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Abstract

Following the advent of space-borne missions (e.g. CoRoT, Kepler), came a wealth of data of
unprecedented quality. This enabled asteroseismology to thrive and to probe the stellar structure
of a wide variety of pulsating stars. Amongst these pulsating stars is the notable category of
low-mass stars. These exhibit masses below 2.3 M�, encompassing the case of our Sun.

Throughout their evolution, these stars exhibit a few interesting peculiarities. First, during the
main-sequence phase, they display a very regular pressure-mode oscillation spectrum. However,
small perturbations to that regularity may occur. Such perturbations are the result of sharp and
localised variations in the stellar structure. These create an oscillating feature, as a function of
the frequency, in the oscillation spectrum, the so-called glitches. These glitches are of particular
interest as they allow us to probe very localised regions of the stellar interior and provide diagnoses
about specific stellar features, inaccessible by other means. In main-sequence low-mass stars, we
distinguish two main causes of glitches: the helium second-ionisation zone, providing information
about the surface helium abundance, and the base of the envelope convection zone, constraining
the mixing processes in that region. The first part of my thesis was dedicated to the development
of a seismic technique, WhoSGlAd, that consistently analyses the complete oscillation spectra
of main-sequence low-mass stars and robustly retrieves the glitches signatures present in these
spectra. Special care was put in the definition of stringent seismic indicators as we decorrelated
them as much as possible. This is done thanks to a Gram-Schmidt orthonormalisation process.
The defined indicators were then used to constrain stellar models and provide a characterisation of
both the 16 Cygni system and the Kepler Legacy Sample, representing the best solar-like seismic
data currently available.

After the main-sequence phase, low-mass stars evolve on the subgiant and red-giant phases.
Their core then contracts while their envelope expands, developing a large core-envelope density
contrast. This produces the appearance of mixed-modes, presenting a twofold nature: a gravity-
dominated nature in the inner radiative regions, and a pressure-dominated nature in the outer
convective regions. These modes have the great advantage to propagate throughout most of the
stellar interior and, therefore, to probe almost the complete stellar structure. To exploit the
information these modes carry, we developed the EGGMiMoSA method. It relies on the asymptotic
expression and allows us to precisely measure seismic indicators on both subgiant and red-giant
stars. The method was applied to a grid of models extending from the subgiant phase to the
luminosity bump. The results are excellent in regard to the asymptotic values of the seismic
indicators and also qualitatively agree with observed and theoretical studies. These indicators
also allow us to efficiently infer the stellar age, mass, and radius of subgiant stars and of red-giant
stars with masses & 1.8 M�. Below this threshold, we noted that the central electron degeneracy
impaired our diagnosis of the stellar age, mass, and radius in red-giants.

The combination of both methods should provide means to constrain the stellar structure of
low-mass stars from the early main-sequence phase to the late red-giant one. This is a unique
opportunity to study their structure through most of their evolution and, for example, pinpoint
missing physical processes in their modelling.
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Résumé

Suite à l’avènement des missions spatiales (telles que CoRoT et Kepler), de larges quantités de
données d’une qualité jusque là inégalées furent rassemblées. Ceci permit à l’astérosismologie
de s’épanouir et de sonder tout un éventail d’étoiles pulsantes. Parmi celles-ci, nous comptons
la catégorie notable des étoiles de faible masse. Ces étoiles présentent des masses inférieures à
2.3 M�, et comprennent ainsi le cas de notre Soleil.

Tout au long de leur évolution, ces étoiles affichent certaines particularités intéressantes. Tout
d’abord, au cours de leur phase de séquence principale, elles présentent un spectre de modes de
pression particulièrement régulier. Cependant, de faibles perturbations peuvent affecter cette
régularité. Ces perturbations sont le résultat de variations localisées et brusques au sein de la
structure stellaire. Leur conséquence est alors une signature oscillante, en fonction de la fréquence,
dans le spectre d’oscillations. Ce sont les glitches. Leur intérêt est tout particulier car ils permettent
le sondage précis des régions stellaires étant à leur origine. Ils fournissent ainsi des diagnostiques
au sujet de caractéristiques stellaires spécifiques auxquelles nous n’aurions pas accès au travers
de techniques alternatives. Pour les étoiles de séquence principale, nous distinguons deux causes
à ces glitches: la zone de seconde ionisation de l’hélium, nous informant quant à l’abondance en
surface d’hélium, et la base de l’enveloppe convective, contraignant les processus de mélange dans
cette région. La première partie de ma thèse fut consacrée au développement d’une technique de
sondage sismique, WhoSGlAd, qui analyse de façon cohérente le spectre d’oscillations complet
d’étoiles de séquence principale et de faible masse, tout en extractant la signature des glitches
acoustiques présents dans leurs spectres. Nous avons porté une attention toute particulière à
la définition d’indicateurs sismiques contraignants que nous avons décorrélés tant que possible
grâce au procédé d’orthonormalisation de Gram-Schmidt. Les indicateurs ainsi définis furent alors
utilisés comme contraintes pour des modèles stellaires, ce dans le but de caractériser le système
16 Cygni et l’échantillon du Kepler Legacy, qui constitue le meilleur ensemble de données sismiques
d’étoiles de type solaire disponibles à ce jour.

Une fois la séquence principale achevée, les étoiles de faible masse évoluent vers les phases de
sous-géante et géante rouge. Le cœur de ces étoiles se contracte alors que leur enveloppe se dilate.
Le résultat est l’apparence d’un important contraste de densité entre leurs cœur et enveloppe. Ceci
permet l’apparence de modes mixtes. Ceux-ci présentent une nature double: dominée par la gravité
dans les régions radiatives profondes et dominée par la pression dans les régions plus superficielles
et convectives. Leur grande force est qu’ils se propagent au travers de la plus grande partie de
l’intérieur stellaire, permettant ainsi de sonder la presque totalité de leur structure. Afin d’exploiter
l’information dont ces modes sont porteurs, nous avons développé la méthode EGGMiMoSA.
Cette méthode repose sur la formulation asymptotique et permet la mesure precise d’indicateurs
sismiques, tant au cours de la phase de sous-géante que de celle de géante rouge. La méthode fut
appliquée à une grille de modèles s’étendant de la phase de sous-géante au ‘luminosity bump’. Les
résultats obtenus sont excellents, en comparaison avec les indicateurs sismiques asymptotiques,
et sont en accord qualitatif avec les études théoriques et observationnelles. Ces indicateurs nous
permettent d’inférer la masse, le rayon et l’âge de sous-géantes ainsi que de géantes rouges ayant une
masse & 1.8 M�. En deçà de cette limite, nous avons remarqué que la dégénérescence électronique
centrale nuit à notre diagnostique de la masse, du rayon et de l’âge des géantes rouges.

Combiner les deux méthodes définies durant cette thèse devrait nous fournir les moyens de
contraindre la structure d’étoiles de faibles masse, depuis les moments précoces sur la séquence
principale jusqu’aux phases tardives sur la branche des géantes rouges. Ceci représente une
opportunité unique d’étudier leur structure au long de la majorité de leur évolution et, par exemple,
de mettre en évidence des processus physiques manquants à leur modélisation.
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CHAPTER 1

Introduction

1.1 From stellar variability to asteroseismology

As long as humans roamed the Earth, they looked at the sky for an understanding of the events occurring
on Earth. The heavens held important roles in everyday life. Navigators used the positions of the stars to
orient themselves. Others, studied planetary configurations to predict the fate of eminent personalities.
At these times, it was believed that a change in the stars was a bad omen. One of the first manifestation
of such a drastic change in the heavens was the observation of a ‘new’ star by Chinese astronomers around
the year 185. This new star persisted in the sky for about eight months. It was suggested that this
manifestation was in fact a type Ia supernova, RCW 86 (Clark & Stephenson 1975). Supernovae are the
manifestation of stellar death, leading to a large increase in their luminosities.

Beside these intermittent phenomena, variable stars were later observed. Such stars display variations
in their luminosity over time. One of which is the famous Algol star, in the Perseus constellation, known
to the ancient Egyptians. Its luminosity varies with a period of approximately three days (Goodricke
1783). This leads us to the definition of the first type of variable stars, the extrinsic variables. The
variability of such stars is caused by external factors. In the case of the Algol star, it is actually a pair of
stars that orbit and partially occult one another, leading to a decrease in the apparent magnitude of the
star. Such variable stars are referred to as eclipsing binaries and provide essential information through
their orbital motion. Another example of extrinsic variable stars corresponds to the so-called ‘cataclysmic
variables’. These stars exhibit sudden variability because of brutal physical processes. One of these is the
accretion of stellar matter from one star to its companion in a close binary configuration. The arrival of
new material may trigger new nuclear reactions and provoke a sudden increase in the luminosity.

There also exist stars that pulsate as a result of their intrinsic conditions. Such stars are intrinsic
variables. The most famous examples are the very bright Cepheids which present variations in their
luminosity with periods on the order of days to months. They have been observed for a long period of
time now and are of particular interest as it was shown that they exhibit a period-luminosity relation
(Leavitt & Pickering 1912). This relation is essential as it allows to calibrate the distance of these stars,
upon which many other physical quantities rely. For example, without a measurement of the distance of
an isolated star, we may not measure its absolute radius. We only retrieve the angular radius which is
(approximately) the ratio of the radius of the star to its distance. The determination of stellar radii and
distances, even though of essential nature, is not the only use of pulsating stars. As the pulsation periods
of the excited oscillation modes are in direct correlation with the inner stellar structure, they allow us to
draw inferences on the latter. This is the topic of asteroseismology, which will be further described in
Sect. 2.2. There exists other types of intrinsic variables such as the rotating stars which present dark spots.
As a result of their rotation, their luminosity experiences a regular modulation, the period of which being
that of rotation. Finally, we may cite eruptive variables that eject coronal matter in an erratic fashion.

1.2 Asteroseiosmology

Because the information we collect from the Universe comes from the photons that the stars emit,
our understanding of the universe strongly relies on our knowledge of stellar structure and evolution.
Nevertheless, current stellar models suffer from numerous caveats (e.g. the treatment of convective regions,
opacities determinations). Information about the internal stellar structure is therefore vital to constrain
our models and theories. However, stars are opaque and their interior may not be observed directly.
Hopefully, the asteroseismology is a powerful tool to probe stellar interiors. Indeed, it is the study of
stellar pulsations and their link to the stellar structure, which relates oscillation frequencies with the
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1. Introduction

stellar structure. This therefore constitutes an efficient means to constrain the stellar structure. We
distinguish two kinds of oscillation modes: the pressure modes, with the pressure gradient serving as the
restoring force of the oscillations, and the gravity modes, with the buoyancy force as the restoring force.

Nevertheless, asteroseismology comes at a cost, the necessity of highly precise data. We require the
ability to measure variations in luminosities averaged over the complete stellar disk on the order of one
part per million. Therefore, asteroseismology was at first possible only in the case of our Sun. That
specific branch of asteroseismology is the helioseismology. One notable success of helioseismology was the
determination of the solar rotation profile (e.g. Brown & Morrow 1987; Schou et al. 1998; Fossat et al.
2017), showing a solid body rotation in the central radiative regions and a differential rotation in the
outer convective regions.

But advances were not limited to our Sun. With the advent of space-borne missions, freeing observations
from atmospheric perturbations and the diurnal cycle, came a boom in interest towards asteroseismology.
Two of the most notable space missions may be the CoRoT (Baglin et al. 2009) and Kepler (Borucki
et al. 2010) spacecrafts. These missions allowed for the continuous and extended observation of pulsating
stars necessary to the gathering of precise data essential to asteroseismology. The precise characterisation
of a wide variety of stars at different stages of evolution became possible. With rich oscillation spectra
of pressure modes, main-sequence solar-like stars were extensively studied and stellar masses, radii and,
ages were measured with unprecedented precision (e.g. Miglio & Montalbán 2005; Lebreton & Goupil
2014; Appourchaux et al. 2015; Campante et al. 2015). Also on the main sequence, the γ Dor stars
constitute excellent targets for asteroseismology. Due to their fast rotation (Abt & Morrell 1995), their
gravity modes spectra are sufficiently perturbed to measure rotation rates (e.g. Ouazzani et al. 2019).
The asteroseismic characterisation of star also extends to later phases of evolution such as the subgiant
and red-giant branches. Because they present mixed-modes spectra, allowing for their deep probing, they
represent essential targets to characterise the evolution of solar-like stars, providing us with an insight
into the future of our Sun, for example by putting constraints on the mixing processes up to these late
phases (e.g. Beck et al. 2012; Deheuvels et al. 2014; Gehan et al. 2018).

1.3 Objectives and structure of the thesis

The present thesis aims at precisely and accurately characterising low-mass stars throughout most of
their evolution via asteroseismic means. To that end, we constructed two seismic probing techniques that
take the most advantage of the highly precise data available. These two methods focus on two different
evolutionary stages of solar-like stars and exploit the features their oscillation spectra present to ensure a
robust and reliable adjustment of the observed seismic data. As opposed to many techniques currently
available, the philosophy behind the present study is to fast and efficiently build seismic indicators that
carry relevant structural information. We therefore rely on simple minimisation schemes combined with
appropriate parameters estimates.

We first studied the case of main-sequence low-mass stars and defined the WhoSGlAd method to
precisely measure the signature of acoustic glitches, traces of sharp variations in the stellar structure. The
objective was to construct seismic indicators in such a way that they are as little correlated to each other
as possible. This allows us to use these indicators to tightly constrain the stellar structure and to draw
meaningful inferences. This method was applied to the case of the 16 Cygni system and to the Kepler
Legacy sample.

Second, we followed stellar evolution of low-mass stars and moved on from the main-sequence to the
subsequent subgiant and red-giant phases. To account for the complex mixed-modes spectra of these
stars, we defined the EGGMiMoSA method. The method relies on the prior knowledge we have about
the structure of these stars to estimate the optimal parameters. Not unlike the case of main-sequence
stars, we defined robust seismic indicators which we demonstrated to effectively carry relevant structural
information. The proposed method also aims at providing a unified sounding approach for subgiants and
red giants.

After introducing the relevant theoretical concepts necessary to our work in Chap. 2, we divide this
manuscript into two parts, according to the stellar stage of evolution. The first part is concerned with
main-sequence stars while the second part focuses on the subgiant and red-giant stars. In the first part of
the manuscript, we present the WhoSGlAd method and its application to the 16 Cyg system and Kepler
Legacy sample in Chaps. 3 and 4, respectively. In the second part, we describe the EGGMiMoSA method
in Chap. 5. We finally conclude the present work in Chap. 6.
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CHAPTER 2

Theoretical framework

In the current chapter we recall all the theoretical notions necessary to the purpose of this thesis manuscript
proper understanding. We first address the theory of stellar structure (Sect. 2.1) and consider small
perturbations of this structure leading to the stellar pulsations (Sect. 2.2).

2.1 Stellar structure and evolution

Before diving into asteroseismology as a means to constrain the stellar structure, we first need to study
the stellar structure theory and the equations that govern it. Furthermore, it is appropriate to highlight
some of the current limitations of this theory. The present theoretical developments will mostly be based
on the work presented by Kippenhahn et al. (2012).

2.1.1 Typical time scales

Convenient quantities, relevant to the stellar structure and its evolution, are the typical time scales over
which the stellar structure might evolve in specific contexts. We consider a star of total mass M , radius
R, and luminosity L.

The first time scale is the dynamical time scale

τdyn ∼
(
R3

GM

)1/2

∼ (ρ̄G)−1/2
, (2.1)

G being the gravitational constant and ρ̄ ≡ M
4/3πR3 the mean stellar density. It expresses the balance

between the pressure and the gravitational force, which corresponds to the hydrostatic equilibrium. It
gives the time over which the star reacts to a perturbation of the hydrostatic equilibrium. This is also the
relevant time scale of stellar oscillations.

The second time scale represents the typical time necessary for a star to adjust to a thermal imbalance
and restore the thermal equilibrium. This is the Kelvin-Helmholtz time scale

τKH ∼
GM2

RL
. (2.2)

This time scale is relevant to the phases of stellar contraction during the thermal desequilibrium phases
such as the pre-main sequence.

The last typical time scale is the nuclear time scale which represents the balance of the radiated
energy by the one generated by nuclear reactions, Enuc,

τnuc ∼
Enuc

L
. (2.3)

We observe that, in regular cases, the three time scales have very different orders of magnitude, and

τdyn � τHK � τnuc. (2.4)

This is particularly relevant to the case of stellar oscillations as we may assume, in most of the star,
that the heat exchange during one oscillation cycle is negligible compared to the internal energy (as
τdyn � τHK). The oscillations are said to be quasi-adiabatic. We provide in Table 2.1 typical values for
the three time scales in different stars.
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2. Theoretical framework

Table 2.1: Typical time scales for 1 M� stars.

R (R�) L (L�) τdyn τKH τnuc

Sun 1 1 27 min 16 Myr 10 Gyr
Red giant 100 30 18 days 5 kyr 300 Myr

White dwarf 0.02 0.01 4.5 s 80 Gyr 1000 Gyr

2.1.2 Basic equations

When modelling the stellar structure, one relies on the general equations of hydrodynamics while including
additional hypotheses. We usually assume the star to be perfectly spherical. Therefore, we describe its
structure in spherical coordinates, with r the radial coordinate, θ the polar coordinate and ϕ the azimuthal
coordinate. We may assume spherical symmetry because only the gravity and pressure act on a mass
element. The rotation, tidal interactions, and magnetic fields are neglected. This can, in some cases, be a
limitation but this is out of the scope of the current discussion. As a result of the spherical symmetry of
the star, only one spatial coordinate is necessary to describe its structure, the distance from the stellar
center, r, referred to as the radius. This quantity varies from 0 at the center and reaches a value of R at its
surface. To study the fluid mechanics, there usually are two approaches: the Eulerian approach, studying
the physical quantities as a function of their distance to the center, and the Lagrangian approach, seeing
these quantities as a function of the mass, m, contained in a concentric spherical shell. The Lagrangian
approach is especially convenient when studying stellar structure, as different regions of the star may
contract or expand (e.g. the contracting core and expanding envelope of giants). Therefore, a given r
coordinate is not constant while (if the model assumes no mass loss) the mass coordinate remains constant.
The relation between both coordinates is given by the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.5)

where ρ represents the fluid density, v the fluid velocity and ∇ the spatial derivative. In spherical
coordinates, we write ∇ = ∇r + ∇h =

(
∂
∂r ,

1
r
∂
∂θ ,

1
r sin θ

∂
∂ϕ

)
, with ∇r and ∇h the vertical and horizontal

components of the gradient operator. In general, the r and h subscripts will represent radial and horizontal
components of any vector quantity. Assuming no mass loss, which is valid for the low-mass stars considered
in the present manuscript, and spherical symmetry it takes the form

∂r

∂m
= 1

4πr2ρ
. (2.6)

The second equation of hydrodynamics, necessary to the description of the stellar structure, is the
conservation of momentum

ρ

(
∂

∂t
v ·∇

)
v = ρf −∇P − ρ∇φ+ ∇ · ζ, (2.7)

with f being the sum of the external forces, P the pressure, φ the gravitational potential, and ζ the
viscous stress tensor. Because of sphericity and neglecting viscous stresses, which are generally small in
stellar interior, the only forces acting on a mass element are the pressure gradient and gravity. As the
stars are in a stable state during most of their lives, these forces should balance each other. We have the
hydrostatic equilibrium.

∂P

∂m
= − Gm

4πr4 . (2.8)

To obtain Eq. (2.8), we used Poisson’s equation relating the gravitational potential and the distribution
of matter

∇2φ = 4πGρ, (2.9)

where ∇2 is the Laplacian operator
The last hydrodynamics equation to consider is the conservation of energy

ρT

(
∂

∂t
v ·∇

)
S = ρ (εnuc + εv)−∇ · FR, (2.10)
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2.1. Stellar structure and evolution

where T , S, εnuc, εv and FR represent the temperature, the entropy, the nuclear energy generation rate,
the heat generation rate by viscous stresses, which is neglected, and, the radiative energy flux, respectively.

We now need equations to describe the energy transport and generation. We define l(r) as the energy
traversing a sphere of radius r. This is the local luminosity. Its extremal values are 0 at the center and
L, the total luminosity at the surface. Considering the star to be in hydrostatic and thermodynamic
equilibrium, energy is only produced through nuclear reactions or contraction. The rate of energy
production per unit mass, decomposed in both contributions, is ε = εnuc + εg. Therefore, the variation dl
in the l function is only due to nuclear reactions and we obtain the simplified conservation of energy

dl

dm
= ε. (2.11)

We now consider the transport of energy in the stellar interior. The two main transport mechanisms
are the radiation and the convection. The total energy flux is thus the sum of both contributions:−→
F = −→F rad + −→F conv. Let us first consider the energy transport by radiation. Because stellar interiors
are very opaque (typically the mean free path of photons is on the order of the centimetre in the Sun’s
interior: `ph = 1/κρ, with a typical a mean absorption coefficient, κ ∼ 1 cm2g−1, and ρ ∼= 1.4 gcm−3),
we consider the transport of energy by the photons to be a diffusive process. This does not hold close to
the surface where the density decreases and the mean free path of photons significantly increases. But
this greatly complicates the picture and we stick in the current discussion to the diffusive approximation.
In that case, the radiative transport of energy is given by

∂T

∂m
= − 3

64π2ac

κl

r4T 3 , (2.12)

with the radiation density constant a = 7.57 ·10−15 erg cm−3 K−4, the speed of light c = 3.00 ·1010cm s−1,
and the mean stellar opacity κ. A convenient form of the radiative flux is

Frad = 4acG
3

T 4m

κPr2∇rad, (2.13)

with ∇rad the temperature gradient necessary for the energy flux to be completely transported by the
radiation

∇rad ≡
d lnT
d lnP

∣∣∣∣
rad

. (2.14)

Whenever the real temperature stratification

∇ ≡ d lnT
d lnP (2.15)

is not sufficient to transport all the energy via radiation, the energy is transported by the motion of
matter, the convection. In the case of the transport of energy by convection, the picture is more complex.
The energy is transported by mass elements of a finite size which exchange energy with their environment
in dynamically unstable regions. This process can be very efficient in stellar interiors, due to the very
large enthalpy. As part of the energy is carried by convection, the actual temperature gradient ∇ ≡ d lnT

d lnP
is smaller than the radiative one ∇rad and the radiative flux is

Frad = 4acG
3

T 4m

κPr2∇, (2.16)

and the temperature stratification
∂T

∂m
= − GmT

4πr4P
∇. (2.17)

The actual gradient is unknown and has to be determined. The complexity of the problem mainly arises
from the very short time scales of the dynamical motions of the convective elements of matter compared
to stellar evolution time scales. Following the movement of individual blobs of matter, evolving over time
scales on the order of the dynamical time scale, and over the whole stellar evolution, which is on the order
of the nuclear time scale, is completely impossible because of the large difference in magnitude between the
two time scales (see Table 2.1). Therefore, a simplified description is in order. The most commonly used
in stellar evolution theory and models is the mixing-length theory, which assumes the convective elements
to have a mean free path, the mixing-length. This mixing-length is often treated as a free parameter
that has to be adjusted to match observations. An alternative approach, is to interpolate between grid
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points of 3D hydrodynamical simulations. This approach has been applied by Jørgensen et al. (2021) who
implemented it in the CLES evolution code (Code Liégeois d’Evolution Stellaire Scuflaire et al. 2008a).

It is also interesting to be able to recognise regions where the energy will be efficiently transported
by radiation from regions where convection will be necessary. To do so, one may remember that it is
the buoyancy force that sets blobs of matter in motion. Therefore, comparing the density of this blob
with its surrounding can provide us with such a criterion. To do so, we consider an element of matter
displaced upwards in the stellar interior, where its surroundings are cooler. If the element is lighter than
its surroundings, it will be pushed further upwards by buoyancy. The layer is therefore unstable towards
convection. Conversely, an element heavier than its surroundings and which is pushed upwards will be
pushed back downwards. The layer is therefore convectionally stable. These considerations, after some
manipulations and assuming there are no changes in the chemical composition (see Kippenhahn et al.
2012, Chap. 6), lead to the famous Schwarzschild criterion. A layer is stable against convection when

∇rad < ∇ad, (2.18)

with the adiabatic temperature gradient

∇ad ≡
∂ lnT
∂ lnP

∣∣∣∣
S

(2.19)

and S the entropy.
All the previous equations only present spatial variations. Nevertheless, to compute stellar evolution,

a temporal variation remains necessary. This happens through changes in the chemical composition,
via nuclear reactions, that in turn impact the stellar structure. Defining Xi the mass abundance of the
element labelled i and rj,k the rates of transformation from a species j into another k, the evolution of
composition is

∂Xi

∂t
= mi

ρ

∑
j

rj,i −
∑
k

ri,k

 , i = 1, . . . , I, (2.20)

with I being the number of considered species and mi the mass of the nuclei labelled i. Before the phases
of helium combustion, which are considered in this thesis, it is customary in stellar models to consider
only three species, the hydrogen, denoted X, the helium, Y , and the combination of all the other species,
Z, referred to as ‘metals’. This is justified by the fact that stellar abundances are mostly dominated
by that of hydrogen and helium. As the species heavier than helium are gathered, a reference for their
relative abundance is necessary. This has been a subject to many debates (see the numerous references
such as Asplund et al. 2009).

Finally, to sum up, when considering the star to be in complete equilibrium, that is in hydrodynamic
and thermal equilibrium, we have 5 differential equations to solve in order to compute the stellar structure
and evolution:

∂r

∂m
= 1

4πr2ρ
, (2.21)

∂P

∂m
= − Gm

4πr4 , (2.22)

dl

dm
= ε, (2.23)

∂T

∂m
= − GmT

4πr4P
∇, (2.24)

∂Xi

∂t
= mi

ρ

∑
j

rj,i −
∑
k

ri,k

 , i = 1, .., I. (2.25)

The independent variables are the mass m and the time t. Assuming the equation of state

ρ = ρ (P, T,Xi) (2.26)

and the rates of nuclear reactions
rj,k = rj,k (P, T,Xi) (2.27)

to be known and with the knowledge of appropriate boundary conditions, we may solve these 5 differential
equations to obtain the functions r(m), P (m), l(m), T (m), and Xi(m, t) for 0 ≤ m ≤M and t0 ≤ t, t0
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Figure 2.1: HR diagram of the stars observed by the CoRoT (left) and Kepler (right) spacecrafts presented
in Chaplin & Miglio (2013, Fig. 5).

being the time at which stellar evolution begins. These constitute what is referred to as a stellar model.
Because of the complete equilibrium, spatial and temporal variations are separated in these equations.
The complete equilibrium hypothesis is met during several stellar evolution phases such as the main
sequence, and the subgiant and red-giant phases for low-mass stars such as considered here. At each time
step of the evolution, it is then possible to solve the temporal variation of the composition and then the
structural evolution of the other free variables, as a function of the composition at the current time step.

2.1.3 Evolution on the main sequence phase

The first phase, relevant to the present study is the main sequence phase. This corresponds to the phase
during which stars spend most of their lifetime. It can easily be recognised in a Hertzsprung-Russell (HR)
diagram, which represents the logarithmic stellar luminosity (expressed in solar units) over the reversed
logarithmic effective temperature (in K). Indeed, the main sequence corresponds to a dense diagonal strip
of stars extending (roughly) from the bottom right of the HR diagram to its top left. To illustrate this,
we provide in Fig. 2.1 the figure presented by Chaplin & Miglio (2013, Fig. 5) which represents the stars
observed by the CoRoT (Baglin et al. 2009) and Kepler (Borucki et al. 2010) satellites. CoRoT targets are
showed on the left panel while Kepler targets are on the right panel. The clump of stars extending from
the lower right to the middle left of both panels correspond to main sequence stars. We also distinctly
observe the red-giant branch (RGB) extending upwards in an almost vertical fashion (these stars are
discussed in the subsequent section).

Nuclear burning of hydrogen

The main sequence is composed of stars that are in complete equilibrium and burn hydrogen in their
central region. This phase extends until the central hydrogen is completely depleted. We may estimate
the duration of this phase as the ratio between the energy generation by hydrogen burning and the rate of
energy loss by radiation, the stellar luminosity. This corresponds to the nuclear time scale of hydrogen
burning (Eq. (2.3)). We roughly assume for any star that the same fraction of the total stellar mass serves
to the nuclear burning. The energy generation rate by hydrogen burning is then proportional to the total
mass, that is to say EH ∼M . Then, from homology relations, the total luminosity is proportional to some
power η of the stellar mass, such that L ∼Mη. More information regarding the latter relation is to be
found in Kippenhahn et al. (2012, Chaps. 20 and 22). We retrieve

τH ∼M1−η. (2.28)

With a typical value for η of 3.5, we obtain τH ∼M−2.5. Therefore, the duration of the main sequence is
expected to strongly decrease with the stellar mass, which is what we observe in practice.
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The nuclear burning of hydrogen into helium, which is initiated for a temperature of about 5× 106 K,
happens through two different channels: the pp-chain and the CNO-cycle. The first channel, the pp-chain,
is the successive recombination of two protons into deuterium atoms, then of this newly formed deuterium
atom with another proton to form the light helium isotope 3He. The formation of the final 4He happens
in various reactions that may involve a second 3He atom, 7Be, 7Li or 8B. The second channel is the CNO
cycle. As implied by its name, C, N, and O atoms, which may readily be available at the formation of
the star, are required as catalysts to form the 4He. These reactions may only happen in a given range
around specific temperatures. The width of such ranges is referred to as the temperature sensitivity of
the thermonuclear reactions. It represents the exponent ν of the power-law representation of the energy
generation by the considered nuclear reaction ε

ν ≡ ∂ ln ε
∂ lnT

∣∣∣∣
ρ

. (2.29)

The first reaction series, the pp-chain, displays a temperature sensitivity of about six, while the
CNO-cycle has a temperature sensitivity of about 23. This has the consequence that the pp-chain
dominates over the CNO-cycle to burn hydrogen atoms until T & 15× 106 K, where the CNO-cycle takes
over as the dominant source. As the central temperature is greatly dependent on the stellar mass, less
massive stars will mostly produce hydrogen through the pp-chain while the more massive ones (above
∼ 1.6 M�) will be dominated by the CNO-cycle.

Another consequence of this important temperature sensitivity of the nuclear reactions is the highly
concentrated generation of energy towards the center. Overall, in a 1 M� mass star, all the nuclear energy
that is produced by the pp-chain is done so within approximately the inner 20% of the stellar mass. In
the case of the CNO-cycle, due to the higher temperature sensitivity, energy production is even more
concentrated, within 10% of the stellar mass. In stars where the CNO-cycle starts to participate to the
energy generation (& 1.2 M�), because of this large concentration of power by the CNO-cycle, L/m ∼ ε is
very large near the center, so that the radiative gradient, ∇rad, which proportional to it, is larger than the
adiabatic gradient, ∇ad, and a central convective region starts to develop (see the Schwarzschild criterion,
Eq. (2.18)). This transition is of great importance as it defines two stellar regimes. The low-mass stars
(0.5 M� .M . 1.2 M�) which have a radiative core and a convective envelope, which dives deeper with
decreasing mass (M ' 0.5 M� is the approximate limit for a fully convective star), and the intermediate
mass stars (1.2 M� . M . 8 M�) with a convective core and a radiative envelope. Because of their
structural differences, these stars evolve differently.

Uncertainties

The extent of convective regions is a source of uncertainties in current stellar models. First, because of
the treatment of convection itself, often described in one dimension via the mixing-length theory, relying
over a single parameter to depict the complex convective motions. The mixing-length theory (Prandtl
1925) assumes that a convective element will move a given distance, the mixing-length, before dissolving
in its surroundings and losing its identity. However, there is no physical ground that can help determine
the mixing-length parameter, αMLT, often expressed in terms of the pressure-scale height, HP = − dr

d lnP .
Hence, that quantity must be calibrated in stellar models. There exist several studies that rely on 3D
hydrodynamical simulations of the outer layers of stars to connect the calibrated value of the mixing
length parameter with the global parameters of the atmosphere: effective temperature, surface gravity,
and metallicity of the star (e.g. Magic et al. 2015).

Second, there exist uncertainties concerning the exact boundaries of convective regions. Indeed, the
Schwarzschild criterion for stability against convective motions provides the limit where the acceleration
of the convective blob of matter does not experience any acceleration. Nevertheless, it is not stopped
on the spot, as this would require an efficient braking. Therefore, the element penetrates the radiative
region where it is decelerated. This is the phenomenon called overshooting, which extends convective
regions past the Schwarzschild limit. In the present manuscript, we will refer to overshooting above central
convective regions as ‘overshooting’, and to the overshooting below convective envelopes as ‘undershooting’.
The description of the overshooting requires another ‘ad-hoc’ parameter which has to be measured or
calibrated (written αov, in the case of overshooting, and αun, in the case of undershooting). Nevertheless,
the inclusion of overshooting may be required as it was shown that its inclusion allows us to properly
reproduce the shape of the end of the main sequence in a colour - magnitude diagram (Pietrinferni et al.
2004). The uncertain nature and amount of overshooting may propagate to later phases of evolution.
Indeed, Khan et al. (2018) also showed the necessity to include undershoot in order to accurately reproduce
the luminosity bump of red giants.
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2.1. Stellar structure and evolution

Finally, the last complication related to convection is the semiconvection. When deriving a criterion
for convective stability, we neglected the possibility that a blob of matter may cross regions with different
compositions. The molecular weight gradient,

∇µ ≡
d lnµ
d lnP , (2.30)

µ being the mean molecular weight, is therefore non-zero and must be accounted for in our criterion. This
is what Ledoux did in deriving his criterion. A layer is stable when

∇rad < ∇ad + φ

δ
∇µ, (2.31)

with δ ≡ −
(
d ln ρ
d lnT

)
and φ ≡

(
d ln ρ
d lnµ

)
. The complication arises whenever the layer is unstable against the

Schwarzschild criterion but ∇µ stabilises the layer and the layer is stable against the Ledoux criterion:

∇ad < ∇rad < ∇ad + φ

δ
∇µ. (2.32)

The layer is said vibrationally unstable (while it is dynamically stable) and a displaced element of matter
will oscillate slowly with increasing amplitude and will produce a slow mixing. This is the semiconvection.
The treatment of semiconvection is difficult as it is expected to have a noticeable impact on the chemical
stratification.

2.1.4 Evolution on the subgiant and red-giant branches

After the end of the main sequence, when central hydrogen has been depleted, the star may proceed
towards the subgiant branch and the red-giant branch. At this stage, low-mass stars have a condensed
quasi-isothermal helium core and a diluted envelope. As the central hydrogen abundance has dropped
and the temperature of the core has risen, hydrogen burning now takes place in a shell above the helium
core because of its large temperature sensitivity. While the burning of hydrogen proceeds, the shell moves
upwards, in mass, increasing the core’s mass. The evolution continues with the contraction of the core
and the expansion of the envelope.

A peculiarity of the low mass stars is that they have small or no convective cores. Hence, the helium
core smoothly grows from zero mass. Furthermore, as their cores are highly condensed, the electron
degeneracy is non-negligible. This degeneracy is a direct consequence of the Pauli’s principle stating that
two fermions cannot occupy the same quantum state. This has the consequence, in highly condensed
stellar cores, such as the ones exhibited by low-mass post-main sequence stars, that individual electrons
must gain in momentum, consequently energy, to occupy available quantum states. The pressure in the
core is dominated by the electronic pressure which is quasi-insensitive to temperature. Consequently,
there is a relation between the mass and radius of the core, which resembles the structure of a white
dwarf, except that such stars are composed of helium.

Because of the important density contrast between the core and the envelope, it is possible to show
via simple homology considerations that the properties in the shell solely depend on those of the core. We
present here a small demonstration based on the works of Refsdal & Weigert (1970) and Kippenhahn
et al. (2012). We consider an homogeneous and isothermal helium core of mass Mc and radius Rc and
assume homology relations of the form

ρ (r/Rc) ∼Mφ1
c Rφ2

c , (2.33)
T (r/Rc) ∼Mψ1

c Rψ2
c , (2.34)

P (r/Rc) ∼Mτ1
c R

τ2
c , (2.35)

l (r/Rc) ∼Mσ1
c Rσ2

c , (2.36)

the exponents (φ1, φ2, ψ1, ψ2, τ1, τ2, σ1, and σ2) have to be determined from the structural equations
(Eqs. (2.21) - (2.24)). When comparing two models with different core masses Mc and M ′c, and radii Rc
and R′c, all homologous points, such that r/Rc = r′/R′c will be connected by these relations. We may
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2. Theoretical framework

then obtain

P (r) ∼ GMc

Rc

r/Rc∫
rs/Rc

ρ (r/Rc) d (r/Rc) , (2.37)

T (r) ∼ µMc

Rc
, (2.38)

L (r) ∼ (Mcµ)4+ ν−4
3 R

6−ν
3 −3

c , (2.39)

with rs the radius at the top of the shell and ν the temperature sensitivity of nuclear reactions (Eq. (2.29)).
At fixed composition, we see from Eqs. (2.37) to (2.39) that the properties of the shell only depend on the
mass and radius of the core. Furthermore, as the core is degenerate, there is a relation between the mass
and radius of the core. For a non-relativistic degenerate gas, we have

Rc ∼M−1/3
c . (2.40)

Therefore, the properties of the shell depend only on the mass of the helium core. As a consequence, the
luminosity and temperature in the shell will be determined by the core mass. Indeed, the luminosity is
constant above the shell because of the thermal equilibrium. Consequently, the total luminosity is also a
function of the core’s mass only, independently of the total mass. Finally, as the shell processes the layer
above the core and produces helium, it increases the mass of the core and we observe from Eq. (2.40) that
the core must contract. Furthermore, the temperature in the shell must increase with increasing core mass
and the luminosity also increases strongly (Eqs. (2.38) and (2.39)). Thus, after the star has approached
the Hayashi line, corresponding to the locus of fully convective models in the HR diagram, it climbs the
red-giant branch and proceeds almost vertically in the HR diagram. The effective temperature varies
little and, because the radius, luminosity, and effective temperature are related through Stefan-Boltzmann
relation

sT 4
eff = L

4πR2 , (2.41)

with s Stefan-Boltzmann’s constant, the radius is also function of the core’s mass.
From Eq. (2.39), we note a dependency of the luminosity on the composition. For energy generated

through the CNO cycle and for fixed Mc and Rc, ν = 13 and L ∼ µ7. A decrease in the molecular weight
is expected to strongly decrease the luminosity. This is exactly what happens on the RGB-bump. As the
shell moves upwards, it may reach the region where the outer convective layer has penetrated the deepest.
At this point, there is a composition discontinuity between the central helium-rich region and the outer
hydrogen-rich region. This results in a sudden drop in mean molecular weight and, therefore, luminosity.

After the bump, as the star continues its climb along the RGB-branch, the central temperature can
reach that of helium burning (∼ 108 K). As a consequence of the central degeneracy, this happens for a
core mass of 0.47 M�, regardless of the total stellar mass. Furthermore, because of the degeneracy, the
ignition of helium burning happens in a rather violent way. The core is unstable with respect to a thermal
perturbation, which tends to greatly increase. Indeed, because of the central electron degeneracy, the
volume of the core is fixed and the energy generated by nuclear reactions is entirely converted into kinetic
energy. The result is a thermal runaway, strongly increasing the core temperature at constant density.
The power excess is completely converted into internal energy, increasing the luminosity of the core to
orders of 1011 L�. However, this luminosity excess is almost completely absorbed by the work of the
expanding overlying layers. Finally, the increase in the central temperature allows the degeneracy to be
lifted, the core may expand with increasing temperature, thus preventing further increase in the central
temperature, and the helium burning is stabilised. Because the core increases in size while maintaining a
constant mass, the luminosity must decrease again (Eq. (2.39)). The star finally settles on the horizontal
branch where it quietly burns helium.

2.2 Stellar pulsations

In this section, we discuss and present the basic principle of the theory of stellar pulsations. All
developments follow the work of Unno et al. (1989).

2.2.1 Linear adiabatic oscillations equations

In Sect. 2.1.1, we provided typical time scales of physical phenomena in stellar interiors, two of them being
relevant to the present discussion, the dynamical time scale (Eq. (2.1)) on the same order of magnitude
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2.2. Stellar pulsations

as the travel time of a sound wave from the center to the surface, and the Kelvin-Helmoltz time scale
(Eq. (2.2)) representative of the exchanges of heat. As τdyn � τHK in most of the stellar interior, there
is no heat exchange during the travel of the sound wave, the oscillations are considered quasi-adiabatic.
We will work under this hypothesis. However, this hypothesis falls apart in the outermost regions of the
star, where both time scales are comparable and the exchange of heat has to be accounted for. These
complications are part of the problem referred to as the ‘surface effects’, which are poorly represented
by oscillation codes. These surface effects are the consequences of the poor modelling of the superficial
layers (e.g. convection, energetics) on the computed frequencies. Several empirical corrections have been
proposed to tackle these issues (e.g. Kjeldsen et al. 2008; Ball & Gizon 2014; Sonoi et al. 2015).

As briefly discussed in Sect. 2.1.2, the stellar structure may be analysed in two different frames, the
Eulerian and Lagrangian frames. The former considers stellar quantities at fixed positions while the latter
follows fluid elements. It follows that, in defining perturbations of the physical quantities, one may either
define the Eulerian perturbation, usually denoted by a prime, or the Lagrangian perturbation, denoted by
the δ symbol. A departure from the equilibrium value of a given physical quantity, f , symbolised by the
subscript 0 is then expressed either as

f (r, t) = f0 (r) + f ′ (r, t) , (2.42)

or
f (r, t) = f0 (r0) + δf (r0, t) . (2.43)

This corresponds to linearised perturbations of small amplitudes. The two perturbations are linked
through the relation

δf (r, t) = f ′ (r, t) + ξ ·∇f0 (r) , (2.44)

with ξ ≡ r − r0 the first order displacement with respect to the Lagrangian equilibrium position and ·
symbolising the scalar product.

Time variations are then written dδf (r, t) /dt and ∂f ′ (r, t) /∂t. Both operators are related via

d

dt
= ∂

∂t
+ v ·∇. (2.45)

Perturbing the equations of structure (Eqs. (2.5), (2.7), and (2.10)) in the Eulerian frame while
neglecting non-adiabatic terms (involving either variations in entropy or energy fluxes and generation), we
retrieve the three adiabatic oscillation equations

1
ρ

(
∂

∂r
+ ρg

Γ1P

)
P ′ −

(
σ2 + gA

)
ξr + ∂φ′

∂r
= 0, (2.46)

1
r2

∂

∂r

(
r2ξr

)
+ 1

Γ1

d lnP
dr

ξr +
(

ρ

Γ1P
+ ∇

2
h

σ2

)
P ′

ρ
+ 1
σ2∇

2
hφ
′ = 0, (2.47)(

1
r2

∂

∂r
r2 ∂

∂r
+∇2

h

)
φ′ − 4πρG

(
P ′

Γ1P
−Aξr

)
= 0, (2.48)

where g = Gm/r2 is the local gravitational acceleration. These are linear equations in the perturbations
of the radial position ξr, pressure P ′, and gravitational potential φ′. We have dropped the zero subscript
of equilibrium quantities, for the sake of clarity. We have introduced the Schwarzschild discriminant

A ≡ d ln ρ
dr
− 1

Γ1

d lnP
dr

, (2.49)

the sign of which provides a criterion for convective stability; and the first adiabatic exponent

Γ1 ≡
∂ lnP
∂ ln ρ

∣∣∣∣
S

, (2.50)

where |S means that the first adiabatic index is evaluated at constant entropy. Furthermore, as the
temporal and spatial variation are well separated, all variables are assumed to be proportional to eiσt,
with σ the angular frequency. It is related to the linear frequency via the relation

σ = 2πν. (2.51)
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2. Theoretical framework

All the coefficients of Eqs. (2.46) to (2.48) depend only on r and the radial derivatives are well distinct
from the horizontal ones. Furthermore, the horizontal derivatives appear within the same operator, the
Legendrian

L2 = −r2∇2
h. (2.52)

Thus, the horizontal variation may be separated from the vertical one, with the radial dependency of the
functions often being left out. And the functions take the form

f ′ (t, r, θ, ϕ) = f ′ (r)Y ml (θ, ϕ) eiσt, (2.53)

with the spherical harmonics Y ml of azimuthal order, m, and spherical degree, l. This stems from
the fact that the spherical harmonics are eigenfunctions of the Legendrian:

L2Y ml = l (l + 1)Y ml . (2.54)

With this separation of variables, Eqs. (2.46) to (2.48) take the form

1
ρ

dP ′

dr
+ g

ρc2
P ′ +

(
N2 − σ2) ξr + dφ′

dr
= 0, (2.55)

1
r2

d

dr

(
r2ξr

)
+ 1

Γ1

d lnP
dr

ξr +
(

1− L2
l

σ2

)
P ′

ρc2
− l(l + 1)

σ2r2 φ′ = 0, (2.56)

1
r2

d

dr

(
r2 dφ

′

dr

)
− l (l + 1)

r2 φ′ − 4πρG
(
P ′

ρc2
+ N2

g

)
ξr = 0. (2.57)

In these equations, we have introduced the adiabatic sound speed1

c ≡

√
∂P

∂ρ

∣∣∣∣
S

=

√
Γ1
P

ρ
, (2.58)

the squared Lamb frequency

L2
l ≡

l(l + 1)c2
r2 , (2.59)

and the squared Brunt-Väisälä frequency, also referred to as the buoyancy frequency,

N2 ≡ −gA = g

(
d ln ρ
dr
− 1

Γ1

d lnP
dr

)
. (2.60)

Both frequencies are the typical frequencies of two different types of oscillating modes, respectively the
pressure modes (henceforth p-modes), animated by the pressure gradient, and the gravity modes
(g-modes), animated by the buoyancy force. Equations (2.55) to (2.57) are the linear adiabatic oscillation
equations and constitute an eigenvalue problem, in which σ2 is the eigenvalue and the perturbed quantities
are the eigenfunctions. Solving for σ2 provides the eigenmodes of the problem. Finally, this problem
requires boundary conditions. As φ′, ξr, and (P ′/ρ+ φ′) must be regular at the center we have the two
conditions

dφ′

dr
− lφ′

r
= 0 for r → 0, (2.61)

ξr −
l

σ2r

(
P ′

ρ
+ φ′

)
= 0 for r → 0. (2.62)

We also need boundary conditions at the surface. The most obvious one is to require the pressure
perturbation to vanish

δP = 0 for r → R. (2.63)

1Which is not to be mistaken with the speed of light, introduced earlier.
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2.2. Stellar pulsations

2.2.2 Radial oscillations and the Sturm-Liouville problem

The first step to grasp the physics of stellar oscillations is to study their radial component. This corresponds
to modes associated with a spherical degree l = 0. The adiabatic linear oscillations equations (Eqs. (2.55)
to (2.57)) can then be reduced and recombined into a simple form

d

dr

[
Γ1Pr

4 d

dr

(
ξr
r

)]
+
{
σ2ρr4 + r3 d

dr
[(3Γ1 − 4)P ]

}
ξr
r

= 0. (2.64)

This is a Sturm-Liouville eigenvalue problem, with the eigenvalue σ2. Such a problem has very convenient
properties:

1. The problem has an infinite number of eigenvalues σ2
n and of eigenfunctions ξr,n. n is called the

radial order;

2. The eigenvalues are real and can be ordered: σ2
0 < σ2

1 < · · · , with σ2
n →∞ for n→∞;

3. The solutions are interlaced, that is to say, with increasing radial order, the eigenfunctions ξr,n
present an increasing number of nodes. These nodes are placed between the nodes of the previous
eigenfunction ξr,n−1. The eigenmode associated with the lowest radial order n = 0 is called the
fundamental mode and has no node in the cavity 0 ≤ r ≤ R;

4. The eigenfunctions are orthonormal to one another.

Another useful property of the Sturm-Liouville problem is the variational principle, which allows us to
study the reaction of the solutions to a small perturbation of the equilibrium structure. This is particularly
interesting for the inverse seismic techniques as well as to investigate structural glitches. This will be
dealt with in later sections (see Sect. 2.2.5).

In general, the eigenmodes, solutions of the general adiabatic non-radial oscillations equations are
characterised by three ‘quantum’ numbers: the radial order n, the spherical degree l, and the azimuthal
order m.

2.2.3 Pressure, gravity and mixed-modes

To simplify the picture while preserving the general picture, we may neglect the perturbation to the
gravitational potential, thus setting φ′ = 0. This is the Cowling approximation (Cowling 1941). This
means that Eq. (2.57) can be integrated to provide a solution for the gravitational potential.

Cowling’s approximation is acceptable for large values of n (i.e. large numbers of radial nodes in the
propagation cavity, thus short wavelengths) and large l values. Assuming short wavelengths also implies
that the function derivatives dominate. Consequently, in Eqs. (2.55) and (2.56), gρP ′

c2 is negligible in
front of 1

ρ
dP ′

dr and
(
g
c2 − 2

r

)
ξr is negligible in comparison with dξr

dr . Equations (2.55) and (2.56) therefore
become

1
ρ

dP ′

dr
+
(
N2 − σ2) ξr ' 0, (2.65)

dξr
dr

+
(

1− L2
l

σ2

)
P ′

ρc2
' 0. (2.66)

Differentiating Eq. (2.65) with respect to r, combining the result with Eq. (2.66), and neglecting P ′ in
front of dP ′dr , we obtain

d2ξr
dr2 + k2

r(r)ξr ' 0, (2.67)

with the radial wavenumber kr given by the dispersion relation

k2
r =

(
1− L2

l

σ2

)(
1− N2

σ2

)
σ2

c2
. (2.68)

The last equation (2.68) is essential as it provides a condition on the wave radial propagation. Indeed,
under the JWKB (Jeffreys 1925; Wentzel 1926; Kramers 1926; Brillouin 1926) approximation, the
eigenfunction is assumed to be the combination of two plane waves with opposite directions

ξr ' A+ exp
(
i

∫
krdr

)
+A− exp

(
−i
∫
krdr

)
, (2.69)
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with A+ and A− the amplitudes of the plane waves in the prograde and retrograde directions, respectively.
The sign of k2

r dictates the behaviour of the wave, as it is the argument of an imaginary exponential
(Eq. (2.69)). Whenever k2

r is positive, that is for σ2 < L2
l , N

2 or σ2 > L2
l , N

2, the wavenumber kr is real
and the mode can propagate radially. Equation (2.69) then becomes

ξr '
A√
kr

cos
(∫

krdr

)
, (2.70)

with A being the amplitude of the wave. Conversely, for L2
l < σ2 < N2 or L2

l > σ2 > N2, k2
r < 0 and kr

is imaginary. Thus, Eq. (2.69) yields

ξr '
A√
kr

exp
(∫
|kr| dr

)
. (2.71)

A region of imaginary wavenumber is called evanescent. These conditions on kr define three types of
regions in the stellar interior:

1. Regions where σ2 < L2
l and σ2 < N2 and where the buoyancy force acts as the restoring force

of the oscillation are referred to as gravity cavities (g-cavities). The modes propagating in
these regions are called gravity modes (g-modes);

2. Regions where σ2 > L2
l and σ2 > N2 and where the pressure gradient acts as the restoring

force of the oscillation are referred to as pressure cavities (p-cavities). The modes
propagating in these regions are called pressure modes (p-modes);

3. Regions where L2
l < σ2 < N2 or L2

l > σ2 > N2 and the eigenfunctions are the combination
of an increasing and decreasing exponential in the asymptotic limit (see next section), are
called evanescent.

It is important to note that both the Lamb and Brunt-Väisälä frequencies (Eqs. (2.59) and (2.60))
play the role of critical frequencies, determining the behaviour of the mode throughout the stellar interior.
Another important consequence comes from the existence of propagation regions separated by evanescent
regions. In main-sequence solar-like pulsators, the p- and g-cavities are well separated, probing distinct
regions of the stellar interior (outermost and innermost regions, respectively). To illustrate this, we
represent in Fig. 2.2 the run of the two critical frequencies throughout the interior of a solar calibrated
model.2 Such a diagram is called a propagation diagram. We indicate the p- and g-cavities associated
to two modes of arbitrary frequencies with the double-sided arrows. In low-mass main-sequence stars,
due to the faint amplitudes of the g-modes, only p-modes are detected and only informations about the
outermost layers of the star can be retrieved. However, for more evolved stars, such as the subgiants and
red giants, the important density contrast between the core and envelope allows for the pressure and
gravity cavities to couple through the evanescent region. This allows these modes to exhibit a mixed
nature and to propagate through most of the stellar interior. These are the mixed-modes.

2.2.4 The asymptotic treatment

In the previous section, and under the Cowling approximation, we have seen that there exist regions in
the stellar interior where the modes propagate, p- and g-cavities, and regions where modes fade away. In
the present section, we study the properties of the modes when either entirely trapped in the p-cavity, in
the g-cavity or when both cavities interact, through the evanescent region. To determine those properties,
a common and very informative approach is the asymptotic treatment (Shibahashi 1979; Tassoul 1980;
Gough 1986). Similarly to the Cowling approximation, the asymptotic expansion is valid for high-order
modes. This corresponds to either high-frequency modes in the p-cavity or low-frequency modes in the
g-cavity. This allows us to regard waves as plane waves under the JWKB approximation. We retrieve
simplified solutions for pressure modes, gravity modes and mixed modes. The mathematical developments
we propose are similar to the works presented in Takata (2016b) and are valid at first order.

2Solar calibrated models refer to models that have been adjusted to reproduce the solar radius, luminosity, and surface
metallicity while fixing the age at the known solar value, 4.57 Gyr. The composition and mixing-length parameter are the
free parameters.
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Figure 2.2: Propagation diagram for a solar claibrated model, representing the angular frequency as
a function of the reduced radius. The Brunt-Väisälä frequency is shown in dark blue while the Lamb
frequency is shown in light blue. We show the Lamb frequency associated with the spherical degree l = 0
with a continuous line, the one for l = 5 with a dashed line, and that of spherical degree l = 10 with a
dotted line. The double-sided arrows indicate the propagation regions associated with p- and g-modes of
arbitrary frequencies.

Acoustic modes

We consider only the resonant p-cavity, in which pressure modes propagate. As we consider high frequency
modes, we have σ � Ll, N . In that cavity, we define a coordinate x representing the phase difference with
the lower bound of the cavity. It takes the value of x = 0 and x = θp =

∫
p-cavity

krdr at the lower and

upper bounds of the cavity, respectively. This simplified representation is illustrated in Fig. 2.3.
The wave solution is

ψ(x) = α→eix + α←e−ix, (2.72)
where the first term is the prograde contribution and the second one is the retrograde contribution. α→
and α← are the amplitudes in both directions.

We now need to impose boundary conditions. The first and essential condition is to require a total
reflection at the boundaries of the cavity. At the lower and upper boundaries, phase lags of ∆L and
∆U are introduced, respectively. We also require that the amplitude of the wave is conserved at both
reflections. This translates into, at the lower boundary,

x = 0 : α← = α→ei∆L , (2.73)

and, at the upper boundary,

x = θp : α→eiθp = α←e−iθp+i∆U . (2.74)

In both equations, the left term corresponds to the incident wave and the right term corresponds to the
reflected wave.

Eliminating the amplitude in one direction, we obtain

ei(∆L+∆U−2θp) = 1, (2.75)

which yields
2θp = ∆L + ∆U + npπ, np ∈ N. (2.76)

Because we consider high frequency modes, that is modes with σ2 � L2
l , N

2 the dispersion relation
(Eq. (2.68)) simplifies to

k2
r '

σ2

c2
. (2.77)
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The phase difference between the lower and upper edges of the p-cavity becomes

θp =
∫

p-cavity

krdr ' σ
∫

p-cavity

dr

c
, (2.78)

and, using Eq. (2.51), Eq. (2.76) becomes

2πνnp,l ' (∆L + ∆U + npπ)

 ∫
p-cavity

dr

c

−1

. (2.79)

The exact values of the phase lags ∆L and ∆U are determined by the boundary conditions of the problem.
At first order, this corresponds to the famous asymptotic solution for pressure modes of spherical

degree l and radial order np (Tassoul 1980; Gough 1986)

νnp,l '
(
np + l

2 + ε

)
∆ν, (2.80)

with ε a constant mostly resulting from the contribution of the outermost layers, the large separation

∆ν =
(

2
∫ R∗

0

dr

c(r)

)−1

, (2.81)

and R∗ being the radius at the photosphere. We denoted the radial order of p-modes with the subscript p
to make the distinction with g-modes.

The first consequence of this formulation is the equidistance of oscillation frequencies of identical
spherical degree and subsequent radial order. These modes are separated by one large separation,
ν (np + 1, l)− ν (np, l) ' ∆ν, which is a proxy of the mean stellar density (Ulrich 1986). This equidistance
is therefore convenient to infer the mean stellar density and also to provide an identification, np and l
values, of p-modes. This is the first example of a seismic indicator. The quasi equidistance of modes
with successive radial order is clearly visible in the so-called échelle diagram, introduced by Grec et al.
(1983). In such diagrams, the frequencies are represented as a function of themselves modulo their large
separation. As a consequence, frequencies associated with a common spherical degree align themselves
vertically, forming ridges. We represent the échelle diagram with the frequencies of 16CygA measured by
Davies et al. (2015) in Fig. 2.4. We observe four separated ridges as modes with degrees l = 0, 1, 2, and 3
have been measured. We also note that subsequent modes over a given ridge are separated by one large
separation. We may also note that the separation between two ridges also bears some information. Indeed,
from Eq. (2.80) we would expect that two modes with np, l and np + 1, l + 2 would produce the same
frequency. Therefore, the two ridges would align. This is not the case, indicating a necessary refinement
of the asymptotic description. The difference νnp+1,l+2 − νnp,l is known as the small frequency difference
and has often been used as a constrain to the stellar evolutionary stage (e.g. Christensen-Dalsgaard 1988).
Finally, we show in Fig. 2.4 the approximation of the frequencies by a second order expansion in np as a
blue line and a refined representation, in which the remainder is approximated by an oscillating function,
as a red line. This oscillating contribution is in fact the result of acoustic glitches which will be introduced
in Sect. 2.2.5 and extensively discussed throughout the present manuscript.

Gravity modes

Similarly to the p-modes, an asymptotic expansion can be obtained for the g-modes. In the g-cavity,
represented in Fig. 2.5, for the low frequency modes, we have σ � Ll, N . The dispersion relation
(Eq. (2.68)) becomes

kr '
LlN

σc
'
√
l(l + 1)N
σr

. (2.82)

Following the same reasoning as in the previous section we may obtain a relation for the period of
g-modes of spherical degree l and radial order ng. One must however pay attention that the phase velocity
and group velocity have opposite signs for g-modes. As we follow the energy propagation, therefore the
group velocity, our phase coordinate is reverted. We thus write the phase difference at the lower boundary
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Figure 2.3: Schematisation of the p-cavity.
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Figure 2.4: Echelle diagram using the frequencies for 16CygA measured by Davies et al. (2015). The
circles correspond to the frequencies, the blue line to a second order representation of the frequencies, and
the red line to a representation including the contribution of acoustic glitches.

of the cavity x = θg =
∫

g−cavity
krdr. With these considerations, we obtain the relation

Png,l/π ' (∆L + ∆U + ngπ)

√l(l + 1)
∫

g−cavity

N

r
dr

−1

. (2.83)

In the case of dipolar modes, this expression again corresponds to the widely used expression (Tassoul
1980; Mosser et al. 2012c)

1/ν (ng, l) = P (ng, l) ' (|ng|+ α) ∆π1, (2.84)
with the gravity radial order defined negative, such that P (ng, l) < P (ng − 1, l), α a constant, and

∆πl = 2π2
√
l(l + 1)

 ∫
g−cavity

N

r
dr

−1

, (2.85)

the period spacing of modes of degree l. From Eq. (2.84), we note that the g-modes are equidistant in
period. This again provides valuable insight with regard to the stellar structure as the period spacing of
dipolar modes is a proxy of the mean density of the core (Montalbán et al. 2013). We also observe from
Eq. (2.83) that radial gravity modes cannot exist.
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Figure 2.5: Schematisation of the g-cavity.

Mixed modes

Finally, as seen in Sect. 2.1.4, when low-mass stars evolve on the subgiant and red-giant branches, their
cores contract while their envelopes expand. This results in a large density contrast between the two
regions and renders the evanescent region significantly thinner than on the main sequence. Furthermore,
the frequency of g-modes increases while that of p-modes decreases as the star evolves. As a consequence,
the frequencies of both types of modes approach one another and may couple. This results in a mode
sharing both characters, a so-called mixed mode, and propagating throughout most of the stellar interior.
An expression for these modes is given by (Shibahashi 1979; Tassoul 1980; Takata 2016a)

tan θp = q tan θg, (2.86)

where θp is the contribution of the pressure cavity, the pressure phase, to the mode, θg is the contribution
of the gravity cavity, gravity phase, and q is the coupling factor. These three terms depend on the
frequency. Solving this implicit relation then provides the eigenfrequencies.

Proceeding in a similar way as in the previous sections and following the work of Takata (2016b), we
may derive this expression. We now consider two cavities: the g-cavity (as in Sect. 2.2.4) in the inner
regions and the p-cavity (as in Sect. 2.2.4) in the outer regions. These two cavities are separated by
an evanescent region which allows the waves to be partially transmitted and reflected. In the g-cavity,
we define the phase coordinate, xg, which varies between θg and 0 at the lower and upper edges of the
cavity, respectively. The upper edge of the cavity coincides with the lower edge of the evanescent region.
Similarly, the phase coordinate, xp, varies in the p-cavity from 0 to θp at the lower and upper edges of the
cavity, respectively. The upper edge of the evanescent region corresponds to the lower edge of the p-cavity.
This configuration is represented in Fig. 2.6. The partial transmission and reflection are characterised by
the coefficients T and R, respectively. They describe the wave amplitude change after interaction with
the evanescent region. The energy conservation requires that we have conservation of the wave amplitude,
which translates into

R2 + T 2 = 1. (2.87)

When reflected by the evanescent region, an additional phase lag occurs. Takata (2016b) showed that the
phase lag occurring at a partial reflection on the left of the evanescent region, δ, and the one occurring on
the right, δ′, are related by

δ + δ′ = π. (2.88)

In each cavity, the standing wave is a superposition of a prograde and a retrograde wave. We thus
have, in the g-cavity,

ψg(x) = α→eixg + α←e−ixg (2.89)

and, in the p-cavity,
ψp(x) = β→eixp + β←e−ixp . (2.90)

We now have to set the boundary conditions. First, let us consider the total reflections, occurring at
xg = θg and xp = θp. Conservation of energy requires

xG = θg : α→eiθg = α←e−iθg+i∆L , (2.91)
xP = θp : β←e−iθp = β→eiθp+i∆U , (2.92)
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where ∆L and ∆U are the phase lags introduced by the reflections at xg = θg and xp = θp, respectively.
We also need conditions for the partial transmission and reflection of the waves by the evanescent

region. For the transmission from the g-cavity to the p-cavity, we have

xp = 0 : β→ = Tα→ +Rβ←eiδ
′
, (2.93)

and for the transmission from the p-cavity to the g-cavity

xg = 0 : α← = Tβ← +Rα→eiδ. (2.94)

Equations (2.91) to (2.94) constitute a system of four equations with four unknowns: the amplitudes
α←, α→, β←, and β→. Two of them, α← and β← are easily substituted, thanks to the total reflection
conditions (Eqs. (2.91) and (2.92)), reducing the problem to a two-equations and two-unknowns system.
A solution is found when the determinant of the system vanishes. This is given by the following expression[

e−i(2θg−∆L) −Reiδ
] [

1−Rei(2θp+∆U+δ′)
]
− T 2ei(2θp+∆U ) = 0. (2.95)

Defining the new pair of variables

2ϑp = 2θp + ∆U − δ + π, (2.96)
2ϑg = 2θg −∆L − δ + π, (2.97)

representing the phase contributions of the p- and g-cavities, respectively, and using the relations (2.87)
and (2.88), we find the resonance condition of mixed-modes

sin (ϑp − ϑg) = −R sin (ϑp + ϑg) . (2.98)

We found the expression given by (Takata 2016b, Eq. 17).
Finally, using elementary trigonometric relations, Eq. (2.98) becomes

tanϑp = q tanϑg, (2.99)

where we identify
q = 1−R

1 +R
, (2.100)

the coupling factor which represents the strength of the coupling between both cavities. Originally,
Shibahashi (1979) only allowed for this coupling to reach a maximum value of 1/4. This is referred to as
the weak coupling. The later study by Takata (2016b), on which the presented developments are based,
demonstrated that it remains valid even for greater values of the coupling factor, typical of subgiant stars.
Indeed, Eq. (2.100) allows q to take values in the [0, 1] range. The case q = 0 and R = 1 corresponds
to a complete reflection of the wave by the evanescent region, therefore the absence of coupling, while
the case q = 1 and R = 0 corresponds to a complete transmission of the wave, where both cavities are
fused. Expressions for the individual phases, ϑp and ϑg, will be provided later in the present manuscript
(Chap. 5).

2.2.5 Variational principle and structural glitches

A useful property of the adiabatic non-radial oscillations equations is that they obey a variational principle.
This allows us to compute the effect of a small perturbation in the stellar structure on the eigenmodes.
Solving Poisson’s equation (Eq. (2.9)) for the Eulerian perturbation of the gravitational potential

φ′ (r) = −G
∫
V

ρ′ (x) d3x

|x− r|
, (2.101)

V being the volume of the star, we may rewrite the perturbed equation of motion (Eq. (2.46)) as

σ2ξ = L (ξ) , (2.102)

where

L (ξ) ≡ 1
ρ2 (∇P ) ∇ · (ρξ)− 1

ρ
∇ (ξ ·∇P )− 1

ρ
∇
(
c2ρ∇ · ξ

)
(2.103)

+ ∇
{
G

∫ ∇x · [ρ (x) ξ (x)] d3x

|x− r|

}
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Figure 2.6: Schematisation of the coupling between the p- and g-cavities.

is a linear and hermitian operator.
Defining the scalar product of two eigenfunctions, ξ and η, of Eq. (2.102)

〈ξ|η〉 =
∫
V

ξ · ηρdV, (2.104)

with V the volume of the star and the · symbol representing the usual scalar product; and because of the
linearity and hermiticity of the operator, we may write the effect of a small perturbation of the structure,
translated in a small perturbation of the operator L, ∆L, on the frequencies as

∆σ2 = 〈ξ|∆L (ξ)〉
〈ξ|ξ〉

. (2.105)

The great advantage of Eq. (2.105) is that we do not need to solve the oscillation equations once again as
the variational principle predicts the change in the frequencies from the eigenfunction of the unperturbed
structure.

An application of this principle comes with structural glitches. Such glitches occur when the stellar
structure locally varies sharply, when compared to the wavelength of eigenmodes. As the variation is
comparable to the wavelength of the mode, the asymptotic theory becomes locally invalid. The result
is an oscillation in the measured frequencies as a function of the frequency. The main two causes of
such glitches are the depression of the first adiabatic index in the second-ionisation zone of helium, the
helium glitch, and the discontinuity of the sound speed derivative at the base of the envelope convective
zone, the convective zone glitch. What makes the glitches interesting is that they allow us to retrieve
localised diagnoses and may help lift degeneracies in the stellar modelling. From the variational principle
(Eq. (2.105)) an expression for the glitch may be retrieved. In the simplified case of a half-opened organ
pipe, we obtain the following simple wave equation

d

dr

(
Γ1P

dξr
dr

)
+ σ2ρξr = 0. (2.106)

Considering a sharp perturbation of the sound speed ∆c2 (r) = c2 (r0) δ (r − r0). The localised character
of the sharp feature at r0 is represented by the Dirac function, δ. The variational principle then yields

∆σ2
n =

M∫
0

∆c2 (r)
(
dξr(r)
dr

)2
dMr

M∫
0
ξ2
rdMr

(2.107)

=
∆c2 (r0)

(
dξr(r0)
dr

)2
M

M∫
0
ξ2
rdMr

. (2.108)

20



2.2. Stellar pulsations

Under the JWKB approximation, valid for large values of n, we may approximate the radial displacement

by the function ξr = Ac1/2 cos
(
σn

R∫
r

dr′

c

)
. Equation (2.108) then becomes

∆σ2
n '

∆c2 (r0)A2Mσ2
n

[
1 + cos

(
σn

R∫
r0

dr
c

)]

c (r0)A2M
M∫
0
c(r)

[
1− cos

(
σn

R∫
r0

dr
c

)]
dMr

. (2.109)

Because we consider high frequencies, the cosine function presents a large number of nodes from the center
to the surface and is expected to contribute little to the denominator integral, compared to unity. With
this final simplification, we obtain

∆νn
νn

= 1
π

∆σ2
n

σ2
n

'
∆c2 (r0)

[
1 + cos

(
4πνn

R∫
r0

dr
c

)]

c (r0)
M∫
0
c(r)dMr

. (2.110)

We indeed note from Eq. (2.110) that the glitch signature is expected to be an oscillation of the
frequencies as a function of the frequency. This formulation remains however very approximate. A more
accurate formulation for the helium glitch has been derived by Houdek & Gough (2007)

∆νn,l ' AHeνn,le
−c2ν

2
n,l sin (4πτHe + φHe) . (2.111)

In this equation, we observe that the signal is expected to be independent of the spherical degree and
exponentially decreases in amplitude with the frequency. The amplitude of the signal is symbolised by
AHe, which is a proxy of the sharpness of the feature causing the glitch, and

τHe =
R∫

rHe

dr

c(r) (2.112)

is the acoustic depth of this feature, with rHe its radial position, and φHe its phase. We may already point
to the fact that this formulation for the glitch is highly non-linear and implicit in the frequency. Fitting
the glitch signature therefore requires non-linear minimisation techniques, which can be costly, in terms of
computational resources, and may introduce correlations between the fitted data. A portion of the present
work was to provide a linearised formulation for the glitch and avoid resorting to non-linear techniques.
We present in Fig. 2.7 the signature of the helium glitch retrieved with our method, WhoSGlAd that
will be presented in Chap. 3, in the 16CygA frequencies measured by Davies et al. (2015). The observed
glitch is represented by the errorbars and the fitted glitch by the continuous line. We also schematically
represent the glitch amplitude in red and its acoustic depth in blue.
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Figure 2.7: Representation of the helium glitch retrieved 16CygA frequencies with our method, WhoSGlAd.
We show the observed signature of the glitch as errorbars and the adjusted signature as a continuous line.
The red and blue arrows schematically represent the glitch amplitude and acoustic depth, respectively.
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The main sequence





CHAPTER 3

The WhoSGlAd method
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Figure 3.1: The WhoSGlAd logo.

