was based on standard criteria assessing not only the quality of the data representation, but also its 
generalizability. Finally, to further evaluate the quality of the different factorizations, we examine the stability or 
generalizability across age and gender subsamples.

Methods
Sample and measures.  The current study used age-corrected scaled D-KEFS scores of 334 adults (18–
85 years old; mean age = 46; 101 males) obtained from the Enhanced Nathan Kline Institute—Rockland Sam-
ple (eNKI)51. Written informed consent was obtained from all participants. The local ethics committee of the 
Heinrich-Heine University in Düsseldorf, Germany approved analysis of the data and all methods were car-
ried out in accordance with relevant guidelines and regulations. The main variables of the analyses included 17 
D-KEFS Total Achievement Scores (Table 1), which reflect global achievement scores on the 9 tests included in 
the D-KEFS battery and broadly reflect traditional measures of executive functioning46. Only participants that 
had scores for all 17 variables were included in the study resulting in the exclusion of 385 participants from the 
original eNKI dataset. Additional information regarding the education level and occupation of the participants 
can be found in the supplementary material. This study used five different (sub) groups: (1) the full dataset 
including 334 adults; (2) a subset of the data including only males (n = 101); (3) a subset of the data including 
only females (n = 233); (4) a subset of the data only including subjects aged over 50 (n = 144); and (5) a subset of 
the data only including subjects aged 50 or under (n = 220).

The D-KEFS battery offers a wide range of tests that tap into many of the established constructs of executive 
functioning. The D-KEFS battery includes the following tests: (a) Trail Making Test, which aims at assessing 
attention, resistance to distraction and cognitive flexibility; (b) Verbal Fluency Test, which assesses the ability of 
generating words fluently from overlearned concepts and thus reflects efficient organization of such concepts; (c) 
Design Fluency Test, which is a non-verbal version of the Verbal Fluency Test and assesses the ability of quickly 
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generating designs; (d) Color-Word Interference Test, which taps into inhibition and cognitive flexibility by 
assessing the ability to inhibit an overlearned verbal response in order to generate a conflicting response; (e) Sort-
ing Test, aims at measuring multiple components of concept-formation and problem-solving abilities; (f) Twenty 
Questions Test, which assesses the ability to formulate abstract questions and to come up with problem-solving 
strategies; (g) Word Context Test, assesses skills such as deductive reasoning, information integration, hypoth-
esis testing, and flexibility of thinking; (h) Tower Test, which assesses spatial planning and rule learning; and (i) 
the Proverb Test, which tests abstraction abilities. All variables included in the present study are presented in 
Table 1. All variables were examined for outliers and visually inspected for inappropriate distribution. Frequency 
distributions for each of the 17 EF variables used in the analyses can be found in the supplementary material.

Factorization of D‑KEFS scores using OPNMF.  NMF is a factorization method that enables the 
decomposition of a given matrix into two non-negative matrices: (1) a basis matrix with columns represent-
ing the resulting latent factors and (2) a factor-loading matrix representing the loading coefficients. The two 
resulting matrices together should approximate the original data matrix. NMF and its variants have been widely 
used in various recent biomedical studies including metagene discovery52, classification of cancer subtypes53,54, 
identification of structural brain networks55, and identification of dimensions of schizophrenia symptoms25. 
Such applications of NMF and its variants have shown that such methods do not require the input data to be 
normally distributed. One such variant, the OPNMF, has in fact been shown to derive stable and generalizable 
factor solutions for data with skewed distributions25,49. The present study aims at discovering the latent structure 
of executive functioning by applying this promising method to D-KEFS performance scores. In order to achieve 
this in an interpretable fashion, the present study adopted a specific variant of NMF, the OPNMF, which adds 
additional constraints to the algorithm in an effort to promote sparsity and hence improved interpretability to 
the results25,55,56.

Table 1.   Description summary of all variables included in the study.

