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AVANT-PROPOS

E TEXTE qui suit est une synthése d’un travail d’enseignement et de recherche qui a pris
place a I'Université de Liege dans le cadre d'un mandat d’Assistant. Cet avant-propos
expose les raisons pour lesquelles 'auteur ne poursuit pas la rédaction de ce document

ni n’en soutient la thése devant un jury.

Tout est bien qui finit

Le mandat d’Assistant dont les travaux sont exposés dans la suite a couru d’octobre 2013 a
décembre 2010, soit un mandat de deux ans, deux fois renouvelé ainsi qu'une septiéme année
et un contrat additionnel de 3 mois. Le présent document a majoritairement été écrit les six
premiers mois de 2021, alors que l'auteur était demandeur d’emploi. Quelques sections ont été
ajoutées en 22 et 23. Arrivé a dix années au compteur, il est temps de cléturer ce travail et de
passer a autre chose.

Dans la suite, jexpliquerai pourquoi jestime que les prétentions de ce travail sont tenues
en échec. Ensuite, je conclurai en l'irréductibilité de cette impasse, en analysant ses conditions
matérielles de production.

Enfin, j’ajoute un petit guide de lecture, une légende, littéralement « ce qui doit étre lu »,

c’est-a-dire comment aborder le contenu de ce document.

Avertissement La situation intrinséquement précaire des assistants est inhérente a ’ensei-
gnement supérieur universitaire : c’est ainsi que le systeme procede. Le tableau décrit dans la
suite ne consiste pas, a proprement parler, ni un dysfonctionnement, ni — au sens propre — une
aberration. Le lecteur attentif veillera donc a ne pas lire plus de mots que ceux qui sont écrits, en
particuliers des attaques ou reproches adressées a qui que ce soit. Il essaiera également de ne

pas inférer des passions ou du ressentiment des propos de 'auteur.

Omnia obstant

Le travail qui a été réalisé comporte plusieurs volets, chacun occupant une partie de ce document.
La premiere partie se concentre sur une méthode de programmation utilisant un dessin, I'inva-

riant graphique, qui est une représentation de I'invariant de boucle. Notre méthode consiste a



utiliser le plus possible ce dessin lors de la rédaction du code du programme. La version formelle
de cette méthode a été introduite par Dijkstra. Par la suite, la méthode de Dijkstra a pu étre
illustrée par des dessins. Notre approche implique l'utilisation du dessin lui-méme, a la place du

formalisme logique.

La seconde partie du document présente un outil, appelé Correction Automatique et Feedback
des Etudiants (CAFE) dans sa premiere version. L'idée derriére cet outil était de permettre
Iexercisation des étudiants tout en promouvant la méthodologie de programmation grace a

Iinvariant graphique.

La derniére partie du document détaille, comment I'introduction de CAFE peut étre vue
comme une modification des pratiques d’évaluation dans le cours qui l'utilisait. Des liens sont

établis avec le paradigme de ’Assessment for Learning (AfL).

Pour bien faire, il serait souhaitable que ceux qui prétendent détenir une méthode de pro-
grammation efficace prouvent leurs dires. Je ne sais pas pour les autres mais moi, je n’en ai
jamais été capable. Ma seule bonne foi ne devrait satisfaire quiconque ! Une expérience a été mise
en place pour mesurer I'impact de 'invariant graphique sur les programmes des étudiants. Je ne
dirais pas que c’est un échec : ca n’a pas marché. En effet, cette démarche expérimentale a été
malmenée par un éniéme confinement dii a la Maladie & Coronavirus 2019. Mais il n’y en eut pas

d’autres, faute de temps.

L'outil CAFE a d’abord été déployé avant que sa réception par les étudiants ne soit étudiée.
Rapidement, son utilisation a donné lieu a une collecte de données, facilitée par sa nature de
programme informatique. Il suffit d’enregistrer tout un tas de logs. Par la suite, nous avons
analysé ces données, en étant souvent limités par les données que nous avions déja, parce qu’il
avait été aisé de les collecter. Nous ne pouvions pas non plus sacrifier 'enseignement pour la
recherche et prévoir des protocoles de prise de données qui auraient impacté négativement
Papprentissage des étudiants dont nous avions la charge. Ainsi, les « questions de recherches »
présentées dans ce document ont certainement des points aveugles et ou des biais. De plus, il est
arrivé que le taux de réponses des étudiants aux enquétes et sondages soit si faible qu’il aura

rendu certaines données inexploitables.

L'auteur de ce document n’est plus en poste a I'Université de Liége et ne travaille plus
sur CAFE, dont une nouvelle version a été développée par ailleurs. Il n’enseigne plus dans un
cours qui met ainsi en exergue la programmation a ’aide d'un invariant graphique. Il n’est
donc plus possible pour lui d’évaluer cette méthode, ni son utilisation dans un outil qui la
favoriserait, ni I'impact qu’elle a dans le processus d’évaluation d’'un cours de premiere année

dans I'enseignement supérieur.

Il serait vain de s’acharner a vouloir faire dire aux données collectées ce qu’elles ne pourront
jamais exprimer. Plus encore, cela irait a I’encontre de la démarche scientifique. C’est pour ces

raisons qu’il vaut mieux arréter maintenant : continuer serait une pure perte de temps.
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Légende

Ce document comporte trois parties principales :
I. la présentation de notre méthode de programmation ;
II. la présentation de CAFE et son implémentation ;

ITI. la présentation de l'utilisation de CAFE dans le cadre d’'un cours de premiére années (appelé

CS1 en anglais).

La partie I a fait 'objet d'une publication [34], que le chapitre 2 développe avec force détails. Ce
chapitre a récemment été complété pour répondre aux objections souvent rencontrées concernant
notre méthodologie par dessins. En particulier, notre méthode est tout a fait compatible a des
algorithmes concernant des structures de données non linéaires et ne nécessite pas d’écrire
une boucle unique. Le lecteur a I'occasion de se plonger dans la méthode a I'aide des nombreux
exemples qui sont fournis. Enfin le chapitre se cloture par un lien entre notre méthodologie et la
notion de précondition la plus faible.

La suite de cette partie balise le travail d'une évaluation de 'efficacité de 1a méthodologie
sur la programmation en dressant une « taxonomie » des erreurs courantes et en relatant une
premiére tentative d’évaluation qui a échoué.

La partie II n’a plus qu'une valeur historique puisqu’elle documente la premiere version de
CAFE qui a évolué depuis. Certaines décisions d’'implémentations des versions suivantes sont
sans doute inspirées de celle qui est décrite dans ce document.

La partie III contient une approche réflexive de 'intégration de CAFE dans un cours de
premieére année dans I'enseignement supérieur en Belgique. Sa lecture permet de se faire un bon

apercu des écueils rencontrés dans une telle entreprise.
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INTRODUCTION

ITH the digitalisation era we are currently facing, the industry is more and more

in demand for coding skills from their employees [36]. This importance of coding,

first highlighted by Papert [150], is currently supported by recent researches [132].

In such a context, it is of the highest importance for Higher Education entities to enhance
students training in computer programming. This document contributes to this enhancements
by proposing and evaluating a programming methodology based on a graphical version of Loop

Invariant as well as tools and activities that help teaching it in a first year course.

A Challenging Context

In Belgium, open access to Higher Education is the rule, with some exceptions in the Medicine
and Engineering Faculties. Any student who graduates from secondary school, regardless of their
curriculum, can enrol at the university. Hence, we cannot make any kind of assumptions about
a first year student’s background. In particular, it is usual for a first year student in Belgium
to lack skills in Mathematics, leading to poor abstraction capacities as well as a lack of rigour
in problem solving. However, the Joint Task force on Computing Curricula “recognize[s] that
general facility with mathematics is an important requirement for all CS students” [181, p. 49].

In addition, even if we set aside the prerequisites for the CS curriculum, is is worth noticing
that a freshperson must learn a lot of new concepts and tools in order to eventually compile and

run their own code:

e How a computer works? To begin with, the data representation may be a challenge to
understand. Every data manipulated by a computer is composed of bits: the integers, the
floating point numbers, the characters, the images, the sound, and so forth. For example,
in C language, all these expressions look like but are very different in term of values and
representations: 0,0.£,0., '0"', "0", "\o'lL

* Using a terminal. In many situations, using a command-line interface is handier than

a GUI to perform certain tasks e.g., to call a compiler. But again, deciphering an error

1 Respectively: 0 as an int; as a float; as a double; the character 0, which equals 48; the string composed of the

character 0 and null terminating byte; the null terminating byte, which equals 0.
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message printed following an aborted compilation demands some training for a neophyte:
for the first time, the punctuation marks matters (or the indentation if resp. C or Python is

concerned).