The present chapter describes the WhoSGlAd (Whole Spectrum and Glitches Adjustment) method
that provides the numerical means to carry a robust and fast adjustment of the oscillation spectra of
main-sequence low-mass stars. This method was presented in an article (Farnir et al. 2019, see also
Sect. 3.D). We here provide a slightly different and more detailed approach to the presentation of the
method. The application of the method to observed stars will be detailed in the next chapter (Chap. 4).

3.1 Context

3.1.1 Motivation

Up to recent years, quality seismic data were only available for our Sun, owing to its proximity. Many
programs were indeed dedicated to its observation (e.g. GONG Harvey et al. 1988, BiSON Brookes
et al. 1978, SOHO Domingo et al. 1995). A wealth of pulsation modes were observed (over a thousand)
that allowed us to put tight constraints on the solar structure and to raise relevant questions concerning
theories of stellar structure and evolution (for a review, see for example Buldgen et al. 2019). Such data
provided the scientific community with the means necessary to test the models at hand.

Lately, thanks to the CoRoT (Baglin et al. 2009) and Kepler (Borucki et al. 2010) space telescopes,
seismic data of unprecedented quality has been made available for a large sample of stars, allowing
asteroseismology to thrive. Some asteroseismic studies use a very classical approach, constraining stellar
models in the forward modelling scheme via individual oscillation frequencies or frequency separations
(e.g. Miglio & Montalbán 2005; Deheuvels et al. 2016). Others use inversion techniques to provide precise
constraints on the variations of physical quantities (e.g. density, entropy,...) along the whole depth of the
star (e.g. Elliott 1996; Buldgen et al. 2016a). This enables them to stray from the parameter space of
models and constrain the missing physical ingredients. Finally, some account for the signatures of acoustic
glitches (e.g. Monteiro et al. 2000; Basu et al. 2004; Mazumdar et al. 2014; Verma et al. 2014; Farnir
et al. 2019). This is another way to pinpoint the shortcomings of stellar models. An acoustic glitch is the
faint signature left in the oscillation spectrum by a sharp variation – compared to the wavelength of the
oscillating mode – in the stellar structure. Such glitches mainly carry two pieces of information: their
amplitude, which is directly linked to the strength of the sharp variation in the stellar structure, and their
period, which is proportional to the acoustic depth at which it occurs. Because of their low amplitude,
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the analysis of acoustic glitches has only been made possible by the advent of space telescopes such as we
mentioned before.

Moreover, with data of such quality came the necessity to improve modelling techniques in order to
exploit them at best. From the several studies exploiting the glitches information, we may cite Verma
et al. (2014), which served as a basis to the construction of our technique. Their technique is one of the
first using the helium acoustic glitch, caused by a depression in the first adiabatic index (Γ1 = d lnP

d ln ρ |S
with P the pressure, ρ the density and S the entropy) in the helium second-ionisation zone, to calibrate
the surface helium content (inaccessible by other means such as spectroscopy in solar-like stars) in stars
other than the Sun. However, several flaws remained in their approach. Namely, they separated the
glitch contribution from the slowly varying trend in the oscillation spectrum (referred to as the ‘smooth
part’). The smooth part is then regarded as a parasite and discarded, along with the useful information
it carries. Moreover, treating both components this way may lead to unnecessary correlations which
impact the quality of the modelling and make it difficult to carry statistical inferences. For those reasons,
we developed the WhoSGlAd method (Farnir et al. 2019) that tackles these issues and carries out a
simultaneous adjustment of the complete oscillation spectrum, while combining oscillation frequencies in
a clever way to build seismic indicators as little correlated as possible and representative of the stellar
structure.

3.1.2 Glitches in solar-like stars

Before moving on to the method itself, a small word about acoustic glitches is in order. Usually, we
may separate the oscillation spectrum of solar-like stars into two contributions: the slowly varying trend,
well approximated by the asymptotic theory of stellar oscillations (Tassoul 1980; Gough 1986) and an
oscillating component due to a sharp variation in the stellar structure, the acoustic glitch. Acoustic glitches
in solar-like pulsators have two main causes: the discontinuity in the sound-speed gradient derivative
at the base of the envelope convection zone, referred to as the convection zone (BCZ) glitch, and the
depression in Γ1 in the helium second-ionisation zone, the helium glitch. They both provide valuable and
localised information. The former provides us with clues about the exact extent of the envelope convection
zone as well as the mixing processes that could explain such an extent and the sharpness of the transition
between the radiative and convective zones. The latter gives us means to calibrate the surface helium
content. Indeed, the magnitude of the depression in the first adiabatic index is in direct correlation with
the helium content, as well as the exact location of the helium second-ionisation zone (e.g. Basu et al.
2004; Farnir et al. 2019).

In partial ionisation zones, a local increase in the density, say by contraction of the star, leads to a
reduced increase in the pressure due to the portion of energy that is used to ionise the helium atoms
instead. This translates into a depression in the first adiabatic index which represents the variation of
the pressure with density, at constant entropy (Γ1 ≡ ∂ lnP

∂ ln ρ

∣∣∣
S
, Eq. (2.50)). This is represented in Fig. 3.2

in a solar-like stellar model for two values of the initial helium mass fractions, 0.24 (solid line) and 0.27
(dot-dashed line). There we plot the evolution of Γ1 in the most superficial layers of the star. In green
is highlighted the rough region where the second ionisation of helium happens. At this point, we may
already point out that a greater helium mass fraction leads to a more prominent depression in the first
adiabatic index, as illustrated in Fig. 3.2 with the two initial helium abundance values. This constitutes a
preliminary illustration of the correlation between helium mass fraction and helium glitch amplitude.

To my knowledge, the first representation of a periodic signal in frequencies was given by Hill &
Rosenwald (1986) who clearly demonstrated the existence of such a signal in solar l = 0, ..., 6 modes
and already attributed it to the transition between radiative and convective regions. The usefulness of
these signals (not yet referred to as ‘glitches’) has also been pointed out early on by Vorontsov (1988)
and Gough (1990) who showed that the glitches signature could be extracted from frequencies or second
frequency differences.

Many studies then followed these precursory works. Monteiro et al. (1994) proposed a method
exploiting the convection zone glitch to locate the base of the solar convective envelope. They determined
that models without overshooting are favoured. Using a grid of stellar models, the work of Monteiro et al.
(2000) further assessed the possibility to detect the convection zone glitch in oscillation frequencies of
0.85 M� to 1.20 M� models. They demonstrated that with at least 10 modes for each spherical degree
up to l = 2 and with sufficient precision on these modes, σ(ν) ≤ 0.1 µHz, the signal can be detected.
Such a precision is reached in the case of the 16 Cygni system but not for any Kepler stars. They also
showed that the glitch amplitude and acoustic depth can be retrieved. While the acoustic depth can be
precisely retrieved (with a relative precision ranging from ∼ 0.3% to ∼ 4.3%), it is not the case of the
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Figure 3.2: First adiabatic index as a function of the reduced radius in the most superficial regions of a
solar-like stellar model (M = 1.052 M�, X = 0.75) for two values of the initial helium abundance: 0.24,
solid line, and 0.27, dot-dashed line. The green region roughly highlights the helium second-ionisation
zone.

glitch amplitude (with a relative precision of ∼ 5%, in favourable cases, to ∼ 40%, in the wost cases).
Ballot et al. (2004) later attempted to retrieve the convection zone glitch signature in 150 days time series
of the VIRGO experiment, part of the SOHO mission (Fröhlich et al. 1995). Considering only frequencies
for l = 0, 1, 2 modes, they managed to locate the base of the convection zone within 100 s accuracy, for
what is expected to be typical solar-like data.

Focusing on the helium glitch, Monteiro & Thompson (1998) showed that we should be able to detect
the signature of the helium glitch in low-degree modes of solar-like stars, which are the ones we observe. A
correlation between the helium amplitude and the helium abundance in the helium second-ionisation zone
was then established by Basu et al. (2004) over a grid of low-mass stellar models. Later on, Houdek &
Gough (2007) provided a formulation for the glitch oscillatory contribution, which is the basis for several
studies including ours (see Eq. (2.111)). We refer to Sect. 2.2.5 for a way to derive a simple formulation
for the glitch. Taking advantage of this formulation, Verma et al. (2014) provided a technique to adjust
the glitches signatures of both the convection zone and helium second-ionisation zone in solar-like stars
and applied it to the 16 Cygni system, estimating the helium content in these stars. They went on by
applying their method to the Kepler LEGACY sample (Verma et al. 2017) and provided the location of
the base of the convection zone and helium second-ionisation zone in these stars.

Following their footsteps, we developed a new method to account for these glitches. It provides a
simultaneous (often not the case with other techniques) and robust adjustment of the smooth part as well
as of both glitches. Unfortunately, in solar-like stars, the convection zone glitch signature is often too
faint to be exploited. For example, we measured that its amplitude is only three times larger than its
typical standard deviation in 16 Cygni A, a benchmark solar-like pulsator. As a consequence, we will
focus mainly on the helium glitch.

3.2 The method

3.2.1 Mathematical principle

The present section lays the mathematical grounds necessary to the rigorous construction of our method.
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Notations

Here we define the mathematical notations that are used.

• Vectors are represented by a bold symbol: x. When individual components are explicitly written,
indexes of each component are given and the symbol is shown with a regular font: xi.

• A basis of vectors over a given N -dimensional Euclidean vector space is represented by curly brackets:
{x1...xN}. We will conveniently write such basis in a shorthand form {x} when there will be no
possibility of confusion.

• The scalar product of two vectors x and y is represented as 〈x|y〉. Its definition will be given when
appropriate.

• The norm of a vector is: ‖x‖ =
√
〈x|x〉.

• We note the weighted mean of a vector quantity as x. We will provide its definition when appropriate.

Gram-Schmidt orthonormalisation

The method we developed relies on the Gram-Schmidt orthonormalisation process. Given a N -dimensional
Euclidean vector space, this process allows us to build an orthonormal basis (i.e. all its components are
normal to each other and of unit length) from any given basis.

Given the ordinary basis of vector {p1...pN}, we may construct the orthonormal basis {q1...qN} as
follows:

1. Starting from any basis vector, we normalise this vector.1

q1 = p1
‖p1‖

. (3.1)

2. Working in succession, we remove from the current basis element, pi, its projection on all the

previously normalised basis elements,
i−1∑
j=1

〈
pi|qj

〉
qj . We get the orthogonal (but not unit) vector

ui = pi −
i−1∑
j=1

〈
pi|qj

〉
qj . (3.2)

3. Finally, we normalise the resulting vector.

qi = ui
‖ui‖

(3.3)

In a matrix representation, we have:

qi =
i∑

j=1
R−1
i,j pj , (3.4)

with Ri,j the i-th and j-th element of the transformation matrix. Considering the scalar product to be
positive definite (as will be the case), the orthonormal basis is unique. Furthermore, the ordering plays a
crucial role in the definition of seismic indicators. This is further discussed in Sect. 3.2.3.

3.2.2 Adjusting the frequencies

Representation of the frequencies

For a given solar-like pulsator with N observed frequencies νobs,i, the associated errors σi, spherical
degrees li and radial orders ni, we define the Euclidian vector space of frequencies of dimension N , with
the associated scalar product between two vector quantities ν1 and ν2,

〈ν1|ν2〉 =
N∑
i=1

ν1,niν2,ni
σ2
i

. (3.5)

1Usually, when working with polynomial, we start with the zero order polynomial.
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We may already note that, given the definition of the scalar product, the set of orthonormal basis elements
used depends on the set of observed frequencies (number of modes and uncertainties). Two notable
functions are the identity, 1, and linear function of the radial order, nl = (nl,1, ..., nl,N ).

The functions used to describe the frequencies are separated into two contributions: the slowly varying
trend, given by a second order polynomial in n, and the glitch part, represented by oscillating functions of
the frequencies. These functions form a basis over the Euclidean subspace. Then, via the Gram-Schmidt
orthonormalisation process, we build an orthonormal basis of functions, {q}. The least-square fitting
coefficients, ak, are then simply given by projection of the frequencies over the basis elements, that is

ak = 〈νobs|qk〉 , (3.6)

and the fitted frequencies, νfit, are then given by

νfit =
K∑
k=1

akqk, (3.7)

where we sum over the K orthonormal basis elements qk.

The great advantage of such an approach is that, if the frequencies are independent of each other,
the fitting coefficients, ak, are also completely independent of one another and have unit standard
deviations, that is to say

σ (ak) = ‖qk‖ = 1. (3.8)

This stems from the orthonormality of the basis functions. We demonstrate this as follows: As the
coefficients ak are linear combinations of the frequencies (see Eqs. (3.5) and (3.6)), we may write the
covariance between two coefficients, ak and al, as

cov (ak, al) =
∑
i,j

qk,iql,j
σ2
i σ

2
j

cov (νobs,i, νobs,j) . (3.9)

If we assume the individual frequencies to be independent, which is usually the case,

cov (νobs,i, νobs,j) = δijσ
2
i , (3.10)

and, since the qk are orthonormal, we obtain

cov (ak, al) = δkl. (3.11)

This property will allow us to build seismic indicators that are as little correlated as possible. They
will serve as stringent constraints on the stellar structure with reduced standard deviations, compared to
classical indicators (see Sect. 3.2.3).

Finally, the squared distance between reference frequencies νobs and fitted frequencies νfit, given by

χ2 = ‖νobs − νfit‖2 =
∑
i

(νobs,i − νfit,i)2

σ2
i

, (3.12)

represents the quality of the fit.

Basis elements

As we mostly observe high radial order modes, we may approximate the smooth component by the first
order asymptotic formulation of the frequencies as in Tassoul (1980) and Gough (1986),

ν(n, l) '
(
n+ l

2 + ε

)
∆ν, (3.13)

where ε is a constant offset mainly affected by the most superficial layers and ∆ν is the asymptotic large
separation given by

∆ν =

2
R∗∫
0

dr

c(r)

−1

, (3.14)
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with R∗ the radius at the photosphere and c(r) the adiabatic sound speed. To be more thorough
and account for higher order variations, we actually depict the smooth component with second order
polynomials,

pk = nk, (3.15)

with k = {0, 1, 2}.
The method uses a linearised formulation for the glitch contribution adapted from Verma et al. (2014,

Eq. 5):
δνg,Verma = AHeνe

−c2ν
2

sin (4πτHeν + φHe) + ACZ

ν2 sin (4πτCZν + φCZ) , (3.16)

where ν is the frequency at which the glitch is evaluated, A• the amplitude of the glitch (either the
helium, He subscript, or convection zone glitch, CZ), τ• its acoustic depth, φ• its phase, and c2 the rate
of decrease in amplitude. To provide a value for the glitch contribution, we would need to adjust the
fitting parameters (amplitudes, acoustic depths, phases, and rate of decrease) to the observed frequencies.
However, we note that this formulation is not linear, both in the fitting parameters and in the frequency at
which it is evaluated. Moreover, the formulation is implicit as the frequency is function of itself. Therefore,
a non-linear approach is necessary. However, by replacing the frequency by its first order approximation
from Eq. (3.13), ν ' (n+ l/2)∆ν, the formulation becomes explicit. Furthermore, we managed to provide
a linearised expression that properly accounts for the glitches. It is the following:

δνg =
4∑
k=5

[sHe,k sin (4πTHeñ) + cHe,k cos (4πTHeñ)] ñ−k

+ [sCZ sin (4πTCZñ) + cCZ cos (4πTCZñ)] ñ−2. (3.17)

The first line corresponds to the helium glitch contribution and the second line corresponds to the
convective zone contribution, where we define T• = τ•∆ν and ñ = n+ l/2. We point out that the reverse
order of the sum in the helium term reflects the order in which the basis elements are defined. The
coefficients to be adjusted are sHe,k, cHe,k, sCZ, and cCZ. The phase term present in Eq. (3.16) is now
accounted for through the separation in sine and cosine functions. The only remaining parameter which
is not linear is the period of the glitch, the T• parameter. Nevertheless, using a proper estimate for it
is sufficient and leaves us with a simple linear formulation of the glitch. We showed that a misestimate
of its value by 10% still yields correct values for the glitch amplitude. This estimation is carried via a
stellar model, accounting for the smooth component of the considered spectrum, by computation (via
integration) of the acoustic depth at which the glitch occurs. This may be seen as a limitation of the
technique as it requires to provide a first stellar model reproducing the smooth seismic indicators of an
observed star. As a consequence, the development of a model independent estimation of τHe was the
subject of the master thesis of one of our students, Angelo Valentino. This will be discussed in Sect. 3.5.

The complete set of functions used to represent the oscillation spectrum, before orthonormalisation, is
made of:

• The smooth component,

νsmooth,l (n) =
2∑
k=0

ck,ln
k, (3.18)

with ck,l some fitting coefficients. We note the dependency on the spherical degree as the smooth
part of the spectrum is affected by deep layers of the stars that impact differently the several
spherical degrees. This is not the case for the glitch component which is mostly affected by the
outer layers of the stars. Also, we explicitly wrote the dependency of ν on n to insist on the fact
that the basis elements are function of the radial order. When it is more convenient, we switch to a
subscript notation, that is to say νl,n;

• The helium glitch contribution,

δνHe (ñ) =
4∑
k=5

[sHe,k sin (4πTHeñ) + cHe,k cos (4πTHeñ)] ñ−k; (3.19)

• And the convection zone glitch contribution,

δνCZ (ñ) = [sCZ sin (4πTCZñ) + cCZ cos (4πTCZñ)] ñ−2. (3.20)
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We observe that, for a star with modes observed in L different spherical degrees, as 3 different basis
elements are defined for the smooth part, 3 individual modes have to be observed per spherical degree to
be able to fit the smooth component. Then, for the glitches, the helium contribution requires to adjust 4
more parameters and the convection zone contribution requires 2 parameters. Overall, at least 3× L+ 6
modes are necessary to be able to account for both the smooth and glitches contributions.

We must add that, up to now, the convection zone glitches we measured were of very low amplitude
and bore little information. It was therefore never used as relevant information to constrain stellar models.
It may however happen that we encounter data with a more pronounced convection zone glitch.

We do not provide the analytical form of the orthonormal basis elements here as they are unnecessarily
complex and dependent on the set of reference data, through the scalar product (Eq. (3.5)). However, we
represent in Figs. 3.3 and 3.4 the orthonormalisation and fitting processes with data representative of
16 Cyg A for which we artificially amplified the convection zone glitch signal. The top panel of Fig. 3.3
shows the reference frequencies with their uncertainties, compared to their first order approximation as a
solid line. We note that, this is already an excellent approximation. Nevertheless, faint signatures still
remain to be retrieved. The second order approximation of the frequencies is represented in the bottom
panel of the same figure. We display the residuals of the first order approximation, δν = ν − νlin with νlin
the linear approximation, as the second order contribution is about two orders of magnitudes smaller than
the first order. We observe an oscillating departure of the reference data with respect to the fitted curve.
This corresponds to the glitch.

The top panel of Fig. 3.4 shows the residuals of the fitting of the smooth part of the spectrum for
all the spherical degrees2 as a function of ñ = n+ l/2. The dominant contribution is the helium glitch
signature, represented by the continuous line. We observe that the signal is one order of magnitude smaller
than the second order representation of the frequencies. This clearly demonstrates the necessity to acquire
precise data and use techniques able to take the most advantage of such data. Finally, we display the
helium glitch fitting residual in the bottom panel of Fig. 3.4. Even though we artificially amplified this
signal to be visible, it remains extremely faint in the case of 16 Cyg A and may not be exploited. This
will be further discussed later (see for example Sect. 3.2.3 and Table 3.2).

To conclude this section, we add that we tested other possibilities for the smooth basis elements, in an
iterative way, but that the selected basis turned out to be the most appropriate and stable. For example,
inspired by the second term in the higher order asymptotic expansion (Tassoul 1980; Gough 1986),

ν(n, l) '
(
n+ l

2 + ε

)
∆ν −A

(
L2
l − δ

) ∆ν2

ν(n, l) , (3.21)

with Ll the Lamb frequency (Eq. (2.59)), δ a constant of the equilibrium, and

A = 1
4π2∆ν

[
c (R)
R
−
∫ R

0

1
r

dc

dr

]
, (3.22)

we tested a polynomial basis element in n−1. However, the quadratic polynomial yielded better results.

2We recall that the glitch fitting is carried out simultaneously for all spherical degrees as its signature is expected to be
independent of the spherical degree.
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Figure 3.3: Visualisation of the orthonormalisation process and fitting procedure for the smooth component
of the oscillation spectrum. Top: reference radial frequencies as a function of the modes radial order. The
solid line represents the first order adjustment. Bottom: residuals of the first order adjustment of radial
modes as a function of the radial order. The solid line represents the second order basis element.
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Figure 3.4: Visualisation of the orthonormalisation process and fitting procedure for the glitch component
of the oscillation spectrum. Top: residuals of the smooth component adjustment of all the modes as a
function of ñ = n+ l/2. The solid line represents the helium glitch basis element. Bottom: residuals of
the smooth and helium glitch components adjustment of all the modes as a function of ñ. The solid line
represents the convection zone glitch basis element.
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3.2.3 Seismic indicators

In the present section, we define seismic indicators of the WhoSGlAd method relevant to the stellar
structure which will be used as constraints to stellar models.

Stellar models

To study the probing potential of the seismic indicators that we define in the present section, we built a
series of models with the CLES stellar evolution code (Scuflaire et al. 2008b) and computed the frequencies
associated with each model using the LOSC oscillation code (Liège Oscillation code Scuflaire et al. 2008a).
We used the 16 Cygni A frequencies measured by Davies et al. (2015) as a reference to keep consistent
basis elements throughout the grid of models. This ensures that our results are comparable. The reference
stellar parameters are given in Table 3.1. The choices of physical reference tables are detailed in (Farnir
et al. 2019, Sect. 3.1).

The large separation

One crucial step of the method is the Gram-Schmidt orthonormalisation. To construct the basis, we
proceed in a carefully chosen order to easily define seismic indicators. First, we orthonormalise basis
elements of the smooth component for each spherical degree with increasing polynomial degrees. Thus,
the first element considered is the constant contribution for the radial modes (l = 0, k = 0). Next comes
the first order polynomial for radial modes (l = 0, k = 1), and so on. This is especially interesting as,
to first order, frequencies may be approximated by the asymptotic formulation (Eq. (3.13)) which is a
linear function of the radial order and its slope is ∆ν, the asymptotic large separation (see the top panel
of Fig. 3.3 for a representation). Therefore, for each spherical degree, the projection of the frequencies
over the two first basis elements (k = 0, 1) provides us with a linear adjustment of the frequencies and an
estimator of the large separation. For a given spherical degree l and limiting the development to the first
order (k = 1), Eq. (3.4) combined with Eq. (3.7) yields

νfit,k≤1 =
1∑
k=0

al,k

k∑
k0

R−1
l,k0,k

nk0

= al,0R
−1
l,0,0 + al,1

(
R−1
l,0,1 +R−1

l,1,1n
)
, (3.23)

where the spherical degree, l, is explicitly written in order to ease the understanding.
We easily identify the slope in n and we define the estimator of the large separation for each individual
spherical degree,

∆l = al,1R
−1
l,1,1. (3.24)

It may also be expressed more explicitly as a function of frequencies and radial orders as follows; Given
the vector of frequencies associated with the spherical degree l, νl, and the vector of corresponding radial
orders, nl, we may write:

∆l = 〈νl|nl〉 /‖1‖2 − nl νl

‖nl‖2/‖1‖2 − nl
2 , (3.25)

Table 3.1: Reference stellar parameters.

Parameter Value

X0 0.734
Y0 0.25
Z0 0.016

(Z/X)0 0.022
αMLT 1.82
αov 0
αun 0
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where the · symbol represents the weighted mean of a given quantity and is defined as

νl = 〈νl|1〉
‖1‖2 =

N∑
i=1

νl,ni/σ
2
i

N∑
i=1

1/σ2
i

. (3.26)

Eq. (3.25) is equivalent to its standard definition obtained through a linear regression (see e.g. Reese et al.
(2012)). We provide additional mathematical developments to retrieve this form in App. 3.A.

We may also define the mean large separation over all spherical degrees corresponding to the weighted
mean value, ∆l, of the individual large separations for each spherical degree. We get

∆ = ∆l =

∑
l

∆l/σ
2 (∆l)∑

l

1/σ2 (∆l)
, (3.27)

with σ (∆l) = R−1
l,1,1 the uncertainty on the large separation of degree l. This is an indicator of the mean

stellar density (Ulrich 1986) and it is mostly sensitive to the mass and age of the star. Therefore, on
the main sequence, at a given mass, composition, and set of input physics, it is an indicator of stellar
evolution. Indeed, its value decreases along the stellar evolution. This is also true on the subgiant phase
and for most of the red giant phase (see for example Christensen-Dalsgaard 1988; Mosser et al. 2011).

Normalised small separations

Common and useful seismic indicators are the small separations of modes, which isolate the contribution
of the second term in Eq. (3.21). They are usually defined by comparison of higher-degree modes with
radial modes as, for example,

d01 = (νn,1 − 2νn,0 + νn+1,1) /2, (3.28)
d02 = νn,0 − νn−1,2. (3.29)

However, these are sensitive to the surface effects, mostly caused by the non-adiabaticity in the outermost
layers of the star, which we poorly understand. For this reason, Roxburgh & Vorontsov (2003) proposed to
define frequency ratios which they empirically demonstrated to be almost independent of these outermost
layers

r01 (n) = d01

∆r,1 (n) , (3.30)

r02 (n) = d02

∆r,1 (n) , (3.31)

with ∆r,l (n) = νn,l − νn−1,l the local large separation associated with the degree l. Taking inspiration in
their definition, we define our estimator of the small separation ratio between the spherical degrees 0 and
l as

r̂0l = ν0 − νl
∆0

+ nl − n0 + l

2 . (3.32)

By definition, these quantities are dimensionless.
We show in Fig. 3.5 the evolution of the small separation ratios for degrees 1 (top), 2 (middle) and

3 (bottom) with ∆0 over a grid of models extending from the zero-age main sequence (ZAMS) to the
terminal-age main sequence (TAMS). As ∆0 decreases with the evolution on the main sequence, the
evolution goes from right to left. The models span masses from 0.9 M� to 1.3 M� with a step of 0.1 M�.
Except for the coloured tracks, all the models have the reference values for the stellar parameters presented
in Table 3.1. The sequence for 1.06 M�, close to the expected mass for 16 Cyg A (Ramírez et al. 2011;
White et al. 2013), is shown as a thick line. We show variations of this track with different colours;
in blue for Y0 = 0.27 and with the reference value for (Z/X)0, orange for αMLT = 1.5, and pink for
(Z/X)0 = 0.018 and the reference Y0 value. We also display the measured value of the separation ratios
for 16 Cyg A as blue markers. In addition, we show the value corrected for the surface effects following
Kjeldsen et al. (2008) and using the fitted coefficients from Sonoi et al. (2015), in red.

We first observe in this figure that the small separation ratios are indeed almost independent of the
surface effects, with r̂02 being the most impacted. We observe that r̂02 (middle panel) monotonously
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decreases with evolution, similarly to ∆0, making it an excellent indicator of the central conditions and
stellar evolution. We note the same trend as the so-called ‘seismic HR diagram’ defined by Christensen-
Dalsgaard (1988) who showed that placing an observed star in such a diagram allows us to constrain
its mass and age. We also observe on the top panel that, while the evolution of r̂01 is not monotonous,
it follows a different trend than r̂02. This indicator therefore bears information that are not redundant
with r̂02. Conversely, r̂03 follows the same trend as r̂02 and therefore does not bring any new piece of
information.

We observe in the middle and bottom panels of Fig. 3.5 that the inclusion of a reduced mixing length
parameter (δαMLT = 0.3), at fixed stellar parameters, is similar to an increase in the stellar mass (of
about δM ∼ 0.05 M�), as the orange track illustrates. Similarly, increasing the initial helium content
(δY0 = 0.02), showed by the blue line, also impacts the seismic indicator similarly to an increase in the
stellar mass (of about δM ∼ 0.04 M�). We also note that the slope of the r̂02-∆0 track is slightly modified,
reducing the rate of decrease in r̂02 with evolution. Finally, increasing the metal content (δ (Z/X)0 ' 0.04),
in pink, again produces similar results to an increase in the stellar mass (δM ∼ 0.02 M�) with a reduction
of the slope in r̂02 as for the case with increased helium content. All these observations are in perfect
agreement with the results of Mazumdar (2005).

We represent in Fig. 3.6 the evolution of the small separation ratios as defined in Roxburgh & Vorontsov
(2003) (Eq. (3.30)) evaluated at n = 21 with ∆0. The trends presented in Fig. 3.5 and 3.6 are comparable;
with our representation displaying a smoother evolution. Furthermore, because we define the small
separation ratios as an average over the complete set of radial orders while Roxburgh & Vorontsov (2003)
use a local definition, we should obtain reduced uncertainties compared to them. It is indeed what we
observe from the red marker in Fig. 3.6, with σ (r0l) ∼ 3σ (r̂0l).
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Figure 3.5: Evolution of the small separation ratios defined in Eq. (3.32) over a grid of models with
X0 = 0.734, Y0 = 0.25, Z0 = 0.016, and αMLT = 1.82. The models span masses in the range
[0.9 M�, 1.3 M�] (0.01 M� step). The thick line corresponds to the 1.06 M� track, the blue line to
Y0 = 0.27 at reference (Z/X)0 ratio, the orange one to αMLT = 1.5, and the pink one to (Z/X)0 = 0.018
at reference Y0 value.
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Figure 3.6: Evolution of the small separation ratios as defined in Eq. (3.30) (Roxburgh & Vorontsov 2003)
over the same grid as in Fig. 3.5.

Large separation differences

These are the differences between the large separations of individual spherical degrees 0 and l normalised
to the large separation of radial modes,

∆0l = ∆l

∆0
− 1. (3.33)

∆01 corresponds to the slope of the local small separation ratio between orders 0 and 1 as a function of n.
Indeed, by defining a local version of Eq. (3.32),

r̂0,l (n) ' νn,0 − νn,l
∆0

, (3.34)

we easily obtain this slope, with an opposite sign compared to Eq. (3.33). Combined with our indicator
r̂01, which provides an estimate of the mean r01 (n) value, we obtain information relative to the amount of
core overshooting. We present in Fig. 3.7 a r̂01-∆01 diagram for 1.2 M� tracks with different overshooting
parameter values in the range [0.005, 0.300]. This figure was also presented in Farnir et al. (2019), Fig.
3. Indeed, the evolutionary tracks occupy different regions according to the amount of overshooting
included in the model. This coincides with observations from Deheuvels et al. (2016) who noted that
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Figure 3.7: r̂01-∆01 diagram for several main sequence 1.2 M� tracks with different overshooting parameter
values as in Farnir et al. (2019), Fig. 3.

the simultaneous use of the mean value, denoted a0, and slope, a1, of the small separation ratio between
degrees 0 and 1 allows us to constrain central overshooting. We further illustrate this potential in Figs. 3.9
and 3.10. These represent the r̂01 and ∆01 values for a set of models adjusting the ∆ value of KIC7510397
and KIC7206837, respectively. The different colours correspond to different values of the overshooting
parameter (0.00, 0.10, 0.15, 0.20, 0.25, and 0.30) and individual models to different masses in the range
[1.10 M�, 1.50 M�] with a step of 0.02 M�. The masses increase from the top to the bottom of both
figures. We also represent the observed r̂01 and ∆01 values by the errorbars. We observe that placing a
star in such a diagram constrains both its mass and overshooting parameter. For KIC7510397 we expect
a low overshooting parameter value, close to zero, while we expect a value of about 0.15 in the case of
KIC7206837. The advantage of our method is that these indicators are automatically included and are as
little correlated as possible to the other ones. This is important when using several indicators alongside
one another to retrieve the most robust inferences possible.

39



3. The WhoSGlAd method

Figure 3.8: Fig. 3 of Deheuvels et al. (2016). a0 represents the mean value of the small separation ratio
between degrees 0 and 1 and a1 is the slope in n of this ratio. The different colours correspond to different
overshooting parameter values αov = 0 (grey), αov = 0.1 (blue), αov = 0.15 (cyan), αov = 0.2 (green),
αov = 0.25 (red), and αov = 0.3 (pink).
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Figure 3.9: r̂01-∆01 diagram for models adjusting the large separation, ∆, of KIC7510397 for several
masses and overshooting parameter values, represented by the colours. The masses range from 1.10 M�
(top) to 1.50 M� (bottom) with a step of 0.02 M�. The observed values are represented by the errorbars.
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Figure 3.10: r̂01-∆01 diagram for models adjusting the large separation, ∆, of KIC7206837 for several
masses and overshooting parameter values, represented by the colours. The masses range from 1.10 M�
(top) to 1.50 M� (bottom) with a step of 0.02 M�. The observed values are represented by the errorbars.

ε̂ indicator

We may provide an estimator, ε̂, of the constant term, ε, in the asymptotic formulation (Eq. (3.13)). This
term is mostly affected by the surface effects, as we showed in Farnir et al. (2019). To define its estimator,
we define a vector subspace in which frequencies are described as

ν (n, l) =
(
n+ l

2 + ε

)
∆̂ =

(
n+ l

2

)
∆̂ +K, (3.35)

where ∆̂ and K are free parameters, and project the observed frequencies over this subspace. We then
identify the coefficients to retrieve an expression for ε̂,

ε̂ = ν

∆̂
− ñ. (3.36)

We note that ∆̂ has a different expression from our indicator ∆ as a result of the slightly different basis.
Its exact expression is not relevant to the current discussion.

We represent in Fig. 3.11, the evolution of the ε̂ indicator over the same grid of models as in Fig. 3.5.
The observed value is shown in red, the corrected value for the surface effects following Kjeldsen et al.
(2008) with the fitted coefficients of Sonoi et al. (2015) is shown in blue, and the one corrected as in Sonoi
et al. (2015) is shown in green. We observe that the tracks are nearly degenerated for most of the stellar
evolution on the main sequence. This makes this indicator difficult to exploit in order to constrain the
stellar structure. Furthermore, we observe that its value is greatly impacted by the surface effects, as
the coloured markers demonstrate. We therefore expect that measuring its value could help to provide
information on the outermost layers of the star. Nevertheless, we were not able to efficiently exploit this
indicator to constrain stellar models.
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Figure 3.11: Evolution of ε̂ with ∆ over the same grid of models as in Fig. 3.5. The observed value is
shown in red, the one corrected for the surface effects as in Kjeldsen et al. (2008) with the fitted coefficients
of Sonoi et al. (2015) is displayed in blue, and the one corrected as in Sonoi et al. (2015) is shown in green.
This corresponds to Fig. 4 of Farnir et al. (2019).

Glitch amplitude

The last indicators we defined are the glitches amplitudes. Taking advantage of the orthonormalisation
and the scalar product, it corresponds to the norm of the glitch term,

A• = ‖δ•‖, (3.37)

with δ• being the considered glitch term (either helium or convection zone) symbolised by the • index.
Because of this definition and of the orthonormalisation, the uncertainty on this indicator is always

of unity and the contribution of the glitches is completely decorrelated of the smooth component of the
spectrum. Furthermore, the helium glitch and convection zone glitch are independent of one another.

For the helium glitch, the amplitude is a proxy of the surface helium abundance but it also strongly
depends on the metals mass fraction and the total mass (Farnir et al. (2019)). Figure 3.12 represents the
evolution of the helium glitch amplitude with the surface helium abundance at fixed large separation, that
of 16 Cyg A, and fixed metallicity. We consider different masses (1 M�, 1.025 M�, and 1.052 M�) and
also assess the impact of the surface effects (Kjeldsen et al. 2008 with the coefficients from Sonoi et al.
2015). We observe that, on each track, the helium glitch amplitude is directly correlated to the surface
helium content. This is a direct consequence of the evolution of the shape of the Γ1 index with the helium
abundance (see Fig. 3.2). The greater the helium abundance, the more pronounced the Γ1 depletion and
the greater the helium glitch amplitude. We also observe by comparing the individual tracks that, the
greater the mass, the greater the helium glitch amplitude. We note that, at fixed helium glitch amplitude,
an increase in the mass of about 0.025 M� requires a decrease in the surface helium abundance of about
0.01. The helium glitch amplitude is therefore degenerate with the mass. This is more easily interpreted
with lnT − lnP diagrams, in which the curves of different models are parallel in the second ionisation
zone of helium. Only the height of these curves varies, the higher the curve, the shallower the Γ1 dip and
the lower the helium glitch amplitude. In such a diagram, the most massive models lie the lowest. Finally,
the green track illustrates the impact of the surface effects on the helium glitch amplitude. We note that
it has a negligible impact, compared to the uncertainty on the amplitude, as represented by the black
symbol.

The helium glitch amplitude also exhibits an anti-correlation with the metals content. This is
represented in Fig. 3.13 showing the evolution of the helium glitch amplitude at fixed Y0 = 0.24 and ∆
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values for different masses. The black curve corresponds to 1 M�, the blue to 1.025 M�, and the red
to 1.052 M�. This means that a measurement of the helium glitch amplitude alone is not sufficient to
constrain the surface helium content. This agrees with the findings of Basu et al. (2004). Nevertheless,
the smooth component indicators may help to further constrain the chemical composition, namely r̂01,
and thus to lift this degeneracy. To better understand the origin of this degeneracy, we built a toy model
of the first adiabatic index (see Sect. 3.4). This allows us to isolate the impact of the helium and metals
abundances from that of stellar evolution on the shape of the Γ1 index. We find that an increased helium
abundance leads to a more pronounced Γ1 depletion in the helium second-ionisation zone. The same goes
for a decreased metals abundance. We represent in Fig. 3.14 this toy model for different abundances.
We show, as a black curve, the reference model. The red curves correspond to models with modified
compositions and the blue ones to models for which the composition was modified without impacting the
temperature and density profiles. The top panel corresponds to modifications in the helium content while
the bottom panel corresponds to variations in the metals abundance. We observe, in the top panel, that
the effect of the helium abundance on the Γ1 profile is mainly due to the change in abundance rather than
the modification of the stratification, as the blue and red curves are close to one another. Conversely,
the impact of the metals abundance on Γ1 is the result of the different T and ρ profiles after evolution.
Indeed, we observe that the isolated effect of the modification of the composition is not significant, while
the models with modified T and ρ profiles are significantly impacted.

We now turn our attention to the convection zone glitch amplitude, which is a proxy of the sharpness of
the temperature gradient transition at the base of the convection zone. This is illustrated in Fig. 3.15 which
represents the evolution of ACZ with the amount of undershooting below the base of the convection zone.
Including undershooting moves the base of the convection zone inwards. The nature of the undershooting,
with the temperature gradient ∇ either being fixed at the adiabatic one ∇ad or at the radiative one ∇rad
in the undershooting region, determines the nature of the discontinuity, as illustrated in Fig. 3.16. If we
were to include radiative undershooting, only the derivative of the temperature stratification would be
discontinuous and no glitch would arise. Conversely, with adiabatic undershooting, there is a discontinuity
in the gradient and a glitch is created. As both Figs. 3.15 and 3.16 show, increasing the amount of
undershoot increases the size of the jump in ∇ and thus leads to a greater glitch amplitude.

One advantage of our definition of the glitch amplitude (Eq. (3.37)) is that the associated uncertainty
is always equal to unity. The strength of the glitch signal is always to be compared with 1. However,
when comparing our results with other works, this may seem counter-intuitive. Indeed, an increase in
the observed uncertainties leads to a reduced glitch amplitude, instead of increased uncertainties on that
quantity. Therefore, to ease the comparison, we propose an alternate definition

A′• = A•√
N∑
i=1

1/σ2
i

. (3.38)

This new definition has the units of frequencies. Moreover, it is invariant under a multiplication of the σi
by a given factor. Finally, the uncertainty on the parameter is now given by

σ (A′•) = 1√
N∑
i

1/σ2
i

, (3.39)

which is proportional to the uncertainties on the frequencies. In the case of 16 Cygni A and B, switching
from the first definition (Eq. 3.12) to the second (Eq. 3.38) corresponds to a multiplication by 0.15 of
both the glitch amplitude and its uncertainty. We give both values in Table 3.2.

Table 3.2: Glitches amplitudes for 16 Cyg A and B uncorrected frequencies.

AHe A′He ACZ A′CZ

16 Cyg A 29.59± 1 4.44± 0.15µHz 1.84± 1 0.28± 0.15µHz
16 Cyg B 33.42± 1 5.01± 0.15µHz 1.58± 1 0.24± 0.15µHz
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Figure 3.12: Helium glitch amplitude evolution with the surface helium abundance at fixed (Z/X)0 = 0.022
value. We consider different masses, shown in different colours 1M� (black), 1.025 M� (blue), and
1.052 M� (red). The green track corresponds to models corrected for the surface effects as in Kjeldsen
et al. (2008) with the coefficients from Sonoi et al. (2015) for 1.052 M�. The black symbol corresponds to
the uncertainty σ on the amplitude.
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Figure 3.13: Helium glitch amplitude evolution with the surface metals abundance at fixed Y0 = 0.24 value.
We consider different masses, shown in different colours 1 M� (black), 1.025 M� (blue), and 1.052 M�
(red).
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Figure 3.14: Γ1 toy model in the helium second-ionisation zone. The reference model is shown in black,
models with modified compositions but fixed ρ and T profiles are in blue and models with modified
compositions and profiles are in red. The top panel shows the evolution with Y . Dotted lines have an
increased abundance compared to the reference while dashed lines have a decreased abundance. The
bottom panel shows the evolution with the metals abundance. The line styles have te same meaning.
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Figure 3.15: Evolution of the convection zone glitch amplitude with the amount of undershooting below
the base of the convection zone.
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Figure 3.16: Temperature gradients around the base of the convection zone. The real gradient is represented
by the dotted lines, the radiative gradient by the dashed lines, and the adiabatic one by the dot-dashed
lines. The three gradients are displayed for a value of αun = 0.1 in black and for αun = 0.2 in red.
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3.3 Advantages and limitations

The great advantage of the WhoSGlAd method is that the formulation used is linear. Therefore, the
construction of the basis, adjustment of frequencies, and retrieval of the seismic indicators relies only
on linear algebra. The fitting coefficients and associated seismic indicators are simply defined as linear
combinations of the observed frequencies. This makes the method extremely fast and efficient. Furthermore,
because of the orthonormalisation, we ensure that the fitting coefficients are fully independent, therefore
uncorrelated. As a consequence, the definition of seismic indicators as presented in Sect. 3.2.3 allows
them to be as little correlated as possible and makes them relevant and robust constraints of the stellar
structure. This already makes the technique an efficient means to automatically study the stellar structure
of stellar models (Farnir et al. 2019). We further illustrate that the method efficiently adjusts a reference
oscillation spectrum and retrieves the signature of the acoustic glitches in Fig. 3.17. We represent the
observed 16CygA frequencies (Davies et al. 2015) (errorbars), the fitted helium glitch alone (dashed line),
and the fitted contribution of both the helium and convection zone glitches (continuous line). We observe
that the fitted curve tightly agrees with the observed data, which shows that our method yields robust
results. We also observe that the contribution of the convection zone glitch is tiny in comparison to that
of the helium glitch and that it does not significantly improve the agreement with the observed data. This
results from the small amplitude of this glitch (see Table 3.2).

However, the analysis of observed data is a little more tedious. Indeed, from Eq. (3.17), we immediately
note the dependency of the basis functions on THe and TCZ. These parameters are kept at fixed values to
maintain the linearity of the method. It is therefore crucial to properly estimate their values. This was
done by a preliminary modelling of the observed data. Because of the orthonormalisation, the indicators
relative to the smooth part of the oscillation spectrum are completely independent of the glitch part.
Therefore, they may be used as constraints in the search of a first stellar model, representative of most of
the stellar structure features. These are the ∆, r̂01, and r̂02 indicators previously defined. The acoustic
depth of both glitches may be retrieved in the optimal model by a simple integration (Eq. (2.112)).
Nevertheless, because of the modelling involved, this is a lengthy process. In addition, the acoustic depth
estimation is model dependent. Consequently, this has to be improved for the automated treatment of
observed data. We developed an improved technique to estimate the acoustic depth of the helium glitch
with a master student, Angelo Valentino. This is presented in Sect. 3.5. Beside the need for estimates of
the acoustic glitches depths, we demonstrated that this procedure remains very efficient and provides
excellent results, putting stellar models to the test (Farnir et al. 2019, 2020a).

Another limitation of the method again concerns the glitches signatures. We observed that the helium
glitch amplitude is only a valid proxy of the surface helium abundance for stellar models with masses
. 1.25 M� (Farnir et al. 2019). This is illustrated in Fig. 3.18. We observe that, for the 1.3 M� model,
the helium glitch amplitude does not monotonously increase with the surface helium abundance. We
attributed this effect to the microscopic diffusion in these models. The size of the surface convection zone
becomes so thin that the gravitational settling, which is more efficient close to the surface, is efficient
enough to significantly decrease the surface helium abundance. The same goes for the surface metallicity.
As a consequence, we observe a large increase in the helium glitch amplitude (AHe ∼ 96). Indeed, AHe is
both correlated with Ysurf and anti-correlated with Zsurf.
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Figure 3.17: Fitted glitches signatures to the 16CygA frequencies measured by Davies et al. (2015). The
observed data is represented by the errobars, the fitted helium glitch by a dashed line and the contribution
of both the helium, and convection zone glitch by a continuous line.
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Figure 3.18: Evolution of the helium glitch amplitude with the surface helium abundance in the limit case
(1.25 M� and 1.3 M�).
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3.4 Toy model of the first adiabatic index

In Farnir et al. (2019), we provided a toy model for the first adiabatic index, Γ1, in order to study the
impact of the stellar mass and composition on its local shape, in the helium second-ionisation zone. In
the present section, we further explicit the mathematical developments leading to its final expression.

For that purpose, we consider a perfect gas composed of three different species: the hydrogen, X, the
helium, Y , and the metals Z. In the helium second-ionisation zone, we consider the hydrogen atoms to
be fully ionised, the helium to be partially ionised, and the metals to be neutral. From Fig. 14.1 from
Kippenhahn et al. (2012) (which we included as Fig. 3.19) representing individual ionisation states of a
hydrogen-helium mixture representative of the Sun, we see that this is a sound hypothesis. Because of
individual ionisation energies (H ionisation, first and second helium ionisations), the individual ionisation
states are almost completely distinct of one another (i.e. first ionisation of He starts when almost all
the H atoms are completely ionised and second He ionisation happens once the first ionisation has been
completed). In addition, when the second helium ionisation starts to play a role, the hydrogen is already
fully ionised. Because of neutrality of the gas, we have that the number of negative particles must equal
that of positive ones,

e = H +He+ + 2He++, (3.40)

where e is the number of electrons, H that of ionised hydrogen, He+ that of partially ionised helium, and
He++ that of fully ionised helium. We thus have the total number of particles,

n = 2H + 2He+ + 3He++ + Z. (3.41)

Expressing the mass fraction of each element as a function of its number density, we obtain

H = ρ
X

mu
, (3.42)

He ≡ He+ +He++ = ρ
Y

4mu
, (3.43)

Z = ρ

mu

∑
i

Zi
Ai
≡ ρ

mu

Z

A
, (3.44)

where mu is the atomic mass unit, Zi and Ai are the mass fraction and number of individual elements,
respectively.

Defining, xHe = He++

He++He++ the fraction of fully ionised helium atoms and using Eq. (3.43) we write

He+ = (1− xHe) ρ
Y

4mu
, (3.45)

He++ = xHeρ
Y

4mu
. (3.46)

The fraction of fully ionised helium atoms over the number of atoms partially ionised is determined by
Saha’s equation

F ≡ He++e

He+ = g

h3 (2πmekBT )3/2
e
− ξ
kBT , (3.47)

where g is the statistical weight of the fully ionised state, h is Planck’s constant, me the electronic mass,
and ξ the energy difference between the two states.

Considering small perturbations in the pressure, we may relate partial derivatives of the pressure with
the adiabatic indexes introduces by Chandrasekhar

Pρ = ∂ lnP
∂ρ

∣∣∣∣
T

= Γ1 − (Γ3 − 1)2 cvρT

P
, (3.48)

PT = ∂ lnP
∂T

∣∣∣∣
ρ

= (Γ3 − 1)2 cvρT

P
, (3.49)
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with cv = ∂S
∂T

∣∣
ρ
the isochoric heat capacity and

Γ1 = ∂ lnP
∂ ln ρ

∣∣∣∣
s

, (3.50)

Γ3 − 1 = ∂ lnT
∂ρ

∣∣∣∣
s

, (3.51)

the first and third adiabatic indexes.
In the case of a monoatomic perfect gas, we have cv = 3

2
P
ρT and we obtain the expression for the first

adiabatic index
Γ1 = Pρ + 2

3P
2
T . (3.52)

Furthermore, we have the law of perfect gases

P = ρkBT

µmu
= nkBT, (3.53)

with µ the mean molecular weight, n the number of particles, and kB Boltzmann’s constant. As a
consequence, we obtain from Eqs. (3.48) and (3.49),

Pρ = ∂ lnn
∂ ln ρ

∣∣∣∣
T

≡ nρ, (3.54)

PT = 1 + ∂ lnn
∂ lnT

∣∣∣∣
ρ

≡ 1 + nT . (3.55)

Therefore, we need to find expressions for nρ and nT to represent Γ1.
Perturbing Eq. (3.41) and combining it with Eqs. (3.42) and (3.43) yields

dn = 2 X
mu

dρ+ 3
4
Y

mu
dρ− dHe+ + dZ. (3.56)

Similarly, from the neutrality (Eq. (3.40)), we also obtain

de = X

mu
dρ+ Y

2mu
dρ− dHe+. (3.57)

We need an expression for the variation in the number of partially ionised helium atoms, dHe+. It may
be retrieved from the derivative of Saha’s equation (Eq. (3.47))

dF
F

= de

e
+ dHe++

He++ −
dHe+

He+ . (3.58)

Identifying the individual terms leads to

dHe+ =
{[
X + Y

2 + emu

xHeρ

]
dρ

mu
− edF
F

}
N, (3.59)

with N defined as

N =
(

1 + e

xHe (1− xHe) Y ρ
4mu

)
. (3.60)

We then obtain, after a few manipulations of N , the expression

dn =
{

(2−N)X + [2 + xHe)− (xHe + 1)N ] Y4 + Z

A

}
dρ

mu
+ eN

dF
F
. (3.61)

We now have all the necessary ingredients to nρ and nT ,

nρ =
{

(2−N)X + [2 + xHe)− (xHe + 1)N ] Y4 + Z

A

}
ρ

nmu
, (3.62)

nT = eN
dF/F
nd lnT =

(
3
2 + ξ

kBT

)
eN

n
. (3.63)
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Figure 3.19: Evolution of the degrees of ionisation x of hydrogen and helium as a function of the pressure
in a solar model presented in (Kippenhahn et al. 2012, Fig. 14.1). x ranges between zero, for a neutral
species, and unity, for a fully ionised species.

These quantities may be inserted in Eq. (3.52) to obtain our toy model for Γ1.
Finally, we must account for the impact of the ionisation on the isochoric specific heat, as some of

the energy from the heating of the gas will be converted into gas ionisation instead of increasing the
temperature. The internal energy per unit volume is the following

u = 3
2
P

ρ
+ (xHe − 1) ξ Y

4mu
, (3.64)

where the second term accounts for the energy of the ionised particles. The specific heat then comes
naturally as the partial derivative of the energy with respect to the temperature, for a fixed volume

cv = du

dT

∣∣∣∣
V

= 3
2
kBPT
µmu

+ Y ξ

4mu

dxHe
dT

. (3.65)

From the expressions of the number of particles (Eq. (3.41)) and the law of perfect gases (Eq. (3.53)),
we may identify µ

µ =
[
2X + (2 + xHe)

Y

4 + Z

A

]−1

. (3.66)

Finally, from Eq. (3.58), we get

dxHe
dT

=
(1− xHe)

(
3
2 + ξ

kBT

)
muF
ρT

X + Y
2
( 1

2 + xHe
)

+ mu
ρ F

, (3.67)

and the final expression for Γ1 yields

Γ1 = nρ + 4 (1 + nT ) 1
6 + Y ξ

(1+nT )kB

[
2X + (2 + xHe) Y4 + Z

A

]
dxHe
dT

. (3.68)

3.5 Providing an estimate for the acoustic depth of the helium glitch

3.5.1 Motivation

One criticism that may be made about the WhoSGlAd technique is its need for an estimate of the acoustic
depth of both glitches (τHe and τCZ). Indeed, we chose to use a fixed value of these acoustic depth (or
rather their dimensionless counterpart: T = τ∆) in order to avoid introducing unnecessary correlations
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between the parameters of the fit by carrying out a minimisation over the acoustic depths and to have a
linear relation between the frequencies and the parameters. Therefore, it is essential to provide a proper
estimate. In the case of theoretical data, this does not represent a limitation as it may be computed
directly from the model. Equation (2.112) providing the acoustic depth of the helium glitch can be
generalised to any glitch

τ• =
R∫

r•

dr

c(r) , (3.69)

with r• the position of the stellar feature creating the glitch. In the case of the helium glitch, it was shown
that this is the maximum between the two minima of the Γ1 function (e.g. Broomhall et al. 2014).

However, in the case of observed data, estimating the acoustic depth of a glitch, which determines the
period of the oscillation in the frequencies, proves to be more difficult. We initially proceeded as follows:

1. Retrieve several seismic indicators associated with the smooth part of the observed data and
representative of the stellar structure (i.e. ∆, r̂01, and r̂02);

2. Find a model adjusting these indicators. Its stellar structure is thus close to the one of the target;

3. Measure τ on this model, via Eq. (3.69).

As the above procedure illustrates, this is a lengthy and model dependent procedure. Nonetheless, we
showed that this estimation yields excellent results and allows us to carry out precise seismic measurements
(Farnir et al. 2019, 2020a,b). Indeed, a small excursion from the optimal value (around 10% in relative
variation) was shown to have a negligible impact on the measured glitch amplitude. However, it came as
a necessity to estimate the acoustic depth in a model independent and faster way to, for example, allow
for the automated adjustment of large amounts of data, as the PLATO mission (Rauer et al. 2014) will
produce.

As a consequence, I proposed as part of a master thesis project, to find an automated way to estimate
the acoustic depth of the helium glitch. As we noted that the convection zone glitch is of negligible
amplitude, we did not interest ourselves in it. This was the work of Angelo Valentino. The idea was to
relate THe = τHe∆ with seismic indicators associated with the smooth part of the spectrum: ∆0 and r̂02.
It was demonstrated that a seismic HR diagram built using ∆0 and r̂02 (or indicators that bear similar
information) is relevant to the study of the stellar evolution (Christensen-Dalsgaard 1988; Farnir et al.
2019). Furthermore, the second helium ionisation, regardless of the pressure conditions, happens around a
fixed temperature of about 105K. We can thus expect that it would be mostly determined by the gross
stellar properties. Finally, Mazumdar (2005) showed that τ -∆0 diagrams, τ being the acoustic depth
of either the helium or convection zone glitch, could be built as a replacement for the seismic diagrams
(Christensen-Dalsgaard 1988). He also showed that his diagrams can help in constraining stellar models,
as the tracks in these diagrams are distinct in regard to the expected precision on both parameters. It is
also worth noting that models with masses between 0.8 M� and 1.1 M� evolve monotonously and almost
linearly in these diagrams. Consequently, relating the evolution THe with that of ∆0 and r̂02 seems to be
a reasonable choice.

3.5.2 Results

Over a grid of main-sequence stellar models, we showed that we may, at first order, assume that the
dimensionless acoustic depth follows a linear relation in both ∆ and r̂02,

THe ' a∆0 + br̂02 + c, (3.70)

with a, b, and c being 3 parameters to be adjusted. This is what is represented in Fig. 3.20. The value
of THe, represented by the colour gradient, is depicted along our grid of models computed with CLES
(Scuflaire et al. 2008a) with an initial composition of X0 = 0.75 and Z0 = 0.012 and using the same set of
input physics as in (Farnir et al. 2019, Sect. 3.1). The grid spans masses between 0.80 M� and 1.15 M�
with a step of 0.05 M�. We did not expand beyond 1.15 M� as the subsistence of a convective core in
heavier stars leads to non-linearities.

We indeed observe in Fig. 3.20 that THe monotonously increases with both ∆0 and r̂02. We therefore
adjusted the linear relation given by Eq. (3.70) to this grid and retrieved the coefficients:

a ' 8.1 10−5, b ' −2.5 10−1, c ' 7.9 10−2. (3.71)
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We note the value resulting from our relation (Eq. (3.70)) and the fitted coefficients (Eq. (3.71)),
THe,fit, the value obtained from models, THe,mod, and define their relative difference as

δTHe = THe,fit − THe,mod

THe,mod
. (3.72)

To show the agreement between our relation and the model value, we represent in Fig. 3.21 this relative
difference, depicted by the colour gradient, on the same grid of models as in Fig. 3.20. We observe that
in the worst case, the relative difference is of about ∼ 1.5%. Which remains small in comparison with
the 10% excursion we demonstrated to have a negligible impact on the glitch amplitude (Farnir et al.
2019). Indeed, in that case the difference in helium glitch amplitude, normalised to its uncertainty is of
∼ 5%, which is not significant. We also observe that the relative difference does not vary monotonously,
displaying a distinct minimum for each track. While the agreement between fitted and model values is
already sufficient, this indicates that a second order relation could further improve this agreement.

We also tested the impact of the chemical composition on the quality of the inferred value. We
compared the results yielded by our reference composition to the integrated values from grids with a
different composition, X0 = 0.725 and Z0 = 0.014. The maximum relative variation in acoustic depth
is of ∼ 3% and the helium amplitude is unaffected (the change is on the order of 0.01σ). This is shown
in Fig. 3.22. Therefore, we are confident that this relation may be used with observed data. This is the
natural next step.

We applied the relation to 16 Cygni A data and computed a dimensionless acoustic depth of 6.5 10−2.
This is 30% lower than the value obtained via a modelling of the smooth component (9.1 10−2). However,
the impact on the measured helium glitch amplitude remains small in comparison with the uncertainties
on this indicator: 29.1 with the relation and 29.6 via modelling (i.e. 0.5σ change). Therefore, this modified
value of the glitch amplitude should not significantly impact the modelling of the star. In addition, we
may carry out a minimisation of the WhoSGlAd cost function (Eq. (3.12)), therefore reducing at most
the difference between reference and fitted frequencies, with the acoustic depth as the only free parameter
to further improve the results. This is done via a Brent minimisation procedure (Brent 1973, see also
Sect. 3.C). The optimal value retrieved is situated within 1% of the one obtained via a partial modelling
of the star. This further demonstrates the validity of the presented technique to provide an estimate of
THe. Consequently, this enables us to efficiently measure the glitch signature in main sequence solar-like
stars without the need for a preliminary modelling of the observed target.

While the proposed estimation of THe proves to be efficient, we must proceed with care. Indeed, we
restricted ourselves to main-sequence models with radiative cores, in order to avoid non-linear behaviours.
Therefore, additional test will be necessary to assess the reliability of the estimated values in models with
convective cores, in which ∆ and r̂02 are not monotonous and THe may vary non-linearly. Considering a
higher order expression, as Figs. 3.21 and 3.22 would suggest, may be necessary. These concerns will be
addressed in future works.
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Figure 3.20: Evolution of the acoustic depth of the helium glitch for a grid of models with masses in
[0.80M�, 1.15M�] (0.05M� step) for the initial composition X0 = 0.75 and Z0 = 0.012.

Figure 3.21: Relative difference between the fitted and model acoustic depth of the helium glitch for a
grid of models with masses in [0.80M�, 1.15M�] (0.05M� step) for the initial composition X0 = 0.75 and
Z0 = 0.012.
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Figure 3.22: Relative difference between the fitted and model acoustic depth of the helium glitch for a
grid of models with masses in [0.80M�, 1.15M�] (0.05M� step) for the initial composition X0 = 0.725
and Z0 = 0.014.

3.6 Conslusion

Thanks to the Gram-Schmidt orthonormalisation process, we have defined a method that efficiently
adjusts the complete oscillation spectrum of main-sequence low-mass stars. A consequence of
the orthonormalisation is that the fitted coefficients are completely independent of one another.
These coefficients are in turn used to build seismic indicators relevant of the stellar structure and
with reduced correlations. For example, the helium and convection zone glitches amplitudes are
completely independent of one another but also of the smooth component. We also showed that
the helium amplitude allows us to precisely constrain the helium surface mass fraction but that
this indicator is correlated with the metals surface mass fraction and the stellar mass as well.
Nevertheless, using the helium amplitude in combination with the other indicators we defined, it
is possible to unambiguously constrain the stellar age, mass, radius, composition (including the
helium abundance), and central overshooting (for stars with a convective core).

We noted two main limitations to our technique. First, for stars with masses exceeding
∼ 1.25 M�, the microscopic diffusion may become so efficient that there is not a monotonous
relation between the helium glitch amplitude and the helium surface abundance any more, disrupting
our ability to constrain Ysurf. The second limitation comes from the acoustic depths of the glitches.
These were fixed in order to maintain a linear formulation for the glitches. This allowed us, through
the orthonormalisation, to ensure that the fitted parameters were indeed completely independent of
each other. It was therefore necessary to estimate these acoustic depths. For model data, this does
not constitute a problem as we have access to the stellar structure and it can be easily retrieved.
Conversely, the case of stellar observations is more complex and requires a partial modelling of the
stellar structure, accounting for the smooth component indicators.

To circumvent this problem, we used a linear relation between the dimensionless acoustic depth
of the helium glitch (THe), ∆, and r̂02. This proved efficient and cancelled the necessity to carry
out partial modelling to retrieve this quantity. Indeed, it allows us to estimate this quantity
using only observable seismic indicators, independent of the glitch contribution. This therefore
opens the possibility to automatically measure the helium glitch signature in a large sample of
stars. While we observed that the composition does not have a significant impact, the use of our
formulation on 16 Cyg A data lead to a 30% excursion from the model value. This however did not
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affect significantly the measured glitch amplitude (0.5σ change) but demonstrates the necessity
to use this relation with care. Furthermore, minimising the difference between the WhoSGlAd
fitted frequencies and the reference ones allows us to retrieve the model value of THe. While this
estimation requires further testing, it proves to be a significant asset to our technique.

Appendices

3.A Large frequency separation in common notations

In the present section, we relate the expression of the large frequency separation at a given spherical
degree l (Eq. (3.24)) to its expression in notations more commonly used (Eq. (3.25)). To do so, from the
matrix expression of the Gram-Schmidt process (Eq. (3.4)) and the formal one (Eqs. (3.2) and (3.3)), we
may identify the transformation matrix elements,

R−1
l,0,0 = 1

‖1‖ , (3.73)

ql,1 = R−1
l,0,11 +R−1

l,1,1nl (3.74)

=
nl −

〈
nl|ql,0

〉
ql,0∥∥nl − 〈nl|ql,0〉 ql,0∥∥ (3.75)

=
nl − 〈nl|1〉1

(
R−1
l,0,0

)2∥∥∥∥nl − 〈nl|1〉1(R−1
l,0,0

)2
∥∥∥∥ . (3.76)

Thus, (
R−1
l,1,1

)2
= 1

‖nl‖2 − 〈nl|1〉2
(
R−1
l,0,0

)2 (3.77)

= 1
‖nl‖2 − n2

l ‖1‖
2 , (3.78)

R−1
l,0,1 = −〈nl|1〉

(
R−1
l,0,0

)2
R−1
l,1,1. (3.79)

Finally, we may expand Eq. (3.24) and introduce Eqs. (3.74), (3.78) and (3.79) to obtain

∆l = al,1R
−1
l,1,1 (3.80)

=
〈
nul|ql,1

〉
R−1
l,1,1 (3.81)

=
[
〈νl|1〉R−1

l,0,1 + 〈νl|nl〉R−1
l,1,1

]
R−1
l,1,1 (3.82)

= 〈νl|nl〉 /‖1‖2 − nl νl

‖nl‖2/‖1‖2 − nl
2 , (3.83)

which matches expression (3.25).

3.B The case of correlated frequencies

During a PLATO Hands On Workshop session, O. Benomar showed that individual frequencies may be
correlated to one another, as a result of the prior necessary to the identification of the modes. This was
illustrated in the specific case of the 16 Cyg B star, one of our benchmark stars. He showed that radial
and quadrupolar modes exhibit a significant correlation. These correlations may amount to up to 20%
of diagonal terms in the covariance matrix. Consequently, once such data has been published, it will be
necessary to account for these correlations in order to draw proper statistical inferences. Indeed, the
WhoSGlAd method aims at reducing at most correlations between the adjusted parameters. However, this
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is carried under the hypothesis that individual frequencies are independent of each other. This assumption
is crucial to demonstrate that the fitted coefficients are uncorrelated (see Eq.(3.11)). However, as O.
Benomar demonstrated, it collapses. It would be very useful to have a method that takes these frequency
correlations into account and still provides independent fitted parameters to be used as seismic indicators.
As we show now, WhoSGlAd can be easily adapted to reach this goal.

When correlations are present between individual modes, the method has to be adapted to make use
of the full correlation matrix instead of the diagonal elements only, which correspond to individual modes
uncertainties. This problematic has not yet been tackled. To do so, one has to adapt the definition of the
scalar product (Eq. (3.5)) by introducing the correlation matrix C such that individual elements are:

Cij = σ2
ij , (3.84)

with σ2
ij the correlation between individual frequencies labelled i and j. σ2

ii is therefore the variance
associated with the ith frequency.

The scalar product (Eq. (3.5)) between two vector quantities, x and y, then takes the form

〈x|y〉 = xTC−1y =
∑
i,j

xi
(
C−1)

ij
yj , (3.85)

where the T superscript represents the matrix transpose operation and C−1 is the inverse of the covariance
matrix. The construction of the orthonormal basis elements, qk, via the Gram-Schmidt orthonormalisation
follows from this definition. The transformation matrix is slightly modified to account for individual
correlations through the new scalar product definition.

With this scalar product, we may show that the fitted parameters remain uncorrelated. First, the
fitting coefficients are expressed as

ak = 〈νobs|qk〉 =
N∑
i=1

(
C−1)

ij
νobs,iqk,j . (3.86)

Second, the covariance between ak and al becomes

cov (ak, al) =
∑
ij

(
C−1)

ij
qk,iql,j = δkl, (3.87)

because of orthornormality of the qk basis vectors. We have proven the independence of the fitted
coefficients, which is an essential ingredient to produce the least correlated possible seismic indicators.

Finally, to account for the correlations while assessing the quality of the adjustment, Eq. (3.12)
becomes:

χ2 = ‖νobs − νfit‖2 = (νobs − νfit)T C−1 (νobs − νfit)

=
∑
i,j

(νobs − νfit)i
(
C−1)

ij
(νobs − νfit)j . (3.88)

Naturally, in the case of uncorrelated frequencies, the correlation matrix becomes

Cij = δijσ
2
ij , (3.89)

and Eqs. (3.85) and (3.88) reduce to their usual forms.

3.C Brent minimisation

To optimise over the THe value estimated in Sect. 3.5, we make use of the one-dimensional Brent minimum
search (Brent 1973). This method assumes the function to be well-behaved and to take a parabolic form
in the vicinity of the minimum. It thus performs a three-points parabolic interpolation to estimate this
minimum. If we write the function, f and the three points x1, x2, and x3 (in increasing order), the
estimated position of the minimum, x, is

x = x2 −
1
2

(x2 − x1)2 |f (x2)− f (x3)| − (x2 − x3)2 |f (x2)− f (x1)|
(x2 − x1) |f (x2)− f (x3)| − (x2 − x3) |f (x2)− f (x1)| . (3.90)

57



3. The WhoSGlAd method

At each step of Brent’s minimisation technique, the algorithm evaluates the function at 6 points: xmin
and xmax, two user supplied values bracketing the minimum, x the current minimum, x2 the current second
lowest value, x2,prev the previous value of x2, and xlast the last function evaluation. If f (xlast) ≤ f (x),
the values are replaced accordingly. The method converges when the size of individual steps becomes
comparable to the root of the machine’s precision (see Press et al. 1992, Eq. 10.1.2 for a justification).

In practice, because Eq. (3.90) is not guaranteed to succeed, Brent’s method will alternate between
parabolic steps and golden section minimum search steps. This is the equivalent of the bisection root
search for minima and with asymmetric (based on the golden ratio, hence the name) intervals sizes.
The transition to the golden section step happens either when the new estimate falls out of bounds
(xnew 6∈ [xmin, xmax]) or when the step is too large (typically δcurr ≥ 0.5δprev, with δ the step size).

