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Abstract

We introduce the following cycle selection problem which is motivated by an application
to kidney exchange problems. Given a directed graph G = (V,A), a cycle selection is a
subset of arcs B ⊆ A forming a union of directed cycles. A related optimization problem,
the Maximum Weighted Cycle Selection problem can be de�ned as follows: given a weight
wi,j ∈ R for all arcs (i, j) ∈ A, �nd a cycle selection B which maximizes w(B). We prove
that this problem is strongly NP-hard. Next, we focus on cycle selections in complete
directed graphs. We provide several ILP formulations of the problem: an arc formula-
tion featuring an exponential number of constraints which can be separated in polynomial
time, four extended compact formulations, and an extended non compact formulation. We
investigate the relative strength of these formulations. We concentrate on the arc formu-
lation and on the description of the associated cycle selection polytope. We prove that
this polytope is full-dimensional, and that all the inequalities used in the arc formulation
are facet-de�ning. Furthermore, we describe three new classes of facet-de�ning inequalities
and a class of valid inequalities. We also consider the consequences of including additional
constraints on the cardinality of a selection or on the length of the associated cycles.
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1 Introduction

1.1 Problem de�nition

This paper introduces and investigates a combinatorial optimization problem originally
motivated by an application to kidney exchange programs. The motivation will be further
developed in Section 1.2 hereunder but for now, we start with a mathematical de�nition
of the problem.

Our graph-theoretic terminology is standard and follows [Bang-Jensen and Gutin, 2009].
All directed graphs (or digraphs) we consider in this paper are loopless and have no parallel
arcs. For a digraph G = (V,A), we let |V | = n and |A| = m. The digraph G = (V,A) is
complete if A contains all pairs of distinct vertices (i, j), for i, j ∈ V . A (directed) cycle
of a digraph G is a sequence of the form C = (v1, a1, v2, a2, . . . , vk, ak, vk+1) where k ≥ 2,
v1, v2, . . . , vk are distinct vertices of G, v1 = vk+1, a1, a2, . . . , ak are distinct arcs, vi is the
tail of ai and vi+1 is its head for i = 1, 2, . . . , k. The length of C is k, and we say that C
is a k-cycle. When no confusion can arise, we often identify a cycle with its set of arcs, so
that we can speak of a union of cycles, for example.

Let us now introduce a new de�nition. Given a directed graph G = (V,A), where V
is the set of vertices and A is the set of arcs of G, we say that a subset of arcs B ⊆ A is
a cycle selection in G if the arcs of B form a union (possibly empty) of directed cycles.
Equivalently, B is a cycle selection if and only if each arc of B is contained in a directed
cycle of GB = (V,B). And equivalently again, B is a cycle selection of G if and only if
each arc of B is contained in a strong (or strongly connected) component of GB = (V,B):
the equivalence follows from the observation that an arc of B, say (i, j), is in a cycle of GB

if and only if i and j are in a same strong component of GB.
As an illustration, Figure 2 displays the collection of nonempty selections of the digraph

represented in Figure 1.

Figure 1: A directed graph.
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Figure 2: All nonempty selections of the directed graph in Figure 1.

In view of the above de�nitions, the time complexity to verify that a subset B ⊆ A is
a cycle selection is O(n + m), using for example Tarjan's algorithm to identify all strong
components of GB ([Tarjan, 1972]).

The maximum weighted cycle selection (MWCS) problem, or cycle selection prob-
lem for short, is the following optimization problem: given a digraph G = (V,A) and
a weight wi,j ∈ R for each arc (i, j) ∈ A, �nd a cycle selection B which maximizes
w(B) =

∑
(i,j)∈B wi,j.

This article investigates several properties of the cycle selection problem. Section 1.2
lays out the motivation for studying it. Section 1.3 provides a literature review of previous
related work in order to contextualize the cycle selection problem and to position our
contributions. Section 2 discusses the complexity of the problem. Next, various integer
linear programming formulations of the cycle selection problem are proposed in Section 3,
namely, an arc-based formulation (Section 3.1), several extended compact formulations
(Section 3.2), and an extended non compact one (Section 3.3). We establish the relative
strength of the linear relaxations of these formulations. Section 4 investigates the facial
structure of the cycle selection polytope associated with the arc formulation for a complete
digraph. We prove that the polytope is full dimensional and that all the inequalities used in
the ILP formulation are facet-de�ning. Furthermore, we describe three additional classes
of facet-de�ning inequalities and one class of valid inequalities. Section 5 considers the
extension of the cycle selection problem which arises when a constraint is placed on the
cardinality of the selection and of the cycles that it includes. Finally, Section 6 presents
some conclusions and perspectives for future research.

1.2 Motivation

Our motivation to study cycle selections originally stems from optimization problems aris-
ing in the context of kidney exchange programs (KEPs). Let us brie�y explain how KEPs
work. Nowadays, the preferred treatment option o�ered to patients with an end-stage
renal disease is kidney transplant from a living donor. This option exists primarily when a

3



patient has a relative willing to donate one of its healthy kidneys. However, in many situa-
tions, patients are unable to receive a kidney from their associated healthy donor because of
ABO blood type incompatibility or tissue type incompatibility. Kidney exchange programs
try to alleviate this di�culty by enlisting a large number of incompatible patient-donor
pairs, say, pairs (Pi, Di) made up of patient Pi and donor Di, for i = 1, . . . , n. Considering
such a pool makes it potentially feasible to transplant kidneys in cyclic fashion with, for
example, D1 donating a kidney to P2, D2 donating one to P3, and D3 donating one to P1

([Roth et al., 2004]).
Given a pool of patients, one can build a compatibility digraph G = (V,A) whose

vertices are the pairs vi = (Pi, Di), and A contains the arc (vi, vj) if Di appears to be
compatible with Pj, based on blood and tissue type. Maximizing the number of feasible
cyclic transplants amounts now to �nding in G a collection of vertex-disjoint cycles whose
union contains as many arcs as possible. (Beside cycles, some KEPs may also take non-
closed directed paths in consideration, but we disregard this option here.) There is a large
amount of literature documenting various formulations and matching algorithms to solve
this optimization problem; see, e.g., [Constantino et al., 2013], [Dickerson et al., 2016],
[Biró et al., 2021] and the literature review in Section 1.3.

One of the remaining issues with this approach, is that in reality, blood type and tissue
type are not the only determinants of the feasibility of a transplant. The decision to
perform a transplant is based on more complex, so-called crossmatch tests of compatibility
between donor and patient. In practice, for cost- and time-e�ciency reasons, crossmatch
tests are only performed after an intended transplant has been identi�ed.

As a result, incompatibilities may be revealed after the identi�cation of potential ex-
change cycles, which, as as consequence, may completely fail to be implemented.

A way to tackle this issue is to �rst select a restricted, but promising subset of arcs, to
crossmatch them in order to test their compatibility, and only then to run the matching
algorithm in order to �nd an optimal set of exchange cycles. [Smeulders et al., 2021] have
proposed a stochastic integer programming formulation of this approach. Namely, they in-
troduce a two-stage selection problem which, given a testing budget B, identi�es (in stage 1)
a subset of arcs B ⊆ A with |B| ≤ B such that the expected number of transplants in the
graph (V,B) (in stage 2) is maximized. Solving this optimization problem is numerically
challenging.

[Smeulders et al., 2021] tightened the formulation of the two-stage selection problem
by adding constraints which enforce that the set B must be a cycle selection: indeed,
arcs that are not contained in any cycle cannot be used in transplants and hence, should
not be selected in the �rst stage. Their work motivates our attempt to develop a better
understanding of the cycle selection problem and of its ILP formulations.

1.3 Literature review

Rather surprisingly in view of their natural de�nition, cycle selections have apparently not
been previously investigated in the literature, except for the paper of [Smeulders et al., 2021]
mentioned above and to which we return in Section 3.2.2. Our review, therefore, is limited
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to a number of related, but di�erent combinatorial problems.
The weighted girth problem asks for a simple cycle of minimum total weight in a

weighted undirected graph G. The cycle cone and cycle polytope are, respectively the cone
generated by the incidence vectors of cycles of G and the convex hull of these vectors.
Thus, the weighted girth problem is the optimization problem over the cycle polytope. It
is NP-hard in general, but is polynomially solvable when certain restrictions are placed on
the cost vectors. On the other hand, the optimization problem over the cycle cone is poly-
nomially solvable. A linear system describing the cycle cone is given in [Seymour, 1979].
An alternative proof of this result, as well as additional properties of the cycle cone and
the cycle polytope, are established in [Coullard and Pulleyblank, 1989].

[Bauer, 1997] studies the facial structure of the cycle polytope associated with a com-
plete undirected graph on n vertices. She proves that this polytope is full dimensional for
n ≥ 4, she provides an ILP formulation for it, and she proves that all inequalities in the ILP
formulation are facet-de�ning when n ≥ 6. She also presents additional classes of facet-
de�ning valid inequalities, as well as a complete linear description of the cycle polytope
when n ≤ 6. [Bauer et al., 2002] extend the previous results to the case where the cycles
are restricted to have length at most K, where 0 ≤ K ≤ n. They also experiment with a
branch-and-cut algorithm for the solution of the corresponding optimization problem.

[Balas and Oosten, 2000] investigate the minimum girth problem and the cycle polytope
associated with complete directed graphs. The optimization problem is again NP-hard, but
it is polynomially solvable when all cycles have a positive weight. [Balas and Oosten, 2000]
propose an arc-based ILP formulation of the problem. They prove that the cycle polytope
on a complete graph with n vertices is a face of the related polytope on a complete graph
with n+1 vertices. This leads them to an e�cient general lifting procedure. They also give a
partial description of the facets of the cycle polytope. The article [Balas and Rüdiger, 2009]
is a continuation of the previous one. It further studies the cycle polytope, the cycle cone,
the upper cycle polyhedron, the dominant of the cycle polytope and their relationships.

[Hartmann and Özlük, 2001] carry out a polyhedral analysis of the K-cycle polytope,
which is the convex hull of the incidence vectors of all simple directed cycles with length
exactly K. They determine the dimension of the K-cycle polytope. They describe several
sets of valid inequalities and discuss the complexity of the associated separation prob-
lems. They also investigate the relationship between the K-cycle polytopes of directed and
undirected graphs.

In a separate stream of research, the cardinality constrained multi-cycle (CCMC) prob-
lem has been recently studied by several researchers. Given a weighted digraph G = (V,A)
and an integer K, the problem is here to �nd a set of arcs with maximum weight forming
a union of vertex-disjoint cycles of length at most K. CCMC is the underlying combi-
natorial optimization problem to be solved by kidney exchange programs, as explained in
Section 1.2. It is NP-hard for each �xed K ≥ 3, and polynomially solvable when K = 2 or
whenK = n (see [Abraham et al., 2007], [Roth et al., 2007]). Several IP formulations have
been proposed for this problem and are reviewed in [Mak-Hau, 2017] and [Biró et al., 2021].
In particular, [Abraham et al., 2007] and [Roth et al., 2007] give two formulations of ex-
ponential size, one where the variables are associated with the arcs of G, and another
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one where the variables are associated with cycles. Later, [Constantino et al., 2013] and
[Dickerson et al., 2016], among others, proposed more complex but compact (polynomial-
size) formulations of CCMC, including an extended edge formulation and a position-
indexed formulation. [Dickerson et al., 2016] also study the relative strength of the linear
relaxation of di�erent formulations.

