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Abstract
This paper describes the quasi-static formulation of frictionless line contact between flexible
beams by employing the mortar finite element approach. Contact constraints are enforced
in a weak sense along the contact region using Lagrange multipliers. A simple projection
appropriate for thin beams with circular cross-sections is proposed for the computation of
contact regions. It is combined with the geometrically exact beam formalism on the Lie
group SE(3). Interestingly, this framework leads to a constraint gradient and a tangent stiff-
ness invariant under rigid body transformations. The formulation is tested in some numerical
examples.

Keywords Beam contact · Mortar · Special Euclidean group

1 Introduction

Flexible slender structures like cables, ropes and hoses have a variety of applications in en-
gineering systems. These are, to name a few, textile manufacturing, multi-wire cable struc-
tures for the automotive industry or endoscopes for medical applications1 [51]. Often the
behavior of such systems is determined by contact interactions among those slender com-
ponents. These flexible components can be modeled using a finite element approach with
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1D elements based on the non linear theory of beams. For very slender beams, Kirchhoff-
type beam models disregarding transverse shearing of the cross section w.r.t. the centerline
tangent [5, 6, 19, 20], or additionally the extensibility of the centerline [22, 23], are con-
sidered as suitable. A more general class of Tymoshenko type beam models able to capture
shear deformation in a simplified manner, describe the kinematics in terms of translations
and orientations of reference frames attached to each beam cross-section [7, 8]. This type
of formulation involves the handling of finite rotations, which belong to a non-linear space,
SO(3). Often they are treated as decoupled from the translation field [24–27], so that the
models are formulated on the Lie group R

3 ×SO(3). Alternatively, beam models formulated
on the special Euclidean group SE(3) have been developed [1, 4, 28, 29]. In this formalism
rotation and translation variables are intrinsically coupled [1]. Moreover, deformations, ar-
bitrary motion increments as well as internal and external forces are expressed in the local
frame attached to the cross section. As a consequence the equilibrium equations and the
tangent stiffness matrix are invariant under rigid body motions [3]. This framework is also
used in this paper.

Even though 3D continuum contact mechanics has been studied extensively in the lit-
erature [31, 32], publications on beam-to-beam contact are relatively scarce. Due to their
particular geometric features, beams of circular cross-section may experience contact in-
teractions of different natures. These are: point forces in the range of large contact angles
and continuous distributed line forces for small contact angles. The earliest publications
about beam-to-beam contact were dedicated to point-to-point contact models. The contact
constraint is in general defined from a closest point projection and then enforced via the
penalty or the Lagrange multiplier method [33, 34]. In [37–39] the case of distributed forces
is treated by collocation. A high number of collocation points is then needed to obtain ac-
curate results and the number of kinematic degrees-of-freedom (DOFs) should be adjusted
to the density of collocation points to avoid over-constrainment. Indeed, these methods may
suffer from convergence issues when the number of contacts is high compared to the number
of kinematic DOFs. More recent formulations describe distributed line forces as a continu-
ous field and use a unilateral minimal distance criterion to determine the kinematics of con-
tact [17, 35]. The constraints are enforced via the penalty approach, which yields a smooth
representation of the distributed contact force. In [36] both point-to-point and line-to-line
contact are covered by switching between the two contact models.

Mortar methods for 3D continuum contact mechanics have been extensively studied in
the literature [9–13, 40–46]. These methods are characterized by contact constraints en-
forced in a weak sense and a saddle point formulation of the problem, where contact pres-
sures play the role of Lagrange multipliers. In this setting, the issues of over-constrained
formulations are avoided and optimal convergence rates without the need for smooth con-
tact kinematics may be proven, provided appropriate finite element spaces are chosen. The
paper proposes a mortar finite element formulation for frictionless line-to-line beam contact.
As a perspective, the ultimate goal is a formulation that treats both point-to-point and line-
to-line contact in a consistent manner. The contact model is combined with the SE(3) local
frame formulation for the beam finite element (FE). As a consequence, the constraint gradi-
ent and the associated contact forces are expressed in the local frame and their expressions
are invariant under rigid body motion of the contact element.

The paper is structured as follows: First the geometrically exact beam model formulated
on SE(3) as developed in [1] is described in Sect. 2. It starts by an introduction to the con-
cept of frames and frame transformations in 2.1, which will be used extensively through-
out the paper. The formulation of the weak form and the discretization process follow in
Sects. 2.2 and 2.3. Section 3 is dedicated to the proposed contact model. Contact kinematics
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and invariance properties of the related constraint gradient as they emerge from the local
frame approach are discussed in 3.1. The continuous and discretized contact formulations
are given in Sects. 3.2 and 3.3, followed by a section about the augmented Lagrangian ap-
proach that is employed in this paper to solve the equilibrium equations. In Sect. 3.5 the
projection procedure is detailed. Finally, numerical tests are presented in Sect. 3.3. The first
one is the traditional patch test. The second test illustrates the behavior of the formulation in
the presence of a jump in the distributed contact pressures on a simple 2D example. The last
test is the 3D twisting of two beams, which is used to study the properties of the proposed
formulation for problems of a higher complexity.