* A very new language but that reuses already known symbols, but with sometimes a quasi-
opposite meaning. Let us take the example of the ‘=". In mathematics, writing x = 3 means
that the value of x is fixed and will not change any more. Such an expression would
typically appears in the conclusion of a mathematical reasoning. On the other hand, in a
computer program, x = 3 could appear nearly anywhere in a piece of code, especially at the
beginning, to initialise the value of x. This value of x could constantly change through the
program execution. Of course, an expert does know that very well? but it is not surprising

to see beginner students struggling with such false friends.

e New ways of thinking Who apply Divide-and-Conquer strategy on a daily basis? Who
can genuinely pretend that recursive thinking is intuitive (or any other computer-related
concept)? Even if it were so, referring to such intuitions would not be of any help for novices.
In French, the popular expression “la bosse des maths” is inherited from Phrenology [158],
a pseudoscience of the 19th century that hypothesised the character of a person could be
inferred from their skull shape. The expression remained in French to describe people
naturally gifted in maths. Those who lack of maths skills have their ad hoc explanation:
they do not possess “the bosse”, as the Muggles cannot use magic in Harry Potter nov-
els [161]. Those kinds of popular beliefs about maths are harmful enough to be transposed

to Computer Science by invoking concept such as intuition while introducing a subject.

To sum up, here is this document challenge: to make a freshperson learn to write short
programs without relying on any mathematical or CS-like background or intuitions. To do so,
we introduce the students to a programming methodology based on Graphical Loop Invariant.
Moreover, to help the students to strengthen their programming skills, we help them to work on
a regular basis thanks to a Programming Challenges Activity (PCA) which consists for them to
solve short programming problems that are automatically corrected by Correction Automatique
et Feedback des Etudiants (CAFE), a program we developed to assess both the program and the

way it was written in line with our programming methodology.

INFO0946: Our CS1 Course

In the previously introduced context, we® organise each year a CSI course at the Montefiore

Institute of the University of Liege and is entitled “Introduction to Computer Programming”. The

2 The = may keep being confusing. Passing from C to Python, the = operators have slightly different semantics:
C’s = looks more like Python’s :=.
3 The author of this document was the Teaching Assistant of the course from 2014 to 2020.

ii



FEW WORDS ABOUT OUR PROGRAMMING METHODOLOGY

course is scheduled from mid-September to mid-December. The course content addresses the

following topics [58]:

* “Basic syntax and semantic of the C language;

¢ Simple algorithms (linear run of an array, cumulative mathematical operations, binary
search, introduction to sorting problems);

¢ Dividing a problem into sub-problems and introduction to development methodology (prob-
lem analysis, Loop Invariant, Loop Variant);

¢ Algorithms analysis (complexity);

* Basic data structures (record, array, string, files);

* Program modularity (function/procedure, global variable) and documenting code with
specifications (defensive programming);

* Pointers and memory dynamic allocation”.

In the following of this document, the course will be referred as “our CS1” course.

Few Words about our Programming Methodology

Our CS1 course introduces a programming methodology based on what we call a “Graphical Loop
Invariant”. We introduce here briefly the rationale behind this concept. As the name indicates, a

Graphical Loop Invariant is both a Loop Invariant and a picture.

Loop Invariant A loop is a code instructions that asks the computer to repeat a set of instruc-
tions until a condition is met. The quantities manipulated by the program vary constantly
during a loop execution. However, the principle of a Loop Invariant is precisely to focus on

what does not vary, hence the name: invariant.

Picture We promote graphic representation because it enables to express succinctly a large
amount of information. Drawing a picture is a heuristic for solving problem mentioned
by Pélya [155]. Our programming methodology also refers to diagrammatic reasoning [7]

since it is based on a picture to help write the code of a program.

Focusing on What Does not Vary

Describing and understanding the changes in a system can be effectively done by focusing on
what does not vary in it. The examples are numerous in Science: all the conservation equations
describe what is conserved in a system and enable to predict this system evolution. Let us take
a non-CS example with the chemical reaction involving methane and dioxygen (i.e., methane
combustion) [134]:

CHy4 +209 — 2H50 + COq 1
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Figure 1: Emergency exit direction as it can be found in Montefiore Institute [171].

If we just consider what is changing, we notice that methane (CHy) is burned in presence of
dioxygen (O2) and form water (H2O) and carbon dioxide (COg).

Now, if we consider what is conserved, we know (from the principle of mass conservation)
that atoms cannot be created nor destroyed during such a reaction, hence both sides of the
equation represent 1 atom of carbon, 4 atoms of hydrogen, and 4 atoms of oxygen, enabling us to
equilibrate the reaction by introducing coefficients before Oy and HyO in equation 1. Therefore,
we can conclude that to burn 5 molecules of methane, we need 10 molecules of dioxygen and the
combustion will produce 5 molecules of carbon dioxide and 10 molecules of water.

Moreover, the conservation of energy states that the total energy of an isolated system is
conserved. If the methane combustion happens in a closed system, we can calculate and predict
the energy that will be released during the combustion [134].

To sum up, focusing on what is conserved during a phenomenon as the methane combustion
makes it possible to accurately describe and predict what is going on while we experiment even a
quick and brutal change (here, a burning gas). The transposition of the observations of properties
that are conserved to values manipulated by a computer program is the principle of the Loop

Invariant.

Pictures to Communicate Information

Drawings are powerful to represent succinctly ideas [7, 155]. This can be illustrated e.g., with
Fig. 1 which is composed of three subsequent symbols: a person running, an arrow, and a
rectangle. Anyone who sees this picture identifies themself as the running person, understands
that the arrow represents a direction, and that the rectangle stands for a door. Additionally,
the subtext associated with the pictogram is to follow the arrow direction to find a door to be
used but just in case of emergency. This example illustrates that picture may communicate a lot
of information with only a few symbols. Our Graphical Loop Invariant will also leverage that

property.

Main Contributions

This document presents a Graphical Loop Invariant Based Programming (GLIBP) methodology
and its use in a CS1 course, including is integration into a Programming Challenges Activity
(PcA) that consists of small programming exercises that are automatically assessed and graded.

Here are our main contributions:
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. We describe how we pushed further the use of Graphical Loop Invariant as a programming
methodology. We bring rules that students can follow in order to find their own Graphical
Loop Invariant for a particular problem. the rules may also be used to assess such Graphical

Loop Invariants.

. We describe how the drawing can be manipulated to deduce the code instructions. The

graphical modifications take the place of calculations as equation solving.
. We show how to represent data structures in our programming methodology framework

. We present learning tools that may be used in to drawn Graphical Loop Invariant (the
Graphical Loop Invariant Drawing Editor (GLIDE)) and to communicate Graphical Loop

Invariant to an automatic correction system (the Blank Graphical Loop Invariant)

. We present results about the student’s participation in teaching activities related to our

methodology to answer the research question:

RQ 1.1 How the students seize the opportunity to practice the GLIBP
methodology?

. We present a taxonomy of error and leverage it to answer the following research questions:

RQ 1.2 What kind of error are committed using the GLIBP methodology?
RQ 1.3 Can we link the error committed with the GLIBP methodology to

programming errors?

. We present the results of several surveys we conducted to answer the following question :
RQ 1.4 How the GLIBP methodology is perceived by the students?

. We describe a Crossover Randomised Control Trial to assess the GLIBP methodology to

answer the question:

RQ 1.5 Does the GLIBP methodology enable to write better pieces of code?

However, the second lock-down due to the Covid-19 pandemic [190] forced us to modified

this question into the following:

RQ 1.5 Does the Blank Graphical Loop Invariant enable to write better

pieces of code?

. We answer to the question:

RQ2.1 Can we get a system that automatically assess the GLIBP and

provide relevant feedback?
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By presenting CAFE, a system that enables to automatically correct both students code and
Graphical Loop Invariant. CAFE provide students with a message containing feedback and
feedforward.

10. We provide an evaluation of CAFE’s message to answer the question:
RQ 2.2 How the feedback produced by CAFE is received by students?

11. We introduce and evaluate a PCA that is a programming activity consisting for students
in submitting small pieces of codes — called challenges — to CAFE through a submission
platform several times during the semester. Doing so, we align the course on Assessment

for Learning (AfL) principles. We address the following questions:

RQ 3.1 Does the PCA and its multiple features promotes student’s
engagement during the semester?

RQ 3.2 Does the course transformation through Assessment for Learning
(AfL) lead to a stronger students’ engagement and a higher

success rate?