Because the method is very simple, it converges extremely fast and fits well within the WhoSGlAd
implementation. This allows for the fast, reliable, and automated estimation of THe necessary to the glitch
amplitude measurement in observations.
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ABSTRACT

Aims. We develop a method that provides a comprehensive analysis of the oscillation spectra of solar-like pulsators. We define new
seismic indicators that should be as uncorrelated and as precise as possible and should hold detailed information about stellar interiors.
This is essential to improve the quality of the results obtained from asteroseismology as it will provide better stellar models which in
turn can be used to refine inferences made in exoplanetology and galactic archaeology.
Methods. The presented method – WhoSGlAd – relies on Gram-Schmidt’s orthogonalisation process. A Euclidean vector sub-space
of functions is defined and the oscillation frequencies are projected over an orthonormal basis in a specific order. This allowed us to
obtain independent coefficients that we combined to define independent seismic indicators.
Results. The developed method has been shown to be stable and to converge efficiently for solar-like pulsators. Thus, detailed and
precise inferences can be obtained on the mass, the age, the chemical composition and the undershooting in the interior of the studied
stars. However, attention has to be paid when studying the helium glitch as there seems to be a degeneracy between the influence of
the helium abundance and that of the heavy elements on the glitch amplitude. As an example, we analyse the 16CygA (HD 186408)
oscillation spectrum to provide an illustration of the capabilities of the method.

Key words. asteroseismology – stars: oscillations – stars: solar-type – stars: abundances – methods: numerical

1. Introduction
Since the launch of CoRoT (Baglin et al. 2009) and Kepler
(Borucki et al. 2010) missions, the scientific community has
access to a tremendous amount of asteroseismic data of unprece-
dented quality. Such data are essential to better constrain stellar
structure and evolution and, in turn, improve the characterisation
of exoplanets and stellar populations. However, it is essential to
develop techniques that are able to retrieve stellar parameters
as accurately as possible in order to benefit from the quality of
the data. A very complex problem in determining stellar param-
eters is the model dependency of the results. The results are
intrinsically dependent on the input physics such as the equa-
tion of state as well as the opacity tables used. It therefore
becomes of prime importance to develop techniques that are able
to test the influence of the input physics on stellar parameters
or even techniques that provide results as model independent as
possible.

With such precision in the data, and the precision of the
future missions TESS (Ricker et al. 2014) and PLATO (Rauer
et al. 2014), studying the signature of acoustic glitches becomes
a natural step towards better models. This idea was origi-
nally proposed by Vorontsov (1988) and Gough (1990). They
both highlighted the effect of a sharp feature in the stellar
structure on the frequencies, either directly or on the second
differences. Such considerations have already been the subject
of several studies. As an example of the several techniques
used, Mazumdar et al. (2014) illustrate four techniques either
using the second frequency differences or striving to isolate
the glitch oscillation directly from the frequencies. Also, most

of the current methods focus on the localisation of the helium
second ionisation zone or the base of the envelope convection
zone (e.g. Monteiro et al. 2000). This is a crucial first step on
the way to a better understanding of stellar physics. Indeed,
a characterisation of the convective envelope extension allows
to get constraints on convection itself as well as on overshoot-
ing (both its efficiency and nature). Therefore, the glitch pro-
vides the necessary observational data needed to refine cur-
rent convection theories. Also, the study of the helium glitch
should provide information on the helium surface content in
low-mass stars. This is essential as, in such stars, it cannot be
derived from spectroscopic data. Therefore, a methodology tak-
ing advantage of most of the oscillation spectrum aspects is
required.

Finally, it is sometimes the case that studies use correlated
constraints or discard pieces of information in their studies.
For example, in method C from Verma et al. (2014), the infor-
mation that is not contained in the glitch (the smooth compo-
nent) is not used directly as the glitch information is isolated
to draw inferences. Therefore, the usual indicators (e.g. large
separation, small separation ratios, . . . ) are computed separately
from the glitch and no method is proposed to determine prop-
erly the correlation between those indicators and that of the
glitch.

For those reasons, we propose a method: Whole Spectrum
and Glitches Adjustment (WhoSGlAd) that takes as much of
the available spectral information as possible into account. This
method defines new seismic indicators in such a way that they
are as independent as possible and significant from a statistical
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point of view. To do so, it relies on linear algebra via Gram-
Schmidt’s algorithm.

The present paper is organised as follows. We first present
the method in a very general and mathematical way in Sect. 2.
Then Sect. 3 defines the seismic indicators and their diagnosis
power will be used to study solar-like pulsators. In the follow-
ing section, we demonstrate its ability to extract and analyse the
glitches signal. We also show its limitations. We present a first
application to the case of 16 Cygni A (HD 186408) in Sect. 5.
Let us insist on the fact that we do not present here a thorough
study of 16 Cygni A but we rather show an example of the abil-
ity of the method to provide constraints on stellar structure. We
conclude the paper by discussing the results and detailing future
perspectives.

2. Method

In the present section, we describe the method we developed. It
aims at using as much as possible of the information available in
the oscillation spectrum of a star. Therefore, both the oscillatory
and smooth part of the spectrum are simultaneously analysed
in a single adjustment. This avoids multiple usage of the same
information to draw different inferences. The very strength of the
proposed method is that the different parameters obtained will be
independent of each other, meaning that their covariance matrix
will be the identity matrix. This will allow to build indicators
which also are independent of each other and draw statistically
relevant inferences. The independence of the parameters will be
ensured by using Gram-Schmidt’s (Gram 1883; Schmidt 1907)
algorithm. Then, the defined seismic indicators will be used as
constraints to provide improved models in the framework of for-
ward seismic modelling (see for example Miglio & Montalbán
2005 for one of the first use of Levenberg-Marquardt’s algo-
rithm to adjust a model to seismic and non-seismic observables).
Finally, such models may be used as initial guesses for inverse
seismic modelling. (see Roxburgh & Vorontsov (2002a,b) for
the application of the inversion technique on an artificial
target, which shows the feasibility of such techniques, and
Buldgen et al. (2016a,b) for examples of inversions in the case
of 16 Cygni A.)

2.1. Mathematical description

Non-radial pulsation frequencies can be mathematically defined
by three integer numbers; the radial order n, the spherical degree
l, and the azimuthal order m (in this paper, we do not consider
the seismic probing of rotation and consider only m = 0). The
method we developed – WhoSGlAd – is based on linear algebra
in a Euclidean space. The vector space we consider is the set of
N observed oscillation frequencies νi. The standard deviation for
each frequency is written σi. Given two frequency vectors x and
y we define their scalar product as

〈x|y〉 =

N∑

i=1

xiyi

σ2
i

· (1)

Often in asteroseismology, it is useful to compare two sets
of frequencies (e.g. theoretical and observed frequencies) using
a merit function defined as

χ2 =

N∑

i=1

(
νobs,i − νth,i

)2

σ2
i

, (2)

with νth and νobs, the theoretical and observed1 frequencies. Tak-
ing advantage of the scalar product defined above and the asso-
ciated norm, this simply becomes

χ2 = ‖νobs − νth‖2. (3)

In the presence of a glitch, Houdek & Gough (2007) showed that
the oscillatory component in frequencies due to the glitch can be
isolated from the rest of the spectrum, called the smooth compo-
nent. Thus, to represent observed frequencies, we define a vector
sub-space that is typically a polynomial space – the smooth com-
ponent – associated with an oscillating component – the glitch –.
The analytical formulation of those two components will be
given in the following sections. This is very similar to what has
been done by Verma et al. (2014).

The method consists in the projection of the observed and
theoretical frequencies over the vector sub-space. Then, we
define seismic indicators from the projections. Their definitions
are given in Sect. 3. To do so, it is useful to define an orthonormal
basis over the vector sub-space. This is done via Gram-Schmidt’s
orthogonalisation process associated with the definition of the
scalar product (1). For more information about this process as
well as its equivalent form as a QR decomposition, the interested
reader may read Appendix D.

If we write j and j0 the indices associated with the basis
elements, pj the former basis elements, q j0 the orthonormal basis
elements, and R−1

j, j0
the transformation matrix, we have:

q j0 (n, l) =
∑

j≤ j0

R−1
j, j0 p j(n, l), (4)

where the dependence in n and l translates that the basis elements
are evaluated at each observed value of the radial order n and the
spherical degree l.

It is essential that the projections be done in a specific order
to obtain the lowest possible value of the merit function. This
will be the subject of the following subsection. Finally, we write
a j =

〈
ν|q j

〉
the projections of the frequencies over the basis ele-

ments. The fitted frequencies are then given by

ν f (n, l) =
∑

j

a jq j(n, l). (5)

Let us add that, thanks to the orthonormalisation, the standard
deviations of the coefficients a j are σ

(
a j

)
= 1 and they are inde-

pendent (their covariance matrix is the identity).

2.2. Smooth component

Now that the mathematical context is given, we may detail the
vector sub-space we selected to fit the smooth component of the
frequency spectrum. As the set of observed radial orders and σi
are usually different for each spherical degree and the smooth
component depends on l, the smooth component basis elements
depend on l. For each value of l, the frequencies will be pro-
jected over the different powers considered. We also point out
that, for each spherical degree, the method requires at least the
same number of frequencies as of powers considered in the for-
mulation. The polynomials are then of the general form:

plk(n, l′) = δll′ pk(n), (6)

1 We denote with the subscript obs both the observed frequencies and
the frequencies derived from a reference model – which constitutes an
artificial target – and we denote by the subscript th the frequencies that
we adjust to those observations.
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where δll′ is the Kronecker delta which compares two spherical
degrees l and l′, pk(n) is a polynomial in the radial order n and
k represents its ordering. We note that the previously defined j
is now separated into two indices, the spherical degree l and the
ordered power k. For a better understanding, the spherical degree
and ordering will be explicitly written for the smooth component
transformation matrix as R−1

l,k,k0
. And the orthonormal basis ele-

ments are

qlk(n, l′) = δll′qlk(n), (7)

which yield:

alk =
〈
ν|qlk

〉
=

∑

n

ν(n, l)qlk(n, l)
σ2(n, l)

, (8)

where thanks to the introduction of δll′ in Eqs. (6) and (7), the
sum over l′ collapses over one fixed degree l. For the smooth
component, we treat separately each spherical degree, the param-
eters associated to a given degree only depend on the frequencies
of this degree.

According to the asymptotic theory of non-radial oscilla-
tions (Gough 1986), we have the following formulation of the
expected frequencies as a function of n and l:

ν (n, l) '
(
n +

l
2

+ ε

)
∆, (9)

where ∆ =

(
2
∫ R∗

0
dr

c(r)

)−1
is the asymptotic large frequency sep-

aration, c(r) is the adiabatic sound speed, and R∗ is the radius at
the photosphere of the star.

It follows that the first two polynomials in n (taken from the
right hand side of Eq. (6)) used to depict the spectrum smooth
component will be:

p0(n) = 1, (10)

p1(n) = n. (11)

Then, to provide the best fit to the observed frequencies, we
methodically tested several combinations of powers to find the
set giving the best agreement with the observations – the obser-
vations actually referring to theoretical models taken as observed
stars in a set of calibrations –, hence the lowest χ2 value. We get:

p2(n) = n2. (12)

At this point, it is of prime importance to note that the con-
struction of the basis via Gram-Schmidt’s process will have to
be done following the ordering of the degrees because it will
allow us to associate the seismic indicators to the projection of
the frequencies on the successive basis elements. For example,
the projection of the frequencies on the 0 order polynomial cor-
responds to a fit to a constant value. This estimates the mean
frequency value. Moreover, we did not include other degrees as
the fit of the smooth component was already very good2. Also,
adding higher order polynomials to the smooth component might
account for some of the glitch oscillating features. It is essential
to avoid such a behaviour as the definitions of the seismic indi-
cators, and the inferences we draw from them, will be impacted.

Furthermore, we could also include a regularisation param-
eter λ (as in Verma et al. 2014, method C) in order to prevent
those behaviours. This requires a new definition of the vector

2 Appendix E shows that adding new elements to the set of basis func-
tions is indeed not relevant.

sub-spaces. The vectors are now of dimension 2N. The first N
components are defined as before while the components from
N + 1 to 2N are 0 for both the frequencies and the glitch polyno-
mial, and the second derivative of the polynomial for the smooth
part. The vectors are now:

ν→ ν′ =
(
νi,i≤N , 0N<i≤2N

)

smooth→ q′j =

q j,
∂2q j

∂n2



glitch→ q′j =
(
q j, 0

)
. (13)

Then, we have to define the scalar product of x and y as

〈x|y〉 =

N∑

i=1

xiyi

σ2
i

+ λ2
2N∑

i=N+1

xiyi. (14)

Therefore, using the definition (3) with the new scalar product
gives another value of the merit function. The inclusion of the
regularisation parameter allows to minimise the oscillation of
the smooth component as the minimisation of the merit func-
tion will lead to a minimisation of the second derivatives of the
smooth component. Let us note that, for the regularisation con-
stant to have an influence on the results, it must at least be of
the order of the inverse of the frequencies standard deviation.
However, we performed some tests with and without regularisa-
tion terms and it appears that the method is very stable without
it. Moreover, we observed in many cases that the results were
degraded when including it (see also Appendix A for an illustra-
tive example). Therefore, it is not necessary to include these reg-
ularisation terms to properly extract the glitch in our method. As
a consequence, the results presented in this paper do not include
such terms. The fact that we use fewer fitting parameters than in
(Verma et al. 2014; they consider polynomials up to the fourth
degree whereas we only reach the second) might explain that the
regularisation constant is not necessary in our case. In addition,
we note that using λ = 0 leads to the classical χ2 fitting.

Finally, as we have three polynomials for each value of l, we
built, for the smooth component, a vector sub-space of dimen-
sion 3 × l which equals 12 if we have four values for l (e.g.
0, 1, 2, 3). As hinted earlier, more than three observed frequen-
cies of each degree are necessary to apply the developed method.

2.3. Glitch

The formulations used by Verma et al. (2014) and Houdek &
Gough (2007) allow us to fit properly the helium and convec-
tion zone glitches but they are highly non linear with respect to
the free parameters. Below is the expression from Verma et al.
(2014), which we adapted:

δνg,Verma = AHeνe−c2ν
2

sin (4πτHeν + φHe)

+
ACZ

ν2 sin (4πτCZν + φCZ) , (15)

where the first term takes the helium glitch into account and the
second, the convection zone glitch. The quantities τHe, φHe, and
AHe represent respectively the acoustic depth of the second ion-
isation zone of helium, the phase of the helium glitch, and its
amplitude. The same goes for the quantities τCZ, φCZ, and ACZ
in the case of the base of the envelope convective zone. Finally,
c2 is the rate of decrease in amplitude of the helium glitch with
the squared frequency.
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Moreover, Eq. (15) is implicit since the frequency appears on
the right-hand side. To adjust at best the frequencies, it is therefore
necessary to use non-linear least square fitting algorithms (e.g.
Levenberg-Marquardt’s method, genetic algorithms, ...) which
can be unstable and are very sensitive to the initial guesses on the
optimal parameters.

For this reason, we decided to adopt the following linearised
functions, expressed as a function of ñ =

(
n + l

2

)
for the helium

glitch:

pHeCk( ñ ) = cos (4πTHeñ) ñ−k, (16)

pHeS k( ñ ) = sin (4πTHeñ) ñ−k, (17)

with k = (4, 5); and, for the convection zone glitch:

pCC( ñ ) = cos (4πTCZñ) ñ−2, (18)

pCS ( ñ ) = sin (4πTCZñ) ñ−2. (19)

To obtain the above expressions we replaced the value of the fre-
quency ν by its first order approximation from the asymptotic for-
mulation (9): ñ∆. We also defined THe = τHe∆ and TCZ = τCZ∆.

Moreover, we approximated the exponential decrease in fre-
quency by the combination of two polynomials in ñ∆. The
degrees −4 and −5 have been chosen to reproduce at best the
decrease of the glitch amplitude towards high frequencies (which
was described using a gaussian by Houdek & Gough 2007). To
do so, we compared the polynomial formulation with the expo-
nential one (Eq. (15)). Let us add that we adjusted the helium
glitch using several sets of degrees and the method proved to be
very stable and the results remained good. Both the fitted coeffi-
cients and defined indicators values were quasi unaffected by the
choice of degrees. The glitch then writes

δνHe( ñ ) =

4∑

k=5

[
cHe,k pHeCk( ñ ) + sHe,k pHeS k( ñ )

]
, (20)

δνCZ( ñ ) =
[
cCZ pCC( ñ ) + sCZ pCS ( ñ )

]
. (21)

Furthermore, such a formulation allows us to move on with
Gram-Schmidt’s process and generate orthonormal vectors to
append the smooth component basis. As the glitch is generated
in the superficial layers, it should not depend on l. Therefore, we
defined the coefficients c and s to be independent of l. By doing
so, the vector sub-space associated with the glitch is only of
dimension 6 and this sub-space is used to complete the orthonor-
mal basis over which frequencies are projected. We are thus able
to write the glitch contribution to the frequencies as

δνg( ñ ) =

4∑

k=5

[
CHe,kqHeCk (̃n,THe) + S He,kqHeS k (̃n,THe)

]

+ CCZqCC (̃n,TCZ) + S CZqCS (̃n,TCZ) . (22)

At this point, one should be aware to the fact that the basis func-
tions depend on the acoustic depths of the second ionisation zone
of helium and the base of the envelope convective zone, respec-
tively – through THe and TCZ –. We observe that the functions
depend non-linearly on the values of THe and TCZ. To preserve
the linearity of the method, it is necessary to provide values for
τHe and τCZ and leave them unchanged to generate the basis and
project the observed frequencies over it. In the case of a theo-
retical model, this estimation is done using the definition of the
acoustic depth, that is:

τHe/CZ =

∫ rHe/CZ

R∗

dr
c(r)

, (23)

where R∗ is the radius at the photosphere, rHe/CZ represents the
radius of the helium second ionisation zone or of the base of the
envelope convection zone (in practice we take the corresponding
local maximum between the two local minima of Γ1 due to the
partial ionisation of He and H for rHe and the last point below
the surface for which ∇ < ∇rad for rCZ).

For observed data, we first generate the optimal model that
does not take the glitches into account. We then fit this model for
the glitches and retrieve the model values of the acoustic depths
as estimators of the optimal values. Therefore, we do not provide
any new means to estimate the involved acoustic depths.

Eventually, we may optimise over the values of τHe and
τCZ to get the best results. This is done through the use of
Brent (1973)’s minimisation algorithm. However, it makes the
problem non linear again. Furthermore, the optimised estima-
tions of τHe and τCZ always remain very close to the theoreti-
cal value and do not decrease significantly the χ2 value. Also,
we observed that by using an initial value of τHe different from
that at the Γ1 maximum (e.g. at the minimum of the helium sec-
ond ionisation zone) and adjusting it, we found back the value
at the maximum. Moreover, we tried to find the value of Yf giv-
ing the best agreement with the helium amplitude (defined in
Sect. 3.3.1) observed in the case of 16 Cyg A at fixed values
of τHe corresponding either to the second local minimum or the
local maximum of the Γ1 profile. We noted that the difference
between both values of Yf is smaller than the standard deviation.
In addition, freeing τHe does not impact the surface helium abun-
dance retrieved in a significant way. This stems from the fact that
the acoustic depth value changes at most of 10% and has little
influence on the measured helium glitch amplitude. Therefore,
the influence on the calculated Yf is negligible as well. Thus we
finally decided to give up that last non-linear minimisation for
theoretical models.

By keeping a fully linear implementation of the spectrum
fitting we guarantee the stability of the algorithm, the inde-
pendence3 of the parameters obtained via the projection on the
orthonormal basis as well as small computation times. This is
essential for it has to be included into a non-linear routine that
searches for a stellar model accounting at best for the seismic
and non-seismic observables.

3. Seismic indicators

The main advantage of the developed method is that it provides –
via Gram-Schmidt’s process – fitted coefficients which are inde-
pendent of each other. It therefore allows us to derive seismic
indicators as uncorrelated as possible. We will define the ones
that we explored in the current section. To characterise those
indicators, we computed their evolution along the grid of mod-
els presented in the next subsection and using the set of modes
observed for 16 Cyg A.

3.1. Models

The grid of models we used was computed using CLES
(Scuflaire et al. 2008a) combined with LOSC (Scuflaire et al.
2008b) stellar evolution and oscillation codes. The models used
the FreeEOS software (Cassisi et al. 2003) to generate the equa-
tion of state table, the reaction rates prescribed by Adelberger
et al. (2011), the metal mixture of AGSS09 (Asplund et al.
2009), and the OPAL opacity table (Iglesias & Rogers 1996)

3 Provided that the measurements of the frequencies are independent,
which is not always the case.
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combined with that of Ferguson et al. (2005) at low tempera-
tures. Moreover, the mixing inside convective regions was com-
puted according to the mixing length theory (Cox & Giuli 1968)
and using the value αMLT = l/Hp = 1.82 (where l is the mixing
length and Hp the pressure scale height) that we obtained via a
solar calibration. Microscopic diffusion was taken into account
in the computation by using Thoul et al. (1994)’s routine. For
each model, the temperature at the photosphere and the condi-
tions above the photosphere are determined by using an Edding-
ton T (τ) relationship. The models have masses ranging from
0.90 M� to 1.30 M� by steps of 0.01 M� and are in the main
sequence phase. Moreover, each model has an initial composi-
tion of Y0 = 0.25 and Z0 = 0.016 to remain close to the solar
case. Finally, unless specified otherwise, the observed frequen-
cies have been corrected for the surface effects using Kjeldsen
et al. (2008)’s prescription of which the coefficients a and b have
been calibrated by Sonoi et al. (2015).

3.2. Smooth component indicators

3.2.1. Large separation

A commonly used indicator is the large separation which holds a
local (i.e. based on the individual frequencies) and an asymptotic
definition. To construct an estimator of the large separation, we
will take inspiration in the asymptotic definition. In the asymp-
totic regime (n � l), Eq. (9) is satisfied. We notice that, in this
formulation, ∆ represents the slope in n of the straight line fitting
at best the frequencies. Moreover, to fit the spectrum smooth
component, we project the frequencies over the basis in a spe-
cific order given by the sequence of degrees (0, 1, 2). This means
that keeping only the expression of order 0 will give an adjust-
ment of the frequencies by a constant term, thus estimating the
mean value. Furthermore, if we now keep the expression of first
order, we adjust the frequencies to a straight line of which the
slope, if we rely on Eq. (9), is ∆. This is the most common way
to define the mean large separation in seismic analyses. How-
ever, we must note that we have different basis vectors depend-
ing on the spherical degree considered. This means that, for each
value of l, we will have a different regression to a straight line,
therefore a different estimate of the large separation ∆l. Using
expressions (4), (5), (7), and (8), we isolate this slope to write:

∆l = al,1R−1
l,1,1. (24)

We may finally average these indicators over l to estimate at best
the large separation. Knowing that the standard deviation of al,1
is 1, (R−1

l,1,1)2 is the variance of ∆l. The weighted mean of the
large separations thus yields

∆ =

∑
l

al,1/R−1
l,1,1

∑
l

1/(R−1
l,1,1)2

· (25)

Finally, we expect from Ulrich (1986) that ∆ should be an esti-
mator of the mean stellar density.

3.2.2. Normalised small separation

Two commonly used indicators are the small separations d01(n)
and d02(n) of which the definitions are:

d01(n) = (ν(n − 1, 1) − 2ν(n, 0) + ν(n, 1)) /2, (26)
d02(n) = (ν(n, 0) − ν(n − 1, 2)) . (27)

They allow a measurement of the spacing between the obser-
vations and the asymptotic relation (9). However, they happen
to be sensitive to the surface effects. Therefore, Roxburgh &
Vorontsov (2003) suggested to divide these expressions by the
large separation in order to minimise such effects. Indeed, they
showed that those ratios are almost independent of the structure
of the outer layers of the star.

We thus introduce estimators of these ratios. Such ratios rep-
resent the spacing between ridges of spherical degrees 0 and 1
for Eq. (26) and degrees 0 and 2 for Eq. (27) in the échelle dia-
gram (Grec et al. 1983). In a more general way, we approximate
the mean difference between the ridges of spherical degrees 0
and l by comparing the mean values of the frequencies for those
degrees. That is (ν0 − νl) /∆0. Assuming expression (9) to be
exact, this difference is n0 + ε0 − (nl + εl + l/2). Then, we added
−n0 + nl + l/2 to the expression to make its value come close to
ε0 − εl. We then obtained the following expression:

r̂0l =
ν0 − νl

∆0
+ nl − n0 +

l
2
, (28)

where νl and nl are respectively the weighted mean values of
ν(n, l) and of n for the spherical degree l in accordance with the
definition of the scalar product. In addition, the mean value νl
equals al,0R−1

l,0,0 as it is the fitting of the frequencies of degree l
to a constant value. Finally, we stress that the above expression
is slightly different from Eqs. (26) and (27) as they represent the
local spacing between ridges in the échelle diagram and Eq. (28)
corresponds to the mean spacing. Figure 1 shows the evolution
of those indicators along the grid presented in Sect. 3.14 for the
set of modes observed in 16 Cygni A. The x-axis is the large sep-
aration of spherical degree 0 as we defined above and the y-axis
the considered indicator. We also display the observed values for
16 Cygni A (HD 186408) using the frequencies determined by
Davies et al. (2015). In blue is the observed value and, in red, the
value corrected for the surface effects according to Kjeldsen et al.
(2008)’s prescription. We note that these indicators are almost
insensitive to surface effects excepted for the case of r̂02, which
value is changed by about 1σ. We only show the standard devi-
ation for the estimators of the small separation as the one for the
large separation is too small to be visible on the plot. Indeed, we
computed a standard deviation for ∆0 of σ (∆0) = 5 × 10−3 µHz.

To provide a comparison, we computed the evolution of the
“usual” indicators along the same tracks as in Fig. 1 and display
it in Fig. B.1. We observe that the new indicators exhibit the
same behaviour as the usual ones and provide smaller standard
deviations, therefore, tighter constraints.

We note on Fig. 1 that r̂02 is a very good indicator of the
core conditions and should hold information about the evolution-
ary stage on the main sequence as its evolution is almost mono-
tonic. It is therefore very similar to the small separation that has
been shown to carry information on the evolution (Christensen-
Dalsgaard 1988) as it is sensitive to the sound speed gradient
which in turn is sensitive to the chemical composition changes.
On the other hand, r̂01 is not a good indicator of the evolution but
carries additional information. For example, de Meulenaer et al.
(2010) showed that, for stars with masses and metallicities close
to that of α Centauri A (HD 128620), it should provide an upper
limit on the amount of convective-core overshooting. We also
draw attention to the fact that r̂01 shows a turn off for evolved
stars. This means that we have to be cautious when fitting mod-
els to the observations as, for specific sets of input physics, there

4 However, in the case of the indicator r̂01 we used a 0.02 M� step for
a better visibility.
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Fig. 1. Seismic HR diagram defined with the new indicators r̂0l and
computed along the grid presented in Sect. 3.1. The masses increase
from right to left. The blue marker shows the observed value for 16 Cyg
A while the red one shows the value corrected for the surface effects
following Kjeldsen et al. (2008)’s prescription. The thick line represents
the track for 1.06 M�. The blue line has been computed for Y0 = 0.27,
the orange one for αMLT = 1.5, and the pink one for (Z/X)0 = 0.018. All
the coloured lines have been computed for 1.06 M�.

exists inaccessible regions. This should allow to constrain the
input physics.

Finally, r̂03 does not provide new information. In addition,
we may observe from the comparison between the observations
and the theoretical tracks that the expected masses retrieved from
the different indicators are in agreement. Indeed, from r̂01, we
should expect masses between 1.06 M� and 1.11 M�. Then, from
r̂02, the expected values are in between 1.06 M� and 1.07 M�.
Again, r̂03 does not add some information as the values range
from 1.05 M� to 1.06 M�. As a consequence, we would expect
the mass of 16 Cygni A to be around 1.06 M�. This value has
been highlighted on the figure by using a thick line. However,
we must observe that this does not provide a precise estimate
of 16 Cyg A mass as we only tested a specific chemical com-
position – Y0 = 0.25, Z0 = 0.016 – as well as given choice

of αMLT = 1.82. A proper adjustment is needed to draw con-
clusions. Those values are only given to illustrate the compati-
bility between the different indicators. We also show the influ-
ence of the composition and αMLT on the coloured tracks. The
blue line is for a higher initial helium abundance. Then, the
orange line depicts the influence of a lower value of αMLT.
Finally, the pink line shows how a higher metallicity modifies the
results. We observe in all cases that the inferred mass should be
lower.

3.2.3. ∆0l indicators

As it has been shown in several studies, the combination
of the small separation ratios r01 and r10 first introduced by
Roxburgh & Vorontsov (2003) into r010 allows to provide
inferences about the stellar central mixed region extension
(Popielski & Dziembowski 2005; Deheuvels et al. 2010; Silva
Aguirre et al. 2011). Indeed, the mean value and slope of this
indicator occupy very specific regions in the parameter space
according to the extent of the central mixed region. This should
therefore provide constraint on the amount of overshooting nec-
essary to reproduce observations. As an example, an extensive
study of several Kepler targets has been realised by Deheuvels
et al. (2016) who have been able to provide constraints on the
overshooting parameter αov for eight of those targets. In the
framework of this paper, the indicator r̂01 represents an estimator
of the mean value of r010. We may therefore build an indicator
for its slope as follows:

∆0l =
∆l

∆0
− 1, (29)

with ∆l the large separation for modes of spherical degree l
defined by Eq. (24). It is straightforward to show that, in the
asymptotic regime, ∆01 indeed represents the slope of the fre-
quency ratio r01.

As for the small separation indicators, we computed the evo-
lution of such indicators along the grid of models presented in
Sect. 3.1 to demonstrate their regularity and validity. This is
shown in Fig. 2. We also display the observed value for the case
of 16 Cygni A. This value is corrected for the surface effect using
Kjeldsen et al. (2008)’s prescription. As in Fig. 1, the error on ∆0
is too small to be visible. Moreover, we show the influence of a
change in the composition and of αMLT with the coloured tracks.
The colours are the same as in Fig. 1.

Again, it is possible to get an estimate of the mass value for
the given composition and physics. From ∆01, we expect masses
ranging from 1.06 M� to 1.07 M�.Then, from ∆02, we expect
that they lie between 1.05 M� and 1.07 M�. Finally, from ∆03,
the mass should be between 1.00 M� and 1.05 M�. This time,
we observe a slight incompatibility between the first two indi-
cators and the last one. Let us add that we highlighted the value
of 1.06 M� as in Fig. 1. Moreover, we note that, as opposed to
the small separation ratio indicators, the relative behaviours of
the coloured tracks are different for the three indicators. This
could allow to discriminate various choices in the physics of the
models considered as they represent different values of αMLT,
Y0, and Z/X0 and also to solve the slight mass discrepancy
observed.

Finally, as detailed above, the simultaneous use of both r̂01
and ∆01 allows to provide estimations of the extent of stellar
mixed cores. To illustrate this, we plotted main sequence evo-
lutionary tracks for a 1.2 M�, Y0 = 0.25 and X0 = 0.734 with
several overshooting parameter values ranging from 0.005 to
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0.3. The overshooting parameter gives the extent of the mixed
core above the Schwarzschild limit through d = αovmin

(
Hp, h

)

where Hp is the pressure scale height and h the thickness of the
convection zone. This is shown in Fig. 3. The ZAMS is at the
converging point of the tracks and the TAMS is at their end. We
observe that the various tracks occupy very specific regions in
the (∆01,r̂01) diagram. Moreover, we note the striking resem-
blance of Fig. 3 and Fig. 3 of Deheuvels et al. (2016). This
should allow us to constrain the amount of overshooting. How-
ever, Deheuvels et al. (2016) noted that for this diagnostic tool
to be efficient, the mean large separation of the target should not
exceed ∼110 µHz and mixed modes should not be present in the
oscillation spectrum.

3.2.4. ε̂

To provide an estimate of ε, we define the following vector sub-
space, where frequencies are described as

ν(n, l) =

(
n +

l
2

+ ε

)
∆̂ =

(
n +

l
2

)
∆̂ + K, (30)

where ∆̂ and K are free parameters.
Then, we define an orthonormal basis over this sub-space: q̃0

and q̃1. Finally, by projection of the frequencies over this basis
and identification of the several coefficients with the asymp-
totic formulation, we can retrieve an expression for ε̂, the
estimator of ε. We note that this projection also provides an
expression to estimate the large separation that is different from
Eq. (25).

Figure 4 shows the evolution of the indicator ε̂ along the
grid presented in Sect. 3.1 but with a step of 0.02 M�. We
may observe that this indicator is almost insensitive to the
mass for the early stages of the main sequence. The influ-
ence of the mass only becomes visible when the stars become
older. Moreover, the red marker in Fig. 4 shows the observed
value for 16 Cygni A. We note a disagreement between theo-
retical and observed data. This disagreement can however be
tackled by correcting the observed frequencies for the surface
effects. This is what the blue and green markers represent. For
the blue one, we have computed a correction to the surface
effects following Kjeldsen et al. (2008)’s prescription. Then,
for the green one, we have computed the correction prescribed
by Sonoi et al. (2015). Therefore, it seems reasonable that the
indicator we defined could be of some use to constrain the
surface effects. It could provide a complementary method to
that of Roxburgh (2016). Indeed the method presented uses
differences between observed and model ε values – under the
hypothesis that both the model and observed star have the same
inner structure – to isolate only the surface contribution to
the measured frequencies. This allows to account for surface
effects without the need of empirical corrections. On the other
hand, the present indicator should allow to discriminate sev-
eral surface effects corrections without the need of any physical
assumption.

3.3. Glitch indicators

3.3.1. Helium amplitude

With the aim of retrieving the photospheric helium abundance,
we built an indicator of the helium glitch amplitude. Verma
et al. (2014) obtain their indicator via an integration of the glitch
amplitude over the spectrum. We prefer taking advantage of the
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Fig. 2. Seismic HR diagram defined with the new indicators ∆0l and
computed along the grid presented in Sect. 3.1. The masses increase
from right to left. The red marker shows the observed value corrected
for the surface effects following Kjeldsen et al. (2008)’s prescription.
The thick line represents the track for 1.06 M�. The blue line has been
computed for Y0 = 0.27, the orange one for αMLT = 1.5, and the pink
one for (Z/X)0 = 0.018. All the coloured lines have been computed for
1.06 M�.
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Fig. 3. MS evolutionary tracks in the (∆01,r̂01) plane for models of
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Fig. 4. Evolution of ε̂ along the grid presented in Sect. 3.1. The masses
increase from top to bottom. The step is here of 0.02 M�. The red, green,
and blue markers respectively represent the observation for 16 Cygni A,
the observation for 16 Cygni A corrected for the surface effects using
Kjeldsen et al. (2008)’s prescription and the one corrected using Sonoi
et al. (2015)’s prescription.

scalar product and define the indicator as the norm of the helium
glitch component, thus generating the following expression:

AHe =

√
C2

He,5 + S 2
He,5 + C2

He,4 + S 2
He,4. (31)

Thanks to the orthonormalisation, it is independent of the
other indicators and its standard deviation equals 1. We calcu-
lated the evolution of this indicator with respect to the surface
helium mass fraction Yf and the surface mass fraction of metals
Zf . This is shown in Figs. 5 and 6. Figure 5 has been computed
for stars with a fixed (Z/X)0 ratio of 0.022 for several surface
helium mass fractions, displayed on the abscissa, and for the
three values of the mass shown in the legend. To have a refer-
ence, we imposed the models to have a fixed value of the large
separation – the one observed for 16 Cyg A. In a similar way,
Fig. 6 has been computed for a fixed value of Y0 = 0.24 and for
several masses shown in the legend. The helium glitch ampli-
tude has then been computed for the values of Zf displayed on
the abscissa. We insist on the fact that these tracks do not rep-
resent the evolution of the helium amplitude with the surface
composition along the evolution of a given model. Instead, each
point corresponds to a given stellar model that fits the observed
16 Cygni A large separation for a given surface composition.
This means that those models were not selected from the grid
presented in Sect. 3.1.

We observe in Fig. 5 an increasing trend in the helium glitch
amplitude with the helium mass fraction as well as with the
mass. This has to be expected as a larger quantity of helium
inside the star would lead to a more important depression of the
first adiabatic index Γ1 at the second ionisation zone of helium,
and, therefore, a glitch of greater amplitude. Moreover, we also
show the influence of the surface effects by computing the ampli-
tude evolution for a 1.052 M� star for which the surface effects
have been taken into account via Kjeldsen et al. (2008)’s pre-
scription (dot-dashed line). It is apparent that they have little
influence on the amplitude as the values remain in the 1σ error
bars of the uncorrected models. This was expected as the glitch
is of greater amplitude in the low frequencies regime while the
surface effects corrections are greater in the high frequencies
regime.

Furthermore, as shown in Fig. 6, the glitch amplitude and
the metallicity are anti-correlated. This corroborates Basu et al.
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Fig. 5. Evolution of the helium glitch amplitude AHe with the surface
helium abundance Yf . Each track corresponds to a given mass, written in
the legend. The dot-dashed line represents the amplitude for a 1.052 M�
model of which the frequencies have been corrected for surface effects
as in Kjeldsen et al. (2008). Every model has an initial heavy elements
abundance of (Z/X)0 = 0.022. Each point has been computed with the
same large separation to remain at the same evolutionary stage.
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Fig. 6. Evolution of the helium glitch amplitude AHe with the surface
heavy elements abundance Zf . Each track corresponds to a given mass
labeled in the legend.

(2004)’s observations. Therefore, we are facing a degeneracy
and the glitch amplitude alone will not be sufficient to estimate
properly the surface helium mass fraction. Thus, the smooth
component indicators defined above will be of great help. This
clearly shows that the AHe–Yf relation is model dependent which
should never be forgotten.

Figure 7 illustrates this degeneracy. It represents the profile
of Γ1 as a function of the reduced radius in the superficial lay-
ers of stars of a fixed large separation but with several chemical
compositions. We immediately notice that both an increase of the
surface helium abundance and a decrease of the surface heavy
elements abundance lead to a minimum that increases in mag-
nitude. Therefore, the helium glitch amplitude becomes greater
as well. We provide an interpretation of this phenomenon in
Sect. 4.2.

3.3.2. Convection zone amplitude

The definition of the envelope convective zone glitch amplitude
we provide is very similar to that of the helium glitch and is the
following:

ACZ =

√
C2

CZ + S 2
CZ. (32)
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Fig. 7. Evolution of Γ1 as a function of the reduced radius in the super-
ficial layers of stars of fixed large separation. Every star has a mass of
1.052 M�. Two families of curves are displayed. The black ones have a
fixed value of the ratio between the initial hydrogen and heavy elements
abundances of (Z/X)0 = 0.022 and variable initial helium abundance.
The red ones have a fixed initial helium abundance of Y0 = 0.24 and
a variable initial heavy elements abundance. The different values are
displayed on the figure.

We expect this indicator to be a proxy of the sharpness of the
transition between the envelope convective zone and the radia-
tive zone. Again, thanks to the orthonormalisation, it is indepen-
dent of the other indicators and its standard deviation is equal
to 1. We present in Fig. 8 its evolution with the importance of
the undershooting, characterised by the coefficient αunder. This
coefficient determines the size d of the undershooting region
at the bottom of the convective envelope. This size is given by
d = αundermin

(
Hp, h

)
where Hp is the pressure scale height and

h the thickness of the convection zone. In the undershoot region,
the temperature gradient is set to the adiabatic one and the mix-
ing is assumed to be instantaneous.

We expect an increase of ACZ with αunder as the introduc-
tion of undershooting in a stellar model will create a discontinu-
ity of the temperature gradient. The temperature gradient jump
increases with the value of αunder. Thus, the glitch amplitude
increases as well. This is what we show in Fig. 8 where the
computed models have a mass of 1.052 M�, an initial hydrogen
mass fraction of X0 = 0.744, and an initial metal mass frac-
tion of Z0 = 0.016. As for the case of the helium amplitude
evolution, we kept a fixed large separation – which is that of
16 Cyg A – for each model. Moreover, we noted that each com-
puted model was at the same evolutionary stage (constant cen-
tral hydrogen mass fraction). Therefore, the observed effect is
not evolutionary but rather the effect of the temperature gradient
discontinuity as expected. Finally, we may add that, when set-
ting the temperature gradient to the radiative one in the under-
shoot region, we do not observe any significant trend in the
amplitude with αunder. We may thus conclude that we observe
the effect of the temperature gradient and not of the chemical
composition.

4. Method characterisation

4.1. Capabilities

For the observed data, we have chosen the frequencies com-
puted by Davies et al. (2015) for the component A of the binary
system 16 Cygni (HD 186408). We come back to the particu-
lar case of 16 Cyg A in Sect. 5. Figure 9 shows the difference

0.00 0.05 0.10 0.15 0.20 0.25
αunder

2
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Z

1.052M⊙

Fig. 8. Evolution of the convection zone glitch amplitude ACZ with αunder
for a star of mass 1.052 M�, X0 = 0.744, Z0 = 0.016 and at a constant
value of the large separation.
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Fig. 9. Fitted glitch to 16CygA (HD 186408) data (Davies et al. 2015).
Only the l = 0 fitted curves are displayed.

between the observed frequencies and the smooth component
of the fitted frequencies, the fitted helium glitch alone and the
fitted helium and convection zone glitches. Only the l = 0
fitted curves are displayed. We observe that the fit is good
and that the helium glitch has been properly isolated. How-
ever, the convection zone glitch is of very low amplitude, com-
pared to the helium glitch, and has a negligible contribution.
This is visible in the negligible improvement of the χ2 value
from the results without including the convective zone glitch
(about 10% variation). These results are similar to those of
Verma et al. (2014).

4.2. Limitations

The presented method has been developed for the study of
solar-like pulsators and to provide a comprehensive analysis of
their oscillation spectra. However, it is not yet adapted to study
evolved stars which exhibit mixed modes.

In addition, from masses around 1.25 M� and above as well
as for the highest values of the helium abundances considered
(from Yf ∼ 0.195 and above), the evolution of the helium glitch
amplitude with the surface helium mass fraction is less mono-
tonic and inferences become unreliable. Figure 10 shows this
limitation. Indeed, for 1.25 M� we observe a very sharp increase
of the helium amplitude as we defined in Sect. 3.3.1 for a quasi
constant surface helium mass fraction. This corresponds to a
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Fig. 10. Evolution of the helium glitch amplitude AHe with the surface
helium abundance Yf for high masses.

decrease of the surface Z/X ratio which is shown in Sect. 3.3.1
to lead to a higher amplitude.

Also, we observe for 1.3 M� that the last point (Yf ∼ 0.197
and AHe ∼ 96) moves backwards. This is due to microscopic
diffusion. We observe that the size of the convective envelope
decreases with the initial helium abundance. This leads to a
more efficient gravitational settling as the diffusion velocities
are greater close to the surface. Therefore, the surface abun-
dance becomes smaller than for the previous point that had a
lower initial helium abundance. We observe the same decrease in
the surface metallicity which explains the increase of the ampli-
tude even though the surface helium mass fraction remained
constant.

We also noted in Sect. 3.3.1 that the surface abundance of
metals has a relevant influence on the helium glitch amplitude
and separating its contribution from that of the helium is not
an easy task. To investigate such a behaviour, we developed a
toy model for the first adiabatic index Γ1 which is thought to
be the main contributor to the helium glitch amplitude (Gough
1990; Houdek & Gough 2007). In this model, we trace back
the influence of the helium and metals abundances on the dip
of Γ1 in the helium second ionisation zone. More information
about the construction of this model is given in Appendix C.
Using it, we were able to test the influence of the chemical com-
position decoupled from its evolutionary effect on the tempera-
ture and density profiles. To do so, we artificially modified the
chemical composition profile of a reference model (black curve
in Fig. 11), without changing its temperature and density pro-
files, to match the surface abundance, in either metals or helium,
of a second reference model. This way, we were able to isolate
the contribution of the chemical composition alone. Figure 11
shows the comparison between the helium second ionisation
zone toy models with modified chemical composition profiles
only (blue curves) and toy models with the same composition
but for which its effect on temperature and density have been
taken into account (red curves). We observe in the top panel
that the effect of the helium abundance dominates over the effect
of temperature. In the bottom panel, we observe that the metal
abundance alone does not modify by a significant amount the dip
in the helium second ionisation zone. However, when taking its
influence on the temperature and density profiles into account,
the effect becomes significant. This allows to better understand
the degeneracy in composition on the helium amplitude. One
effect, that of the helium abundance is direct on the shape of
the Γ1 profile in the helium second ionisition zone while the sec-
ond, that of the metal abundances, is indirect as it influences the
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Fig. 11. Comparison with a reference model (black curve) of the toy
model Γ1 profiles in cases for which the temperature and density profiles
have been decoupled from the composition profiles (blue curves) and
coupled cases (red curves). The dashed lines have a common decreased
abundance of the considered element and the dotted lines have an
increased abundance. Top panel: effect of the helium abundance; bot-
tom panel: effect of the metals abundance.

temperature and density profiles which in turn modify the Γ1
profile.

Finally, we observe that, in a lnP − lnT diagram, the curves
for the different models in the temperature region of the Γ1 dip
are parallel to each other but at various height. A higher lnP−lnT
curve corresponds to a shallower Γ1 dip. We also observe this
behaviour with a fixed composition and a variable mass. Higher
masses models have lower curves and deeper depressions in Γ1.
Therefore, the toy model allows to understand the influence of
the mass on the helium glitch amplitude as well.

5. Illustration with 16 Cygni A (HD 186408)
observations

16 Cyg A (HD 186408) is one of the brightest stars in the Kepler
field of view. It belongs to a binary system of solar analogs, both
exhibiting solar-like pulsations. The quality and length of the
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Table 1. Observed seismic indicators.

Indicator Value σ
Kjeldsen Sonoi

∆( µHz) 104.088 103.611 0.005
AHe 30.4 30.1 1.0
ACZ 2.2 1.5 1.0
ε 1.3288 1.4086 0.0009

r̂01 0.0362 0.0362 0.0002
r̂02 0.0575 0.0561 0.0003
r̂03 0.1187 0.1184 0.0008
∆01 4.6 × 10−3 3.8 × 10−3 0.1 × 10−3

∆02 5.9 × 10−3 4.8 × 10−3 0.1 × 10−3

∆03 14.9 × 10−3 10.6 × 10−3 0.6 × 10−3

Table 2. Adjusted stellar parameters.

Quantity Value σ
Kjeldsen Sonoi

n0, n, n2 n−1

M(M�) 1.06 1.06 1.06 0.02
R(R�) 1.218 1.219 1.223 0.001

age (Gyr) 6.8 6.9 7.1 0.1
X0 0.684 0.697 0.685 0.010

(Z/X)0 0.035 0.031 0.036 0.002
Yf 0.242 0.232 0.240 0.028

[Fe/H] 0.188 0.131 0.199 0.03

collected time series make it the ideal subject to test the method.
It should be noted that we do not provide a detailed study of
16 Cygni A. Indeed, we only present here the capability of the
method to provide structural constraints. A detailed study will
be the object of a future paper.

5.1. Methodology

To obtain constraints on 16 Cyg A, we compute the value
of the seismic indicators using the frequencies determined by
Davies et al. (2015). We have corrected the surface effects for
the observed frequencies by using the power law prescribed by
Kjeldsen et al. (2008) and the a and b coefficients fitted by Sonoi
et al. (2015) as a function of Teff and g. The authors have done
this coefficient adjustment by comparing the adiabatic frequen-
cies of patched models based on 3D simulations and that of
unpatched standard 1D models. We then fit the observed values
of ∆, r̂01, r̂02, and AHe with the age, mass, initial mass fraction
of hydrogen, and the initial heavy elements over hydrogen abun-
dance ratio as free parameters. To do so, we select an initial guess
value of X0 and derive the best fit values of ∆, r̂01, and r̂02. This
results in a set of values for the mass, the age, and (Z/X)0. Then,
the adjustment is done by applying the secant method to find
the value of X0 in best agreement with the target AHe. At each
step of the secant algorithm – at each value of X0 –, Levenberg-
Marqardt’s algorithm (L-M) computes the optimal set of stellar
parameters giving the best fit of ∆, r̂01, and r̂02. Finally, when
we have a good estimate for AHe, we use L-M’s algorithm one
last time to derive the complete set of values for the mass, the
age, X0, and (Z/X)0 fitting the observed parameters. We used
the secant method in order to diminish the computational time
needed to converge towards the solution.
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Fig. 12. Helium amplitude (solid line) and (Z/X)0 ratio (dotted line) ver-
sus the initial hydrogen abundance. The horizontal solid line represents
the target value for the amplitude – corrected for the surface effects fol-
lowing Kjeldsen et al. (2008) – while the dashed lines represent the 1σ
interval. The horizontal dotted line is the value of the amplitude without
surface effects correction.

5.2. Results

The values of the relevant seismic indicators as well as the asso-
ciated standard deviations computed from the observed frequen-
cies are given in Table 1. The column labeled Kjeldsen refers
to the observed indicators corrected for the surface effects using
Sonoi et al. (2015)’s coefficient fitted to Kjeldsen et al. (2008)’s
prescription as explained in Sect. 3.1. The Sonoi column cor-
responds to the correction of surface effects using a Lorentzian
profile as in Sonoi et al. (2015). We also derived the seismic
indicators while adding smooth basis elements with n−1. As the
frequencies are projected in a specific order to build the seismic
indicators, only the glitches amplitudes are affected and we have:
AHe = 27.6 and ACZ = 3.3. Using the methodology described
above, we managed to derive the stellar parameters given in
Table 2 for the different sets of observed seismic indicators. We
note that changing the treatment of surface effects or adding the
n−1 basis elements have an impact on the fitted parameters com-
parable to that of the frequencies uncertainties. Thus, we will
only discuss here the parameters adjusted to the data corrected
for the surface effects using Kjeldsen et al. (2008)’s prescrip-
tion and without adding n−1 basis elements. The parameters we
derived do not constitute a detailed characterisation of the target
16 Cyg A. Rather, they illustrate the ability of the method to pro-
vide constraints on a solar analog. Indeed, only one single set of
input physics was tested. Therefore, the standard deviations tend
to be underestimated as they are the ones intrinsic to the method.
The abundances used for the computations were the solar ones
determined by Asplund et al. (2009). Let us add that we obtain a
surface helium abundance of Yf = 0.242±0.028 which lies in the
interval obtained by Verma et al. (2014), Yf,V ∈ [0.231, 0.251].
This is comforting us in the idea that the developed method is
efficient in isolating the glitches and drawing inferences from
their signatures. In Fig. 12, we show the evolution of the helium
glitch amplitude resulting from the three parameters adjustment
of ∆, r̂01, and r̂02 as a function of X0. We also show the evolution
of the value of (Z/X)0. The very linear trend justifies that we
used the secant method to provide successive estimates of AHe in
order to lessen the computational charge. In addition, we illus-
trate both the observed value for AHe and the corrected value
under Kjeldsen et al. (2008)’s prescription. We note that the cor-
rected value is of about 0.79σ lower than the uncorrected one.
Using Sonoi et al. (2015)’s prescription only leads to a 0.55σ
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Fig. 13. Comparison between the observed helium glitch δνo (solid line)
and the one resulting from the best fit model δνm (dot-dashed line), for
l = 0. We also display the observed glitch as a function of the fre-
quencies (errorbars) as well as the best model glitch associated with the
theoretical frequencies (diamond).

0.4 0.6 0.8
ν/∆ modulo 1

1600

1800

2000

2200

2400

2600

2800

ν
(µ

H
z)

νo

νm

Fig. 14. Comparison between the observed frequencies (diamonds) and
the best model frequencies (circles) in an échelle diagram.

variation of the measured amplitude. This demonstrates that the
surface effects have a small influence on the amplitude we derive
using the method. Also, we retrieved a value of 970.97 s for τHe
and 3042.32 s for τCZ. As they were fixed to model values and,
as a consequence, were neither parameters nor constraints of the
adjustment, we do not provide uncertainties. However, we may
compare their values to the ones adjusted by Verma et al. (2014).
They obtained τHe ∈ [868, 944] s and τCZ ∈ [2992, 3234] s. We
observe that τCZ lies in the interval calculated by Verma et al.
(2014) while the value of τHe is slightly above the upper limit.
However, as we show in Sect. 2.3 this does not impact the infer-
ences drawn from the helium glitch amplitude in a significant
way. To illustrate this statement, we freed the value of τHe (but
not that of τCZ as the convection zone glitch is of negligible
amplitude compared to that of the helium glitch). The relative
change between the optimised τHe and its estimator is of only
6%. Moreover, the observed value of the helium glitch ampli-
tude remains unchanged compared to its standard deviation (we
observe a change of 0.06σ). As expected, the best fit Yf also
remains untouched. At this point, one should be reminded that
we focus on the glitch amplitude to draw our inferences. And,
as we showed in Sect. 2.3, the exact location of the glitch does
not have a significant impact on its amplitude as well as on the
derived surface helium abundance. Finally, Fig. 13 shows the fit-

ted helium glitches5 for the observed data and the 4 parameters
best fit model. It is visible that the observed and fitted glitches
are close in amplitude and period. This demonstrates the ability
of the method to both isolate the glitch and the related param-
eters and to provide a model reproducing at best those param-
eters. We also show in Fig. 14 the comparison in an échelle
diagram of the observed frequencies and those of the best fit
model. We observe in this last figure that the smooth component
of the spectrum (not visible in the previous figure) is properly
adjusted. Thus, by fitting the set of indicators ∆0, r̂01, r̂02, and
AHe we obtain a good representation of the observed frequen-
cies. We also show in Appendix F the adjustment to frequen-
cies corrected for surface effects using a Lorentzian profile as
in Sonoi et al. (2015). We observe in Fig. F.1 that the agreement
between the model and observed glitches is better than in Fig. 13.
However, we also note in the corresponding échelle diagram
(Fig. F.2) that there is an offset between observed and model
ridges. This corresponds to different values of ε̂. Figure 4 also
illustrates this behaviour as it is clearly visible that only Kjeldsen
et al. (2008)’s prescription allow to reproduce the observed value
for ε̂.

6. Discussion and conclusions

6.1. Principle

In the present paper, we provide a new method that uses as much
of the available seismic information as possible. Indeed, we
take advantage of the information contained in both the glitches
and the smooth component (usually discarded in glitches anal-
yses but then used separately for forward seismic modelling,
see Verma et al. 2014 for example) of the spectrum to define
indicators that are as independent as possible of each other. To
do so, we take advantage of Gram-Schmidt’s algorithm to cre-
ate an orthonormal basis over which we project the frequen-
cies. The obtained coefficients are therefore independent of each
other and consist in a linear combination of the frequencies.
Thus, using the appropriate combination of those allows us to
define uncorrelated indicators. Such indicators are constructed
in order to reproduce the behaviour of “usual” indicators such as
the large frequency separation. Up to this day and to our knowl-
edge, no method, has been proposed to provide proper correla-
tions between the smooth and glitch indicators as they are built
separately. Therefore, our method provides the asteroseismolo-
gists with new diagnosis means.

6.2. Advantages

As the method only relies on linear algebra, it is very stable and
the computation times are negligible – of the order of a fraction
of a second –. Thus, it could easily be implemented in stellar
model fitting algorithms, which are non-linear, without impact-
ing the total computational time. This can be done with any algo-
rithm as the method only focuses on the definition of new seis-
mic indicators and does not rely on the physics of the model
itself. Let us add that the defined indicators should be used in
combination with non-seismic constraints through a single merit
function while searching for a stellar model in order to obtain
proper covariances between the inferred quantities – which is not
often the case in seismic analyses. The illustration for 16 Cyg A

5 We do not display the envelope convective zone glitch as its ampli-
tude is negligible compared to that of the helium glitch, as mentioned
in Sect. 4.
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truly demonstrates the possibility to use the new indicators to
provide further constraints on stellar structure in the framework
of forward seismic modelling.

In addition, the usual indicators often hold a local defini-
tion and may use correlated information while the new ones
are built in a way that the information used is averaged over
the whole frequency range and that it is not redundant (each
observed frequency is used only once for each indicator). This
results in smaller standard deviations and smoother behaviours.
Appendix B shows the evolution of the classical indicators r01(n)
and r02(n) as defined by Roxburgh & Vorontsov (2003). We
indeed observe that the new definitions of the indicators give
smaller error bars while preserving the expected trends, provid-
ing tighter constraints. Finally, the method has the advantage that
it can be implemented even in cases where some modes are miss-
ing. It is not the case of the “usual” methods as they need suc-
cessive modes to define some of their indicators. For example,
the classical local definitions of the large separation and second
differences require at least two consecutive frequencies. There-
fore, whenever some modes are missing, pieces of information
might be discarded.

6.3. Information carried by the indicators

We have defined indicators that provide estimates for the clas-
sical indicators that are the large separation, ∆ and ∆l, and the
small separation ratios, r̂0l. As expected, ∆ provides an estima-
tion of the stellar mean density (Ulrich 1986). Also, we defined
the indicators ∆0l which combine the large separations associ-
ated with the spherical degrees 0 and l which are known to
give an estimate of the resonant cavity of the l degree modes
(Monteiro 2002). Those indicators provide an estimator of the
slope of r010 which, combined with r̂01 can be used to constrain
the overshooting parameter as shown in Fig. 3.

Moreover, we observe in Fig. 1 that the indicator r̂02, defined
to estimate the small separation ratio between the spherical
degrees 0 and 2, is a proper indicator of the evolution of the
star, as expected from Christensen-Dalsgaard (1988). Also, we
observe that the indicator r̂01 presents a degeneracy, as a turn-
off occurs in the ∆0–r̂01 plane, and there is an inaccessible
region. This is a very interesting observation as it should provide
tight constraints on the stellar structure. Indeed, we show that a
change in composition or in the value of αMLT allows to modify
that region. It will therefore be necessary to use such parameters
to reproduce observed values.

Furthermore, Fig. 4 shows that we might get constraints on
the surface effects from the indicator ε̂ we defined. It should
allow to discriminate from several empirical formulations meant
to account for the surface effects. We have tested both formu-
lations from Kjeldsen et al. (2008) and Sonoi et al. (2015) as
an illustration of the diagnosis power of the indicator ε̂. How-
ever, we are aware of the existence of the formulation from Ball
& Gizon (2014) and it should also be inspected in further stud-
ies. Besides, we showed that the helium amplitude indicator is
almost unaffected by the surface effects as it has to be expected
(see for example Fig. 12). Indeed, empirical surface effects cor-
rections are important for the high frequencies compared to νmax
while the glitch is of great amplitude only for the low frequen-
cies. Also, the helium glitch amplitude should allow to draw
inferences on the surface helium abundance as shown by Fig. 5.
However, attention has to be paid as it is also anti-correlated
with the metallicity (see Fig. 6). We have demonstrated via a
toy model for the first adiabatic index that both effects on the
amplitude stem from the position of the adiabat which in turn

determines the amplitude of the second local Γ1 minimum due
to helium partial ionisation.

In addition, we observe that the convective zone glitch ampli-
tude has a significantly lower amplitude than that of the helium
glitch and is correlated with the amount of undershooting at the
base of the envelope convection zone (in agreement with Verma
et al. 2014).

Finally, let us add that it is possible to define other indica-
tors than those presented in this paper. This should therefore be
carefully studied to take advantage of as much of the available
information as possible.

6.4. Limitations

However, we show that the method is only fit to draw infer-
ences about solar-like stars, that is low-mass stars on the main-
sequence. Indeed, Fig. 10 illustrates that from masses around
1.3 M� and above, diffusion plays an important role and the rela-
tion between helium surface abundance and the helium glitch
amplitude is not monotonic anymore. Therefore, the method will
have to be adapted for massive and evolved stars.

Moreover, one could argue that using model values as esti-
mators of the acoustic depths of the glitches is a major drawback
of the method. However, the proposed method does not focus
on those quantities. Rather, we focus on the information that the
amplitude of the glitch (not the period of the signal) carries. This
means that we only need proper, but not exact, estimators for the
acoustic depths in order to draw inferences. Indeed, we showed
in Sect. 2.3, in the case of the helium glitch, that a small excur-
sion from the estimated value (either by manually setting another
value, that of the second minimum in the first adiabatic index for
the helium glitch, or by optimising over its value) does not lead
to a significant change in the measured amplitude. Therefore,
the inferences drawn remained unchanged. However, one could
still regard this as a flaw of the method as we do not provide a
new way of retrieving the acoustic depths of glitches. This could
be explored in future studies by, for example, finding the global
opitmum for the acoustic depths of the glitches and then using
the measured value as a constraint for the best fit model. Never-
theless, this would make the calculations more time consuming
and annihilate the benefit of the orthonormalisation that is the
independence of the fitted parameters.

Also, the indicators should be used to complement non-
seismic data as we have shown that, for example, there exists
a degeneracy between the helium glitch amplitude, the helium
surface abundance and the metallicity6 (see Figs. 5 and 6).
Therefore, the helium amplitude alone is not sufficient and addi-
tional information are needed to lift such a degeneracy – these
information may be contained in other indicators (seismic and
non-seismic).

6.5. Future perspective

The next step will be the detailed study with the new method of
several stars from the Kepler legacy sample (Lund et al. 2017).
This sample consists of 66 main sequence stars for which at
least one year of continuous observations has been made. Having
such long time series provides the necessary precision to study
glitches. Let us add that this future study is intended to be inde-
pendent of what has been done in Verma et al. (2017).

6 Which we have shown in Sect. 4.2 to be an indirect effect as it is due
to the influence on density and temperature profiles for the metallicity.
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Also, another important step will be the improvement of the
method by enabling the study of glitches present in red subgiants
spectra. The peculiarity of such pulsators is that they exhibit
mixed modes. This will consist in a new challenge as their ana-
lytical formulation is not a simple task. However, this is a nec-
essary step to improve our knowledge of the evolution of a star
such as the Sun. Moreover, this will allow a better description
of such stars and will provide a deeper understanding of their
properties via, for example, the characterisation of the mixing
processes.
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Appendix A: Effect of the regularisation constant
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Fig. A.1. Comparison between the glitch adjustment for several values
of the regularisation constant λ for 16 Cyg A best model determined in
Sect. 5.2. The values are given in the legend. The lines correspond to
the fitted glitch and the markers to the observed glitch. Only the fitted
curves for l = 0 are displayed.

Figure A.1 shows the influence of the regularisation constant λ
on the quality of the fitted glitch. We fitted the glitch of the best
model obtained in Sect. 5.2 using the values of λ shown in the
legend. We observe that, when using a value of 102 which is
already significant as discussed in Sect. 2.2, the fit (red dashed
curve) remains close to the one obtained without including reg-
ularisation terms (solid black curve). There is only a slightly
higher dispersion in the model frequencies subtracted from the
smooth part of the spectrum. To show the degradation caused
by a regularisation constant that dominates the adjustment, we
used λ = 103. We observe both a discrepancy between results
without and with (dotted black curve) regularisation terms and a
higher dispersion. This translates in a higher value of the merit
function (from χ2 ∼ 1 without regularisation to χ2 ∼ 500 with
λ = 103).

Appendix B: Comparison with usual indicators

We present in Fig. B.1 the evolution of the “usual” indicators
r01(n) and r02(n) (Roxburgh & Vorontsov 2003) used in astero-
seismology in order to compare them with the new indicators.
They are evaluated at the value of n = 21 which corresponds to
the measured value of nmax for 16 Cyg A (nmax being the value
of n at l = 0 of closest frequency to the νmax value). First let
us draw the attention to the fact that the usual indicators hold a
local value, as Eqs. (26) and (27) show, while the new indicators
are averaged over the complete set of available modes. It results
from this averaging a lower standard deviation. Then, we notice
that the behaviour of both the usual indicators and the new ones
follow similar trends. This means that the definition is consistent
with what has been done up to now and that it should hold the
same information. Therefore, it should be able to provide similar
diagnostics, but with higher precisions.
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Fig. B.1. Evolution of the normalised small separation as defined by
Roxburgh & Vorontsov (2003) and evaluated at n = 21 along the grid
presented in Sect. 3.1. The red marker shows the observed value cor-
rected for the surface effects following Kjeldsen et al. (2008)’s pre-
scription. The thick line represents the track for 1.06 M�. Top panel:
three points normalised small separation between spherical degrees 0
and 1; middle panel: five points normalised small separation between
spherical degrees 0 and 1; bottom panel: normalised small separation
between spherical degrees 0 and 2.

Appendix C: Γ1 toy model

To build a toy model for Γ1 that replicates at best its behaviour
in the helium second ionisation zone we use the following
hypotheses:

– In the helium second ionisation zone, hydrogen is fully
ionised;

– Metals are in their atomic form;
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– We consider a perfect gas.
We then define:

– The once ionised helium number of particles per unit volume
He+ and twice ionised helium number of particles per unit
volume He++ such that:

He+ + He++ =
Yρ
4mu

, (C.1)

where mu is the atomic mass unit;
– The helium ionisation fraction:

xHe =
He++

He+ + He++ , (C.2)

which equals 0 if the helium is ionised only once and 1 if it
is fully ionised;

– The number of electrons per unit volume:

e =

(
X + (1 + xHe)

Y
4

)
ρ

mu
; (C.3)

– The total number of particles:

n =

2X + (2 + xHe)
Y
4

+
∑

i

Zi

Ai


ρ

mu
, (C.4)

where Zi is the mass fraction of the metal labeled i and Ai its
mass number.

Using Saha’s equation (Saha 1920):

S a =
He++e
He+ =

g

h3 (2πmekBT )
3
2 e−

χ
kBT , (C.5)

where g is the statistical weight of helium at its fundamental
state, h is Planck’s constant, kB is Boltzmann’s constant, me the
electron mass, and χ the helium second ionisation energy, we
may obtain a second order equation for xHe:

Yρ
4mu

x2
He +

[(
X +

Y
4

)
ρ

mu
+ S a

]
xHe − S a = 0, (C.6)

which we solve to obtain the evolution of xHe with temperature
and density. We may also derive this expression with respect to
temperature at constant density. This yields

∂xHe

∂T

∣∣∣∣∣
ρ

=
(1 − xHe)

(
3
2 +

χ
kBT

)
muS a
ρT

X +
(

1
2 + xHe

)
Y
2 +

mu
ρ

S a
· (C.7)

Then we have the following expressions:

PT =
∂lnP
∂lnT

∣∣∣∣∣
s

= 1 +
eD
n

(
3
2

+
χ

kBT

)
, (C.8)

Pρ =
∂lnP
∂lnρ

∣∣∣∣∣
s

=

[
(2 − D)X (C.9)

+(2 + xHe − (1 + xHe)D)
Y
4

+
∑

i

Zi

Ai


ρ

mun
,

cν =
3
2

kBPT

µmu
+

Yχ
4mu

∂xHe

∂T

∣∣∣∣∣
ρ
, (C.10)

where µ is the mean molecular weight and

D =

(
e

xHe(1 − xHe)
4mu

Yρ
+ 1

)−1

. (C.11)

Finally, we may insert their values in the relation linking Γ1,
PT, Pρ, and cν:

Γ1 = Pρ + P2
T

P
cνρT

· (C.12)

Appendix D: Gram-Schmidt’s process and QR
decomposition

As a reminder, Gram-Schmidt’s algorithm consists in the con-
struction of orthonormal basis elements from a set of non-
orthonormal basis elements. Let us consider the element of index
j0 : pj0 . Let us also assume that we have already built the set of
orthonormal basis functions up to index j0 − 1, that is the set(
q1, . . . , q j0−1

)
. To build element q j0 , we first subtract to pj0 its

projection over the successive previous basis elements. We thus
have

u j0 = pj0 −
j0−1∑

j=1

〈
pj0 |q j

〉
q j, (D.1)

where u j0 is the basis element orthogonal to the set(
q1, . . . , q j0−1

)
. Finally, it is normalised to obtain

q j0 =
u j0

‖u j0‖
· (D.2)

It is also possible to express this process as a QR decompo-
sition. To do so we call Pl the matrix of initial polynomials and
Ql the matrix of orthonormal polynomials for a given spherical
degree:

Pl =



p0(nmin) · · · p2(nmin)
...

...
p0(nmax) · · · p2(nmax)

 =
(
p0 · · · p2

)
l
, (D.3)

Ql =



q0(nmin) · · · q2(nmin)
...

...
q0(nmax) · · · q2(nmax)

 =
(
q0 · · · q2

)
l
, (D.4)

where nmin is the lowest observed radial order and nmax the high-
est one for the spherical degree considered.

We may then express Gram-Schmidt’s procedure in a matrix
form as a QR decomposition as follows:

Ql = PlR−1
l , (D.5)

where, using our definition of the scalar product

Rl =



〈
q0|p0

〉
l · · ·

〈
q0|p2

〉
l

. . .
...

0
〈
q2|p2

〉
l

 , (D.6)

is an upper triangular matrix.
We may now generalise by considering several spherical

degrees. For the smooth part, the matrices become block matri-
ces which are the combination of the matrices for the several
spherical degrees considered. This block disposition illustrates
the fact that we have different basis functions for the different
spherical degrees – this is not the case for the glitch part –. This
is represented by a Kronecker delta in Eq. (6). In these matrices,
each row corresponds to a given mode and each column corre-
sponds to a given element of the basis. Finally, we append the
glitch part to those block matrices. They take the following form
(we remind that the independent variable for the glitch basis is
ñ = n + l/2):

P =



P0 0 pHe,C,5(n) · · · pC,S (n)
. . .

...
...

0 P3 pHe,C,5(n + 3/2) · · · pC,S (n + 3/2)


, (D.7)
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Q =



Q0 0 qHe,C,5(n, l) · · · qC,S (n, l)
. . .

...
...