2 Beam model

In this section, the geometrically exact beam model formulated on the special Euclidean
group SE(3) [1] is presented. In this framework translation and rotation variables are nat-
urally coupled through the group operation. This property is conserved after spatial dis-
cretization. As a consequence, the finite element is free of any locking effect.

2.1 Frames

Reference frames are ever-present in the kinematic description of multibody systems. Fol-
lowing Sonneville [2], frame transformations are taken as elements of the Lie group SE(3).
The Lie group theory offers a rigorous definition of frame derivatives.

The frame transformation between an inertial frame {O} and a local frame {C} is rep-
resented by an element HOC ∈ SE(3). It is composed of a translation xOC ∈ R

3 which
represents the Cartesian coordinates of the frame center C in the frame {O} and a rotation
ROC which belongs to the special orthogonal group SO(3) and represents the orientation of
the base vectors of {C} in the frame {O}. It may be written as a 4 by 4 matrix:

HOC =
[

ROC xOC

0 1

]
. (1)

The group operation is simply the matrix product and can be interpreted as a sequence of
frame transformations. Variations of the local frame {C} are represented by introducing a
left invariant vector field as

δHOC = HOCδ̃π
C

C, (2)

where δπC
C ∈ R

6 is interpreted as an arbitrary infinitesimal motion of frame {C} expressed in
frame {C}. It is invariant under a superimposed frame transformation. It belongs to the Lie
algebra of the special Euclidean group, denoted se(3), which is isomorphic to R

6 through
the map R

6 → se(3) : δπC
C → δ̃π

C

C :

[
δxC

C

δθC
C

]
→

[
δ̃θ

C

C δxC
C

0 0

]
, (3)

where the translation part δxC
C = RT

OCδxO
C is an element of R

3. The rotation part δθ̃
C

C =
RT

OCδROC belongs the Lie algebra of SO(3), denoted so(3). This Lie algebra is the set of 3
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Fig. 1 Kinematic description of
the beam configuration using
frame transformations as
unknowns

by 3 skew-symmetric matrices and is isomorphic to R
3 through the map R

3 → so(3) : a → ã

a =
⎡
⎣a1

a2

a3

⎤
⎦ →

⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ = ã. (4)

Whether the (̃·) operator denotes the map in Eq. (3) or in Eq. (4) is generally clear from
the context. The variations can be represented in the local frame {C} as δxC

C and δθC
C or in

the inertial frame {O} as δxO
C and δθO

C . In the following, the local frame representation will
generally be adopted. For the sake of notational simplicity, the frame superscript will be
dropped when referring to local frame quantities.

2.2 Continuous formulation

The choice of a left invariant representation of frame derivatives yields a formulation of
static equilibrium equations in the local frame. In other words, strain measures, stress resul-
tants and infinitesimal motions are expressed in the frame attached to the beam centerline.
The equations are frame invariant and insensitive to rigid body motions of the beam.

Suppose that the centerline of a beam is parametrized by s ∈ [0,L], where s is the center-
line arclength coordinate in the initial undeformed configuration. We attach a frame to each
of its points, as schematically represented in Fig. 1. The configuration q(s) is given by the
map R → SE(3) : s → HOC(s), which corresponds to the transformation from the inertial
frame {O} to the local frame {C(s)}. Strain measures are constructed in accordance with the
Lie group representation of the frame derivatives:

dHOC(s)

ds
= HOC(s)f̃C. (5)

The element f̃C(s) of the Lie algebra se(3) is interpreted as an objective deformation gradi-
ent expressed in the local frame. Then the sectional strains are obtained by the linear relation

εC = fC − fR, (6)

where fR(s) is the deformation gradient in the reference configuration. In this paper the ref-
erence configuration is identified with the initial undeformed configuration for simplicity.
The deformation measures obtained in that way are the same as for classical geometrically
exact beam formulations [8]. This procedure can be adapted to other types of structural com-
ponents such as shells and superelements to define suitable objective deformation measures
[2].
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Fig. 2 Geodesic interpolation of
frame transformations

If S denotes the space of admissible configurations q and V the space of admissible
infinitesimal motions, the weak form of the equilibrium is given by: Find q ∈ S such that

δW int (q, δπC) = δWext (q, δπC) ∀δπC(s) ∈ V. (7)

The virtual work done by the external forces is

δWext (q, δπC) =
∫ L

0
(δπC)T fext

C ds, (8)

where fext
C (s) contains the resultant forces and moments expressed in the local frame. They

may depend on the configuration. The variation of the internal elastic strain energy is given
by

δW int(q, δπC) =
∫ L

0
(δεC)T KCεC ds, (9)

where KC(s) is the usual sectional stiffness matrix for a linear elastic material. It will be
assumed constant in the remainder of this paper. Equation (5) is a kinematic relation that
needs to be verified by the solution together with Eq. (7).