[Mak-Hau, 2018] focuses on the polyhedral structure of the arc-based formulation pro-
posed by [Roth et al., 2007] when G is a complete digraph. The author proves that
three classes of constraints in the initial formulation of the problem are facet-de�ning
for the CCMC polytope. Furthermore, she identi�es four new classes of valid inequalities.
[Lam and Mak-Hau, 2020] extend the theoretical results of [Mak-Hau, 2018] and build on
them to develop an e�cient branch-and-bound-and-cut algorithm for the CCMC problem.

Obviously, cycles and unions of vertex-disjoint cycles of a digraph G are cycle selections
of G, so that the following inclusions hold:

cycle polytope ⊆ cycle selection polytope

and

CCMC polytope ⊆ cycle selection polytope.

The cycle selection problem and the associated polytope have apparently not been inves-
tigated until now, but we will be able to draw some inspiration from previous work on
related problems in the remainder of the paper.

2 Complexity

The maximum weighted cycle selection (MWCS) problem has been introduced in Sec-
tion 1. When all arc weights are nonnegative, a maximum cycle selection of G = (V,A)
consists of all the arcs contained in strong components of G. Therefore, in this case,
MWCS is solvable in linear, O(n + m) time by a simple application of Tarjan's strong
component algorithm ([Tarjan, 1972]).

For arbitrary weights, however, MWCS is NP-hard. To see this, consider the corre-
sponding decision problem: given a digraph G = (V,A), a weight wi,j ∈ N for each arc
(i, j) ∈ A, and a number w0 ∈ N, is there a cycle selection B such that w(B) ≥ w0?

Theorem 1. The decision version of the maximum weighted cycle selection problem is
strongly NP-complete, even when G is a complete digraph.

Proof. The problem MWCS is clearly in NP. We will prove that MWCS is strongly NP-
complete by reducing the hitting set problem HS to it. Recall the de�nition of the hitting
set problem: given a �nite set X, a collection T = {T1, . . . , Tr} of subsets of X, and t ∈ N,
is there a subset H ⊆ X such that |H| ≤ t and Tj ∩H 6= ∅ for all j ∈ {1, . . . , r}? Note that
for any instance of HS, we can assume without loss of generality that each element of X is
in one of the subsets T1, . . . , Tr, and that t < r. HS is known to be strongly NP-complete
([Karp, 1972]).
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With an instance (X,T, t) of HS, we associate an instance (G,w,w0) of MWCS where
G is the complete digraph on the set of vertices V = {0} ∪X ∪ T , the weights on the arcs
are:

� for all j = 1, . . . , r, w(Tj, 0) = r,

� for all i ∈ X, w(0, i) = −1,

� for all i ∈ X and for all j = 1, . . . , r, if i ∈ Tj, then w(i, Tj) = 0,

� all the other arcs have weight −r,

and w0 = r2 − t.
We claim that this instance of MWCS has a Yes answer if and only if the original

instance of HS has a Yes answer.
First, suppose that the original instance of HS has a Yes answer, i.e., suppose there

exists H ⊆ X where |H| ≤ t and H ∩ Tj 6= ∅ for all j ∈ {1, . . . , r}. Then, let us de�ne a
cycle selection B in the following way:

B = {(Tj, 0) : j ∈ {1, . . . , r}} ∪ {(0, i) : i ∈ H}
∪ {(i, Tj) : j ∈ {1, . . . , r}, i ∈ H ∩ Tj} .

Since each element of H is in one of T1, . . . , Tr, and since H is a hitting set, B is the
union of the 3-cycles (Tj, 0, i), for j = 1, 2, . . . , r and i ∈ H ∩ Tj. Thus, B is indeed a cycle
selection and its weight is w(B) = r2− |H| ≥ r2− t = w0, so that the instance of MWCS

has a Yes answer.
Next, suppose conversely that the instance of MWCS has a Yes answer, in other

words that there is a cycle selection B with weight at least w0 = r2 − t. First, note that
each arc of B should be in one of the three sets below:

� {(Tj, 0) : j ∈ {1, . . . , r}} ,

� {(0, i) : i ∈ X} ,

� {(i, Tj) : j ∈ {1, . . . , r}, i ∈ Tj} .

Indeed, all arcs not in these three sets have a negative weight (−r) and their inclusion
in B would result in a total weight at most equal to r2 − r < r2 − t, which contradicts
our assumption. Moreover, B must contain all arcs (Tj, 0) for all j ∈ {1, . . . , r}, because
otherwise w(B) ≤ (r − 1)r < r2 − t, again a contradiction.

Let now H = {i ∈ X : (0, i) ∈ B}. Then,

w(B) = r2 +
∑
i∈H

w(0, i) = r2 − |H|.

Since w(B) ≥ r2 − t, it follows that |H| ≤ t.
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Finally, we claim that H is a hitting set of T . Indeed, for each j = 1, . . . , r, the arc
(Tj, 0) ∈ B must lie in a cycle of GB = (V,B). Hence, B must also contain at least one
arc of the form (i, Tj) for some i in Tj. Then, (0, i) also is in B, so that i is in H. In
conclusion, H is a hitting set with size |H| ≤ t, meaning that HS has a Yes answer.

Since all cycles considered in the proof have length exactly 3, it follows that MWCS

is NP-complete even when the cycle selection is restricted to contain cycles of length at
most 3. On the other hand,MWCS is trivially solved when restricted to cycles of length 2:
indeed, in this case, the arc (i, j) ∈ A is in an optimal cycle selection if and only if (j, i) ∈ A
and wi,j + wj,i ≥ 0.

3 Formulations

3.1 Arc formulation

Let G = (V,A) be an arbitrary directed graph, with |V | = n and |A| = m. In order to
obtain a �rst IP formulation for cycle selections, we introduce the �natural� arc variables
βi,j ∈ {0, 1}, where βi,j = 1 if arc (i, j) is selected and 0 otherwise, for all (i, j) ∈ A.

The set of vectors of {0, 1}m associated with cycle selections is denoted by PG, or
simply P (we usually omit the reference to G, which will be clear from the context). The
convex hull of P (or PG) is denoted by P ∗ (or P ∗G) and is called the cycle selection polytope
associated with G. Since MWCS is the linear optimization problem over P ∗ and is NP-
hard, it is probably hopeless to obtain a complete linear description of P ∗. One of our main
goals in this paper will be to produce a (partial) description of P ∗ for complete digraphs.

For now, consider the following set of constraints:

βi,j ∈ {0, 1} ∀(i, j) ∈ A (1)

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k ∀(i, j) ∈ A,∀S ⊆ V : i ∈ S, j ∈ V \ S. (2)

We call (2) the return inequalities for the set P . (The return inequalities are formally
similar to the inequalities de�ning the cycle cone of an undirected graph; see [Seymour, 1979],
[Bauer, 1997].)

Theorem 2. The constraints (1)-(2) provide a correct formulation of the cycle selection
problem, that is,

P =
{
β ∈ {0, 1}m : βi,j ≤

∑
(l,k)∈A:l∈V \S,k∈S βl,k ∀(i, j) ∈ A, ∀S ⊆ V : i ∈ S, j ∈ V \ S

}
.

Proof. To show that (2) is valid for P , suppose that β describes a cycle selection B which
contains the arc (i, j), so that βi,j = 1. Let S ⊂ V be a subset of vertices containing i, but
not j. Since B is a cycle selection, there is a directed cycle C such that (i, j) ∈ C ⊆ B,
i.e., βl,k = 1 for all (l, k) ∈ C. At least one arc (l, k) of C must have l /∈ S and k ∈ S, and
hence (2) is satis�ed.
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Conversely, suppose that the point β ∈ {0, 1}m satis�es the return inequalities (2). Let
B = {(i, j) : βi,j = 1} and GB = (V,B). For any �xed arc (i, j) such that βi,j = 1, we must
show that (i, j) is contained in at least one directed cycle of GB. Let S ⊆ V be the set of
those vertices k such that there is a directed path πk,i from k to i in GB. Note that i ∈ S.
If j ∈ S, then (i, j) is indeed in a directed cycle which is the union of the path πj,i and the
arc (i, j). Otherwise, j ∈ V \ S and i ∈ S. Because β satis�es the inequality (2), there
exists (l, k) ∈ A such that l ∈ V \ S, k ∈ S and βl,k = 1. But then (l, k) and πk,i together
form a path from l to i and thus l should be in S, which brings a contradiction.

We refer to (1)-(2) as the arc formulation of the cycle selection problem, and we de�ne
the associated relaxed polytope

PL =
{
β ∈ [0, 1]m : βi,j ≤

∑
(l,k)∈A:l∈V \S,k∈S βl,k ∀(i, j) ∈ A, ∀S ⊆ V : i ∈ S, j ∈ V \ S

}
.

(3)
There holds

P ⊆ P ∗ ⊆ PL.

Because of the exponential number of return inequalities (2), even optimizing a linear
function over PL may not be easy. But our next result implies that cutting plane methods
can be used e�ciently (and that linear optimization over PL is polynomial, by virtue of the
equivalence of optimization and separation; see [Grötschel et al., 1981],[Conforti et al., 2014]).

Theorem 3. The separation problem for the relaxed polytope PL is solvable in polynomial
time.

Proof. The separation problem is the following: given a vector β ∈ [0, 1]m, is there (i, j) ∈ A
and S ⊂ V such that i ∈ S, j ∈ V \ S, and βi,j >

∑
(l,k)∈A:l∈V \S,k∈S βl,k? There are m arcs

(i, j) to check, so we can ask the question for each such arc successively.
Since βi,j is �xed, we just need to solve minS⊂V

∑
(l,k)∈A:l∈V \S,k∈S βl,k which is the min-

cut problem with source j, sink i, and capacity βl,k on each arc (l, k). This (j, i)-min-cut
problem is solvable in polynomial time.

3.2 Compact extended formulations

The arc formulation presented in the previous section contains an exponential number of re-
turn inequalities (2). The aim of this section is to present several compact, polynomial-size
formulations of the cycle selection problem and to compare them with the arc formulation.

3.2.1 Extended arc formulations

We start with three formulations based on the relation between cycle selections and circu-
lations. Recall that a circulation in a directed graph G = (V,A) is a �ow-vector x ∈ R|A|+

which is balanced at every vertex, that is, such that∑
h:(h,k)∈A

xh,k =
∑

h:(k,h)∈A

xk,h ∀k ∈ V.
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The support of a circulation x is the set C(x) = {(i, j) ∈ A : xi,j > 0}. It can
be viewed as a cycle selection consisting of m cycles or less (see, e.g., Corollary 4.3.3
in [Bang-Jensen and Gutin, 2009]). Conversely, every cycle selection B gives rise to a
circulation xB whose support is exactly B, as follows. For each arc (u, v) ∈ B, let C(u,v) be
a cycle of GB containing (u, v), and put a �ow of one unit on C(u,v), that is de�ne x(u,v)

i,j = 1

if (i, j) ∈ C(u,v), x(u,v)
i,j = 0 otherwise. Finally, de�ne a circulation xB as the sum of the

cycle �ows x(u,v), that is, let xB =
∑

(u,v)∈B x
(u,v). Note that this construction does not

univocally de�ne xB, because the choice of the cycles C(u,v) is not unique, but this will be
irrelevant for our purpose.