List of Papers and Talks

The work discussed in this document lead to several publications and talks that are listed
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Outline

This document is divided in three part. The first part concerns our programming methodology

based on Graphical Loop Invariant. Chap. 1 introduces the background about Loop Invariant

from the start, i.e., the definition of a computer program. Chap. 2 desribes in depth our pro-

gramming methodology. Chap. 3 present tools we developed to facilitate the learning of the

GLIBP methodology. Chap. 4 introduces a taxonomy of errors that can be committed using the
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methodology and answers the research questions about GLIBP methodology reception. Eventually,
Chap. 5 describes our attempt to assess the efficacy of the Graphical Loop Invariant to deduce
correct code and explains why we had to focus on assessing the impact of the Blank Graphical
Loop Invariant in a Crossover Randomized Controlled Trial (RCT) whose results turned out to
not be significant.

The second part of the document introduces CAFE, a program to automatically assess students
programs and provide them with feedback and feedforward. Chap. 6 introduces the part by
presenting the background on automatic assessment and positions CAFE with respect to the state
of the art. Chap. 7 explains how CAFE works and is implemented. Chap. 8 evaluates CAFE’s
message reception through the analysis of students’ behaviour and perception.

The third part of the document addresses the Programming Challenges Activity (PCA).
Chap. 9 presents the PCA and explain how its introduction enabled to align the course to the
principles of Assessment for Learning (AfL). Chap. 10 is dedicated to the PCA evaluation while

Chap. 11 focuses on assessing the overall course transformation in the context of the AfL.
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CHAPTER

LOOP INVARIANT PROGRAMMING BACKGROUND

HIS CHAPTER introduces the required background for the first part of the thesis. In

particular, it focuses on Loop Invariant and its application to programming. First,

Sec. 1.1 defines the main terms that are used throughout the thesis. Sec. 1.2 introduces

the Loop Invariant in the context of program proofs. Sec. 1.3 shows its interest in the context of a
constructive approach. Sec. 1.4 presents the literature about the Loop Invariant.

The rest of the chapter aims at introducing our own methodology. In the thesis introduc-
tion, we already announces that in the context of our CS1 course, we promote a programming
methodology based on Loop Invariant. Sec. 1.5 investigates how programming books address the
introduction to loops and what kind of programming methodology they present to write them.

Eventually, Sec. 1.6 draws a conclusion and introduces our research questions.

1.1 Programs, Programming and Loops

1.1.1 Preliminary Definitions

Computer programming refers to the activity consisting in writing programs code. Learning
to program is typically done through a CS1 course, usually provided to 1st year students (or
students early in their curriculum).

Generally speaking, a program designates data manipulations performed by a computer. A
computer performing the operations specified by a program is said to be executing the program.
The code of the program is a text, written in a particular programming language, that
describes non-ambiguously these data manipulations.

From the user point of view, a program can be seen as a black box, as can be seen in Fig. 1.1:

they does not necessarily know how the program works but they may give data as input and
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Figure 1.1: A program as a black box

observes how it is transformed and returned as output by the program. In practice, all the
programs cannot accept all kinds of data and are only able to manipulate data respecting some
constrains, called the Precondition. The description of a the result of a program execution
whose precondition is fulfilled is called its Postcondition. Most of time, the user has access to

the program manual that provides, at least its Precondition and Postcondition.

1.1.2 How to Write a Program?

We are not offering here a comprehensive description of how to write a program: several books
would not be sufficient! However, the main steps to write a computer program include the

following:

¢ Problem analysis;
¢ Code writing;

* Code Testing.

The order of these steps depends on the methodology followed. For instance, Test Driven
Development methodology [19] asks to write tests before writing the code. The steps sequence
is also not linear: one does not have to fully complete the analysis to begin the code writing.
In fact, modern approaches consider cycling through the several steps as an issue needing for

re-analysing the problem may arise in any other steps.

1.1.2.1 Problem Analysis

A program is written to solve a particular problem. The problem analysis consists in defining
precisely the problem to solve: what are the input and the output (thus defining the Precondition
and the Postcondition)? Should other data be used? This steps may also include the study of the
data structures the program has to manipulate, e.g., a particular data base, file(s), and so forth.

If the problem to be solved by the program is large and seems difficult to address, one must
divide it in smaller sub-problems that will be eventually solved more easily. This is often referred
as following a Divide-and-Conquer strategy. Dividing a big problem in smaller ones; specifying
them by defining their Precondition and Postcondition and determining how they interact with
each other in order to solve the main problem is an important part of the analysis step.

In the following of this thesis, when we introduce a particular (sub-)problem, we are going to
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document it in this way:

PROBLEMNAME:

Input — Precondition

Output — Postcondition

The program names will be in small capitals and camel cases, the Precondition and the

Postcondition will be stated after the keyword “Input” and “Output”, respectively.

1.1.2.2 Code Testing

Testing consists in checking that a program execution has the expected behaviour (in terms of
result, performance, security, and so forth).

As far as the correct result is concerned, one of the most obvious test consists in passing input
data to a program and verify that the output is what was expected (i.e., that if the input respects
the Precondition then the Postcondition is respected at the end of the program execution). One
may also assure that a particular input will not cause the program to crash or to run indefinitely.
If a program consists of several sub-problems, it may be simpler to first test them independently.
Then, as soon as the sub-problems passed the tests, their integration in the program must also
be tested. There are a lot of techniques to perform tests on a program and this is not the subject
of this part of the thesis.

However, it is worth noting that, as Dijkstra [565] wrote, “Program testing can be used to show
the presence of bugs, but never to show their absence!” (p. 7). The absence of bugs, i.e., the code
correctness, can indeed only be assured by a mathematical proof. Due to the lack of resources
to systematically prove the correctness of all the code that are written, testing is better than

nothing and is sufficient in non-critical contexts.

1.1.2.3  Writing the Code

This step consists in establishing precisely how the data must be manipulated and then writing
the corresponding code in a particular programming language. The precise and non-ambiguous
description of a particular data manipulation is called an algorithm. An algorithm may be
implemented (i.e., expressed) in any programming languages. Books that present algorithms
often use pseudocodes* to express them.

Algorithms consists of sequences of instructions that describe operations on data. There
are several sort of instructions: computing a value by evaluating an expression, calling another
problem to use its result, making a choice between several instructions thanks to a test and

repeating instructions several times.

4 Most of time, such pseudocodes look like C language (that is why we will not use pseudocode in the following)
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Repeating instructions several times is the core of complex algorithms and can be achieved,

mainly in two way:

1. By recursion, which consists, while solving a problem, in identifying this same problem

among its sub-problems. This thesis does not address recursion, as the course

2. By iteration, using loops, as it is described in the following

1.1.3 Loops and their Semantics

while (loop_condition)

loop_body

Listing 1.1: Syntax of a loop loop_condition is an expression and loop_body is an instruction

(most of time, it is an instructions block surrounded by curly brackets.

Loop Body

Figure 1.2: Loop semantic as a flowchart. The plain black circle at the top indicates the beginning
of the execution flow and the one that is circled at the bottom indicates its end. The diamond
represents a test, here called LC for Loop Condition. The outgoing arrows of the diamond are
labelled with the two possible test outcomes.

The Listing 1.1 shows the syntax of a while loop and Fig. 1.2 illustrates its semantic: while
(hence the name) the Loop Condition is evaluated at the value True®, the Loop Body is executed.
As soon as the Loop Condition is evaluated at the value False, the loop ends. The Loop Condition
is therefore a condition upon which the iteration goes on. We refer to its logical negation as the
Stop Condition.

Let us take an example of loop with the following problem:

FACTORIAL:

Input- n=0
Output — f =n!

The code corresponding to the problem is given in Listing 1.2. The variable i is used to

5In C, any value different from 0 is considered as True
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enumerate all the factors from 1 to n. The variable f is used to accumulate the result of the
multiplications during the iteration. At the end, the reader may convince themself that f contains

the value n!. But should they do so? The next section brings a more convincing answer.

// Pre: 0 <= n
// Post: f= n!

i = 0;
f = 1;
while (i < n)
{
i =1i + 1;
f = f *x i
}

Listing 1.2: Code for the factorial of n

1.2 Loop Invariant and Proof

Instead of reading carefully a code to convince oneself that the code is correct, it is possible to

prove the code correctness. Hoare [88] proposed to write triplet of the form®
{P}Q{R}

where P and R are conditions (or assertions) and @ is a program. The triplet means “If
the assertion P is true before initiation of a program @, then the assertion R will be true on
its completion” [88]. He also proposed an axiom schema and several rules of inference to write

program proof. Here they are:

* “D0 Axiom of Assignement
F{Po}x := f {P}
where x is a variable identifier; f is an expression; P is obtained from P by substituing f
for all occurences of x.” [ibid.]
* “D1 Rules of Consequence
If -{P}Q{R} and - R > S then I {P}Q {S}
If - {P}Q{R} and - S o P then + {S}Q {R}” [ibid.]