2.3 Spatial discretization

The finite element method is selected to discretize Eqs. (5) and (7), i.e., in order to define the
finite dimensional subspaces Sh ⊂ S and Vh ⊂ V . For that purpose, consider a two noded
beam element of length Le as shown in Fig. 2. A frame {A} is attached to the node at s = 0
and a frame {B} is attached to the node at s = Le . Thus the configuration of the discrete
beam element is given by qe = (HOA,HOB). In this work, a geometric interpolation of the
two frames is chosen, such that the kinematic relation in (5) is satisfied by construction. To
that end the discrete relative configuration vector is computed as

dAB = logSE(3)

(
H−1

OAHOB

)
. (10)

The interpolation formula follows as

HOC(s) = HOA expSE(3)

(
s

Le

dAB

)
. (11)

It is based on the exponential and logarithm maps, for more details see [1, 3, 4]. The dis-
cretized strain is then given by

εC = dAB − d0
AB

Le

, (12)
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where d0
AB is the relative configuration vector in the reference configuration. A few dis-

tinctive characteristics of this discretization scheme should be highlighted. First, for the
two noded beam element as presented here, εC is constant along the span of the element.
As a consequence the discretization scheme defines piecewise constant strain elements and
helicoidal shape functions [4, 15]. Moreover, as indicated by Eq. (10), dAB (and as a con-
sequence εC ) only depends on the relative configuration between {A} and {B}. Therefore,
the interpolation scheme is frame invariant. Finally, the interpolation couples translation
and rotation variables. Combining it with an appropriate Lie group time integration scheme
[16] yields a beam formulation without any global parametrization of rotation and which is
inherently locking free [1].

In general the discretizations of infinitesimal motions and deformation gradients can be
written

δπC(s) = Q (s,dAB) δπ e (13a)

δεC(s) = P (s,dAB) δπ e, (13b)

where δπ e =
[
δπA

δπB

]
collects the nodal infinitesimal motion variations. The methodology

may be extended to higher order interpolation [30] and other choices of local parametrization
to represent the configuration around the nodal frames [47, 48]. In that case matrices Q and
P must be adapted. Here, since strains are constant elementwise P is independent of s.

Then, the discretized weak form of the variational formulation (7) can be obtained from
the developed expressions, which leads to the following equations for the element internal
and external forces, respectively:

fint
e = PT KCεCLe, (14a)

fext
e =

∫ Le

0
QT fext

C ds. (14b)

3 Contact model

In this section, a model for frictionless beam contact based on the mortar finite element
method is formulated. To keep notations simple, the derivations are made for a two beam
system, but they may be generalized to an arbitrary number of beams.

3.1 Contact kinematics and constraint gradient

The state of the system is described by the configuration variable q . Any beam model, with
any parametrization could be considered. In this contribution, the beam formulated on the
special Euclidean group as presented in Sect. 2 is selected. To each point of the centerline
of beam 1 a frame {C(s1)} is attached and a frame {F(s2)} for beam 2. The configuration of
the two beams is then given by two fields of frame transformations as

q(s1, s2) = (HOC(s1),HOF (s2)) , HOC,HOF ∈ SE(3), (15)

and the variations are collected in the 12 dimensional vector

δπ(s1, s2) =
[
δπC(s1)

δπF (s2)

]
, δπC, δπF ∈R

6. (16)
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According to the common nomenclature in contact mechanics, beam 1 is labeled the slave
and beam 2 the master. A point on the master centerline x̄OF is associated to a point on
the slave centerline xOC by means of a projection, which will be described in Sect. 3.5.
Similarly, rotation matrix R̄OF is evaluated at the same location as x̄OF . Then, a scalar gap
function is introduced:

g(q) = ‖x̄OF − xOC‖ − r1 − r2, (17)

where r1 and r2 denote the cross section radii of the slave and master beam respectively. It
measures the relative position between points on the two beam surfaces under the assump-
tion that the effect of shear deformation on the geometry of the beam’s external skin may be
neglected. In case of frictionless contact between slender beams with circular cross-sections,
this expression is sufficient to formulate contact conditions, such that the contact model can
be entirely written over the centerlines.

By computing the variation of Eq. (17),

δg(q) = [
GC GF

][
δπC

δπF

]
= Gδπ , (18)

the local constraint gradient is obtained as

GT =
[ −MnC

MR̄T
OF ROCnC

]
, (19)

where nC denotes the unit outward normal to the slave beam expressed in its local frame. It
is defined as:

nC = RT
OC

(x̄OF − xOC)

‖(x̄OF − xOC)‖ = RT
OCnO. (20)

Note that in Eq. (19) R̄T
OF ROC = RFC is the relative orientation between the local slave and

the local master beam. Thus nF = R̄T
OF ROCnC may be seen as the same normal vector as

nC , but expressed in the local frame of the master. The matrix M is constant and defined as

M =
[
I3×3

03×3

]
. (21)

Remarks As a consequence of the SE(3) Lie group derivative the constraint gradient de-
pends only on local relative quantities. It is invariant under a superimposed rigid body trans-
formation. Since the contact kinematics of thin beams with circular cross-sections is rather
simple, M has a simple expression.