0 Q3 qHe,C,5(n, l) · · · qC,S (n, l)


, (D.8)

And the R matrix becomes

R =



R0 0
〈
qk |pHe,C,5

〉
l=0

· · ·
〈
qk |pC,S

〉
l=0

. . .
...

...

0 R3

〈
qk |pHe,C,5

〉
l=3

· · ·
〈
qk |pC,S

〉
l=3

0
〈
qHe,C,5|pHe,C,5

〉
· · ·

〈
qHe,C,5|pC,S

〉

. . .
...

0
〈
qC,S |pC,S

〉



,

(D.9)

where
〈
qk |pg

〉
l=0

is a column vector of which the rows are the
successive scalar products of the basis elements with the glitch
function – denoted with the g index – such that 〈qk |pg〉l=0 =

(〈q0|pg〉l=0 · · · 〈q2|pg〉l=0)T . We may again write the QR decom-
position as

Q = PR−1. (D.10)

Appendix E: A numerical example

We generated a set of frequencies for spherical degrees from
0 to 2 (listed in Table E.1) and applied our method. We show
in Figs. E.1 and E.2 the successive adjustments of the basis
functions. This shows the validity of using the set of functions
described in Sect. 2 and allows oneself to compare their results
with ours. As a reminder, we project the frequencies over the
basis in the specific order explained in Sect. 2. Therefore, taken
in the correct order, these plots provide intermediary results for
the glitch adjustment. We also show in Table E.2 the values of
the fitted coefficients. In this example, we also fitted n−1 poly-
nomials – inspired by the second order form of the asymptotic
expansion – to show that it is not necessary, nor relevant, to add
supplementary basis elements to our method. Indeed, the fitted
coefficient values become comparable to the standard deviation
that is equal to 1, through the orthonormalisation. Such values
and plots were obtained as follows:
1. Considering the set of standard deviations from Table E.1,

we use Gram-Schmidt procedure (Eq. (4)) associated with
the definition of the scalar product (Eq. (1)) to produce the
ordered orthonormal basis functions for each value of the
spherical degree l. Thus, we successively project the former
basis elements p j(n, l) (i.e. the ordered set of polynomials
n0,n1,n2 and the glitch functions for each spherical degree)
on the already defined orthonormal basis elements q j0 (n, l).
Then, we normalise those projections. This provides us with
the orthonormal basis elements q j0 (n, l). as well as the trans-
formation matrix R−1

j, j0
.

2. For the smooth part and one spherical degree at a time, the
frequencies from Table E.1 are projected on the orthonor-

Table E.1. Example set of frequencies.

l n ν(µHz) σ(µHz)

0 13 1498.89 0.07
0 14 1603.60 0.07
0 15 1708.55 0.08
0 16 1812.40 0.07
0 17 1916.65 0.06
0 18 2022.56 0.05
0 19 2128.56 0.04
0 20 2234.84 0.05
0 21 2341.67 0.05
0 22 2448.06 0.08
0 23 2554.95 0.16
1 13 1546.42 0.07
1 14 1651.36 0.09
1 15 1755.56 0.08
1 16 1860.40 0.05
1 17 1965.44 0.05
1 18 2071.47 0.05
1 19 2178.50 0.04
1 20 2284.98 0.05
1 21 2391.77 0.06
1 22 2499.11 0.08
1 23 2606.15 0.13
2 13 1596.42 0.19
2 14 1701.68 0.17
2 15 1805.69 0.11
2 16 1910.30 0.10
2 17 2016.47 0.08
2 18 2122.70 0.06
2 19 2229.41 0.06
2 20 2336.56 0.09
2 21 2443.24 0.13
2 22 2550.54 0.21

Table E.2. Fitted parameters to the frequencies of Table E.1.

l = 0 l = 1 l = 2

al0 112948.0 117296.1 72112.2
al1 14952.0 14674.1 6882.0
al2 74.0 79.4 35.4
al−1 −3.5 9.0 6.3
AHe 27.5
ACZ 9.4

mal basis elements following the proper order to produce the
fitted frequencies, νf(n, l), according to Eq. (5) where the fit-
ted coefficients are given by Eq. (8). Then, for the glitch part,
the frequencies are projected simultaneously for every spher-
ical degree on the glitch basis elements following the same
procedure. This is due to the fact that the glitch coefficients
should not depend on l. This produces the coefficients from
Table E.2.
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Fig. E.1. Comparison between the successive adjustments and the
observed radial modes frequencies listed in Table E.1. Upper panel:
observed frequencies compared to the first order adjustment; lower
panel: residual of the first order adjustment compared to the second
order fit to those residuals.
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Fig. E.2. Separated glitches adjustments to the frequencies in Table E.1
of both glithes shown for the spherical degree l = 0. Upper panel:
helium glitch; lower panel: convection zone glitch.

Appendix F: Supplementary adjustments
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Fig. F.1. Comparison between the observed helium glitch δνo (solid
line) and the one resulting from the best fit model δνm (dot-dashed line)
for l = 0. We also display the observed glitch as a function of the fre-
quencies (errorbars) as well as the best model glitch associated with the
theoretical frequencies (diamond). The observed frequencies have been
corrected for surface effects using Sonoi et al. (2015)’s prescription.
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Fig. F.2. Comparison between the observed frequencies (diamonds) and
the best model frequencies (circles) in an échelle diagram. The observed
frequencies have been corrected for surface effects using Sonoi et al.
(2015)’s prescription.
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Fig. F.3. Comparison between the observed helium glitch δνo (solid
line) and the one resulting from the best fit model δνm (dot-dashed line)
for l = 0. We also display the observed glitch as a function of the fre-
quencies (errorbars) as well as the best model glitch associated with the
theoretical frequencies (diamond). We include polynomials in n−1 to the
basis functions.
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We show in the present section the best fit model frequen-
cies adjusted to the observed 16 Cygni A frequencies for sev-
eral cases. First we show the adjustment to the frequencies
corrected for surface effects using a Lorentzian profile as in
Sonoi et al. (2015). Figure F.1 shows that both glitches are in
good agreement. However, the frequencies are systematically
shifted, as Fig. F.2 illustrates, as a consequence of the differ-
ence between the observed and theoretical ε̂ values. Figure 4
illustrates such a discrepancy. This shows that, even though
Sonoi et al. (2015) showed that for high frequency regimes
Kjeldsen et al. (2008)’s prescription is not able to reproduce fre-
quency differences between patched and unpatched model, it is

the only tested empirical correction that allowed us to reproduce
the observed value for ε̂. In a further study, it would be appro-
priate to try out a scaled formulation of Ball & Gizon (2014)’s
correction such as presented in Manchon et al. (2018).

We also provide in Fig. F.3 the best fit model including terms
in n−1 in the basis functions for the smooth part of the spec-
trum. By eye, the glitch adjustment seems better than in Fig. 13.
However, as shown in Table E.2, the improvement is not signifi-
cant as the fitted parameters values are comparable to their stan-
dard deviation. Moreover, Table 2 demonstrates that the effect of
including such terms in the adjustment is comparable to a varia-
tion of 1σ in the frequencies.
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CHAPTER 4

Application of the WhoSGlAd method

In the present chapter we provide several applications of the WhoSGlAd method to observed targets. We
take advantage of the seismic indicators defined in the method to provide robust constraints on the stellar
structure (see Sect. 3.2.3). The first part of this chapter focuses on the detailed adjustment of the 16 Cygni
system, using a Levenberg-Marquardt minimisation algorithm. This has been presented in our second
paper (Farnir et al. 2020b, see also Sect. 4.A) while the second part provides a more superficial adjustment
of the Kepler LEGACY sample (Lund et al. 2017) using the grid-based model search algorithm, AIMS
(Asteroseismic Inference on a Massive Scale, Rendle et al. 2019). This was the topic of a presentation at
the Stars and their variability observed from the sky conference in Vienna (Farnir et al. 2020b, see also
Sect. 4.B).

4.1 Minimisation schemes

Before diving into specific applications of the WhoSGlAd technique, we recall several aspects of the
forward stellar modelling. In all cases, the goal is to find a model, namely the associated set of K stellar
parameters ak, with k = 1 . . .K, that allows us to reproduce at best a set of N observed constraints Ci,obs,
with i = 1 . . . N . To assess the quality of the model, it is customary to define a cost function,

χ2 (a) =
N∑
i=1

(Ci,obs − Ci,mod (a))2

σ2
i

. (4.1)

We use here a compact vectorial representation set of the K stellar parameters, a. The ‘mod’ and
‘obs’ subscripts respectively correspond to model and observed quantities and the σ are the associated
uncertainties. We note that the Ci,mod quantities are complex (non-analytical) functions of the stellar
parameters.

The objective of any minimisation scheme will then be to reduce at most the value of the cost function,
which measures the squared distance between modelled and observed constraints. In the course of
this thesis, we considered two minimisation schemes: the Levenberg-Marquardt, which was applied to
the thorough characterisation of the 16 Cygni system, and the Markov-Chain Monte-Carlo technique
(henceforth MCMC), via the AIMS algorithm (Rendle et al. 2019), to model the Kepler LEGACY sample.

4.1.1 Levenberg-Marquardt minimisation algorithm

We now present the mathematical grounds behind the Levenberg-Marquardt technique (Marquardt 1963).
Our use of this technique to obtain accurate stellar models is not the first reported in the literature. For
example, Miglio & Montalbán (2005) present one of the first applications of this technique to the stellar
modelling, in the case of the α Centauri system. To find the best fit models of the 16 Cygni system, we
used the min-cles minimisation algorithm, which we updated during this PhD to meet our needs. The
current developments follow that of Press et al. (1992).

Finding the minimum of the χ2 function, as a function of the stellar parameters, amounts to finding the
set of parameters that cancels the gradient of this function, ∇χ2 = 0. Assuming the current parameters
estimate, acurr, is close to the parameters corresponding to the minimum, amin, we approximate the
cost-function by a quadratic form,

χ2 (a) ∼ γ − d · a+ 1
2a ·D · a, (4.2)

with a constant γ, a K-vector, d, and a K ×K-matrix D.
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If the current estimate is close enough to the minimum, we may use the second order Taylor expansion
to find the minimum, remembering that ∇χ2 (amin) = 0,

amin = acurr −D−1 · ∇χ2 (acurr) . (4.3)

D here represents the second derivatives, the so-called Hessian matrix. When the second order
approximation is not good enough, the only possibility is to follow the gradient in the direction of
steepest descent,

anext = acurr − J∇χ2 (acurr) , (4.4)
with J , some constant.

Writing

βk ≡ −
1
2
∂χ2

∂ak
, (4.5)

αkl ≡
1
2
∂2χ2

∂ak∂al
, (4.6)

δal ≡ al,next − al,curr, (4.7)

with δa the vector of small increments, δal, in stellar parameters, it is possible to rewrite Eq. (4.3) in the
linear form,

K∑
l=1

αklδal = βk. (4.8)

This is a linear system of equations of which the set of δal are the unknowns.
And the steepest descent formula (Eq. (4.4)) becomes

δal = Jβl. (4.9)

Because second-order derivatives may have a destabilising effect, when the model badly fits or is
contaminated by outliers, a more stable definition of the α matrix is used, considering only first-order
derivatives

αkl ≡
N∑
i=1

1
σ2
i

[
∂Ci,mod

∂ak

∂Ci,mod

∂al

]
. (4.10)

Modifying the form of α will not prevent us from finding the proper minimum as the condition for the
minimum is β = 0. Only the route towards this minimum will be affected.

The constant J in Eq. (4.9) has to be carefully chosen. From its definition (Eq. (4.5)), βl has the units
of the inverse of al (the cost-function is dimensionless) while δal naturally has the dimensions of al. To
preserve the units, the constant J must have the units of a2

l . Hopefully, αll is of the units 1/a2
l . As a

consequence, we may set the scale of the J constant using diagonal elements of the α matrix,

δl = 1
λαll

βl, (4.11)

with λ a dimensionless scaling parameter that allows us to reduce the step size, if necessary, and prevents
to move too far from the current estimation.

This estimation of J is the first difference of the Levenberg-Marquardt method compared to the
steepest descent. The second difference comes from the redefinition of the α matrix by combination of
Eqs. (4.8) and (4.11)

α′ll = (1 + λ)αll, (4.12)
α′lkl = αkl k 6= l. (4.13)

(4.14)

We then obtain
K∑
l=1

α′klδal = βk, (4.15)

which is hybrid between Eqs. (4.8) and (4.11). For large λ values, the α′ matrix is dominated by its
diagonal elements and Eq. (4.15) is equivalent to Eq. (4.11). Conversely, for values of λ approaching zero,
α′ ' α and we go back to Eq. (4.8).
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All the strength of the Levenberg-Marquardt method will be in the control of the size of the λ parameter
to alternate between the two cases and converge to a solution. We then proceed as follows. At the initial
guess of the parameters, we estimate the cost function χ (a)2. From a small value of the scaling parameter,
we solve Eq. (4.15) for δa and compute the cost function at this point χ (a+ δa)2. According to the new
χ2 value, we either increase the λ factor, when the trial has failed (i.e. the estimate strayed further from
the minimum), or decrease the λ factor, when the trial has succeeded. The previous steps are repeated
until a condition for convergence (or non-convergence) has been met.

Finally, at the minimum, one may estimate the uncertainties on the individual parameters of the fit by
setting λ = 0. The covariance matrix is then

C ≡ α−1, (4.16)

of which the diagonal elements correspond to the standard deviations on individual parameters,

σ (ak) =
√

(α−1)kk. (4.17)

Here α−1 means the inverse of the matrix α and
(
α−1)

kl
is the element kl of that matrix.

Naturally, this method has its limitations. First of all, this is a local minimum search algorithm, as
Eq. (4.4) clearly illustrates. The ability of the technique to reach a solution, and the number of required
iterations, directly depend on the quality of the initial estimate of the optimal parameters. It therefore
requires a good knowledge of the function we are trying to optimise. Hopefully, in stellar modelling
problems, it is often the case that we can provide educated guesses about the solution.

Another drawback of the method comes from the derivatives computation. For stellar models, the
Cmod,i functions, necessary to compute the cost-function, and their derivatives (see Eqs. (4.1), (4.5), and
(4.10)) do not have an analytical form. It is therefore not possible to obtain a formal representation of
these derivatives either. Instead, we estimate them by finite (forward) difference

∂Cmod,i (ak)
∂ak

' Cmod,i (ak + h)− Cmod,i (ak)
h

, (4.18)

where h is the derivation step, small enough for the derivative to be accurate but not too small to avoid
numerical noise to dominate. Iott et al. (1985) argue that the finite difference formulation (Eq. (4.18))
suffers from two different sources of error: the truncation error, resulting from the truncation of the Taylor
series expansion of the perturbed function, and the condition error, representing the difference between
the numerical evaluation of a function and its exact value. The truncation error is proportional, at leading
orders, to the second derivative of the function while the condition error is estimated to be inversely
proportional to the finite difference step size. The total error is then the sum of both contributions,
truncation and condition. Finding the optimal step size then amounts to minimising this total error.

Two main consequences arise from this estimate of the derivative. First, inaccuracies may arise in
the derivatives estimation. This means that the parameters uncertainties, Eq. (4.17), are affected as well.
Therefore, a better computation of the uncertainties is in order, such as Monte-Carlo sampling. We did
not implement such improvement for the time being. However, this will be carried out in future works.

Second, for each derivative in Eq. (4.18), two stellar models are required. Hopefully, one of these is
readily available, as it serves to evaluate the quality of the estimate at the current position. Nevertheless,
this means that one additional model is necessary per derivative, associated with a free parameter.
Therefore, per iteration of the Levenberg-Marquardt algorithm, and for K free parameters, K + 1 stellar
models are necessary. This can become rather time consuming as the number of free parameters rises.

4.1.2 Visualisation of the stellar modelling procedure

We provide in Fig. 4.1 a schematic representation of the stellar modelling procedure involving the
WhoSGlAd indicators. Independently of the technique used, observed and modelled seismic indicators
will be compared at each iterative step. This illustration clearly shows the necessity for the WhoSGlAd
method to be as fast and reliable as possible, to ensure the fast determination of optimal stellar parameters
with great confidence.
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Figure 4.1: Schematic modelling procedure.

4.2 Application to the 16 Cygni system

In the current section, we summarise the results obtained in Farnir et al. (2020a) concerning the extensive
characterisation of the 16Cyg system with the WhoSGlAd method.

4.2.1 Interest of the system

The 16 Cygni system is a binary system composed of two solar analogues. Because they have been observed
continuously for 928 days with the Kepler satellite (Borucki et al. 2010), the seismic data available for these
stars is part of the best currently available. Aside seismic data, precise spectroscopic and photometric
data have also been gathered for both stars. As a consequence, this system was already subject to several
studies providing accurate stellar parameters determinations, either by spectroscopic, photometric or
seismic means (see Table 4.1 for a summary of some of the past determinations). Nevertheless, the system
displays several unexpected features which are to be accounted for and remain, to this day, open questions.
We do not pretend answering such questions but rather add up the amount of information that might
help in constraining them.

Several studies noted that the A component of the system is significantly metal-richer than the B one
(e.g. Maia et al. 2019; Morel et al. 2021). One feature that stands out is the apparent difference in surface
Lithium abundances. Although the two stars have similar masses and are expected to have a common
origin, thus a common composition, 16CygB has been observed to be around four times more Li depleted
than 16CygA (Friel et al. 1993; King et al. 1997). As hypothesised by Deal et al. (2015), this could result
from the presence of a jovian companion to the B component (Cochran et al. 1997). If 16CygB would
have accreted a fraction of the Earth’s mass from its companion, it could have lead to fingering convection,
which would have precipitated the lithium where it can be burned by nuclear reactions. The consequence
is a reduced Li abundance while preserving the metals abundance. This is a clear example where regular
standard models become insufficient and additional physical processes (in that case thermohaline, or
fingering, convection) must be invoked to explain the complexity of the data at hand. This agrees with
the computations from Maia et al. (2019). Placing the system in a broader context leads to different
conclusions. Indeed, when comparing it to other analogues, Carlos et al. (2016) observed that 16CygB
follows the age - lithium abundance trend, while 16CygA is significantly over-abundant. This suggests
that 16CygA is the anomalous component of the system, which would require additional processes to
explain such a difference.

Furthermore, the highly precise data gathered for the system allows for the reliable detection of acoustic
glitches signatures in their oscillation spectra (Verma et al. 2014, 2017; Farnir et al. 2019, 2020a,b) as
well as to carry detailed seismic inversions (Buldgen et al. 2016a,b). This represents another excellent
opportunity to highlight caveats in current stellar models and inch towards plausible solutions. We
presented in Farnir et al. (2020a) a thorough study of the system considering both stars as separate
components or as a whole (assuming common formation scenario, i.e. identical compositions and ages).
We exploited the helium glitch signatures in both stars and tested a large sample of choices of physical
ingredients in order to highlight the necessary improvements that would have to be included in stellar
models to improve the agreement with the data. This paper is part of a series that approaches the
problematic with different point of views. The first makes use of WhoSGlAd in a forward seismic modelling
scheme. The second will go one step further by inverting structural profiles over the stellar interior
(Buldgen et al. 2021, in prep.). The last one will study the impact of angular momentum and planetary
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Table 4.1: Summary of literature properties of the 16 Cygni system.

16CygA 16CygB Ref.

Teff(K) 5839± 42 5809± 39 a
log g 4.33± 0.07 4.34± 0.07 b

[Fe/H] 0.096± 0.026 0.052± 0.021 b
L (L�) 1.56± 0.05 1.27± 0.04 c
M (M�) 1.07± 0.05 1.05± 0.04 a

1.05± 0.02 1.00± 0.01 d
0.98± 0.02 0.945± 0.015 e
1.11± 0.02 1.07± 0.02 c
1.10± 0.01 1.06± 0.01 f
1.10± 0.02 1.00± 0.03 g

R (R�) 1.218± 0.012 1.098± 0.010 a
1.195± 0.005 1.09± 0.01 e
1.243± 0.008 1.127± 0.007 c
1.24± 0.01 1.13± 0.01 f

1.237± 0.010 1.102± 0.015 g
Age (Gyr) 7.15+0.04

−1.03 7.26+0.69
−0.33 d

7.2± 0.2 7.2± 0.2 e
6.4± 0.4 6.4± 0.4 f
6.7± 0.3 6.9± 0.3 g

X0 [0.670, 0.681] [0.671, 0.685] e′
0.726± 0.010 0.727± 0.010 c′

0.716 0.176 f′
Y0 [0.30, 0.31] [0.30, 0.31] e

0.25± 0.01 0.25± 0.01 c
0.26 0.26 f

Z0 [0.0194, 0.0199] [0.0151, 0.0186] e
0.024± 0.002 0.023± 0.002 c

0.024 0.024 f
Ysurf 0.2226 0.2265 f

[0.23, 0.25] [0.218, 0.260] h
Zsurf 0.0221 0.0223 f

References. a: White et al. (2013), b: Ramírez et al. (2009), c: Metcalfe et al. (2012), d: Ramírez et al.
(2011), e: Buldgen et al. (2016a), f: Deal et al. (2015), g: Verma et al. (2017), h: Verma et al. (2014), The
′ symbol signifies that values are propagated from values in the corresponding reference.

formation on the evolution of the system.

4.2.2 Philosophy of the study

The study presented in Farnir et al. (2020a) aims at providing a thorough adjustment of the 16Cyg system
while testing the impact of several hypotheses on the retrieved optimal models. We tested several choices
of constraints, either only seismic or in combination with non-seismic data, a wide variety of variations in
the input physics (solar mixture reference, opacity, equation of state, mixing length parameter, hypothesis
on chemical diffusion, extension of convective layers, atmospheric temperature profile, and surface effects),
and the hypothesis of a common origin for both stars (identical age and/or initial composition).

The modelling of the system was carried in several steps. First, both stars were considered to be
independent of one another. Therefore, it was not required of the stars to have any stellar parameters in
common. Second, we tested the hypothesis of a common origin requiring a common age and/or common
composition. Both steps were also divided into two sub-steps: We started by considering only seismic
constraints, which were ∆, r̂01, r̂02, and AHe (presented in Sect. 3.2.3), and used the four following free
parameters, the mass, the age, X0, and (Z/X)0. The values of the seismic constraints are gathered in
Table. 4.2. We then included non-seismic constraints to assess their impact on the optimal models. We
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Table 4.2: Observed seismic indicators, as in Farnir et al. (2020a). These are computed with the set of
frequencies given in Davies et al. (2015) and corrected for the surface effects following Sonoi et al. (2015).
The standard deviations result from the propagation of the uncertainties on the observed frequencies.

Indicator 16CygA 16CygB

∆(µHz) 104.024± 0.005 117.911± 0.004
AHe 30± 1 36± 1
r̂01 (3.62± 0.02) · 10−2 (2.52± 0.02) · 10−2

r̂02 (5.75± 0.03) · 10−2 (5.53± 0.03) · 10−2

therefore introduced additional free parameters, either the mixing-length parameter or the turbulent
diffusion coefficient.

From a reference model (of which the physical components are given in Table 4.3), we changed one
ingredient at a time. The variations in the input physics were the following:

• The GN93 solar-reference mixture (Grevesse & Noels 1993), in light blue in the figures;

• The opacities from the opacity project (Badnell et al. 2005), denoted OP in light brown, the Los
Alamos opacities (Colgan et al. 2016), written OPLIB, in beige;

• The CEFF equation of state (Christensen-Dalsgaard & Daeppen 1992), in dark brown, and the
revised OPAL equation of state (Rogers & Nayfonov 2002), written OPAL05, in grey;

• A different choice of mixing length coefficient (αMLT = 1.7), in yellow;

• The non-inclusion of microscopic diffusion, in light pink;

• The inclusion of turbulent mixing of chemical elements following the relation for the turbulent mixing
coefficient, DDT = Dturb

(
ρ
ρ0

)n
+ Dct (in cm2s−1), where ρ is the density, ρ0 the density at the

bottom of the convective envelope, and Dturb, n, and Dct are fixed at 7500, −3 ,and 0 respectively
(Proffitt & Michaud 1991), shown in purple;

• The inclusion of overshooting extending outside convective regions over a distance d = αovmin (Hp, h),
where αov is the overshooting parameter, Hp the local pressure scale height, and h the thickness of
the convective region. The temperature gradient in the overshooting region is set to the radiative
one and the mixing is instantaneous. We either include overshooting above the convective core,
denoted αov and shown in red, or below the convective envelope, written αun in khaki and referred
to as ‘undershoot’. Both values are set to 0.1;

• The effect of a different choice of temperature profile above the stellar photosphere, in orange. We
use the model temperature profile of the quiet sun by Vernazza et al. (1981) for which an analytical
formulation may be found in Paxton et al. (2013);

• The impact of the surface effects, by computing a model fitting seismic indicators defined with
stellar frequencies which are not corrected for surface effects, in dark green.

4.2.3 Results considering the stars as separate

For each star, seen as independent of its twin, we computed 15 individual models. These are presented in
Figs. 4.2 and 4.3 that place these models in a mass - age diagram (top panel), HR diagram (middle panel),
where we display the observed effective temperature and luminosity (from the interferometric radius end
effective temperature measured by White et al. 2013, and the Stefan-Boltzmann relation, Eq. (2.41)) as
a black box, and in a initial hydrogen - metals diagram (bottom panel). These are also gathered in a
diagram representing the surface metallicity and helium abundance in Figs. 4.4 and 4.5. The observed
metallicity (Ramírez et al. 2009) and computed Ys range (Verma et al. 2014) are again shown as a black
box.

It clearly stands out that seismic constraints alone are not sufficient. Indeed, we observe that most
models do not fall within the observed ranges of the non-seismic data. While non-seismic constraints were
not yet part of the adjustment, we observed that only models with a modified diffusion efficiency were able
to reproduce both the position in the HR diagram and the observed metallicity. In the case of 16CygA,
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Table 4.3: Set of reference physical ingredients.

Ingredient Choice Additional information

Evolution code Scuflaire et al. (2008a) CLES
Oscillation code Scuflaire et al. (2008b) LOSC
Solar mixture Asplund et al. (2009) AGSS09

Equation of state Cassisi et al. (2003) FreeEOS
Opacity Iglesias & Rogers (1996) OPAL

Ferguson et al. (2005) at low T
Nuclear reaction rates Adelberger et al. (2011) NACRE

Mixing length parameter αMLT = 1.82 Cox & Giuli (1968)
Microscopic diffusion Thoul et al. (1994)
Turbulent diffusion none

Overshooting none
Undershooting none
Atmosphere Eddington

Surface effects correction Sonoi et al. (2015)

it was the model including turbulent diffusion, and therefore partially compensating the microscopic
diffusion of chemical elements, while using a different opacity table (OPLIB) that performed the best. For
16CygB, completely turning down microscopic diffusion allowed us to obtain the agreement with both
seismic and non-seismic data.

On a side note, looking closely at the models with and without microscopic diffusion, we observe that
these are systematically heavier, by about 0.05 M�, than those including diffusion. As a consequence, the
surface helium content is reduced by about 0.02. This actually coincides with the impact of the mass on
the helium amplitude we noted in Sect. 3.2.3. From Fig. 3.12, we may estimate that, when increasing the
stellar mass by 0.025 M�, the surface helium abundance should decrease by about 0.01 to preserve a fixed
glitch amplitude.

The impact of non-seismic data

We then tried to adjust the non-seismic constraints, which are the spectroscopic metallicity (Ramírez
et al. 2009) and effective temperature (White et al. 2013). We first tested the impact of the mixing-length
coefficient and turbulent mixing coefficient on the retrieved Teff and [Fe/H]. We did so by computing
models at fixed values of these coefficients with only seismic constraints. We observed that both parameters
have a significant impact. Nonetheless, while the inclusion of turbulent mixing clearly improved the
agreement, we noted that it saturated early (well below the values considered in this study), making
it useless as a free parameter. As we also observed that increasing the mixing-length parameter value
clearly allows us to approach the observed effective temperature, we computed models using it as a free
parameter while setting the effective temperature as a constraint. This was done by either including
turbulent mixing, with a fixed value of Dturb = 7500 cm2s−1, or not (as turbulent diffusion improves both
the modelled effective temperature and metallicity). In both cases, the effective temperature was properly
accounted for. Nevertheless, neither of them performed better than the model with turbulent diffusion
and the OPLIB opacity table for 16CygA and the model without microscopic diffusion for 16CygB.

We further noted that the adjusted values of αMLT significantly varied from one star to the other,
αMLT,B − αMLT,A = 0.1. However, from the works of Magic et al. (2015, Fig. 2), we expect both values
to be similar, as the stars have similar effective temperatures and surface gravities. In addition, when
compared to the solar case, with a calibrated mixing-length parameter of αMLT = 1.82 and a lower
effective temperature and surface gravity, we expect their value to slightly decrease. Finally, at a fixed
log g value, such a difference in the mixing-length parameter corresponds in Fig. 2 of Magic et al. (2015)
to a difference in effective temperature around 500 − 1000 K, which is obviously not compatible with
observations.

Another consequence of the inclusion of the non-seismic constraints was the increased difficulty
to find a satisfactory model. This directly stems from the large differences in relative uncertainties
(σ (C) /C) of these constraints compared to the seismic ones. Indeed, the relative uncertainty on the
spectroscopic metallicity is on the order of 25%, which is extremely large compared to the 5 × 10−3%
for the large separation. Of course, through the course of this thesis we developed a few means to
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improve the convergence of the Levenberg-Marquardt algorithm. For example, an efficient ‘recipe’ consists
in a preliminary minimisation with relative uncertainties of every constraint boosted up to a common
level, ensuring that none of them dominates over the others, preventing a proper convergence. Once
an acceptable minimum has been reached, we may carry one last minimisation step with the proper
uncertainties to retrieve the correct Hessian matrix and correlations. Nevertheless, in the present case,
this was not sufficient to reach an acceptable solution in most cases. This explains why we adjusted
these non-seismic constraints for a specific set of input physics only instead of all the presented choices.
Furthermore, the large uncertainties on individual constraints favoured large uncertainties on the fitted
stellar parameters. Nonetheless, we already discussed the limited confidence that can be attributed to the
confidence intervals computed with the Levenberg-Marquardt algorithm. A more robust way to estimate
such interval is the one we presented in this paper, by testing several physical hypotheses and measuring
the scatter of the stellar parameters. Finally, the extremely small uncertainties on the large separation,
resulting from the averaging and propagation of individual frequencies uncertainties, may be considered
unrealistic. A more physically meaningful estimate of this uncertainty comes from a measurement of
the impact of the surface effects on the large separation value. The relative uncertainty now becomes
approximately 1.1%, which is much larger but remains significantly smaller than for the metallicity. The
above considerations therefore remain valid.
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Figure 4.2: Summary of the adjusted stellar models for 16CygA, considering it as an isolated star. top
panel: Mass - age diagram. middle panel: Hertzsprung-Russel diagram. The black cross represents the
observed value and the black box the uncertainties (White et al. 2013, see also Table 4.1). bottom panel:
Initial hydrogen - metals abundances diagram. The legend gives the colour code used. Error bars represent
the error propagation through the Levenberg-Marquardt method (Eq. (4.17)).
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Figure 4.3: Summary of the adjusted stellar models for 16CygB, considering it as an isolated star. top
panel: Mass - age diagram. middle panel: Hertzsprung-Russel diagram. The black cross represents the
observed value and the black box the uncertainties (White et al. 2013, see also Table 4.1). bottom panel:
Initial hydrogen - metals abundances diagram. The legend gives the colour code used. Error bars represent
the error propagation through the Levenberg-Marquardt method (Eq. (4.17)).
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Figure 4.4: Surface metallicity and helium abundance of the set of models presented in Fig. 4.2 compared
to the reference values of Ramírez et al. (2009) (metallicity) and Verma et al. (2014).
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Figure 4.5: Surface metallicity and helium abundance of the set of models presented in Fig. 4.3 compared
to the reference values of Ramírez et al. (2009) (metallicity) and Verma et al. (2014).
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4.2.4 Results of the joint analysis

As the next step of our modelling procedure assumed both stars to have a common origin, hence a
common age and initial composition, we selected a subset of models that had compatible ages and initial
compositions. By compatible, we mean that the 1σ range around each value overlap. These models are
referred to as ‘accepted’ models and correspond to:

• The reference models;

• The ones including turbulent mixing;

• Those with overshooting (αov = 0.1);

• Those without diffusion;

• Those with an atmosphere as in Vernazza et al. (1981) and a specifically calibrated αMLT = 2.02
value.

The accepted range of stellar parameters, defined by the centroid of all values and the necessary variations
to reach the extrema is given in Table 4.4. The accepted models served as the basis for the joint analysis
of both stars. We already note that, obviously, while individual ages and initial compositions ranges
overlap one another, central values are not identical. Iterating over these values was therefore necessary.

By imposing a common age and composition, the set of free parameters was reduced by three while
maintaining the same amount of constrains, namely ∆, r̂01, r̂02, and AHe for each star. The system to
solve becomes overdetermined, with five free parameters and eight constraints. This greatly increases the
difficulty to find a suitable solution, for which the reduced χ2

red = χ2/(N −M) < 1, with N −M = 3 being
the number of degrees of freedom, N the number of constraints and M the number of free parameters.
As a consequence, such a solution was never found when common compositions and ages were required.
However, two choices of input physics clearly outperformed the others, the one with the temperature profile
prescribed by Vernazza et al. (1981) with the calibrated mixing-length parameter and the one without
diffusion, with χ2

red = 2.9 and 3.4, respectively. While these did not reach the limit of acceptability, we can
still observe that the large separation is the most difficult to reproduce, as a consequence of its extremely
stringent uncertainty. Often, because of the common properties of the stars, the algorithm favoured one
component over the other, allowing for all its indicators to be properly reproduced compromising the
agreement with the constraints of the second component.

Adding degrees of freedom

We observed that the reduced number of parameters might explain this inadequacy. Thus, a first attempt
to introduce new degrees of freedom to the system was carried by freeing the mixing-length parameter of
each star. Nonetheless, this parameter did not vary significantly and remained close to the solar value.
This has to be expected from the works of Magic et al. (2015). We also noted that there were sometimes
large reduced difference between initial metallicities of both components (in the accepted set of models).
Therefore, we relaxed the common composition hypothesis. In most cases, this largely improved the
results while only introducing small compositions differences (at most 0.008 dex1 in X0 and 0.002 dex
in (Z/X)0, for the model with turbulent diffusion). More specifically, for models without diffusion, the
χ2
red value reached below 1 and the model could be accepted. This was the only one. We recall that,

while this model does not include microscopic diffusion, this does certainly not mean that it should never
be included in the modelling of the system. This simply demonstrates the complexity of the modelling
procedure and the necessity to include processes that act against microscopic diffusion.

Finally, we observed that most models did not account for the non-seismic data. This was not a
surprise as the reference models did not account for them either. Furthermore, the inclusion of these
constraints would have only rendered the task of finding a suitable model (according to our criterion
χ2
red < 1) even more difficult. The only model that almost reproduced observed data was the one without

diffusion. This had to be expected as the separate model for 16Cyg B reproduced all the constraints
(seismic and non-seismic) while the one for the A star was close to the observed non-seismic ranges. We
obtained δTeff/σ (Teff) = 1.3 and δ [Fe/H] /σ ([Fe/H]) = 1.4.

1There was a mistake in the paper, an order of magnitude was left out.
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Table 4.4: Accepted stellar range defined as the centroid of the extremum values for each parameter of
the set of accepted models.

Quantity 16CygA 16CygB

M (M�) 1.08± 0.04 1.03± 0.03
X0 0.72± 0.05 0.72± 0.04

(Z/X)0 0.028± 0.009 0.03± 0.01
Y0 0.26± 0.05 0.26± 0.05

t (Gyr) 7.1± 0.5 7.2± 0.4

4.2.5 Conclusions of the study

In this study, we demonstrated the necessity of high-precision probing techniques, such as
WhoSGlAd, to thoroughly constrain the stellar structure. Such techniques provide means to
establish realistic stellar parameters ranges, accounting for various physical hypotheses, and allow
us to point to missing non-standard physical processes. Two illustrations were the necessity to
reduce the efficiency of microscopic diffusion (even shutting it down for 16Cyg B) to account
simultaneously for seismic and non-seismic data and the difficulty to provide models of the system
requiring identical ages and initial compositions. We showed that small differences in initial
composition (at most of 0.008 dex in X0 and 0.002 dex in (Z/X)0, for a common age) allowed us
to greatly improve the agreement with the seismic data. This highlights the plausible necessity
to separate the contribution of metals (often gathered in stellar models) in sub-species. Maia
et al. (2019) and Morel et al. (2021) demonstrated that there exist small differences in individual
species between the two stars. Both studies demonstrated that 16Cyg A is overabundant in metals
compared to its sister. From the former study, it even stands out that there is a correlation
between the element overabundance and its condensation temperature, which is compatible with
planet engulfment by the A component. They also note that the planet engulfment hypothesis
is consistent with the overabundance in Li et Be observed in 16Cyg A. This also agrees with the
studies of Montalbán & Rebolo (2002) and Carlos et al. (2016). The opposite scenario, where
it would be 16Cyg B that accreted planetary matter, triggering thermohaline convection and
destructing Li et Be, has also been put forward by Deal et al. (2015). This represents an excellent
opportunity to ally asteroseismology and exoplanetology to study and model the traces of such
processes in order to further constrain our knowledge of stellar and planetary formation, evolution,
and interaction. A collaboration would therefore benefit both fields.

Another clue that non-standard physical processes might be necessary to the proper depiction of
the system comes from the fact that the models that performed the best at accounting for seismic
and non-seismic data required to reduce the efficiency of microscopic diffusion and a different
opacity table for 16Cyg A. This shows that additional mixing is necessary to counteract microscopic
diffusion. This additional mixing could originate from the stellar rotation, which is not included in
the CLES evolution but of which the effect can be mimicked by turbulent mixing (see for example
Rosu et al. 2020, who showed that the inclusion of turbulent mixing can produce similar results on
the evolution of a massive star as the inclusion of rotation). Indeed, both Davies et al. (2015) and
Bazot et al. (2019) demonstrated that both stars exhibit non-negligible rotation rates.

Finally, an important conclusion of the study is the importance of using all the available data
at hand, with the emphasis on non-seismic data. Effectively, we determined that, while seismic
models produced excellent results, most of them failed to reproduce the non-seismic data. Even
worse, accounting for such data proved to be a difficult task for many of the considered variations
in the input physics. This illustrates the necessity to include such constraints in the modelling
procedure, in order to generate the most accurate models possible. Nevertheless, we were not able
to account for these constraints while requiring a common origin for both stars.

4.2.6 Extensions of the study and future prospects

This study is the first of a three papers series and opens the way to multiple synergies between astrophysical
fields. The second paper, Buldgen et al. (2021, in prep.), builds upon the extensive set of models computed
in the first paper and carries out seismic inversions with in mind the goal to refine the results and pinpoint
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stellar models shortcomings. The most striking conclusion of their paper is the dependency of the inversion
results on the preliminary forward modelling step. They clearly demonstrate that, while a slight mass and
radius discrepancy stands out of the inversion of their central conditions indicator (Buldgen et al. 2015,
2018), the necessity for a correction and therefore the inclusion of non-standard processes is not as clear
as in their other study (Buldgen et al. 2016a), slightly above the 1σ significance level. For 16Cyg B, the
models provided by the forward modelling in the first paper of the series are already in excellent agreement
with inversions, requiring no further improvement. This is a clear demonstration that the WhoSGlAd
indicators provide first-rate constraints relevant to the stellar structure. This also hints towards the
possible necessity of non-linear seismic inversions to further probe the stellar structure.

Finally, the third paper of the series will be devoted to the study of the relation between the planetary
companion and the host star, planetary formation scenarios, and the macroscopic transport of elements
and angular momentum. These results will be put in the light of the differential Li and Be abundances in
both stars as well as the inverted rotation profile retrieved by Bazot et al. (2019).

4.3 Application to the Kepler LEGACY sample

The second application of the WhoSGlAd method concerns the Kepler LEGACY sample (Lund et al. 2017).
Part of these results were presented at the Stars and their variability observed from the sky conference in
Vienna (Farnir et al. 2020b, and Sect. 4.B). We present here those results in more details and further
discuss them.

4.3.1 The Kepler LEGACY sample

This sample consists of 66 main-sequence solar-like pulsators that have been observed continuously by
the Kepler spacecraft during at least 1 year. This therefore constitutes the best seismic data at hand
for solar-like pulsators. It also constitutes a valid sample to carry meaningful statistical studies of
main-sequence stellar populations. As a consequence, several authors carried out characterisations of this
ensemble of stars (e.g. Verma et al. 2017, 2019; Silva Aguirre et al. 2017). Such a large sample can, for
example, test galactic enrichment relations (e.g. Verma et al. 2019; Nsamba et al. 2021) or put forward a
possible correlation between the amount of central overshooting and the stellar mass (as was observed by
Claret & Torres 2017, 2018, for intermediate mass eclipsing binaries). As a matter of fact, the question of
overshooting in Kepler targets was already addressed by Deheuvels et al. (2016). Using the mean value
and slope as a function of the radial order of the small separation between radial and dipolar modes,
they demonstrated the possibility to constrain central overshooting. However, they restricted themselves
to eight stars. Our goal was then to extend their work and to try to put forward the possible relations
between overshooting and mass as well as between initial helium and metals abundances.

4.3.2 Fitting procedure

To model the Kepler LEGACY stars, we used the AIMS minimisation tool (Rendle et al. 2019) which
consists in a grid-based approach relying on the MCMC sampling technique and in which we implemented
the WhoSGlAd method. These results were then refined via the same Levenberg-Marquardt approach as
for the case of 16 Cygni (Sect. 4.1.1). The preliminary minimisation with AIMS is essential to provide
reliable stellar parameters guesses for the Levenberg-Marquardt step. However, as the quality of the
adjustment is directly conditioned by the grid of models used, the Levenberg-Marquardt step also plays
an important role and allows us to precisely navigate outside of the fixed grid elements. The set of seismic
constraints used in this study were very similar to those used to characterise the 16Cyg system: that is
to say ∆, r̂01, r̂02, and AHe. However, we also included the ∆01 constraint as we have shown that, in
combination with r̂01, it may probe the amount of central overshooting (Farnir et al. 2019, and Sect. 3.2.3),
one of the objectives of this study. Overall, three sets of models were computed:

• Purely seismic models, adjusting only the 5 seismic indicators: ∆, r̂01, r̂02, ∆01, and AHe (seismic
only);

• Models for which the helium glitch amplitude constraint was replaced by the surface metallicity
measured by spectroscopy (metal);

• Models including both the helium glitch amplitude and metallicity (both).
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A summary of reference effective temperatures and metallicities for each star is given in Table 4.5. We
do not include Teff as a constraint as we observed in our study of the 16Cyg that its inclusion tended to
impair the convergence of our technique. Nevertheless, they remain essential data for the validation of our
models. We also gather in Table 4.6 the measured values for the seismic indicators used in the adjustment
for each individual star of the sample. When possible, we provide the amplitude and acoustic depth of the
helium glitch. Indeed, the measurement of those quantities relies on a partial seismic modelling (excluding
the glitch signature as described in Sect. 3.5.1). However, we were not able in all cases to carry this partial
seismic modelling. Therefore, in these difficult cases, we measured the helium glitch amplitude using the
dimensionless helium acoustic depth estimation defined in Sect. 3.5. These models are marked with an
asterisk ∗.

Table 4.5: Observed effective temperature and surface metallicity of the Kepler LEGACY stars. Some of the other
identifiers are gathered.

KIC ID Other IDs Teff (K) [Fe/H] Refs

KIC1435467 6265 ± 60 −0.01 ± 0.06 Bruntt et al. (2012)
KIC2837475 HD179260 6700 ± 60 −0.02 ± 0.06 Bruntt et al. (2012)
KIC3427720 6040 ± 60 −0.03 ± 0.06 Bruntt et al. (2012)
KIC3456181 6270 ± 60 −0.19 ± 0.06 Bruntt et al. (2012)
KIC3632418 HIP94112, HD179070 6190 ± 60 −0.16 ± 0.06 Bruntt et al. (2012)
KIC3656476 6710 ± 60 0.34 ± 0.06 Bruntt et al. (2012)
KIC3735871 6080± 25 0.04± 0.01 Brewer et al. (2016)
KIC4914923 HIP94734 5905 ± 60 0.17 ± 0.06 Bruntt et al. (2012)
KIC5184732 / 5840 ± 60 0.38 ± 0.06 Bruntt et al. (2012)
KIC5773345 6130 ± 60 0.21 ± 0.06 Bruntt et al. (2012)
KIC5950854 5853± 77 −0.23± 0.10 Buchhave & Latham (2015)
KIC6106415 HIP93427, HD177153 5990 ± 60 −0.09 ± 0.06 Bruntt et al. (2012)
KIC6116048 5935 ± 60 −0.24 ± 0.06 Bruntt et al. (2012)
KIC6225718 HIP97527, HD187637 6230 ± 60 −0.17 ± 0.06 Bruntt et al. (2012)
KIC6508366 6354 ± 60 −0.08 ± 0.06 Bruntt et al. (2012)
KIC6603624 5625 ± 60 0.28 ± 0.06 Bruntt et al. (2012)
KIC6679371 6260 ± 60 −0.13 ± 0.06 Bruntt et al. (2012)
KIC6933899 5860 ± 60 0.02 ± 0.06 Bruntt et al. (2012)
KIC7103006 6394 ± 60 0.05 ± 0.06 Bruntt et al. (2012)
KIC7106245 6068± 102 −0.12± 0.01 Brewer et al. (2016)
KIC7206837 / 6304 ± 60 0.14 ± 0.06 Bruntt et al. (2012)
KIC7296438 5775± 77 0.19± 0.10 Brewer et al. (2016)
KIC7510397 Krazy, HIP93511, HD177412 6110 ± 60 −0.23 ± 0.06 Bruntt et al. (2012)
KIC7680114 5855 ± 60 0.11 ± 0.06 Bruntt et al. (2012)
KIC7771282 6248± 77 −0.02± 0.10 Brewer et al. (2016)
KIC7871531 5400 ± 60 −0.24 ± 0.06 Bruntt et al. (2012)
KIC7940546 HIP92615, HD175226 6264 ± 60 −0.19 ± 0.06 Bruntt et al. (2012)
KIC7970740 HD186306 5290 ± 60 −0.49 ± 0.06 Bruntt et al. (2012)
KIC8006161 Doris, HIP91949 5390 ± 60 0.34 ± 0.06 Bruntt et al. (2012)
KIC8150065 6173± 101 −0.13± 0.15 Huber et al. (2013)
KIC8179536 6344 ± 60 0.01 ± 0.06 Bruntt et al. (2012)
KIC8228742 HIP95098 6042 ± 60 −0.14 ± 0.06 Bruntt et al. (2012)
KIC8379927 6067± 120 −0.10± 0.15 Ramírez et al. (2009)
KIC8394589 6114 ± 60 −0.36 ± 0.06 Bruntt et al. (2012)
KIC8424992 5719± 77 −0.12± 0.10 Buchhave & Latham (2015)
KIC8694723 6120 ± 60 −0.59 ± 0.06 Bruntt et al. (2012)
KIC8760414 5727 ± 60 −1.14 ± 0.06 Bruntt et al. (2012)
KIC8938364 5630 ± 60 −0.20 ± 0.06 Bruntt et al. (2012)
KIC9025370 5270± 180 −0.12± 0.18 Pinsonneault et al. (2012)
KIC9098294 5840 ± 60 −0.13 ± 0.06 Bruntt et al. (2012)
KIC9139151 HIP92961 6125 ± 60 0.11 ± 0.06 Bruntt et al. (2012)
KIC9139163 HIP92962, HD176071 6400 ± 60 0.15 ± 0.06 Bruntt et al. (2012)
KIC9206432 6608 ± 60 0.23 ± 0.06 Bruntt et al. (2012)
KIC9353712 6278± 77 −0.05± 0.10 Buchhave & Latham (2015)
KIC9410862 6047± 77 −0.31± 0.10 Buchhave & Latham (2015)
KIC9414417 6253± 75 −0.13± 0.10 Chaplin et al. (2014)
KIC9812850 6325 ± 60 −0.16 ± 0.06 Bruntt et al. (2012)
KIC9955598 5410 ± 60 0.11 ± 0.06 Bruntt et al. (2012)
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KIC ID Other IDs Teff (K) [Fe/H] Refs

KIC9965715 5860± 180 −0.20± 0.01 Brewer et al. (2016)
KIC10068307 HIP94675, HD180867 6114 ± 60 −0.22 ± 0.06 Bruntt et al. (2012)
KIC10079226 5949± 77 0.11± 0.10 Buchhave & Latham (2015)
KIC10162436 HIP97992 6200 ± 60 −0.08 ± 0.06 Bruntt et al. (2012)
KIC10454113 HIP92983 6120 ± 60 −0.06 ± 0.06 Bruntt et al. (2012)
KIC10516096 5940 ± 60 −0.06 ± 0.06 Bruntt et al. (2012)
KIC10644253 6230 ± 60 0.12 ± 0.06 Bruntt et al. (2012)
KIC10730618 6150± 180 0.04± 0.01 Brewer et al. (2016)
KIC10963065 6060 ± 60 −0.20 ± 0.06 Bruntt et al. (2012)
KIC11081729 6630 ± 60 −0.12 ± 0.06 Bruntt et al. (2012)
KIC11253226 HIP97071, HD186700 6605 ± 60 −0.08 ± 0.06 Bruntt et al. (2012)
KIC11772920 5180± 180 −0.09± 0.18 Pinsonneault et al. (2012)
KIC12009504 6065 ± 60 −0.09 ± 0.06 Bruntt et al. (2012)
KIC12069127 6276± 77 0.08± 0.10 Buchhave & Latham (2015)
KIC12069424 16CygA 5839 ± 42a 0.096± 0.026b aWhite et al. (2013)

bRamírez et al. (2009)
KIC12069449 16CygB 5809 ± 39a 0.051± 0.021b aWhite et al. (2013)

bRamírez et al. (2009)
KIC12258514 5990 ± 60 0.04 ± 0.06 Bruntt et al. (2012)
KIC12317678 6580± 77 −0.28± 0.10 Buchhave & Latham (2015)

Table 4.6: Values of the seismic indicators measured with WhoSGlAd for the complete LEGACY sample. When
possible, we provide the value of the acoustic depth of the helium glitch.

Star ∆ (µHz) r̂01 (× 10−2) r̂02 (× 10−2) ∆01(× 10−3) AHe τHe (s)

KIC1435467 70.50 ± 0.02 3.9 ± 0.2 8.2 ± 0.3 2.3 ± 0.5 15.0± 1.0 1224.89
KIC2837475 75.68 ± 0.02 3.1 ± 0.2 8.3 ± 0.4 1.4 ± 0.6 16.3± 1.0 1048.91
KIC3427720 119.63 ± 0.01 3.03 ± 0.05 8.67 ± 0.07 2.60 ± 0.02 14.3 ± 1.0 775.10
KIC3456181 52.29 ± 0.02 7.6 ± 0.3 9.0 ± 0.4 2.2 ± 0.8 12.1± 1.0 1856.10
KIC3632418 60.488 ± 0.008 6.44 ± 0.09 7.28 ± 0.15 5.6 ± 0.3 22.2± 1.0 1636.07
KIC3656476 93.144 ± 0.009 5.11 ± 0.04 5.16 ± 0.04 2.3 ± 0.2 16.9± 1 1108.15
KIC3735871 122.71 ± 0.02 2.95 ± 0.08 8.95 ± 0.15 −1.4 ± 0.4 8.5± 1.0 733.30
KIC4914923 88.364 ± 0.009 5.20 ± 0.04 6.05 ± 0.07 3.2 ± 0.2 18.6± 1.0 1124.33
KIC5184732 95.393± 0.008 3.04± 0.04 6.41± 0.05 3.5± 0.2 18.5± 1.0 1001.23
KIC5773345 57.00 ± 0.01 1.8 ± 0.2 7.8 ± 0.4 −4.4 ± 0.4 13.3± 1.0 1421.21
KIC5950854 96.87 ± 0.03 5.25 ± 0.09 5.29 ± 0.16 5.8 ± 0.7 4.6± 1.0 1095.36
KIC6106415 103.945 ± 0.008 3.35 ± 0.04 7.01 ± 0.06 3.8 ± 0.2 18.9± 1.0 934.16
KIC6116048 100.653 ± 0.008 3.74 ± 0.04 6.32 ± 0.06 2.8 ± 0.2 19.3± 1.0 1007.70
KIC6225718 105.111± 0.007 3.06± 0.04 8.28± 0.06 2.1± 0.1 28.0± 1.0 843.08
KIC6508366 51.59 ± 0.02 7.1 ± 0.3 6.3 ± 0.4 2.7 ± 0.7 11.2± 1.0 1954.58
KIC6603624 110.046 ± 0.005 2.72 ± 0.02 4.86 ± 0.2 2.4 ± 0.1 25.3± 1.0 918.68
KIC6679371 50.68 ± 0.01 5.7 ± 0.2 6.2 ± 0.4 0.1 ± 0.6 14.9± 1.0 1829.04
KIC6933899 71.797 ± 0.007 7.16 ± 0.05 7.02 ± 0.07 −0.9 ± 0.2 23.4± 1.0∗

KIC7103006 59.72 ± 0.02 4.8 ± 0.2 7.3 ± 0.5 3.1 ± 0.6 11.2± 1.0 1510.33
KIC7106245 111.23 ± 0.02 3.20 ± 0.08 5.9 ± 0.1 2.4 ± 0.5 5.4± 1.0 898.48
KIC7206837 78.80± 0.01 2.4± 0.1 6.3± 0.2 −0.07± 0.42 10.9± 1.0 1124.43
KIC7296438 88.51 ± 0.02 5.07 ± 0.07 5.98 ± 0.09 1.6 ± 0.4 11.1± 1.0 1149.45
KIC7510397 61.747± 0.007 5.80± 0.08 7.7± 0.1 −1.7± 0.3 21.6± 1.0 1528.36
KIC7680114 85.02 ± 0.01 6.00 ± 0.05 6.10 ± 0.07 0.7 ± 0.3 13.1± 1.0 1227.89
KIC7771282 72.39 ± 0.04 4.7 ± 0.3 6.5 ± 0.5 7.1 ± 1.2 6.2± 1.0 1304.71
KIC7871531 151.25 ± 0.01 1.62 ± 0.03 5.08 ± 0.09 3.1 ± 0.2 9.0± 1.0 685.37
KIC7940546 58.784 ± 0.009 6.5 ± 0.1 7.8 ± 0.2 0.7 ± 0.3 18.9± 1.0 1532.56
KIC7970740 173.137 ± 0.009 1.53 ± 0.02 5.16 ± 0.05 1.8 ± 0.1 9.8± 1.0∗

KIC8006161 149.214 ± 0.006 2.19 ± 0.02 6.83 ± 0.03 1.04 ± 0.09 14.6± 1.0 645.81
KIC8150065 88.83 ± 0.041 2.8 ± 0.2 7.2 ± 0.3 −4.5 ± 1.2 4.9± 1.0 1027.41
KIC8179536 94.93 ± 0.03 3.3 ± 0.1 8.7 ± 0.3 2.9 ± 0.6 9.2± 1.0 865.63
KIC8228742 61.697± 0.009 6.52± 0.08 7.3± 0.1 3.6± 0.3 19.4± 1.0∗

KIC8379927 120.058 ± 0.009 3.15 ± 0.04 9.37 ± 0.06 1.8 ± 0.1 23.8± 1.0 744.10
KIC8394589 109.15 ± 0.02 3.23 ± 0.06 7.5 ± 0.1 3.9 ± 0.3 14.2± 1.0 867.63
KIC8424992 120.81 ± 0.02 2.53 ± 0.08 4.34 ± 0.10 2.8 ± 0.5 4.8± 1.0 869.78
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Star ∆ (µHz) r̂01 (in 10−2) r̂02 (in 10−2) ∆01(in 10−3) AHe τHe (s)

KIC8694723 74.727 ± 0.008 6.78 ± 0.07 8.05 ± 0.13 −0.4 ± 0.2 18.8± 1.0 1323.06
KIC8760414 117.227 ± 0.009 4.25 ± 0.03 5.05 ± 0.04 5.0 ± 0.2 9.8± 1.0∗

KIC8938364 85.402 ± 0.008 7.70 ± 0.04 6.38 ± 0.05 1.3 ± 0.2 18.1± 1.0 1354.64
KIC9025370 132.60 ± 0.02 2.34 ± 0.04 6.89 ± 0.08 1.1 ± 0.2 7.5± 1.0 735.69
KIC9098294 108.83 ± 0.01 3.20 ± 0.04 5.05 ± 0.07 3.6 ± 0.2 12.1± 1.0 956.42
KIC9139151 116.98 ± 0.01 2.94 ± 0.06 8.52 ± 0.12 2.5 ± 0.3 13.1± 1.0 764.86
KIC9139163 80.96 ± 0.01 2.6 ± 0.1 7.6 ± 0.2 2.5 ± 0.3 21.7± 1.0 1034.51
KIC9206432 84.86 ± 0.02 3.8 ± 0.2 8.2 ± 0.4 0.2 ± 0.6 14.2± 1.0 999.68
KIC9353712 51.32 ± 0.02 6.4 ± 0.3 7.2 ± 0.5 −3.7 ± 1.0 8.3± 1.0 1886.80
KIC9410862 107.32 ± 0.02 3.80 ± 0.08 5.83 ± 0.17 3.2 ± 0.5 7.7± 1.0 944.33
KIC9414417 59.93 ± 0.01 6.7 ± 0.1 8.1 ± 0.3 4.0 ± 0.4 14.2± 1.0 1528.81
KIC9812850 64.85 ± 0.02 3.9 ± 0.2 7.3 ± 0.5 5.9 ± 0.7 12.2± 1.0 1425.83
KIC9955598 153.07 ± 0.01 1.95 ± 0.03 6.09 ± 0.06 2.5 ± 0.2 6.6± 1.0 651.93
KIC9965715 96.95 ± 0.02 4.0 ± 0.1 8.3 ± 0.2 2.1 ± 0.5 11.3± 1.0 889.00
KIC10068307 53.572 ± 0.007 7.37 ± 0.09 7.48 ± 0.013 0.8 ± 0.3 22.4± 1.0 1876.55
KIC10079226 116.15 ± 0.04 3.0 ± 0.1 8.3 ± 0.3 −2.1 ± 0.6 5.7± 1.0 789.35
KIC10162436 55.475 ± 0.008 6.0 ± 0.1 7.3 ± 0.2 −3.0 ± 0.3 19.8± 1.0 1643.92
KIC10454113 104.333± 0.008 1.71± 0.09 9.3± 0.1 −2.6± 0.2 17.8± 1.0 824.98
KIC10516096 84.17 ± 0.01 5.95 ± 0.05 4.30 ± 0.69 2.6 ± 0.2 16.3± 1.0 1258.08
KIC10644253 122.62 ± 0.02 3.08 ± 0.8 9.58 ± 0.11 −1.5 ± 0.4 11.9 ± 1.0 715.18
KIC10730618 65.90 ± 0.02 2.1 ± 0.3 6.7 ± 0.6 −7.7 ± 0.9 9.7± 1.0 1200.54
KIC10963065 102.82 ± 0.01 3.61 ± 0.05 7.11 ± 0.08 3.0 ± 0.2 17.4± 1.0 938.27
KIC11081729 89.95 ± 0.02 4.2 ± 0.2 8.2 ± .5 2.3 ± 0.6 7.0± 1.0 1015.86
KIC11253226 76.98 ± 0.02 2.6 ± 0.2 8.3 ± 0.5 3.8 ± 0.4 14.9± 1.0 1231.96
KIC11772920 157.61 ± 0.02 1.55 ± 0.03 5.24 ± 0.09 1.5 ± 0.2 5.4± 1.0 665.31
KIC12009504 87.75± 0.01 4.07± 0.07 7.1± 0.1 2.4± 0.3 18.1± 1.0 1092.63
KIC12069127 48.16 ± 0.02 6.7 ± 0.3 7.9 ± 0.5 −0.2 ± 0.9 9.9± 1.0 1862.68
KIC12069424 103.070 ± 0.005 3.61 ± 0.02 5.61 ± 0.03 3.77 ± 0.10 29.6 ± 1.0 973.14
KIC12069449 116.761 ± 0.005 2.49 ± 0.02 5.31 ± 0.03 2.75 ± 0.09 28.9± 1.0 858.47
KIC12258514 74.442± 0.005 5.49± 0.04 6.49± 0.05 1.0± 0.1 31.6± 1.0 133.83
KIC12317678 63.35 ± 0.01 −2.1 ± 0.2 3.4 ± 0.7 2.0 ± 0.4 19.8± 1.0 1352.45

Note. *AHe obtained with THe estimated as in Sect. 3.5.

Stellar grid

The grid of models we used with AIMS was computed with the CLES stellar evolution code (Scuflaire et al.
2008b), with the same set of input physics as for the 16Cyg case (see Farnir et al. 2020a, and Table 4.3). For each
model, adiabatic oscillation frequencies were computed with the LOSC oscillation code (Scuflaire et al. 2008a) (we
computed frequencies in a broad range to encompass observed frequency ranges). We computed stellar evolution
models along the main sequence phase only for masses in the range M ∈ [0.90 M�, 1.40 M�] (0.02 M� step),
initial hydrogen abundances in the range X0 ∈ [0.68, 0.74] (0.02 step), initial metals content in Z0 ∈ [0.008, 0.024]
(0.004 step) and overshooting parameter in αov ∈ [0.0, 0.4] (0.1 step). This represents 1200 evolutionary tracks
and over 450000 individual models.

4.3.3 Results of the adjustment

We present here the results of each type of adjustment. From our experience with the case of 16Cyg A, we
now know that the inclusion of overshooting in stars close to the limit at which convective cores start to subsist
(M & 1.1 M�) can lead to unexpected and complex behaviours. Therefore, for models for which we expected a mass
. 1.1 M� (from preliminary modelling or literature values) and the absence of a convective core, the overshooting
parameter becomes irrelevant. For such stars, we computed models without overshooting and excluding the ∆01
constraint. Our results are therefore separated into two categories with respect to the inclusion of overshooting.
These considerations put aside, the grid we used might be too coarse. The overshooting parameter step size may
be too large to properly interpolate between grid points. Furthermore, we know from our past experience that the
metallicity constraint (non-seismic data in a broader sense) is often difficult to reconcile with seismic data. As a
consequence, the results presented here must be regarded with caution as it will be necessary to further improve
them.

Our results are presented in Figs. 4.6 to 4.10. We selected the 14 best purely seismic models including
overshooting (i.e. with ∆, r̂01, r̂02, ∆01, and AHe as constraints) and the associated metallicity models ([Fe/H]
replacing AHe) and the nine best models without overshooting. Models with overshooting are represented by filled
symbols while the empty symbols correspond to models without overshooting. Within those models we distinguish
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seismic models, represented by diamonds, from the metallicity models, represented by triangles. Individual stars
are associated with different colors and linked by a straight line. The associated stellar parameters are gathered in
Tables 4.7 and 4.8 where we separated the models with and without overshooting with the horizontal line.

In the selected sample of models, only five seismic models (two with overshooting and three without) and eight
metallicity models (two with overshooting and six without) have a χ2 ≤ 1. This illustrates the difficulty to retrieve
acceptable models. A less conservative criterion can be to require the χ2 value to never exceed N , the number of
constraints. This is a sensible criterion as each constraint is authorised to contribute to, at most, one to the total
cost function and is therefore within 1σ of its target value. The number of acceptable models increases to 16 and
13 for seismic and metallic models, respectively.

Figure 4.6 represents the selected sample of models in a HR diagram. Except for a few cases, the difference
between seismic and metallic models is not large. However, this observation allows us to conclude that models
including both the metallicity and helium glitch amplitude are uninformative. Indeed, whenever one of the two
constraints dominates, the algorithm will settle for a model adjusting that constraint. This is what we actually
observed when trying to compute such models. As a consequence, we do not present these results. We also
represent the observed effective temperature and their associated uncertainties for each star, using the same color
coding. We note that about half of the models agree with the observed effective temperature.

In Fig. 4.7 we represent the age of individual stars as a function of their mass. We note a clear anti-correlation
between those two quantities. As these stars are expected to be main-sequence stars, we may expect this relation
to result from the typical hydrogen nuclear burning time scale (Eq. (2.28)). We also observe that, in most cases,
using the metallicity constraint over the helium glitch amplitude has a little impact. This is to be expected as
both constraints mostly impact the chemical composition (which can still impact stellar age and mass but with a
reduced magnitude in comparison with the ∆ constraint, for example).

We also represent the amount of overshooting included in optimal models as a function of their mass in Fig. 4.8.
While we cannot assert a definitive trend. The amount of overshooting indeed seems to increase with stellar
mass. To demonstrate it, we carried a linear fit of the amount of overshooting as a function of the mass. This is
represented by the straight line in Fig. 4.8. However, the scatter around the slight trend is rather large. This is
in agreement with the observations of (Claret & Torres 2017, 2018) in eclipsing binaries. The range of masses
included in our study is much narrower than theirs, because solar-like stars correspond to low-mass stars. We
further note that using either the metallicity constraint or the helium glitch amplitude constraint has, in most
cases, little impact on the solution retrieved. However, we note for some stars that the use of the helium glitch
amplitude produces models with a significantly reduced amount of overshooting. Nevertheless, the mass of such
models is almost unaffected, their ages and positions in the HR diagram as well. Amongst the stars presenting
such a difference, two striking examples stand out: KIC10162436 (filled blue symbols) and KIC11081729 (filled
peach symbols). The former actually corresponds to a star that produced a satisfying seismic model but that did
not reach a proper solution including the metallicity constraint. The latter is more interesting as both solutions
are excellent. This shows that the selection of constraints, while having little impact on regular non-seismic data,
can play an essential role in determining the optimal set of parameters. Another interesting example is that of
KIC10454113 (filled light-brown symbols). While preserving similar amounts of overshooting, the optimal mass is
smaller by about 0.1 M� when using AHe instead of the metallicity.

Finally, the composition of the best models is depicted in Figs. 4.9 and 4.10. They represent the initial helium
mass fraction as a function of the initial metals abundance and the surface helium abundance as a function of
the surface metallicity, respectively. It is again difficult to affirm that a clear trend stands out. However, via a
linear adjustment of our data (represented by a straigth line), we obtain in Fig. 4.9 ∆Y/∆Z = 1.92± 0.79 and
Yp = 0.26± 0.01. This is in relative agreement with the determination of Verma et al. (2019). While our values are
lower than theirs, they are comprised within their uncertainties. Our values are also compatible with the numerous
past determinations (e.g. Ribas et al. 2000; Lebreton et al. 2001; Peimbert et al. 2002; Balser 2006; Casagrande
et al. 2007; Nsamba et al. 2021) that span a broad range of values: ∆Y/∆Z ∈ [1.4, 3.5] and Yp ∈ [0.18, 0.24]. This
is to be expected as the chemical evolution of our galaxy is far from being homogeneous (Vincenzo et al. 2019).
Furthermore, the chosen solar-reference mixture must have an impact and on the inferred ∆Y/∆Z and Yp. We
note that, contrary to these studies, we have used the AGSS09 solar mixture (Asplund et al. 2009), which is the
less metallic of the commonly used references. When modelling the 16Cyg system, we observed that the use of
GN93 (Grevesse & Noels 1993) over AGSS09 lead to more metallic models but also initially less abundant in
helium. Altogether, this could result in an increased ∆Y/∆Z and a reduced Yp. When looking at Fig. 4.10, a
positive correlation between the surface helium abundance and surface metallicity seems to exist. We observed the
same correlation between our models of the 16Cyg system (Figs. 4.4 and 4.5). However, the interpretation must
be different as we do not adjust the same glitch signature, which is both correlated to the helium surface content
and anti-correlated to the metallicity.
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Table 4.7: Stellar parameters obtained by adjusting ∆, r̂01, r̂02, ∆01, and AHe. The results are ordered in increasing χ2 values.
Only the 14 best models with overshooting and the nine best without are displayed.