Test Variable Variable description Measure

Trail making test Number-Letter Switching Requires examinees to switch back and forth 
between connecting numbers and letters in sequence Completion time [s]

Verbal fluency

Letter Fluency Requires examinees to say as many words as possible 
starting with a specific letter in 60 s Sum of correct responses

Category Fluency Requires examinees to say as many words belonging 
to a specific semantic category in 60 s Sum of correct responses

Category Switching Requires examinees to switch between two specific 
categories in 60 s Sum of correct responses

Design fluency

Design Fluency—Filled dots Measures the examinee’s ability to draw as many dif-
ferent designs as possible in 60 s Total number of correct designs

Design Inhibition—Empty Dots only
Measures the examinee’s ability to draw as many dif-
ferent designs as possible in 60 s while making sure 
that certain responses are inhibited

Total number of correct designs

Design Switching
Measures the examinee’s ability to draw as many 
different designs as possible in 60 s while requiring 
participants to engage in cognitive shifting

Total number of correct designs

Color word interference
CWI—Inhibition

Requires examinee to inhibit reading the words in 
order to name the dissonant ink colors in which the 
word is printed

Completion time [s]

CWI—Switching Requires examinee to switch back and forth between 
naming the dissonant ink color and reading the word Completion time [s]

Sorting test

Confirmed Sorts
Participants are required to sort cards into two 
groups according to as many different categorization 
rules or concepts as possible

Total number of correct sorts

Free Sorting Description Participants are required to describe the concepts 
they used to generate each sort Total number of correct descriptions

Sort Recognition
Participants are required to identify the correct 
categorization rule or concept used to sort cards that 
have been sorted by the examiner

Total number of correct recognitions

Twenty questions test
Initial Abstraction Score Examinee is shown pictures of common objects 

and the task is to ask the fewest number of yes/no 
questions possible to identify the object chosen by 
the examiner

Minimum number of objects eliminated by first 
question

20 Questions—Total Achievement Score Sum of weighted achievement scores across all items

Word context test Word Context—Total Achievement Score
Examinee attempts to discover the meaning of a 
made-up word on the basis of its use in five clue 
sentences

Consecutively correct items

Tower test Tower Test—Total Achievement Score
Examinee is required to move disks varying in size 
across three pegs to build tower in the fewest number 
of moves possible to match the target tower while 
following certain rules

Sum of achievement scores (summed up for all items)

Proverb test Proverb Test—Total Achievement Score
Proverbs are read individually to the examinee 
who is required to interpret them orally without 
assistance or cues

Sum of achievement scores (summed up for all items)
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The OPNMF algorithm was first applied to D-KEFS total achievement scores coming from the whole sample, 
with the number of factors ranging from 2 to 9. Additionally, the algorithm was applied to the subsets of the 
dataset that were split by gender and age. The optimal number of factors, and hence the most robust, stable, and 
generalizable factor model, was identified by using cross-validation in 10,000 split-half analyses25. Considering 
the different sizes of the sub-samples, the cross-validation scheme that was used (i.e., partitioning the dataset 
into subsets and then performing the analysis on the training set and validating it on the test set across multiple 
runs with different training and test sets), ensured the robustness of all analyses, including the ones using smaller 
subsets of the dataset, in a more direct way than classical power and its use in classical statistics. Specifically, 
the eNKI sample was split into two halves, and OPNMF was performed on each split sample to derive the basis 
matrix. Subsequently, each item was assigned to a specific factor based on its largest coefficient within the basis 
matrix. The adjusted Rand index57, and variation of information58 were then employed to assess the stability of 
item-to-factor assignments between the basis matrices derived from the two split samples. Although OPNMF 
generates almost clustering-like structure, it allows small contributions from multiple items to specific factors. 
Hence we further evaluated the stability of the whole entries by comparing the two basis matrices as assessed by 
the concordance index59. For the adjusted Rand-index and concordance index, a higher value indicates better 
stability across splits, while for the variation of information metric, better stability corresponds to lower values. 
Generalizability was assessed by quantifying out-of-sample reconstruction error by projecting the data of one 
split sample onto the basis matrix from the other split sample. A lower increase in out-of-sample error compared 
with within-sample reconstruction error indicates better generalizability25. All analyses were run using Matlab 
R2018a with customized codes, which are available upon request.