¢ “D2 Rule of composition

If-{P}Q1{R1} and - {R1}Q2{R} then - {P}(Q1;Q2){R}” [ibid.]

e “D3 Rule of Iteration
If = {P AB}S {P} then - {P}while B do S {—~B A P}” [ibid.]

6 In Hoare’s first work, the triplets are written P{Q}R. Nowadays, there are noted {P} @ {R}. We used the later
form, even in the quotes of the original work.
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1.2.1 Proof for the FACTORIAL Program
We want to prove the following triplet:
{n = 0} FACTORIAL{f =nl!} (1.1)

i.e., that if n = 0, the execution of the program FACTORIAL will give us the value n! stored in the
variable f. If we detail the content of FACTORIAL code (see Listing 1.2) in equation 1.1, we obtain

the following:
{0=<n}
P (1.2)
while(i <n)do(i =i+1;f =f xi)
{f =nl}
In order to prove the triplet 1.2, we will show that

{0<n}i=0;f=1{0<sisnAf=il} (1.3)

{nzinf=il}while (<n)do (i=i+1;f=fxi){f =nl} (1.4)

are both proven triplets. By the application of the rule D2 on triplets 1.3 and 1.4, we will conclude
that triplet 1.2 is proven.

1.2.1.1 Proofof {(n=0}i=0;f=1{n=iAnf=il}
First, let us take the definition of the factorial as proven:

Fol=1 (1.5)
Fil=G-D!xi@(fi>0) (1.6)

By applying the axiom schema D0 we can write
F{0=0=nAO0l=1}i=0{0<i<snAil=1} 1.7
FO0<sisnAil=1}f=1{0<i<nAil=Ff} (1.8)
By the rule D2 on triplets 1.7 and 1.8 we can infer
F{0=0=<snAOl=1}i=0;f=1{0<i<nAil=f} (1.9)

We can also observe the following:

FO<n>o0<nAtrue (1.10)
FO=n>0=<0=n (1.11)
FO<snAtrueoc0<snnaOl=1 (1.12)
FO<sn>0=0=nA0l=1 (1.13)
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Those (trivial) results make appear the base case of factorial definition (equation 1.5). The last
equation allows us to apply the second form of the rule D1 on triplet 1.9 to get the proof of triplet
1.3:

F{0<n}li=0;f=1{0<i<nAf=il} (1.14)

1.2.1.2 Proofof {n=inf=illwhile G<n)do G=i+1;f=fxi){f =n!}
From the axiom DO, we can write the two triplets:
FO<si<nAf=iti=i+1{0=s(@-1D<nAf=G-1D} (1.15)

FO<G-D<nAfxi=G-DIxi}f=Ffxi{0<s@i-1)<nAf=3G-1)xi} (1.16)

As, 0<(i-1D<nAf=0-1N=0<G-1<nAfxi=(G-1)!xi), we can use the rule D2 and

the two last triplets to write:
FO<i<naf=illi=i+1;f=Ffxif0<s@-D<nAaf=>G-D!xi} (1.17)
By definition of the factorial (equation 1.6) and rule D1, we then write:
Fo<si<naf=illi=i+1;f=fxi{f0<@-1)<nAf=il} (1.18)

We can note that, on one hand (i <n)A(0<i<nAf=il)20<i<nAf =1i! and on the other hand

(i—1)<n=i<n todeduce the following triplet from 1.18 using rule D1 twice:
F{i<n)AO<sisnaf=i)i=i+1;f=fxi{0<isnnaf=il} (1.19)
Therefore, using rule D3 and triplet 1.19, we can conclude:
F{0<sisnaf=illwhile(i<n)do(i=i+1;f=fxD){0<i<nAf=ilAi=n} (1.20)
Since (i =n Ai=n)>( =n), we use rule D1 and triplet 1.20 to obtain
F{O<isnAaf=i}while(Gi<n)do(G=i+1;f=fxi){f =n!} (1.21)

1.2.1.3 Conclusion

By the application of rule D2 and triplets 1.14 and 1.21, we can write (which is what we wanted

to prove):
F{0<n}
1 =0;f=1;
' 4 (1.22)
while(i <n)do(i=i+1;f=f x1i)
{f =nl}
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O

In the proof, the logical assertion 0 <i <n A f =1i! is not altered by the loop execution (see
equation 1.16) and is therefore called Loop Invariant. Moreover, this Loop Invariant expresses
how the loop works: the variable i takes a value between 0 and n while the variable £ is used to
accumulate the product 1 x 2 x --- x i, which is the multiplication of all the values taken by i up to

a certain iteration.

1.2.2 Loop Termination

We have shown that the loop is correct, but we did not prove that its evaluation will end. This is
referred as Partial Correctness. In order to get Total Correctness, we have to prove the loop
termination. To do so, Floyd [67] proposed to use a property of well-ordered sets that is there is
no infinite sequence of decreasing elements of a well-ordered set. He introduces a “W-function”
(W for Well-ordered) that transforms the state of a program at a certain iteration into a value of
a well-ordered set. The values corresponding to two consecutive iterations must be decreasing
(according to the set ordering relation). If such a function can be provided, the sequence of the
iterations of a certain loop is transformed into a sequence of elements of a well-ordered set that
cannot be infinite. Therefore, providing the W-function ensures that the number of iterations
will be finite i.e., the loop execution has an end. Later this “W-function” was called function t by
Dijkstra [56] and is also referred as Loop Variant.

Let us take the example of the FACTORIAL problem. The most straightforward well-ordered
set is the set of the positive integers (it was indeed already noted by Floyd [67]). The state of each
iteration is defined by the value of the two variables i and f. As Loop Variant, we propose the
function n — i (Here, n is considered as a constant).

While the loop iterates (i.e., the Loop Condition is true), this function has a positive integer

value:

i1<n

O<n-—1

Since the variable i is increased at each iteration, the values of consecutive iterations are
decreasing:

n—-i>n—0G+1)

Therefore, by providing the function n — i, we prove the loop termination.
In the following, we will use Loop Variant that will have a positive integer value (although
we have just seen that this is not mandatory) and we can sum up the requirements for such a

function:

10
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1. The function combines the values of the program variables (i.e., its domain is the states

space);
2. The value of the function must be an integer and positive if the loop condition is true;

3. Let us note #1 and 9 the values corresponding to two consecutive iterations, one must have

t1>19

Providing a function that respects those three requirements is sufficient to prove a loop termina-

tion and the invocation of well-ordered sets properties can be omitted.

1.3 Code Construction and Predicate Transformers

In the previous section, we presented the proof of the correction of the FACTORIAL program. Even
for such a small program, the text of the proof is quite long. Moreover, we have to confess to the
reader that we assured ourselves to be able to prove the program before writing the code. We
followed the methodology presented by Dijkstra [66] and [57] that consists in determining the

Loop Invariant first and using it to write the code, that is referred as a constructive approach.

1.3.1 Weakest precondition

In his work, Dijkstra introduces the the weakest Precondition corresponding to a Postcon-

dition, which is defined as:

“The condition that characterizes the set of all initial states such that activation will
certainly result in a properly terminating happening leaving the system in a final

state satisfying a given post-condition” [56, p. 16]

and that is noted”
wp(S, R)

where S is the system that is activated and R the Postcondition. Being able to compute wp(S, R)
from any R means that one can describe the effect of the activation of a system S, or in other
words, its semantics. Moreover, for a given system S, the rules that allow to compute wp(S, R)
from R describe how to obtain a predicate (the weakest precondition) from another predicate (the
Postcondition R) and is thus referred as a predicate transformer. To sum up, the semantics of
S is described by its predicate transformer.

The details of the computation of the weakest precondition for all the commands we use in

our pseudocode are given in the appendices (see App. A).

7 Later work [57] uses another notation for weakest precondition: wp.S.R. We still keep wp(S, R) as we are used
to it from reading [48] fifteen years ago. The command S is written with a mono-spaced font to recall programming

language and the predicate R is written in italic.

11
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1.3.2 Constructive approach

Since the Loop Invariant was properly chosen, the program proof was easy to demonstrate! In
fact, the constructive approach allows to write correct programs without needing for proving
them.