3.2 Continuous formulation

We suppose that contact interactions develop along a beam segment. The normal contact
pressure, denoted by λ, has the dimensions of a force per unit length. It plays the role of
a scalar Lagrange multiplier field. The space of admissible configurations is denoted by S
and the space of admissible Lagrange multipliers by M. Finally, the space of admissible
variations is written as V . With these notations the weak form of the equilibrium is given by
the following saddle point problem: Find q ∈ S and λ ∈ M such that

δW int (q, δπ) + δWcon (q,λ, δπ) = δWext (q, δπ) ∀δπ ∈ V, (22a)
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Fig. 3 Notations for the contact
element

δW lag (q, δλ) ≥ 0 ∀δλ ∈ M, (22b)

where we define

δWcon (q,λ, δπ) =
∫ sb

sa

(δπ)T GT λds1, (23a)

δW lag (q, δλ) =
∫ sb

sa

(δλ − λ)g ds1. (23b)

– δW int and δW ext are the usual contributions stemming from the internal and external work.
– The Lagrange multiplier is defined on the slave beam.
– Here, the potential contact region is a portion of the centerline i.e. �c = [sa, sb] and the

contact contributions in (23a) and (23b) are line integrals along segments of the slave
beam. The integration boundaries sa and sb are also defined through the projection in
Sect. 3.5.

– The variational inequality (22b) expresses the weak version of the normal contact con-
straint [12, 31].

– In Eq. (23a) the constraint forces and moments conjugated to the local arbitrary motions
appear as quantities expressed in the local frame. Moreover, as a consequence of Eq. (21),
contact does not induce any torque on the beams. If this effect is taken into account, the
second entry of M must be replaced by the lever arm between the cross-section center and
the application point of the contact force, which slightly complicates the formulation.

– All contributions only depend the relative configuration of the two beams and thus, as for
the contact free formulation, the equations are insensitive to large amplitude rigid motions
of the two beam system.

– The problem is formulated on a Lie group and consistent Lie group discretization and
solution schemes need to be applied. Moreover, the usual functional spaces S , V and M
involved in mortar formulations have to be adapted to the present setting.

3.3 Discrete formulation

In this section, the contact finite element that describes the interaction of two beam elements
as introduced in Sect. 2.3 is developed. An illustration of the discrete model is given in Fig. 3.
The configuration of the element is given by

qe = (HOA,HOB,HOD,HOE) . (24)

The discretizations of the infinitesimal motions are

δπC(s1) = Q (s1,dAB)︸ ︷︷ ︸
=Q1

δπ e1 (25a)
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δπF (s2) = Q (s2,dDE)︸ ︷︷ ︸
=Q2

δπ e2 . (25b)

Let us collect the nodal variations for the contact element in a 24 × 1 vector, such that the
field of infinitesimal motions is given by

δπ(s1, s2) =
[

Q1 0
0 Q2

]
︸ ︷︷ ︸

=Qe

δπ e, δπ e =
[
δπ e1

δπ e2

]
=

⎡
⎢⎢⎣

δπA

δπB

δπD

δπE

⎤
⎥⎥⎦ . (25c)

A key question now is the choice of interpolation functions for the Lagrange multipliers
and the associated finite dimensional space Mh ⊂ M. The main criterion is the verification
of the inf-sup condition to guarantee the stability of the saddle point formulation [9, 10].
It has been shown that for usual displacement based formulations, combining linear finite
elements with linear interpolation functions for the Lagrange multiplier field yields a sta-
ble mortar method [11]. In this paper, the discretization of the nodal frames is based on a
first order interpolation on the Lie algebra. Therefore, the Lagrange multiplier is discretized
using standard linear shape functions. These are defined over the slave element:

λ(s1) = N(s1)λe, (26a)

δλ(s1) = N(s1)δλe. (26b)

λe =
[
λA

λB

]
and δλe =

[
δλA

δλB

]
are vectors that collect the nodal values of the Lagrange

multipliers and their variations respectively. The shape functions simply are

N(s1) =
[

s1

Le1

, 1 − s1

Le1

]
= [

NA, NB

]
. (27)

In this paper, the nodes of the slave beam and the nodes of the Lagrange multiplier coincide
and the notation is simplified accordingly for simplicity.

The discretized version of the weak form is obtained by replacing the continuous fields
involved in formulation (22a) and (22b) by their finite dimensional counterparts. The contact
contribution of one element to Eq. (22a) becomes

δWcon
e (qe,λe, δπ e) = (δπ e)

T GT
e λe = (δπ e)

T fcon
e , (28)

where the constraint gradient of the contact element was identified as

GT
e (qe) =

∫ se
b

se
a

[
QT

1 0
0 QT

2

][
GT

1
GT

2

][
NA NB

]
ds1. (29)

It expresses the orientation of the weighted nodal contact forces and moments in the local
frames. Therefore, the vector fcon

e represents the weighted nodal contact forces and moments
in the local frame. The contribution of one element to Eq. (22b) becomes

δW lag
e (qe,λe, δλe) = (δλe − λe)