PCA and EFA.  Data from each of the five different matrices was additionally subjected to exploratory factor 
analysis (EFA) and principal component analysis (PCA). In both analyses, loading matrices were rotated using 
promax oblique rotation as currently suggested in the field15. An oblique rotation (which allows correlation 
between the factors) was chosen because of an a priori expectation that higher order factors would reflect a 
coherent domain of executive functioning, as suggested by the goals of the D-KEFS46. Furthermore, previous 
studies showed that executive functioning tasks tend to be correlated42,60–62, hence justifying the use of oblique 
rotation. In both EFA and PCA, the optimal number of factors/components was determined by using two dif-
ferent methods: the Scree test63 and eigenvalue Monte Carlo simulation approach64, ( i.e., parallel analysis) The 
Scree Test has been traditionally used for the selection of number of factors and involves plotting the eigenvalues 
in descending order of their magnitude and determining where they level off to ultimately select the number 
of meaningful factors that capture a substantial amount of variance in the data65. On the other hand, parallel 
analysis simulates a set of random data with the same number of variables and participants as the real data from 
which eigenvalues are computed. The eigenvalues extracted from real data that exceed those extracted from 
random data then indicate the number of factors to retain15. This method formally tests the probability that a fac-
tor is due to chance and hence minimizes the over-identification of factors based on sampling error66. It is thus 
superior to the reliance upon eigenvalue scores generated by factor analytic processes alone. Parallel Analysis has 
also been shown to perform well when determining the threshold for significant components, variable loadings, 
and analytical statistics when decomposing a correlation matrix67. Finally, for the reader’s information, we also 
reported here a typical goodness-of-fit measure in EFA, the Tucker-Lewis Index (TLI). TLI reflects the ratio of 
the model chi-square and a null-model chi-square. In the null-model, the measured variables are uncorrelated 
(thus there are no latent variables), consequently the null-model has usually a large chi-square (i.e., a poor fit). 
TLI values express the goodness-of-fit of the found model relative to the null-model and usually range between 
0 and 1. As a rule of thumb, a value > 0.95 indicates a good fit , a value > 0.90 indicates an acceptable fit for and a 
value < 0.90 indicates a poor fit68.

Results
Optimal number of factors across different factorization approaches and subsamples.  Based 
on results of the stability measures (Fig. 1), the OPNMF analysis on the full dataset indicated a two-factor model 
as the optimal solution. The adjusted Rand index, variation of information and concordance index between the 
basis matrices, all indicated the two-factor solution to be the most stable. The transfer reconstruction error indi-
cated that the 2-factor solution was the most generalizable. Stability measures for the OPNMF analyses that were 
carried out on subsets of the data split by gender and age showed a similar pattern to the ones resulting from 
the full dataset, thus suggesting a two-factor model for each of the subsets of the data. Both the Scree plot and 
the Parallel analysis carried out for PCA also indicated that the optimal solution consisted of a 2-factor model 
for the full dataset analysis. This 2-factor model was consistent for most PCA analyses performed on the data 
subsets when looking at both selection indices with the exception of the male subset whose scree-plot indicated 
a 4-factor solution. Consistently, in the case of the EFA analyses, the Scree plot indicated a 2-factor model for the 
full dataset analysis (TLI = 0.732) as well as for all the analyses performed on the data subsets (male: TLI = 0.670; 
female: TLI = 0.761; older adults: TLI = 0.745; younger adults: TLI = 0.699, all suggesting a poor fit). However, the 
parallel analyses results yielded more heterogenous findings. EFA parallel analyses results carried out on the full 
dataset suggested a 5-factor solution (TLI = 0.931 suggesting an acceptable fit). When the full dataset was split 
by gender, the EFA analyses results suggested a 3-factor solution for the male subjects only dataset (TLI = 0.837 
suggesting a poor fit) and a 5-factor solution for the female subjects only dataset (TLI = 0.906 suggesting an 
acceptable fit). When the full dataset was split by age, the EFA analyses results suggested a 4-factor solution for 
both older (TLI = 0.894 suggesting a marginally acceptable fit) and younger (TLI = 0.732 suggesting a poor fit) 
age groups. Given the previous literature showing that Parallel Analysis performs well (Franklin et al., 1995), as 
well as the TLI indices that have resulted from our analyses, the Parallel analysis was chosen to be the index of 
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choice. Consequently, the results reported below use the factor-model that was indicated by parallel analyses for 
both EFA and PCA. Figures showing the stability measures for each of the subsets of the data can be found in 
the supplementary material.