In particular, when x is a binary circulation, then C(x) = {(i, j) : xi,j = 1} is an
arc-disjoint union of cycles, i.e., a special type of cycle selection. If moreover∑

h:(h,k)∈A

xh,k ≤ 1 ∀k ∈ V,

then the support of a binary circulation is a vertex-disjoint union of cycles.
These observations lead to di�erent formulations for cycle selections. A �rst simple

extended arc formulation is as follows: vector β ∈ R|A| de�nes a selection if and only there
exists x ∈ R|A|+ such that

xi,j ≤ mβi,j ∀(i, j) ∈ A (4)

βi,j ≤ xi,j ∀(i, j) ∈ A (5)∑
h:(h,k)∈A

xh,k =
∑

h:(k,h)∈A

xk,h ∀k ∈ V (6)

0 ≤ βi,j ≤ 1 ∀(i, j) ∈ A (7)

βi,j integer ∀(i, j) ∈ A. (8)

Indeed, any feasible solution of (4)-(8) de�nes a subset of arcs B (associated with β) and
a circulation x such that B is exactly the support of x. Therefore, B is a cycle selection.
Conversely, every cycle selection B gives rise to a feasible solution (β, xB) as explained
above.

A second, more complex but as we will see, tighter formulation relies on expressing that
each arc (u, v) of a cycle selection must be contained in the support C(u,v) of a representative
binary circulation x(u,v) (note that C(u,v) and x(u,v) may di�er for each arc (u, v)). We de�ne
x

(u,v)
i,j = 1 if (i, j) ∈ C(u,v), and we interpret x(i,j)

i,j = 1 to mean that arc (i, j) is in the cycle

selection, that is, we identify x(i,j)
i,j with βi,j.
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The cycle selection problem can now be formulated as follows:

x
(u,v)
i,j ≤ x

(i,j)
i,j ∀(i, j) ∈ A, ∀(u, v) ∈ A (9)∑

h:(h,k)∈A

x
(u,v)
h,k =

∑
h:(k,h)∈A

x
(u,v)
k,h ∀k ∈ V, ∀(u, v) ∈ A (10)

0 ≤ x
(u,v)
i,j ≤ 1 ∀(i, j) ∈ A, ∀(u, v) ∈ A (11)

x
(u,v)
i,j integer ∀(i, j) ∈ A, ∀(u, v) ∈ A (12)

Constraints (10)-(12) enforce that each vector x(u,v) is indeed a binary circulation, and
constraints (9) enforce that arc (i, j) can be in the support C(u,v) only if it is selected at
all (if x(u,v)

i,j = 1, then x(i,j)
i,j ≡ βi,j must be 1 as well).

The constraints (9)-(12) provide a correct extended formulation of the cycle selection
problem. We refer to it as the extended arc formulation of the cycle selection problem, and
we note that it is formally similar to the extended edge formulation of [Constantino et al., 2013]
for the cardinality-constrained multi-cycle problem (CCMC, see Section 1.3). It contains
a polynomial number of variables (O(n4)) and a polynomial number of constraints (O(n4)).

Finally, the extended arc formulation can be further adapted by insisting that the
support of each binary circulation x(u,v) should consist of vertex-disjoint cycles. This can
be achieved by adding the following constraints to the extended arc formulation:∑

h:(k,h)∈A

x
(u,v)
k,h ≤ 1 ∀k ∈ V, ∀(u, v) ∈ A. (13)

We refer to (9)-(13) as the modi�ed extended arc formulation for cycle selections.

Remark 1. One may want to further strengthen these extended formulations so that
C(u,v) is a single cycle for each (u, v). This would require to include additional expo-
nential families of inequalities describing the cycle polytope, see [Balas and Oosten, 2000],
[Balas and Rüdiger, 2009].

We now aim to establish the relation between the arc formulation of Section 3 and
the di�erent extended arc formulations introduced above. Let us �rst denote as PEA the
polytope de�ned by the linear relaxation (9)-(11) of the extended arc formulation, and
recall that PL is the solution set of the relaxation (3) of the arc formulation.

Theorem 4. The polytope PL is the projection of the polytope PEA on the space RA of the
variables βi,j ≡ x

(i,j)
i,j , (i, j) ∈ A.

Proof. To prove �rst that the projection of PEA is contained in PL, let us consider a point
x ∈ PEA and let us set βi,j = x

(i,j)
i,j for all (i, j) ∈ A. We must show that β ∈ PL.

The bounding constraints 0 ≤ βi,j ≤ 1 are satis�ed. So, we only need to show that,
for each �xed arc (i, j) ∈ A and each �xed subset S ⊆ V with i ∈ S, j /∈ S, the return
inequality

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k (14)
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can be deduced from the inequalities de�ning PEA. Let us add up the following inequalities:

x
(i,j)
l,k ≤ x

(l,k)
l,k ∀(l, k) ∈ (V \ S, S), (15)∑

h:(k,h)∈A

x
(i,j)
k,h −

∑
h:(h,k)∈A

x
(i,j)
h,k = 0 ∀k ∈ S. (16)

This yields a new inequality with right-hand side equal to:∑
(l,k)∈A:l∈V \S,k∈S

x
(l,k)
l,k =

∑
(l,k)∈A:l∈V \S,k∈S

βl,k.

In the left-hand side of the summation, each variable x(i,j)
l,k , (l, k) ∈ (V \S, S), appears once

with coe�cient +1 in (15) and once with coe�cient −1 in (16). Also, each variable x(i,j)
k,h

with k, h ∈ S appears once with coe�cient +1 and once with coe�cient −1 in (16). As
a result, the left-hand side of the summation boils down to

∑
(k,h)∈A:k∈S,h∈V \S x

(i,j)
k,h . Since

x
(i,j)
k,h ≥ 0 for all (k, h) ∈ A, the left-hand side of the inequality is at least x(i,j)

i,j = βi,j, and
hence we obtain the return inequality (14).

Next, to prove that PL is contained in the projection of PEA, we must show that
for each feasible solution β∗ ∈ PL of the relaxed arc formulation, there exists a solution
x ∈ PEA with x(i,j)

i,j = β∗i,j for all (i, j) ∈ A.
For every �xed arc (i, j) ∈ A, denote as G(i,j) = (V,A) the digraph (V,A) equipped

with the following lower bound `(i,j)
h,k and upper bound c(i,j)

h,k on each arc (h, k) in A:

� if h 6= i and k 6= j, then `(i,j)
h,k = 0 and c(i,j)

h,k = β∗h,k;

� if h = i and k 6= j, then `(i,j)
i,k = c

(i,j)
i,k = 0;

� if h 6= i and k = j, then `(i,j)
h,j = c

(i,j)
h,j = 0;

� if h = i and k = j, then `(i,j)
i,j = c

(i,j)
i,j = β∗i,j.

We say that a circulation x is feasible in G(i,j) if `(i,j)
h,k ≤ xh,k ≤ c

(i,j)
h,k for each arc (h, k)

inA. In view of Ho�man's circulation theorem ([Ho�man, 1960], [Bang-Jensen and Gutin, 2009]),
there exists a feasible circulation in G(i,j) if and only if∑

(h,k)∈A:h∈S,k/∈S

`
(i,j)
h,k ≤

∑
(h,k)∈A:h/∈S,k∈S

c
(i,j)
h,k for all S ⊆ V. (17)

Let us verify that this is indeed the case. Fix the set S ⊆ V . With our de�nition of
the lower and upper bounds, the left-hand side of the inequality (17) is zero (and hence,
the inequality is trivially satis�ed) unless i ∈ S and j /∈ S, in which case it is equal to
`

(i,j)
i,j = β∗i,j. But then, the right-hand side of (17) is equal to

∑
(h,k)∈A:h/∈S,k∈S β

∗
h,k. So, (17)

12



boils down to a return inequality, and it is satis�ed in view of the feasibility of β∗ for the
relaxed arc formulation.

So, we conclude from Ho�man's theorem that for each (i, j) ∈ A, there exists a feasible
circulation x(i,j) in G(i,j). Note that due to the bounds on the arcs of G(i,j), x(i,j)

i,j = β∗i,j.
Moreover, the collection of circulations x(i,j), for all (i, j) ∈ A, satis�es the constraints (9)�
(11) of the extended arc formulation. Indeed, the constraints (10) are satis�ed by de�nition
of circulations, and the constraints (11) are satis�ed because of the lower and upper bounds
on the arcs of G(i,j). As for constraints (9), consider (u, v) ∈ A and (i, j) ∈ A.

� If (u, v) = (i, j), then (9) is trivial.

� If u = i and v 6= j, or if u 6= i and v = j, then x(u,v)
i,j ≤ c

(u,v)
i,j = 0 (upper bound on

x
(u,v)
i,j in the graph G(u,v)).

� If u 6= i and v 6= j, then x(u,v)
i,j ≤ c

(u,v)
i,j = β∗i,j.

Hence, constraints (9) are indeed satis�ed. This concludes the proof.

In view of Theorem 4, the linear relaxation PEA of the extended arc formulation is
equivalent to the linear relaxation PL of the arc formulation when it comes to solving
the maximum weighted cycle selection problem. We are now going to show that the same
conclusion applies when we consider the modi�ed extended arc formulation. We denote by
PMEA the polytope de�ned by inequalities (9)-(11) and (13).

Theorem 5. The polytope PL is the projection of the polytope PMEA on the space RA of
the variables βi,j ≡ x

(i,j)
i,j , (i, j) ∈ A.

Proof. Since PMEA ⊆ PEA, Theorem 4 immediately implies that the projection of PMEA is
contained in PL.

For the reverse inclusion, consider the collection of circulations x(i,j) obtained in the
proof of Theorem 4. Each circulation x(i,j) can be written as a positive linear combination
of the form

x(i,j) =
∑

C∈C(i,j)
λ

(i,j)
C ξC , (18)

where C(i,j) is a collection of directed cycles forming the support of x(i,j), ξC is the incidence
vector of cycle C, and λ(i,j)

C > 0 for all C ∈ C(i,j) (see, e.g., [Bang-Jensen and Gutin, 2009]).
If some cycle C ∈ C(i,j) does not contain the arc (i, j), then we can remove this cycle from
the collection C(i,j), and the right-hand side of (18) still de�nes a feasible circulation as
required in the proof of Theorem 4. So, we can assume without loss of generality that
(i, j) ∈ C, or equivalently, ξCi,j = 1, for all C ∈ C(i,j). It then follows from (18) that

x
(i,j)
i,j =

∑
C∈C(i,j)

λ
(i,j)
C . (19)
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We want to show now that inequality (13) is satis�ed, for an arbitrary k ∈ V and for
(u, v) = (i, j). The left-hand side of (13) is∑

h:(k,h)∈A

x
(i,j)
k,h =

∑
h:(k,h)∈A

∑
C∈C(i,j)

λ
(i,j)
C ξCk,h

=
∑

C∈C(i,j)
λ

(i,j)
C (

∑
h:(k,h)∈A

ξCk,h).