T gcon
e , (30)
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where gcon
e is the vector of weighted normal constraints for element e. Its components are

computed as

gcon
e (qe) =

∫ se
b

se
a

NT g ds1. (31)

The contributions in (28) and (30) are assembled in the usual finite element manner. The
discrete quasi-static equilibrium of the entire two beam system is then summarized as

fint(q) + BT (q)λ = fext(q), (32a)

0 ≤ λ ⊥ gcon ≥ 0, (32b)

where q is the configuration of the entire discretized system, λ contains all the nodal val-
ues of the Lagrange multipliers, fint and fext are the assembled weighted nodal internal and
external force vectors, B is the assembled matrix of constraint gradients and gcon is the vec-
tor of assembled weighted constraints. The ⊥ sign denotes componentwise orthogonality,
meaning that λigi = 0, ∀i = 1,2, . . . ,m, where the subscript i refers to the components of
the vectors and m is the total number of discrete constraints. In the present framework it
is equal to the total number of Lagrange multiplier nodes, as opposed to collocation based
formulations, where the number of contact points is arbitrary. Hence the mortar method does
not suffer from potential overconstraining.

The formulation of Eqs. (32a), (32b) requires the resolution of a linear complementarity
problem (LCP). In order to use a Newton type solver, problem (32a), (32b) needs to be
reformulated without inequalities. This can be done by applying nonsmooth equations [12]
or by using an augmented Lagrangian method [14], which is the approach selected in this
work.

3.4 Augmented Lagrangian approach

Following [13], an augmented Lagrangian method is applied to solve the LCP (32a), (32b).
For that purpose, the augmented multiplier ξi = kλi − pgi is introduced and the contact
contribution in (28) is replaced by the variation of the functional

Lcon (q,λ) =
∑
i∈C

(
p

2
g2

i − kλigi − 1

2p
dist2(ξi ,R

+)

)
, (33)

where C is the set of discrete constraints, k is a scaling factor, p is a penalty coefficient and
dist(a,A) denotes the distance of a point a ∈ R

n to the convex set A. Numerical parameters
k and p have no influence on the solution, but their presence improves convergence. The
variation of Eq. (33) is given by

δLcon =
∑
i∈C

⎧⎨
⎩

−ξiδgi − kgiδλi if i ∈ A,

−k2

2p
λiδλi if i ∈ Ā,

(34)

where A = {i ∈ C : ξi ≥ 0} defines the set of active constraints and Ā is its complement and
thus is the set of inactive constraints.
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Then, the semi discrete problem is stated as

fint(q) − BT
A(q)ξA = fext(q), (35a)

−kgcon
A = 0, (35b)

−k2

p
λĀ = 0, (35c)

where ξA is a vector that collects the active augmented multipliers, gcon
A are the active as-

sembled constraints, λĀ are the inactive standard Lagrange multipliers and BA is the matrix
of active assembled constraint gradient.

The system of equations in (35a)–(35c) may now be solved using a quasi-static Lie group
solver [16]. At each load step a semi-smooth Newton method is applied to obtain the solution
of the resulting non-linear system. The necessary linearizations are given in the Appendix.
They are not restricted to the augmented Lagrangian method and might be reused for other
Newton-type algorithms.

3.5 Projection

The gap function introduced in (17) requires the determination of coordinate s̄2 of the point
located at x̄2. It is obtained by projection of the point located at x1 on the slave beam onto
the master beam. This projection is given by the following condition:

Pm = (x̄OF (s̄2) − xOC(s1)) · m(s1) = 0, (36)

where m = ROCex is the normal of the cross-section on the slave beam and ex =[
1 0 0

]T
. Thus, given a point on the slave beam, the associated point on the master

side will be the intersection between the plane defined by the cross-section on the slave side
and the centerline curve of the master beam. The solution to (36) is found using a Newton
procedure.

3.5.1 Integration boundaries

In Eqs. (29) and (31), the potential contact region for the contact element [se
a, s

e
b] ∈ [0,Le1 ]

is defined by the set of values s1 such that Eq. (37) has a solution s̄2 ∈ [0,Le2 ]. Therefore, as
represented on Fig. 3, an integration boundary se

k with k = a, b, is either given by a node of
the slave beam or by the projection of a master node onto the slave. This projection is given
by

P = (xOβ − xOC(se
k )) · m(se

k ) = 0, β = D,E, (37)

where xOβ denotes the position of a master node.
Note that this way of computing the potential contact region fails when the two beam

elements are perfectly orthogonal. This special case is not addressed in this paper.
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4 Numerical tests

In this section the formulation is tested in three numerical examples: a patch test, a planar
cantilever beam test and a 3D twisting test. These are implemented in the research code
Odin [50]. The convergence criterion for the Newton algorithm is

Convergence(r) = ‖r‖∑
k ‖r1

k‖
N1

+ · · · +
∑

k ‖rn
k‖

Nn

+ 10−12

< tolr ∨ ‖r‖ < tola, (38)

where r is the residual, ri
k denotes the unassembled contribution to the total residual of el-

ement k of type i (i.e. beam element or contact element), Ni is the number of elements of
type i, and ‖ · ‖ is the L2 norm, tolr and tola are relative and absolute tolerances. Conver-
gence is evaluated separately for the equilibrium of forces in Eq. (35a) and the constraints
in Eq. (35b) and in Eq. (35c). These components are denoted by rf and rc , respectively, and
the actual convergence criterion is given by

Convergence(rf ) ∧ Convergence(rc). (39)

The following values for the tolerances were used in the numerical examples: 10−4 for
the relative tolerance of the equilibrium of forces, 10−2 for the relative tolerance of the
constraints, 10−7 for the absolute tolerance of the equilibrium of forces and 10−5 for the
absolute tolerance of the constraints.