Factorization structure across different factorization approaches and subsamples.  In the case 
of the OPNMF carried out on the full dataset, the resulting two factor solution consisted of one factor strongly 
loading on Color-Word Interference (CWI), Verbal Fluency and Design Fluency scores and moderately load-
ing on switching components of the Design Fluency Test and the Trail Making Test. The second factor featured 
strong loadings on the Sorting Test, Proverbs Test, Word Context Test and the 20 Questions Test and a weaker 
loading on the Tower test (Fig. 2). This pattern was mostly consistent throughout the different subsamples of 
the data that were split by gender and age, with some minor exceptions. In the case of males only dataset, both 
switching components of the Verbal Fluency Test and the Trail Making Test showed weak loadings onto the 
first factor, while the switching component of the Design Fluency Test showed a stronger loading. In the case 
of females only dataset, the Word Context Test showed weak loadings onto the second factor together with 
the Tower Test. When the full dataset was split by age, the Tower Test, Proverb Test and Word Context Test all 
showed weak loadings onto the second factor in the dataset consisting of older adults, while the 20 Questions 
Test loaded weakly onto the second factor together with the Tower Test in young adults. Noticeably, all subsam-
ples showed the same tests loading onto each of the two factors.

The PCA analyses resulted in component models that showed patterns that were strikingly similar to the 
OPNMF models for the full dataset as well as for each of the subsets. The component model resulting from the 
analysis of the full data set resulted in a two-factor solution that consisted of one factor strongly loading on CWI 
scores and Design Fluency scores and moderately loading on Verbal Fluency Scores and the Trail Making Test. 
The second factor featured strong loadings from the Sorting Test, moderate loadings from the Proverbs Test 
and Word Context Test and a weaker loading for the Tower test and the 20 Questions Test (Fig. 2). This pattern 
was repeated when the PCA analyses were carried out on subsets of female sand younger adults. When the PCA 
analysis was run on a subset that included only males, the factor solution consisted of one factor strongly loading 
on CWI scores and Design Fluency scores, moderately loading on Verbal Fluency Scores and the Trail Making 
Test and weakly loading on the Tower Test and the 20 Question Test. The second factor featured strong loadings 
from the Sorting Test, moderate loadings from the Proverbs Test, Word Context Test and weaker loading on the 
20 Questions Test. The factor solution for the males only dataset consisted of one factor strongly loading on CWI 
scores and Design Fluency scores, moderately loading on Verbal Fluency Scores and the Trail Making Test and 

Figure 1.   Stability measures for full dataset. Left panel shows plots for each of the stability measures used to 
identify the most robust factor solution for the OPNMF analysis. The right panel shows plots for the parallel 
analyses used to identify the most robust component/factor solutions in the PCA and EFA analyses.
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weakly loading on the Tower Test and the Word Context Test. The second factor featured strong loadings from 
the Sorting Test, moderate loadings from the Proverbs Test and the 20 Questions Test.

The EFA analyses resulted in a more heterogenous picture. The EFA analysis of the full dataset resulted in 
a five-factor solution consisting of one factor including scores from the Sorting Test; one factor that included 
scores from the CWI Test and the TMT test; one factor including scores from the Design Fluency Test; one factor 
including scores from the Proverbs Test, Word Context Test, 20 Questions Test and Tower Test; and another factor 
including scores from the Verbal Fluency Test. The EFA results for the males only dataset showed a three-factor 
solution with one factor including scores from the Sorting Test; one factor including scores from the Tower Test, 
Word Context Test and 20 Questions Test and the switching component of the Verbal Fluency Test; and one factor 
including the rest of the scores from the Verbal Fluency Test; the Trail Making Test, the Color-Word Interfer-
ence Test, and the Design Fluency Test. In the females only dataset, the resulting factor structure consisted of a 
five-factor solution with one factor including scores from the Sorting Test; one factor including scores from the 
Verbal Fluency Test; one factor including two scores from the Design Fluency Test; one factor including the Trail 
Making Test, scores from the Color-Word Interference Test, the switching component of the Design Fluency 
Test, the Tower Test and the Word Context Test; and a final factor including scores from the Proverb Test and 20 
Questions Test. When the full dataset was split by age, the EFA resulted in a four-factor solution in both subsets. 
In the case of the older adults dataset, the resulting factor structure consisted of one factor including scores from 
the Sorting Test; one factor including scores from the Verbal Fluency Test, the Color-Word Interference Test, 
the Trail Making Test and the Word Context Test; one factor including scores from the Design Fluency Test and 
the Tower Test; and a final factor including scores from the Proverb Test and 20 Questions Test. In the case of 
the younger adults dataset, results showed one factor including scores from the Verbal Fluency Test; one factor 
including scores from the Design Fluency Test; one factor including scores from the Color-Word Interference 
Test, and the Trail Making Test; and a factor grouping scores from the Sorting Test, Tower Test, Proverb Test, 
Word Context and 20 Questions Test. Result figures for each of the subsets can be found in the supplementary 
material. Importantly, all EFA and PCA analyses were replicated using another open access statistical software, 
Jamovi69 (version 1.2, https://​www.​jamovi.​org), and resulted in virtually identical results.