For each cycle C,
∑

h:(k,h)∈A ξ
C
k,h is either 1 (if vertex k is on the cycle) or 0 (otherwise).

So, we get: ∑
h:(k,h)∈A

x
(i,j)
k,h ≤

∑
C∈C(i,j)

λ
(i,j)
C ,

and from (19), ∑
h:(k,h)∈A

x
(i,j)
k,h ≤ x

(i,j)
i,j ≤ 1,

so that the constraint (13) is satis�ed. This implies that the collection of circulations x(i,j),
for all (i, j) ∈ A, satis�es the constraints (9)�(11) and (13) of the modi�ed extended arc
formulation, which concludes the proof.

Finally, we return to the simple extended arc formulation. Let us denote as PSEA the
set of solutions of the relaxed formulation (4)-(7). The proof of the following result suggests
that this formulation is quite loose.

Theorem 6. The polytope PL is included in the projection of the polytope PSEA on the
space RA of the variables βi,j, (i, j) ∈ A, and the inclusion is strict for complete digraphs
on n ≥ 2 vertices.

Proof. Given β∗ ∈ PL, consider again the collection of circulations x(u,v), (u, v) ∈ A
obtained in the proof of Theorem 4. Let us de�ne x∗ =

∑
(u,v)∈A x

(u,v), and let us show that
(β∗, x∗) ∈ PSEA. First, it is clear that x∗ is a circulation, i.e., it satis�es the equations (6).
Since β∗i,j = x

(i,j)
i,j , it follows that β∗i,j ≤

∑
(u,v)∈A x

(u,v)
i,j = x∗i,j, meaning that equation (5) is

satis�ed. Finally, in view of equation (9), x∗i,j =
∑

(u,v)∈A x
(u,v)
i,j ≤

∑
(u,v)∈A x

(i,j)
i,j = mβ∗i,j,

hence equation (4) is satis�ed and (β∗, x∗) ∈ PSEA, as required.
To prove that the inclusion is strict when n ≥ 2, consider the following assignment

(only the nonzero values are displayed):

� β1,2 = 1.0, β2,1 = 0.5,

� x1,2 = x2,1 = 1.

Then, (β, x) ∈ PSEA, but β /∈ PL since β does not satisfy the return inequality

β1,2 ≤
∑

k∈V \{2}

β2,k.
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3.2.2 Position-indexed formulation

Another extended formulation has been proposed by [Smeulders et al., 2021]; it is inspired
by the position-indexed edge formulation of the CCMC problem ([Dickerson et al., 2016]).

Assuming (without loss of generality) that the vertex-set of the digraph G = (V,A) is
V = {1, . . . , n}, let us denote by V l the subset of vertices {l, . . . , n}, for each l in V . Given
binary values for the arc variables βi,j, de�ne Bl = {(i, j) ∈ A : i ∈ V l, j ∈ V l, βi,j = 1}.
Let us then introduce a new set of position-indexed binary variables:

φli,j,k for all (i, j) ∈ A, l ∈ V, k ∈ κ(i, j, l) where κ(i, j, l) =


{1} if i = l
{2, ..., n} if j = l
{2, ..., n− 1} if i, j > l

with the interpretation that φli,j,k is equal to 1 if arc (i, j) is in position k in a cycle of the
digraph (V l, Bl) containing vertex l, and 0 otherwise.

[Smeulders et al., 2021] propose the following formulation:

βi,j ≤
∑
l∈V

∑
k∈κ(i,j,l)

φli,j,k ∀(i, j) ∈ A (20)

φli,j,k ≤ βi,j ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l) (21)

φli,j,k ≤
∑

h:(h,i)∈Al∧k−1∈κ(h,i,l)

φlh,i,k−1 ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l), k > 1 (22)

φli,j,k ≤
∑

h:(j,h)∈Al∧k+1∈κ(j,h,l)

φlj,h,k+1 ∀l ∈ V, (i, j) ∈ Al, j 6= l, k ∈ κ(i, j, l) (23)

0 ≤ φli,j,k ≤ 1 ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l) (24)

0 ≤ βi,j ≤ 1 ∀(i, j) ∈ A (25)

φli,j,k integer ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l) (26)

βi,j integer ∀(i, j) ∈ A (27)

Constraints (20) express that if an arc is selected, then it is part of at least one cycle, and
constraints (21) ensure that if an arc is in a cycle, then it has to be selected. Constraints
(22) enforce that if arc (i, j) is in position k in some cycle of (V l, Bl), then there must be a
preceding arc in position k − 1, unless k = 1 (when k = 1, then there is no preceding arc,
but because of the de�nition of κ(i, j, l), i is necessarily equal to l for the variables φli,j,1).
Similarly, constraints (23) enforce that arc (i, j) must have a succeeding arc unless j = l
which means that a cycle is completed.

The inequalities (20)-(27) provide a compact position-indexed formulation for cycle
selections, with O(n4) variables and constraints. Their linear relaxation (20)-(25) describes
a polytope PPI . We next show that this relaxation is weaker than the relaxation PL of
the arc formulation.
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Theorem 7. The polytope PL is included in the projection of the polytope PPI on the
space RA of the variables βi,j, (i, j) ∈ A, and the inclusion is strict for complete digraphs
on n ≥ 4 vertices.

Proof. We must prove that for any feasible solution β ∈ PL, there exists a solution (β, φ)
in PPI .

As in the proof of Theorem 5, consider a collection of circulations x(i,j), (i, j) ∈ A, and
write each x(i,j) as a positive linear combination of the form

x(i,j) =
∑

C∈C(i,j)
λ

(i,j)
C ξC , (28)

where C(i,j) is a collection of directed cycles containing the arc (i, j), ξC is the incidence
vector of cycle c, λ(i,j)

C > 0 for all C ∈ C(i,j), and

βi,j =
∑

C∈C(i,j)
λ

(i,j)
C . (29)

For any two arcs (i, j), (u, v) ∈ A, and for all k, l, de�ne C(u,v)(i, j, k, l) as the set of
cycles C ∈ C(u,v) such that arc (i, j) is in position k in C, and the lowest-indexed vertex of
C is l.

For all (i, j) ∈ A, l ∈ V, k ∈ κ(i, j, l), set now

φli,j,k = max
(u,v)∈A

∑
C∈C(u,v)(i,j,k,l)

λ
(u,v)
C . (30)

We claim that (β, φ) satis�es inequalities (20)-(25). First, for each (i, j) ∈ A, in view
of (29), of C(i,j) =

⋃
k,l C(i,j)(i, j, k, l), and of (30), we get

βi,j =
∑

C∈C(i,j)
λ

(i,j)
C =

∑
k,l

∑
C∈C(i,j)(i,j,k,l)

λ
(i,j)
C ≤

∑
k,l

φli,j,k,

which is exactly inequality (20).
Consider next the inequalities (21). For given i, j, k, l, the maximum in the right-hand

side of (30) is achieved for some arc (u, v). With this value of (u, v),

φli,j,k =
∑

C∈C(u,v)(i,j,k,l)

λ
(u,v)
C ≤

∑
C∈C(u,v):(i,j)∈C

λ
(u,v)
C ≤ βi,j.

The last inequality holds by construction of the circulation x(u,v) in Theorem 4: the sum
of the weights λ(u,v)

c of the cycles involved in C(u,v) cannot exceed the upper bound βs,t on
any arc (s, t). In particular, it cannot exceed βi,j.
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For the inequality (22) associated with i, j, k, l, where k > 1, assume again that the
maximum in equation (30) is achieved for arc (u, v). For each cycle C ∈ C(u,v)(i, j, k, l),
there is an arc (h(C), i) in position k − 1 in c. So,

φli,j,k =
∑

C∈C(u,v)(i,j,k,l)

λ
(u,v)
C

=
∑

C∈C(u,v)(h(C),i,k−1,l)

λ
(u,v)
C

≤
∑
h∈V l

∑
C∈C(u,v)(h,i,k−1,l)

λ
(u,v)
C

≤
∑
h∈V l

φlh,i,k−1,

as required.
The case of inequalities (23) is similar. Finally, the bounds (24) are implied by (30)

and by (21). Thus, we conclude that (β, φ) satis�es all inequalities (20)-(25), and that PL
is indeed contained in the projection of PPI .

To prove strict inclusion for complete digraphs with n ≥ 4 vertices, consider the fol-
lowing assignment for the (β, φ) variables (we only list the variables with nonzero value):

� β1,3 = β3,4 = β4,3 = 1, β3,1 = 0.5,

� φ1
1,3,1 = 1, φ1

3,1,2 = φ1
3,1,4 = φ1

3,4,2 = φ1
4,3,3 = 0.5,

� φ3
3,4,1 = φ3

4,3,2 = 0.5.

These values satisfy all constraints of the relaxed position-indexed formulation. However,
with S = {1}, i = 1 and j = 3, the return inequality

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k

is violated by the given assignment since β1,3 > β3,1.

3.3 Cycle formulation

Let us de�ne ΓG (or simply, Γ) as the set of all directed cycles in the digraph G. Like
[Abraham et al., 2007] and [Roth et al., 2007] for CCMC, we next propose a formulation
for cycle selections based on the cycle variables zC , C ∈ Γ, where zC = 1 if cycle C is
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selected and 0 otherwise. Then, together with the arc variables βi,j, the cycle selection
problem can be formulated as follows:

zC ≤ βi,j ∀C ∈ Γ,∀(i, j) ∈ C (31)

βi,j ≤
∑

C∈Γ:(i,j)∈C

zC ∀(i, j) ∈ A (32)

0 ≤ zC ≤ 1 ∀C ∈ Γ (33)

0 ≤ βi,j ≤ 1 ∀(i, j) ∈ A (34)

zC integer ∀C ∈ Γ (35)

βi,j integer ∀(i, j) ∈ A (36)

Constraints (31) enforce that if cycle C is selected then all arcs (i, j) ∈ C must be selected.
Constraints (32) enforce that if arc (i, j) ∈ A, is selected then at least one cycle containing
(i, j) must be selected as well.

The constraints (31)-(36) provide a valid formulation of the cycle selection problem.
We refer to it as the cycle formulation. Note that it is an exponential formulation due to
the number of potential cycles (|Γ| = O(2|m|)) in graph G.

Denote by PC the linear relaxation (31)-(34) of the cycle formulation. This relaxation
is again weaker than the relaxation of the arc formulation:

Theorem 8. The polytope PL is included in the projection of the polytope PC on the space
RA of the variables βi,j, (i, j) ∈ A, and the inclusion is strict for complete digraphs on
n ≥ 4 vertices.