In two of the following numerical examples, the spatial convergence of the proposed
algorithm is analyzed. For that purpose the error on the beam centerline is studied. It is
computed as the sum of the errors for each individual beam. For one beam the error is given
by

error =
√√√√

∫ L

0 ‖xOC − xref
OC‖2 ds∫ L

0 ‖xref
OC‖2 ds

, (40)

where xref
OC is a reference solution for the beam centerline. In the investigated examples, it is

taken as the numerical solution obtained from a very fine discretization.

4.1 Patch test

First a simple patch test is carried out. Two cantilever beams of radius r = 5 cm and length
L = 1 m are placed on top of each other and separated by a distance εr . The mechanical
properties of both beams are: axial stiffness EA = 39.27 KN, shear stiffnesses GA22 =
GA33 = 13.09 KN, torsional stiffness GJ = 16.36 Nm2 and bending stiffnesses EI22 =
EI33 = 24.54 Nm2. The beams are clamped as shown in Fig. 4a. A constant distributed
load of p = 100 N/m is applied on both beams in opposite directions, such that they are
compressed together. In the exact solution, the beams remain straight and the compressive
contact pressure takes the value λ = p. If ε is chosen equal to 0 the problem becomes trivial
from a numerical point of view and the solution converges after 1 iteration independently of
any other parameter. For ε = 10−10, the results obtained for the non-matching discretization
are shown on Fig. 4b. The contact pressure distribution is uniform, which indicates that the
methodology passes the patch test.
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Fig. 4 (a) Schematic description of the patch test. (b) Resulting Lagrange multiplier field

4.2 Cantilever

In this example, the behavior of a cantilever beam of radius r = 1 mm and length L = 0.3 m
entering contact with a rigid substrate separated by 0.5 mm from the beam is studied.
The material parameters of the beam are given by: axial stiffness EA = 0.628 MN, shear
stiffnesses GA22 = GA33 = 0.242 MN, torsional stiffness GJ = 0.12 Nm2 and bend-
ing stiffnesses EI22 = EI33 = 0.16 Nm2. A schematic description of the test is given in
Fig. 5a.

The distributed load p is gradually increased until it reaches a maximum of 10 N/m.
The cantilever beam first enters contact with its tip. At this stage, it is subject to a point
contact force, which is observed in Fig. 5c. As the load is increased it switches to line con-
tact. At the transition point between contact and no-contact, a discontinuity in the contact
pressure followed by a rapid exponential decay is observed, see Fig. 5c. That steep decay
tends towards a point force when the importance of shearing deformation becomes negligi-
ble. As a comparison, Fig. 5d shows the Lagrange multipliers for a case, where the effect of
shearing is more pronounced. For this case the following parameters where adopted: radius
r = 5 cm, length L = 1 m, separated by 2.5 cm, axial stiffness EA = 39.27 KN, shear stiff-
nesses GA22 = GA33 = 13.09 KN, torsional stiffness GJ = 16.36 Nm2, bending stiffnesses
EI22 = EI33 = 24.54 Nm2 and maximum load p = 500 Pa. Far from the transition region
the contact pressure takes the value of the applied distributed load. As shown by analytic
solutions of similar problems, in the contact zone, the curvature is imposed by the geom-
etry of the rigid element, Fig. 5b, and such effects are to be expected [18, 49]. Figure 5e
shows the spatial convergence of the resultant contact force, obtained by integrating the La-
grange multiplier along the contact region, whereas Fig. 5f shows the discretization error
as defined in Eq. (40). A convergence rate of around 2, characteristic for constant strain
elements, is obtained. The numerical results indicate that the mortar finite element method
is able to deal well with discontinuities present in the contact pressure. As one would ex-
pect from a linear finite element description, this discontinuity induces oscillations in the
Lagrange multipliers. These do not affect the optimal spatial convergence of the mortar
method.