Discussion
Although the field of psychology has acknowledged and discussed the existence of a replicability crisis extensively, 
this issue has received less attention in the context of multivariate approaches for psychometric data factoriza-
tion. This has resulted in heterogenous factorization results for several constructs in psychology, including 
executive functioning. Given the importance of replicability and generalizability in the identification of latent 
structures, the main goal of the present study was to compare the factorization obtained when using a machine 
learning approach (OPNMF) with a cross-validation scheme with the factorization derived from more tradi-
tional approaches, in particular EFA, but also PCA, in the D-KEFS. These latter approaches were performed 

Figure 2.   Factor structure and factor loadings resulting from the PCA, EFA and OPNMF analyses for the full 
data set. Figures show strongest loadings for each variable.

https://www.jamovi.org
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as typically implemented in standard statistical software and following current guidelines, which usually do 
not include generalizability evaluation. In addition to the evaluation of factorization approaches, this study 
provides further insight into the specific nature of the D-KEFS and hence also contributes more generally to the 
understanding of executive functioning. The following paragraphs start with a discussion of the results of the 
EFA analysis with regards to previous literature together with EFA theoretical background. We then discuss the 
convergent results obtained when using OPNMF and PCA from a methodological point of view and also with 
regards to previous literature on executive functioning and the related evaluation tools. Finally, we discuss the 
resulting two-factor solution in the context of a parsimonious and robust representation of executive function-
ing for various applications.

EFA analysis.  Using traditional EFA analysis, our investigations of the factorization across subsamples first 
indicate that the optimal solution can vary across subsamples, hence suggesting that the generalizability of the 
factor solution derived by an EFA analysis can be relatively limited. Overall, in the whole dataset, a five-factor 
solution appeared to be the best model fit. This result suggests a segregation that reflects the structure of the 
D-KEFS battery with the Sorting, Design Fluency and Verbal Fluency Tests each being assigned to their own fac-
tors, while tasks that require a certain level of abstraction and problem-solving abilities were grouped together 
in one factor. Thus, overall, the factorial analysis was here strongly influenced by the specific structure of the 
test battery that was used. It is noteworthy that this finding is somewhat contradictory with the core assump-
tion behind EFA that states that EFA reveals unobservable latent variables reflecting meaningful psychological 
constructs. A similar, albeit not identical structure is seen when performing an EFA on females only. In the case 
of males, results suggested a three-factor solution, while in both younger and older adults the EFA indicated a 
four-factor solution. The evaluation of the theoretical validity of the factorization derived here by the EFA in a 
psychological science perspective is complicated by the fact that the literature reports a multitude of different 
factor models, including various factor solutions, all using different methods of factorization, datasets and test 
batteries. In particular, similar exploratory studies that used EFA have also resulted in heterogenous factor solu-
tions ranging from one70 to six factors71.

One model of executive functioning that has acquired a significant amount of empirical support is the three-
factor model by Miyake et al.42. This influential study uses a confirmatory analysis approach as opposed to the 
exploratory approach established in the present study, and factorizes executive functioning into shifting, inhibi-
tion and updating. Shifting refers to the ability to switch between operations and perform new operations while 
being faced with interference42. Inhibition requires the ability to purposefully control automatic or dominant 
responses42. Finally, the updating factor represents tasks that require the monitoring and evaluating of new 
information and, if necessary, the updating of information in working memory for the successful completion of 
the task at hand42. Interestingly, the EFA findings of the present study do not overlap with the shifting, inhibition 
and updating factors suggested by Miyake et al.42. However, it is noteworthy that the three-factor model presented 
by Miyake and colleagues42 was based on a limited set of tasks and did not include an exhaustive list of executive 
functions. Specifically, Miyake’s study42 and others61,72, have focused mostly on tasks that require simpler cogni-
tive abilities, and thus tend to not include tasks that tap into more complex abilities, such as problem-solving, 
abstraction and strategic thinking. On the other hand, the D-KEFS battery, which was used in the present study, 
offers a wide range of tests that tap into many of the established constructs of executive functioning, including 
more complex abilities, such as abstraction, reasoning, and problem solving46,73. Unsurprisingly, the specific set of 
tasks used will heavily impact the resulting factor model. The literature does include studies that have attempted 
to factorize D-KEFS measures using both confirmatory and exploratory approaches. Hence, Karr and colleagues45 
used confirmatory factor analysis, which led them to the conclusion that the D-KEFS taps into three EF factors, 
namely, inhibition, shifting and fluency. However, this study chose not to include tasks that tap into more complex 
abilities (i.e., Twenty Questions, Word Context, and Proverb Tests) in the input variables. On the other hand, 
Latzman and colleagues17 used EFA to factorize D-KEFS measures and reported a three-factor model compris-
ing Conceptual Flexibility, Monitoring and Inhibition, which was likened to the Miyake model by the authors.