Star M (M�) R (R�) t (Gyrs) αov L (L�) Teff Ys (Z/X)s [Fe/H] Mmix/M χ2

KIC10454113 1.171± 0.187 1.231± 0.065 1.615± 1.119 0.134± 0.059 2.28 6396.38 0.24 0.02 −0.03 0.06 0.44E + 00
KIC6225718 1.143± 0.041 1.219± 0.015 2.395± 0.121 0.128± 0.003 2.16 6341.96 0.22 0.01 −0.15 0.03 0.91E + 00
KIC7296438 1.121± 0.048 1.378± 0.020 6.447± 0.339 0.008± 0.362 1.97 5824.47 0.23 0.03 0.18 0.00 0.15E + 01
KIC11081729 1.223± 0.572 1.389± 0.217 3.052± 1.483 0.033± 1.498 2.63 6238.95 0.21 0.02 0.02 0.03 0.26E + 01
KIC8150065 1.135± 0.058 1.365± 0.023 2.745± 0.267 0.087± 0.049 2.63 6289.23 0.26 0.02 0.07 0.08 0.28E + 01
KIC5184732 1.142± 0.055 1.313± 0.021 4.211± 0.119 0.125± 0.135 2.06 6036.05 0.24 0.02 0.13 0.06 0.39E + 01
KIC7510397 1.340± 0.035 1.828± 0.016 2.977± 0.257 0.067± 0.031 4.75 6302.77 0.16 0.01 −0.22 0.07 0.39E + 01
KIC10068307 1.298± 0.009 1.997± 0.005 3.357± 0.123 0.178± 0.013 5.23 6175.06 0.20 0.01 −0.17 0.09 0.40E + 01
KIC6508366 1.323± 0.069 2.071± 0.036 3.391± 0.328 0.243± 0.054 5.24 6066.32 0.24 0.02 0.03 0.12 0.87E + 01
KIC7206837 1.234± 0.264 1.514± 0.108 2.553± 0.627 0.156± 0.121 3.36 6350.65 0.21 0.02 0.01 0.12 0.89E + 01
KIC8179536 1.281± 0.174 1.351± 0.061 1.419± 0.281 0.101± 0.032 2.86 6459.50 0.22 0.02 0.03 0.06 0.96E + 01
KIC10162436 1.385± 0.529 1.984± 0.253 2.440± 8.265 0.040± 1.314 5.57 6295.68 0.19 0.02 −0.05 0.06 0.10E + 02
KIC5773345 1.573± 0.152 2.014± 0.065 1.764± 0.275 0.211± 0.068 6.26 6434.16 0.12 0.02 0.06 0.00 0.11E + 02
KIC7771282 1.321± 0.117 1.646± 0.049 2.974± 0.589 0.092± 0.104 3.75 6260.70 0.19 0.02 −0.00 0.09 0.11E + 02
KIC9353712 1.397± 0.013 2.111± 0.006 2.917± 0.134 0.117± 0.034 5.60 6109.50 0.23 0.02 0.09 0.07 0.12E + 02
KIC8006161 0.989± 0.038 0.932± 0.012 5.609± 0.158 0.000± 0.000 0.56 5168.07 0.24 0.04 0.34 0.00 0.67E + 00
KIC8394589 1.085± 0.028 1.177± 0.010 3.532± 0.156 0.000± 0.000 1.82 6177.52 0.23 0.01 −0.10 0.00 0.81E + 00
KIC9955598 0.901± 0.081 0.888± 0.027 7.122± 0.902 0.000± 0.000 0.56 5309.23 0.24 0.02 0.11 0.00 0.87E + 00
KIC7871531 0.840± 0.068 0.875± 0.024 9.431± 1.934 0.000± 0.000 0.53 5261.47 0.27 0.03 0.19 0.00 0.14E + 01
KIC7106245 0.972± 0.031 1.124± 0.012 5.750± 0.328 0.000± 0.000 1.51 6035.34 0.24 0.01 −0.12 0.00 0.18E + 01
KIC7680114 1.098± 0.015 1.405± 0.007 6.797± 0.284 0.000± 0.000 2.18 5913.33 0.21 0.02 0.02 0.00 0.24E + 01
KIC9098294 1.006± 0.016 1.156± 0.109 7.704± 0.208 0.000± 0.000 1.42 5865.45 0.20 0.01 −0.11 0.00 0.37E + 01
KIC8424992 0.927± 0.070 1.052± 0.026 9.851± 0.375 0.000± 0.000 1.01 5635.74 0.22 0.02 −0.02 0.00 0.40E + 01
KIC6603624 1.023± 0.023 1.155± 0.009 8.351± 0.123 0.000± 0.000 1.16 5568.94 0.25 0.03 0.28 0.00 0.62E + 01

Note. Models with overshooting are presented above the horizontal separation. Models without overshooting are situated
below.

Table 4.8: Stellar parameters obtained by adjusting ∆, r̂01, r̂02, ∆01, and [Fe/H]. The results are ordered in increasing χ2 values.
Only the 14 best models with overshooting and the nine best without are displayed.

Star M (M�) R (R�) t (Gyrs) αov L (L�) Teff Ys (Z/X)s [Fe/H] Mmix/M χ2

KIC6225718 1.141± 0.105 1.217± 0.037 2.377± 0.149 0.126± 0.016 2.18 6355.31 0.21 0.01 −0.17 0.03 0.44E + 00
KIC10454113 1.267± 0.430 1.267± 0.143 1.665± 0.272 0.143± 0.037 2.31 6323.26 0.20 0.02 −0.06 0.06 0.57E + 00
KIC7296438 1.121± 0.092 1.378± 0.038 6.447± 0.761 0.008± 0.513 1.97 5824.47 0.23 0.03 0.18 0.00 0.13E + 01
KIC11081729 1.241± 0.460 1.395± 0.172 3.232± 1.109 0.100± 0.339 2.73 6283.37 0.18 0.01 −0.12 0.02 0.28E + 01
KIC6508366 1.336± 0.122 2.071± 0.063 3.115± 1.064 0.231± 0.068 5.59 6167.57 0.22 0.02 −0.05 0.12 0.31E + 01
KIC8150065 1.129± 0.149 1.362± 0.060 2.893± 0.384 0.117± 0.040 2.67 6319.22 0.24 0.02 −0.03 0.08 0.49E + 01
KIC7771282 1.331± 0.147 1.651± 0.061 3.128± 1.489 0.094± 0.085 3.73 6244.28 0.18 0.02 −0.02 0.08 0.69E + 01
KIC10068307 1.286± 0.007 1.990± 0.003 3.206± 0.090 0.167± 0.015 5.24 6191.34 0.21 0.01 −0.15 0.09 0.81E + 01
KIC7510397 1.340± 0.098 1.828± 0.045 2.977± 0.618 0.069± 0.028 4.75 6303.13 0.16 0.01 −0.22 0.07 0.84E + 01
KIC8179536 1.281± 0.339 1.351± 0.119 1.417± 0.239 0.099± 0.091 2.86 6459.93 0.22 0.02 0.03 0.06 0.97E + 01
KIC9353712 1.397± 12.186 2.115± 6.147 2.926± 299.365 0.131± 27.973 5.54 6088.69 0.24 0.02 0.09 0.08 0.13E + 02
KIC5773345 1.573± 0.220 2.015± 0.094 1.767± 0.537 0.194± 0.066 6.23 6423.29 0.13 0.02 0.08 0.00 0.16E + 02
KIC5184732 1.137± 0.017 1.311± 0.007 4.104± 0.184 0.120± 0.027 2.07 6044.76 0.25 0.02 0.14 0.06 0.19E + 02
KIC7206837 1.228± 0.199 1.523± 0.082 3.600± 0.531 0.146± 0.012 2.93 6118.45 0.24 0.02 0.14 0.10 0.23E + 02
KIC10162436 1.388± 0.140 1.984± 0.067 2.464± 0.178 0.124± 0.039 5.61 6304.88 0.19 0.02 −0.05 0.10 0.47E + 02
KIC8394589 1.107± 0.037 1.181± 0.013 3.896± 0.167 0.000± 0.000 1.91 6243.17 0.17 0.01 −0.36 0.00 0.37E − 02
KIC6603624 1.020± 0.306 1.155± 0.115 8.263± 3.198 0.000± 0.000 1.16 5568.94 0.25 0.03 0.28 0.00 0.18E + 00
KIC7106245 0.971± 0.034 1.123± 0.013 5.723± 0.394 0.000± 0.000 1.51 6039.24 0.24 0.01 −0.12 0.00 0.23E + 00
KIC8006161 0.956± 0.010 0.921± 0.003 5.365± 0.803 0.000± 0.000 0.59 5268.17 0.27 0.04 0.34 0.00 0.92E + 00
KIC7871531 0.909± 0.043 0.898± 0.014 9.987± 0.804 0.000± 0.000 0.61 5377.51 0.17 0.01 −0.23 0.00 0.98E + 00
KIC9955598 0.901± 0.128 0.888± 0.042 7.056± 1.459 0.000± 0.000 0.57 5314.82 0.24 0.02 0.11 0.00 0.15E + 01
KIC7680114 1.099± 0.025 1.405± 0.011 6.773± 0.766 0.000± 0.000 2.18 5916.19 0.21 0.02 0.01 0.00 0.18E + 01
KIC9098294 1.006± 0.019 1.156± 0.007 7.706± 0.249 0.000± 0.000 1.42 5864.84 0.20 0.01 −0.11 0.00 0.38E + 01
KIC8424992 0.910± 0.065 1.045± 0.025 9.831± 1.792 0.000± 0.000 1.03 5685.50 0.23 0.02 −0.07 0.00 0.58E + 01

Note. Models with overshooting are presented above the horizontal separation. Models without overshooting are situated
below.
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Figure 4.6: HR diagram representing the best fit models considering either only seismic constraints
(diamonds) or the metallicity constraint instead of AHe (triangles). Models with overshooting are shown
as filled symbols while models without are represented by empty symbols. Individual stars are associated
with a single colour and are linked with a straight line. For each star and in the corresponding colour, we
represent the observed effective temperature and its uncertainties as the errorbars.
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Figure 4.7: Age (in Gyrs) as a function of the mass for the best fit models considering either only seismic
constraints (diamonds) or the metallicity constraint instead of AHe (triangles). Models with overshooting
are shown as filled symbols while models without are represented by empty symbols. Individual stars are
associated with a single colour and are linked with a straight line.
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Figure 4.8: Overshooting parameter as a function of the mass for the best fit models considering either
only seismic constraints (diamonds) or the metallicity constraint instead of AHe (triangles). Models
with overshooting are shown as filled symbols while models without are represented by empty symbols.
Individual stars are associated with a single colour and are linked with a straight line. A linear fit to the
data is also represented by the black line.
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Figure 4.9: Initial helium abundance as a function of (Z/X)0 for the best fit models considering either
only seismic constraints (diamonds) or the metallicity constraint instead of AHe (triangles). Models
with overshooting are shown as filled symbols while models without are represented by empty symbols.
Individual stars are associated with a single colour and are linked with a straight line. A linear fit to the
data is also represented by the black line.
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Figure 4.10: Surface helium abundance as a function of the surface (Z/X) ratio for the best fit models
considering either only seismic constraints (diamonds) or the metallicity constraint instead of AHe
(triangles). Models with overshooting are shown as filled symbols while models without are represented by
empty symbols. Individual stars are associated with a single colour and are linked with a straight line.

4.3.4 Conclusions of the analysis

While the grid we used to model the Kepler LEGACY sample might be too coarse to properly infer central
overshooting in most of the stars, we managed to retrieve satisfying results for about 20 stars out of the 66
that constitute the sample. This allowed us to show that for stars with masses & 1.1 M�, there might
exist a correlation between the amount overshooting and the stellar mass (as shown in Claret & Torres
2017, 2018). For masses below this threshold, there is no convective core and the overshooting parameter
is irrelevant. We also inferred the primordial helium abundance and enrichment ratio of Yp = 0.26± 0.01
and ∆Y/∆Z = 1.92± 0.79, respectively. The primordial abundance is larger than most literature values
(e.g. Ribas et al. 2000; Lebreton et al. 2001; Peimbert et al. 2002; Balser 2006; Casagrande et al. 2007;
Verma et al. 2019). This could in fact result from our choice of the AGSS09 solar mixture which tend to
produce less metallic and more helium abundant models than the reference mixtures used in other studies.

Overall, it would be interesting to extend the present study by improving our grid, in order to obtain
acceptable models for a greater number of stars. We could also compute sets of models without overshooting
for stars with masses & 1.1 M� to observe its effect on the final stellar parameters over the complete
sample. Finally, selecting a few targets to carry an in-depth characterisation, as we did for the 16Cyg
system, will be particularly interesting, to further test the limitations of our technique as well as of the
stellar models. This would represent the opportunity to fully exploit the ∆01-r̂01 combination of seismic
indicators and to study the impact of the set of input physics on the inferred properties of convective cores.
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ABSTRACT

Context. Being part of the brightest solar-like stars, and close solar analogues, the 16 Cygni system is of great interest to the scientific
community and may provide insight into the past and future evolution of our Sun. It has been observed thoroughly by the Kepler
satellite, which provided us with data of an unprecedented quality.
Aims. This paper is the first of a series aiming to extensively characterise the system. We test several choices of micro- and macro-
physics to highlight their effects on optimal stellar parameters and provide realistic stellar parameter ranges.
Methods. We used a recently developed method, WhoSGlAd, that takes the utmost advantage of the whole oscillation spectrum of
solar-like stars by simultaneously adjusting the acoustic glitches and the smoothly varying trend. For each choice of input physics,
we computed models which account, at best, for a set of seismic indicators that are representative of the stellar structure and are
as uncorrelated as possible. The search for optimal models was carried out through a Levenberg-Marquardt minimisation. First, we
found individual optimal models for both stars. We then selected the best candidates to fit both stars while imposing a common age
and composition.
Results. We computed realistic ranges of stellar parameters for individual stars. We also provide two models of the system regarded
as a whole. We were not able to build binary models with the whole set of choices of input physics considered for individual stars as
our constraints seem too stringent. We may need to include additional parameters to the optimal model search or invoke non-standard
physical processes.

Key words. asteroseismology – stars: oscillations – stars: solar-type – stars: abundances

1. Introduction

In the past decade, the CoRoT (Baglin et al. 2009) and Kepler
(Borucki et al. 2010) space missions have provided the stellar
physics community with a wealth of data of unprecedented qual-
ity for solar-like stars. Such data allow stellar scientists, through
the use of asteroseismology, to put their models to the test and to
provide stringent constraints on the physical processes at hand,
therefore highlighting the current shortcomings in the modelling
(e.g. mixing processes, angular momentum transport, star-planet
interaction). In addition, studying solar-like stars enables us to
gather invaluable insight into the past and future of our Sun.

The 16 Cygni system is of great interest as it consists of
binary solar twins which have been observed continuously for
928 days. Both stars are therefore among the solar-like pulsators
with the best data available for seismic studies. Moreover, a great
amount of information has yet to be accounted for. For exam-
ple, differences in superficial lithium abundances remain unex-
plained (Friel et al. 1993 and King et al. 1997) observed that
the B component is at least four times more Li depleted than
its twin). The presence of a jovian companion to 16 Cygni B
(Cochran et al. 1997) has been argued by Deal et al. (2015) to be
the possible cause. This specific example illustrates that the sys-
tem is an ideal test-bench to constrain stellar models as well as

to test non-standard physical processes while taking advantage
of asteroseismic techniques.

Solar-like oscillations, as both stars display, are stochastically
excited by the outer convective layer. Such oscillation spectra
may present the following two main features: a regular pattern,
referred to as the smooth part of the spectrum, and an oscillat-
ing pattern of low amplitude, the glitch. An acoustic glitch is the
oscillating signal observed in frequencies, which is caused by
a sharp variation – compared to the wavelength of the oscillat-
ing mode – variation in the stellar structure. The first mention
of the possible use of such signatures was by Vorontsov (1988)
and Gough (1990) who theoretically demonstrated the effect of
a sharp feature in the stellar structure on oscillation frequencies,
either directly or in the second frequency differences. For exam-
ple, in solar-like stars, we have the helium glitch, caused by a
depression in the first adiabatic index1 in the second helium ion-
isation zone, and the convection zone glitch, due to the variation
of the temperature gradient at the base of the convective envelope
zone. They may constrain the surface helium content, inacces-
sible by other means for solar-like stars, (e.g. Basu et al. 2004;
Verma et al. 2014) and the total extent of the envelope convective

1 We recall the definition of the first adiabatic index: Γ1 = dlnP
dlnρ |S ,

where ρ is the density, P is the pressure, and S is the entropy.
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zone, as well as the mixing processes at hand that might explain
such an extent (e.g. Monteiro et al. 2000).

In a previous paper, Farnir et al. (2019) described a new
method to provide a robust analysis of the solar-like oscilla-
tion frequencies simultaneously accounting for the smooth and
glitch parts, the WhoSGlAd (Whole Spectrum and Glitches
Adjustment) method. This method relies on the Gram-Schmidt
orthonormalisation process to define seismic indicators as uncor-
related as possible. It shows a great potential to provide precise,
accurate and statistically relevant constraints on stellar physics.
Compared to other seismic methods accounting for the glitches
signature, the WhoSGlAd method has the advantage of decorre-
lating the information contained in both components of the oscil-
lation spectrum (smooth and glitch parts) while accounting for
them simultaneously. This leads to constraints which are, in turn,
the least correlated possible and more stringent. Moreover, the
measured frequencies are not fitted individually as it introduces
large correlations. Rather, we use seismic indicators defined to
be representative of the stellar structure and as little correlated
as possible. This enables us to compute optimal models as accu-
rate as possible.

This paper is part of a series of publications dedicated at
providing the most accurate and complete picture of the 16Cyg
binary system. In this first study, our goal is to establish a large
sample of reliable structural models analysing the degenera-
cies stemming from variations in the micro- and macro-physical
prescriptions using our new consistent seismic modelling tech-
nique, WhoSGlAd. We model the system using asteroseismic,
spectroscopic and interferometric constraints considering both
16CygA (KIC12069424) and 16CygB (KIC12069449) indepen-
dently and as a joint system. We provide a suitable set of mod-
els for structural inversions to be studied in a second paper. Our
thorough analysis also paves the way for an in-depth description
of potential traces of non-standard processes acting (or having
acted) during the history of the system. These include the effects
of angular momentum transport processes (Eggenberger et al.
2010, 2019) as well as the effects of planetary formation and
accretion on the lithium abundances of both stars (Deal et al.
2015; Thévenin et al. 2017).

The paper is structured as follows. First, we present in Sect. 2
the general methodology and recall the basics of the WhoSGlAd
method. We then model the system. This is done in two steps. To
take advantage of the great precision of the data for each star, we
first provide, in Sect. 3, separate adjustments while testing dif-
ferent choices of micro- and macro-physics. This allows to pro-
vide robust stellar parameter ranges accounting for the modelling
uncertainties as well as to show discrepancies in the modelling
for some cases. We select in Sect. 4 the models having con-
sistent ages and initial compositions as initial guesses to com-
pute models imposing a common age and initial composition, as
those stars should have formed from a single molecular cloud.
Even though no specific interaction between both stars is taken
into account during their evolution, we refer to those models as
binary models. We discuss the results in Sect. 5. Finally, we con-
clude our paper in Sect. 6.

2. Methodology

In the current section, we describe the optimisation scheme
and the seismic and non-seismic constraints used. We then
present the basic principle of the WhoSGlAd method. Finally,
we describe the physics included in the models as well as the
considered variations.

Table 1. Set of non-seismic data used througout this paper.

Quantity 16CygA 16CygB Refs.

R(R�) 1.22 ± 0.02 1.12 ± 0.02 a
Teff(K) 5839 ± 42 5809 ± 39 a
L(L�) 1.56 ± 0.05 1.27 ± 0.04 b
[Fe/H] (dex) 0.096 ± 0.026 0.052 ± 0.021 c
Y f [0.23, 0.25] [0.218, 0.260] d

References. a: White et al. (2013), b: Metcalfe et al. (2012), c: Ramírez
et al. (2009), d: Verma et al. (2014).

2.1. Best-fit model search

The search for best-fit models is undertaken by a Levenberg-
Marquardt (L-M) algorithm. In doing so, we compare observed
values of a set of constraints with model values, computed on the
fly, through a χ2 function, to be minimised, defined as:

χ2 =

N∑

i=1

(
Cobs,i −Cmod,i

)2

σ2
i

, (1)

where C represents the N constraints, the obs (resp. mod) sub-
script the observed (resp. model) values and σ their associated
standard deviations.

Except when mentioned otherwise, the set of constraints con-
sists of the ∆, r̂01, r̂02, and AHe seismic indicators (Farnir et al.
2019) presented in Sect. 2.2 and the free parameters adopted in
the modelling procedure are the mass (M), age (t), initial hydro-
gen abundance (X0) and, metallicity (Z/X)0 of the considered
star. Other non-seismic data, such as the effective temperature
(Teff), interferometric radius (R), or the metallicity ([Fe/H]),
are used to discriminate between the several choices of input
physics. In some cases, and when so stated, non-seismic data
may be used as constraints to the model search while relax-
ing the mixing length parameter or including turbulent diffusive
mixing with a free coefficient (see Sect. 2.3 for a description
of the physics included in the models). Those data are gathered
in Table 1. Finally, we do not use as a constraint the luminos-
ity (L) from Metcalfe et al. (2012) as it results from astero-
seismic modelling and would not be independent of our study.
Instead, we compute it from the observed interferometric radius
(White et al. 2013) and the definition of the effective tempera-
ture: sT 4

eff
= L

4πR2 , where s is the Stefan-Boltzmann constant.

2.2. WhoSGlAd principle and seismic indicators

We recall here the set of WhoSGlAd seismic indicators used in
the fitting procedure as well as the basics of the method. For a
more detailed description, see Farnir et al. (2019).

Principle. The WhoSGlAd method relies on Gram-Schmidt’s
orthogonalisation. To represent the observed frequencies, we
define a Euclidean vector space of functions of the spherical
degree, l, and radial order, n (only m = 0 modes are consid-
ered). The N observed frequencies at a given value of l are
regarded as unknown vector functions of n and l which we write
νl = (νl,n1 , . . . , νl,nN ). Two notable functions are the identity, 1,
and linear function of the radial order, nl = (nl,1, . . . , nl,N).

Given two vector quantities, say the observed and theoretical
vectors of frequencies, νobs and νt, we may define their scalar
product as:

〈νobs|νt〉 =

N∑

i=1

νobs,niνt,ni

σ2
i

, (2)
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with σi the uncertainties associated with each component. From
this scalar product is defined the norm of a vector νobs:

‖νobs‖ =
√
〈νobs|νobs〉. (3)

We may also define the weighted mean of a quantity, according
to our scalar product and normalisation, as:

νobs =
〈νobs|1〉
‖1‖2 =

N∑
i=1
νobs,ni/σ

2
i

N∑
i=1

1/σ2
i

. (4)

The functions used to describe the frequencies are separated
into two contributions: a smooth part, represented by second-
order polynomials of n, and a glitch part, represented by oscil-
lating functions of the frequency. The form of those functions is
given in Appendix A. Using Gram-Schmidt’s orthogonalisation
process, we build a basis of functions over that vector space. To
provide an adjustment of the observed frequencies, those are pro-
jected over the basis elements. This provides completely inde-
pendent coefficients which are combined into seismic indicators
as little correlated as possible. One of the main advantages of this
approach is that the glitch part of the adjustment is completely
independent of the smooth part, even though both adjustments
are carried out simultaneously. We define the seismic indicators
as follows:

The large separation for modes of degree l. Corresponds
to the value of the slope of the frequencies decorrelated from the
contribution of the acoustic glitches and expressed as a linear
function of the radial order n for each spherical degree l:

∆l =
〈νl|nl〉 /‖1‖2 − nl νl

‖nl‖2/‖1‖2 − nl
2 . (5)

This is equivalent to its standard definition obtained through a
linear regression (see e.g. Reese et al. 2012).

The large separation. Corresponds to the weighted mean
value, ∆l, of the individual large separations for each spherical
degree l

∆ = ∆l =

∑
l

∆l/σ
2 (∆l)

∑
l

1/σ2 (∆l)
, (6)

with σ (∆l) the uncertainty on the large separation of degree l.

The normalised small separations between degrees 0
and l.

r̂0l =
ν0 − νl

∆0
+ nl − n0 +

l
2
. (7)

Those indicators are analogous to the mean value of the local
small separation ratios defined by Roxburgh & Vorontsov (2003)
but are again completely independent from the contribution of
acoustic glitches.

The helium glitch amplitude.

AHe = ‖δνHe‖, (8)

where δνHe is the helium glitch component.
Beside those indicators, we may define complementary seis-

mic indicators which are presented in Appendix B. Those were
not part of the constraints.

Table 2. Observed seismic indicators.

Indicator 16CygA 16CygB

∆(µHz) 104.024 ± 0.005 117.911 ± 0.004
AHe 30 ± 1 36 ± 1
r̂01 (3.62 ± 0.02) · 10−2 (2.52 ± 0.02) · 10−2

r̂02 (5.75 ± 0.03) · 10−2 (5.53 ± 0.03) · 10−2

Notes. The standard deviations result from the propagation of the uncer-
tainties on the observed frequencies.

Table 2 gathers the values of the considered seismic indica-
tors computed using the modes defined over the full length of
the Kepler mission determined by Davies et al. (2015). We take
out from those modes the ones with uncertainties above 1.5 µHz.
This mostly corresponds to high frequency modes. A brief dis-
cussion of this choice is given in Appendix C. We have cor-
rected the frequencies for the surface effects by using the power
law prescribed by Kjeldsen et al. (2008) and the a and b coef-
ficients fitted by Sonoi et al. (2015) as a function of Teff and g.
The authors have undertaken this coefficient adjustment by com-
paring the adiabatic frequencies of patched models based on 3D
simulations and that of unpatched standard 1D models.

2.3. Models

Unless specified otherwise all the models are computed using
the CLES stellar evolution code (Scuflaire et al. 2008b) with
the AGSS09 solar chemical mixture (Asplund et al. 2009), the
OPAL opacity table (Iglesias & Rogers 1996) combined with
that of Ferguson et al. (2005) at low temperatures, the FreeEOS
software to generate the equation of state table (Cassisi et al.
2003), and the nuclear reactions rates prescribed by Adelberger
et al. (2011). We also use the mixing length theory (Cox & Giuli
1968), with the solar calibrated value of αMLT = l/Hp = 1.82
(where l is the mixing length and Hp the pressure scale height),
to parametrise the mixing inside convective regions. This value
is the result of a solar calibration that we carried out using the
same set of input physics as described in the present section.
The microscopic diffusion of elements is included and treated as
in Thoul et al. (1994). The models do not include rotation and,
therefore, rotation-induced mixing. Unless specified otherwise,
models do not include overshooting at the boundary of convec-
tive layers. The temperature conditions above the photosphere
are determined using an Eddington T (τ) relation, τ being the
optical depth. We choose such a relation to remain consistent
with Sonoi et al. (2015) whose fitted coefficients are used to cor-
rect surface effects on the observed frequencies. From now on,
to distinguish from the several physical variations, we refer to
the models with this specific set of input physics as the refer-
ence models. Finally, we compute theoretical adiabatic oscilla-
tion frequencies for each model via the LOSC oscillation code
(Scuflaire et al. 2008a).

2.4. Variations in the input physics

As mentioned earlier, to provide the most reliable set of stellar
parameter ranges while accounting for the choice of micro- and
macro-physics, we test choices by changing one ingredient at the
time from the reference models. Those variations are:

– The GN93 solar reference mixture (Grevesse & Noels 1993),
in light blue in the figures (see Sect. 3.1.2);
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– The opacities from the opacity project (Badnell et al. 2005),
denoted OP in light brown, the Los Alamos opacities
(Colgan et al. 2016), written OPLIB in beige (see
Sect. 3.1.2);

– The CEFF equation of state (Christensen-Dalsgaard &
Daeppen 1992), in dark brown, and the revised OPAL
equation of state (Rogers & Nayfonov 2002), written
OPAL05 in grey (see Sect. 3.1.2);

– A different choice of mixing length coefficient (αMLT = 1.7),
in yellow (see Sects. 3.1.2 and 3.2);

– The inclusion (or not) of microscopic diffusion, in light pink
(see Sect. 3.1.3);

– The inclusion of turbulent mixing of chemical elements
following the relation for the turbulent mixing coefficient
DDT = Dturb

(
ρ
ρ0

)n
+ Dct (in cm2 s−1), where ρ is the den-

sity, ρ0 the density at the bottom of the convective envelope
and Dturb, n and Dct are fixed at 7500, −3 and 0 respectively
(Proffitt & Michaud 1991), shown in purple (see Sects. 3.1.3
and 3.2);

– The inclusion of overshooting extending outside convective
regions over a distance d = αovmin

(
Hp, h

)
where αov is the

overshooting parameter, Hp the local pressure scale height
and h the thickness of the convective region. The tempera-
ture gradient in the overshooting region is set to the radiative
one and the mixing is instantaneous. We either include over-
shooting above the convective core, denoted αov and shown
in red, or below the convective envelope, written αun in khaki
and referred to as “undershoot”. Both values are set to 0.1
(see Sect. 3.1.4);

– The effect of a different choice of temperature profile above
the stellar photosphere, in orange. We use the model tem-
perature profile of the quiet sun by Vernazza et al. (1981)
for which an analytical formulation may be found in Paxton
et al. (2013) (see Sect. 3.1.5);

– The impact of the surface effects, computing a model fitting
seismic indicators defined with stellar frequencies which are
not corrected for surface effects in dark green. Their values
are shown in Table D.1. See also Sect. 5.2 and Appendix D.

3. 16 Cygni A and B seen as separate stars

In the present section, we look for individual models of each star
representative of the observed data and accounting at best for
the modelling uncertainties. The stellar parameters for every best
model estimates are displayed in Appendix E. To find individual
models, we test several choices of input physics without any spe-
cific hypothesis about the binarity of the stars. This allows to take
advantage of the unprecedented quality of the data. The first part
of this study is subdivided in two steps. We start by only consid-
ering seismic constraints. Then, we add non-seismic constraints,
in Sect. 3.2, to further improve the models. The advantage of
first computing individual models for each star is that it allows
to have the same amount of constraints as free parameters and to
obtain an exact solution, from a statistical point of view, to the
minimisation process.

3.1. Fitting seismic constraints only

In the present section, we present the results of the modelling
considering only seismic indicators. This allows to show the
impact of the seismic indicators alone on optimal results as well
as the possible limitations of such an exclusive approach. Fur-
thermore, we test several choices of micro- and macro-physics.

This enables us to highlight their influence on the set of optimal
parameters we retrieve. The models are computed as described
in Sect. 2.3 while changing only one physical ingredient at a
time.

The individual models for both components are shown in
Figs. 1 and 2 (see Table E.3 for individual parameter values.)
We show, in the upper panel of the figures the age versus the
mass of the optimal model for each variation in the input physics
along with the associated uncertainties. The middle panel dis-
plays the position of those models in a Hertzsprung-Russell
(HR) diagram. We also represent, as a black box, the observed
effective temperature and luminosity computed from the inter-
ferometric radius (White et al. 2013). Finally, the lower panels
represent the initial hydrogen versus initial metallicity and their
uncertainties for each model.

In both figures, the reference model is represented in dark
blue and denoted AGSS09. For 16 Cyg A, it actually corresponds
to the model presented in Sect. 5 of Farnir et al. (2019). Their
Fig. 14 illustrates that the use of the WhoSGlAd seismic indica-
tors as constraints allows to provide a proper agreement between
observed and model frequencies.

3.1.1. Influence of seismic constraints on stellar parameters

Farnir et al. (2019) showed that the WhoSGlAd helium glitch
amplitude is a good proxy of the surface helium abundance.
This means that, when requiring our models to reproduce the
observed helium glitch amplitude, we require a specific helium
abundance. To illustrate this statement, we plot in Figs. 3 and 4
the surface helium content as a function of the surface metallicity
of each model. We also represent, as a black box, the spectro-
scopic metallicity from Ramírez et al. (2009) and the asteroseis-
mic Ys range computed by Verma et al. (2014), taking advantage
of the information contained in the helium glitch, along with
their associated uncertainties. We indeed observe that the sur-
face helium abundance is well constrained and, in most cases,
in agreement with the study of Verma et al. (2014). They com-
puted ranges of [0.231, 0.251] and [0.218, 0.266] for the A and
B components respectively, which encapsulate most of our val-
ues. However, we also note a small scatter in the values. Again,
Farnir et al. (2019) showed that the helium glitch amplitude is
both correlated to the surface helium and metal abundances, with
the helium abundance being the dominant factor. They indeed
observe that, at constant surface helium abundance, a lower sur-
face metal abundance or, at constant surface metal abundance,
a higher surface helium abundance may both lead to a greater
glitch amplitude. This is in fact due to a shift in the position of
the adiabat in the second helium ionisation zone, where the first
adiabatic index, Γ1 = dlnP

dlnρ |S , presents a large depression. This
allows us to account for the small scatter observed. A direct con-
sequence of the helium glitch amplitude constraint is the anti-
correlation between the initial metallicity and helium abundance
that we observe in the lower panels of Figs. 1 and 2.

Moreover, we point out that most models do not account for
the spectroscopic metallicity constraint. This is clearly visible in
Figs. 3 and 4. This does not come as a surprise as the presented
models do not yet include the metallicity constraint in the fitting
procedure. This also shows that the information contained in the
helium glitch amplitude and the surface metallicity are comple-
mentary and it comes as a necessity to take advantage of both to
provide the most accurate model possible.

Now looking at the middle panels of Figs. 1 and 2, the first
striking feature is the fact that most models lie on a straight line.
Such line corresponds to the locus of models of constant radius.
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Fig. 1. Summary of 16 Cyg A best-fit models represented in a Mass –
Age diagram (top panel), HR diagram (middle panel) and initial hydro-
gen abundance versus metal composition diagram (bottom panel). The
luminosity and effective temperature constraints from White et al.
(2013) are represented in the HR diagram as a black box.

This almost constance of the radii stems from the ∆ indicator
which provides a constraint on the mean stellar density (Farnir
et al. 2019; Ulrich 1986). Thus, the models of constant mean
density have almost constant stellar radii, as long as the mass
remains close to constant. Actually, this is what we observe as
the mean radius values of our models are 1.22 R� and 1.11 R�
for 16CygA and B respectively (Typical uncertainties are of
0.02 R� and 0.01 R� respectively. Individual values are shown in
Table E.3). This is in good agreement with the values in Table 1.
We note that some models do not lie on the straight line with
the other models. Such models are those with masses values
that differ significantly from the mean value of other models.
Finally, we observe that many models do not fall in the effective
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Fig. 2. Summary of 16 Cyg B best-fit models. The colours are the same
as in Fig. 1.

temperature and luminosity observational boxes. This comes
from the fact that those constraints are not yet part of the mod-
elling procedure and shows that their inclusion is necessary to
provide the most accurate picture of the system.

3.1.2. Effect of the metallicity reference, opacity table, and
equation of state

As is clearly visible in Figs. 1 and 2 using either the GN93 solar
reference mixture or a greater value of the mixing length parame-
ter produces models for both stellar components which are more
luminous and have a greater effective temperature than the refer-
ence models. Furthermore, looking at Figs. 3 and 4, we observe
that the GN93 solar reference tends to produce more metallic
models, directly stemming from the fact that this solar reference
is indeed more metallic than the AGSS09 one. However, in terms
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Fig. 3. Surface helium abundance versus metallicity for 16 Cygni A.
The black box represents the spectroscopic metallicity value computed
by Ramírez et al. (2009) and the surface helium value from Verma et al.
(2014) along with the corresponding uncertainties.

of metallicity, the mixing length parameter has opposite impacts
on the two stellar components. A decrease of its value leads, in
the case of 16 Cyg A, to models which become less metallic,
while it produces more metallic models for 16 Cyg B.

Now looking at the influence of the opacity tables, we note
that the OPLIB table leads to a model for 16 Cyg A which has
a greater effective temperature while the effect is barely visi-
ble for 16 Cyg B. Conversely, the OP opacity table leads to
models which are cooler for both stars but the effect is not as
pronounced. The effect of the opacity tables is not clear on the
surface composition as both models react in different ways.

Finally, the use of a different equation of state table also pro-
duces differential effects on both stars. On the first hand, in the
case of 16 Cygni A, using either the CEFF or OPAL05 tables
lead to hotter, more luminous stars and with decreased surface
helium and metal abundances. On the other hand, for 16 Cygni
B, both tables have very little influence on the position of the star
in the HR diagram (see Fig. 2). However, the use of the OPAL05
table leads to a model of the B component which is both richer in
helium and metals at its surface. The impact of the CEFF equa-
tion of state is barely visible.

3.1.3. Impact of diffusion

We note that the models we compute without diffusion of chem-
ical elements are both older, heavier and richer in hydrogen
than the reference, as represented in light pink in Figs. 1 and 2.
As showed by Farnir et al. (2019), at a specific composition,
more massive models present a stronger helium glitch signature.
Therefore, to reproduce the observed signature of both stars, the
models need to be poorer in helium as more massive models are
favoured. This is even reinforced by the fact that no diffusion
is included and the initial helium abundance has to match that
of the surface. Moreover, the difference in surface helium abun-
dance between models with and without diffusion is systemat-
ically of about 0.02 as was noted by Verma et al. (2019). This
confirms their observation of the importance of diffusion in low
mass stars of solar metallicity.

We observe that non-seismic data, that will be considered in
Sect. 3.2, are not accounted for in most cases. We note that one
way to account for them is to reduce the impact of microscopic
diffusion, either partially for 16 Cygni A – by involving addi-
tional mixing processes as turbulent mixing – or completely for
16 Cygni B. This contradicts the conclusions of Buldgen et al.
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Fig. 4. Surface helium abundance versus metallicity for 16 Cygni B.
The black box represents the spectroscopic metallicity value computed
by Ramírez et al. (2009) and the surface helium value from Verma et al.
(2014) along with the corresponding uncertainties.

(2016a) who determined that models with increased diffusion
efficiency (with diffusion velocities higher of about 10%) could
help reproduce inversion results for the A star. However, this
agrees with their second study (Buldgen et al. 2016b) where they
noted that reducing the efficiency of diffusion allowed the com-
putation of models consistent with the inversion results. This,
however, lead their study to inconsistencies in surface composi-
tion between the two stars.

We also show the impact of the inclusion of turbulent mixing
on the modelling by computing models with a turbulent mixing
coefficient fixed at a value of Dturb = 7500 cm2 s−1. We note that
those models tend, for both stars, to be more luminous, hotter
and less metallic. The overall agreement with non-seismic data
is thus improved. We show in Sect. 3.2.1 the influence of the
value of the turbulent mixing coefficient on the optimal results.

3.1.4. Extension of convective layers

To analyse the effect of the extension of the convective core –
during pre-main sequence – on the stellar evolution, we include
instantaneous overshooting in some of our models. Those are
displayed in red in the figures. We note that the effect on the
optimal models is not obvious. Indeed, such models are almost
indistinguishable from the reference ones and lie within one
another uncertainties. The same goes for the surface composi-
tions retrieved. Including a greater value of the overshooting
parameter (αov = 0.2 instead of 0.1) leads to great differences
in the behaviours of both stars. Indeed, while the model for
16 Cyg B remains rather similar to that with a lower value of
overshooting, thus similar to the one without overshooting, the
model for the A component becomes significantly less massive,
older, metal poor and with a smaller radius (see Table E.3).
The reason for such a difference is that only the A component,
because of its slightly greater mass and smaller metallicity, is
able to maintain a convective core during the main sequence
with such an overshooting parameter value. Therefore, its struc-
ture becomes significantly different from that of a model with-
out overshooting which has a radiative core during the main
sequence. However, this model maintaining a convective core
on the main sequence seems to be a curiosity of the minimi-
sation method. The retro-action of the presence of the convec-
tive core ultimately leads to a significant decrease of the optimal
mass as well as the metallicity, becoming significantly sub-solar
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([Fe/H] = −0.39 ± 0.01). This further indicates the necessity
to use non-seismic constraints to obtain proper models. We can
therefore safely discard this model. Additionally, we may note
that the significantly lower mass of the A model leads to a sig-
nificantly smaller radius because of the ∆ constraint, which again
contradicts observations. Moreover, this pair of model has now
a less massive A component than the B. Although, by a simple
argument of scaling relations, we obtain a hint that the A com-
ponent should be heavier than the B. Indeed, from Kjeldsen &
Bedding (1995) we have that MA

MB
'

(
νmax,A

νmax,B

)3 (
∆νA
∆νB

)−4 ( Teff,A

Teff,B

)3/2
.

With νmax,A = 2188 µHz, νmax,B = 2561 µHz taken from Lund
et al. (2017), and the values of the effective temperatures and
large separations presented earlier, we expect the mass of the A
component to be larger than the other (MA ' 1.04MB). This is
what we observe for most of our models.

The inclusion of undershooting below the base of the convec-
tive zone has no significant impact on the optimal stellar param-
eters beside a reduction of the individual uncertainties. Initial
compositions and ages for both stars now fall out of each others
uncertainties and the models are dismissed as valid candidates to
compute binary models in Sect. 4. This statement is clearly illus-
trated in Fig. 7 where the initial hydrogen, metal abundances and
ages of both stars are plotted against one another. The straight
line displays the locus of identical parameters for both stars. In
the upper panel, the khaki cross, representing the model with
undershooting, does not meet the line any more.

3.1.5. Effects of the atmosphere and mixing length coefficient

We show the influence of the atmosphere on the optimal stellar
parameters by using a temperature profile above the photosphere
as in Vernazza et al. (1981) with a specifically calibrated value of
αMLT = 2.02 (dark pink small circle in the figures). We observe
that the optimal model is very similar to the reference model.
Indeed, both pairs of models lie within the uncertainties of one
another. The optimal parameters are given in Table E.4. How-
ever, the models become hotter and more luminous. They are
thus closer to the observed luminosities and effective tempera-
tures. This indicates that it allows to provide better models in
terms of spectroscopic constraints while preserving rather simi-
lar stellar parameters compared to the case using the Eddington
relation. We must also point out that the use of a different tem-
perature profile leads to significant changes from the reference
models but the calibration of the mixing length parameter com-
pensates for it. To illustrate this, we compute models with the
temperature profile of Vernazza et al. (1981) while using the ref-
erence value of αMLT = 1.82 calibrated for an Eddington T − τ
relation. We observe that our models, shown in orange in the
figures, are very similar to models using a lower value of the
mixing length parameter, displayed in yellow. This is especially
true for 16 Cygni B for which both models lie within respective
uncertainties. For both stars, the computed models are older and
lighter.

3.2. Fitting non-seismic constraints

To further improve individual models for each star, we may
include non-seismic constraints into the minimisation process.
We indeed note that, in most cases, they are not accounted
for. Therefore, we use those constraints and include additional
free parameters to add degrees of freedom. The considered con-
straints are the effective temperature (White et al. 2013) and the
spectroscopic metallicity (Ramírez et al. 2009). The additional

free parameters are the mixing length parameter αMLT and the
turbulent mixing coefficient Dturb. In what follows, we specify
in every case which of those constraints and free parameters are
used.

3.2.1. Accounting for the effective temperature

From Figs. 1 and 2, we expect that it is possible to improve the
agreement with the observed effective temperature by increasing
the value of αMLT. As a consequence of the ∆ constraint, which
we showed in Sect. 3.1.1 to be a proper constraint on the radius,
we also expect to produce better model luminosities.

To demonstrate that a variation in the mixing length param-
eter is indeed responsible for the improvement of the model
effective temperature, we compute several models with different
mixing length parameters. We only include seismic constraints
in the fitting procedure to show the influence of αMLT alone on
optimal parameters. This is shown in Figs. 5 and 6 for 16 Cyg
A and B respectively and the stellar parameters are given in
Table E.5. The values considered are 1.7 [light blue], the solar
value of 1.82 [dark blue], and 2.0 [brown]. Those models are
connected with a blue line to improve visibility. We also dis-
play models with several choices for the turbulent mixing coef-
ficient: Dturb = 2000 cm2 s−1 [light pink], 5000 cm2s−1 [brown],
7500 cm2 s−1 [grey], 10 000 cm2 s−1 [dark pink], and no turbu-
lent mixing [dark blue]. These are connected in red and stel-
lar parameters are gathered in Table E.6. We observe that an
increase of αMLT leads to a better agreement with the observed
effective temperature for both stars. Moreover, we note that the
inclusion of turbulent mixing improves the agreement in effec-
tive temperature and metallicity for both stars. Even so, both
stars exhibit too large values of the metallicity compared to the
observed ones. We also note that, for 16 Cyg B, turbulent mixing
alone is not sufficient for the observed and model Teff to match.
In addition, we observe a clear effect of saturation of the tur-
bulent mixing coefficient, which occurs above a threshold value
that is already exceeded by the considered values. The results
are almost indistinguishable no matter which value is chosen.
Therefore, the turbulent mixing and mixing length coefficient
both have a impact on the model effective temperature (and thus
luminosity) but using the turbulent mixing coefficient as a free
parameter would be meaningless. Furthermore, we also display
in both figures models which did not include microscopic diffu-
sion of the chemical elements. We observe that those two models
differ greatly from the models including turbulent diffusion, both
being highly hotter and less metallic. The model for 16 Cygni B
even properly reproduces the observed metallicity and effective
temperature, although they are not yet part of the constraints.

Finally, we compute two models for each star with a free
mixing length coefficient and including Teff as a constraint, with
and without turbulent mixing (Dturb = 7500 cm2 s−1). The set
of input physics is that of the reference model. Both are dis-
played in Figs. 5 and 6 as orange diamonds labelled “Teff−Dturb”
and as yellow pentagons labelled “Teff”. For the A component,
we see that including turbulent mixing improves the results.
However the agreement with the non-seismic constraints is not
improved compared to the model including only turbulent mix-
ing and the opacity table OPLIB with only seismic constraints,
that already accounted for the effective temperature, as displayed
on Fig. 1. Conversely, for the B component, the improvement is
significant and the effective temperature is now well adjusted.
Nevertheless, the inclusion of turbulent mixing does not have a
significant impact on the resulting agreement with the non-
seismic data. Furthermore, in both cases, the metallicity is still
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Fig. 5. Variation of the optimal metallicity and effective temperature
for 16 Cyg A with the mixing length parameter and turbulent mixing.
Models of different αMLT values are connected in blue while models
with various turbulent mixing are connected by a red line.
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Fig. 6. Variation of the optimal metallicity and effective temperature
for 16 Cyg B with the mixing length parameter and turbulent mixing.
Models of different αMLT values are connected in blue while models
with various turbulent mixing are connected by a red line.

Table 3. Adjusted stellar parameters including the Teff with the refer-
ence set of input physics.

Quantity 16CygA 16CygB

M(M�) 1.1 ± 0.1 1.05 ± 0.02
X0 0.69 ± 0.04 0.70 ± 0.01
(Z/X)0 0.032 ± 0.002 0.032 ± 0.002
Y0 0.28 ± 0.04 0.027 ± 0.01
[Fe/H] 0.15 ± 0.05 0.16 ± 0.03
Ys 0.23 ± 0.02 0.233 ± 0.007
t(Gyr) 6.7 ± 0.4 6.6 ± 0.1
R(R�) 1.2 ± 0.1 1.12 ± 0.02
αMLT 1.9 ± 0.2 1.99 ± 0.06
χ2 1.1 0.2

not properly accounted for. The corresponding set of stellar
parameters is presented in Tables 3 and 4.

Analysing our results, we first notice from Table 3 that the
calibrated mixing length parameters are very different. Indeed,
looking at Fig. 2 from Magic et al. (2015), who used the same
solar reference mixture as we do, we would expect that both
adjusted values would remain rather close to the solar calibrated
value (1.82 in our case) while being smaller as both stars have

Table 4. Adjusted stellar parameters including the Teff constraint and
turbulent mixing with a coefficient of Dturb = 7500 cm2 s−1.

Quantity 16CygA 16CygB

M(M�) 1.07 ± 0.03 1.05 ± 0.02
X0 0.70 ± 0.01 0.71 ± 0.01
(Z/X)0 0.0291 ± 0.0009 0.0298 ± 0.0008
Y0 0.27 ± 0.02 0.027 ± 0.01
[Fe/H] 0.13 ± 0.02 0.15 ± 0.01
Ys 0.24 ± 0.01 0.238 ± 0.009
t(Gyr) 6.8 ± 0.2 6.7 ± 0.1
R(R�) 1.22 ± 0.03 1.12 ± 0.03
αMLT 1.84 ± 0.08 1.94 ± 0.07
χ2 0.6 0.7

higher effective temperatures and smaller surface gravities than
the Sun. Thus, both differences should translate into a lower mix-
ing length parameter. However, we observe that for 16 Cygni A,
and within the error bars, αMLT remains solar while the calibrated
value for 16 Cygni B is significantly higher than the solar value.
We may need to invoke a special physical process acting on any
of the components while being inefficient for the second to pro-
duce such a differential effect. Some of the possible scenarios are
discussed in Sect. 5.3.

We note that slightly more massive and less metallic models
than previously are favoured. Such an effect stems from the fact
that more massive models are hotter and thus in better agreement
with the observed effective temperature, while keeping the same
density, because of the ∆ constraint.

Another way to better reproduce the observed position in the
HR diagram is to include extra mixing counteracting the diffusion
of chemical elements. Indeed, for 16 Cyg B, the model computed
without diffusion already accounts for these constraints. Which
is striking as those were not yet constraints of the fit. What is
more striking is that it also reproduces the spectroscopic metallic-
ity. This strongly suggests that additional mixing processes may
be necessary to properly and accurately model this star. For its
twin, we note that the inclusion of turbulent mixing, a different
opacity table, the Los Alamos one, or the use of a different equa-
tion of state, either CEFF or OPAL05, could help us account for
the observed luminosity and effective temperature. Therefore, we
perform another fit using the OPLIB opacity table, including tur-
bulent mixing with a coefficient of Dturb = 2000 cm2 s−1, and
adding the effective temperature to the set of constraints. We do
not include the turbulent mixing coefficient into the free parame-
ters as Figs. 5 and 6 clearly demonstrate that it saturates. The set
of constraints is now composed of our seismic indicators and the
effective temperature and the free parameters are the age, mass,
and initial composition. We are now able to get a suitable model
which, again, accounts for the position in the HR diagram but
also for the spectroscopic metallicity, which was not required.
This is illustrated as a cyan square in the figures, with the label
“OPLIB − Dturb”. This shows that modified opacities could help
model the 16 Cyg A star as accurately as possible and also rein-
forces the argument that additional mixing processes might be
necessary to model both stars. The values of the several stellar
parameters are gathered in Table E.7.

3.2.2. Accounting for the metallicity

Up to now, the only two models accounting for the spectro-
scopic metallicity constraint from Ramírez et al. (2009) are
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Table 5. Adjusted stellar parameters including the metallicity con-
straint.

Quantity 16CygA 16CygB

M(M�) 1.03 ± 0.03 1.12 ± 0.06
X0 0.69 ± 0.01 0.74 ± 0.03
(Z/X)0 0.031 ± 0.003 0.025 ± 0.001
Y0 0.29 ± 0.01 0.24 ± 0.03
[Fe/H] 0.12 ± 0.04 0.06 ± 0.04
Ys 0.236 ± 0.006 0.20 ± 0.02
t(Gyr) 7.1 ± 0.2 6.0 ± 0.2
R(R�) 1.21 ± 0.03 1.14 ± 0.06
αMLT 1.71 ± 0.04 2.3 ± 0.2
χ2 3.2 1.2

models with a reduced impact of diffusion. Those correspond
to the one with the OPLIB opacity table and including turbulent
mixing with a fixed coefficient of Dturb = 2000 cm2 s−1, labelled
“OPLIB−Dturb” in the figures, for 16 Cyg A and the one without
diffusion for 16 Cyg B. Both models reproduce the complete set
of seismic and non-seismic constraints (that is ∆, r̂01, r̂02, AHe,
Teff , L, and [Fe/H]). However, the spectroscopic metallicity was
not yet part of the fitting constraints. Moreover, as Figs. 3 and 4
clearly illustrate, most of the computed models do not agree with
the spectroscopic metallicities.

As Figs. 5 and 6 clearly show, the turbulent mixing coef-
ficient saturates and freeing its value cannot enable us to pro-
duce models that reproduce the metallicity. We also note that
the impact of the mixing length parameter is mostly focused on
the effective temperature. As a consequence, we expect a large
variation of this parameter will be necessary to reproduce the
metallicity. In order to verify this hypothesis, we compute mod-
els with a free mixing length parameter and the metallicity as a
constraint. The set of free parameters is made of the age, mass,
composition and, mixing length of the star and the constraints
are the set of seismic constraints and the metallicity. The results
are given in Table 5 and shown in grey brown with the label
[Fe/H] in Figs. 1 through 4. We indeed observe that the nec-
essary variations in αMLT are incompatible with those to repro-
duce Teff . Indeed, now that the model and observed metallicities
agree, the effective temperature values do not. Trying to include
both non-seismic constraints, using the mixing length parame-
ter as a free coefficient and either including turbulent mixing or
not did not lead to a satisfactory adjustment (i.e. with a reduced
χ2 value inferior to 1). This clearly shows that we are not able,
with the current set of parameters, to reproduce the complete set
of seismic and non-seismic constraints without invoking special
physical processes. We also note that the model for 16 Cyg B
is both too massive and young compared to other studies (e.g.
Buldgen et al. 2016b; Verma et al. 2017). This illustrates that
one has to proceed with caution when modelling data as it is
possible to provide a model which is representative of these data
while having no physical meaning.

3.3. Individual best models

In the present section, we summarise and further analyse the
two best models we obtain while regarding both stars as sepa-
rate, that is to say without imposing a common initial composi-
tion and age. Those are the only models which simultaneously
account for seismic and non seismic constraints and are the ones
denoted “OPLIB−Dturb” for 16 Cyg A and “NoDiff” for 16 Cyg
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Fig. 7. Comparison of adjusted stellar parameters for both stars at a
given physics. The straight line shows the locus of identical stellar
parameters for both stars.

B. Table 6 shows the choice of input physics as well as the set of
optimal parameters of those models. As both models do not have
the same set of input physics, they may not be regarded as valid
candidates to study the system as a whole as is done in Sect. 4.
We indeed expect from binary stars with close stellar parameters
that their internal physics should overall be identical. The goal
of the present section is only to analyse in more depth models
which fitted the complete set of considered constraints and to
investigate whether those models still may be further improved.

We display the échelle diagrams of each star in Figs. 8
and 9. We observe that the frequency trend for both stars is well
accounted for. However, we note a drift at high frequencies. We
expect this effect to mainly result from the surface effects. To
illustrate this claim, we display the échelle diagram of optimal
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Table 6. Best individual models for each star, accounting for both seis-
mic and non-seismic constraints.

Quantity 16CygA 16CygB

Solar Ref. AGSS09 AGSS09
Opacity OPLIB OP
Eq. state Free Free
Atmos Eddington Eddington
Diffusion Yes No
Turb. mix. Yes No
αMLT 1.82 1.82
M(M�) 1.07 ± 0.03 1.063 ± 0.008
X0 0.70 ± 0.03 0.754 ± 0.006
(Z/X)0 0.029 ± 0.004 0.0214 ± 0.009
Y0 0.27 ± 0.03 0.230 ± 0.009
t(Gyr) 6.8 ± 0.2 7.50 ± 0.07
Dturb 0.2 · 104 /

χ2 0.9 0.6

models for both stars computed with seismic indicators which
are not corrected for surface effects in Figs. D.1 and D.2. We
indeed observe that the high frequency drift is reinforced.

We also note that, in the case of 16 Cygni B, the theoret-
ical ridges are shifted with respect to the observed ones. This
effect should mainly be due to the ε̂ seismic indicator defined in
Farnir et al. (2019). It corresponds to an estimator of the con-
stant term in n in the asymptotic expression of frequencies as in
Gough (1986) and has been shown to be sensitive to the surface
effects. Its value along with several other WhoSGlAd indicators
for every computed model are displayed in Figs. 10 and 11 (their
definitions and observed values are given in Appendix B). We
observe that the ε̂ is not properly accounted for. However, it is
worse in the case of 16 Cyg B, which explains why this effect is
much more visible.

In Appendix B, we define other seismic indicators that were
not part of the constraints. Now looking at those indicators dis-
played in Figs. 10 and 11, we see that, in most cases, none of
them are properly accounted for. In the lower panels, we display
the values of the base of the convection zone glitch amplitude
and note that only a few models are within the one σ uncertainty
region. However, one should not be alarmed by this observation
as its value is hardly significant in the case of the 16 Cygni sys-
tem (ACZ = 2 ± 1 for both stars) and, therefore, bears little
information.

We also represent the values for both ∆01 and ∆02 which
represent the slopes of the individual frequency ratios r01 and
r02 expressed as a function of the radial order. Again, every
model presents a value which is significantly different from the
observed ones. Nonetheless, accounting for such data is a com-
plex task and we note that, in the present situation, only the mod-
ification of diffusion seems to provide an improvement for both
stars.

We do not include the ε̂ indicator in the modelling procedure
as it has been shown by Farnir et al. (2019, Fig. 4) to be sensitive
mostly to the surface effects and highly degenerate in the stellar
mass. Moreover, it is tightly correlated to the large separation
(see Eq. (B.2) and the asymptotic formulation of the frequencies
in Gough 1986). The ∆0l indicators are not used as they mostly
carry information about central overshooting (Farnir et al. 2019,
Fig. 3) which we presumed would not happen as both stars are
below the approximative limit of ∼1.1 M� and are expected to
have a radiative core.
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Fig. 8. Échelle diagram of 16 Cygni A best-fit model. The crosses are
the observed frequencies and the diamonds the theoretical ones.
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Fig. 9. Échelle diagram of 16 Cygni B best-fit model. The crosses are
the observed frequencies and the diamonds the theoretical ones.

Finally, we plot in Figs. 12 and 13 the observed individ-
ual frequency ratios defined in Roxburgh & Vorontsov (2003),
which we recall are not used as constraints in our fits, as a func-
tion of frequency against the best model ones. We observe that,
although the overall agreement is good, the oscillation which is
present in the observed ratios is not properly accounted for in the
model frequencies. This clearly indicates that some information
remains to be exploited to model the system as comprehensively
as we can and inversion techniques may be of great help in doing
so. However, with the use of only our indicators, instead of indi-
vidual ratios, the overall trend seems to be well respected in both
cases.

4. The system as a whole

In this section, we select the set of individual models which
respect the binarity constraint and try to provide models while
imposing a common age and initial composition.

4.1. Accepted models

The models satisfying the binarity constraint are those that
have, within one another uncertainties, identical ages and initial
composition. Figure 7 provides a clear illustration. Only mod-
els represented by a cross that meets the line, corresponding to
identical stellar parameters in the three panels, are kept. Those
models are referred to as the accepted models and are: the refer-
ence models (AGSS09, dark blue), those with turbulent mixing
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Fig. 10. Values of complementary seismic indicators for 16 Cyg A.
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Fig. 12. Individual ratios for 16 Cygni A. Observed values along with
their uncertainties are shown as crosses, best model values are repre-
sented by diamonds.
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Fig. 13. Individual ratios for 16 Cygni B. Observed values along with
their uncertainties are shown as crosses, best model values are repre-
sented by diamonds.
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(Dturb, purple), without diffusion (NoDiff, light pink), with over-
shooting (αov, red), the models with the mixing length coeffi-
cient adjusted for the effective temperature (Teff , light green),
and with a temperature profile above the photosphere as in
Vernazza et al. (1981) with a calibrated αMLT of 2.02 (Vernazza
αMLT dark pink). From those models, we define the range of
accepted stellar parameters given in Table 7.

Even though models without diffusion are included in the
set of accepted models, we emphasise that it does not mean
that microscopic diffusion should not be included when mod-
elling the system but that other mixing processes might occur to
counteract it. Moreover, those models largely shift the accepted
parameter ranges to heavier, older and hydrogen rich – thus
metal and helium poor – models. This significant difference in
composition is a clear illustration of the degeneracy between
helium and metal abundances in the helium glitch amplitude.

We previously noted that the only models accounting simul-
taneously for the complete set of seismic and non-seismic
constraints were the model with the OPLIB opacity table and
turbulent mixing, for 16 Cygni A, and the one without diffusion
for 16 Cygni B. This again hints at the necessity to include non-
standard physical processes. However, we must point out that
they are incompatible for a joint analysis, as is carried out in the
present section, as their ages and compositions are significantly
different. Moreover, as we use different opacity tables for both
stars, they may not be used simultaneously to analyse the system
as a whole.

4.2. Binary models

We now use the individual accepted models to compute mod-
els imposing a common age and composition. The adjustment is
carried out as in the previous section (that is, with the same set of
free parameters and constraints as in Sect. 3) only ages and ini-
tial compositions are required to be identical, reducing the set of
free parameters by three. We use the average values of the initial
composition and ages as initial guesses. The set of free param-
eters is composed of: one value of the age, initial hydrogen and
metal fraction for both stars, and a different value of the mass
for each star. The set of constraints corresponds to the individual
values of the 4 seismic constraints considered in this paper (∆,
r̂01, r̂02, and AHe).

We are not able to provide an exact adjustment of both
stars simultaneously (“exact” meaning that the reduced χ2 value
should not exceed a value of 1). This may result from the
fact that the size of the parameters space is reduced by three.
Effectively, even though the accepted ages and initial compo-
sitions agree within their uncertainties (see Table 7), they are
not identical and our seismic constraints may be too stringent
to allow for an exact simultaneous fit while imposing identi-
cal ages and compositions. To illustrate this statement, we have
plotted the optimal ages and initial composition of one stellar
component against the other for each choice of input physics
in Fig. 7. We observe in this figure that the three common
free parameters almost never simultaneously agree for a given
choice of input physics. As further illustration, we may com-
pute the relative difference in the initial metallicity between
both stars normalised by the quadratic sum of their uncertainties

(|(Z/X)0,A − (Z/X)0,B|/
√
σ2 (Z/X)0,A + σ2 (Z/X)B). In the most

favourable case, we obtain 0.2, while we get 2.7 in the least
favourable one. This shows that the difference in initial com-
position for individual models is sometimes significant and may
impair the convergence of the Levenberg-Marquardt procedure.

Table 7. Accepted stellar range defined as the centroid of the extremum
values for each parameter.

Quantity 16CygA 16CygB

M(M�) 1.08 ± 0.04 1.03 ± 0.03
X0 0.72 ± 0.05 0.72 ± 0.04
(Z/X)0 0.028 ± 0.009 0.03 ± 0.01
Y0 0.26 ± 0.05 0.26 ± 0.05
t(Gyr) 7.1 ± 0.5 7.2 ± 0.4

Notes. The uncertainties are the necessary variations to reach those
extrema. The accepted models used to define this range are: the ref-
erence models, the ones including turbulent mixing, those with over-
shooting, those without diffusion and those with a temperature profile
above the photosphere as in Vernazza et al. (1981) and with a calibrated
αMLT value.

One could argue that our inability to provide an exact adjust-
ment for both stars comes from the reduced number of free
parameters. Therefore, we try to include the mixing length
parameter into the fitting parameters, allowing it to vary freely
and independently for each star. However, this does not improve
the results. As a matter of fact, the mixing length parameter
value does not significantly vary. We retrieve optimal values of
αMLT,A = 1.8 ± 0.2 and αMLT,B = 1.8 ± 0.1 respectively, com-
pared to the fixed solar value of αMLT = 1.82. From Magic et al.
(2015) and the solar-twin character of both stars (see also the dis-
cussion in Sect. 3.2.1) one might expect that the mixing length
parameter value should remain close to solar.

Although we do not obtain models that exactly reproduce
the seismic constraints, in some cases, we may find a reason-
able agreement with most of them (but not all, therefore hav-
ing a reduced χ2 value greater than 1). We obtain two sets of
convincing results: one for models without diffusion, the other
for models with a temperature profile above the photosphere as
in Vernazza et al. (1981) and a corresponding solar calibrated
αMLT = 2.02 value. The optimal model stellar parameters are
gathered in Tables 8 and 9, respectively, and Tables 10 and 11
show the differences between the observed and model seismic
indicators normalised to the observed uncertainties. We also
show the complete set of “optimal” model parameters, for each
choice of input physics, as well as their relative agreement with
the seismic constraints in Tables E.8 and E.9. We observe for
the models without diffusion in Table 10 that, out of the 8 seis-
mic constraints, only the large separation of 16 Cygni A was not
properly accounted for. All the other indicators are within the 1σ
uncertainty. For the models with a temperature profile above the
photosphere as in Vernazza et al. (1981), both the large separa-
tion and small frequency ratio between radial and dipolar modes
are poorly reproduced.

For the other models, presented in Tables E.8 and E.9, we
note that it is always the large separation of the A star which is
poorly fitted. The other indicators are rather well adjusted but
the small separation ratios often fall out, while remaining close,
of the 1σ uncertainty box. This difference in fitting between the
several indicators mainly stems from the difference in their rela-
tive uncertainties. Indeed, the helium glitch amplitudes have rel-
ative uncertainties of about 3% and, by far, are the least strin-
gent constraints. Then come the ratios with relative uncertain-
ties around 0.8%. Finally, the ∆ constraint relative uncertainties
are of approximately 0.004%. Moreover, it was shown by Farnir
et al. (2019) that the r̂01 ratio is mostly sensitive to the evolution-
ary state of the star, therefore at a given composition and mass,
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Table 8. Best set of adjusted stellar parameters, models without diffu-
sion, imposing a common age and initial composition for both stars.

Quantity 16CygA 16CygB

M(M�) 1.10 ± 0.01 1.068 ± 0.004
[Fe/H] 0.058 ± 0.009 0.058 ± 0.009
Ys 0.225 ± 0.004 0.225 ± 0.004
R(R�) 1.24 ± 0.01 1.114 ± 0.004
X0 0.759 ± 0.004
(Z/X)0 0.0207 ± 0.0004
Y0 0.225 ± 0.004
t(Gyr) 7.50 ± 0.05

to the stellar age. Then, the large separation is a proxy of the
mean stellar density and decreases along the main sequence. As
both stars are required to have identical ages and compositions,
and with such stringent constraints, we may understand that only
one large separation may be fitted at a time and that all the other
constraints, from the clear imbalance in the relative uncertainties
will adjust to it. To find a simultaneous agreement for those mod-
els that did not reach satisfactory convergence, we either need to
relax this assumption, allowing for example different values for
the initial composition, or to relax the seismic constraints.

We also display in Fig. 14 the agreement of the models
with the non-seismic data for each of the considered varia-
tions in input physics, represented by the different symbols.
The observed values along with their uncertainties are shown
as boxes. We display the results for 16 Cyg A in blue and for
16 Cyg B in red. We note, as in the previous section, that the
models for each star are almost constant in radius. We also note
that very few models account for the position of the stars in the
HR diagram. Actually, those are the models which, individually
accounted for these data. It does not come as a surprise as the
minimisation aims at finding a compromise between all the seis-
mic constraints for both stars. Then, looking at the lower panel,
we note that no model for 16 Cyg A is representative of the sur-
face composition. For 16 Cyg B, only the model without dif-
fusion agrees with these data – again with no surprise as the
individual model already agreed – Let us add that, as the mod-
els without diffusion for both stars must have the same initial
composition, their surface compositions are identical and both
markers are indistinguishable in the lower panel of the figure.

In a nutshell, we are able to produce two pairs of binary mod-
els that are in reasonable agreement with our seismic constraints.
However, no model accounts simultaneously for the seismic and
non-seismic data of both stars. This may result from a differ-
ential effect between both stellar components which could, for
example, create differences in compositions as has been dis-
cussed by Maia et al. (2019). This would require the inclusion
of non-standard physical processes in the modelling.

4.3. Relaxing the common composition hypothesis

We noted in the previous section that simultaneously providing
models of both stars while imposing them to have identical ini-
tial compositions as well as ages is a difficult task. In most cases,
this resulted in our inability to build such models. Therefore, we
try to model the system requiring only an identical age for both
stars. The set of free parameters is thus made of the age, the indi-
vidual initial hydrogen, and metal abundances and the individual
masses. This adds up to 7 free parameters. The constraints are the

Table 9. Best set of adjusted stellar parameters, models with a tempera-
ture profile above the photosphere as in Vernazza et al. (1981) and with
αMLT = 2.02, imposing a common age and initial composition for both
stars.

Quantity 16CygA 16CygB

M(M�) 1.054 ± 0.006 1.016 ± 0.006
[Fe/H] 0.18 ± 0.01 0.19 ± 0.01
Ys 0.244 ± 0.003 0.249 ± 0.003
R(R�) 1.216 ± 0.007 1.105 ± 0.006
αMLT 2.02
X0 0.682 ± 0.005
(Z/X)0 0.0352 ± 0.0007
Y0 0.293 ± 0.005
t(Gyr) 6.82 ± 0.05

Table 10. Differences between theoretical, model without diffusion, and
observed values for the seismic constraints defined as δ = |Iobs − Ith|, in
the units of the constraint.

Quantity 16CygA 16CygB

δ δ/σ δ δ/σ

∆ (µHz) 0.01 3.0 3 · 10−5 0.007
AHe 0.7 0.7 0.3 0.3
r̂01 10−4 0.4 10−4 0.7
r̂02 10−4 0.4 10−4 0.4
χ2

red 3.4

Notes. χ2
red = χ2/(N − k) is the reduced χ2 value where N is the number

of constraints to the fit and k the number of free parameters.

Table 11. Same as in Table 10, but for models model with a temperature
profile above the photosphere as in Vernazza et al. (1981) and αMLT =
2.02.

Quantity 16CygA 16CygB

δ δ/σ δ δ/σ

∆ (µHz) 6 · 10−3 1.3 7 · 10−4 0.1
AHe 0.5 0.5 0.6 0.6
r̂01 6 · 10−4 1.9 4 · 10−4 1.1
r̂02 3 · 10−4 1.1 2 · 10−4 0.8
χ2

red 2.9

seismic indicators used throughout this paper which represent 8
constraints.

We compute models for the several sets of input physics con-
sidered in the previous section. The individual stellar parameters
of those models are given in Table E.10. To quantify whether
the improvement of the results is significant given the increased
number of parameters, we introduce the Bayesian Information
Criterion (BIC; Schwarz 1978). It allows to compare models
of different dimensionalities and provides a criterion for mak-
ing a selection. It has the advantage over the simple χ2 value to
penalise over the number of fitting parameters and may pinpoint
overfitting models. Under the assumption that model errors are
independent and normally distributed, it takes the form:

BIC = χ2 + k ln (N) , (9)
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Fig. 14. Computed values of non-seismic constraints against the
observed ones, symbolised by a box, for the system seen as a whole (i.e.
with common ages and initial compositions). Each variation in input
physics is represented by a different symbol. The colour represents the
star, blue for 16 Cyg A and red for 16 Cyg B. The upper panel is a HR
diagram. The lower panel shows the surface helium abundance versus
the metallicity.

with the χ2 value as defined previously, k the number of free
parameters and N the number of constraints. When comparing
different models, the key ingredient is not the BIC value itself
but rather the difference between values – one must however
keep in mind that the lower the value, the better – For the BIC
difference to be significant, it has to exceed 2. BIC differences
from 6 and above will be regarded as strongly significant (Kass
& Raftery 1995). In this specific case, we compare models from
the previous section that had 5 free parameters and 8 constraints,
the added term to the χ2 value thus equals 10.4. In the current
section, it is equal to 14.6. The difference is 4.2 which the χ2

improvement has to exceed so that the model may be regarded
as improved.