// Precondition
Zone 1
// Invariant
while (LC)
{
// Invariant A LC
Zone 2
// Invariant
¥
// Invariant A —LC
Zone 3

// Postcondition

Listing 1.3: Structure of a loop, zones and logical assertions

Precondition |- _ ___ __ ]

Loop
Invariant |"7 7777
Q [True]
\

Loop .
Invariant | | \
and . [False] \
Stop Condition \ Loo_p
e Invariant
Zone 3 and
LC

Postcondtion |- _ _____ |

Figure 1.3: Loop zones and logical assertions

The general structure of a loop is presented in Listing 1.3 and its corresponding flowchart is
shown in Fig. 1.3. The comments (in blue in Listing 1.3 and green in Fig. 1.3) represent logical
assertion that correspond to Hoare’s triplet previously presented. For example, one can see that

the all program is surrounded by the Precondition and Postcondition forming the triplet
{Precondition} Program {Postcondition}

As far as the loop is concerned (i.e., the LC plus the Loop Body/ZONE 2), it is surrounded by two
assertions forming the triplet:

{Loop Invariant}Loop {Loop Invariant A 7 LC}

12
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We can see in Listing 1.3 or Fig. 1.3 that the code is divided in three main zones, each zone

being constructed thanks to the Loop Invariant.

ZONE 1 refers to the code segment prior to the loop, typically used for declaring and initializing
variables. Before ZONE 1, the Precondition is verified. At the end of ZONE 1, the Loop
Condition is evaluated for the first time, meaning that the Loop Invariant must be verified.
Based on this statement, the Precondition and Loop Invariant can be used to determine

the required variables as well as their initial values.

Formally, we must ensure® that:

Pre = wp(ZONE1, Inv) (1.23)

ZONE 2 refers to the Loop Body itself. As the Loop Condition has been verified, before executing
any instruction of the Loop Body, the Loop Invariant is true and the Loop Condition is true.
At the end of the Loop Body, the Loop Condition is evaluated again, meaning the Loop
Invariant must be restored. Based on those two situations, one can derive the Loop Body

instructions.

Formally, this means showing that:

(Inv AB) = wp(if (B) ZONE2, Inv) (1.24)

ZONE 3 refers to the piece of code after the loop, when the Loop Condition has been invalidated.
This zone contains instructions that should allow the program to finally solve the initial
problem. Given that the Loop Condition has been evaluated, the Loop Invariant is true
but the Loop Condition is false. Based on this situation, it is possible to derive the final
instructions. In some cases, those instructions should lead to the Postcondition of the

program.

In other words, ensuring that:

(Inv A —B) > wp(ZONE3, Post) (1.25)

To sum up in a constructive approach, the Loop Invariant is the cornerstone of the program-
ming methodology as it is involved in the writing of the whole loop zones. As such, the complexity

is not any more in code writing but in finding a strategy (the Loop Invariant) to solve the problem.

1.3.3 Constructive approach for the factorial

The problem of the factorial consists in establishing the postcondition

8 Dijkstra himself does not systematically computes weakest precondition in his book. Instead, he occasionally

uses it to prove his reasoning.

13
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Post=f =n! (1.26)

As the definition of the factorial is a repetition of products, one could use a loop. Dijkstra
indicates that a good way of finding an invariant is by weakening the postcondition® . A common
way to do that is to replace, in the postcondition, a constant by a variable.

From the postcondition, one could try this Loop Invariant:
Inv=f=ilAO0<i<n 1.27)

This Loop Invariant indicates that two variables must be used : £ and i. Let us denotes the
initial values of these two variables by a and b, respectively. One can solve for a and b :
wp(f=a;i=b, P)=wp(f=a, f=blA0<b<n) (1.28)
=(a=b!A0<b<n) (1.29)
Since n is an integer and can be 0, we conclude that b=0and a =b4!=0!=1.

One can also note that:
Invni=n= f =n!=Post (1.30)

That suggest to form a loop of the form:

f = 1;

i = 0;

while(i '= n){
Body

+

The variable i should increase from 0 to n. It suggests to increments the value of i at each

iteration. Let us compute wp(i =i+ 1, Inv):

wp(i=1i+1, f=ilA0<i<n)=(=0+D!IA0<i+1<n) (1.31)
=(f=G+DI'A0<i<n) (1.32)

Compared to PAB = f =i!A0 <i < n, we find that £ should be multiplied by i + 1 before

increasing i. The code becomes

f =1,

i = 0;

while(i != n){
f =f x (i + 1);
i =1+ 1;

¥

9 He also mentions his own experience(!) in [56], while [48] argues in favour of intuition.

14
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The order of the two instructions can be inverted (G.e.,i = i + 1;f = f * i) because:

wp(i=i+1;f==f=i, f=ilAO<i<n)=wp(i=1i+1, wp(f=£f=x1i, f=ilA0<i<n)) (1.33)

=wp(i=i+1, f*xi=ilA0<i<n) (1.34)
=(f*G+D=G+D!'A0<i+1<n) (1.35)
=(f=ilAO<i<n) (1.36)
=InvAB (1.37)

The penultimate line is obtained thanks to the recursive case of the definition of the factorial.

The final program is given in Listing 1.4

f =1;

i = 0;
while(i '= n){
i=1i+1
f =f x ij

}

Listing 1.4: Factorial program deduced using constructive approach and explicit weakest

precondition calculation.

1.4 Related Work

Historically speaking, ensuring the correctness of a program before running it was a necessity:
the computing resources were scarcer than nowadays and a program had to be correct before
being executed on a computer [86].

In 1967, Floyd [67] proposed to assign meanings to programs and used flowcharts and logical
assertions to do so. His paper also introduced the principle of Loop Variant based upon well-
ordered sets. Hoare [88] continued the work and set an axiomatic basis for computer programming
that is nowadays known as Floyd-Hoare logic. Morris and Jones [144] mentions an article on
program correctness from Alan Turing nearly twenty years earlier but acknowledges having “no
evidence that the paper influenced the later contributors to the ideas of program proofs”.

While there is an abundant literature on Loop Invariants for code correctness and on auto-
matic generation of Loop Invariants (e.g., [30, 42, 69, 108, 109, 160, 165, 167]), their usage for
building the code has attracted little attention from the research community.

With respect to Loop Invariant based programming (i.e., the Loop Invariant applied in a
constructive approach), the seminal work has been proposed by Dijkstra [56], followed by Meyer
[142], Gries [81], and Morgan [143]. As such, the program construction becomes a form of
problem-solving, and the various control structures are problem-solving techniques. Those works

proposed Loop Invariant as logical assertion.
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Tam [179] suggests to introduce students to Loop Invariant as early as possible in their cur-
riculum. Tam describes several examples of code construction based on informal Loop Invariants
expressed in natural language.

Astrachan [10] is probably the closest to our work (see Chap. 2) as he suggests the use of
Graphical Loop Invariants in the context of CS1/CS2 courses. However, his approach is incomplete
as the suggested drawing lack of completeness (e.g., objects manipulated, such as arrays, are
not named according to code variables), might lead to confusion (e.g., variables positions around
the dividing line are somewhat unclear), and the drawing is not explicitly manipulated to derive
particular situations (e.g., code prior and after the loop).

Finally, Back et al. [11-13] proposed nested diagrams (a kind of state charts) representing, at
the same time, the Loop Invariant and the code. However, in such a situation, Loop Invariants are
expressed as logical assertions, possibly leading to difficulties to students with a low mathematical
and abstraction background.

To the best of our knowledge, none of these works evaluate the reception, by students, of a
programming methodology based on Loop Invariant, as we do in Chap. 4.

Systems using predicate transformers (such as the weakest precondition) theory to prove
code correctness have been developed, e.g., [14-16, 20, 26, 40, 41, 64, 66, 103, 113, 114]. They are

beyond the scope of this document.

1.5 Programming Reference Books

A large variety of books addressing programming have been proposed since the 1970s. The
following review does not pretend to be exhaustive. However, we selected references that
introduced Loop Invariant, on one hand, and the books published after 2000 available in the
Liege university’s library, on the other hand. These last are a good sample of what was published
both in French and in English during the last two decades. Although they were displayed on the
same bookshelf, we omitted books about Unified Model Language [27] and those about design
patterns programming as they are off-topic. All the considered books are presented in Tables 1.1,
1.3 and 1.4.

We classified the books in three main categories and a subcategory. The first one, that we
refer as LANGUAGE books consists of those who present a particular programming language : C,
C++, C#, Fortran, Java, Lua, Python or even MATLAB (see Table 1.3). Some of them aim at a
particular public like physicists, mathematicians, data scientists, or engineers (see Table 1.4).
We denote this sub-category as NON-CS books.