A number of subsequent studies have supported the three factors of shifting, inhibition and updating pre-
sented by Miyake et al.42 by reporting similar three factor solutions from a series of confirmatory factor analyses 
of diverse cognitive tasks45,61,72,74. Other similar confirmatory approaches have resulted in different factor solu-
tions depending on the age group that was investigated75–79. To further understand the heterogeneity of findings 
reported in the literature and the divergence between the results of the EFA in the current study and previous 
conceptualization, it is important to note here that there is a fundamental difference between confirmatory 
and exploratory approaches in terms of their use to identify latent factors. Confirmatory approaches, such as 
Confirmatory Factor Analyses, use knowledge of the theory of the construct and previous empirical findings 
to test a hypothesis that has been postulated a priori. Therefore, the aim of this approach is to verify a specific 
factor structure of a set of observed variables. This approach will hence provide an evaluation that is in align-
ment with current research45, however will be undeniably impacted by the initial research hypothesis used. On 
the other hand, exploratory approaches identify the underlying factor structure of a set of variables without the 
need of establishing an a priori hypothesis. The latter, thus, allows for the deeper understanding of a construct 
in an exploratory fashion. In other words, confirmatory approaches can be considered as “hypothesis-driven” 
approaches to some extent, while exploratory approaches can be considered as “data-driven” approaches. Dif-
ferences in results when comparing confirmatory and exploratory factor analyses are therefore not surprising.

OPNMF and PCA.  While suggesting a different factorization than EFA, PCA and OPNMF together con-
verge toward a similar 2-component model. It is noteworthy that this convergence was observed despite the 
fact that the choice of optimal factor solution was based on different criteria within and between approaches 
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including the part of variance explained, data representation quality and stability evaluations. PCA and OPNMF 
factorization methods here resulted in one factor that designated loadings to Color-Word Interference scores, 
Verbal Fluency, Design Fluency Test and the Trail Making Test. The second factor featured strong loadings 
from the Sorting Test, Proverbs Test, Word Context Test and the 20 Questions Test and a weaker loading for the 
Tower test. These results seem to indicate a division between tasks that require monitoring and task-switching, 
and more complex tasks that require concept formation, abstraction, and problem-solving. Specifically, tasks 
that require a certain level of abstraction, strategic thinking and problem-solving abilities, such as the Sorting 
Test, Twenty Questions Test, Word Context Test, Tower Test, and the Proverb Test, were all grouped into one 
factor. On the other hand, tasks that require less complex abilities were grouped in another factor. The latter fac-
tor includes tests that tap into abilities such as monitoring, fluency, cognitive flexibility, and inhibition. Hence, 
in contrast to previous results, our results obtained from the OPNMF and PCA analyses suggest a stable and 
robust two factor model indicating a division between Simple and Complex (or low- vs high-level) executive 
functioning tasks. While previous factorization findings of executive functioning do not seem to support our 
findings indicating a split between Simple and Complex tasks, it has been previously shown that people suffering 
from executive functioning impairment, such as in the case of patients with mild cognitive impairment, tend to 
exhibit selective rather than global impairment with some studies showing a separation between impairment on 
simple versus more complex tasks80–82. The idea of simple versus complex is also reflected in neurobiological lit-
erature in which a separation of tasks between the dorsolateral prefrontal cortex and the ventrolateral prefrontal 
cortex83 has been suggested. The former has been implicated in the context of more complex aspects of executive 
functioning although not all evidence supports this83. The notion of separation of tasks based on complexity is 
also in line with the proposed hierarchical organization of the frontal cortex84. When taking a deeper look at 
the individual measures that were included in the present study, it becomes apparent that there is a noteworthy 
difference between the different measurement approaches used and the subsequent processes that they could 
be eliciting. Specifically, while some of the variables are measures of accuracy (e.g., correct number of items), 
others rely more heavily on time pressure and processing speed (e.g., reaction time and completion time). This 
difference in measurement approaches seems to be reflected in the resulting dichotomy between Simple and 
Complex tasks. In fact, whereas the Complex tasks quite clearly emphasize accuracy, the Simple tasks appear to 
be more overtly driven by the element of time. The number-letter switching task, CWI and CWI switching are 
all direct measures of time while the other variables that have been grouped together with the Simple factor are 
measures of fluency which arguably also involves an aspect of time pressure since its measurement is related 
to time efficiency when recalling items. Additionally, although the factor labelled as Complex in the present 
study includes measures that tap into abilities such as reasoning, abstraction, problem-solving, and strategic 
thinking, this factor also includes measures coming from the Sorting Test. The D-KEFS Sorting Test and tests 
with a similar procedure, such as the Wisconsin Card Sorting Test85, have been traditionally associated with the 
Shifting or Conceptual Flexibility factor17,42,45,74. This association appears to be appropriate since the Sorting Test 
and its variants require participants to shift from previous sorting rules to new rules to achieve a greater num-
ber of accurate sorts. However, the Sorting Test also taps into more abstract problem-solving strategies that go 
beyond simple shifting. This complexity of the Sorting Test is reflected by the results of the present study. Thus, 
the factorization derived from PCA and OPNMF appears parsimonious and meaningful from a psychological 
construct standpoint. This study hence demonstrated that the application of machine learning approaches to 
psychometric data can provide interpretable outcomes in a psychological science perspective. It should be noted 
here as well that OPNMF further promotes out-of-sample generalizability by evaluating reconstruction error in 
a left out set across multiple runs, which is a crucial aspect considering the replication issues in psychological 
sciences.