4.3 Twisting

In this example the twisting of two beams is studied. The beams are both initially straight,
of length L = 1 m and radius r = 1 mm, and they are separated by a distance of 0.5 mm.
The material parameters of the beams are the same as those for the thin beam in the previous
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Fig. 5 (a) Schematic description of the cantilever test. (b) Final configuration obtained for a discretization of
16 elements. (c) Lagrange multipliers for the thin beam at different load steps with a discretization of 256 el-
ements. (d) Lagrange multipliers for a beam with a bigger cross-section radius as a comparison. (e) Resultant
contact force for different number of elements. (f) Spatial convergence analysis

section. They are fully clamped on one end and fixed to a common spherical joint on the
other end, which is actuated by a hinge. In that manner the end nodes of the beam travel on an
imposed circular path without being constrained in their translation which could potentially
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Fig. 6 (a) Spatial convergence analysis for the 3D twisting example. (b) Average and maximum number
of Newton iterations. For the influence of the discretization the number of load steps is set to 60. For the
influence of the load step the number of elements is set to 8. For both analyses the beams are submitted to
one turn

force the beams to buckle away from each other. The two beams take a shape that approaches
a double helix and contact occurs along a continuous line.

In Figs. 7 and 8, the results for the beams being submitted to a total of four turns are
shown. In this case both beams are discretized using 32 beam elements. As an indication,
for a total number of 2400 load steps the average number of global Newton iterations is
1.8 for a maximum of 5 iterations. As expected from the method, the weighted contact
constraints in Fig. 8b are satisfied exactly. In Fig. 8a some oscillations are observed near the
transitions between contact and no-contact states, which can be attributed to the presence of
a discontinuity in the contact pressure as in the previous example. The proposed method is
able to handle the nonsmooth distributed contact force at the cost of oscillations. These can
be reduced by choosing appropriate numerical parameters. Improvements in the treatment
of these oscillations will be addressed in future works.

In this particular example a spatial convergence rate above 2 is obtained; see Fig. 6a. This
superconvergence could be due to the SE(3) interpolation scheme, which approximates the
beam centerline by piecewise helices [1, 4]. These are particularly well-suited for this kind
of problem and an accurate representation of the centerline is obtained using a small number
of elements. The influence of the discretization and the size of the load step on the conver-
gence of the global Newton scheme is shown on Fig. 6b. For this study the terms related to
the linearization of the shape functions and the normal in equation (56) were neglected in the
tangent stiffness matrix. Note that for certain cases a high number of maximum iterations
is observed. However, it occurs only once during the simulation when the two beams enter
contact and the Lagrangian multipliers are initialized to zero. Subsequently, the multiplier
computed at the previous load step is taken as initial value. Furthermore, in this paper, a gen-
eral Tymoshenko type model, not tailored to very slender beams, is used which might have
a negative impact on convergence due to ill-conditioning [21], regardless of the approach
selected for solving contact.
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Fig. 7 Results obtained for the twisting of two beams. The beams have been scaled for visualization purposes

Fig. 8 (a) Final distributed contact force as a function of the arc length parameter for the twisting example.
(b) Final integrated gap

4.4 Practical applicability

The test cases presented in this section showed the potential of mortar for solving line-to-line
contact problems with relatively coarse meshes. However, the imposition of the weighted
constraint (31), which is needed for variational consistency, imposes limitations. Indeed, for
the method to detect penetration, two beam elements need to be in contact over a sufficiently
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large fraction of the computed contact patch. Otherwise the weighted gap will yield a pos-
itive value despite the presence of local penetration. The size of the patch depends on the
relative configuration of the contacting beam elements and the discretization. As a conse-
quence, an extremely fine discretization would be needed to deal with situations that involve
pointwise interactions or contact over very small regions, shorter than the length of the beam
diameter. Reduced models, such as the beam, are usually used in applications with several
components interacting with each other and the interest mostly lies in the system behavior of
assemblies. In such a context relatively coarse discretizations are commonly preferred and
thus a point-to-point type model should be applied to complement the mortar’s shortcomings
when contact is highly localized.

5 Conclusion and perspectives

In this paper the mortar formulation of frictionless line-to-line contact among beams with
circular cross-sections is addressed and combined with the SE(3) formalism for flexible
multibody systems.

First, the contact kinematics in the local frame approach is discussed. Then the equilib-
rium equations are formulated as a saddle point problem, where the contact constraints are
enforced in a weak sense. As a consequence of the SE(3) Lie group formalism the contact
forces are expressed in the local frames of the beams and the equilibrium equations enjoy
similar invariance properties as the contact free case.

A linear discretization scheme is applied for the Lagrange multipliers. The discretized
equations are solved using the Augmented Lagrangian method. The behavior of the pro-
posed method is tested in numerical examples and optimal spatial convergence rates and the
absence of over-constrainment are shown for these, as expected for the mortar approach. The
ability of the method to capture nonsmooth phenomena involved in beam contact mechanics
is studied.

Future efforts will concentrate on the combination of this mortar formulation with a
point-to-point contact formulation, the upscaling of the methodology towards larger sized
problems involving several beams and the extension of the formulation to friction. Moreover,
the invariance properties of the constraint gradient and the iteration matrix deserve more
thorough numerical investigations in terms of numerical advantages they could provide.