The second category, that we refer as ALGO books, consists of the books addressing algorith-
mics or program design (see Table 1.1). They usually introduce their own pseudocode which often
looks like C language very much. Sometimes, their proposes a translation of the pseudocode in

another language(s).
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Table 1.1: ALGO books. The “Lang” column refers to the consulted document language: ENglish
or FRench. FR* means that the book is a French translation.

Title Ref. Lang
The B-Book. Assigning programs to meanings [3] EN
Concepts fondamentaux de I'informatique [4] FR*
The design of well-structured and correct programs [6] EN
Algorithmique : construction, preuve et evaluation des programmes [25] FR
Introduction to algorithms [42] EN
Introduction a ’Algorithmique I [48] FR
A Discipline of Programming [566] EN
Starting out with programming logic and design [71] EN
Data Structures and Algorithms in Java [771 EN

Mini manuel d’algorithmique et de programmation : cours + exos corrigés [79] FR
Informatique : algorithmes en Pascal et en langage C : rappels de cours, [80] FR
questions de réflexions, exercices d’entrainement

Algorithmes fondamentaux et langage C : programmation : codage, [93] FR
alternatives, boucles, tableaux, modularité

Cours et exercices corrigés d’algorithmique vérifier, tester et concevoir [95] FR
des programmes en les modélisant

The Art of Computer Programming: Volume 3: Sorting and Searching  [106] EN
Introduction to Programming Concepts with Case Studies in Python [184] EN

Table 1.2: OTHER books. The “Lang” column refers to the consulted document language: ENglish
or FRench.

Title Ref. Lang
Structure and interpretation of computer programs [2] EN
The software optimization cookbook : high-performance recipes for IA-32 [74] EN
platforms

A Guide to Experimental Algorithmics [138] EN

Programming language pragmatics [169] EN
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Table 1.3: LANGUAGE books. The language is specified in the title. The “Lang” column refers
to the consulted document language: ENglish or FRench. FR* means that the book is a French
translation of an English book.

Title Ref. Lang
Le langage C [5] FR*
The Java programming language [9] EN
Méthodologie de la programmation en C : norme C 99 - API POSIX [311] FR
C++ pour les nuls [47] FR*
Programmer en langage C : cours et exercices corrigés [50] FR
Thinking in Java [60] EN
Java : I'essentiel du code et des commandes [65] FR*
Starting Out with Visual C# [72] EN
Starting Out with C++ [73] EN
Java 6 : les fondamentaux du langage Java [82] FR
Programming in Lua [91] EN
Programming with C [96] EN
Le langage C norme ANSI [100] FR*
Programming in C [107] EN
Le langage C [116] FR

Initiation a 'algorithmique et a la programmation en C cours avec 129 [133] FR
exercices corrigés
Modern Fortran explained [140] EN

Table 1.4: NON-CS books. The “Lang” column refers to the consulted document language:
ENglish or FRench.

Title Ref. Lang

Intro to Python for Computer Science and Data Science: Learning to [49] EN
Program with Ai, Big Data and the Cloud
Math Adventures with Python: An illustrated guide to exploring math [63] EN

with code

Essential MATLAB for engineers and scientists [83] EN
Python pour le data scientist : des bases du langage au machine learning [94] FR
A student’s guide to Python for physical modeling [102] EN
Classical FORTRAN : programming for engineering and scientific appli- [111] EN
cations

A first course in computational physics and object-oriented programming [192] EN
with C
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Our analysis focuses on the way the books introduce loops and iterations; whether they
give any advice or method to design a loop in general (see Sec. 1.5.1) and how they present
algorithms. as introductory books were very likely to address array sorting (Sec. 1.5.2) and
searching (Sec. 1.5.3), we focused on these problems.

We also encountered some books mentioning invariants that do not focus on programming.
They form our third category, which we refer as OTHER books. They are listed in Table 1.2 and
briefly discussed in Sec. 1.5.4.

Finally, Sec. 1.5.5 lists the contradictions with the rest of the literature and/or — what we

believe being — mistakes we encountered during our analysis.

1.5.1 Loop Presentation and Design Method

All the books introducing the different loops do so by giving their syntax followed by an example
that is then explained. The books limiting their explanations to this are always those from
LANGUAGE NON-CS categories (see Tables 1.3 and 1.4).

Some of them add a flowchart that illustrates the semantic [49, 72, 73, 96].

Few propose a general methodology to write a loop. By methodology, we mean advice to follow
or steps to take or whatever that could help someone that just discovered the concept of a loop to

write their own :
* Deitel and Deitel [49] present a three steps method (pp. 90-91):

1. State the requirements;

2. Write the pseudocode for the algorithm,;

3. Code the algorithm in Python.
In order to write the pseudocode, a “top-down step-wise refinement” (p. 93) approach is
detailed: one should write “top”, which is a single plain text statement that describes what
should be done (i.e., the Postcondition). Then “¢op” must be detailed through refinement

steps in several simpler tasks, thus referring to a divide-and-conquer strategy, until “there

is enough detail for you to convert the pseudocode to Python” (p. 95).
¢ Léry [116] proposes a three steps method to write a loop:

1. Write the Loop Body by finding what must be made to go from step N to N +1 (p. 100);

2. Determine the variables initial values by observing the effect of the first iteration

(p. 101), and adjusting them by making the loop run by hand (p. 99);

3. Determine the Loop Condition by posing one a priori and verify it by making the loop
run (p. 101) (e.g., to decide which of <= and < should be used).

¢ Kupferschmid [111] mentions a program design in which a step is “find appropriate data
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structures and algorithms” (p. 228) and points to other books addressing these subjects.
In fact, the whole chapter about “Design, Documentation and Coding Style” (chap. 12,
pp- 219-264) is rather a long list of pieces of advise than a structured method.

As far as the ALGO books are concerned (see Table 1.1), they do not necessarily remind
the loop structures to their readers (e.g., [4, 6, 42, 95, 106]). In contrast, they often offer a
programming methodology.

Dijkstra [56] introduces a methodology based on formal Loop Invariant used to deduce
code instructions and on Loop Variant to ensure loop termination . Berlioux and Bizard [25],
de Marneffe [48], Julliand [95] present the same method. de Marneffe [48] provides sometimes
an illustration of the Loop Invariants. Julliand [95] mentions the method being “lighter than an
a posteriori proof” (p. 126) and a “fundamental algorithmics concept in order to master programs
design” (p. 127).

Abrial [3] introduces the B method based upon mathematical and logical reasoning, which
would be harsh to follow by a CS1 student.

Cormen et al. [42], Goodrich and Tamassia [77] both presents the Divide and Conquer method
as well as Greedy algorithms and Dynamic Programming. Cormen et al. [42] uses Loop Invariant
to prove code correctness.

Granet [79] mentions the Loop Invariant as representing “the semantic of an iterative
statement” (p.48, own trad.) but does not offer any indication on how to find one.

Imbert [93] illustrates algorithms thanks to operational semantics, that is a succession of
graphical representations of the memory through the program execution. The author mentions a
design method whose one of the steps is the “strategy” (p.40) to solve the problem but there is no
clue to find one.

Ucoluk and Kalkan [184] introduce “Tips for creating Iterative Solutions” (p. 141) that suggest
to work with a “case example where the iteration has gone through several cycles and partially
built the solution” [ibid.] to determine “what must have been changed” and “what will remain
the same” [ibid.] in order to deduce the code. The expression of “what will remain the same” can
be identified to the Loop Invariant but the book does not refer to it. On the other hand, the tips
advise to deduce the Loop Body, Loop Condition and the variables initialisations independently,
as in [25, 48, 56, 95]. Finally, the tips also mentions to “Make sure that the looping will terminate
for all possible task cases” [ibid.] but does not explain how to do so nor refer to the notion of Loop
Variant that is usually used for that purpose.

Gaddis [71], Granjon [80], Knuth [106] do not offer, properly speaking, any kind of general

method to write loops.

1.5.2 Sorting Algorithms

Most of the books we consulted presented at least one sorting method among the Bubble Sort,

the Selection Sort, and the Insertion Sort. The most exhaustive ones (e.g., [4, 42, 48, 77]) also
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introduce more efficient algorithms such as the Heap Sort, the Quick Sort, or the Merge Sort.
Knuth [106] provides a systematic review and comparison of sorting algorithms and is therefore
often cited by newer references.

Books presenting the sorting more deeply often display a graphical representation of an array
being sorted before or after having stated the idea of the algorithm, followed by the code, which is
not necessarily commented nor discussed.