Proof. In view of Theorem 4, it su�ces to prove that given a feasible solution x ∈ PEA,
there exists a solution (β, z) in PC with βi,j = x

(i,j)
i,j for all (i, j) ∈ A. With the same

notations as in the proof of Theorem 5, consider the positive linear combination

x(i,j) =
∑

C∈C(i,j)
λ

(i,j)
C ξC , (37)

and the associated expression of βi,j:

βi,j =
∑

C∈C(i,j)
λ

(i,j)
C . (38)

For all C ∈ Γ, de�ne
zC = max

(u,v)∈A
λ

(u,v)
C . (39)

Consider constraint (31) for a given cycle C∗ ∈ Γ and an arc (i, j) ∈ C∗. The maximum
in the right-hand side of (39) is achieved for some arc (u, v), say, zC∗ = λ

(u,v)
C∗ . So,

zC∗ = λ
(u,v)
C∗ ≤

∑
C∈C(u,v):(i,j)∈C

λ
(u,v)
C ≤ βi,j.
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The last inequality holds by construction of the circulation x(u,v): the sum of the weights
of the cycles involved in C(u,v) cannot exceed the upper bound βs,t on any arc (s, t). In
particular, it cannot exceed βi,j on arc (i, j).

Next, consider constraint (32) for an arc (i, j) ∈ A. In view of equations (38)-(39),

βi,j =
∑

C∈C(i,j)
λ

(i,j)
C ≤

∑
C∈C(i,j)

zC ≤
∑

C∈Γ:(i,j)∈C

zC .

This shows that PL is contained in the projection of PC , as required. To prove that the
containment is strict when n ≥ 4, consider the following assignment (only the nonzero
values are displayed):

� β1,2 = 1.0, β2,3 = β3,4 = β4,1 = β3,1 = 0.5,

� z(1,2),(2,3),(3,4),(4,1) = z(1,2),(2,3),(3,1) = 0.5.

The point (β, z) in in PC , but β /∈ PL since β does not satisfy the return inequality

β1,2 ≤
∑

k∈V \{2}

β2,k

associated with i = 1, j = 2 and S = V \ {2}.

3.4 Relative strength of formulations

In conclusion, six di�erent formulations of the selection problem have been proposed in
this section.

The relative strength of the linear relaxation of these formulations can be described as
follows:

� (Theorem 4, Theorem 5.) The arc formulation is equivalent to the extended arc
formulation and to the modi�ed extended arc formulation, in the sense that PL is
equal to the projection of PEA and of PMEA on the space of the β variables.

� (Theorem 6, Theorem 7, Theorem 8.) The arc formulation is strictly tighter than
the simple extended arc formulation, the position-indexed formulation, and the cycle
formulation, in the sense that PL is strictly contained in the projection of PSEA, of
PPI and of PC on the space of the β variables.

In view of these results, we focus for the rest of the article on the arc formulation of the
selection problem.
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4 Polyhedral structure

Note that any instance ofMWCS on an incomplete digraphG = (V,A) can be transformed
into an instance on a complete digraph by setting a large negative weight wi,j on all pairs
(i, j) /∈ A. Therefore, from now on, we restrict our attention to the case of a complete
directed graph G = (V,A), where |V | = n and A contains m = n(n−1) arcs. Our objective
is to investigate the polyhedral structure of the cycle selection polytope P ∗, which only
depends on n in this case.

4.1 Dimension

When |V | = 2, say V = {1, 2}, the directed graph only has two arcs (1, 2), (2, 1). The only
two feasible cycle selections are the empty cycle selection and the 2-cycle {(1, 2), (2, 1)}. In
this case the dimension of P ∗ is 1. For the rest of the document, we assume that |V | ≥ 3.

Theorem 9. When |V | ≥ 3, P ∗ = conv(P ) is full dimensional, that is, dim(P ∗) =
n(n− 1).

Proof. Suppose that P ∗ is contained in a hyperplane de�ned by the equation∑
(u,v)∈A

bu,vβu,v = b0. (40)

We are going to show that the equation (40) is of the form: 0 = 0, which implies that P ∗

is full dimensional.

1. Since 0 ∈ P ∗, we get b0 = 0.

2. Let i, j, k be three distinct vertices in V . Consider the point β1 with β1
i,j = β1

j,k =
β1
k,i = 1 and β1

u,v = 0 for all others arcs (u, v) ∈ A. Since β1 ∈ P ∗, it follows that
bi,j + bj,k + bk,i = 0.

3. For the same three vertices i, j, k as above, let β2 be such that β2
i,j = β2

j,k = β2
k,i =

β2
j,i = 1 and β2

u,v = 0 for all others arcs (u, v) ∈ A. Again, β2 ∈ P ∗, and the previous
conclusions imply that bj,i = 0.

It follows that bu,v = 0 for all arcs (u, v) ∈ A, as claimed.

4.2 Facets

In this section, we are going to show that the constraints of the arc formulation (3) are
facet-de�ning for the cycle selection polytope P ∗. As mentioned before, we assume that
|V | ≥ 3.
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4.2.1 Lower bound inequalities

Theorem 10. For all (i, j) ∈ A, the inequality βi,j ≥ 0 de�nes a facet of P ∗.

Proof. Fix (i, j) ∈ A, and let F be the face of P ∗ de�ned as

F = {β ∈ P ∗ : βi,j = 0} .

Suppose that F is included in a hyperplane de�ned by the equation∑
(u,v)∈A

bu,vβu,v = b0 (41)

and consider the following points β1, . . . , β6 which are all in F .

1. β1 = 0 ∈ F , hence b0 = 0.

2. For each (l, k) /∈ {(i, j), (j, i)}, let β2 ∈ F be de�ned by β2
l,k = β2

k,l = 1 and β2
u,v = 0

for all others arcs (u, v) ∈ A. From equation (41), We obtain: bl,k = −bk,l.

3. For l /∈ {i, j}, let β3 ∈ F be such that β3
j,i = β3

l,i = β3
i,l = β3

l,j = β3
j,l = 1 and β3

u,v = 0
for all others arcs (u, v) ∈ A. This yields bj,i = 0.

4. For l /∈ {i, j}, let β4 ∈ F be such that β4
j,i = β4

l,i = β4
i,l = β4

l,j = 1 and β4
u,v = 0 for

all others arcs (u, v) ∈ A. From (41), we get bl,j = 0, and together with point 2 here
above, bj,l = 0.

5. For l /∈ {i, j}, let β5 ∈ F be such that β5
j,i = β5

i,l = β5
l,j = 1 and β5

u,v = 0 for all others
arcs (u, v) ∈ A. We deduce bi,l = 0 and from point 2, bl,i = 0.

6. If |V | ≥ 4, �x l, k /∈ {i, j}, and de�ne β6 ∈ F by β6
j,l = β6

l,k = β6
k,j = 1 and β6

u,v = 0
for all others arcs (u, v) ∈ A. We then obtain bl,k = 0.

In conclusion, we �nd that the equation (41) is identical to bi,jβi,j = 0, and hence F is a
facet of the convex hull polytope P ∗.

4.2.2 Upper bound inequalities

Theorem 11. For all (i, j) ∈ A, the inequality βi,j ≤ 1 de�nes a facet of P ∗.

Proof. Fix (i, j) ∈ A and de�ne the face F = {β ∈ P ∗ : βi,j = 1}. Assume that F is
contained in a hyperplane of the form (41) and consider the binary points β1, . . . , β6 below,
which are all in P ∩ F . (From now on, for the sake of brevity, we only explicitly list the
nonzero components of each such point.)

1. Let β1 be such that β1
i,j = β1

j,i = 1.

2. Fix (l, k) /∈ {(i, j), (j, i)} and let β2 be such that β2
i,j = β2

j,i = β2
l,k = β2

k,l = 1.
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3. Fix l /∈ {i, j} and let β3 be such that β3
i,j = β3

j,i = β3
l,i = β3

j,l = β3
l,j = 1.

4. Fix l /∈ {i, j} and let β4 such that β4
i,j = β4

j,i = β4
l,i = β4

i,l = β4
l,j = 1.

5. Fix l /∈ {i, j} and let β5 be such that β5
i,j = β5

j,l = β5
l,i = 1.

6. If |V | ≥ 4, �x l, k /∈ {i, j} and let β6 be such that β6
i,j = β6

j,l = β6
l,k = β6

k,j = 1.

By successively substituting these points in (41), one concludes that the equation of the
hyperplane is of the form βi,j = 1, up to a multiplicative constant.

4.2.3 Return inequalities

Theorem 12. For all (i, j) ∈ A and for all S ⊆ V such that i ∈ S, j ∈ V \ S, the return
inequality

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k

de�nes a facet of P ∗.

Proof. Fix (i, j) ∈ A and S such that i ∈ S, j ∈ V \ S. Let F be the face of P ∗ de�ned as

F =

β ∈ P ∗ : βi,j =
∑

(l,k)∈A:l∈V \S,k∈S

βl,k

 ,

and consider the following points β1, . . . , β14:

1. β1 = 0.

2. Let β2 be such that β2
i,j = β2

j,i = 1.

3. If |S| ≥ 2, �x k ∈ S, k 6= i, let β3 be such that β3
i,j = β3

j,k = β3
k,i = 1, and let β3′ be

such that β3′
i,j = β3′

j,k = β3′

k,i = β3′

i,k = 1.

4. If |S| ≥ 2, �x k ∈ S, k 6= i, and let β4 be such that β4
i,k = β4

k,i = 1.

5. If |S| ≥ 3, �x h, k ∈ S, k 6= i, h 6= i, and let β5 be such that β5
i,k = β5

k,h = β5
h,i = 1.

6. If |V \ S| ≥ 2, �x l ∈ V \ S, l 6= j, let β6
i,j = β6

j,l = β6
l,i = 1, and let β6′

i,j = β6′

j,l = β6′

l,j =

β6′

l,i = 1.

7. If |V \ S| ≥ 2, �x l ∈ V \ S, l 6= j, and let β7
j,l = β7

l,j = 1.

8. If |V \ S| ≥ 3, �x l, k ∈ V \ S, l 6= j, k 6= j, and let β8
j,l = β8

l,k = β8
k,j = 1.

9. If |S| ≥ 2, �x k ∈ S, k 6= i, and let β9
i,j = β9

j,i = β9
i,k = β9

k,j = 1.
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10. If |V \ S| ≥ 2, �x l ∈ V \ S, l 6= j, and let β10
i,j = β10

j,i = β10
i,l = β10

l,j = 1.

11. If |S| ≥ 2 and |V \ S| ≥ 2, �x k ∈ S, k 6= i, �x l ∈ V \ S, l 6= j, and let β11
i,j = β11

j,i =
β11
i,k = β11

k,l = β11
l,j = 1.

12. If |S| ≥ 2, �x k ∈ S, k 6= i, and let β12
i,j = β12

j,k = β12
k,i = 1.

13. If |V \ S| ≥ 2, �x l ∈ V \ S, l 6= j, and let β13
i,j = β13

j,l = β13
l,i = 1.

14. If |S| ≥ 2 and |V \ S| ≥ 2, �x k ∈ S, k 6= i, �x l ∈ V \ S, l 6= j, and let β14
i,j = β14

j,l =
β14
l,k = β14

k,i = 1.

Note that all the points β1, . . . , β14 are in F . Suppose now that F is included in a
hyperplane de�ned by the equation ∑

(u,v)∈A

bu,vβu,v = b0. (42)

By successively substituting the points β1, . . . , β14 in this equation, one can easily conclude
that, up to a multiplicative constant, (42) is equivalent to the equation de�ning F . This
proves that F is a facet of P ∗.