Looking at the models in Table E.10, we observe that the
relative difference in compositions between the two stars is
very small (the maximum difference reaches up to 0.07 dex in
X0 and 0.002 dex in (Z/X)0). However, that variation alone is
able to greatly improve the BIC values, as the comparison of
Tables E.9 and E.11 shows. Only two models were not sig-
nificantly improved. The model considering the mixing length
parameters calibrated over the effective temperature of the stars
could not be improved. Also, the one using the temperature pro-
file of Vernazza et al. (1981) above the photosphere and a cali-
brated value of αMLT is not improved, BIC-wise (the raw χ2 value
did decrease of about 1.7). The BIC variation is of about 2 which
makes this difference barely relevant. Therefore, in most cases,

it is relevant to allow the composition to slightly vary between
the two stars. This again points toward the necessity to include
non-standard physical processes. We also note that it is often the
case that the uncertainties on the individual stellar parameters are
degraded. Finally, we note that, in most cases, 16 Cyg B is ini-
tially richer in metals and poorer in hydrogen than its twin. This
validates the trend we observe in the middle and lower panels of
Fig. 7. Therefore, we observe that, seismically speaking, the B
component of the system is more metallic than the A, which is
in opposition with the spectroscopic observations (see Table 1).

5. Discussion

5.1. General considerations about the approach

Compared to other asteroseismic approaches aiming at the mod-
elling of solar-like pulsators, the greatest difference of our
approach is that we do not use directly the complete set of
individual frequencies or of individual frequency ratios as con-
straints. Instead, we build seismic indicators, via the WhoSGlAd
method, which are as little correlated as possible and relevant
to the stellar structure. Moreover, the search for optimal models
is carried out by minimising a single cost function comparing
simultaneously theoretical seismic and non-seismic constraints
to observed data. This has the advantage of avoiding unneces-
sary correlations.

Furthermore, the direct use of the helium glitch amplitude
in our modelling also makes up the peculiarity of our approach.
Indeed, in several other studies, it is not used directly as a con-
straint to the modelling. For example, Verma et al. (2014, 2019)
calibrate the model helium glitch amplitude with respect to the
surface helium abundance in a set of optimal models representa-
tive of other constraints (namely individual frequencies, ratios,
effective temperature and metallicity) to provide an estimate. In
the present case, including the helium glitch amplitude as a con-
straint to the fit acts as a constraint on the model helium abun-
dance, with some correlation with the metal content as showed in
Sect. 3.1.1. This means that we do not assume a specific relation
between the two quantities and the resulting helium abundance
stems from the best model search only.

We noted that providing models of both stars while requir-
ing a common age and composition proves to be an arduous
task. For most choices of micro- and macro-physics, we are
not able to produce satisfactory models. However, when com-
pletely inhibiting the microscopic diffusion of chemical elements
or imposing a temperature relation above the photosphere fol-
lowing the prescription of Vernazza et al. (1981) while using a
specifically calibrated value of the mixing length parameter, we
obtained a reasonable agreement, but did not go below the value
of 1 for the reduced χ2. On the first hand, the fact that includ-
ing extra mixing produces better results illustrates the need to
include non-standard physical processes to properly model such
complex data. On the other hand, the improvement of the results
while using another temperature profile above the photosphere
demonstrates the impact of the surface effects on the seismic
indicators. Even though those indicators were defined in such
a way to lessen this effect at most. We must also add that non-
seismic constraints are not simultaneously accounted for in both
stars (see Fig. 14). This clearly illustrates the need to include
such constraints in the fitting procedure as well as additional
physical processes. Some of the possible non-standard physical
processes that could be included in the modelling are discussed
in Sect. 5.3. Another way to improve models of the system as
a whole is to relax the hypothesis of a common composition.
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This leads to small differences in composition between both stars
(never exceeding 0.07 dex in X0 and 0.002 dex in (Z/X)0). This
is however sufficient in many cases to improve the results signif-
icantly as the BIC values testify.

5.2. Impact of the surface effects

The impact of the surface effects correction of the frequencies
on the optimal model is not clear. We computed models that
adjusted seismic indicators built over the uncorrected frequen-
cies. Those are displayed in dark green in the figures through-
out the paper. Although it is barely significant we note that
those models are heavier and older than models with corrected
frequencies.

Furthermore, we noted in Sect. 4.2 that the large separa-
tion we compute is the most stringent of our indicators with
a relative uncertainty of approximately 0.004%. However, this
specific value of the uncertainty, resulting from the error propa-
gation of the individual frequencies, is unrealistic. To provide a
more robust estimate, we can quantify the contribution of the sur-
face effects by computing the difference between corrected and
uncorrected values. We obtain σ (∆A) = 0.9 µHz and σ (∆B) =
1.0 µHz, for 16 Cyg A and B respectively, which amounts to
1.1% relative uncertainty. This shows that, even though we build
seismic indicators in such way that makes them the less depen-
dent on the surface effects as possible, they are still impacted by
the surface conditions.

The impact of the surface effects correction is further illus-
trated in Appendix D where we give the values of the seismic
indicators for uncorrected frequencies and display the best-fit
models échelle diagrams of both stars. We also compute models
with frequencies corrected according to the prescription of Ball
& Gizon (2014). The optimal parameters are given in Table D.2.
We observe, compared to the reference models, that both stars
become older and hydrogen rich. We also note that, while the A
component becomes more metallic, the B one is then less metal-
lic. 16 Cygni B also becomes heavier while it is not the case
for its twin. Nonetheless, the differences are such that we could
include those models in the set of accepted ones.

5.3. Non-standard physical processes and modelling
improvements

As was shown by Verma et al. (2019) and as we illustrate in
Sect. 3.1.3, diffusion is very important in the modelling of solar-
like stars. However, the models computed with CLES currently
consider only three chemical species, the hydrogen, the helium
and the metals. A significant improvement would stem from the
consideration of several sub-species in the metals. For exam-
ple, we may retrieve invaluable information by following the
lithium evolution with the star. Indeed, the discussion regarding
the effects of potential non-standard processes is tightly linked to
the lithium abundance in both stars and its connection with the
formation and orbital evolution of planetary systems. Deal et al.
(2015) have proposed that, since the B component was orbited
by a Jovian planet (Cochran et al. 1997), accretion of matter
from the planetary disc in the envelope of 16CygB would have
triggered fingering convection and thus led to a strong decrease
in the lithium abundance. They determined that the accretion of
0.66M⊕ would be enough to reproduce the lithium abundance of
16CygB that is 4 times lower than that of 16CygA (Friel et al.
1993; King et al. 1997), despite both stars having very similar
rotational and structural properties. It is also interesting to note
that, in the broader context of the Li abundance of solar-twins,

16CygA seems to be more Li-rich than similar solar-twins, while
16CygB seems to follow the trend observed with age for these
stars (Carlos et al. 2016). This could suggest a reverse scenario
that should explain the high lithium abundance of 16CygA and
in particular the possibility of an increase in lithium abundance
related to planet engulfment (e.g. Montalbán & Rebolo 2002;
Carlos et al. 2016). In this context, analysing both scenarios in
light of potential traces of such events in seismic indicators may
lead to new synergies between asteroseismology and exoplane-
tology, namely in the analysis of planetary formation and mate-
rial accretion onto the surface of planet-host stars.

Furthermore, our models do not include rotation, nor
rotation-induced mixing. As a matter of fact, Davies et al. (2015)
and Bazot et al. (2019) showed that rotation indeed occurs in
both stars taking advantage of the rotational splitting present in
stellar oscillation spectra of rotating stars. Bazot et al. (2019)
even showed that differential rotation occurs in both stars, in a
similar way to our Sun. Such a process could significantly affect
the diffusion of chemical elements. This could be argued to be a
flaw in our models. However, the additional mixing induced may
be approximated by the turbulent mixing of elements as was per-
formed for several models in this study. This prescription con-
sists of an approximation and the models may still be improved.
Therefore, we may, in the future, use improved models which
account for the rotation. This will be discussed in further papers
of the series.

Finally, we noted that choosing a different opacity profile,
that of the Los Alamos project, while including turbulent mixing
of elements, which counteracts diffusion, allowed to reproduce
both seismic and non seismic constraints for 16 Cygni A. This
provides clues that we may need to modify the opacity profile
of the star to properly account for all the observed constraints.
Therefore, inversion techniques could help us to further improve
our models. However, the OPLIB opacity table has two differ-
ent effects on the stellar structure. On the one hand, it modifies
slightly the size of the convective envelope. On the other hand, it
changes the temperature gradient in the central regions. Accord-
ing to which effects dominates this could be the illustration of
the need of non-standard mixing processes as well.

6. Conclusion

With the aim of characterising the 16 Cygni system as thor-
oughly as possible, we took advantage of the seismic indica-
tors defined via the WhoSGlAd method to provide stringent
constraints on the stellar structure and test several choices of
micro- and macro-physics. We built those indicators using the
frequencies computed over the full length of the Kepler data by
Davies et al. (2015) and corrected for the surface effects accord-
ing to Kjeldsen et al. (2008)’s power law adjusted by Sonoi et al.
(2015). The several choices of micro- and macro-physics used in
stellar models we tested are: the solar reference mixture, opacity
and equation of state tables as well as the inclusion of turbulent
mixing or of diffusion of chemical elements, a different choice
for the mixing length parameter, the inclusion of overshooting
outside of convective regions, a different choice of temperature
profile above the photosphere or the effect of the correction of
the frequencies for the surface effects.

Overall, our results agree with previous studies with slight
differences according to the choice of physics included in the
models. We showed that the use of the WhoSGlAd indicators
allows to discriminate between several of those choices. How-
ever, we also note that those indicators alone do not suffice to
provide a complete adjustment of the stars as, in most cases,
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the non-seismic constraints (i.e. luminosity, effective tempera-
ture, and metallicity) are not satisfied. Therefore, they need to be
included in the fitting process to provide the most representative
model. We show in Sect. 3.2.1 that the mixing length parameter
has a clear effect on the modelled effective temperature of the
star. Indeed, a value greater than the solar one allows to greatly
improve the agreement with the observed value in the case of
16 Cyg B. Moreover, we also study the impact of the inclusion
of turbulent mixing and show that it leads to a better fit of the
effective temperature and metallicity. However, we observe that
the turbulent mixing coefficient saturates and using it as a free
parameter of the modelling procedure would be meaningless.
Therefore, using a free αMLT and Teff as a constraint, we are able
to produce models in agreement with this constraint. However,
the observed metallicities are not reproduced by those models.
We also demonstrate in Sect. 3.2.2 that varying the mixing length
parameter while using the metallicity constraint allows to better
reproduce its value for both stars but at the cost of the agree-
ment with the observed effective temperatures. This illustrates
the necessity to build more complex models in order to repro-
duce both seismic and non-seismic constraints.

Indeed, we show that, to reproduce the non-seismic con-
straints, we have to select only specific choices of input physics
or even include non-standard physical processes. Indeed, for 16
Cygni A, only a model with a modified opacity profile, from the
Los Alamos Opacity Project, and including turbulent mixing of
the chemical elements reproduced all constraints. For 16 Cygni
B, it was a model that did not include diffusion that was able to
account for these constraints. This illustrates in both cases that
non-standard physical processes may be necessary to inhibit dif-
fusion and to properly models those stars. Such processes could
be the accretion of planetary matter or rotation-induced mixing.

Adjusting both stars simultaneously while imposing a com-
mon age and composition proved to be a difficult task. In most
cases, with models that were consistent within mutual uncertain-
ties for both stars as initial guesses, we could not obtain a satis-
factory adjustment. The large separation of 16 Cyg B, because
of the high precision of the ∆ constrain defined in our study,
was dominant and the free parameters adapted at best to provide
a compromise for the other constraints. This resulted in mod-
els that did not exactly fit the large separation of 16 Cygni A
while reasonably fitting other constraints (only a few σ differ-
ence from the required value). Nonetheless, for models without
diffusion or with a different temperature profile above the pho-
tosphere (that of Vernazza et al. 1981) and a calibrated value of
αMLT, we were able to account for the seismic constraints of both
stars with a reduced χ2 of 3.4 and 2.9 respectively. The difficulty
to provide satisfactory models of both stars with other choices of
input physics indicates that it can be necessary to either relax the
common initial composition assumption, the seismic constraints
or to invoke special physical processes. For example, we showed
in Sect. 4.2 that the differences in the initial metallicity between
both stellar components of optimal individual models may some-
times be significant. Therefore, we computed models relaxing
relaxing the common composition hypothesis in Sect. 4.3 and
were able to significantly improve the results. We observe that a
small difference between the initial compositions of both stars is
sufficient.

With the aim of providing a broad sample of reliable mod-
els of the system, the extensive analysis of the degeneracies car-
ried out by combining seismic and non-seismic constraints is of
prime importance to fully grasp the uncertainties of inverse anal-
ysis but also to the extent in which we can constrain physical
processes not implemented in standard stellar models linked for

example to the effects of accretion of planetary matter, angular
momentum transport and their link to both seismic indices and
the lithium and beryllium abundances of both stars.

We showed that, even for our models that reproduced both
seismic and non-seismic constraints, information remain to be
analysed as we observe that other indicators defined in Farnir
et al. (2019) are not properly represented (i.e. ε̂, ∆01, ∆02, and
ACZ). Further studies could focus on those other constraints.
Finally, as the WhoSGlAd method also proves to provide very
stringent seismic constraints, we will, in future studies, under-
take the adjustment of the Kepler LEGACY sample (Lund et al.
2017) to try and retrieve global trends in solar-like oscillators.
This data set contains the best set of solar-like oscillation spec-
tra available to the community to this day as it is composed of
66 solar-like stars which have been continuously observed from
space for at least one year. Therefore, we would be able to realise
an ensemble study of stellar parameters. For example, we could
study the evolution of the amount of central overshooting with
the stellar mass.
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Appendix A: WhoSGlAd decomposition

We describe here the basis of functions which are used to rep-
resent the oscillation spectrum of a solar-like pulsator. First, the
smooth part of the spectrum is represented by a second-order
polynomial of n, the radial order. We thus have the following
succession of polynomials:

plk
(
n, l′

)
= δll′ pk (n) , (A.1)

with pk (n) = nk, k = 0, 1, 2 and δll′ the Kronecker delta compar-
ing two values of the spherical degree l and l′.

Then, the helium glitch is described by the following oscil-
lating functions:

δνHe =

−5∑

k=−4

[cos (4πτ∆νñ) + sin (4πτ∆νñ)] ñk, (A.2)

where τ is the acoustic depth of the glitch, ∆ν the asymptotic
large frequency separation and ñ = n + l/2. ñ∆ν is actually the
first order approximation of νl,n. The asymptotic large frequency

separation is defined as ∆ν =

(
2
∫ R∗

0
dr

c(r)

)−1
(Tassoul 1980) , with

the local radius r, the local sound speed c (r) and R∗ the radius
of the star at the photosphere.

We must add that the values of τ and ∆ν are estimated via
a model that is representative of the seismic indicators of the
smooth part, namely ∆, r̂01 and r̂02. Farnir et al. (2019) showed
that the exact value of τ∆ν has a negligible impact on the ampli-
tude of the glitch. A 10% percent excursion from the optimal
value is of negligible impact.

Finally, orthonormalisation of the basis function is carried
out via Gram-Schmidt’s process. This produces the orthonormal
elements over which we may project the frequencies to represent
them. We thus retrieve completely independent coefficients.

Appendix B: Additional seismic indicators

In the present section, we describe supplementary seismic indi-
cators defined in the WhoSGlAd method but that are not used
directly in our optimisation for a model representative of the
16 Cygni system. The values of those indicators are given in
Table B.1.

ε̂: In taking inspiration in the asymptotic formulation of the fre-
quencies (Gough 1986)

ν(n, l) '
(
n +

l
2

+ ε

)
∆, (B.1)

we may construct a vector subspace over which frequencies are
represented by the function:

ν(n, l) =

(
n +

l
2

+ ε

)
∆̂ =

(
n +

l
2

)
∆̂ + K, (B.2)

where ∆̂ and K are free parameters. By defining an orthonormal
basis over this subspace, projecting the frequencies and identi-
fying the several coefficients with the asymptotic expression we
may get an expression for ε̂.
ACZ.

ACZ = ‖δνCZ‖, (B.3)

where δνCZ is the base of the convection zone glitch component.

Table B.1. Additional observed seismic indicators.

Indicator 16CygA 16CygB

ε̂ 1.3288 ± 0.0009 1.3583 ± 0.0008
ACZ 2 ± 1 2 ± 1
∆01 (4.64 ± 0.09) · 10−3 (4.48 ± 0.08) · 10−3

∆02 (5.9 ± 0.2) · 10−3 (5.4 ± 0.1) · 10−3

Notes. The standard deviations result from the propagation of the uncer-
tainties on the observed frequencies.

∆0l. Corresponds to the slope of the individual frequency ratios
r0l as a function of the radial order n and is defined as:

∆0l =
∆l

∆0
− 1. (B.4)

Appendix C: Impact of high uncertainties modes

Table C.1. Stellar parameters retrieved with the reference set of input
physics and the complete set of frequencies.

Quantity 16CygA 16CygB

M(M�) 1.06 ± 0.01 1.011 ± 0.006
X0 0.684 ± 0.009 0.679 ± 0.006
(Z/X)0 0.035 ± 0.004 0.037 ± 0.002
Y0 0.292 ± 0.009 0.296 ± 0.006
[Fe/H] 0.19 ± 0.05 0.21 ± 0.03
Ys 0.243 ± 0.005 0.251 ± 0.003
R(R�) 1.22 ± 0.01 1.104 ± 0.006
t(Gyr) 6.8 ± 0.1 6.97 ± 0.07
χ2 1.0 0.7
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Fig. C.1. Échelle diagram of 16 Cygni A comparing optimal refer-
ence model with full set of frequencies (blue circles) from Davies et al.
(2015; black crosses) with the optimal model with a set restricted to
frequencies with uncertainties lower than 1.5 µHz (red diamonds).

From the modes computed by Davies et al. (2015) we select
those with uncertainties below 1.5 µHz. Those high uncertainty
modes have a limited and negligible impact on the results as our
indicators are averaged over the whole spectrum. Furthermore,
as the high frequency modes are the ones which are the most
affected by the surface effects this may render our results more
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Fig. C.2. Échelle diagram of 16 Cygni B comparing optimal reference
model with full set of frequencies (blue circles) from (Davies et al.
2015; black crosses) with the optimal model with a set restricted to
frequencies with uncertainties lower than 1.5 µHz (red diamonds).

robust. In Table C.1 we show the optimal set of stellar parame-
ters retrieved when using the full set of frequencies. We observe
that the results do not vary significantly from the case consider-
ing modes with uncertainties below the 1.5 µHz threshold, pre-
sented in Table E.3 under the label AGSS09. Only the uncertain-
ties on the individual parameters are affected which should not
be of any concern as the dominant factor remains the choice of
input physics. As further validation of this choice, we display in
Figs. C.1 and C.2 a comparison of the échelle diagram of opti-
mal models of both stars using the complete set of frequencies
(blue circle) with the ones with the reduced set (red diamond)
and the observations (black crosses). We observe that the results
do not significantly differ, only that the high frequency drift is
more visible as more frequencies are displayed.

Appendix D: Influence of the surface effects

Table D.1. Observed seismic indicators with frequencies uncorrected
for surface effects.

Indicator 16CygA 16CygB

∆(µHz) 103.070 ± 0.005 116.706 ± 0.004
AHe 30 ± 1 33 ± 1
r̂01 (3.61 ± 0.02) · 10−2 (2.55 ± 0.02) · 10−2

r̂02 (5.61 ± 0.03) · 10−2 (5.41 ± 0.03) · 10−2

Notes. The standard deviations result from the propagation of the uncer-
tainties on the observed frequencies.

We computed both models for frequencies which were not cor-
rected for the surface effects or with theoretical frequencies cor-
rected as in Ball & Gizon (2014) with the adjusted relation in
large separation, effective temperature, surface gravity and opac-
ity of Manchon et al. (2018). Table D.1 displays seismic indica-
tors computed with frequencies which are not corrected for the
surface effects. The échelle diagram for the models computed
with these set of indicators are displayed in Figs. D.1 and D.2.
The most striking feature is the large shift between theoretical
and observed ridges in both figures which shows that the ε̂ indi-
cator is not well accounted for as Figs. 10 and 11 show. More-
over, the overall shape of the individual ridges is well repre-
sented by the theoretical frequencies. Table D.2 displays the set

Table D.2. Adjusted stellar parameters with theoretical frequencies cor-
rected as in Ball & Gizon (2014) with the adjusted relation in Manchon
et al. (2018).

Quantity 16CygA 16CygB

M(M�) 1.07 ± 0.04 1.027 ± 0.008
X0 0.687 ± 0.007 0.692 ± 0.006
(Z/X)0 0.039 ± 0.006 0.034 ± 0.002
Y0 0.285 ± 0.009 0.292 ± 0.006
[Fe/H] 0.23 ± 0.07 0.19 ± 0.03
Ys 0.238 ± 0.005 0.240 ± 0.04
R(R�) 1.23 ± 0.04 1.118 ± 0.008
t(Gyr) 7.1 ± 0.2 7.04 ± 0.08
χ2 0.8 0.4
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Fig. D.1. Échelle diagram of 16 Cygni A optimal model calculated with
seismic indicators defined over frequencies which are not corrected for
the surface effects. The crosses are the observed frequencies and the
diamonds the theoretical ones.
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Fig. D.2. Échelle diagram of 16 Cygni B optimal model calculated with
seismic indicators defined over frequencies which are not corrected for
the surface effects. The crosses are the observed frequencies and the
diamonds the theoretical ones.

of optimal parameters for models using frequencies corrected as
in Ball & Gizon (2014).

Appendix E: Individual models

In this section, we summarise the set of input physics used
in the reference models and gather the individual stellar
parameters as well as the uncertainties propagated during the
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Table E.1. Summary of the physical ingredients included in the refer-
ence models, denoted AGSS09.

Inp. Phys. Value Refs.

Solar mixture AGSS09 Asplund et al. (2009)
Eq. of state Free EOS Cassisi et al. (2003)
Opacity OPAL Iglesias & Rogers (1996)
αMLT 1.82 Solar calibration
Overshoot None /

Diffusion Yes Thoul et al. (1994)
Turbulent mix. None /

Atmosphere Eddington T − τ relation /

Surf. eff. corr. Yes Kjeldsen et al. (2008)

Table E.2. Variations in the input physics, corresponding name and
reduced χ2 values.

Name Inp. Phys. Value χ2
A χ2

B

AGSS09 Sol. mix. AGSS09 1.0 0.8
GN93 Sol. mix. GN93 1.0 1.0
OP Opac. OP 0.6 0.6
OPLIB Opac. OPLIB 1.2 1.0
CEFF Eq. of state CEFF 1.0 0.9
OPAL05 Eq. of state OPAL05 0.2 1.1
No diff. Diff. No 0.9 0.6
Dturb Turb. mix. Dturb = 7500 0.5 0.9
αMLT = 1.7 αMLT 1.7 1.3 0.3
Vernazza Atmos. Vernazza et al. (1981) 0.3 0.8
No surf. corr. Surf. eff. corr. No 0.1 0.0
αov = 0.1 Overshoot 0.1 0.8 0.3
αov = 0.2 Overshoot 0.2 0.4 0.2
αun = 0.1 Undershoot 0.1 0.9 0.7

Levenberg-Marquardt adjustment for each model presented in
this paper. Table E.1 presents the set of input physics used in the
reference model while Table E.2 summarises the several vari-
ations of input physics considered throughout the paper. In the
latter, the first column gives the label given to the models consid-
ering that specific choice of input physics, the second column is
the physical ingredient which is varied upon, the third column is
the corresponding value and columns 4 and 5 display the χ2 val-
ues obtained for the optimal models of both stars in each case.
Finally, Tables E.3 through E.11 give the complete set of stel-
lar parameters obtained for every case considered in the present
paper.

Table E.3. Summary of the fitted models with only the seismic con-
straints.

Model Quantity 16CygA 16CygB

AGSS09 M(M�) 1.06 ± 0.02 1.011 ± 0.009
X0 0.68 ± 0.01 0.679 ± 0.007

(Z/X)0 0.035 ± 0.001 0.037 ± 0.002
Y0 0.30 ± 0.01 0.296 ± 0.007

[Fe/H] 0.19 ± 0.01 0.22 ± 0.03
Ys 0.243 ± 0.009 0.251 ± 0.004

R(R�) 1.22 ± 0.03 1.104 ± 0.009
Dark blue t(Gyr) 6.8 ± 0.2 6.97 ± 0.08
GN93 M(M�) 1.068 ± 0.005 1.02 ± 0.01

X0 0.690 ± 0.007 0.685 ± 0.007
(Z/X)0 0.039 ± 0.003 0.040 ± 0.002

Y0 0.283 ± 0.008 0.288 ± 0.007
[Fe/H] 0.23 ± 0.03 0.26 ± 0.03

Ys 0.237 ± 0.004 0.245 ± 0.005
R(R�) 1.222 ± 0.006 1.11 ± 0.01

Light blue t(Gyr) 6.59 ± 0.09 6.76 ± 0.06
OP M(M�) 1.053 ± 0.008 1.01 ± 0.01

X0 0.68 ± 0.01 0.678 ± 0.007
(Z/X)0 0.035 ± 0.004 0.039 ± 0.002

Y0 0.30 ± 0.01 0.296 ± 0.007
[Fe/H] 0.19 ± 0.06 0.25 ± 0.03

Ys 0.244 ± 0.008 0.252 ± 0.005
R(R�) 1.217 ± 0.009 1.11 ± 0.01

Light brown t(Gyr) 6.80 ± 0.09 7.0 ± 0.1
OPLIB M(M�) 1.042 ± 0.009 0.99 ± 0.01

X0 0.68 ± 0.01 0.673 ± 0.008
(Z/X)0 0.032 ± 0.004 0.036 ± 0.001

Y0 0.30 ± 0.01 0.303 ± 0.008
[Fe/H] 0.16 ± 0.05 0.20 ± 0.01

Ys 0.244 ± 0.007 0.258 ± 0.005
R(R�) 1.21 ± 0.01 1.10 ± 0.01

Beige t(Gyr) 6.41 ± 0.08 6.61 ± 0.09
CEFF M(M�) 1.07 ± 0.01 1.02 ± 0.01

X0 0.698 ± 0.009 0.681 ± 0.008
(Z/X)0 0.031 ± 0.001 0.037 ± 0.002

Y0 0.280 ± 0.009 0.294 ± 0.008
[Fe/H] 0.12 ± 0.02 0.22 ± 0.03

Ys 0.229 ± 0.005 0.249 ± 0.005
R(R�) 1.22 ± 0.01 1.11 ± 0.01

Dark brown t(Gyr) 6.9 ± 0.1 7.0 ± 0.1
OPAL05 M(M�) 1.06 ± 0.02 1.010 ± 0.009

X0 0.69 ± 0.02 0.669 ± 0.006
(Z/X)0 0.033 ± 0.002 0.040 ± 0.002

Y0 0.29 ± 0.02 0.304 ± 0.004
[Fe/H] 0.16 ± 0.03 0.25 ± 0.03

Ys 0.237 ± 0.009 0.259 ± 0.004
R(R�) 1.22 ± 0.02 1.10 ± 0.01

Grey t(Gyr) 6.8 ± 0.2 6.92 ± 0.08
No diff. M(M�) 1.109 ± 0.007 1.063 ± 0.008

X0 0.763 ± 0.007 0.754 ± 0.006
(Z/X)0 0.020 ± 0.001 0.0214 ± 0.0009

Y0 0.22 ± 0.01 0.230 ± 0.009
[Fe/H] 0.04 ± 0.02 0.07 ± 0.02

Ys 0.221 ± 0.007 0.230 ± 0.006
R(R�) 1.237 ± 0.008 1.123 ± 0.009

Light pink t(Gyr) 7.5 ± 0.1 7.50 ± 0.07

Notes. The reference model, labelled AGSS09, corresponds to the
choice of physics described in Sects. 2.3 and E.1. The individual
uncertainties result from the error propagation during the Levenberg-
Marquardt adjustment.
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Table E.3. continued.

Model Quantity 16CygA 16CygB

Dturb M(M�) 1.07 ± 0.01 1.02 ± 0.01
X0 0.705 ± 0.004 0.697 ± 0.008

(Z/X)0 0.029 ± 0.002 0.032 ± 0.002
Y0 0.274 ± 0.004 0.281 ± 0.008

[Fe/H] 0.14 ± 0.03 0.17 ± 0.03
Ys 0.239 ± 0.003 0.248 ± 0.006

R(R�) 1.22 ± 0.02 1.11 ± 0.01
Purple t(Gyr) 6.9 ± 0.1 7.0 ± 0.1
αMLT = 1.7 M (M�) 1.03 ± 0.01 0.98 ± 0.02

X0 0.68 ± 0.01 0.66 ± 0.01
(Z/X)0 0.033 ± 0.004 0.041 ± 0.003

Y0 0.30 ± 0.01 0.31 ± 0.01
[Fe/H] 0.16 ± 0.07 0.26 ± 0.04

Ys 0.242 ± 0.007 0.263 ± 0.006
R(R�) 1.21 ± 0.01 1.09 ± 0.02

Yellow t(Gyr) 7.1 ± 0.2 7.3 ± 0.4
Vernazza M(M�) 1.020 ± 0.009 0.97 ± 0.01

X0 0.675 ± 0.009 0.66 ± 0.01
(Z/X)0 0.035 ± 0.002 0.040 ± 0.001

Y0 0.30 ± 0.01 0.32 ± 0.01
[Fe/H] 0.17 ± 0.03 0.25 ± 0.01

Ys 0.248 ± 0.005 0.268 ± 0.006
R(R�) 1.20 ± 0.01 1.09 ± 0.02
t(Gyr) 7.2 ± 0.1 7.4 ± 0.1

No surf. M(M�) 1.08 ± 0.02 1.028 ± 0.009
corr. X0 0.69 ± 0.01 0.696 ± 0.008

(Z/X)0 0.038 ± 0.002 0.033 ± 0.002
Y0 0.28 ± 0.01 0.281 ± 0.008

[Fe/H] 0.22 ± 0.03 0.17 ± 0.03
Ys 0.236 ± 0.007 0.237 ± 0.005

R(R�) 1.24 ± 0.03 1.12 ± 0.01
Dark green t(Gyr) 7.0 ± 0.1 7.05 ± 0.06
αov = 0.1 M (M�) 1.058 ± 0.007 1.01 ± 0.02

X0 0.68 ± 0.01 0.679 ± 0.006
(Z/X)0 0.035 ± 0.003 0.036 ± 0.004

Y0 0.30 ± 0.01 0.297 ± 0.007
[Fe/H] 0.19 ± 0.05 0.20 ± 0.04

Ys 0.243 ± 0.006 0.251 ± 0.004
R(R�) 1.218 ± 0.09 1.10 ± 0.02

Red t(Gyr) 6.8 ± 0.2 6.9 ± 0.1
αov = 0.2 M (M�) 0.920 ± 0.009 1.016 ± 0.009

X0 0.700 ± 0.006 0.682 ± 0.007
(Z/X)0 0.0106 ± 0.0002 0.036 ± 0.002

Y0 0.293 ± 0.006 0.293 ± 0.007
[Fe/H] −0.39 ± 0.01 0.21 ± 0.02

Ys 0.217 ± 0.002 0.249 ± 0.004
R(R�) 1.16 ± 0.01 1.11 ± 0.01
t(Gyr) 7.16 ± 0.06 6.97 ± 0.09

αun = 0.1 M (M�) 1.06 ± 0.01 1.012 ± 0.007
X0 0.688 ± 0.009 0.680 ± 0.008

(Z/X)0 0.034 ± 0.001 0.036 ± 0.002
Y0 0.289 ± 0.009 0.295 ± 0.008

[Fe/H] 0.17 ± 0.02 0.22 ± 0.03
Ys 0.241 ± 0.005 0.252 ± 0.005

R(R�) 1.22 ± 0.01 1.105 ± 0.008
Khaki t(Gyr) 6.78 ± 0.09 6.97 ± 0.07

Table E.4. Adjusted stellar parameters using the temperature profile
from Vernazza et al. (1981) with a solar calibrated value of αMLT = 2.02.

Quantity 16CygA 16CygB

M(M�) 1.06 ± 0.01 1.02 ± 0.01
X0 0.68 ± 0.01 0.684 ± 0.006
(Z/X)0 0.035 ± 0.004 0.035 ± 0.002
Y0 0.29 ± 0.01 0.292 ± 0.006
[Fe/H] 0.20 ± 0.03 0.18 ± 0.06
Ys 0.243 ± 0.006 0.248 ± 0.04
R(R�) 1.22 ± 0.01 1.10 ± 0.01
t(Gyr) 6.7 ± 0.2 6.9 ± 0.1
αMLT 2.02

Table E.5. Results of the modelling considering only seismic con-
straints with different values of the mixing length coefficient.

αMLT Quantity 16CygA 16CygB

1.7 M(M�) 1.03 ± 0.01 0.98 ± 0.02
X0 0.68 ± 0.01 0.66 ± 0.01

(Z/X)0 0.033 ± 0.004 0.041 ± 0.003
Y0 0.30 ± 0.01 0.31 ± 0.01

[Fe/H] 0.16 ± 0.07 0.26 ± 0.04
Ys 0.242 ± 0.007 0.263 ± 0.006

R(R�) 1.21 ± 0.01 1.09 ± 0.02
t(Gyr) 7.1 ± 0.2 7.3 ± 0.4

1.82 M(M�) 1.06 ± 0.02 1.011 ± 0.009
X0 0.68 ± 0.01 0.679 ± 0.007

(Z/X)0 0.035 ± 0.001 0.037 ± 0.002
Y0 0.30 ± 0.01 0.296 ± 0.007

[Fe/H] 0.19 ± 0.01 0.22 ± 0.03
Ys 0.243 ± 0.009 0.251 ± 0.004

R(R�) 1.22 ± 0.03 1.104 ± 0.009
t(Gyr) 6.8 ± 0.2 6.97 ± 0.08

2.0 M(M�) 1.108 ± 0.009 1.058 ± 0.009
X0 0.705 ± 0.007 0.705 ± 0.06

(Z/X)0 0.033 ± 0.002 0.032 ± 0.002
Y0 0.272 ± 0.007 0.272 ± 0.06

[Fe/H] 0.16 ± 0.03 0.16 ± 0.04
Ys 0.227 ± 0.004 0.232 ± 0.004

R(R�) 1.23 ± 0.01 1.12 ± 0.01
t(Gyr) 6.4 ± 0.1 6.6 ± 0.1
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Table E.6. Results of the modelling considering only seismic con-
straints and including turbulent mixing with different values of the tur-
bulent mixing coefficient.

Dturb

(
cm2 s−1

)
Quantity 16CygA 16CygB

2000 M(M�) 1.07 ± 0.01 1.024 ± 0.008
X0 0.70 ± 0.01 0.697 ± 0.007

(Z/X)0 0.029 ± 0.001 0.032 ± 0.002
Y0 0.27 ± 0.01 0.281 ± 0.007

[Fe/H] 0.12 ± 0.02 0.17 ± 0.02
Ys 0.236 ± 0.007 0.246 ± 0.005

R(R�) 1.22 ± 0.01 1.109 ± 0.009
t(Gyr) 6.9 ± 0.1 6.99 ± 0.07

5000 M(M�) 1.1 ± 0.1 1.023 ± 0.007
X0 0.7 ± 0.1 0.697 ± 0.006

(Z/X)0 0.03 ± 0.01 0.032 ± 0.001
Y0 0.3 ± 0.1 0.280 ± 0.006

[Fe/H] 0.1 ± 0.2 0.17 ± 0.02
Ys 0.24 ± 0.07 0.247 ± 0.004

R(R�) 1.2 ± 0.1 1.109 ± 0.007
t(Gyr) 6.8 ± 0.8 6.99 ± 0.06

7500 M(M�) 1.07 ± 0.01 1.02 ± 0.01
X0 0.705 ± 0.004 0.697 ± 0.008

(Z/X)0 0.029 ± 0.002 0.032 ± 0.002
Y0 0.274 ± 0.004 0.281 ± 0.008

[Fe/H] 0.14 ± 0.03 0.17 ± 0.03
Ys 0.239 ± 0.003 0.248 ± 0.006

R(R�) 1.22 ± 0.02 1.11 ± 0.01
t(Gyr) 6.9 ± 0.1 7.0 ± 0.1

10 000 M(M�) 1.03 ± 0.01 0.98 ± 0.02
X0 0.70 ± 0.01 0.66 ± 0.01

(Z/X)0 0.029 ± 0.001 0.032 ± 0.001
Y0 0.27 ± 0.01 0.280 ± 0.006

[Fe/H] 0.14 ± 0.02 0.17 ± 0.02
Ys 0.240 ± 0.007 0.248 ± 0.004

R(R�) 1.22 ± 0.01 1.109 ± 0.007
t(Gyr) 6.9 ± 0.1 6.99 ± 0.06

Table E.7. Adjusted stellar parameters including the effective tempera-
ture constraint with the OPLIB opacity table and with a fixed turbulent
mixing coefficient.

Quantity 16CygA

M(M�) 1.05 ± 0.07
X0 0.70 ± 0.08
(Z/X)0 0.028 ± 0.001
Y0 0.27 ± 0.08
[Fe/H] 0.1 ± 0.1
Ys 0.24 ± 0.03
R(R�) 1.21 ± 0.05
t(Gyr) 6.6 ± 0.4
Dturb 0.2 · 104

Table E.8. Adjusted stellar parameters imposing a common age and
initial composition for both stars for the different variations in physics.

Model Quantity 16CygA 16CygB

AGSS09 M(M�) 1.05 ± 0.01 1.015 ± 0.006
[Fe/H] 0.20 ± 0.01 0.21 ± 0.01

Ys 0.245 ± 0.003 0.250 ± 0.003
R(R�) 1.21 ± 0.01 1.106 ± 0.007

X0 0.681 ± 0.006
(Z/X)0 0.0360 ± 0.0009

Y0 0.294 ± 0.006
t(Gyr) 6.87 ± 0.04

Dturb M(M�) 1.063 ± 0.006 1.024 ± 0.005
[Fe/H] 0.144 ± 0.009 0.15 ± 0.01

Ys 0.242 ± 0.003 0.245 ± 0.004
R(R�) 1.220 ± 0.007 1.109 ± 0.006

X0 0.702 ± 0.005
(Z/X)0 0.0300 ± 0.0006

Y0 0.277 ± 0.005
t(Gyr) 0.692 ± 0.006

No Diff. M(M�) 1.10 ± 0.01 1.068 ± 0.004
[Fe/H] 0.058 ± 0.009 0.058 ± 0.009

Ys 0.225 ± 0.004 0.225 ± 0.004
R(R�) 1.24 ± 0.01 1.114 ± 0.004

X0 0.759 ± 0.004
(Z/X)0 0.0207 ± 0.0004

Y0 0.225 ± 0.004
t(Gyr) 7.50 ± 0.05

αov = 0.1 M (M�) 1.052 ± 0.007 1.013 ± 0.006
[Fe/H] 0.19 ± 0.01 0.20 ± 0.01

Ys 0.245 ± 0.003 0.250 ± 0.003
R(R�) 1.214 ± 0.008 1.105 ± 0.006

X0 0.681 ± 0.005
(Z/X)0 0.0355 ± 0.0007

Y0 0.294 ± 0.005
t(Gyr) 6.85 ± 0.04

αMLT M (M�) 1.072 ± 0.004 1.039 ± 0.003
from Teff [Fe/H] 0.145 ± 0.007 0.159 ± 0.007
fit Ys 0.234 ± 0.002 0.240 ± 0.002

R(R�) 1.226 ± 0.006 1.114 ± 0.004
αMLT 1.85 1.99

X0 0.696 ± 0.003
(Z/X)0 0.0320 ± 0.0004

Y0 0.282 ± 0.003
t(Gyr) 6.63 ± 0.05

Vernazza M(M�) 1.054 ± 0.006 1.016 ± 0.006
calibrated [Fe/H] 0.18 ± 0.01 0.19 ± 0.01
αMLT Ys 0.244 ± 0.003 0.249 ± 0.003

R(R�) 1.216 ± 0.007 1.105 ± 0.006
αMLT 2.02

X0 0.682 ± 0.005
(Z/X)0 0.0352 ± 0.0007

Y0 0.293 ± 0.005
t(Gyr) 6.82 ± 0.05
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Table E.9. Differences between theoretical and observed values for the
seismic constraints, for the several variations in physics, defined as δ =
|Iobs − Ith|, in the units of the constraint.

Model Quantity 16CygA 16CygB

δ δ/σ δ δ/σ

AGSS09 ∆ (µHz) 0.2 47.4 10−3 0.2
AHe 0.7 0.7 0.7 0.7
r̂01 5 · 10−5 0.2 10−4 0.8
r̂02 6 · 10−4 2.0 4 · 10−4 1.4
χ2

red 751.9
BIC 2266.2

Dturb ∆ (µHz) 0.06 13.6 7 · 10−3 1.6
AHe 0.4 0.4 0.2 0.2
r̂01 2 · 10−5 0.1 3 · 10−4 1.3
r̂02 4 · 10−4 1.2 3 · 10−4 1.1
χ2

red 63.3
BIC 200.4

No Diff. ∆ (µHz) 0.01 3.0 3 · 10−5 0.007
AHe 0.7 0.7 0.3 0.3
r̂01 10−4 0.4 10−4 0.7
r̂02 10−4 0.4 10−4 0.4
χ2

red 3.4
BIC 20.7

αov = 0.1 ∆ (µHz) 0.3 59.7 1 · 104 0.03
AHe 0.8 0.8 0.6 0.6
r̂01 3 · 10−5 0.1 2 · 10−4 0.9
r̂02 5 · 10−4 1.6 4 · 10−4 1.6
χ2

red 1188.8
BIC 3576.7

αMLT ∆ (µHz) 0.2 52.8 10−3 0.2
from Teff AHe 0.2 0.2 0.5 0.5
fit r̂01 2 · 10−4 1.0 4 · 10−4 2.0

r̂02 4 · 10−4 1.3 6 · 10−4 2.2
χ2

red 928.4
BIC 2795.6

Vernazza ∆ (µHz) 0.01 3.0 7 · 10−4 0.1
calibrated AHe 0.7 0.7 0.3 0.3
αMLT r̂01 10−4 0.4 10−4 0.7

r̂02 10−4 0.4 10−4 0.4
χ2

red 2.9
BIC 19.2

Notes. χ2
red = χ2/(N − k) is the reduced χ2 value where N is the number

of constraints to the fit and k the number of free parameters. The BIC
value is defined in Sect. 4.3.

Table E.10. Same as Table E.8, but without imposing a common com-
position for the two stars.

Model Quantity 16CygA 16CygB

AGSS09 M(M�) 1.05 ± 0.04 1.017 ± 0.007
[Fe/H] 0.20 ± 0.05 0.23 ± 0.02

Ys 0.25 ± 0.01 0.251 ± 0.004
R (R�) 1.21 ± 0.04 1.106 ± 0.008

X0 0.68 ± 0.02 0.679 ± 0.006
(Z/X)0 0.037 ± 0.003 0.038 ± 0.002

Y0 0.29 ± 0.02 0.295 ± 0.006
t(Gyr) 6.86 ± 0.06

Dturb M(M�) 1.1 ± 0.1 1.02 ± 0.05
[Fe/H] 0.1 ± 0.1 0.2 ± 0.1

Ys 0.24 ± 0.04 0.25 ± 0.03
R(R�) 1.2 ± 0.1 1.11 ± 0.05

X0 0.70 ± 0.06 0.70 ± 0.05
(Z/X)0 0.029 ± 0.007 0.031 ± 0.009

Y0 0.27 ± 0.06 0.28 ± 0.04
t(Gyr) 6.9 ± 0.1

No Diff. M(M�) 1.11 ± 0.02 1.064 ± 0.006
[Fe/H] 0.04 ± 0.02 0.06 ± 0.02

Ys 0.221 ± 0.008 0.228 ± 0.005
R(R�) 1.23 ± 0.02 1.123 ± 0.007

X0 0.763 ± 0.008 0.756 ± 0.005
(Z/X)0 0.0200 ± 0.0008 0.021 ± 0.001

Y0 0.221 ± 0.008 0.228 ± 0.005
t(Gyr) 7.51 ± 0.07

αov = 0.1 M(M�) 1.05 ± 0.02 1.010 ± 0.009
[Fe/H] 0.19 ± 0.03 0.19 ± 0.02

Ys 0.245 ± 0.007 0.250 ± 0.003
R(R�) 1.21 ± 0.02 1.10 ± 0.01

X0 0.68 ± 0.01 0.681 ± 0.006
(Z/X)0 0.035 ± 0.002 0.035 ± 0.002

Y0 0.29 ± 0.01 0.295 ± 0.006
t(Gyr) 6.86 ± 0.05

αMLT M(M�) 1.072 ± 0.004 1.039 ± 0.003
from Teff [Fe/H] 0.145 ± 0.007 0.159 ± 0.007
fit Ys 0.234 ± 0.002 0.240 ± 0.002

R(R�) 1.226 ± 0.006 1.114 ± 0.004
αMLT 1.85 1.99

X0 0.696 ± 0.003 0.696 ± 0.003
(Z/X)0 0.0320 ± 0.0004 0.0320 ± 0.0004

Y0 0.282 ± 0.003 0.282 ± 0.003
t(Gyr) 6.63 ± 0.05

Vernazza M(M�) 1.05 ± 0.02 1.017 ± 0.008
calibrated [Fe/H] 0.18 ± 0.02 0.20 ± 0.02
αMLT Ys 0.244 ± 0.007 0.249 ± 0.004

R(R�) 1.21 ± 0.02 1.105 ± 0.009
αMLT 2.02

X0 0.68 ± 0.01 0.683 ± 0.007
(Z/X)0 0.035 ± 0.002 0.035 ± 0.001

Y0 0.29 ± 0.01 0.293 ± 0.007
t(Gyr) 6.82 ± 0.06
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Table E.11. Same as Table E.9, but without imposing a common com-
position for the two stars.

Model Quantity 16CygA 16CygB

δ δ/σ δ δ/σ

AGSS09 ∆ (µHz) 0.1 31.7 6 · 10−3 1.3
AHe 0.9 0.9 1.5 1.5
r̂01 4 · 10−5 0.1 5 · 10−4 0.2
r̂02 6 · 10−4 1.9 4 · 5 · 10−4 1.7
χ2

red 1020.9
BIC 1035.5

Dturb ∆ (µHz) 3 · 10−3 0.2 2 · 10−5 0.05
AHe 0.3 0.3 0.6 0.6
r̂01 3 · 10−5 0.1 3 · 10−4 1.4
r̂02 2 · 10−4 0.6 3 · 10−4 1.2
χ2

red 4.4
BIC 19.0

No Diff. ∆ (µHz) 3 · 10−3 0.6 0.2 · 10−3 0.05
AHe 0.002 0.002 0.02 0.02
r̂01 10−4 0.5 0.4 · 10−4 0.2
r̂02 0.2 · 10−4 0.07 0.5 · 10−4 0.2
χ2

red 0.8
BIC 15.3

αov = 0.1 ∆ (µHz) 0.2 49.1 3 · 10−4 0.007
AHe 0.7 0.7 0.2 0.2
r̂01 3 · 6 · 10−5 0.2 2 · 10−4 0.9
r̂02 6 · 10−4 1.7 3 · 10−4 1.2
χ2

red 2426.7
BIC 2441.3

αMLT ∆ (µHz) 0.2 52.8 10−3 0.2
from Teff AHe 0.2 0.2 0.5 0.5
fit r̂01 2 · 10−4 1.0 4 · 10−4 2.0

r̂02 4 · 10−4 1.3 6 · 10−4 2.2
χ2

red 928.4
BIC 2795.6

Vernazza ∆ (µHz) 2 · 10−4 0.05 5 · 10−6 0.001
calibrated AHe 0.5 0.5 0.7 0.7
αMLT r̂01 6 · 10−4 1.9 10−4 0.9

r̂02 3 · 10−4 1.1 2 · 10−4 0.8
χ2

red 7.1
BIC 21.7
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DETERMINATION OF PRECISE STELLAR PARAMETERS OF KEPLER LEGACY
TARGETS USING THE WHOSGLAD METHOD

M. Farnir1, M.-A. Dupret1 , S.J.A.J. Salmon1 , A. Noels1 and G. Buldgen2

Abstract. We developed a method, WhoSGlAd, that provides a comprehensive adjustment of solar like
oscillations spectra. It allows for tighter constraints (up to four times smaller standard deviations than that
of analogous ones). We take advantage of this new method and of the quality of the Kepler LEGACY data
to highlight trends in the stellar parameters as well as the limitations of the current generation of stellar
models.

Keywords: asteroseismology, stars: oscillations, stars: solar-type, stars: abundances, methods: numerical

1 Introduction

In the recent years, space missions such as Kepler (Borucki et al. 2010), CoRoT (Baglin et al. 2009) and BRITE
(Weiss et al. 2014) provided a wealth of data of unprecedented quality. This has allowed asteroseismology to
become a very efficient tool to constrain the stellar structure. Moreover, owing to the high quality of the data,
it becomes possible to study acoustic glitches. Those are oscillating signatures in frequency spectra that are
caused by a sharp variation∗ in the stellar structure. Therefore, they provide very localised and invaluable
information. For example, several studies have taken advantage of the glitches to infer the surface helium
content in solar-like pulsators, which cannot be measured by any other technique. The idea to use such glitches
to constraint the stellar structure was first formulated by Gough (1990) and Vorontsov (1988). Since then,
several studies including acoustic glitches have been carried out, among which we may cite Basu et al. (2004)
and Verma et al. (2014). In a previous paper (Farnir et al. 2019), we have presented a new method, WhoSGlAd,
to adjust simultaneously the signature of such glitches and the smoothly varying component of the oscillation
spectrum. This method has the advantage of providing constraints correlated as little as possible thanks to
the use of Gram-Schmidt’s orthogonalisation process. Moreover, the standard deviation of the defined seismic
indicators are up to four times smaller than the usual ones. In these proceedings, we shortly recall the principle
of the WhoSGlAd method and present its application to the study of the Kepler LEGACY sample (Lund et al.
2017) as well to the in depth study of 16 Cygni A.

2 Principle

2.1 Mathematical description

This section consists of a very brief description of the WhoSGlAd method’s principle. More information may
be found in Farnir et al. (2019). To describe a set of observed frequencies, νobs

†, we built a euclidean vector
space of functions. The following scalar product is defined:

〈x|y〉 =

N∑

i=1

xiyi
σ2
i

, (2.1)

1 Institut d’Astrophysique et Géophysique de l’Université de Liège, Allée du 6 août 17, 4000 Liège, Belgium
2 Observatoire de Genève, Université de Genève, 51 Ch. Des Maillettes, 1290 Sauverny, Switzerland
∗compared to the wavelength of the incoming wave
†We here denote by the obs subscript, frequencies to be adjusted, be them observed or model frequencies.

c© Stars in Space
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where x and y are two sets of N frequencies and σi are the individual standard deviations. In this vector space
we represent the smooth part of the oscillation spectrum as polynomials in the radial order n and the glitch part
as oscillating functions linearised for the fitted coefficients. Then, using the Gram-Schmidt’s orthogonalisation
process, we build an orthonormal basis over this vector space. If we write pj(n, l) the former basis elements,
qj0(n, l) the orthonormal basis elements and R−1j,j0 the transformation matrix, we have:

qj0(n, l) =
∑

j≤j0
R−1j,j0pj(n, l). (2.2)

Finally, using the scalar product 2.1, we project the frequencies over the successive basis elements. The fitted
frequencies are thus:

νf (n, l) =
∑

j

ajqj(n, l), (2.3)

where aj are the fitted coefficients and qj(n, l) the orthonormal basis elements. It is essential to note that,
owing to the orthonormalisation, all the coefficients aj are completely independent of each other. Therefore,
while the glitch and smooth components are treated simultaneously they are fully uncorrelated.

2.2 Useful seismic indicators

Combining in a clever way the adjusted coefficients, we may construct seismic indicators as uncorrelated as
possible for the stellar structure that are proxies of the ‘usual’ ones.

Large separation: At first order, the smooth part of the spectrum is approximated by a straight line. For
a given spherical degree, the slope of this line is the large separation for this degree. In our formulation, we
obtain‡

∆l = al,1R
−1
l,1,1 (2.4)

Averaging this quantity over the range of observed spherical degrees, we get:

∆ =

∑
l

al,1/R
−1
l,1,1

∑
l

1/
(
R−1l,1,1

)2 (2.5)

Small separation ratios: Analogous to Roxburgh & Vorontsov (2003), we may define averaged small sepa-
ration ratios as:

r̂0,l =
ν̄0 − ν̄l

∆0
+ n̄l − n̄0 +

l

2
, (2.6)

where the overlined symbols represent the mean value of those quantities calculated using our scalar product.
We show in Farnir et al. (2019) that these ratios are almost independent of the surface effects, as expected from
Roxburgh & Vorontsov (2003).

Large separation ratios: We define:

∆0l =
∆l

∆0
− 1 (2.7)

It is straightforward to show that it represents the mean slope of r010, which is the combination of the small
separation ratios r01 and r10 (Roxburgh & Vorontsov 2003).

Helium glitch amplitude: We define the amplitude of the helium glitch, δνHe, as the norm of the helium
glitch term, i.e.:

AHe = ‖δνHe‖ =

√∑

j

a2j,He. (2.8)

‡Note that, for the smooth part, the j index has been separated into the spherical degree l and the polynomial degree k, as we
have different polynomials for each spherical degree.
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3 Applications

3.1 Models

Unless specified otherwise, every model was constructed using the CLES stellar evolution code (Scuflaire et al.
2008b) with the AGSS09 solar chemical mixture (Asplund et al. 2009), the OPAL opacity table (Iglesias & Rogers
1996) combined with that of Ferguson et al. (2005) at low temperatures, the FreeEOS software to generate the
equation of state table (Cassisi et al. 2003) and the reactions rates prescribed by Adelberger et al. (2011). We
also used the mixing length theory (Cox & Giuli 1968), with the solar calibrated value of αMLT = l/Hp = 1.82
(where l is the mixing length and Hp the pressure scale height), to parametrise the mixing inside convective
regions. The microscopic diffusion of elements was included and treated as in Thoul et al. (1994). Moreover, the
temperature conditions above the photosphere were determined using an Eddington T (τ) relationship, τ being
the optical depth. Finally, the model frequencies were calculated using the LOSC oscillation code (Scuflaire
et al. 2008a) which were corrected for the surface effects according to Kjeldsen et al. (2008)’s prescription using
the a and b coefficients fitted by Sonoi et al. (2015).

3.2 The Kepler LEGACY sample

The Kepler LEGACY sample consists of 66 main sequence solar-like stars which have been observed by the
Kepler telescope for at least one continuous year (Lund et al. 2017). This is therefore the best data available
to the asteroseismology of main sequence solar-like pulsators.

For each star in the sample, we tried to provide a fitted model to the observed seismic indicators defined
in the previous section and built over the frequencies from Lund et al. (2017). To do so, we first used the
AIMS algorithm (Rendle et al. 2019) to provide initial guesses that were then used as starting points by a
Levenberg-Marquardt algorithm.

The constraints used are the following seismic indicators: ∆, r̂01, r̂02, ∆01 and AHe and the metallicity. The
free parameters are: the mass, age, initial hydrogen and metal abundances and the overshooting parameter.

From the whole sample, only 18 stars were properly fitted, with a χ2 =
∑
i

(
yth,i−yobs,i

σobs,i

)2
≤ 40. The results

are shown in Figs. 1 and 2. Figure 1 shows the initial helium content as a function of the initial metallicity. We
observe a correlation which could be a clue of a galactic enrichment. In Fig.2 we show the adjusted overshooting
parameter versus the stellar mass. We do not observe a correlation between those two quantities as expected
from Claret & Torres (2019). However, the range of masses depicted in their Fig. 10 is much broader than ours
and the apparent absence of correlation could result from our restricted mass range. Therefore, to validate both
observations, it will be necessary to provide a proper adjustment for as many stars from the sample as possible.
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Fig. 1: Best fit values for the initial helium abun-
dance as a function of the initial metallicity. The
color code represents the χ2 value for each model.
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Fig. 2: Best fit values for the step overshooting
parameter as a function of the mass. The color
code represents the metallicity of the models.
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3.3 Application to 16 Cygni A

In the previous subsection, we showed adjustments that were done by considering only one set of physical
ingredients. To properly understand the dependency of the stellar parameters on the physics as well as to provide
proper standard deviations for these parameters, one has to test different physical ingredients. This is what we
did for the specific case of 16 Cyg A. We show in Fig. 3 the results for the different choices of microphysics
we considered. The frequencies from which we built our seismic indicators were those determined by Davies
et al. (2015). We calculated the models shown in the figure by changing one microphysical ingredient from the
reference described in Sec. 3.1 at a time. The reference is shown in black. The considered variations were: the
GN93 solar reference (Grevesse & Noels 1993) (in red), the opacity table from the opacity project OP (Badnell
et al. 2005) (in green), the LANL/OPLIB opacity table (Colgan et al. 2016) (in blue), the CEFF equation of state
(Christensen-Dalsgaard & Daeppen 1992) (in yellow), the OPAL05 equation of state (Rogers & Nayfonov 2002)

(in magenta), the inclusion of turbulent mixing (in cyan) following the relation DDT = Dturb

(
ρ
ρ0

)n
+ Dct,

where ρ is the density, ρ0 the surface density and Dturb, n and Dct were fixed at −7500, −3 and 0 respectively
(Proffitt & Michaud 1991). A reduced value of 1.7 for the mixing length parameter (in light green) was also
considered. We used ∆, r̂01, r̂02 and AHe as constraints and the mass, age, initial helium abundance and
metallicity as free parameters.

We observe that, given the current precision of both the data and the method, it becomes possible to
discriminate between different choices of input physics. We also show with a grey box the luminosity (deduced
from the interferometric radius) and effective temperature (White et al. 2013). These constraints were not
included during the fit, we merely show the discrepancy of the results with those. Only a few models lie in
the box, one of them relying on non classical physics (the cyan model includes turbulent mixing). This clearly
illustrates the limitations of the forward approach for the stellar modelling as well as that of our knowledge
about the stellar structure. To further improve our results and highlight the necessary improvements to the
stellar models, one should consider making use of inverse techniques as in Buldgen et al. (2016).

4 Conclusions

The WhoSGlAd method allows us to provide a comprehensive adjustment of solar-like pulsators oscillations
spectra as a whole (glitch and smooth parts) and to put tighter seismic constraints (up to four time smaller than
‘classical’ ones) on the stellar structure. Combined with the precision of the Kepler LEGACY data, it becomes
possible to observe trends over the whole sample (we note a correlation between the initial helium content and
the initial metallicity) as well as the limitations of the current stellar models. It therefore becomes necessary
to refine those by, for example, improving the treatment of convection or including non-standard physics (e.g.
turbulent mixing, revised abundances and opacities). Moreover, to go even further in the modelling, combining
the promising WhoSGlAd method with inverse techniques may be of great help. Finally, the adaptation of the
method to the more complex case of subgiants exhibiting mixed modes will be a natural step as those present
the regularities of p and g modes, which are well suited for such an approach.

M.F. is supported by the FRIA (Fond pour la Recherche en Industrie et Agriculture) - FNRS PhD grant. S.J.A.J.S. is funded by
ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. G. Buldgen is supported by the Swiss
National Science Foundation (project number 200020 172505)
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CHAPTER 5

The EGGMiMoSA method
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Figure 5.1: The EGGMiMoSA logo.

As we have seen, as a consequence of the contraction of their core and expansion of their envelope, red-giant
and subgiant stars display mixed-mode oscillation spectra (Sects. 2.1.4 and 2.2.4). These modes represent a unique
opportunity to probe the entire stellar structure of evolved solar-like stars, unveiling the future of our Sun. A
method accounting for such information was therefore necessary, this is why EGGMiMoSA (Extracting Guesses
about Giants via Mixed-Modes Spectrum Adjustment) was developed. This has been presented in an article
(Farnir et al. 2021, accepted for publication in A&A, see also Sect. 5.A). In the present chapter, we present notable
results of the technique.

5.1 Introduction

Owing to their large luminosities, red-giant stars can be observed at large distances. Furthermore, such stars cover
a wide range of stellar masses and compositions. Combined with precise positions and velocities, obtained for
example with the GAIA mission (Perryman et al. 2001), they constitute key elements to the characterisation and
understanding of our host galaxy, the Milky-Way. This is the topic of galactic archaeology, which aims at studying
the Milky-Way’s dynamical and chemical evolution (e.g. Miglio et al. 2013; Noels et al. 2016). However, galactic
archaeology strongly relies on precise ages and composition measurements. This was enabled by the detection of
non-radial oscillation modes (De Ridder et al. 2009). Among these were also detected modes of mixed pressure
and gravity characters (Bedding et al. 2010). This is an important breakthrough for asteroseismology, allowing us
to retrieve such precise ages and compositions, but also to probe the structure of these stars from their surfaces to
their cores.
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5.1.1 Anatomy of a mixed-mode

Oscillation modes either behave as pressure modes, with the pressure gradient acting as the restoring force of
the oscillation, or as a gravity mode, with the buoyancy being the restoring force (see Sect. 2.2.4). In low-mass
main-sequence stars, the g-modes propagate in the innermost regions, the g-cavity, and have little amplitude at the
surface, as they are damped in the radiative region. Therefore, they have not been detected yet. Conversely, the
p-modes propagate in the outermost regions of the star, the p-cavity, and are ‘easily’ detected. As a consequence,
only information about these shallow regions can be retrieved and their deepest regions cannot be probed via
asteroseismology. However, in condensed stars, such as subgiants and red giants, these modes can couple to create
modes of mixed p- and g- natures, behaving as g-modes in the central regions and as p-modes in the envelope.
These are the so-called mixed-modes and constitute a unique opportunity to probe most of the interior of low-mass
stars (see Sect. 2.2.4).

The existence of modes of mixed character, was theoretically discussed early on by Dziembowski (1971) in
a Cepheid model and by Scuflaire (1974) in polytropic models. Such modes exist because of the large density
contrast appearing in subgiant and red-giant stars. Indeed, as the star evolves after the main sequence, its core
contracts and its envelope expands significantly. The frequencies of g-modes increase and those of p-modes decrease.
Hence, around the frequency of maximum power, νmax, non-radial modes behave like gravity modes in the core
and like pressure modes in the envelope. These are the so-called mixed-modes, which propagate over most of
the stellar interior. The two propagation cavities of these mixed modes are coupled through the thin evanescent
zone between them. The first consequence of this coupling is the avoided crossing (Osaki 1971; Aizenman et al.
1977). Instead of crossing, the two modes exchange nature and avoid each other.

In addition, as evolution proceeds from the subgiant phase to the red-giant phase, the number of modes with
a dominant gravity character per modes of dominant pressure character increases. This is represented by the
g-dominated modes density around νmax defined by Mosser et al. (2015),

N (νmax) = ∆ν
∆π1ν2

max
, (5.1)

with ∆ν the large frequency separation between two consecutive p-dominated modes and ∆π1 the period spacing
between two consecutive g-dominates modes. Spectra with N � 1 are dominated by the presence of the p-
dominated modes. We expect most of the behaviour of the spectrum to follow that of pure pressure mode spectra
with an almost constant frequency separation ∆ν, such as in main-sequence solar-like stars. Conversely, spectra
with N � 1 show a dominant g-character and are expected to present a regular spacing between individual
modes periods, ∆π1, such as white dwarfs and γ-Dor stars exhibit. However, the coupling between the two
cavities introduces complex behaviours and disrupts these regularities. Plotting the frequency separation as a
function of the period (N � 1, p-dominated spectra) or the period spacing as a function of the frequency (N � 1,
g-dominated spectra) displays a characteristic shape with periodic local decreases in these quantities, called ‘dips’.
This is referred to as modes bumping and corresponds to the signature of the presence of modes of g-dominated
nature (N � 1, p-dominated spectra) or p-dominated nature (N � 1, g-dominated spectra). We represent this
phenomenon of modes bumping for theoretical frequencies obtained via LOSC (Scuflaire et al. 2008a) for a typical
subgiant model and a typical red-giant model computed with CLES (Scuflaire et al. 2008b) in Figs. 5.2 and 5.3,
respectively. The periodic excursions from the constant ∆ν and ∆π1, shown in green, are clearly visible. We
also observe that the presence of periodic dips provides an information about ∆π1 or ∆ν, as displayed by the
double-sided black arrows.

5.1.2 Describing the mixed-modes pattern

Despite the apparent complexity exhibited by the mixed-mode oscillation spectra, several approaches have been
developed to analyse them. One of them, developed by Deheuvels & Michel (2011) for subgiant stars, models the
mixed-mode spectrum as a series of coupled harmonic oscillators. This approach was also adopted by Benomar
et al. (2012) who were able to show the correlation between the coupling strength, between the p- and g-cavities,
and the stellar mass in the subgiant phase. However, the connection between this approach and the stellar structure
is not straightforward.

Another widely used approach, exploiting physical knowledge about the stellar structure, relies on the
asymptotic description of mixed modes (Shibahashi 1979; Tassoul 1980). The most commonly used formulation is
the one presented in (Shibahashi 1979),

tan θp = q tan θg, (5.2)

where θp represents the phase contribution of the pressure cavity, θg that of the gravity cavity, and q the coupling
strength between these cavities through the evanescent region. Solving Eq. (5.2) provides the asymptotic frequencies.
Originally, Shibahashi (1979) assumed a thick evanescent region, corresponding to a weak coupling between the
two oscillating cavities, never allowing q to exceed a value of 0.25. This is valid for most of the red-giant phase
evolution. Nevertheless, on the subgiant phase, it may be necessary to allow for greater values of the coupling
factor. Takata (2016a) treated the case of a strong coupling where the evanescent zone is thin and demonstrated
that Eq. (5.2) remains valid in this case, with greater values of the coupling factor, with a maximum of 1. This is
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referred to as the strong coupling. He also properly accounted for the perturbation of the gravitational potential,
often neglected under Cowling’s approximation (Cowling 1941, see also Sect. 2.2.3), on the adiabatic equations
of oscillations. He also showed that the large density contrast between the core and the envelope impacts the
positions of the turning points, affecting the definition of the resonant cavities. This lead to the definition of
modified Lamb and Brunt-Väisälä frequencies

L̂l ≡ LlJ (5.3)
and

N̂ ≡ N

J
, (5.4)

such that we find the usual conditions for the propagation of modes. A mode is propagative in a region where its
frequency σ is such that σ2 < L̂2

l , N̂
2 or σ2 > L̂2

l , N̂
2 and it is evanescent otherwise. The local density contrast

between the local density, ρ, and the mean density of the encapsulated sphere, ρ = m(r)
4/π3r3 ,

J(r) ≡ 1− ρ(r)/ρ(r), (5.5)

has been introduced.

5.1.3 Measuring the asymptotic parameters

Since the prediction of the existence and detectability of mixed-modes (Scuflaire 1974; Dupret et al. 2009), a lot
of effort for their observations has been made. Thanks to the high quality data collected by spacecrafts such as
CoRoT (Baglin et al. 2009) and Kepler (Borucki et al. 2010), these were detected by Bedding et al. (2010). The
observations and characterisations of these modes then multiplied. With a parametric revision of the asymptotic
formulation, Mosser et al. (2012c) were able to measure the period spacing, ∆π1, in a large sample of red-giant
stars and demonstrated that it is possible to clearly identify mixed-modes. This formulation was later revised and
the pressure and gravity phases took the empirical form (Mosser et al. 2015),

θp = π
[
ν

∆ν −
1
2 − εp

]
(5.6)

and
θg = π

[ 1
ν∆π1

− εg
]
, (5.7)

with εp and εg the pressure and gravity offsets, respectively. Introducing an appropriate variable change, allowing
the regularity of the spectrum to be restored, Vrard et al. (2016) and Mosser et al. (2017, 2018) again extended the
number of measured ∆π1, as well as q, to several thousands of red giants. As the asymptotic formulation has been
shown to be valid for subgiant stars, Eq. (5.2) was applied to about 40 of these stars to retrieve a measurement of
∆π1 (Appourchaux 2020).

The measurement of the period spacing is of great interest. Indeed, it was shown that measuring both ∆π1 and
∆ν is sufficient to recognise H-shell burning from core-He burning stars, otherwise indistinguishable (Bedding et al.
2011; Mosser et al. 2014). This is illustrated in Fig. 5.4, taken from Mosser et al. (2014, Fig. 3). The distinction
between subgiants (upper right), H-shell burning giants (bottom left) and core-He burning giants is very clear.
This results from the large difference in the density contrast between these phases, which has been shown to impact
the value of ∆π1 (Montalbán et al. 2010). In addition, by measuring the mass of the core in core-He burning stars,
Montalbán et al. (2013) demonstrated that it is possible to obtain a diagnosis for the amount of overshooting in
intermediate-mass stars. The amount and nature of the overshooting have an important impact on the central
composition and the duration of the main sequence, which in turn impacts our inference of stellar ages.