It is worth noting that LANGUAGE books often only describe how to invoke properly the
standard functions or methods available in a particular language’s library to sort arrays [5, 9, 31,
60, 82]. This is also the case for NON-CS books [49, 83, 94, 192].

1.5.3 The Binary Search Case

The binary search is said to be difficult to implement by Knuth [106] and Scott [169, p.302].
However, the idea of this algorithm is considered by Knuth [106] to be straightforward. It is
worth noting that a large majority of books that present the code of this algorithm begin by
establishing that the search area must be divided by two at each iteration. To our knowledge,
Abrial [3] and de Marneffe [48], both using formal methods, deduce the division while writing the
code.

McGeoch [138] presents the cache aware version of the binary search presented by Ladner
et al. [112].

As for the sorting algorithms, the books presenting a particular language often only describe
how to invoke properly the functions to search in arrays. Among them, few mention that using
binary search in an array always requires to have this array sorted but do not necessarily offer
a practical example in which this operation is actually efficient (sorting an array for a unique

search is not efficient as a linear search does the trick more efficiently).

1.5.4 Other Mentions of Loop Invariant

Abelson and Sussman [2] addresse algorithmics illustrated with Scheme but mentions iterative
methods in an exercise specifying “In general, the technique of an invariant quantity that remains
unchanged from state to state is a powerful way to think about the design of iterative algorithms”
(p.46). However, the way to find or isolate this invariant quantity is not mentioned.

Gerber et al. [74] address code optimisation and, in articular, loops in a dedicated chapter
(pp. 143-157). Several techniques are presented: loop distribution, loops fusion, loop peeling (i.e.,
moving one or more iterations outside a loop), loop unrolling (i.e., combining several iterations
together), and loops interchanging (i.e., exchanging inside and outside loops). The books explains
in which cases loops may be modified while keeping their semantic. The transformations
justifications are not linked to the notion of Loop Invariant while it would have fitted to prove
that a modification did not alter the result of the original loop. However, the book introduces

loop invariant computations (p.155) (i.e., results of calculation not depending on the loop), loop
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invariant branches (p.156) (i.e., tests not depending on the loop that can be put outside of it)
and loop invariant results (p.157) (i.e., loops used to initialise values that can therefore be hard-
coded). Although similar in name, these three notions are different from what we mean by Loop
Invariant.

McGeoch [138] addresses computational experiments on algorithms and introduces Loop
Invariants to verify a loop (there may be several Loop Invariants per loop) in three questions:
(i) “Are the invariants true when the loop is entered the first time?” (p. 157) (ii) “Assuming the
invariants are true at the top of the loop, do they hold at the bottom of the loop” [ibid.] (iii) “Do
the invariants imply correctness after the loops ends?” [ibid.] In fact, these three questions
describe informally a proof based on Hoare logic (See Sec. 1.2). The book mentions that writing
Loop Invariants is a “powerful insurance against common coding mistakes like off-by-1 errors,
omitting initialisations, mishandling loop control variables, running of the end of arrays and so
forth. It also helps to write a procedure or macro to check preconditions at runtime” [ibid.]. The
book also presents code tuning for efficiency, especially loop modifications (fusion, unrolling, loop
memory access order) but does not link that to Loop Invariants.

Scott [169] addresses programming languages design and implementation and introduces
Loop Invariant as a way to prove code correctness in the context of an exercise consisting in
finding it for the binary search (p. 302). The author indicates that “programmers who identify
(and write down !) the invariants for their loops are more likely to write correct code” [ibid.] and
point to [56, 81] to get insights on how to do so (p. 306).

1.5.5 Contradictions in the Literature

When reading some references, we were surprised to notice that some books stand out strongly
from others in the way they exhibit content that is either in contradiction with the rest of the

literature or that we believe is incorrect. This section reviews them briefly.

1.5.,5.1 About Programming Methodology

Léry [116]’s loop design method is not aligned with the rest of the literature (e.g., with [48]). The
sooner determines the initial values and the Loop Condition thanks to the loop and thus requires
the Loop Body to be determined. On the contrary, the method of the later, based upon Loop
Invariant, clearly states that the initial values, the Loop Body, and the Loop Condition can be
determined independently. Moreover, Léry asserts that making the loop run by hand is the only
efficient way to understand its behaviour and correct it (p. 100), which is clearly in contradiction
with the state of the art on Loop Invariant programming.

Davis [47, p.277] asserts that executing step-by-step a method is invaluable to understand
why its behaviour is odd and that “nothing is more revealing than the step-by-step execution”

[ibid.] of a program to understand how it works.
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Farrell [63] presents an algorithm that lists the positive divisors of a number num exhibiting
a complexity of O(num) (pp. 39—41). The algorithm is implemented to illustrate a for loop. It
would have been better to use the same example to present the interest of a while loop and to
notice that if x | y then (y/x) | y since x | y means there exists & such as y =k x x. An algorithm
using this mathematical property can list the positive divisors of a number num in a time that is
in O (y/num).

We believe that the last example delivers a counter-productive message to their readers in
the sense that they do not insist on a programming methodology that begins with an accurate

analysis of the problem that would prevent them to write inefficient code.

1.5.5.2 About Programming Language

Some references [63, 71, 107, 140] introduce the loops as a mean to avoid repeating the Loop
Body several times. This statement is an over-simplification. Even if the number of iterations
is fixed, as with a for loop, this number is often a parameter whose value is not known at the
compilation time. As far as the while loop is concerned, it is particularly useful precisely to write
a loop without knowing precisely the number of iterations (e.g., this is the case of the binary
search).

Aitken and Jones [5] assert that loops can be infinitely nested in C (p. 139), which is not in
accordance with the standard that establishes minimum translation limits [180].

Braquelaire [31] presents wrongly the comma operator in C by explaining it serves to con-
catenate variable increments (p. 175) without delivering its correct semantics nor pointing to a
reference that deepens its presentation.

Kochan [107] suggests that ++i and i++ are equivalent in C: “Some programmers prefer
to put the ++ or —- after the variable name, as in n++ or bean_counter--. This is acceptable,
and is a matter of personal preference.” (p. 50). This is in contradiction with the language
standard [180]: the post- and pre-increment operators do not have the same priority and the two
expressions ++i and i++ do not have the same value. This is an example of over-simplification.
If the values of the expressions is not needed and thus only the side-effects of these operators
matter, i++, ++i, and i += 1 may be mistaken from each other. Semantically speaking, the
closest expressions to ++iis (i += 1) or (i = i + 1) (the parentheses are mandatory).

Granjon [80] presents the C for loop (i.e., for(i = 1; i < y; i++)) and states that i is an
iteration variable that cannot be modified in the Loop Body (p. 27). First, semantically speaking,
i++ is in the Loop Body as the last instruction prior to re-evaluating the Loop Condition. Second,
the C standard [180] does not establish such a constrain. We believe that the author meant that
the value should not be modified elsewhere in the Loop Body to count accurately the iterations.

Imbert [93] defines a pointer as a variable that designates an object in a dynamic collection
(p. 152) but acknowledges that this definition is more general than the ones met in programming

languages (p. 153). He states that an array index thus falls in the definition of a pointer while the
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C language [180] makes clearly the difference: a pointer is a variable that contains an address
while an array index is an integer indicating a relative position in an array. We do not know what
the author meant but we believe that as far as learning C language is concerned, mistaking the

two notions for each other is harmful and would lead to confusion for the reader.

1.6 Conclusion and Research Questions Introduction

This chapter presented the interest of Loop Invariant in the contexts of program proofs and of a
constructive approach to deduce the program code. Most of time, the Loop Invariant is expressed
formally and this can discourage teaching it in the context of a CS1 course to students who may
lack of mathematical or logical skills.

We believe this is why the programming books introducing a particular language and those
intended for non computer science audience rarely mention it. Yet paradoxically, one could expect
from those references to provide a methodology for programming or at least to point to other work
doing so. This is not what we saw in our review of the available books at our university’s library.

We wonder what could someone learn from reading a book that just discusses the syntactical
aspects of a language and lists some interesting functions available in its standard library (and
that, aside the over-simplifications and mistakes we noticed).

To overcome the (potential) lack of formal background while ensuring students follow a strict
programming methodology, we propose propose our own programming methodology, based on a
graphical representation of the Loop Invariant. We call it the Graphical Loop Invariant Based
Programming (GLIBP) methodology that we introduce in details in Chap. 2.