We have numerically veri�ed that when |V | = 3, the bound inequalities and the return
inequalities completely describe the cycle selection polytope P ∗. In the following sections,
we introduce several additional classes of facet-de�ning inequalities for the case where |V | ≥
4.

4.2.4 Out-star inequalities

Let t ∈ N, let E = {(i1, j1), (i2, j2), . . . , (it, jt)} be a subset of arcs, and let I = {i1, i2, . . . , it},
J = {j1, j2, . . . , jt}. Assume that I∩J = ∅ and 1 ≤ |I| ≤ |J | = t (meaning that j1, j2, . . . , jt
are pairwise distinct, but i1, i2, . . . , it are not necessarily distinct), so that (V,E) is a col-
lection of disjoint out-stars: in (V,E), each vertex of I has indegree 0 and outdegree at
least 1, whereas each vertex of J has indegree 1 and outdegree 0. Let p and q be two
distinct vertices not in I ∪ J . Then, we can de�ne two out-star inequalities :

t∑
l=1

βil,jl + βp,q ≤
∑
k∈V \I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p, (43)

t∑
l=1

βil,jl + βp,q ≤
∑
k∈V \I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βq,k. (44)

As an illustration, Figure 3 displays an example of the structure of the arcs involved in
the left-hand side of inequalities (43) and (44).
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Figure 3: Structure of the arcs involved in the left-hand side of inequalities (43)-(44).

Remark 2. When the out-star inequalities are formally written for t = 0, they boil down
to special cases of the return inequalities. On the other hand, when t = 1, the following
point

β12 = β13 = β23 = β41 = β42 = 0.5, β34 = 1

satis�es all return inequalities of the arc formulation, but not the out-star inequality (43)
with i1 = 1,j1 = 2, p = 3, q = 4.

Let us now focus on the out-star inequality (43). We are �rst going to prove that it is
valid for the cycle selection polytope P ∗, and next that it is facet de�ning for P ∗. When
stating these results, we implicitly assume that |V | ≥ |I| + |J | + 2 ≥ 4 since (43) is not
de�ned without this assumption.

Theorem 13. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I = {i1, i2, . . . , it},
J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |I| ≤ |J | = t. Let p, q ∈ V \ (I ∪ J),
p 6= q. Then, the out-star inequality (43) is valid for P ∗.

Proof. Consider any cycle selection B containing exactly s arcs of E, say, the arcs (il, jl) ∈
H with H = E ∩B, |H| = s. So, the left-hand side of (43) is at most s+ 1.

If s ≥ 1, then the arcs in H cover a subset of vertices IH ⊆ I and a subset of vertices
JH ⊆ J , with |IH | ≥ 1 and |JH | = s. For each vertex j ∈ JH , the cycle selection B must
contain an arc leaving j, that is, an arc of the form (j, h). All these arc are distinct, hence
there are exactly s of them. Moreover, since I ∩ J = ∅, every arc of H leaves I. Hence,
there must also be (at least) one arc of B entering I, that is, an arc of the form (k, i) for
k ∈ V \ I and i ∈ I. So, in total, the right-hand side of (43) is at least s + 1, and the
inequality holds.

If s = 0, then the left-hand side of (43) is exactly βp,q. Assume that βp,q = 1 (otherwise,
the inequality is trivially satis�ed). There must be an arc of B entering p, say (h, p). The
vertex h is either in I, or in J , or in V \ (I ∪ J). In the �rst case, since (h, p) leaves I,
there must be an arc entering I, that is, an arc of the form (k, i), k 6∈ I, i ∈ I. So, in all
three cases, the right-hand side of (43) is at least 1, and this completes the proof.

Theorem 14. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I = {i1, i2, . . . , it},
J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |I| ≤ |J | = t. Let p, q ∈ V \ (I ∪ J).
Then, the out-star inequality (43) de�nes a facet of P ∗.
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Proof. Consider the equation

t∑
l=1

βil,jl + βp,q =
∑
k∈V \I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p. (45)

Let F be the face of P ∗ de�ned as F = {β ∈ P ∗ : β satis�es (45)} , and suppose that F is
included in a hyperplane de�ned by the equation∑

(u,v)∈A

bu,vβu,v = b0. (46)

We must show that, up to a multiplicative constant, the equation (46) is identical to (45).
Hereunder, as usual, we consider a list of points β ∈ P de�ned by their nonzero com-

ponents. We denote as e(u,v) the unit vector with e(u,v)
u,v = 1.

1. Since β1 = 0 ∈ F , we get b0 = 0.

2. Let β2 be such that β2
p,q = β2

q,p = 1. The point β2 is in F , and therefore it satis�es
equation (46). This implies that bp,q = −bq,p.

Fix l ∈ V, l /∈ I ∪ J ∪ {p, q}.

3. Let β3
q,l = β3

l,q = 1. Since β3 ∈ F , bq,l = −bl,q.

4. Let β4
p,q = β4

q,l = β4
l,p = 1. This point is in F because it de�nes a 3-cycle and because

it makes both sides of equation (45) equal to 1. Next, let β4′ = β4 + e(l,q). Again, β4′

is in F . Since β4 and β4′ only di�er in their component (l, q), equation (46) implies
that bl,q = 0. From point 3 above, we also obtain bq,l = 0, and from (46), bl,p = −bp,q.

So, from points 3 and 4, we know that bq,l = bl,q = 0 and bl,p = bq,p = −bp,q for all
l /∈ I ∪ J ∪ {p, q}. Now, �x a pair (is, js), 1 ≤ s ≤ t, and �x l /∈ I ∪ J ∪ {p, q}.

5. Let β5
is,js = β5

js,p = β5
p,q = β5

q,l = β5
l,is

= 1. The point β5 is in F because it de�nes a
5-cycle and it makes both sides of (45) equal to 2. Hence it satis�es equation (46).

a) The point β5 + e(is,l) is in F and by comparison with β5, it immediately follows
that bis,l = 0 for all is ∈ I, for all l /∈ I ∪ J ∪ {p, q}.

b) The point β5 + e(l,js) is in F (it de�nes a cycle selection which is the union of a
5-cycle and a 4-cycle), and hence bl,js = 0 for all l /∈ I ∪J ∪{p, q}, for all js ∈ J .

c) The point β5 + e(is,p) is in F , and hence bis,p = 0 for all is ∈ I.
d) The point β5 + e(is,q) is in F , and hence bis,q = 0 for all is ∈ I.
e) The point β5 + e(p,js) is in F , and hence bp,js = 0 for all js ∈ J .
f) The point β5 + e(q,js) is in F , and hence bq,js = 0 for all js ∈ J .
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g) The point β5 + e(p,l) is in F , and hence bp,l = 0 for all l /∈ I ∪ J ∪ {p, q}.

Point 5 has established that all coe�cients bis,l and bl,js are zero, except possibly when
l ∈ I ∪ J . The coe�cients of the variables βis,ir , βis,jr , βjr,js , βjr,is for r 6= s will be taken
care of at the end of the proof.

6. Let β6
is,p = β6

p,q = β6
q,l = β6

l,is
= 1. The point β6 is in F . Since we already know that

bis,p = bq,l = 0, we can conclude bl,is = −bp,q for all l /∈ I ∪ J ∪ {p, q}, for all is ∈ I.

7. Let β7
is,p = β7

p,q = β7
q,is = 1. Again, the point β7 is in F and since bis,p = 0, we obtain

bq,is = −bp,q for all is ∈ I.

8. Let β8
js,p = β8

p,q = β8
q,js = 1. Since β8 is in F , we obtain bjs,p = −bp,q for all js ∈ J .

9. Let β9
is,js = β9

js,p = β9
p,q = β9

q,is = 1. The point β9 is in F because it de�nes a 4-cycle
and it makes both sides of equation (45) equal to 2.

Since we know that bjs,p = bq,is = −bp,q, it follows that bis,js = bp,q for all pairs (is, js).

10. Let β10
is,p = β10

is,js = β10
js,l

= β10
l,is

= β10
p,q = β10

q,js = 1. The point β10 is in F . Since
bl,is = −bp,q, bis,js = bp,q, and bis,p = bq,js = 0, we conclude bjs,l = −bp,q for all
l /∈ I ∪ J ∪ {p, q}, for all js ∈ J .

11. Let β11
is,js = β11

js,q = β11
q,is = β11

is,p = β11
p,q = β11

p,js = 1. Again, the point β11 is in F , and
since bis,js = bp,q, bq,is = −bp,q, bis,p = bp,js = 0, we obtain bjs,q = −bp,q for all js ∈ J .

12. Let β12
is,js = β12

js,p = β12
p,q = β12

q,js = β12
p,is = 1. The point β12 is in F and bis,js = bp,q,

bjs,p = −bp,q, bq,js = 0, so that bp,is = −bp,q for all is ∈ I.

13. Let β13
is,js = β13

js,is = β13
q,js = β13

p,q = β13
is,p = 1. The point β13 is in F (note that β13

js,is

contributes for two units to the right-hand side of equation (45)). Since bis,p = bq,js =
0 and bis,js = bp,q, we derive bjs,is = −2bp,q for all pairs (is, js).

Fix now k, l ∈ V \ (I ∪ J ∪ {p, q}).

14. Let β14
l,k = β14

k,l = 1. The point β14 is in F and it follows that bl,k = −bk,l for all
k, l ∈ V \ (I ∪ J ∪ {p, q}).

15. Let β15
is,js = β15

js,p = β15
p,k = β15

k,l = β15
l,is

= β15
p,q = β15

q,js = 1. The point β15 is in F ,
and since bis,js = bp,q, bjs,p = bl,is = −bp,q, bp,k = bq,js = 0, we obtain bk,l = 0 for all
k, l ∈ V \ (I ∪ J ∪ {p, q}).

For the rest of the proof, let r, s ∈ {1, . . . , t} with r 6= s.

16. Let ir, is be two distinct vertices in I, and let β16
ir,is = β16

is,p = β16
p,q = β16

q,ir = 1. The
point β16 is in F and bis,p = 0, bq,ir = −bp,q. Therefore, bir,is = 0 for all distinct
ir, is ∈ I.

26



17. Let (is, js) be an arc in E, and let ir ∈ I, ir 6= is. Let β17
ir,is = β17

is,js = β17
ir,js = β17

js,p =
β17
p,q = β17

q,ir = 1. The point β17 de�nes the union of a 5-cycle and of a 4-cycle, and it
is in F . From bir,is = 0, bis,js = bp,q, bjs,p = bq,ir = −bp,q, we derive bir,js = 0 for all
ir ∈ I, js ∈ J , ir 6= is.

18. Let (is, js) be an arc in E, and let ir ∈ I, ir 6= is. Let β18
is,js = β18

js,ir = β18
ir,p = β18

p,q =
β18
q,js = β18

ir,is = 1. The point β18 is in F because β18
js,ir contributes for two units to the

right-hand side of equation (45). From bis,js = bp,q and bir,p = bq,js = bir,is = 0, we
deduce bjs,ir = −2bp,q for all r 6= s.