In addition, the other asymptotic parameters are important to a proper characterisation of the mixed-mode
oscillation spectra. For example, (Buysschaert et al. 2016) measured ∆π1, εg, and q in three red giants and
concluded that using εg as a free parameter, when adjusting mixed-mode spectra, is necessary to retrieve reliable
confidence intervals on the measurement of ∆π1. Nevertheless, there currently does not exist studies that are able
to retrieve reliable values for the εg parameter. Relying on analytical models of the stellar structure, Pinçon et al.
(2019) later demonstrated that the gravity offset is sensitive to the core-envelope density contrast in red giants and
that it should hold information about the localisation of the base of the convective zone. The efforts to robustly
measure this quantity, must endure.

Finally, the coupling factor was measured in a large number of stars (Mosser et al. 2012c; Vrard et al. 2016;
Mosser et al. 2017), demonstrating the important change in its value throughout stellar evolution. On the subgiant
phase, the coupling factor starts with a low value of about 0.1. Then, by the end of the subgiant phase, it sharply
increases to approximately 0.6. This largely exceeds the limits of 1/4 foreseen by the weak coupling of Shibahashi
(1979) and corrobarates the necessity of Takata (2016b)’s work. At the beginning of the red-giant phase, the
coupling factor decreases around 0.25 and steadily decreases during this phase, until reaching a final drop by the
very end of the phase. This is illustrated in Fig. 5.5, which is presented in Mosser et al. (2017, Fig. 6). By means
of stellar models Jiang & Christensen-Dalsgaard (2014), Hekker et al. (2018), and Jiang et al. (2020) also observed
the decrease in the coupling factor on the red-giant phase which they showed to be correlated with the increase in
the width of the evanescent region. Using analytical models, Pinçon et al. (2020) further demonstrated that the
thickening of the evanescent region is a result of its migration towards the base of the convective region, where the
Brunt-Väisälä frequency drops to zero.
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Rotation

Thanks to rotational splittings, it was possible to measure the core rotation rate of a large sample of giant stars.
First, Beck et al. (2012) measured the core-rotation rate of three red giants then Mosser et al. (2012b) and Gehan
et al. (2018) extended this measurement to several hundreds of stars. They noted that, despite its contraction,
the core spins down as the star evolves on the red-giant branch, hence contradicting simple assumptions about
angular momentum conservation and requiring a spin-up of the core. Indeed, the core-rotation rates predicted by
stellar models exhibit too large values (e.g. Marques et al. 2013; Cantiello et al. 2014). This demonstrated the
necessity to account for a process that efficiently transports angular momentum but that is not efficient enough to
impose a rigid rotation of the complete star. Several authors provided candidates to explain this transport of
angular momentum such as the redistribution by mixed-modes (Belkacem et al. 2015a,b), the diffusion of angular
momentum (Spada et al. 2016), and its transport by internal gravity waves (Pinçon et al. 2017).

Deheuvels et al. (2014) also noted that the core of subgiants first spins up before reaching the red-giant branch.
They also estimated that the redistribution of angular momentum from the core to the envelope, deemed necessary
to account for the low core-rotation rates (e.g. Eggenberger et al. 2012), is still not sufficient. This nevertheless
constitutes a constraint on such transport processes. In addition, Pinçon et al. (2017) showed that the combination
of the core contraction (expected on the subgiant phase) and the angular momentum transport by internal gravity
waves leads to a stabilisation of the rotation profile and strikingly agrees with the observations of Deheuvels et al.
(2014). Deheuvels et al. (2020) later demonstrated that two early subgiants exhibit near solid-body rotation,
hinting at the possibility that the efficiency of angular momentum transport decreases with the stellar evolution.
Based on red-giant models, Goupil et al. (2013) demonstrated that the rotational splittings are mostly impacted
by the central regions and they provided a parametric expression relating these splittings to the ratio between core
and envelope rotation rates.

5.1.4 Extensions of the asymptotic theory

Finally, the asymptotic expansion can be extended. We have seen in Sect. 2.2.5 that sharp features in the stellar
structure can cause oscillating features in the oscillation spectrum, the glitches. Beside the helium glitch, which has
already been addressed in the case of red giants by several authors (e.g. Miglio et al. 2010; Broomhall et al. 2014;
Vrard et al. 2015; Dréau et al. 2020) and which the WhoSGlAd method has been developed for main-sequence stars,
there exist buoyancy glitches. These buoyancy glitches, as their name would suggest, are sharp features in the
buoyancy frequency, remnants, for example, of the first dredge up. These have been extensively studied by Cunha
et al. (2015) who provided an analytical expression for these glitches and demonstrated that we should expect to
observe them at the luminosity bump and at the early phases of core-He burning, providing tight evolutionary
constraints.

5.1.5 Our work

We note from all the previous studies that they suffer from one main flaw. Up to this day, there exists no unified
approach, relying on the asymptotic expression and tackling the problem of both subgiant and red-giant stars,
often because of underlying simplifying assumptions. Furthermore, many of them require heavy and non-local
minimisation techniques, that can be costly both in time and computing resources. Consequently, we constructed
a method, EGGMiMoSA, of which the aim is to adjust the asymptotic expression to both subgiant and red-giant
oscillation spectra (Farnir et al. 2021, accepted for publication in A&A). We neglect the effect of rotation as
low-mass subgiant and red-giant stars are slow rotators (e.g. Gehan et al. 2018), so that the m = 0 modes, which
we consider here, are not perturbated at first order. The strength of this method relies on educated guesses for the
asymptotic parameters (i.e. ∆ν, ∆π1, εp, εg, and q) and on a local minimisation scheme, the Levenberg-Marquardt
technique. Nevertheless, this method does not pretend to replace identification methods such as the one proposed
by Mosser et al. (2015). Rather, after a proper detection of mixed-modes has been carried out, our method comes
into play to define robust seismic indicators, bearers of relevant structural information, and to adjust stellar models
to these indicators.
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Figure 5.2: Large frequency separation as a function of the period for a 1 M�, X0 = 0.72, Z0 = 0.015
subgiant model. The asymptotic frequency separation is represented by the green horizontal line and the
asymptotic period spacing by the black double-headed arrow.
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Figure 5.3: Period spacing as a function of the frequency for a 1 M�, X0 = 0.72, Z0 = 0.015 red-giant
model. The asymptotic period spacing is represented by the green horizontal line and the asymptotic
frequency separation by the black double-headed arrow.
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Figure 5.4: Measured values of ∆ν and ∆π1 for almost 1200 evolved Kepler stars taken from Mosser et al.
(2014, Fig. 3).

Figure 5.5: Evolution of the coupling factor as a function of the g-dominated modes density, taken from
Mosser et al. (2017, Fig. 6).
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5.2 The method

In the current section, we recall the different steps of the EGGMiMoSA method (All the technical details of the
approach are given in Farnir et al. 2021, accepted for publication in A&A). The goal is to find the set of frequencies,
νfit, that are the closest possible to reference frequencies, νref. As is often the case in minimisation problems, we
want to retrieve the set of parameters: ∆ν, ∆π1, εp, εg, and q that minimise the cost function,

χ2 =
N∑
i=1

[νref,i − νfit,i (∆ν,∆π1, εp, εg, q)]2

σ2
i

, (5.8)

where the σi are the uncertainties on individual reference frequencies.
As our goal is to find a fast and robust technique to provide the five optimal parameters we avoid global

minimisation techniques. We rather use a Levenberg-Marquardt technique and rely on appropriate parameters
initial guesses in order to ensure the convergence. However, as illustrated by Eq. (5.2), the problem is non-linear
and there exist several correlations between individual parameters (see Eqs. (5.6) and (5.7)). To cope with the
most problematic correlations we use frequency or period differences as an intermediate step.

The five steps of the procedure are the following:
1. Estimate ∆ν and εp on radial modes using WhoSGlAd. This corresponds to a linear fit of the

frequencies;
2. Estimate the g-dominated modes density, N . This is done via the second frequency difference

δν2,i = νi+1−νi−1
∆ν ;

3. According to the N value, estimate ∆π1, εg, and q;
4. Adjust individual frequency (N < 1) or period (N > 1) differences. In doing so, we avoid the ∆ν-εp

or ∆π1-εg correlations, respectively;
5. Adjust individual frequencies, to retrieve robust parameters as well as uncertainties.

5.3 Notable results

Thanks to the appropriate estimation of the five mixed-mode parameters, their adjustment is carried out in a
fast, robust and automated way. This allows us to follow their evolution along several evolutionary tracks, from
the subgiant phase to the red-giant phase, for different masses and compositions. We now detail several notable
results we obtained with the EGGMiMoSA method.

5.3.1 The models

For masses in the range [0.9, 2.1], adopting a step of 0.1, we computed evolutionary tracks of models from the
subgiant phase to the RGB luminosity bump with the CLES (Scuflaire et al. 2008b) evolution code. All the models
have an initial composition of X0 = 0.72 and Z0 = 0.015. Frequencies are obtained using the LOSC (Scuflaire
et al. 2008a) adiabatic oscillation code. We selected the frequency range following Mosser et al. (2012a). They
estimated that the extent around νmax of the modes that are efficiently excited, therefore observable, in red-giant
stars follow the simple relation 0.66 ν0.88

max . Typical observations from Appourchaux et al. (2012) for a subgiant
star with νmax ∼ 1000 µHz show that a little more than 10 radial modes may be clearly identified. Therefore, to
match such observed ranges and ensure computing a sufficient amount of modes, we choose a slightly broader
range of about νmax ± 0.4 ν0.88

max . This corresponds, for red giants (resp. subgiants), to approximately three (resp.
five) p-dominated modes on both sides of νmax, as expected from observations.

5.3.2 General results

For each of the fitted mixed-mode parameters (∆π1, εp, εg, and q), we observed a clear distinction between
the subgiant and red-giant phases. The subgiant models present different evolutions according to the
stellar mass. Evolutionary tracks then converge to a common evolution on the red-giant branch. This is a
result of the important density contrast between the core and the envelope on the red-giant phase.

5.3.3 Evolution of the period spacing

By studying the evolution of the period spacing with stellar evolution, we obtained very interesting results. We
represent in Fig. 5.6 the evolution of the fitted ∆π1 as a function of the large frequency separation of radial modes,

139



5. The EGGMiMoSA method

which is a good proxy for the evolution during these phases (Mosser et al. 2011), for all the tracks in our grid
of models. As the period spacing decreases with evolution on the subgiant and red-giant phases, the evolution
proceeds from right to left. We also represent the asymptotic value of the period spacing ∆π1,as (Eq. (2.85)) as
dashed lines. We mark the transition between the subgiant and red-giant phases as vertical coloured dotted lines.

The first striking feature is the clear difference between the subgiant phase, on the right of the dotted lines,
and the red-giant phase, on the left. Indeed, the period spacing strongly decreases with evolution on the subgiant
phase while the rate of decrease is significantly reduced on the red-giant phase. By comparing Figs. 5.4 and 5.6,
we note that our computations qualitatively agree with the observations of Mosser et al. (2014). We confirm
that the subgiant and red-giant stars occupy different regions in a ∆ν-∆π1 diagram. We also observe that the
fitted ∆π1 values agree with the asymptotic ones. This remains true during the subgiant phase (see also Lagarde
et al. 2016), where we do not expect the asymptotic formulation to hold for g-dominated modes, as the g-radial
order is low (ng ∼ 3). We note that the relative difference between the fitted and asymptotic period spacing,
δ∆π1 = |∆π1,as−∆π1,fit|

∆π1,as
, starts with a large value of about 10− 15% then quickly decreases to around 5− 10%.

Once on the red-giant phase, it never exceeds 0.2%. This shows that the fitted period spacing is a potent proxy
of the asymptotic one. Finally, using Eq. (2.85) we may roughly estimate ∆π1 to be inversely proportional to
the maximum of the Brunt-Väisälä frequency in the radiative region, which has been demonstrated by Pinçon
et al. (2020) to be approximately proportional to the square root of the helium core’s density. We represent this
helium core’s density as a function of the helium core’s mass in Fig. 5.7. The abscissa has been flipped to match
the direction of the evolution (right to left) presented in the other figures. We indeed observe the expected trend:
The helium core’s density increases with evolution, leading to the observed decrease in ∆π1.

Furthermore, on the subgiant phase, all the tracks are well separated while, on the red-giant phase, only tracks
with masses above M & 1.8 M� are distinct. Tracks with lower masses are degenerate on the red-giant phase. This
suggests that measuring both ∆ν0 and ∆π1 of subgiants should allow us to infer their masses, radii, and ages. To
further illustrate this, we plot the evolution of the asymptotic period spacing (to smooth out the small oscillations)
as a function of ∆ν0 in Fig. 5.8. We represent the age of the models as a colour gradient, and models with the
same radius as black symbols (a diamond corresponds to 2 R�, a pentagram to 3 R�, and a star to 4 R�). We
observe that individual tracks are significantly separated, compared to typical observed relative uncertainties of 1%
on ∆π1 retrieved by Appourchaux (2020). Therefore, a measure of ∆ν0 and ∆π1 allows us to infer the stellar mass
with a greater precision than 0.1 M�. Because the age on the subgiant phase is dominated by the duration of the
main sequence, which is mostly determined by the stellar mass (Eq. (2.28)), we may in turn infer the stellar age.
This is again visible through the different colours of individual tracks. Finally, the black symbols, representing
iso-radius curves, illustrate the possibility to also constrain the radius of the star by placing it in such a diagram.

We note a degeneracy of the tracks for red giants with masses . 1.8 M�. This can be explained as a result of
the electron degeneracy in the core. Indeed, because of the large core-envelope density contrast, we demonstrated in
Sect. 2.1.4 that the properties of the H-shell are dependent on the helium core’s mass and radius only. Furthermore,
the electron degeneracy leads to a relation between the mass and radius of the core. The evolution of the helium
core’s density is therefore independent of the total stellar mass. This is what we observe in Fig. 5.7 representing
the core’s density as a function of its mass. Because of the relation between the core’s mass and radius, the
properties of the shell thus only depend on the core’s mass. In addition, because the luminosity is constant above
the shell, the total luminosity only depends on the core’s mass. Then, as the effective temperature is almost
constant on the red-giant branch (the stars rises almost vertically in the HR diagram, cf. Sect. 2.1.4) and because
of Stefan-Boltzmann’s law (Eq. (2.41)), the stellar radius is also only a function of the core’s mass. The mean
density, which is predominantly a function of the stellar radius, is therefore mostly determined by the core’s
mass. Consequently, the same goes for ∆ν which is a proxy of the mean density (Ulrich 1986; Farnir et al. 2019).
The density contrast defined as ρc/ρ̄, with ρc the central density, is also degenerate in mass for stars with an
electron-degenerate core. This is represented in Fig. 5.9, where we indeed observe this degeneracy. This results in
the degeneracy in the ∆π1 indicator as a function of ∆ν. Finally, the separation of the tracks for masses & 1.8 M�
opens the possibility to constrain the stellar mass, radius, and age, similarly to the subgiant phase.

We also studied the impact of the chemical composition on the evolution of ∆π1. To do so, we build a set
of 1 M� models varying either X0 or Z0 from the reference values (X0 = 0.72 and Z0 = 0.015). The variations
in composition considered are X0 = 0.68, Z0 = 0.011, and Z0 = 0.019. This is represented in Fig. 5.10. While
we observe that the impact of the composition seems restricted, it has a comparable impact on ∆π1 during the
subgiant phase as in the case of the r̂01 and r̂02 WhoSGlAd indicators. To highlight the effect of composition
during the subgiant phase, we magnify this phase in Fig. 5.11. We indeed observe that, at fixed ∆ν0 and ∆π1
values, a variation of 0.008 in Z0 would modify the inferred mass by about 0.1 M�. This is very similar to what
we observe in Fig. 3.5. Therefore, for a proper determination of the mass, radius and, age of a subgiant, it will be
necessary to precisely measure the chemical composition. Conversely, the red-giant tracks are again degenerate.
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Figure 5.6: Evolution of ∆π1 as a function of ∆ν0 for different masses, represented by the different
colours. The dashed lines represent the asymptotic period spacing, ∆π1,as, and the vertical dotted lines
the transition between subgiant and red-giant phases.

With a determination of the chemical composition, we noted the possibility to precisely constrain the
stellar mass, radius, and age of subgiant stars. In addition, we demonstrated that the presence of central
electron degeneracy combined with the large core-envelope density contrast in red-giant stars with masses
. 1.8 M� leads to a degeneracy in the evolution of ∆π1 with ∆ν0 for these stars. For heavier red-giant
stars, the degeneracy is lifted and it should be possible to constrain their masses, radii, and ages, as in the
subgiant case.

5.3.4 Evolution of the gravity offset

To our knowledge, we presented for the first time the evolution of the gravity offset over a complete grid of models,
including both subgiant and red-giant models. This is represented in Fig. 5.12 for masses of 1 M�, 1.2 M�, 1.5 M�,
and 1.8 M� as a function of νmax which decreases with the evolution. We chose νmax to ease the comparison with
the work of Pinçon et al. (2019, Fig. 4), given in Fig. 5.13. They compare the values observed by Mosser et al.
(2018) with their analytical determinations, represented by the different lines. We first observe the clear difference
in behaviour between the subgiant and red-giant phases, which we expect to stem from the qualitative differences
in core-envelope density contrast between these stages.

While our computations extend to slightly greater values of νmax than the work of Pinçon et al. (2019), we
observe the same trends. We first note that there is a systematic shift of 0.5 in our values compared to theirs.
This results from the inclusion of a 1/2 factor in the θg phase in our study while they omitted this term. During
the red-giant phase, the εg value is almost constant at a value of approximately 0.75 which then drops for νmax
between ∼ 60 to ∼ 40 (µHz) to approximately zero. This agrees with their computations, predicting a plateau at
0.25 and a sudden drop to about −0.2 in the range νmax ∈ [50 µHz, 110 µHz].

Pinçon et al. (2019) predicted that we should measure a constant gravity offset for most of the red-giant
phase (represented by the grey rectangle) because the Brunt-Väisälä and Lamb frequencies are almost parallel and
can be approximated by a power-law in the evanescent zone. This is what we illustrate in Fig. 5.14 where we
represent the propagation diagram between the center and a reduced radius of 0.3 r/R of a 1 M� young red giant.
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in Fig. 5.6. The colours and vertical dotted lines have the same meaning.
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Figure 5.11: Evolution of ∆π1,as as a function of ∆ν0 on the subgiant phase for different compositions
considered in Fig. 5.10. The colour gradient corresponds to the age.

The squared modified Brunt-Väisälä frequency (Eq. (5.4)) is shown in orange and the squared modified Lamb
frequency (Eq. (5.3)) in blue. The squared computed frequency range is represented by the dashed green lines
while the squared frequency at maximum power is represented by the continuous green line. The two characteristic
frequencies are indeed, in very good approximation, parallel to one another in the radiative core. The Brunt-Väisälä
frequency then drops in the convective envelope. Nonetheless, the two frequencies are parallel to each other in
most of the considered frequency range. It does not remain valid as evolution proceeds. The frequency range
decreases in frequency along with νmax and the evanescent region moves outwards. Both frequencies cannot be
assumed parallel any more. This is represented in Fig. 5.15.

For subgiant stars, we noted a dependency of εg on the stellar mass, which we expect to result from the
moderate and mass-dependent core-envelope density in the evanescent region. This density contrast is represented
as a function of N in Fig. 5.16 for each of the tracks presented in Fig. 5.6. We also note that εg is less regular in
the subgiant phase than in the red-giant phase. However, individual spectra are well adjusted (see Farnir et al.
2021, accepted for publication in A&A, Figs. 6 to 8) and we expect this to be a result of structural features.

Concerning the chemical composition, we note that the composition only has a notable impact on the εg drop
close to the luminosity bump. Its position in νmax shifts to lower values for a decrease in either X0 or Z0. The
evolution during earlier phases is fairly unaffected by the changes in composition considered in the present study.

Our results qualitatively agree with the observations of Mosser et al. (2018) and the asymptotic predictions
of Pinçon et al. (2019). We also extend the range of measured gravity offsets and propose for the first
time a determination of its values for both subgiant and red-giant models with a unique method. The
composition is shown to only affect the position of the drop with νmax.

5.3.5 Evolution of the coupling factor

We represent in Fig. 5.17 the evolution of the coupling factor with the g-dominated modes density. We chose N as
a proxy of evolution to ease the comparison with the observations of Mosser et al. (2017, Fig. 6). We provide
this figure in Fig. 5.5. In agreement with Benomar et al. (2012), we observed that the coupling factor strongly
increases during the subgiant phase and then abruptly drops right before the start of the red-giant branch. The
value of q then settles and slowly decreases from around 0.25 to approximately 0.1. In some cases, we also observe
a last drop of its value before the luminosity bump. This agrees with the observations of Mosser et al. (2017).

Assuming the Brunt-Väisälä and Lamb frequencies to be parallel in the radiative region, Pinçon et al. (2020)
demonstrated that the coupling factor should be correlated with the width of the evanescent region. An increase
in the width of the evanescent region would lead to a decrease in the coupling factor, and conversely, a decrease in
the width of the evanescent region would lead to a stronger coupling. Defining this width at νmax as

δev = r2 − r1

(r2 + r1)/2 , (5.9)
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Figure 5.13: Evolution of the gravity offset with νmax on the red-giant phase taken from Pinçon et al.
(2019, Fig. 4). The errorbars represent measured values from Mosser et al. (2018) while the different lines
represent analytical determinations of εg for different hypotheses.
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Figure 5.16: Evolution of the density contrast in the evanescent region as a function of N for all the
tracks of Fig. 5.6, with the corresponding colour code.

with r1 and r2 the positions of the inner and outer egdes of the evanescent region (respectively), we plotted its
variation along stellar evolution for different masses (Fig. 5.18). We indeed observe a sharp decrease in its value
on the subgiant phase. The consequence is an important increase in the coupling factor, exceeding the 1/4 limit
imposed by Shibahashi (1979) therefore showing the necessity of the strong coupling formalism introduced by
Takata (2016a). The width of the evanescent region then steadily increases, while the coupling factor decreases.
On the red-giant branch, we also observe discontinuities in the width of the evanescent zone which we attribute to
discontinuities in the composition at the base of the convective envelope. The composition discontinuities create
peaks in the Brunt-Väisälä frequency and, consequently, in δev. We observe such a peak in Fig. 5.14, although,
because of the relatively large value of νmax, it does not impact our determination of the width of the evanescent
region (see also for example Cunha et al. 2015).

Similarly to the other indicators, we observe that q depends strongly on the stellar mass for subgiant models
while its evolution is almost independent of the mass on the red-giant branch. This is again expected to result
from the differences in the density contrast in the evanescent region (see Fig. 5.16). During the subgiant phase,
the density contrast is moderate and strongly depends on the stellar mass. Therefore, the width of the evanescent
region is also strongly impacted by the stellar mass. This is reinforced by the fact that, for a moderate density
contrast, we may not assume the Lamb and Brunt-Väisälä frequencies to be log-parallel. For the 1.8 M� track,
this even leads to an oscillation in the width of the evanescent region. This stems from the fact that, as the
star evolves, νmax decreases. Furthermore, as the Brunt-Väisälä and Lamb frequencies are not parallel, they may
cross. This crossing of the frequencies may also change with time. This results in νmax meeting the crossing of
both frequencies at several occasions, creating very thin evanescent regions. This is a phenomenon which will be
investigated in future papers (Pinçon et al. 2021, in prep.).

While we noted the evolution of q on the RGB to be little affected by the stellar mass, it still has a visible
impact. First, we observe on the red-giant branch that the greater the mass, the lower the coupling factor. This is
again correlated with the evolution of the width of the evanescent region, which we observe to be slightly impacted
by the stellar mass (compare Figs. 5.17 and 5.18). The other visible influence of the mass on q during the red-giant
phase happens by the end of the sequence. Indeed, the position in νmax of the last drop in the coupling factor
depends on the mass.

The impact of the composition on the coupling factor is negligible. Only its drop before the luminosity bump
is affected. This could be the result of a slight modification of the position of the convective zone as demonstrated
by Pinçon et al. (2020). Our results do not agree with the work of Jiang et al. (2020) who noted a difference in
the rate of decrease in q for different masses during the red-giant phase. This difference is more pronounced for
the youngest red giants, which seem to finally settle to a common rate of decrease. Furthermore, they considered
the coupling factor to be a function of the radial order and followed its evolution at fixed radial orders. This could
explain the discrepancies we observe as we consider a constant value of q over the complete spectrum and, contrary
to them, we do not fix the radial orders along the evolution in our fits. While following a constant radial order is
questionable, as the set of observable modes strongly changes with evolution (e.g. Mosser et al. 2012a), it remains
necessary to account for the variation of q with the frequency (Cunha et al. 2019), as the width of the evanescent
region may not be constant with frequency. This will be discussed in Sect. 5.4.3.
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Figure 5.17: Evolution of the coupling factor with N for different masses represented by the colours.
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Figure 5.18: Evolution of the width of the evanescent region (Eq. (5.9)) for different masses represented
by the colours.

We demonstrated that the coupling factor strongly depends on the width of the evanescent region, calculated
at νmax. We noted a strong influence of the mass during the subgiant phase, where the density contrast is
moderate and the Brunt-Väisälä and Lamb frequencies may not be assumed log-parallel. On the red-giant
phase, only a small anti-correlation of the mass with the coupling factor is noted. Overall, the coupling
factor strongly increases then sharply decreases on the subgiant phase. This is followed by a steady decrease
during the red-giant phase. We did not note a significant impact of the composition beside a change in the
position of the drop before the luminosity bump.

5.4 Improvements of the method

We consider in the present section several refinements that we plan on including in the EGGMiMoSA method.
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5.4.1 Spectra with holes

A limitation of the proposed technique is that it has been developed assuming all the successive modes to be
observed. This is a very reasonable assumption in the case of model data, for which we can compute the frequency
of every excited mode. This therefore enabled us to follow the evolution of the mixed-mode parameters along a
grid of models. However, this hypothesis collapses with observed data. Indeed, some of the modes might not be
observed. For example, Grosjean et al. (2014) predict that for a 1.5 M� star with ∆ν . 4.6 µHz star, quadrupole
mixed-modes should not be detected after 360 days of the Kepler spacecraft observation. This agrees with the
works of Mosser et al. (2018) who found a limit of ∆ν . 6 µHz for the detection of g-dominated mixed-modes.

Two main consequences arise from the lack of detection of several modes. The first one is that we have to account
for the radial order difference between individual modes, which we assumed to be successive. However, starting
from a reliable modes identification (such as presented in Mosser et al. 2015; Gehan et al. 2018; Appourchaux
2020), this problem is easily solved. Indeed, our method uses a parameter to describe this radial order difference
(Farnir et al. 2021, accepted for publication in A&A, Eqs. (13) and (16)).

The second complication, which is more complex to tackle, comes from the parameters estimation. For example,
Mosser et al. (2018) expect that g-dominated modes should not be detected for stars with ∆ν . 6 µHz and only
p-dominated modes would be detected. However, the g-dominated modes are crucial to both the estimation of
∆π1, through the maximum of the period differences curve, and of q, through the ratio of the maximum and
minimum of the ∆P curve. Missing g-dominated modes, which are expected to lie close to the maximum of the
∆P curve, can therefore severely impair the estimation of both indicators. Special care will need to be undertaken
in their estimation for observed stars. This will be investigated in future studies. In addition, the number of
observed g-dominated modes should increase as we go down the red-giant branch. Younger stars should thus
consist in less of a problem.

5.4.2 Higher-order contributions

In the present work, we used a linear expression for the pressure phase, θp, to represent the pressure contribution
to the mixed-modes. However, in the case of evolved red-giant stars, the pressure radial order is low, on the order
of np ∼ 5. The asymptotic expression is therefore not applicable as is, as the condition requiring large radial order
modes (therefore small wavelengths) is not verified. It may be necessary to include higher-order contributions to
the pressure phase. This is indeed what many authors consider (see for example Mosser et al. 2013; Vrard et al.
2016; Cunha et al. 2019). As a matter of fact, we observed for an evolved red giant (Farnir et al. 2021, accepted
for publication in A&A, Fig. 8) that there is a slight shift in the position of the fitted ∆P dips relative to the
reference ones, as well as differences in their magnitudes at high frequencies, where the second order contribution is
expected to be the most important. This illustrates the need to include higher-order contributions to the pressure
phase of evolved red giants.

During the subgiant phase, we noted that the width of the considered set of modes is so large (about 10 ∆ν
wide) that the large separation cannot be considered constant over the considered set of modes, as we assume
by setting it to its radial value (with WhoSGlAd). Indeed, we observed that the relative difference between the
constant large separation and the actual value as a function of frequency over the set of radial modes is of about
δ∆ν
∆ν0
∼ 5% (Farnir et al. 2021, accepted for publication in A&A, Fig. 6). In addition, a typical value for the

pressure radial order in these stars is of np ∼ 20. The consequence is that their product δ∆ν
∆ν0

np, representing the
error made by considering a constant large separation, is of the order of unity. This means that it is comparable to
the uncertainties on the pressure offset. This again shows the necessity to include higher-order contributions to
the pressure phase as, otherwise, it could lead to a misidentification of the modes. In the worst cases, overlooking
the second-order contributions could lead to the addition or removal of a p-dominated mode in the considered set.

Finally, as the g-dominated modes span a wide range of radial orders in the red-giant stars, we would expect
the second-order contribution to the gravity phase to be significant as well. Nevertheless, Pinçon et al. (2019)
showed analytically that this contribution should be small compared to the uncertainties on the gravity offset for
stars observed before the luminosity bump.

5.4.3 Variation of q with frequency

For evolved red giants, Cunha et al. (2019) demonstrated the necessity to include a dependency of q on the
frequency. Indeed, as the Brunt-Väisälä and the Lamb frequencies cannot be considered parallel in the evanescent
region, because it has penetrated the convective region and the Brunt-Väisälä frequency dropped to zero, the
width of the evanescent region varies in the frequency range considered. Figure 5.15 provides a good illustration
of this phenomenon. As the width of the evanescent region depends on frequency, so does the coupling factor
(Pinçon et al. 2019). To mimic the dependency of the coupling factor on frequency, we selected an evolved giant
and binned the reference spectrum into symmetrical sub-spectra around each dip of the period spacing. This is
presented in Fig. 23 of Farnir et al. (2021, accepted for publication in A&A). We allowed the coupling factor to vary
from one sub-spectrum to the other (freezing the other parameters). In doing so, we observed that the coupling
factor varies almost linearly with the frequency corresponding to the central frequency of each bin (see Farnir et al.
2021, accepted for publication in A&A, Fig. 24). In addition, allowing q to vary with frequency improved the
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agreement between the reference and the adjusted spectra. Furthermore, we observed that the variation of q over
the spectrum is significant, from about 0.11 to 0.22. This is important in comparison with the constant value of
0.12 (consistent with the observations of Mosser et al. 2017) adjusted over the complete spectrum. We therefore
expect that, for evolved giants, it will be necessary to account for the linear dependency of q on the frequency to
improve the robustness of our technique.

5.4.4 Glitches

Interesting phenomena providing valuable insight into the stellar structure are the glitches. Because of sharp
features in the stellar structure (sharp in comparison to the wavelength of the mode), an oscillating signal with
frequency appears in the measured frequencies (see Sect. 2.2.5). In evolved stars, as modes are of mixed nature,
both types of modes may present such glitches. Sharp variations in the Brunt-Väisälä frequency, impacting the
gravity contribution to the spectrum, cause the buoyancy glitches. Conversely, variations in the sound speed create
the acoustic glitches, already studied in the case of solar-like stars in the present study (Chaps. 3 and 4).

The acoustic glitch caused by the helium second-ionisation zone has already been studied on numerous occasions
in red-giant stars. Miglio et al. (2010) demonstrated the existence of such a signal in the frequency spectrum of
the red giant HR7349 using the large frequency separation. Using a set of stellar models, the work of Broomhall
et al. (2014) showed that this signature can be efficiently recovered for red giants with νmax > 40 µHz and that
the localisation of the second-ionisation zone could be formally retrieved. However, this signature could hardly be
used to measure the helium abundances in these stars. With a sample of more than 500 red-giants, Vrard et al.
(2015) confirmed that the current uncertainties on the helium glitch amplitude are too large to precisely infer the
helium abundance. Finally, Dréau et al. (2020) demonstrated that including the dipolar p-dominated modes in the
glitch fitting procedure slightly improves the robustness of this procedure. Consequently, a precise adjustment of
the helium glitch using both radial and dipolar modes is in order to precisely retrieve the glitch signature. Using
the WhoSGlAd method could constitute a significant asset and provide reliable inferences on the helium surface
abundance of subgiant and red-giant stars. We will investigate this possibility in future works.

The second type of glitches encountered in red-giant stars corresponds to buoyancy glitches. These are the
signatures left by a sharp variation in the Brunt-Väisälä frequency. Cunha et al. (2015) demonstrated the necessity
to account for the signature of such glitches in determining the asymptotic parameters (such as the period spacing)
and provided a formulation describing the combined impact of a buoyancy glitch and of modes coupling. They
also demonstrated that the signature of buoyancy glitches should be present for stars at the luminosity bump
and for early stages of helium burning. These signatures therefore constitute a proxy of the evolutionary stage of
the evolved red giants. As we limited our study to stars before the luminosity bump, we should not expect to
detect such glitches and neglecting them is not a crude approximation. Nonetheless, to extend our method to later
evolutionary stages, accounting for buoyancy glitches will be necessary. Indeed, they provide necessary insight into
red giant’s cores, for example bearing the trace of the retreating convective core. This will be considered in future
studies.

5.5 Conclusion

We developed a fast and efficient technique to adjust the complex pattern of mixed-mode oscillation spectra
displayed by low-mass subgiant and red-giant stars. Relying on the asymptotic description of mixed-modes
(Shibahashi 1979; Takata 2016b) and educated mixed-mode parameters guesses, the technique can be
consistently and robustly applied to subgiant and red-giant spectra. Our results qualitatively agree with
both observational and theoretical studies (e.g. Mosser et al. 2017, 2018; Pinçon et al. 2019, 2020). We
then proceeded to demonstrate on a grid of stellar models the probing potential as seismic indicators held
by the mixed-mode parameters. These allow us, for example, to precisely measure the mass, radius, and
age of subgiant stars. This should also be possible for red giants with a mass M & 1.8 M�. This is not
possible for less massive red giants as a result of the central electron degeneracy and the large core-envelope
density contrast, leading to a degeneracy in the evolution of ∆π1 as a function of ∆ν0.

There remains a need to assess the ability to adjust the mixed-mode spectrum of observed stars as
several complications may arise (e.g. missing modes, glitches) and there also is a need to include further
refinements of the asymptotic formulation used (e.g. higher-order contribution to the pressure phase,
dependency of q on the frequency). Nonetheless, after modes identification, the EGGMiMoSA method
will constitute an excellent tool to the automated study of large samples of evolved solar-like stars, as
the PLATO mission (Rauer et al. 2014) is expected to observe. Combined with modelling tools such as
AIMS (Rendle et al. 2019), this will provide us with the means to automatically compute stellar models
representative of the observed mixed-mode parameters.
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ABSTRACT

Context. In the context of an ever increasing amount of highly precise data, thanks to the numerous space-borne missions,
came a revolution in stellar physics. This data allowed asteroseismology to thrive and improve our general knowledge
of stars. Important results were obtained about giant stars owing to the presence of `mixed modes' in their oscillation
spectra. These modes carry information about the whole stellar interior, enabling the comprehensive characterisation
of their structure.
Aims. The current study is part of a series of papers that provide a technique to coherently and robustly analyse the
mixed-modes frequency spectra and characterise the stellar structure of stars on both the subgiant branch and red-giant
branch (RGB). In this paper we aim at de�ning seismic indicators, relevant of the stellar structure, as well as studying
their evolution along a grid of models.
Methods. The proposed method, EGGMiMoSA, relies on the asymptotic description of mixed modes. It de�nes appro-
priate initial guesses for the parameters of the asymptotic formulation and uses a Levenberg-Marquardt minimisation
scheme in order to adjust the complex mixed-modes pattern in a fast and robust way.
Results. We are able to follow the evolution of the mixed-modes parameters along a grid of models from the subgiant
phase to the RGB bump, therefore extending previous works. We show the impact of the stellar mass and composition
on the evolution of these parameters. We observe that the evolution of the period spacing ∆π1, pressure o�set εp, gravity
o�set εg, and coupling factor q as a function of the large frequency separation ∆ν is little a�ected by the chemical
composition and that it follows two di�erent regimes depending on the evolutionary stage. On the subgiant branch,
the stellar models display a moderate core-envelope density contrast. Therefore, the evolution of ∆π1, εp, εg, and q
signi�cantly changes with the stellar mass. Furthermore, we demonstrate that, for a given metallicity and with proper
measurements of the period spacing ∆π1 and large frequency separation ∆ν, we may unambiguously constrain the
stellar mass, radius and age of a subgiant star. Conversely, as the star reaches the red-giant branch, the core-envelope
density contrast becomes very large. Consequently, the evolution of εp, εg and q as a function of ∆ν becomes independent
of the stellar mass. This is also true for ∆π1 in stars with masses . 1.8M� because of core electron degeneracy. This
degeneracy in ∆π1 is lifted for higher masses, again allowing for a precise measurement of the stellar age. Overall, our
computations qualitatively agree with previous observed and theoretical studies.
Conclusions. The method provides automated measurements of the adjusted parameters along a grid of models and
opens the way to the precise seismic characterisation of both subgiants and red giants. In the following papers of the
series, we will explore further re�nements to the technique as well as its application to observed stars.

Key words. asteroseismology � stars:oscillations � methods:numerical � stars:low mass

1. Introduction

Red giant and subgiant stars constitute essential ingredi-
ents to our understanding of the Universe. Indeed, such
stars are very bright and may therefore be observed at
large distances and in great numbers. Firstly, the deter-
mination of their properties is crucial to galactic archaeol-
ogy, which is aimed at tracing the structural and dynamical
evolution of the Milky Way (e.g. Miglio et al. 2017). Sec-
ondly, these stars are key targets with regard to the precise
characterisation of stellar structure and evolution. In the re-
cent decades, the data of unprecedented quality collected by
the CoRoT (Baglin et al. 2009) and Kepler (Borucki et al.
2010) spacecrafts have enabled us to make a sizeable leap
towards the characterisation of red giants and subgiants,
thanks to the detection of mixed modes (Bedding et al.

2011). Even though their detection is recent, their theo-
retical existence and detectability was predicted early on
(Scu�aire 1974; Dupret et al. 2009). These modes exhibit a
twofold nature: they behave as pressure modes in the out-
ermost regions of the star, with the pressure gradient as
the restoring force, and as gravity modes in the innermost
regions, with the buoyancy being the restoring force. Both
cavities are coupled through an evanescent region, the prop-
erties of which determine the coupling strength (e.g. Hekker
& Christensen-Dalsgaard 2017). These modes constitute a
unique opportunity to probe the entire stellar structure as
they propagate from the surface to the core. It is not the
case in solar-type stars that exhibit pure pressure modes,
that propagate in an outer pressure cavity. Consequently,
it is only information about the outermost layers of these
stars that may be retrieved.
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The coupling between gravity modes (g-modes) and
pressure modes (p-modes) leads to complex behaviours,
that evolve in tandem with the star. On the main sequence,
a solar-like oscillator presents a p-modes spectrum that dis-
plays signi�cant regularity in frequency. At �rst order, os-
cillation modes of a given spherical degree l are separated
by a constant quantity, the large separation ∆ν (Tassoul
1980; Gough 1986). The observed frequency range is almost
constant and lies around the frequency of maximum power,
νmax. As the star evolves along the subgiant branch, νmax

decreases. At some point, the observed frequencies of the
p-modes become so small that they can couple with the g-
modes and create so-called mixed modes. This leads to the
phenomenon called avoided crossings (Osaki 1971; Aizen-
man et al. 1977). This creates a bumping of the frequency
spacing of the modes, perturbing the apparent regularity
of the spectrum. Later on, during the red giant phase, as
νmax continues to decrease the frequency pattern is com-
posed of a large number of modes that behave, at leading
order, as gravity modes with a constant separation between
successive mode periods, the period spacing ∆π1 (Tassoul
1980). Again, because of the coupling between p and g-
modes, this regularity is disturbed and mode bumping ap-
pears, the local period spacing between consecutive modes
decreases when encountering p-modes. Despite the appar-
ent complexity exhibited by mixed modes, several studies
have demonstrated that their frequency pattern can be de-
scribed via a limited number of parameters.

On the one hand, Deheuvels & Michel (2011) described
avoided crossings via a series of coupled harmonic oscil-
lators, mimicking the coupling between p- and g-modes.
This approach was later used by Benomar et al. (2012)
who demonstrated on a grid of subgiants that the coupling
strength was predominantly function of the mass. Further-
more, they noted that it should increase right before the
transition to the red giant phase. However, linking this ap-
proach to the stellar structure is not straightforward.

On the other hand, to exploit the physical knowledge we
have about the stellar structure, many authors rely on the
asymptotic description of mixed modes (Shibahashi 1979;
Takata 2016), which assumes that the oscillating modes are
of a short wavelength compared to the variations in the
stellar structure (i.e., the modes radial order is large). In
this formalism, the resonance condition takes the following
form

tan θp = q tan θg, (1)

where θp and θg are phase terms describing the propagation
of the modes in the pressure and gravity cavities, respec-
tively, and q is the coupling factor describing the level of
interaction between both cavities. In this general form, the
analytical expressions of these parameters directly depend
on the stellar structure properties and the frequency. Based
on observations, Mosser et al. (2012b, 2015) proposed ex-
plicit formulations for both phases of dipolar modes, which
are the most observed:

θp = π
( ν

∆ν
− εp

)
, (2)

θg = π

(
1

ν∆π1
− εg +

1

2

)
. (3)

We present here the gravity phase with an opposite sign for
the 1/2 term. Assuming in addition that q is independent

of the frequency, the asymptotic expression is then a func-
tion of 5 frequency-independent parameters (henceforth re-
ferred to as the `mixed-modes parameters'): the large sep-
aration ∆ν, the period spacing ∆π1, the pressure o�set εp,
the gravity o�set εg, and the coupling factor q. Solving Eq.
Eq. (1) for ν provides the theoretical asymptotic frequencies
of the dipolar modes. Under the form given by Eqs. Eq. (1)-
Eq. (3), the asymptotic formulation has already been shown
to be a very powerful tool that allowed us to interpret both
observed and model data as functions of the stellar struc-
ture.

Indeed, the asymptotic formulation has successfully
been applied to adjust observed data in several studies. For
example, Mosser et al. (2015) use the asymptotic formu-
lation along with a carefully de�ned variable such that it
restores the regularity in the oscillation spectrum and eases
its adjustment, the so-called period stretching. This tech-
nique was then used by Vrard et al. (2016) and Mosser
et al. (2017, 2018) to generate an automated adjustment of
a large sample of giant stars. These studies provided an ac-
curate measurement of ∆π1 and q in more than 5000 stars.
They were also able to measure εg in several hundreds of
red giant stars. In addition, the asymptotic formalism was
shown to be valid on the subgiant branch. For example, Eqs.
Eq. (1)-Eq. (3) were also �tted for about 40 stars observed
by Kepler for which we could measure the mixed-mode pa-
rameters (Mosser et al. 2014; Appourchaux 2020).

In order to interpret the observed variations in these
parameters, numerous authors took interest in the mixed-
modes oscillation spectra from a theoretical point of view,
most of them using a grid-based approach. These studies
provide invaluable insight on the evolution of the mixed-
modes parameters with the stellar parameters. Namely,
Jiang & Christensen-Dalsgaard (2014), Hekker et al. (2018),
and Jiang et al. (2020) provided adjustments for q on the-
oretical frequency spectra computed from red giant stellar
models. These studies showed that the decrease observed
in the value of q during the evolution along the red giant
branch is correlated with the increase in the size of the
evanescent region. Pinçon et al. (2020) demonstrated by
means of analytical models that the thickening of this re-
gion on the red giant branch actually results from its migra-
tion to the radiative core towards the base of the convective
envelope. This fact also explains the variations observed in
the measurement of the gravity o�set (Pinçon et al. 2019).
Other studies demonstrated the interest of the period spac-
ing and large frequency separation as constraints to the
stellar structure. Indeed, measuring both ∆π1 and ∆ν al-
lows us to distinguish between core helium burning and
hydrogen shell burning stages, which are otherwise indis-
tinguishable (Bedding et al. 2011; Mosser et al. 2014). This
is due to the fact that the core density greatly di�ers in
these stages, therefore impacting the value of ∆π1 (Montal-
bán et al. 2010). Also, by measuring the mass of the core in
core helium burning stars models, Montalbán et al. (2013)
demonstrated the possibility to constrain the convective
overshooting in intermediate mass stars, the amount and
nature of which greatly impacts the central stellar compo-
sition as well as the duration of the main sequence, directly
in�uencing the inferred stellar age.

All the aforementioned works have demonstrated the
high potential of mixed modes to probe and characterise
the properties of evolved stars. However, all the informa-
tion carried by seismic data still remains to be exploited
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in full. In particular, previous theoretical works mainly fo-
cused on the red giant branch and on only one parameter at
a time. It is thus necessary to extend these works to the sub-
giant branch and to account for all the mixed-mode parame-
ters together in a robust and convenient way. Consequently,
the present paper is part of a series aiming at providing
a method to precisely adjust the mixed-modes pattern of
evolved solar-like stars, either extracted from observed seis-
mic data or predicted by a pulsation code, and to tightly
constrain the stellar structure. We present in this paper the
seismic method we developed, namely: Extracting Guesses
about Giants via Mixed-Modes Spectrum Adjustment
(EGGMiMoSA), which relies on the asymptotic formula-
tion (Eq. Eq. (1)). In this method, the adjustment is per-
formed thanks to the use of appropriate initial estimations
of the �ve parameters of the asymptotic formulation and
a Levenberg-Marquardt minimisation scheme. In the cur-
rent paper, the aim is to depict the evolution of the �ve
mixed-mode parameters across a grid of models of di�erent
masses and chemical compositions, extending from the sub-
giant phase to the red-giant phase. We insist that our goal
is not to provide a detection and identi�cation of mixed
modes but rather to asses the relevance of the �ve mixed-
modes parameters as probes of the stellar structure. There-
fore, we do not pretend to replace identi�cation methods
of the likes of Mosser et al. (2015), as our method should
come as a secondary step to such techniques in order to put
constraints on stellar models.

This paper is structured as follows. We �rst present the
method and its �tting procedure in Sect. 2. In Sect. 3, we
demonstrate the ability of the technique to properly ac-
count for mixed-mode spectra and display the evolution of
the adjusted parameters with stellar evolution, mass, and
composition. This is followed by a discussion in Sect. 4 and
we present out the conclusions in Sect. 5.

2. Method

In its current version, the EGGMiMoSA method relies on
the adapted asymptotic description of the mixed-modes
pattern given by Eqs. Eq. (1)-Eq. (3). The core element of
the method is the computation of educated initial guesses
of the �ve mixed-mode parameters, enabling a fast adjust-
ment of a reference spectrum via a Levenberg-Marquardt
minimisation algorithm. Before describing the parameter
estimation and the �tting procedure, we �rst recall a few
aspects relevant to the subgiant and red-giant spectra. The
generation of the models used for illustration is detailed in
Sect. 3.

2.1. Typical oscillation spectra

As a star evolves along the subgiant branch and then rises
on the red giant branch, the properties of its spectrum
evolve as well. As an illustration, we display the theoret-
ical frequency and period di�erences between consecutive
modes for two typical 1M� solar subgiant and red giant
stars in Figs. 1 and 2, respectively. Their parameters are
summarised in Table 1. The models and their theoretical
frequencies were computed with the CLES evolution code
and the LOSC pulsation code (Scu�aire et al. 2008b,a).
First, on the subgiant branch, the oscillation spectrum in
Fig. 1 departs from a pure pressure behaviour, such as
solar-like stars display on the main sequence. Nonetheless,

Table 1. Parameters of the 1M� models used to compute the
frequencies presented in Figs. 1 and 2.

Subgiant Red giant

N 0.16 29.85

logL/L� 0.35 1.39

log Te� 3.74 3.65

the spectrum still shows a majority of pressure-dominated
(p-dominated) modes and very few gravity-dominated (g-
dominated) modes. As a consequence, successive frequen-
cies are almost evenly spaced. However, the presence of
g-dominated modes locally decreases the frequency di�er-
ence. This results in mode bumping. Conversely, the oscil-
lation spectrum for the red giant star in Fig. 2 displays
a greater number of g-dominated modes per p-dominated
modes. The modes periods (instead of frequencies) are now
predominantly evenly separated. Again, the presence of
p-dominated modes locally reduces the period di�erence,
which also corresponds to mode bumping.

To make the distinction between pressure and gravity
dominated spectra the g-dominated modes density has been
conveniently de�ned in Mosser et al. (2015) as

N (νmax) =
∆ν

∆π1ν2
max

, (4)

with νmax the frequency of maximum power in the power
spectrum. This number represents the ratio of g-dominated
modes per p-dominated modes. A g-dominated spectrum
will display an N value greater than unity, while a p-
dominated spectrum will have a value lower than unity.
For instance, the models plotted in Figs. 1 and 2 have
N (νmax) ≈ 0.16 and 30, respectively.

Moreover, in Fig. 1, we see that the maximum value of
the frequency di�erence in p-dominated spectra is close to
the large separation of radial modes, ∆ν0 (green horizon-
tal line). We also see that successive bumps are separated
by approximately one asymptotic period spacing (black ar-
row). We recall that the asymptotic period spacing, ∆π1,as,
is related to the integration of the Brunt-Väisälä frequency,
N , from the center to the base of the convection zone, rBCZ,
by the expression

∆π1,as = 2π2

(∫ rBCZ

0

N

r
dr

)−1

, (5)

with r the distance from the center of the star. Conversely,
in Fig. 2, we see that the maximum value of the pe-
riod di�erence in g-dominated spectra is very close to the
asymptotic period spacing (green horizontal line), while the
bumps are separated by about the large frequency separa-
tion of the radial modes (black arrow). Through an inspec-
tion of both �gures, we therefore note that we may retrieve
estimations for both the large separation and the period
spacing directly from such plots.

2.2. Fitting the spectrum

In the present section, we describe the �tting procedure. In
its present version, the goal of the EGGMiMoSA method is
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Fig. 1. Oscillation frequency di�erences between consecutive
modes as a function of the period in the 1M� subgiant model
presented in Table 1. The green horizontal line represents the
large separation value calculated for radial modes. The double-
sided arrow shows the approximate asymptotic period spacing.
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Fig. 2. Oscillation period di�erences between consecutive modes
as a function of the frequency in the 1M� red giant model
presented in Table 1. The green horizontal line represents the
asymptotic period spacing. The double-sided arrow shows the
large separation value calculated for radial modes.

to �nd the values of the �ve frequency independent mixed-
modes parameters (∆ν, ∆π1, εp, εg, and q) in Eqs. Eq. (1)-
Eq. (3) that provide the best agreement between the refer-
ence and theoretical asymptotic frequencies. Subgiant and
red giant stars are known to be slow rotators (e.g. Deheuvels
et al. 2014; Gehan et al. 2018), so that rotation perturbs at
�rst-order only the frequencies of the prograde and retro-
grade modes. We focus on the m=0 modes in the present
paper and thus do not include the contributions of rota-
tion. The adjustment is carried in the following steps: 1.
We estimate ∆ν and εp with WhoSGlAd. 2. We estimate
the g-dominated mode density. 3. We provide the initial
estimates for ∆π1, εg, and q. 4. We adjust frequency (p-
dominated spectrum) or period (g-dominated) di�erences.
5. We adjust individual frequencies.

As the spectrum adjustment is to be carried via a
Levenberg-Marquardt algorithm, which is local, it is cru-
cial to provide proper initial estimates of the parameters.
This is even more important as strong correlations exist
between the individual parameters of the �t. Indeed, from
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Fig. 3. Cost function landscape in the neigbourhood of the
known solution as a function of the parameters ∆ν and εp. The
minimum of the χ2 landscape is represented by the white dia-
mond and the �tted value by the green cross.

Eqs. Eq. (2) and Eq. (3), we observe tight correlations be-
tween ∆ν and εp and between ∆π1 and εg. This is also
illustrated in Figs. 3 and 4. Both �gures show the evolu-
tion of the χ2 cost function (measuring the squared di�er-
ence between the reference and asymptotic frequencies) as
a function of two of the �ve �tted parameters (the three re-
maining parameters are frozen at their �nal �tted values).
We observe in Fig. 3 (respectively Fig. 4) that ∆ν and εp
(resp. ∆π1 and εg) show an important correlation. In the
most extreme case, because of the large value of the pressure
(resp. gravity) radial order, a small deviation in the value
of ∆ν (resp. ∆π1) leads to large di�erences in εp (resp. εg).
Furthermore, we observe steep χ2 discontinuities. These are
the consequence of an improper mode identi�cation caused
by the incorrect ∆ν and εp values. Because of these impor-
tant correlations, which may impair the convergence of the
method, we took special care in devising the initial param-
eters estimation. In order to provide a �rst glimpse of the
e�ciency of the developed method, we represent in these
�gures the values of the parameters �tted with EGGMi-
MoSA as green crosses and the minima of the χ2 in the
2D landscape as white diamonds. We see that they greatly
match in both cases. We note nevertheless that there is a
slight di�erence, especially in Fig. 3, because both �gures
constitute a restricted picture of the �ve-parameter space
and the minimum in this restricted space does not neces-
sarily constitute the global �ve-parameter minimum.

2.2.1. Estimating ∆ν and εp with WhoSGlAd

Since the �rst detections of solar-like oscillations in red gi-
ants (e.g. Frandsen et al. 2002), it has been known that their
spectra always display several radial modes. These may be
used in order to estimate a priori the value of the mixed-
modes large separation, ∆ν, and pressure o�set, εp. To do
so, we rely on the estimate computed with the WhoSGlAd
method (Farnir et al. 2019) applied to radial modes. This
ensures a robust, precise, and fast estimation. This estima-
tion corresponds to a least-squares linear �t of the radial
frequencies. We have already highlighted the fact that in
order to improve the stability of the method, we maintain
the value of ∆ν �xed at the �rst guess.
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Fig. 4. Cost function landscape in the neigbourhood of the
known solution as a function of the parameters ∆π1 and εg.
The minimum of the χ2 landscape is represented by the white
diamond and the �tted value by the green cross.

2.2.2. Estimating the g-dominated modes density

As the parameter estimation and subsequent steps depend
on the g-dominated mode density (Eq. Eq. (4)), we �rst
need to provide an estimate of this quantity. Nonetheless,
as we aim at applying the technique to observed spectra, we
cannot assume that we will have access to a measure of ∆π1.
We thus provide in this section a technique to recognise g-
dominated spectra, p-dominated spectra and intermediate
cases. To do so, we take advantage of the following second
di�erence in frequencies:

δν2,i =
νi+1 − νi−1

∆ν
, (6)

where the i index is an integer ordering the frequencies in
ascending values, and thus the periods in decreasing values.
We recall that the ∆ν value was previously retrieved via the
WhoSGlAd method on radial modes.

In the case of a mixed-mode oscillation spectrum, the
second di�erence is expected to take values between 0 and
2. In a pressure-dominated spectrum, as the number of p-
dominated modes exceeds that of g-dominated modes, indi-
vidual modes are almost evenly spaced in frequency of one
large separation. As a consequence, the second di�erence
takes a value between 1 and 2. Conversely, in a gravity dom-
inated spectrum, the modes are now almost evenly spaced
in period of one period spacing. To make the link with the
second frequency di�erence, we can write using νi = 1/Pi
such that

δν2,i =
∆π1νi+1νi−1

∆ν
δP2,i , (7)

where δP2,i = (Pi−1 − Pi+1)/∆π1 is de�ned as the sec-
ond period di�erence. In Eq. Eq. (7), the �rst factor is
smaller than N (νj)

−1, which is much smaller than unity in
g-dominated spectra, and δP2,i = (Pi−1 − Pi+1)/∆π1 . 2.
Consequently, the second frequency di�erence now ranges
between 0 and 1. Finally, if the g-dominated modes density
was exactly equal to 1, this would mean that the spectrum
would alternate between p-dominated and g-dominated
modes and the second di�erence would be exactly equal
to 1 as well. Therefore, using the second di�erence, we may

easily distinguish the di�erent types of spectra. We will con-
sider a spectrum with δν2,i > 1 everywhere as completely
p-dominated; a spectrum with δν2,i < 1 everywhere as com-
pletely g-dominated; and a spectrum for which the second
di�erence crosses the value of 1 as an intermediate case. We
provide in Appendix A a visual and mathematical justi�-
cation of the validity of these previous heuristic arguments.

2.2.3. ∆π1, εg and q initial estimation

We now present the estimation of the remaining three pa-
rameters. They are estimated according to the nature of
the spectrum, that is: completely g-dominated, completely
p-dominated or intermediate.

g-dominated estimation (N � 1, δν2 < 1): In the g-
dominated case, the spectrum presents a majority of gravity
dominated modes. Also, the gravity dominated modes clos-
est to pure g-modes are located midway between two dips
of the period di�erence curve. As illustrated in Fig. 2, the
maximum of the local period spacing between consecutive
modes, denoted ∆Pmax, provides a �rst proper estimate for
∆π1.

Next, we use the ζ function de�ned by Mosser et al.
(2015) to provide an initial value for the coupling factor q.
This function is de�ned as

ζ =

{
1 +

q

N
1

q2 cos2 θp + sin2 θp

}−1

, (8)

such that dP
dn = ζ∆π1, with n = np − ng the mixed-mode

radial order. In the case of g-dominated spectra, N � 1,
the θp phase is almost constant between successive modes.
Assuming in addition that the N (ν) function provided in
Eq. Eq. (4) does not vary between successive modes, ζ is
thus almost constant, and we may integrate the expres-
sion for two successive radial orders so that we obtain
∆Pi ' ζ(νi)∆π1. We then use this relation to estimate q.
First, we de�ne the ratio Z = ζmin/ζmax with ζmin and ζmax

corresponding, respectively, to the minimum (i.e., close to
a pure p-mode with θp = kπ, k ∈ N) and maximum (i.e.,
close to a pure g-mode with θp = π/2+kπ, k ∈ N) values of
the ζ function. From the analytical expressions of ζmin and
ζmax, we can thus get an expression of the coupling factor
as a function of N and Z:

q =

[
(Z − 1)N +

√
(1− Z)

2N 2 + 4Z

]
/2. (9)

Second, as ∆Pi ' ζ(νi)∆π1, we can estimate Z from the
ratio of the minimum and maximum values of the individ-
ual observed period spacings. Note that, as we have a �rst
estimate for ∆π1, we also have an estimate of N . Therefore,
according to Eq. Eq. (9), we can obtain an estimate for the
coupling factor.

In addition, having an estimate of N and q, we can now
compute the ζ function for any frequency. This allows us in
a �nal step to correct by iteration the �rst estimated ∆π1

value using the relation ∆π1 ' ∆Pmax/ζ(νmax), where νmax

is the frequency at the maximum value of the individual
period spacings.

Finally, we note that, for g-dominated spectra, the grav-
ity o�set will not be adjusted in the subsequent step as
period di�erences will be adjusted (Sect. 2.2.4). Therefore,
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we do not need to provide an estimate for its value in the
present step.

p-dominated estimation (N � 1, δν2 > 1): For pressure-
dominated spectra, the gravity-dominated modes corre-
spond to the dips in the frequency di�erence curve. In that
case, both ∆π1 and εg are estimated through a linear �t of
the identi�ed gravity-dominated modes. The slope of the
�t corresponds to ∆π1 and the intercept to εg.

As the approximation ∆Pi ' ζ(νi)∆π1 is only valid for
g-dominated spectra where N � 1, we need an alternative
to estimate the coupling factor in p-dominated spectra. For
a p-dominated spectrum, N � 1, we de�ne the ζ ′ function
(see App. B) to express the variation of frequency with the
mixed-mode radial order, n:

ζ ′ =

{
1 +

qN
cos2 θg + q2 sin2 θg

}−1

, (10)

such that dν
dn = ζ ′∆ν. Because the θg function is almost

constant between two dips in p-dominated spectra where
N � 1, ζ ′ is almost constant as well within the assump-
tion that N is quasi constant. We may thus integrate over
n the previous expression between two successive modes.
This yields ∆νi ' ζ ′ (νi) ∆ν, where the dependency on in-
dividual frequencies is shown explicitly. Using Eq. Eq. (1),
we can easily show that ζ ′ = 1− ζ.

Similarly to the g-dominated case, we de�ne Z ′ =
ζ ′max/ζ

′
min

where ζ ′max is the maximum value of ζ ′ obtained
for θg = kπ, k ∈ N (i.e., close to a pure p-mode) and ζ ′

min
is

the minimum value for θg = π/2 + kπ, k ∈ N (i.e., close to
a pure g-mode). We thus can get an analytical expression
of q based on this ratio, that is,

q =

[
(1− Z ′) +

√
(Z ′ − 1)

2
+ 4Z ′N 2

]
/ (2NZ ′) . (11)

Using the fact that ∆νi ' ζ ′ (νi) ∆ν, the maximum and
minimum values of the ζ ′ function can then be estimated
with the maximum and minimum values of the individual
frequency di�erences. This provides an estimate of Z ′ that,
combined with the estimate of N from the estimate of ∆π1,
provides an estimate of q according to Eq. Eq. (11).

Intermediate case (N ∼ 1, δν2 ∼ 1): When we have compa-
rable p-dominated and g-dominated modes densities, that
is, N ∼ 1, we cannot rely on the characteristic shape of
the frequency or period di�erences to estimate individual
parameters. Nevertheless, we may use the transition in the
spectrum where δν2 ' 1 to carry this estimation. From
Sect. 2.2.2, we know that δν2,i ' 1 and δP2,i ' 1 at the
transition, where we have the same amount of p-dominated
and g-dominated modes. As a consequence, the �rst factor
in the right-hand side of Eq. Eq. (6) is close to unity and
we may retrieve an estimate for ∆π1:

∆π1 '
∆ν

νt+1νt−1
. (12)

with t being the mode index closest to the transition, that
is, where δν2,t is the closest to unity.

The coupling factor, q, is then estimated on the part of
the spectrum being the most dominated by one character.
If we note νinf and νsup the lower and upper bounds of

the considered frequency range, this corresponds to the p-
dominated part around νsup if 1/N (νsup) > N (νinf) or the
g-dominated part around νinf if 1/N (νsup) < N (νinf). We
then follow the usual previous procedure associated with
the dominant character to estimate q.

2.2.4. Fitting di�erences

After providing proper estimates for the mixed-modes pa-
rameters, we adjust the values of these parameters that
allow us to reproduce individual period spacings or fre-
quency di�erences between consecutive modes (according
to the nature of the spectrum). By doing so, we cancel out
the correlation with εg (resp. εp), which remains �xed and
will be adjusted in subsequent steps. This di�ers from most
techniques present in the literature as they directly adjust
the individual frequencies (e.g. Mosser et al. 2012b; Hekker
et al. 2018). Techniques that adjust period di�erences also
exist (Cunha et al. 2015, 2019), similarly to what we pro-
pose, however, those are only valid for red giants, which
have a g-dominated spectrum (N � 1). The present study
therefore represents an extension of such works.

g-dominated spectrum: When the spectrum is dominated
by the contribution of g-dominated modes, we �t individual
period spacings. From Eq. Eq. (1), it is possible to �nd an
expression for individual period spacings:

∆Pi = Pi − Pi+1 = (∆ng + ∆ψi/π) ∆π1, (13)

with ∆ng, the di�erence of gravity radial order between
two successive modes, ∆ψi = ψi − ψi+1 and ψi =
arctan (tan θp,i/q). The i index in the θp,i term represents
the value of θp evaluated at the period of index i. The
di�erence ∆ng takes either a value of 1 when two suc-
cessive modes are g-dominated or 0 when encountering a
p-dominated mode, resulting in a change of the pressure
radial order. In practice, we keep ∆ng = 1 to compute the
theoretical period di�erence ∆Pi in a �rst step and then
subtract ∆π1 to ∆Pi where its estimate is greater than
unity, which is not permitted. A further justi�cation of the
value of ∆ng is given in Appendix C. The three remaining
parameters (∆π1, εp and q) may be adjusted to reproduce
the reference individual period spacings.

Second, having adjusted individual period spacings, we
may �nd a value of εg such that we minimise the di�er-
ence between reference and �tted periods expressed with
the following function:

χ2 =

N∑

i=1

(Pi,ref − Pi,�t)2

σ2
i

, (14)

with N the number of modes to be adjusted and σi the
uncertainties on the period of each mode.

As there only remains one free parameter to be �tted,
εg, minimising the distance between reference and theoret-

ical periods amounts to compute ∂χ2

∂εg
= 0. This yields an

analytical expression for εg :

εg =



N∑

i=1

Pi,ref
σ2
i

+

N∑

i=1

i−1∑

j=1

∆Pj,�t
σ2
i


 1

∆π1

N∑
i=1

1/σ2
i

− (ng,1 − 1/2 + ψ1/π) , (15)
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where ∆Pj,�t represent individual period spacings from the
previous step and ng,1 is the gravity radial order of the �rst
mode in the observed set. Because εg is de�ned modulo 1
and ng,1 is an integer, its actual value does not impact εg.

p-dominated spectrum: In the case of a pressure dominated
spectrum, we proceed in a very similar fashion. First, to
avoid the correlation between ∆ν and εp, the individual
frequency spacings are adjusted. Their expressed as follows:

∆νi = νi+1 − νi = (∆np + ∆φi/π) ∆ν, (16)

where ∆np is the di�erence of pressure radial order between
two successive modes and φi = arctan (q tan θg,i). Similarly
to the g-dominated case, ∆np takes either a value of 1, for
two successive p-dominated mixed-modes, or 0 when alter-
nating between p-dominated and g-dominated character.

Finally we get the following expression for εp, minimis-
ing the di�erence between reference and asymptotic fre-
quencies:

εp =



N∑

i=1

νi,ref
σ2
i

−
N∑

i=1

i−1∑

j=1

∆νj,�t
σ2
i


 1

∆ν
N∑
i=1

1/σ2
i

− (np,1 + φ1/π) , (17)

with np,1 the radial order of the �rst mode in the set. As εp
is de�ned modulo 1 and np,1 is an integer, its actual value
is not important. We note that, in this context, the σi now
represent uncertainties on the frequencies of each mode.

2.2.5. Fitting frequencies

Independently of the nature of the spectrum, a last
Levenberg-Marquardt minimisation step is carried to si-
multaneously adjust the four parameters ∆π1, εp, εg, and
q in such a way that the individual theoretical frequen-
cies, that are solutions of Eq. Eq. (1), reproduce at best
the reference frequencies. This last complete adjustment
further improves the agreement with the data and also en-
sures the reduction the uncertainties on the parameters of
the adjustment. Before assessing the probing potential of
the individual parameters of the adjustment, we tested the
ability of the EGGMiMoSA method to retrieve parameters
from frequencies that were generated with the asymptotic
formulation and known parameters. The results were excel-
lent and did not introduce unwanted biases.

3. Seismic indicators

In this section we apply the above-described method to sev-
eral sequences of giant models and display the evolution of
the individual parameters to assess their probing potential
as relevant proxies of the stellar structure and evolution.
The models were computed with the CLES evolution code
(Scu�aire et al. 2008b) as described in Farnir et al. (2019).
The reference model has a mass of 1M�, with an initial
hydrogen abundance of X0 = 0.72 and metal abundance
of Z0 = 0.015. Oscillation modes are computed using the
LOSC oscillation code (Scu�aire et al. 2008a). Therefore,
the reference modes are not the solution of the asymptotic
formulation. Regarding the frequency range considered for
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Fig. 5. Position of the models presented in Figs. 6 to 8

each model, Mosser et al. (2012a) estimated that the ex-
tent around νmax of the modes that are e�ciently excited,
therefore observable, in red giant stars follow the simple
relation 0.66ν0.88

max. Typical observations from Appourchaux
et al. (2012) for a subgiant star with νmax ∼ 1000µHz show
that a little more than ten radial modes may be clearly
identi�ed. Therefore, to match such observed ranges and
ensure computing a su�cient amount of modes, we chose a
slightly broader range of about νmax ± 0.4ν0.88

max. This cor-
responds, for red giants (resp. subgiants) to approximately
three (resp. 5) p-dominated modes on both sides of νmax,
as expected from the observations.

3.1. Individual spectra

In the present section we display adjusted oscillation spec-
tra of models typical of the Sun (1M�, X0 = 0.72 and
Z0 = 0.015) at di�erent stages of evolution: at the be-
ginning of the subgiant phase (subsequently referred to as
`Sub'), at the transition between subgiant and red giant
phases (`Tran') and at the tip of the red giant branch, be-
fore the luminosity bump (`RGB'). These spectra are rep-
resented as frequency or period di�erences (resp. for pres-
sure or gravity dominated spectra) as a function of the fre-
quency. Those stages are represented in a HR diagram in
Fig. 5 and correspond to N values of respectively 0.16, 0.98,
and 29.85. Figures 6 to 8 compare the reference spectra ob-
tained with LOSC (in blue) with the �tted spectra (in or-
ange). To produce these results, the adjustment was under-
taken in an automated fashion following the methodology
described in Sect. 2.