Despite the apparent divergence of factorization results between EFA on the one hand and OPNMF and 
PCA on the other hand, it should be noted that the results of our EFA analyses provide a higher factor model 
that reflects the segregation of tasks that was used in the D-KEFS battery while still assigning a single factor to 
tasks that require abstraction and problem-solving skills. Hence, the parsimonious two factor model can also 
be seen as encompassing the more complex factorization yielded by EFA. The results of the present study thus 
suggest that the OPNMF and PCA results provide a robust and stable two factor solution that separates tasks 
that require monitoring and task-switching from more complex tasks that require concept formation, abstrac-
tion, and problem-solving. Considering all the points discussed above, together with the fact that both methods 
converged towards one robust model, we suggest that our results may reflect a robust factor model that applies 
across a wide age range and across different factorization methods. Given the uncertainty and diverse findings 
of the factorial structure of executive functioning in the literature, this model offers a more scientifically par-
simonious model from both technical and conceptual standpoints. From a technical standpoint, the approach 
established in the present study (i.e., that of reaching a consensus among different technical variations) is the 
most reasonable to our knowledge since it is commonly known that different approaches can result in different 
factor solutions. From a conceptual standpoint, the 2 factor solution presented in this study results in a scientifi-
cally parsimonious model since the differentiation between Simple and Complex is better at reflecting consensual 
real-world concepts than models with a higher number of factors. Considering these scientific qualities, the 
robust and parsimonious two-factor model that emerged from this study should be of higher practical utility 
for characterizing inter-individual variability in executive functioning performance at both the biological level 
(such as genetic and brain subtrates) and the environnmental level (external factors).

Summary and conclusion.  In addition to demonstrating the advantages of a machine learning approach 
for the factorization of psychometric data in a replicability perspective, this study also provides a robust model 
of factorization of the D-KEFS. The derived factorization suggests a division between low-level and high-level 
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executive functioning measures, a model further supported in subsamples. In contrast, EFA, highlighted a five-
factor model as the better fit to the overall cohort, but which was poorly supported in the subsamples. This 
five-factor factorization reflects the segregation of the D-KEFS battery into its main tasks while still clustering 
higher-level tasks together. Thus, the parsimonious two-factors model revealed by OPNMF underlies the more 
complex factorization yielded by EFA while enjoying higher generalizability. Hence the application of OPNMF 
to psychometric data in the present study provides conceptually meaningful, technically robust and generaliz-
able factorization for psychometric tools.
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