19. Finally, let jr, js be two distinct vertices in J , with (ir, jr) ∈ E, (is, js) ∈ E. If
ir 6= is, let β19

is,js = β19
js,jr = β19

jr,p = β19
p,q = β19

q,ir = β19
ir,is = β19

ir,jr = 1. The point β19 is
in F : it de�nes the a union of a 6-cycle and of a 4-cycle, and it makes both sides of
equation (45) equal to 3. Since bis,js = bir,jr = bp,q, bjr,p = bq,is = −bp,q, and bir,is = 0,
we obtain bjs,jr = −bp,q.
If ir = is, the same reasoning applies by simply disregarding the arc (ir, is) in the
de�nition of β19. So, in all cases, bjs,jr = −bp,q for all distinct js, jr ∈ J .

The previous observations imply that the equation (46) is identical to (45), up to a
multiplicative constant bp,q, and hence F is a facet of the convex hull polytope P ∗.

Theorem 13 and Theorem 14 can be extended to deal with the case of the out-star
inequalities (44).

Theorem 15. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I = {i1, i2, . . . , it},
J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |I| ≤ |J | = t. Let p, q ∈ V \ (I ∪ J).
Then, the out-star inequality (44) is valid and de�nes a facet of P ∗.

Proof. The proof is similar to the previous ones. In particular, points 1-2-7-8-9-11-12-13-
14-15-16-17-18-19 in the proof of Theorem 14 can be handled in exactly the same way.
The remaining cases involve predecessors of p other than vertices in I ∪ J ∪ {q} and/or
successors of q other than vertices in I ∪ J ∪ {p}. To deal with these cases, denote as F
the face of P ∗ de�ned by equation (44). Fix l ∈ V, l /∈ I ∪ J ∪ {p, q}.

3'. With β3
p,l = β3

l,p = 1, we can conclude that bp,l = −bl,p.

4'. Let β4
p,q = β4

q,l = β4
l,p = 1, and let β4′

p,q = β4′

q,l = β4′

l,p = β4′

p,l = 1. Both β4 and β4′ are in
the face F . It easily follows that bp,l = bl,p = 0 and bq,l = −bp,q for all l /∈ I∪J∪{p, q}.

Now, �x a pair (is, js), 1 ≤ s ≤ t, and �x l /∈ I ∪ J ∪ {p, q}.

5'. Let β5
is,js = β5

js,l
= β5

l,p = β5
p,q = β5

q,is = 1. The point β5 is in F .

a) Since β5+e(is,l) ∈ F , it follows that bis,l = 0 for all is ∈ I, for all l /∈ I∪J∪{p, q}.
b) β5 + e(is,p) ∈ F , hence bis,p = 0 for all is ∈ I.
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c) β5 + e(is,q) ∈ F , hence bis,q = 0 for all is ∈ I
d) β5 + e(l,js) ∈ F , hence bl,js = 0 for all js ∈ J , for all l /∈ I ∪ J ∪ {p, q}.
e) β5 + e(p,js) ∈ F , hence bp,js = 0 for all js ∈ J .
f) β5 + e(q,js) ∈ F , hence bq,js = 0 for all js ∈ J .
g) β5 + e(l,q) ∈ F , hence bl,q = 0 for all l /∈ I ∪ J ∪ {p, q}.

6'. With β6
l,p = β6

p,q = β6
q,js = β6

js,l
= 1, we can conclude that bjs,l = −bp,q for all

l /∈ I ∪ J ∪ {p, q}, for all js ∈ J .

10'. Finally, let β10
is,p = β10

is,js = β10
js,l

= β10
l,is

= β10
p,q = β10

q,js = 1 (as in the proof of
Theorem 14). Since β10 ∈ F , we can conclude that bl,is = −bp,q for all is ∈ I, for all
l /∈ I ∪ J ∪ {p, q}.

4.2.5 In-star inequalities

Symmetrically with the case of out-star inequalities, we can introduce the class of in-star
inequalities. With the same notations as in Section 4.2.4, assume that 1 ≤ |J | ≤ |I| = t
(meaning that i1, i2, . . . , it are all distinct, but j1, j2, . . . , jt are not necessarily distinct), so
that (V,E) is a collection of disjoint in-stars: in (V,E), each vertex of I has indegree 0 and
outdegree 1, each vertex of J has outdegree 0 and indegree at least 1. Then, the in-star
inequalities are de�ned as

t∑
l=1

βil,jl + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V \J

βj,k +
∑

k∈V \(I∪J)

βk,p, (47)

t∑
l=1

βil,jl + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V \J

βj,k +
∑

k∈V \(I∪J)

βq,k. (48)

Theorem 16. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I = {i1, i2, . . . , it},
J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |J | ≤ |I| = t. Let p, q ∈ V \ (I ∪ J).
Then, the in-star inequalities (47)-(48) are valid and de�ne facets of P ∗.

This theorem can be established by mimicking the proofs in Section 4.2.4. But we
prefer to propose here a more insightful argument.

Proof. De�ne the bijection rev which associates with each β ∈ R|A| another point rev(β) =
βr ∈ R|A| such that βri,j = βj,i for all (i, j) ∈ A. Intuitively, when β ∈ {0, 1}|A|, then rev
simply reverses the direction of each arc in the support of β (remember that we consider
here a complete digraph G = (V,A)). In particular, if β de�nes a cycle selection, then so
does rev(β). As a consequence, rev maps P and P ∗ onto themselves: rev(P ) = P and
rev(P ∗) = P ∗.
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Consider now the in-star inequality (47) associated with E and (p, q), and let F (E,p,q)

be the face that it de�nes. Moreover, consider the out-star inequality (44) associated with
Er = {(j1, i1), (j2, i2), . . . , (jt, it)} and with the arc (q, p), that is:

t∑
l=1

βjl,il + βq,p ≤
∑
k∈V \J

∑
j∈J

βk,j +
∑
i∈I

∑
k∈V

βi,k +
∑

k∈V \(J∪I)

βp,k. (49)

Let F (Er,q,p) be the face of P ∗ de�ned by (49).
If β is in F (E,p,q), that is, if β satis�es (47) as an equality, then it is immediately

obvious that rev(β) satis�es (49) as an equality, and hence rev(β) is in F (Er,q,p). The
converse relation holds as well, meaning that rev(F (E,p,q)) = F (Er,q,p).

Since we know from Theorem 15 that F (Er,q,p) is a facet of P ∗, it follows that F (E,p,q)

also is a facet of P ∗.

4.2.6 Path inequalities

Let I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} be two subsets of pairwise distinct vertices,
I ∩ J = ∅ and |I| = |J | = t. Let p and q be two distinct vertices not in I ∪ J . Then, we
de�ne the path inequality

t∑
l=1

βil,jl +
t−1∑
l=1

βil,jl+1
+ βp,q ≤

∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p. (50)

Observe that except for (p, q), the arcs involved in the left-hand side of (50) de�ne a non
directed path π = (j1, i1, j2, i2, . . . , jt, it). In this path, each arc leaves a vertex of I and
enters a vertex of J . As an illustration, Figure 4 displays an example of the structure of
the arcs involved in the left-hand side of inequality (50).

Figure 4: Structure of the arcs involved in the left-hand side of inequality (50).

We will prove that inequality (50) is valid and that it is facet de�ning for P ∗.

Theorem 17. Let I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} be two subsets of vertices
with I ∩ J = ∅ and 1 ≤ |I| = |J | = t. Let p, q ∈ V \ (I ∪ J), p 6= q. Then, the path
inequality (50) is valid for P ∗.
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Proof. Assume that we have a cycle selection B containing exactly s arcs of the path π,
say, the arcs (k, l) ∈ H, |H| = s. So, the left-hand side of (50) is at most s+ 1.

If s ≥ 1, then the arcs in H form a collection of disjoint subpaths. These subpaths
contain a subset of vertices IH ⊆ I and a subset of vertices JH ⊆ J , and there holds
|IH | + |JH | ≥ s + 1. For each vertex i ∈ IH , the cycle selection B must contain an arc
entering i. And for each vertex j ∈ JH , B must contain an arc leaving j. So, the right-hand
side of (50) is at least |IH |+ |JH | ≥ s+ 1, which implies that (50) is satis�ed.

If s = 0, then the left-hand side of (50) is exactly βp,q. So, assume that βp,q = 1. There
must be an arc of B entering p, say (h, p). The vertex h is either il ∈ I (in which case B
must also contain an arc (k, il) entering il), or jl ∈ J , or h is not in I ∪ J . In all three
cases, the right-hand side of (50) is at least 1, which completes the proof.

Theorem 18. Let I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} be two subsets of vertices
with 1 ≤ I ∩ J = ∅ and |I| = |J | = t. Let p, q ∈ V \ (I ∪ J), p 6= q. Then, the path
inequality (50) de�nes a facet of P ∗.

Proof. Let F be the face of P ∗ de�ned by

t∑
l=1

βil,jl +
t−1∑
l=1

βil,jl+1 + βp,q =
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p, (51)

and suppose that F is included in a hyperplane∑
(u,v)∈A

bu,vβu,v = b0. (52)

The �rst 15 conclusions in the proof of Theorem 14 can be drawn here in exactly the
same way. To see this, it is enough to notice that the cycle selections Bn de�ned by the
points βn (n = 1, . . . , 15) in the proof of Theorem 14 do not contain any arc (is, jr) with
s 6= r. Hence the left-hand sides of (45) and (51) are equal for all these points. Moreover,
the cycle selections Bn do not contain any arc of the form (is, ir) with s 6= r, so that the
right-hand sides of (45) and (51) are also equal in all cases.

For the remainder of the proof, we have to determine the coe�cients of the variables
representing the arcs with both vertices in I ∪ J (except for the pairs (is, js) and (js, is),
since we already know the coe�cients bis,js and bjs,is as functions of bp,q). Let us consider
two distinct pairs (is, js) and (ir, jr) with s < r (note that their order matters, because of
the de�nition of the path inequalities). We have to �nd the value of the coe�cients bis,jr ,
bjr,is , bis,ir , bjs,jr , bjr,js , bjs,ir , bir,js , bir,is .

For the coe�cients bis,jr and bjr,is , we further have to deal with two subcases:

(i) s and r are consecutive, i.e., r = s+ 1; in that case, we must show that bis,js+1 = bp,q
and bjs+1,is = −2bp,q;

(ii) s and r are not consecutive, i.e., r > s+ 1; in that case, we must show that bis,jr = 0
and bjr,is = −2bp,q.
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For all the other coe�cients, a single analysis will cover both situations.

Case r = s+ 1.

16. Let β16 be such that β16
is,js+1

= β16
js+1,p

= β16
p,q = β16

q,is = 1 and β16
u,v = 0 for all other arcs

(u, v) ∈ A. This point is in F because it makes both sides of (51) equal to 2. From
(52), we get: bis,js+1 + bjs+1,p + bp,q + bq,is = b0. Since we already know that b0 = 0
and bjs+1,p = bq,is = −bp,q, we can conclude that bis,js+1 = bp,q.