Early subgiant: Figure 6 corresponds to an early subgiant
model (marked `Sub' in Fig. 5), the �rst one on the se-
quence displaying two local minima in the individual pe-
riod spacing, corresponding to mixed modes. This is the
much lower threshold of applicability with regard to the
EGGMiMoSA technique. Nonetheless, we observe that it is
very e�cient at providing a qualitative adjustment of the
data. Both the shape and position of individual bumps are
properly accounted for. However, we note a slight o�set in
the bump height around a frequency of 1000µHz. This o�-
set is similar in amplitude to the error made by assuming
the large separation of radial modes to be constant even
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Fig. 6. Fitted frequency di�erences as a function of frequency
for an early 1M� subgiant model, denoted `Sub' in Fig. 5.
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Fig. 7. Fitted frequency di�erences as a function of frequency
for a 1M� model with similar numbers of p-dominated and g-
dominated modes. It is denoted `Tran' in Fig. 5.

though it presents a slight dependency with the frequency.
This is illustrated by the dashed red line, corresponding
to the constant estimate of the large separation of radial
modes obtained with WhoSGlAd (Farnir et al. 2019), com-
pared to the local value in green. We observe that the o�set
between the green and red curves is similar to that between
the blue and orange ones.

Late subgiant: We represent a model presenting a com-
parable amount of pressure dominated modes and gravity
dominated ones in Fig. 7 (marked `Tran' in Fig. 5). It cor-
responds to N ' 1. Although the shape of the spectrum is
complex, we �nd a proper �t to the data. This is possible
thanks to the proper estimation of the parameters before-
hand.

Evolved red giant: For the more evolved star displayed in
Fig. 8, we again observe a very good agreement with the
data. However, we note a slight shift in the position of dips
towards low frequencies. Furthermore, we also observe that
the adjusted dips tend to be shallower than the data sug-
gests. Possible reasons for such discrepancies will be dis-
cussed in Sects. 4.3 and 4.4.
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Fig. 8. Fitted individual period spacings as a function of fre-
quency for a late 1M� red giant model. It is denoted `RGB' in
Fig. 5.

3.2. Variation with mass along the evolution

We present in the current section the variation of the pa-
rameters of the adjustment with stellar evolution and mass.
The models were computed from the beginning of the sub-
giant phase up to the RGB-bump. The results are displayed
in Figs. 9 through 17. To ease the comparison with other
works, stellar evolution goes from right to left.

3.2.1. Period spacing, ∆π1

Figure 9 represents the evolution of the period spacing as
a function of the large separation of radial modes which
decreases with evolution. The large separation is indeed a
proxy of the mean density (Ulrich 1986; Farnir et al. 2019)
which decreases with evolution during the subgiant and red
giant phases. We represent tracks for stellar masses in the
range [1.0M�, 2.1M�] (0.1M� step) in di�erent colours.
We represent the transition between subgiant and red giant
phases (at N = 1) by dotted lines. We thus observe that
the period spacing decreases with the evolution, at di�erent
rates according to the evolutionary phase, the decrease on
the subgiant phase being the steepest.

We �rst note that our computations in Fig. 9 qualita-
tively agree with the observations of Mosser et al. (2014,
see Fig. 1). This con�rms that subgiant and red-giant stars
occupy distinct regions in a seismic HR diagram. We also
note an excellent agreement between the �tted period spac-
ing and its asymptotic value, ∆π1,as, represented by dashed
lines (see also Lagarde et al. 2016). Assessing the normalised
di�erence between the �tted and asymptotic values of the

large separation, given by δ∆π1 =
|∆π1,�t−∆π1,as|

∆π1,as
, we ob-

serve that it never exceeds 0.2% on the red-giant phase.
On the subgiant phase, this di�erence is greater and de-
creases as the star evolves. It is below 10 − 15% at the
beginning of the subgiant phase and quickly drops below
5 − 10%. This demonstrates that as ng increases, the va-
lidity of the asymptotic analysis improves. Finally, only a
few models exceed the 15% disagreement and they corre-
spond to models with only two g-dominated modes, which
stands as the very limit of applicability of our technique.
This suggests that the adjusted value is a valid proxy of
the asymptotic one. This agreement demonstrates that, al-
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though the asymptotic approximation is questionable for
g-dominated modes in the subgiant phase (the number of
nodes of the g-dominated mode eigenfunction in the buoy-
ancy cavity is ng ∼ 3 in an early subgiant, and its wave-
length is thus large), it globally yields valid results. Using
the asymptotic expression in Eq. Eq. (5), we can crudely
estimate that ∆π1 is about inversely proportional to the
maximum of the Brunt-Väisälä frequency in the radiative
region, which was shown by Pinçon et al. (2020) to be ap-
proximately proportional to the square root of the helium
core density. The evolution of the helium core density as a
function of its mass is plotted in Fig. 10 for di�erent stellar
masses. During these stages, the helium core mass increases
as ∆ν decreases. We can thus see that the helium core den-
sity progressively increases during evolution, leading to the
global decrease in the period spacing, as expected.

We further note that the subgiant tracks in Fig. 9, corre-
sponding to di�erent masses, are separated to a signi�cant
extent. This trend with the stellar mass can again be ex-
plained by the dependence of the helium core density on
the stellar mass during the subgiant branch as illustrated
in Fig. 10. We see in Fig. 9 that the ∆π1 separation between
successive tracks is much larger than the typical observed
relative uncertainties from Appourchaux (2020), which are
smaller than 1% in most cases. This demonstrates that the
measure of both ∆ν0 and ∆π1 should allow us to infer the
mass of an observed star with a precision much better than
0.1M�. Consequently, because the age of a subgiant star
is dominated by the duration of the main sequence phase,
which is a function of the mass, we may in turn constrain
the stellar age. This holds great promises for the accurate
characterisation of stellar populations. To further demon-
strate that the age of a subgiant may indeed be constrained
by the measure of ∆ν0 and ∆π1, we display in Fig. 11, the
evolution of the asymptotic period spacing, ∆πas, with ∆ν0

along the subgiant phase. The colour gradient corresponds
to the stellar age. We observe that individual tracks indeed
represent distinct ages. We also show iso-radius values with
the black symbols. Models with 2R� are symbolised by a
diamond, models with 3R� by a pentagon and those with
4R� by a star. We observe that measuring both ∆π1 and
∆ν0 allows us to position a star on this diagram and to con-
strain its mass, radius and age at a given metallicity. Nev-
ertheless, assuming the duration of the main sequence to be
mainly a function of the stellar mass only holds when there
is no overshooting during this phase, as is the case for solar-
like stars. However, stars with a mass greater than ∼ 1.2M�
have a convective core, and the overshooting may therefore
impact the inferred age. For example, Noll et al. (2021)
demonstrated in the speci�c case of the KIC10273246 sub-
giant that models with a �nite amount of overshooting are
in better agreement with observed data that models with-
out overshooting. Including the e�ect of overshooting will
thus be mandatory in more quantitative studies that will
follow the preliminary exploratory work presented here.

In red giants with masses . 1.8M�, we see in Fig. 9
that the evolution of ∆π1 as a function of ∆ν converges to
a degenerate track. This degeneracy is actually the result
of the electron degeneracy in the helium core at these low
masses. In these evolved stars, the density contrast between
the core and the envelope is such that the mass of the enve-
lope is negligible compared to that of the core. Therefore,
we may show by homology that the properties of the shell
are determined by the mass and radius of the helium core
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Fig. 9. Variation of ∆π1 with ∆ν0 for di�erent masses, depicted
by the colours. The dashed lines correspond to the asymptotic
value. The dotted vertical lines correspond to the transition be-
tween subgiant and red-giant phases.

(Refsdal & Weigert 1970; Kippenhahn et al. 2012). Fur-
thermore, because of the central electron degeneracy, the
mass and radius of the core are related and the density of
the core is a function of the core mass only. As a conse-
quence, the evolution of the helium core density, in these
stars with a degenerate core, should be independent of the
total stellar mass and vary only with the mass of the he-
lium core. In particular, this is what we observe in Fig. 10.
The low-mass tracks indeed converge to an identical evolu-
tion once the transition to the red-giant phase, represented
by the dotted vertical lines, has been crossed. The conse-
quence of this relation between the core mass and radius is
that the properties of the shell are solely determined by the
mass of the helium core. The temperature and luminosity of
the shell, which, in turn determine the total luminosity, are
then only a function of the mass of the core. As the e�ective
temperature is almost constant on the red-giant branch, the
stellar radius thus also predominantly depends on the mass
of the core. This is also true for the mean density, ρ, as
it is predominantly a function of the stellar radius. Conse-
quently, the same goes for the large frequency separation
∆ν that is a proxy of the mean density. This results in a
helium core density and a density contrast ρc/ρ, with ρc
the central density, which only depend on the mass of the
helium core. These quantities are therefore degenerate as
well as a function of the the stellar mass for low mass stars
with a degenerate core. This is indeed what we observe in
Figs. 10 and 12. The consequence of this degeneracy in the
core helium density as a function of ∆ν is the degeneracy
in period spacing observed in Fig. 9. Finally, as the degen-
eracy is lifted in red-giant stars with masses & 1.8M�, it is
theoretically possible to constrain the mass, radius and age
of these stars by measuring ∆ν0 and ∆π1, similarly to the
case of the subgiants. However, in practice, it might not be
possible to observe such stars as they evolve fast.
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Fig. 10. Evolution of the helium core density as a function of
its mass. The colours and di�erent line styles have the same
indications as in Fig. 9.
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modes. The colours represent di�erent total stellar masses, as in
Fig. 9.

3.2.2. Pressure o�set, εp

Figure 13 shows the evolution of the pressure o�set as a
function of N , which increases with evolution. From now
on, we restrict the sample of masses to a sub-sample (1.0,
1.2, 1.5 and 1.8M�) for better clarity. The same trend is fol-
lowed by models with masses above 1.8M�. The �rst strik-
ing feature is that there exist two regimes, depending on the
evolution stage. During the subgiant phase, we observe that
εp mostly displays an increasing trend, of which the slope
as a function of N increases with mass. This increase is fol-
lowed by a steady decrease along the red giant phase with
a slope that is independent of the mass. This is in qualita-
tive agreement with the measured evolution from (Mosser
et al. 2013, Fig.7). We note that their measurements are
shifted up by 0.5. This is to be expected as they consider
radial modes while we consider l = 1 dipolar modes, which
introduces a shift of l/2.

We further investigate the two apparent regimes in the
evolution of the pressure o�set. As it represents the phase
lag induced at the boundaries of the pressure cavities, we
expect its behaviour to be in�uenced by their properties.
As a consequence, we display in Fig. 14 the density con-
trast compared to the inner sphere at the lower boundary
of the pressure cavity, corresponding to the outer edge of
the evanescent region. The local density contrast is de�ned
in (Takata 2016) by:

J(r) = 1− ρ (r) /ρ̄ (r) , (18)

which compares the local density ρ and local mean den-

sity ρ̄(r) = m(r)
4/3πr3 , with m(r) the mass encapsulated by the

sphere of radius r. As an example, a value of J = 0.7 means
the inner sphere is in average three times denser than the
local layer whereas a value of J = 0.9 means the inner
sphere is, on average, ten times denser. As the density con-
trast compared to the inner sphere tends to zero, J tends
towards unity. We observe that the density contrast at the
outer edge of the evanescent region, r2, is moderate and
strongly varies with the mass in the subgiant phase. Then,
all the tracks converge towards a similar and high density
contrast during the red giant phase (i.e., J ∼ 0.9). This
matches the observations for the pressure o�set, indicat-
ing that the pressure o�set holds an information about the
density contrast and the structure in the evanescent region.
Indeed, Pinçon et al. (2020) showed that the structure of the
intermediate evanescent region behaves as power laws of the
radius when the density contrast between the core and the
evanescent region is large, independently of the stellar mass.
This also goes for the Brunt-Väisälä and Lamb frequencies,
In contrast, the structure deviates from such a con�gura-
tion for lower core-envelope density contrast as observed in
subgiant stars (see also discussion in Sect. 3.2.4). This sug-
gests that the evolution of the core-envelope density con-
trast between the subgiant and the red giant branches is
the main responsible for the di�erent regimes observed in
the pressure o�set.

In Fig. 13, during the red giant phase, we observe dis-
continuities, that result in a seesaw behaviour. This is a
direct consequence of the set of modes considered and does
not question the quality of the adjustment. Indeed, for such
an extended evolution, we may not consider a �xed set of
modes, that is, of �xed radial orders. As a consequence, the
set shifts towards lower pressure modes orders and disconti-
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Fig. 13. Variation of εp as a function of N . The dashed line
correspond to the value estimated with WhoSGlAd on the radial
modes.
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Fig. 14. Variation of the density contrast compared to the inner
encapsulated sphere at the outer edge of the evanescent region,
r2, as in Fig. 9.

nuities in the evolution are representative of this shift. Such
an e�ect is discussed in more details in Sect. 4.1.

In this �gure, we also represent (as dashed lines) the
εp,0 value retrieved for the radial modes via WhoSGlAd.
The displayed values account for the l/2 shift in value com-
pared with dipolar modes. We observe that the trends of
radial and dipolar modes are in excellent agreement, with a
slight o�set for the most evolved stars. This illustrates that
it is a proper estimate for the pressure o�set of the dipolar
mixed modes. The seesawing of the radial value of εp fur-
ther demonstrates that this is not caused by any improper
convergence of the technique.

In addition, we note that the behaviour is rather erratic
during the subgiant phase. This may be a direct conse-
quence of the need to include higher order contributions
to the pressure phase, θp, because of the extended set of
modes. This aspect is further discussed in Sect. 4.4.

3.2.3. Gravity o�set, εg

Figure 15 represents the evolution of εg with νmax (to ease
the comparison with Pinçon et al. 2019, Fig. 4). This is,
to our knowledge, the �rst representation of the gravity

o�set on a grid of models from the subgiant phase to the
red giant phase. As for the case of the pressure o�set, we
observe two regimes, each depending on the evolutionary
phase. We expect that this also stems from the qualitative
di�erence in the evolution of the density contrast in the
evanescent region.

On the red giant branch, when comparing our results
with Fig. 4 of Pinçon et al. (2019) (which confronts their
asymptotic computations with observations from Mosser
et al. 2018) the agreement is convincing. We must bear in
mind that we include an additional 1/2 term in the θg phase
compared to their study. As a consequence, the values of
εg we measure will be shifted up of that same factor com-
pared to theirs. Indeed, in the red giant phase, we observe
a plateau at a value of approximately 0.75 of the gravity
o�set. Accounting for the shift in values of 0.5, this is in ex-
cellent agreement with their observation of a plateau at an
approximate value of 0.25. This plateau is then followed by
a sudden drop of the gravity o�set happening in the range
of νmax ∈ [50µHz, 110µHz].

The constant value of the gravity o�set during the �rst
part of the red giant branch comes from the fact that, as
mentioned earlier, the pro�les of the Brunt-Väisälä and
Lamb frequencies may be assumed to be parallel and rep-
resented by a power-law of radius in the evanescent region
because of the high density contrast between the core and
the surface. The slope of the Brunt-Väisälä frequency is
then constant and determines the gravity o�set value. As
the star evolves, νmax decreases along with the set of ex-
cited modes. Therefore, the evanescent region moves out-
wards, up to the point where it penetrates the convective
zone. The Brunt-Väisälä frequency then suddenly drops.
Both frequencies can no longer be considered parallel to
one another. The gravity o�set then drops, as observed in
Fig. 15 and predicted by Pinçon et al. (2019).

In the subgiant phase, we �rst note that the evolution
of εg depends on the stellar mass. Similarly to the pres-
sure o�set, we expect this dependence to stem from the low
and mass-dependent density contrasts displayed by these
stars in the evanescent region (see Fig. 14), in opposition
to the high and almost mass-independent density contrasts
in red giant stars. We also note that the behaviour is less
regular than in the red giant phase. However, individual
spectra are properly adjusted, as illustrated in Fig. 6 for
the most extreme case. We thus expect this e�ect to either
results from structural features or the necessity to extend
the asymptotic formulation to higher orders. Another fea-
ture in the subgiant phase is the apparent oscillation for
low-mass stars, which should be caused by variations in the
evanescent region.

Finally, similarly to the case of the pressure o�set, we
note a seesaw behaviour. This is again a consequence of
the varying set of modes. This will be addressed in the
discussion (Sect. 4.1).

3.2.4. Coupling factor, q

The evolution of the coupling factor is displayed in Fig. 16.
We see that the value of q �rst increases to a high value in
the subgiant phase. This corresponds to the case of a strong
coupling (Takata 2016). To be complete, we also note that,
for the lowest masses (1.0M� and 1.2M�), there is a local
minimum of the coupling factor before the sharp increase
at the end of the subgiant phase. Then it suddenly drops
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Fig. 15. Variation of εg as a function of νmax for di�erent
masses.

before the red giant phase. Finally, during the red giant
phase, the coupling factor steadily decreases from a value of
about 0.25 to approximately 0.10, corresponding this time
to a weak coupling. Eventually, the value of q further drops
by the end of the RGB phase. As our sequences stop at the
RGB bump, this drop is not visible for all of them.

This predicted evolution of the coupling factor is very
similar to observations made by Mosser et al. (2017, namely
Fig. 6). As demonstrated by Pinçon et al. (2020) under the
assumption that the Brunt-Väisälä frequency and the Lamb
frequency are log-parallel, the coupling strength should be
a proxy of the width of the evanescent zone; thus the
larger the evanescent zone, the lower the coupling. To check
whether the width of the evanescent region is correlated
with the coupling factor, we display in Fig. 17 the evolu-
tion of this relative width at νmax, denoted δev, as a function
of the g-dominated modes density. It is de�ned as:

δev =
r2 − r1

(r1 + r2) /2
, (19)

with r1 and r2 the positions of the inner and outer edges
of the evanescent region (respectively). For all masses, we
indeed observe a global rapid decrease in the size of the
evanescent zone during the subgiant phase (with N < 1)
followed by a steady increase of this size during the red gi-
ant phase (with N > 1). This coincides with the evolution
of the coupling factor. We note that the discontinuities in
the evolution on the red giant branch come from the dis-
continuity in composition at the base of the convective en-
velope, which, in turn, creates a peak of the Brunt-Väisälä
frequency (see for example Cunha et al. 2015).

Regarding the dependence of q with the stellar mass,
the two regimes are again observed, as expected from the
behaviour of the density contrast in the evanescent region.
During the subgiant phase, the coupling factor strongly de-
pends on the mass while, on the red giant branch, the cou-
pling factor is much less sensitive to the stellar mass. In
both cases, the same global trend is nevertheless observed:
the higher the mass, the lower the q value. Firstly, on the
red giant branch, the density contrast in the evanescent re-
gion compared to the inner sphere is large enough for the
pro�les of the Brunt-Väisälä and Lamb frequencies to be
assumed to be parallel and the structure of the evanescent
region is quite comparable for all the masses at a given
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Fig. 16. Variation of q as a function of N for di�erent masses.

value of N . The width of the evanescent region neverthe-
less depends slightly on the stellar mass, as seen in Fig. 17,
explaining the slight dependence on q observed in Fig. 16 on
the red giant branch. Only the position of the ultimate drop
of the coupling factor by the end of the sequences appears
to be signi�cantly a�ected by the stellar mass. However,
as we restricted ourselves to models before the luminosity
bump, this drop is not visible for every track. Secondly,
on the subgiant branch, the density contrast is moderate
and depends on the stellar mass (see Fig. 14). Because of
this lower density contrast than on the red giant branch,
the Brunt-Väisälä pro�le does not follow a simple power-
law relation with the radius and may not be assumed to
be parallel to the pro�le of the Lamb frequency. This im-
pacts the evolution of the width of the evanescent region for
the di�erent masses, as shown in Fig. 17, and thus explains
the signi�cant mass dependence of the coupling factor on
the subgiant branch. We even note that the 1.8M� model
exhibits an oscillation with regard to the size of its evanes-
cent region. Indeed, both critical frequencies may cross in
this model. As the star evolves, νmax decreases. It therefore
reaches this crossing of the frequencies, corresponding to
a very narrow evanescent region. Then, as the star contin-
ues to evolve, the evanescent region increases in size again.
Furthermore, as the frequency pro�les also evolve with time
(mainly due to the evolution of the density contrast), the
point at which they cross may evolve as well and other min-
ima of the width of the evanescent zone may occur, as we
observe in Fig. 17. This phenomenon will be further dis-
cussed in Pinçon et al. (2021, in prep.).

3.3. Variation with chemical composition along the evolution

To study the impact of the chemical composition on the
�tted parameters, we computed several tracks for a 1M�
star with di�erent initial hydrogen and metals abundances.
We consider pairs of initial hydrogen and metal abundances
in X0 ∈ [0.68, 0.72] and Z0 ∈ [0.011, 0.019]. The results are
shown in Figs. 18 to 21 for ∆π1, εp, εg and q, respectively.
In Fig. 18, we observe that the several tracks for ∆π1 are
almost indistinguishable from one another during the red
giant phase. Only a small di�erence is visible on the sub-
giant phase. Nevertheless, thanks to a close inspection of
our Fig. 18, alongside Fig.1 of Farnir et al. (2019), we ex-
pect that an improper determination of the metallicity will
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Fig. 17. Variation of width of the evanescent zone as a function
of N for di�erent masses.

impact the inferred mass in a similar way as it does in the
main sequence case. Indeed, at �xed ∆π1 and ∆ν0 values, a
variation of 0.008 in Z0 could change the estimated mass of
about 0.1M�. This suggests that, in addition to the mea-
surements of ∆ν and ∆π1, a spectroscopic measurement of
the composition will be necessary to a good determination
of the mass, radius and age of subgiant stars. Indeed, the
initial composition may impact the inferred stellar mass,
thus the inferred age. Regarding εp, we do not note any
signi�cant impact of the chemical composition on the evo-
lution of this indicator, as illustrated in Fig. 19. Finally,
concerning q and εg, we note in Figs. 20 and 21 that only
the position (in either νmax or logN ) of the drop in the
values of εg and q just before the luminosity bump is sig-
ni�cantly a�ected by the composition. As shown by Pinçon
(2020), this likely results from a modi�cation of the position
of the base of the convective envelope.

The impact of the metallicity on the measured value of
the period spacing and coupling factor has already been
studied by Jiang et al. (2020). In this work, they looked
at the evolution of these indicators on a grid of red-giant
models, but their �ts were made around a �xed value of
the pressure radial order np only. While they also observe
that there is no signi�cant impact of the metallicity on the
evolution of ∆π1, they note a slight impact of the metallic-
ity on the rate of decrease of q. A close look at their Fig.
9 also seems to indicate that this dependency with metal-
licity mostly appears for the youngest stars. The individual
trends seem to settle to a common one as the stellar evo-
lution goes on during the red giant branch. Nevertheless,
we do not observe such distinction with the composition.
A possible reason for this di�erence might stem from the
fact that they consider the coupling factor to depend on
the radial order, np, and represent its evolution following
speci�c modes; whereas we consider the coupling factor to
be constant over the spectrum with a typical set of frequen-
cies representative of the observations all along the subgiant
and red giant branches. This is further discussed in Sect.
4.4.

Finally, what is striking in Figs. 18 to 21 is that some
subtle features are present for every composition consid-
ered. For example, looking at the evolution of the gravity
o�set in Fig. 20, it stands out that the oscillation present
on the subgiant phase is present for all the compositions.
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Fig. 18. Variation of ∆π1 as a function of ∆ν0 for 1M� mod-
els with several compositions, represented by the colours. The
dashed lines correspond to the asymptotic values and the verti-
cal dotted lines to the transition at N = 1.
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Fig. 19. Variation of εp as a function of N for 1M� models with
several compositions, represented by the colours. The dashed
lines correspond to the values computed with WhoSGlAd on
the radial modes.

Furthermore, in Fig. 21, we also observe that the local min-
imum in the coupling factor, right before the transition at
N = 1, is present for every track. This might result from
the fact that the changes in composition considered might
not signi�cantly a�ect the evolution on the subgiant phase
and, therefore, the evolution of the indicators during this
phase. Another striking feature is the homology between
the track with X0 = 0.68 and Z0 = 0.015 and the one with
X0 = 0.72 and Z0 = 0.011. The tracks are almost identical.

Overall, we may assert that the indicators are degener-
ate with the chemical composition on the red giant phase,
except for the latest stages of evolution: for instance the
drops in εg and q before the luminosity bump.

4. Discussion

In the present section, we further discuss the results pre-
sented in Sect. 3 as well as possible improvements of the
EGGMiMoSA method.
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4.1. Impact of the considered set of modes

In the present paper, we considered modes in the range of
the width 0.8ν0.88

max around νmax, determined to include at
least ten radial modes for the youngest subgiant models
(Mosser et al. 2012b; Appourchaux 2020). We immediately
see that this range evolves with νmax, both in terms of its
central frequency νmax and in the number of modes. As the
number of modes is discrete its evolution experiences dis-
continuities. This creates the saw-like pattern we observe
in the pressure and gravity o�sets (Figs. 13, 15, 19 and 20).
To illustrate this e�ect, we plot in Fig. 22 the evolution of
εp for the 1M� track as well as the mean radial order of
pressure modes, n̄p. This value is divided by 15, an arbi-
trary value, such that εp and n̄p have comparable values. We
observe that both behave as a seesaw and that the discon-
tinuities in the values are synchronous along evolution. In
the case of the observations, the set of modes also changes
with evolution, which should also create the discontinuities
we observe theoretically. Nevertheless, when attempting to
carry stellar modelling of a given star considering εp as a
constraint, this will not constitute a problem as the set of
modes will be �xed by the observations.

0.8 1.0 1.2 1.4 1.6 1.8
log ∆ν0(µHz)

0.6

0.8

1.0

ε p

l=0

np,0/15

Fig. 22. Variation of εp with evolution for the 1M� track.
The dashed line represents the variation of the estimation with
WhoSGlAd on radial modes and the dot-dashed line the mean
pressure radial order of modes considered divided by 15.

4.2. Generalisation to spectra with holes

When adjusting the spectrum, we assume in this paper that
the modes that are adjusted are successive, that is, the dif-
ference in radial order between the considered modes, ∆ng
and ∆np, are equal to either 0 or 1. However, when apply-
ing the method on observational spectra, it may be the case
that some modes are not detected. Consequently, the period
and frequency di�erence formulations in Eqs. Eq. (13) and
Eq. (16) will have to be adapted considering proper values
for the ∆ng and ∆np parameters in these equations. This
will thus require that a proper identi�cation of the modes
has been carried out.

Moreover, regarding the initial estimation of the param-
eters to be adjusted, the position and number of holes might
be problematic in some speci�c cases. For example, as we
estimated ∆π1 via the maximum of the local period dif-
ferences in g-dominated spectra, missing several modes in
the central region between dips would lead to an underesti-
mation of its value. In addition, the coupling factor is esti-
mated from the ratio between the maximum and minimum
of the local di�erence in period (for g-dominated spectra)
or in frequency (p-dominated). Therefore, missing modes
close to these minima or maxima might severely impact
the initial estimate of q. However, Mosser et al. (2018) have
showed that, with Kepler data, g-dominated mixed modes
should be below the limit of observability only for evolved
giant stars with ∆ν ≤ 6µHz, for which only p-dominated
mixed modes would be detected. This actually corresponds
to the most evolved stars, which are close to the luminosity
bump, considered in this study. The number of observed
g-dominated modes should increase as we go down the red
giant branch, meaning that younger stars should constitute
less of a problem. Therefore, it will be necessary in future
studies to test the ability of the method to provide correct
results in such evolved cases.

4.3. Higher order contributions to the asymptotic formulation

In the present paper, we considered the pressure phase, θp,
to depend linearly on the frequency. However, because the
set of modes is broad in the case of subgiant stars (about
10∆ν wide), the large separation may not be considered to
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be constant over this interval. As an illustration, its rela-
tive variation in the subgiant star considered in Fig. 6 is
of about δ∆ν

∆ν ∼ 5%. Furthermore, the mean value of the
pressure radial order is of np ∼ 20 in such stars. As a con-
sequence, the product of both quantities, corresponding to
the error made by considering only a linear pressure phase,
is on the order of unity. It is therefore not negligible com-
pared to typical observed uncertainties on εp. In such a case,
the assumed formulation for the pressure phase may not be
valid any more. Therefore, it may be necessary to include
second-order contributions to this phase. This e�ect may be
so important that it may result in the addition or removal
of a p-dominated mode to the set of considered frequencies.
Following this discussion, the case of the gravity phase of
evolved red-giants naturally comes to mind, as such stars
span a large range of gravity radial orders. However, Pinçon
et al. (2019) analytically showed that the second order con-
tribution to the gravity phase remains small compared to
the current observed uncertainties on the gravity o�set for
stars typically observed before the luminosity bump.

For the evolved red giant stars, it may again be neces-
sary to include higher order contributions to the pressure
phase (Mosser et al. 2013). Indeed, we noted in Fig. 8 that
there is a slight shift in the position of the ∆P dips as well
as small di�erences in their exact magnitude. This can now
be caused by the fact that the hypothesis that the num-
ber of nodes in the pressure cavity is large and thus that
the local wavelength is small is not veri�ed for the pressure
dominated modes. Indeed, the radial order of p-dominated
modes is very low, namely, np ∼ 5.

The inclusion of such higher order contributions to the
pressure phase might be necessary to improve the robust-
ness of the method and of the measured seismic indicators.
As a consequence, it will be implemented and tested in sub-
sequent papers of this series.

4.4. Frequency dependence of the coupling factor in evolved
red giants

Cunha et al. (2019) showed that, for evolved models, the
coupling factor may depend on the frequency. This is due
to the fact that the evanescent zone has penetrated into
the convective zone. As a consequence, the Brunt-Väisälä
frequency drops to zero and is no longer log-parallel to the
Lamb frequency. The relative width of the evanescent re-
gion de�ned in Eq. Eq. (19) may not be considered con-
stant with respect to the frequency any longer. Therefore,
the coupling factor may in turn depend on the frequency
(Pinçon et al. 2020). To mimic this e�ect, we binned the
oscillation spectrum of the evolved giant presented in Fig.
8 into sub-spectra containing only one dip each. The binned
spectrum is shown in Fig. 23. We then �tted individual q
values in each sub-spectra. The evolution of the coupling
factor as a function of the central frequency of each bin is
displayed in Fig. 24. We indeed observe that it may vary
with the frequency in an almost linear fashion. Only the
coupling factor in the lowest frequency bin strays far from
the linear trend. This may result from the asymmetric num-
ber of modes around the dip. Finally, we note that the vari-
ation of the coupling factor on the spectrum is signi�cant
when compared to the constant �tted value. Indeed, while
the �tted value is of about 0.12 (comparable to values in the
literature, see Mosser et al. 2017), it changes from ∼ 0.11
to ∼ 0.22 along the spectrum. This illustrates the necessity
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Fig. 23. Fitted individual period spacings as a function of fre-
quency for the same red-giant model as in Fig. 8, but the spec-
trum has been binned for each individual bump. The green ver-
tical dashed lines delimit each bin.

to account for its dependency with the frequency in order
to properly interpret its value.

4.5. Glitches

A further re�nement of the technique would be the inclu-
sion of glitches in the formulation used. These glitches are
the result of a sharp variation (compared to the wavelength
of the incoming mode) in the stellar structure. Their sig-
nature is an oscillating feature in the oscillation spectrum.
Cunha et al. (2015) showed that buoyancy glitches, caused
by a sharp variation in the Brunt-Väisälä frequency, are
mainly found for red giant stars at the luminosity bump, at
the early phases of helium core burning and at the begin-
ning of helium shell burning. In this paper, we only consider
models before the luminosity bump. Therefore, we should
not expect the detection of such glitches in these models.
Nonetheless, their inclusion will be a necessary step to the
application of the EGGMiMoSA method to more evolved
stellar models and data. Furthermore, such glitches carry
essential information for constraining the stellar cores of gi-
ants as well as the transport processes of chemical elements.

Aside from buoyancy glitches, there are the acoustic
glitches, found in the pressure part of the spectrum. In the
case of red giants, we may observe the signature of the he-
lium glitch, created by the second ionisation zone of helium.
Therefore, it holds information about the surface helium
content, providing additional constraints to stellar models.
The study of such glitches in giant stars has been carried in
the past (e.g. Miglio et al. 2010; Dréau et al. 2020). Com-
bining the present method with WhoSGlAd (Farnir et al.
2019) we will be able to retrieve this signature in the p-
dominated modes in a robust way. The inclusion of both
the buoyancy and acoustic glitches in the dipolar modes
will be discussed in subsequent papers of this series.

5. Conclusion

With the aim of de�ning relevant seismic indicators and
relying on a prior modes extraction (e.g. Mosser et al.
2015; Gehan et al. 2018; Appourchaux 2020), we present a
method of automated, consistent, robust, and fast adjust-
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Fig. 24. Evolution of q throughout the binned spectrum pre-
sented in Fig. 23

ment of observed and theoretical mixed-mode oscillation
spectra. Theoretical oscillations spectra of low-mass sub-
giant and red-giant stars are well adjusted, as illustrated in
Figs. 6 - 8.

We explored the probing potential of the mixed-mode
parameters (∆ν, ∆π1, εp, εg, and q) as indicators of the stel-
lar structure of subgiant and red giant stars, along a grid
of models for masses between 1.0M� and 1.8M� (extended
to 2.1M� in the case of ∆π1) and initial chemical compo-
sitions in X0 ∈ [0.68, 0.72] and Z0 ∈ [0.011, 0.019]. Overall,
the evolution of the indicators displays clear trends and the
chemical composition has only a slight impact. In contrast,
we note that the evolution of the parameters with the mass
follows two regimes, depending on the evolutionary stage of
the star.

During the subgiant phase, because of a moderate
core-envelope density contrast, the mixed-mode parameters
evolve di�erently with ∆ν according to the stellar mass.
Notably, the evolution of ∆π1 in subgiants is such that it
may be used, combined with ∆ν and a proper measurement
of the metallicity, to infer the stellar mass, radius and age
(Fig. 11). We also demonstrate that the asymptotic period
spacing tightly agrees with the �tted one. This came as a
surprise as the contribution of the gravity modes departs
from the asymptotic regime for these stars.

As the stars evolve to the red giant phase, the core-
envelope density contrast becomes large. As a consequence,
the structure of the evanescent region is almost independent
of the stellar mass and the evolutions of the pressure o�set,
gravity o�set, and coupling factor as a function of ∆ν are
not really a�ected by the stellar mass in this phase. We
showed that this is also true for ∆π1 in stars with masses
. 1.8M� because of the core electron degeneracy, which
makes the helium core density quasi independent of the
stellar mass at a given value of ∆ν. Above this threshold,
the electron degeneracy is lifted and the evolution of ∆π1

again depends on the mass. Observing stars in that region
would therefore allow us to constraint their masses, radii,
and ages, similarly to the case of subgiants. However, such
stars evolve swiftly and might not be observed.

Here, we provide the �rst depiction, to our knowledge,
of the gravity o�set evolution along a grid of models dur-
ing both the subgiant and red giant phases. The evolution
during the red-giant phase agrees with the observations of

Mosser et al. (2018) and the asymptotic computations from
Pinçon et al. (2019). As the gravity o�set corresponds to
the phase lag of the g-dominated modes induced at the in-
ner edge of the evanescent region, we expect it should hold
information about this region. However, some issues remain
to be tackled as the behaviour of this indicator remains er-
ratic in the subgiant phase.

The evolution of the coupling factor along our grid of
models also qualitatively agrees with the observations of
Mosser et al. (2017). We also show, based on the study of
Pinçon et al. (2020), that its evolution is concordant with
that of the width of the evanescent region (see Fig. 17).

Owing to the use of the asymptotic formulation and
appropriate estimation of the mixed-mode parameters, the
EGGMiMoSA technique o�ers a robust and fast1 adjust-
ment of the mixed-mode spectra displayed by subgiant and
red giant stars. Furthermore, we also plan on extending the
method to include re�nements of the asymptotic formula-
tion such as higher order contributions and glitches. Finally,
we expect that the technique would represent a great as-
set to the automated treatment of large samples of data as
will be generated by spacecrafts such as PLATO (Rauer
et al. 2014), which will observe a great number of sub-
giant stars (core program) and red-giant stars (secondary
science program). Indeed, after a proper modes extraction,
the measured seismic indicators can be used as constraints
on stellar models to automatically compute stellar param-
eters with model search algorithms such as AIMS (Rendle
et al. 2019).
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Appendix A: Bounds of the asymptotic frequency
di�erences

The method presented in Sect. 2 takes advantage of the
theoretical bounds of the �rst and second frequency dif-
ferences of the asymptotic frequency pattern. On the one
hand, the �rst frequency (resp. period) di�erence between
two consecutive modes normalised by ∆ν (resp. ∆π1) is
always smaller than unity. On the other hand, the second
frequency di�erence in (Eq. Eq. (6)) displays values greater
than 1 in a p-dominated spectrum while it presents values
lower than 1 in g-dominated spectra. In the current section,
we mathematically demonstrate these statements.

Appendix A.1: Case N < 1 over the spectrum

In a �rst step, we study the properties of the asymptotic
frequency pattern focusing on the case where the local g-
dominated mode density N (ν) < 1. Using the expression of
the pressure phase (Eq. Eq. (2)), we may �rst rewrite the
asymptotic resonance condition (Eq. Eq. (1)) as a function
of the independent variable x = ν/∆ν. In this form, the
asymptotic frequency pattern is obtained by solving the
implicit relation

x = F(np, x) = np + εp +
1

π
arctan [q tan (θg (x))] , (A.1)

where np is the pressure radial order and the gravity phase
θg (Eq. Eq. (3)) is also expressed as a function of the vari-
able x, that is,

θg(x) = π [xN (x)− εg + 1/2] , (A.2)

with N (x) =
(
x2∆ν∆π

)−1
the local g-dominated modes

density de�ned in Eq. Eq. (4) but rewritten in terms of the
x variable.

As an illustration, the F function in the case N (x) < 1
is plotted as a function of x in Fig. A.1 for di�erent values
of np. To plot this �gure, we choose ∆π1∆ν ≈ 200, which is
a typical value for an observed subgiant star. The solutions
of the implicit equation in Eq. Eq. (A.1) are provided by the
intersection between the F function and the identity func-
tion f(x) = x represented by the solid black line. These so-
lutions are shown as red �lled circles. In this �gure, a given
value of np is associated with a horizontal strip located in
the range [np+εp−1/2, np+εp+1/2[ in the vertical axis. In
such a horizontal strip, we see that the F function exhibits
discontinuities as a function of x. These discontinuities oc-
cur at values, xng

, which correspond to the frequencies of
pure g-modes verifying the condition θg = (ng+1/2)π with
ng ∈ N the gravity radial order. The values of xng are thus
provided by

xng
=

1

∆π1∆ν
(ng + εg)

−1
. (A.3)

The positions, xng , for di�erent values of ng are represented
by vertical dashed lines in Fig A.1. As the gravity phase θg
has a local period in x of N (x) < 1, it is obvious that two
consecutive pure gravity modes are such that: xng

−xng+1 >
1, as con�rmed in Fig. A.1. Over a range Ing

=]xng+1, xng
]

(referred to as `g-subset') and for a given value of np, we
also note that F(np, x) is continuous and monotonically
decreasing as a function of x, which can be easily checked
by deriving this function with respect to x.

With framework set out thus far, it is now possible to
study the bounds of the �rst and second di�erences of the
solution pattern in a simple way. For the sake of conve-
nience, we start the investigation with the �rst di�erence.
Firstly, we focussed on a g-subset Ing

. Over such an inter-
val, we distinguished three cases:

1. On each subset Inp = [np + εp − 1/2, np + εp + 1/2[
(referred to as `p-subset') such that Inp ⊂ Ing , the f
function monotonically and continuously increases from
np + εp− 1/2 to np + εp + 1/2. In contrast, the F(np, x)
function monotonically and continuously decreases and
is such that: np + εp − 1/2 < F(np, x) < np + εp + 1/2.
Therefore, both functions intersect only once and there
is only one solution in the p-subset Inp

.

2. Over the subset In−
p

=]xng+1, n
−
p + εp + 1/2], where n−p

is the lowest integer such as xng+1 ≤ n−p + εp + 1/2,
according to the continuity and the monotonic be-
haviour of the F and f functions, we still have only one
solution since F(n−p , xng+1) = n−p + εp + 1/2 ≥ xng+1

and F(n−p , n
−
p + εp + 1/2) ≤ n−p + εp + 1/2.

3. Over the subset In+
p

= [n+
p + εp − 1/2, xng ] where n+

p

is the largest integer such as xng
≥ n+

p + εp − 1/2, ac-
cording to the continuity and the monotonic behaviour
of the F and f functions, we again have only one so-
lution since F(n+

p , xng
) = n+

p + εp − 1/2 ≤ xng
and

F(n+
p , n

+
p + εp − 1/2) ≥ n+

p + εp − 1/2.

As a result, over a g-subset Ing
, each solution is associated

with a unique value of np. Now, because n
+
p − n−p ≥ 1

since xng
− xng+1 > 1 when N < 1, there are at least two

solutions over Ing
, and we call xk the solution associated

with the pressure radial order np,k = n−p + k with 0 ≤ k ≤
n+
p − n−p . We thus have for each successive solutions

xk+1 − xk = F(np,k+1, xk+1)−F(np,k, xk)

= 1 + F(np,k, xk+1)−F(np,k, xk), (A.4)

where the last equality comes from the de�nition of the
phase function (Eq. Eq. (A.1)) and the fact that the dif-
ference of pressure radial order between two successive so-
lutions is ∆np = np,k+1 − np,k = 1. Because θg(x) mono-
tonically decreases over Ing

, the F function continuously
decreases as well and we have:

θg(xk) > θg(xk+1)⇒ F(np,k, xk+1)−F(np,k, xk) < 1 ,

(A.5)

such that xk+1 − xk < 1. Finally, the last case to tackle
is when two successive solutions belong to two successive
distinct g-subsets Ing

and Ing−1. We have just shown that
these two solutions belong to the same p-subset Inp

such as
xng
∈ Inp

. The di�erence of pressure radial order between
these two successive solutions is thus ∆np = 0 and it is
trivial to conclude that the di�erence between the two so-
lutions remains lower than unity. All these �ndings are well
illustrated in the square grey domains in Fig. A.1, which
represent the `p-domain' Inp × Inp that contains the solu-
tions of the implicit relation. To summarize this �rst part,
we have thus shown that the di�erence between two suc-
cessive solutions of the implicit equation is smaller than
unity. Converting this result as a function of the frequency
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νj (listed in ascending order with respect to the subscript
j), we therefore obtain in pressure-dominated spectra such
as N (ν) < 1, such that

νj+1 − νj
∆ν

< 1 , (A.6)

which in terms of period Pj = 1/νj is equivalent to

Pj − Pj+1

∆π1
=
νj+1 − νj

∆ν

∆ν

∆π1νj+1νj
(A.7)

<
νj+1 − νj

∆ν
N (νj) < 1 ,

because N (x) < 1 in the present case. Moreover, we have
shown that the di�erence of pressure radial orders between
two successive modes is either equal to unity when the
modes belong to the same g-subset associated with a unique
gravity radial order ng (i.e., ∆np = 1 and ∆ng = 0),
or equal to zero when the modes belong to two succes-
sive distinct g-subsets associated with successive gravity
radial orders ng and ng − 1, respectively (i.e., ∆np = 0
and ∆ng = −1).

Secondly, we now search the bounds of the second dif-
ference between two solutions xj+1 and xj−1. According
to the previous paragraph, we always have xj+1 − xj < 1
when N < 1, so that the upper bound of the second dif-
ference is directly xj+1 − xj−1 < 2. Regarding the lower
bound, we �rst note that when the three considered solu-
tions, xj−1, xj , and xj+1, are part of the same g-subset
Ing

, they are associated with successive values of the pres-
sure radial order; thus, it is obvious that 1 < xj+1 − xj−1

since ∆np = np,j+1 − np,j−1 = 2. When the three solu-
tions are spread over two g-subsets, such that xj ∈ Ing

and xj+1 ∈ Ing−1, we cannot directly draw a conclusion.
To demonstrate that the result also holds in that case, we
de�ne the functions around the pure g-mode xng :

F̃
(
np, x;xng

)
= np + εp (A.8)

+
1

π
arctan

[
q tan

{
θ̃g
(
x;xng

)}]
,

and

θ̃g(x;xng
) = π

(
xng
− x
)

+ θg(xng
) , (A.9)

where we recall that θg(xng
) = π(1/2+ng). In an analogous

way to the previous steps, we de�ne the three consecutive
solutions x̃j−1, x̃j , and x̃j+1 around xng

of the new implicit
equation:

x̃ = F̃
(
np, x̃;xng

)
. (A.10)

As shown previously, the solutions x̃j+1 and x̃j−1 around
xng are respectively associated with the radial orders np,j+1

and np,j−1 = np,j+1 − 1, as consecutive solutions on both

sides of xng
verify ∆np = 0. In this case, the F̃ function has

a period of 1 and it is obvious that x̃j+1− x̃j−1 = ∆np = 1.
To go further, we then express the θg phase in Eq. Eq. (A.2)
as

θg(x)

π
= xN (x)− εg + 1/2 (A.11)

= xN (x)− xngN (xng ) + ng + 1/2

=
xng

x
N (xng

)
(
xng
− x
)

+ ng + 1/2,

where the second equality comes from Eq. Eq. (A.3). By

comparing Eq. Eq. (A.11) with the de�nition of θ̃g in Eq.
Eq. (A.10), we can determine that:

θ̃g(x̃j+1;xng ) < θg(x̃j+1), (A.12)

since x̃j+1 > xng and N (xng ) < 1, which implies that

x̃j+1 = F̃(np,j+1, x̃j+1;xng ) < F(np,j+1, x̃j+1). (A.13)

In other words, this means that the identity function and
the F function do not intercept for x < x̃j+1 inside the con-
sidered interval Inp,j+1 ∩Ing−1, so that they will necessarily
intercept at a higher value (since we have shown before that
there is a unique solution in such an interval), that is,

xj+1 > x̃j+1. (A.14)

Similarly, for x̃j−1 < xng , we have:

θ̃g(x̃j−1;xng
) > θg(x̃j−1), (A.15)

implying

x̃j−1 = F̃(np,j−1, x̃j−1;xg,i) > F(np,j−1, x̃j−1) . (A.16)

This means that the identity function and the F function
do not intercept for x > x̃j+1 inside the considered interval
Inp,j−1 ∩ Ing , so that they will necessarily intercept at a
lower value, that is,

xj−1 < x̃j−1. (A.17)

As a result, we �nd that:

xj+1 − xj−1 > x̃j+1 − x̃j−1 = 1. (A.18)

In summary, we thus conclude that for N < 1, the second
frequency di�erence is bounded, such that:

1 < δν2,j =
νj+1 − νj−1

∆ν
< 2. (A.19)

Appendix A.2: Case N > 1 over the spectrum

In a g-dominated spectrum, the analysis can be put in a
similar form to the case treated in App. A.1 if we apply the
following substitutions

ν ← P , ∆π1 ← ∆ν , ∆ν ← ∆π1 ,

εg − 1/2← εp , εp ← εg − 1/2 , N ← N ′′ ≡ 1

N ,

q ← 1

q
, np ← ng , ng ← np ,

θg ← θp . (A.20)

Indeed, in the case N > 1, we have N ′′ < 1, and it is
possible to follow the same reasoning as in the previous
section.

One the one hand, for the �rst di�erence, when N > 1
over the considered spectrum, we obtain:

Pj − Pj+1

∆π1
< 1 (A.21)

νj+1 − νj
∆ν

=
Pj − Pj+1

∆π1

∆π1νjνj+1

∆ν

<
Pj − Pj+1

∆π1
N (νj+1)

−1
< 1 . (A.22)
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Fig. A.1. Evolution of the phase function with the frequency
over the large speration. The phase function for di�erent pres-
sure radial orders is represented in blue. The straight line repre-
sents the identity function f(x) = x. Its intersections with the
phase function are the solutions, in red. The grey square domains
represent regions of constant np values. The vertical dashed lines
are the positions of pure g-modes. The mixed-mode parameters
used are q = 0.2 and ∆ν∆π1 = 200

Moreover, the di�erence of gravity radial orders between
two successive modes (i.e., still listed in ascending order
with frequency) is either equal to −1 when the modes be-
long to the same p-subset associated with a unique pressure
radial order np (i.e., ∆ng = −1 and ∆np = 0), or equal to
zero when the modes belong to two successive distinct p-
subsets associated with successive pressure radial orders np
and np + 1, respectively (i.e., ∆ng = 0 and ∆np = 1).

On the other hand, for the second period di�erence, we
obtain when N > 1 over the considered spectrum

1 <
Pj−1 − Pj+1

∆π1
< 2 . (A.23)

For the second frequency di�erence, when N > 1, we can
solely determine:

δν2,j =
νj+1 − νj−1

∆ν
=
Pj−1 − Pj+1

∆π1
N ′j−1 , (A.24)

where an alternative de�nition for the g-dominated mode
density naturally appears, namely,

N ′j =
∆ν

∆π1νj+1νj−1
. (A.25)

Since N (νj+1) < N ′j , we have N ′j > 1 over the considered

spectrum. As soon as N ′ > 2, Eq. Eq. (A.24) shows us that
δν2,j < 1. In the case 1 < N ′ < 2, we can adapt the rea-
soning made in App. A.1. Indeed, either the solutions xj−1

and xj+1 are associated with the same pressure radial order
(i.e., ∆np = 0 and ∆ng = −2) and xj+1 − xj−1 < 1, or the
di�erence in np is equal to unity (i.e., with ∆ng = −1)2.
In the second case, this means that the solutions xj−1 and
xj+1 are located on both sides of a pure g-mode xng

. Apply-
ing the reasoning as in App. A.1 to determine the bounds of

2 We recall that ∆np < 2 between xj+1 and xj−1 when N > 1,
in a similar way that ∆ng > −2 when N < 1.

the second frequency di�erence, we obtain xj+1−xj−1 < 1
as N > 1 in the present case. We therefore conclude that
over a spectrum such as N > 1, we have

δν2,j =
νj+1 − νj−1

∆ν
< 1. (A.26)

Appendix A.3: Case N = 1 somewhere in the spectrum

The last case to tackle is when the two solutions that are
compared are located from each side of the transition point
x? where N (x?) = 1.

For the �rst di�erence, the demonstration is simple. We
denote xq (resp. xq+1) as the largest (the smallest) solution
lower (resp. greater) than x?. If we note n?g as the lowest
gravity radial order such a xn?

g
≤ x?, we have x? − xn?

g
< 1

since otherwise n?g would not be the highest lowest gravity
radial order such that xn?

g
≤ x? as xng − xng+1 < 1 when

N > 1. Therefore, we have two cases. If xq < xn?
g
, xq+1 is

then necessarily comprised in the same p-subset as xq. If
xq > xn?

g
, either xq+1 > xn?

g−1 and xq+1 is then again nec-

essarily comprised in the same p-subset as xq; or xq+1 <
xn?

g−1 and xq+1 then belongs to an adjacent p-subset to

that of xq. In all cases, following the same reasoning as in
Appendix A.1, we have xj+1 − xj < 1, which is therefore
unconditionally met over the whole spectrum. This is obvi-
ously also true for the di�erence in period.

For the second di�erence, we consider two solutions xj−1

and xj+1 such as xj−1 < x? and xj+1 > x?. We also con-
sider the solutions of the implicit equation:

x̄ = F̃ (np, x̄;xj−1) , (A.27)

where F̃ is de�ned in Eqs. A.8. It can be straightforward to
see that xj−1 is solution of Eq. Eq. (A.27). By considering
the consecutive solutions x̄j and x̄j+1 of Eq. Eq. (A.27), we
obviously have x̄j+1 − xj−1 = 1 since the F̃ function has a
period of 1. To go further, we then compute from Eq. A.9

θ̃g(xj+1;xj−1)

π
− θg(xj+1)

π
= (N ′j − 1)(xj+1 − xj−1) ,

(A.28)

with N ′j de�ned as in Eq. Eq. (A.25). Therefore, if

N ′j > 1, we have θ̃g(xj+1;xj−1) > θg(xj+1) according to

Eq. Eq. (A.28). This means that the F̃ function and the
identity function intercept at higher values than xj+1. In
other words, xj+1 < x̄j+1, and thus xj+1 − xj−1 < 1.
Conversely, if N ′j < 1, we have θ̃g(xj+1;xj−1) < θg(xj+1).

This means that the F̃ function and the identity function
can intercept at lower values than xj+1. In other words,
xj+1 > x̄j+1, and thus xj+1 − xj−1 > 1.

Therefore, N ′j appears to be a relevant proxy of the g-
dominated modes density over the whole spectrum. Indeed,
we remind that in the previous cases considered in Sects.
A.1 and A.2, whenN (νj+1) > 1, thenN ′j > 1 and δν2,j < 1,
and when N (νj−1) < 1, then N ′j < 1 and δν2,j > 1. Adding
in the results of the present section, we thus conclude that
over the whole spectrum:

0 < δν2,j < 2

sgn (δν2,j − 1) = sgn
(
1−N ′j

)
, (A.29)

where sgn() denotes the sign function.
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Appendix A.4: Illustration

We illustrate in Fig. A.2 the evolution of the second dif-
ference (Eq. Eq. (6)) with the reduced period, obtained by
solving Eq. Eq. (1). We show this evolution for two choices
of the coupling factor q = 0.1 and q = 0.4 in red and blue,
respectively. We also show, as dashed lines, the evolution of
the alternate de�nition for the g-dominated modes density
N ′ in Eq. Eq. (A.25). We observe that N ′ and the second
frequency di�erence cross at a value of 1, as expected from
the previous sections. As a consequence, we may locate the
transition where Nj = 1 using the second frequency di�er-
ence.

Fig. A.2. Second frequency di�erence δν2 as a function of the
normalised period of mixed modes (dots). The red and blue
colours are for q = 0.1 and q = 0.4, respectively. It is plotted
for a typical value of ∆ν∆π1 = 200. The corresponding dashed
curves show the evolution of N ′.

Appendix B: Deriving ζ′

With analogous reasoning as in Mosser et al. (2015), we may
express the variation of frequency with the mixed-mode ra-
dial order, n = np−ng. Assuming the spectrum to be dom-
inated by the pressure modes, N � 1, we consider that the
frequency of a mixed mode experiences a perturbation from
the evenly space frequencies, η. We write:

ν = n∆ν + η. (B.1)

Because of periodicity, when introducing this relation in the
phase of pressure modes, θp (Eq. Eq. (2)), tan θp becomes

tan
[
π
( η

∆ν
− εp

)]
. (B.2)

The derivation of Eq. Eq. (1) with respect to n, assuming
the �ve mixed-mode parameters to be constant with n, then
yields

1

∆ν cos2 θp

dη

dn
= − q

∆π1ν2 cos2 θg

dν

dn
. (B.3)

Finally, using the relation cos2 θp =
cos2 θg

q2 sin2 θg+cos2 θg
(ob-

tained from Eq. Eq. (1)), using η = ν − n∆ν, and the

de�nition of the g-dominated modes density evaluated in ν
(Eq. Eq. (4)), we retrieve the �nal expression:

dν

dn
= ∆ν

[
1 +

qN
cos2 θg + q2 sin2 θg

]−1

. (B.4)

We note that θg and N in Eq. Eq. (B.4) are two functions
of frequencies provided by Eqs. Eq. (3) and Eq. (4).

Appendix C: Radial order di�erence between
successive modes

Based Eq. Eq. (13), along with the fact that between two
g-dominated modes there may exist a p-dominated mode,
it is not obvious that ∆ng should be equal to zero or one.
By carefully studying the behaviour of �rst and second fre-
quency di�erences, Appendix A provides a justi�cation for
its value. Nevertheless, to focus only on the ∆ng parameter,
we follow a slightly di�erent but equivalent approach in the
present section.

From Appendix A, we know that the local value of the
period spacing is at most equal to the asymptotic value
∆π1. Furthermore, from the ordering of frequencies, ∆Pi
must be positive. We thus have (from Eq. Eq. (13)):

0 < ∆ng + ∆ψi/π ≤ 1. (C.1)

Also, we have that θp is an increasing function of the
frequency (see Eq. Eq. (2)), thus θp,i < θp,i+1. As the
arctan function is continuous and monotonous and the
tan function is continuous and monotonous over a given
interval θp ∈ [kπ − π/2, kπ + π/2] , k ∈ N, the ψi =
arctan (tan θp,i/q) is continuous and monotonous over the
same interval. In addition, in such an interval, ψi increases
with θp,i. Thus, ∆ψi < 0. Using the de�nition of the arctan
function, we know that ψ ∈ ]−π/2, π/2[ and ∆ψi/π must
be greater than −1. We may thus conclude that:

0 < ∆ng < 2, (C.2)

and, as ng only takes integer values, ∆ng = 1. This
demonstration does not hold in the case where two
successive modes span over di�erent intervals θp ∈
[kπ − π/2, kπ + π/2] , k ∈ N, the tan function is discontin-
uous. In that case, ∆ψi > 0 and it is necessary to have
∆ng = 0 to ensure ∆Pi/∆π1 < 1. Physically speaking,
this corresponds to the case when we alternate between a
g-dominated and a p-dominated mode and this is the pres-
sure radial order that changes, keeping a constant ng value.

Finally, with an analogous reasoning, we may conclude,
for the case of p-dominated spectra that ∆np, appear-
ing in Eq. Eq. (16), must also equal 1 for two successive
p-dominated modes. Again, when two successive modes
span over di�erent intervals θg ∈ [kπ − π/2, kπ + π/2] , k ∈
N, we alternate between a p-dominated mode and a g-
dominated mode, and the gravity radial order changes,
keeping in a constant np value.
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CHAPTER 6

Conclusion

The objective of the present study was to provide means to seismically and robustly characterise low-mass stars.
We considered main-sequence solar-like stars and their evolved counterparts, the subgiant and red giants. To that
end, we developed two probing techniques, WhoSGlAd (Farnir et al. 2019) and EGGMiMoSA (Farnir et al. 2021,
accepted for publication in A&A). We now summarise our results and discuss a few perspectives of our work.

6.1 Part I: Main-sequence solar-like stars

6.1.1 Summary

The WhoSGlAd method (Chaps. 3 and 4) relies on the Gram-Schmidt orthonormalisation procedure to build an
orthonormal basis of functions over which the observed frequencies are projected. This has the essential advantage
to be extremely fast, as the procedure corresponds to linear algebra, and to provide completely uncorrelated fitting
coefficients (assuming oscillation frequencies to be independent of one another). We paid a close attention to the
definition of seismic indicators, inspired by ‘classical’ indicators (e.g. Christensen-Dalsgaard 1988; Roxburgh &
Vorontsov 2003), by combining the fitted coefficients, in order to reduce at most their correlations. We demonstrated
that these indicators bear relevant structural information (Sect. 3.2.3) and allow us to tightly constraint stellar
models (Chap. 4).

In addition, our goal when developing the WhoSGlAd method was to account in a robust way for the acoustic
glitches that the oscillation spectra of solar-like stars may present (see Sects. 2.2.5 and 3.1.2). Thanks to the
Gram-Schmidt orthonormalisation and a linearised expression for the glitches (Eq. (3.17)), we were able to
completely decorrelate the glitches contribution from the smooth part while simultaneously accounting for it. This
is in opposition with most of the method previously presented in the literature (e.g. Monteiro et al. 1994; Houdek
& Gough 2007; Basu et al. 2004; Verma et al. 2014). Because of the highly non-linear formulation used by these
techniques, they tend to discard the contribution of the smooth part to isolate only the glitches and resort to
non-linear minimisation techniques, which can introduce unwanted correlations between seismic indicators.

We proceeded to demonstrate the excellent probing potential of our indicators. The large frequency separation,
∆, tightly constrains the mean stellar density. The averaged small separation ratios r̂01 and r̂02 inform us about the
central composition and the evolutionary stage. This is similar to the ‘classical’ small separation ratios (Roxburgh
& Vorontsov 2003) but with a greater precision and reduced correlations with the other indicators, as a result of
the orthonormalisation. The combination of these three indicators already allows us to constrain the age, mass,
radius, and composition of an observed target. We also defined the large frequency separation ratios, between the
two spherical degrees 0 and l, ∆0l. We illustrated the ability of ∆01, when combined with r̂01, to probe the amount
of central overshooting for main-sequence stars that preserved a convective core (i.e. with M & 1.1 M�). This is
not unlike the work of Deheuvels et al. (2016) who demonstrated that the mean frequency ratio between modes of
spherical degrees 0 and 1 and the slope of this small separation as a function of the radial order n indeed constrain
central overshooting. We also defined the amplitude of the acoustic glitches of both the helium second-ionisation
zone, AHe, and of the base of the convection zone, ACZ. Both indicators are completely decorrelated from the
smooth indicators. While ACZ happens to be barely significant in the main-sequence solar-like pulsators we
considered, thus being uninformative, AHe allows us to constrain the helium surface abundance, which cannot be
retrieved otherwise. We however showed a non-negligible correlation between this indicator and both the metals
abundance and the stellar mass. Nevertheless, as the stellar mass and composition are also constrained by the
smooth indicators, the possible degeneracy is lifted.

Using these seismic indicators, we applied our technique to several observed targets (Chap. 4). We first
considered the 16 Cyg system (Sect. 4.2), which consists of two benchmark stars for which seismic data of
unprecedented quality have been gathered. Using four of our seismic indicators (namely ∆, r̂01, r̂02, and AHe), we
were able to adjust the stellar mass, age, and chemical composition. We did so while testing different hypotheses
for the physical ingredients of our models, such as the solar chemical mixture reference, the opacity, and the
equation of state tables. Overall, we computed 22 models for each star and observed the necessity to include
non-standard processes, such as turbulent diffusion, in order to account for non-seismic constraints. These data
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were not explicitly part of the set of constraints. As the stars are binaries, they are expected to have a common
origin and we also computed a set of models assuming common formation scenarios for the two stars. This
means that we either assumed the stars to have a common age and initial composition or a common age only,
as accommodating for all these constraints turned out to be a difficult task. We indeed observed that, with the
exception of a few cases, we were not able to adjust all the seismic constraints while requiring common ages and
compositions. Allowing different compositions in each star, we managed to improve the results in a few cases.
The study of the 16 Cygni system demonstrated the importance of using precise constraints in order to compute
precise models. However, it also demonstrated the large impact of the current uncertainties in stellar modelling
(as the numerous reference tables testify). Therefore, the use of highly precise data is an essential step to constrain
such models and highlight their limitations. Finally, the second part of the study of the system (Buldgen et al.
2021, in prep.) has shown that the use of our method already yields excellent results; structural inversions do not
point towards significant differences between our reference models and the real stars, in view of the error bars.
This lead them to conclude that we may not assert the necessity of specific non-standard processes to accurately
represent the data.

The second application of our method was the characterisation of the Kepler Legacy sample (Lund et al. 2017),
the current best solar-like dataset. Our goal was to isolate trends between stellar parameters, specifically between
the initial hydrogen and metals content, providing a galactic enrichment ratio ∆Y/∆Z, and between the amount
of central overshooting and mass. By a linear adjustment, we retrieved a galactic enrichment ratio well within
typical literature values while the primordial helium abundance is rather large (e.g. Ribas et al. 2000; Lebreton
et al. 2001; Peimbert et al. 2002; Balser 2006; Casagrande et al. 2007; Verma et al. 2019). This could be the result
of a different choice of solar-mixture reference. We indeed used the AGSS09 (Asplund et al. 2009) reference and
noted, for 16 Cyg, that the use of a more metallic solar mixture, such as GN93 (Grevesse & Noels 1993) or GS98
(Grevesse & Sauval 1998), leads to models which are more metallic and less helium rich. Finally, we also noted,
for stars with masses between ∼ 1.1 M� and ∼ 1.6 M� that there is a positive correlation between the amount
of central overshooting and the stellar mass, very similarly to the conclusions of Claret & Torres (2017, 2018).
However, the data presented an important scatter around the linear trend.

6.1.2 Perspectives

The developed method opens numerous perspectives. The first and most obvious one is to pursue the characterisation
of the Kepler Legacy sample (Lund et al. 2017). To do so, using a finer grid in the overshooting parameter could
be of a great help and significantly increase the number of stars for which acceptable models are retrieved. It
would also be especially interesting to select several targets in the sample to take the most advantage of the precise
WhoSGlAd indicators and carry a thorough analysis, as we did for the case of 16 Cyg. This would be the occasion
to study the impact of different choices of input physics on central overshooting.

Another interesting application would be the study of our Sun. It constitutes a first choice target as a result of
the large number of modes that can be detected. Consequently, we would like to put our technique to the test by
tackling the Sun as a star problem, that is to use frequencies of degraded quality to meet the quality of typical
observed stars. Trying to find models representative of the measured seismic indicators and comparing them with
our knowledge of the Sun would be particularly interesting as a performance test of our technique.

Beside applications, we would also like to account for the correlations between individual frequencies in
our technique. This would ensure that the adjusted coefficients are decorrelated and therefore that our seismic
indicators are as uncorrelated as possible. This is necessary to put the most stringent constraints on stellar models.

6.2 Part II: Subgiant and red-giant stars

6.2.1 Summary

The EGGMiMoSA method (Chap. 5) we developed has been tailor-made to the specific case of the mixed-mode
spectra exhibited by low-mass subgiants and red giants. Relying on educated guesses for the mixed-mode parameters
(i.e. ∆ν, ∆π1, εp, εg, and q), it efficiently and automatically provides an adjustment to the asymptotic formulation
of mixed-modes, even in the most complex cases where the spectra seem irregular. This enables the fast and
automated measurement of the mixed-mode parameters in a coherent way for both subgiants and red giants, which
can be used as precise seismic indicators.

We then proceeded to demonstrate the ability of the mixed-mode parameters to probe the stellar structure
over a grid of stellar models considering different masses and compositions, throughout the subgiant and red-giant
phases until the luminosity bump. Overall, we noted that the mixed-mode parameters exhibit different behaviours
according to the evolutionary phase. The evolution of these indicators is largely influenced by the stellar mass
during the subgiant phase while it becomes nearly insensitive to it on the red-giant phase. This results from
the differences in core-envelope density contrasts between these phases. Indeed, as the star evolves through the
subgiant and red-giant phases, its core contracts while its envelope expands, increasing the density contrast.

A remarkable result of our study is the ability to combine measurements of ∆ν and ∆π1 to determine the
age, mas, and radius of subgiant stars. This is also possible for red giants more massive than ∼ 1.8 M�. We have
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demonstrated that the degenerate evolution of ∆π1 as a function of ∆ν for red-giants less massive than ∼ 1.8 M�
results from the central electron degeneracy, which is lifted above this threshold.

Following the evolution of the other indicators, we noted a qualitative agreement with both observational
and theoretical studies (e.g. Mosser et al. 2014, 2017; Pinçon et al. 2019, 2020). We noted that the mixed-mode
coupling factor sharply increases during the subgiant phase, then sharply drops before the red-giant phase and,
finally, steadily decreases along this phase, as observed by Mosser et al. (2017). We were also able to present
the first evolution of the gravity offset over a grid of models. Our results agree with both the observations from
Mosser et al. (2018) and the analytical results of Pinçon et al. (2019). However, as the evolution of εg remains too
unstable, improvements to its determination are necessary for it to serve as a constraint to models.

6.2.2 Perspectives

While we have demonstrated that our method holds great promises for the future of subgiants and red giants
seismology, we have not yet used it for the detailed probing of specific targets. For example, applying our technique
to several subgiants for which l = 2 modes have been detected will be of particular interest. These modes will
further help constrain the mixed-mode parameters and increase their precision. Namely, the period spacing of
dipolar and quadrupolar modes are proportional and differ by a factor of

√
3 (see Eq. (2.85) for l = 1 and l = 2).

The work of Li et al. (2020) contains several good examples of Kepler subgiants for which quadrupolar modes have
been measured. The case of subgiant stars is distinctly relevant as they will be part of the core-science program of
the PLATO mission (Rauer et al. 2014). We may therefore expect precise frequencies to be measured for those
stars.

In order to apply our technique to observations, a few improvements might be necessary. First of all, the
method currently assumes modes to be successive. This does not constitute a critical issue, as we expect several
modes identifications to be available (see the works of Mosser et al. 2015; Gehan et al. 2018; Appourchaux 2020, for
example) and the expression we use can easily accommodate for such holes in the observed spectra. Nevertheless,
the initial parameters estimation may be impacted. Therefore, a revision of this estimation may be necessary.

A second improvement of our method will be the inclusion of higher-order contributions to the phase of pressure
modes (e.g. Mosser et al. 2012c), which was shown to have a significant impact in evolved red giants, and to
introduce a dependency of the coupling factor with frequency (e.g. Cunha et al. 2019; Pinçon et al. 2020), which is
again significant for the late red giants.

Finally, it would be particularly interesting to account for the signature of glitches in the spectra. First of
all, we would like to study the acoustic glitches present in radial modes (e.g. Miglio et al. 2010), for which the
WhoSGlAd method is already available and of which the efficiency has been proven. Second, we would like to
account for buoyancy glitches (e.g. Cunha et al. 2015), which have been demonstrated to hold precise and localised
information, and should allow us to tightly constrain stellar properties.

6.3 General perspectives

With the two methods we developed, we have at hand tools that allow us to constrain the structure and evolution
of solar-like stars throughout most of the phases they live through during their existence. This constitutes an
essential step to their complete understanding. Furthermore, as both methods are fast and automated, they
are well suited to the treatment of the already available large catalogues of precise seismic data as well as the
abundant data that the future PLATO mission is expected to generate. This will further fuel the many synergies
between asteroseismology, even stellar physics, and other astrophysical fields. This could provide substantial
amounts of precise stellar parameters determinations, necessary to the precise characterisation of exoplanets and to
exoplanetology. This will open the possibility to carry reliable statistical studies of stellar populations, highlighting
possible relations between stellar parameters.
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