Appendix

6.1 Integration of contact contributions

Integrals (29) and (31) involved in formulation (35a)–(35c) have moving boundaries. Indeed
sa and sb , or rather se

a and se
b for the discretized element, depend on the configuration, which

needs to be taken into account during the linearization procedure. In this section we show
how to compute these integrals using Gauss points and make the necessary preparations for
the linearization procedure. For that purpose, the case of the element constraint vector is
detailed here. First we introduce the mapping ζ(η) : [−1,1] → [se

a, s
e
b] : η → s to rescale

the integrals. Its expression is

ζ (η) = 1

2
(1 − η) se

a + 1

2
(1 + η) se

b (41)
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and the associated jacobian is given by

Jnat = se
b − se

a

2
. (42)

Integral 31 is then computed as

gcon
e =

∫ 1

−1
N (ζ (η)) g (ζ (η)) Jnat

(
se
a, s

e
b, η

)
dη (43)

≈
N∑

k=1

wkN (ζ (ηk)) g (ζ (ηk)) Jnat. (44)

The integration boundaries se
a and se

b are found through the projection procedure described
in Sect. 3.5.1. Similarly, in Eq. (44), the projection explained in Sect. 3.5 is used to asso-
ciate points on the master beam to Gauss points on the slave beam, where the integration is
performed.

6.2 Linearizations for the contact element

The linearization of the Lagrange functional variation is given by


(δLcon) =
⎧⎨
⎩

− (
δgcon

A
)T


ξA − ξT
A


(
δgcon

A
) − k (δλA)T 
gcon

A ,

−k2

p
(δλĀ)T 
λĀ.

(45)

The first term hides the linearization of the active constraints as can be seen when written
explicitly:

(
δgcon

A
)T


ξA = (δπA)T BT
A

(
p
gcon

A − k
λA
)
. (46)

6.2.1 Linearization of the active constraints

Starting from here, the linearizations are given for one contact element to keep notations
simple. Thus in the following A will refer to the set of element nodes associated to active
constraints. These element contributions are then assembled to a global iteration matrix. The
linearization of the constraint is given by


gcon
A =

∫ 1

−1

NT

AgJnat dη +
∫ 1

−1
NT

A
gJnat dη +
∫ 1

−1
NT

Ag
Jnat dη. (47)


g was computed in Sect. 3.1. For the shape functions of the active Lagrangian multipliers
one has


NT
A = dNT

A

dζ

ζ. (48)

ζ is a quantity related to the slave beam and its linearization can immediately be obtained
from Eq. (41) as


ζ = 1

2
(1 − η)
se

a + 1

2
(1 + η)
se

b. (49)
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Thereby, it is linked to the linearizations of the integration boundaries. The same holds for
the jacobian of the natural transformation. Its linearization is given by


Jnat = 
se
b − 
se

a

2
. (50)


se
a and 
se

b come from the varying domain of the integral. They can be expressed in terms
of the configuration increments 
π . As detailed in Sect. 3.5.1, the integration boundaries
may be slave nodes, in which case we have 
se

k = 0, where k = a, b. They may also be
implicitly defined by the projection of a master node onto a slave beam. In that case Eq. (37)
is linearized. The aim is to find the operator that links the linearization of the boundary to the
linearization of the configuration as 
se

k = Sk
π , where k = a, b. The projection condition
is of the form

P = P (qe, sk(qe)) = 0. (51)

By the implicit function theorem its linearization is given by


P = Pq
π + ∂P
∂s1

∣∣∣∣
s1=se

k


se
k = 0, (52)

where Pq is the derivative of P with respect to the configuration variables. Solving for 
se
k

gives


se
k = −

(
∂P
∂s1

∣∣∣∣
s1=se

k

)−1

Pq
π (53)

and thus Sk = −
(

∂P
∂s1

∣∣∣∣
s1=se

k

)−1

Pq . Finally, the derivatives are computed as

∂P
∂s1

=
[ −ex

ẽxxC
CF

]T

fC (54)

and

Pq = [−ex ẽxxC
CF RT

OF ROCex 0
]
, (55)

where xC
CF = RT

OC(x̄OF − xOC) is the relative configuration vector expressed in the local
frame of the slave beam.

6.2.2 Tangent stiffness

The active constraint variation may be linearized as follows:



(
δgcon

A
) = (δπ)T

∫ 1

−1

QT

e GT NAJnat dη

+ (δπ)T

∫ 1

−1
QT

e 
GT NAJnat dη
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+ (δπ)T

∫ 1

−1
QT

e GT 
NAJnat dη

+ (δπ)T

∫ 1

−1
QT

e GT NA
Jnat dη; (56)


NA and 
Jnat have already been derived in the previous section. A closed form expression
for 
Qe may be found in [1] and the linearization of the constraint gradient is given by



(
GT

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

− ñC ñC

‖xCF ‖ −ñC
ñC ñC

‖xCF ‖RFC 0

0 0 0 0

RFC

ñC ñC

‖xCF ‖ 0
ñF ñF

‖xCF ‖ ñF

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦


π , (57)

where the same notations as in Sect. 3.1 apply. In the present contribution all the numer-
ical results were obtained without including both 
Qe and 
GT in the iteration matrix.
However, these terms probably cannot be neglected for more advanced numerical tests.
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