17. Next, let β17
is,js+1

= β17
js+1,is

= β17
q,js+1

= β17
p,q = β17

is,p = 1. The point β17 is in F (it makes
again both sides of (51) equal to 2). Hence: bis,js+1 + bjs+1,is + bq,js+1 + bp,q + bis,p = 0.
Since bis,p = bq,js+1 = 0 and bis,js+1 = bp,q, we can conclude bjs+1,is = −2bp,q.

Case r > s+ 1.

18. Let β18
p,q = β18

jr,is = β18
ih,jh

= β18
is,js+1

= β18
ih,jh+1

= β18
q,ih

= β18
jh,p

= 1 for all h with
s < h < r.

The point β18 de�nes a cycle selection which is the union of the following 4-cycles:
{(ih, jh), (jh, p), (p, q), (q, ih)} for s < h < r, {(ih, jh+1), (jh+1, p), (p, q), (q, ih)} for
s < h < r−1, and of the 6-cycle {(is, js+1), (js+1, p), (p, q), (q, ir−1), (ir−1, jr), (jr, is)}.
Moreover, β18 is in F as well, as it makes both sides of (51) equal to 2(r − s).
From (52), we get:

bp,q + bjr,is +
r−1∑

h=s+1

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s+1

bq,ih +
r−1∑

h=s+1

bjh,p = 0.

Since we know that bih,jh = bih,jh+1
= −bq,ih = −bjh,p = bp,q for s ≤ h < r, we can

conclude that bjr,is = −2bp,q.

Moreover, the point β18 + e(is,jr) also is in F , and hence bis,jr = 0.

Remaining coe�cients bis,ir , bjs,jr , bjr,js , bjs,ir , bir,js , bir,is .

19. Let β19
p,q = β19

is,ir = 1, β19
ih,jh

= β19
jh,p

= 1 for s ≤ h ≤ r, β19
ih,jh+1

= β19
q,ih

= 1 for
s ≤ h < r.

The point β19 de�nes a cycle selection which is the union of the following 4-cycles and
5-cycle: {(ih, jh), (jh, p), (p, q), (q, ih)} for s ≤ h < r, {(ih, jh+1), (jh+1, p), (p, q), (q, ih)}
for s ≤ h < r, and {(is, ir), (ir, jr), (jr, p), (p, q), (q, is)}. Moreover, β19 ∈ F .
From (52), we get:

bp,q + bis,ir +
r∑

h=s

bih,jh +
r∑

h=s

bjh,p +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bq,ih = 0.

Since bih,jh = bih,jh+1
= −bq,ih = −bjh,p = bp,q for s ≤ h ≤ r, we obtain bis,ir = −bp,q.
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20. Let β20
p,q = β20

js,jr = 1, β20
ih,jh

= β20
ih,jh+1

= β20
q,ih

= 1 for s ≤ h < r, β20
jh,p

= 1 for
s < h ≤ r.

The point β20 de�nes a cycle selection which is the union of the following cycles:
{(ih, jh), (jh, p), (p, q), (q, ih)} for s < h < r, {(ih, jh+1), (jh+1, p), (p, q), (q, ih)} for
s ≤ h < r, and {(is, js), (js, jr), (jr, p), (p, q), (q, is)}. Since β20 is in F , we obtain

bp,q + bjs,jr +
r−1∑
h=s

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bq,ih +
r∑

h=s+1

bjh,p = 0.

We know that bih,jh = bih,jh+1
= −bq,ih = −bjh+1,p = bp,q for s ≤ h < r, and hence

bjs,jr = −bp,q.

21. Let β21
p,q = β21

jr,js = β21
q,jr = β21

ih,jh
= β21

ih,jh+1
= β21

p,ih
= β21

jh,p
= 1 for s ≤ h < r.

Then, β21 de�nes a cycle selection, as the union of the following cycles: {(ih, jh), (jh, p), (p, ih)}
for s ≤ h < r, {(ih, jh+1), (jh+1, p), (p, ih)} for s ≤ h < r, {(p, q), (q, jr), (jr, js), (js, p)}.
Since β21 ∈ F , we get:

bp,q + bjr,js + bq,jr +
r−1∑
h=s

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bp,ih +
r−1∑
h=s

bjh,p = 0.

From bih,jh = bih,jh+1
= −bp,ih = −bjh,p = bp,q for s ≤ h < r and bq,jr = 0, we conclude

that bjr,js = −bp,q.

22. Let β22
p,q = β22

js,ir = 1, β22
ih,jh

= 1 for s ≤ h ≤ r, β22
ih,jh+1

= β22
q,ih

= 1 for s ≤ h < r, β22
jh,p

=

1 for s < h ≤ r. The point β22 de�nes a cycle selection which is the union of the
cycles: {(ih, jh), (jh, p), (p, q), (q, ih)} for s < h < r, {(ih, jh+1), (jh+1, p), (p, q), (q, ih)}
for s ≤ h < r, and {(is, js), (js, ir), (ir, jr), (jr, p), (p, q), (q, is)}. Because β22 ∈ F ,
there holds:

bp,q + bjs,ir +
r∑

h=s

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bq,ih +
r∑

h=s+1

bjh,p = 0.

Since bih,jh = −bq,ih = −bjh,p = bp,q for s ≤ h ≤ r, and bih,jh+1
= bp,q for s ≤ h < r,

we obtain bjs,ir = −2bp,q.

23. Considering the point β23 = β22 + e(ir,js) ∈ F , we further derive bir,js = 0.

24. Let β24
p,q = β24

ir,is = β24
jr,q = 1, β24

ih,jh
= 1 for s ≤ h ≤ r, β24

ih,jh+1
= β24

jh,ih+1
= β24

q,jh
= 1 for

s ≤ h < r, β24
ih,p

= 1 for s < h ≤ r.

The point β24 de�nes a cycle selection as union of the cycles:
{(ih, jh), (jh, ih+1), (ih+1, p), (p, q), (q, jh−1), (jh−1, ih)} for s < h < r,
{(ih, jh+1), (jh+1, ih+2), (ih+2, p), (p, q), (q, jh−1), (jh−1, ih)} for s < h < r − 1,
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{(is, js), (js, is+1), (is+1, p), (p, q), (q, jr−1), (jr−1, ir), (ir, is)},
{(ir, jr), (jr, q), (q, jr−1), (jr−1, ir)}, and {(ir−1, jr), (jr, q), (q, jr−2), (jr−2, ir−1)}.
Since β24 ∈ F , there holds

bp,q + bir,is + bjr,q +
r∑

h=s

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bjh,ih+1
+

r−1∑
h=s

bq,jh +
r∑

h=s+1

bih,p = 0.

Using bih,jh = −bjr,q = bp,q for s ≤ h ≤ r, bih,jh+1
= bp,q for s ≤ h < r, bih,p = bq,jh = 0

for s ≤ h ≤ r, bjh,ih+1
= −2bp,q for s ≤ h < r, we can �nally conclude that bir,is =

−bp,q.

This completes the proof that F is a facet of P ∗.

Just as in the case of the out-star and in-star inequalities, the following variant of the
path inequality is also valid and facet-de�ning for the cycle selection polytope:

t∑
l=1

βil,jl +
t−1∑
l=1

βil,jl+1 + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βq,k. (53)

We omit the proof of this result.

4.3 Additional valid inequalities

In this section, we describe one last class of valid inequalities.

Theorem 19. Let i, j, p, q be four distinct vertices in V . Then, the following inequality is
valid for the cycle selection polytope P ∗:

βi,j +βi,q +βp,j ≤
∑
k∈V

βk,i+
∑
k∈V

βj,k +
∑
k/∈{i,j}

βq,k +
∑
k/∈{i,j}

βk,q +
∑

k/∈{i,j,q}

βk,p+βq,j +βi,p. (54)

Proof. In order to establish this result, we rely on the Chvátal-Gomory procedure. Consider
the following valid inequalities for P ∗ (all of them, except the last one are special instances
of the return inequalities (2)):

� βi,q ≤
∑

k∈V βq,k,

� βi,q ≤
∑

k∈V βk,i,

� βp,j ≤
∑

k∈V βj,k,

� βp,j ≤
∑

k∈V βk,p,

� βi,j ≤
∑

l /∈{i,q}
∑

k∈{i,q} βl,k (i.e., the return inequality with S = {i, q}),

� βi,j ≤ 1.
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By adding all these inequalities, dividing the result by 2, and rounding each coe�cient
according to the Chvátal-Gomory procedure, we obtain the inequality (54).

Remark 3. We have veri�ed numerically that, when n = |V | = 4, the inequalities (54) de�ne
facets of the cycle selection polytope P ∗ and that, together with the star inequalities (or
equivalently, with the path inequalities), they completely describe P ∗.

5 Constrained cycle selections

In [Smeulders et al., 2021], the authors consider cycle selections which contain at most
B arcs and which are unions of directed cycles of length at most K, where B and K
are two given constants. (See Section 1.2: the cycle length restriction is customary in
kidney exchange models; the bound on the cardinality of the selections represents a budget
constraint on the cost of crossmatch tests.)

The cardinality constraint on the number of selected arcs is easily incorporated in the
arc formulation: it simply requires that∑

(i,j)∈A

βi,j ≤ B. (55)

The cycle length constraint, however, is less natural in this formulation. ([Smeulders et al., 2021]
rely on the PI formulation to express it.) Nevertheless, we can de�ne P (B,K) to be the set
of β ∈ {0, 1}|A| associated with (B,K)-constrained cycle selections in complete digraphs,
and P (B,K)∗ to be its convex hull.

By simple inspection of the polyhedral results established in Section 4, we can observe
that these results remain valid for P (B,K)∗ when B and K are large enough. For example,
the proof of Theorem 9 does not involve any selection containing more than 4 arcs, nor
any cycle of length larger than 3. It follows that P (B,K)∗ is full-dimensional when B ≥ 4
and K ≥ 3.

These observations are summarized in the table below. One should read that each
theorem remains valid for P (B,K)∗ as long as B ≥ B0 and K ≥ K0.

Valid result for P (B,K)∗ B0 K0

Theorem 9 (Dimension) 4 3
Theorems 10�11 (Bound inequalities) 5 3
Theorem 12 (Return inequalities) 5 4
Theorems 14�16 (Star inequalities) 7 6
Theorem 18 (Path inequalities) 5t− 1 7

6 Conclusions and perspectives

In this paper, we have introduced the de�nition of cycle selections and of the associated
maximum weigthed cycle selection (MWCS) problem. To the best of our knowledge, these
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concepts had not been explicitly identi�ed earlier, in spite of their rather natural de�nition
and of their relation with fundamental graph theoretic concepts like directed cycles and
circulations. We have investigated several properties of cycle selections and of theMWCS

problem, including their computational complexity, the relation between various integer
programming formulations, and the polyhedral structure of the cycle selection polytope.

As explained in Section 1.2, [Smeulders et al., 2021] have modeled cycle selections in
order to handle a probabilistic variant of the kidney exchange problem formulated as a two-
stage stochastic integer programming problem. In their experiments, the latter problem
turned out to be very di�cult to solve. In future work, we hope to be able to rely on
our improved understanding of cycle selections in order to facilitate the solution of the
MWCS problem and of the stochastic kidney exchange problem.
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