Although informal, this Graphical Loop Invariant describes, at least, variables, constant(s),
and data structures manipulated by the program; the constraints on them; the relationships
they may share, and that are preserved all over the iterations. It also expresses, in a general
way, what has been already computed by the program after a certain number of loop iterations.
Following Furia et al. [70] classification, the Graphical Loop Invariant falls within the scope of
essential (i.e., a Loop Invariant defining what has already been achieved so far) and bounding
Loop Invariant (i.e., variables are bounded by, e.g., an array limits).

In addition to natural advantages of drawings [75, 149, 155], the Graphical Loop Invariant
allows the programmer to visually deduce instructions before, during, and after the loop.

In addition, in terms of learning, the Graphical Loop Invariant relies on Cognitive Load
Theory as engaging multiple modalities (in this case, visual and textual) can increase cognitive
ability and learning [178]. Further, the Graphical Loop Invariant may help developing Spatial
Skills for students. It has been demonstrated that Spatial Skills are important for success in
certain Computer Sciences activities and for success in Introductory Computer Sciences courses
in particular [152, 174].

Finally, programming with the help of the Graphical Loop Invariant falls within the scope of
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metacognition [141], as it provides a problem-solving strategy and self-reflection on where one is
in the problem-solving process. As such, the Graphical Loop Invariant based programming can be
related to three problem-solving stages introduced by Loksa et al. [130], i.e., search for solution,
evaluate a potential solution, and implement a solution. Also, determining a Graphical Loop
Invariant prior to coding should help students in understanding the problem to be solved [44] as
well as determining a strategy to solve it [162].

The use of the GLIBP in the context of teaching in CS11 leaded us to formulate the following

research questions:

RQ 1.1: How the students seize the opportunity to practice the GLIBP methodology?

RQ 1.2: What kind of error are committed using the GLIBP methodology?

RQ 1.3: Can we link the error committed with the GLIBP methodology to programming errors?
RQ 1.4: How the GLIBP methodo is perceived by the students?

RQ 1.5: Does the GLIBP methodology enable to write better pieces of code?

The rest of this document part is the following: Chap. 2 presents in details the programming
methodology we propose that is based on a graphical version of the Loop Invariant; Chap. 3
introduce learning tools supporting our methodology teaching; Chap. 5 evaluates the Blank
Graphical Loop Invariant, which is one of our learning tools and Chap. 4 presents a taxonomy of

errors committed while using the methodology and relates them to code quality.
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CHAPTER

GRAPHICAL LOOP INVARIANT BASED PROGRAMMING PRINCIPLES

HIS CHAPTER introduces the Graphical Loop Invariant Based Programming methodology
whose purpose is to write correct pieces of code based on a drawing. Sec. 2.1 first
presents the methodology with an example on a simple problem; second it deepens

the presentation with guidelines that formalise the method and eventually show how to derive
the code from a Graphical Loop Invariant. Section 2.2 discusses how to represent common
data structures in our methodology framework. Finally, Sec. 2.3 compares our Graphical Loop

Invariant with Formal ones and those written in natural language.

2.1 Graphical Loop Invariant Based Programming Methodology

2.1.1 A Graphical and Informal Version of the Loop Invariant

Dijkstra [56] proposed to first determine the Loop Invariant and then use it to deduce the code
instructions. The Loop Invariant is therefore used “a priori”. The methodology we propose differs
from Dijkstra’s in the way we express the Loop Invariant: we propose to represent it as a picture.
This picture must represent the variables, constants and data structures that will appear in
the code, as well as the constraints on them; the relationships they may share, and that are

conserved all over the iterations. Here is an example with the simple problem defined hereafter:

INTEGERSPRODUCT:

Input — Two integers a and b such as a<b
b
Output — the product of all the integers in [a,b], (i.e., l_[ i)

i=a
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a+1l ... i—1| i b+1
| : : : : : . —

-

—
already multiplied inp ~ to be multiplied

Figure 2.1: Graphical Loop Invariant for computing the product of integers between a and b. In
the following, every drawing will follow the same color code: the name of the structure in grey;
the Dividing Line in red: the Dividing Line label in olive; the minimal value for that label in

; its maximal value in and the value following the maximum in wine. Both
areas will always be in green for what has been achieved and blue for what should still be done.

Fig. 2.1 shows the corresponding Graphical Loop Invariant. We first represent the integers
between the boundaries of the problem (a and b) thanks to a number line (each tick mark denotes
an integer) representing the integer line, labelled with the integers symbol (Z). Then, since all the
integers between a and b are going to be considered by the program, we represent the situation
after a certain number of iterations. Thus, a vertical red bar is drawn in the middle of the integer
line, dividing it into two areas (such a line is called Dividing Line). The left area, in green,
represents the integers that were already multiplied in a variable p (p is thus the accumulator
storing intermediate results, iteration after iteration). The right area, in blue, represents the
integers that have yet to be multiplied. We decide to label the nearest integer at the right of the
dividing bar with the variable i that will play the role of the iterator variable in the range [a,b].
Of course, the variables i and p must be used in the code.

Drawing such a Graphical Loop Invariant amounts to determining a strategy to solve the
problem. We clearly shift the difficulty not anymore in writing the code itself but in the reflection
phase prior to the code. This step requires thus training and experience. But, once mastered, it
becomes possible to efficiently solve complex problem. Moreover, in the following, we also provide
a methodology for easing the building of a correct Graphical Loop Invariant that relies on seven
guidelines (see Sec. 2.1.2). As to how to deduct the code instructions from a Graphical Loop
Invariant, the section 2.1.3 details it with the example of the Graphical Loop Invariant depicted
in Fig. 2.1.

2.1.1.1 Graphical Loop Invariant Interpretation

In Chap. 1, we defined a Loop Invariant as a logical properties being True before the Loop
Condition evaluation. In fact, the Graphical Loop Invariant shares this property with its non-
graphical counterpart. Hence, we must have a way of deciding whether a Graphical Loop
Invariant is True or False for a given combination of variable values (i.e., a certain point in the
states space). This can be done by examining if the general shape of the Graphical Loop Invariant
is conserved as particular values are assigned to the variables, i.e., the relationships between the
variables described by the drawing still hold in the particular case.

The Table 2.1 presents several examples based on the Graphical Loop Invariant shown in
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Fig. 2.1. Each line in the Table represents a particular case. The first column gives the values
of the variables for each state. The second column depicts the corresponding situation, with
the same colours code as in Fig. 2.1 to ease the comparison. Finally, the third column indicates
whether the Graphical Loop Invariant is True or False and provides additional explanations. To
sum up, deciding if a Graphical Loop Invariant is True or False in a particular situation consists
in redrawing this situation and playing a kind of “Spot the difference” game that requires more

observation than mathematical skills.

2.1.2 Carefully Depicting a Graphical Loop Invariant

Since the Graphical Loop Invariant is intended for deducing the code instructions, one should
have a mean to assess the general quality of such an Loop Invariant prior to code writing. The

problem that arises is the following:

Given a particular problem,

* What kind of information must be represented and how?

* When can one stop drawing to write the code? i.e., Is a particular drawing

sufficient to rely on it to deduce code instructions?

Obviously, as the Graphical Loop Invariant Based Programming methodology relies on
informal drawing, one cannot claim to bring a formal decision procedure to answer these questions.
Instead, we propose seven guidelines (or rules) that should be followed by any drawings to be

used as Graphical Loop Invariant to deduce code instructions. There are listed hereafter:
Rule 1: The drawing shall correspond to the problem and be labelled;

Rule 2: The boundaries of the problem shall be provided;

Rule 3: One (or more) dividing line(s) shall be provided;

Rule 4: Each dividing line shall be properly labelled;

Rule 5: The drawing shall be labelled for explaining what has been achieved so far;
Rule 6: The drawing shall be labelled to indicate what should still be done;

Rule 7: All the named structures and variables shall be present in the code.

\ J

These drawing guidelines can be classified into two categories: the syntax rules and the
semantic ones. Rules 1 to 4 are syntax rules,i.e., they provide a framework for the drawing: they

determine how to represent the graphical elements that form the Graphical Loop Invariant.
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States Representation Comments
Space point
The Graphical Loop
Invariant is True, as
a=3 9
b =17 ) 4 o 910 . AT 18 p = [[k = 181440
i=10 already multiplied in p | to be multiplied - and tﬁ?gen eral form
p = 181440 ..
of the drawing is re-
spected.
ac3 The Graphical Loop
b=17 ‘ 4 .. 9 | 10 ... | 18 Invariant is False, as
1=10 f—d; 1ti ‘l'd' | tﬁd z p =3 x4, the green
p= 12 already multiplied 1n p 0 be multiplie zone does nOt Span
fromatoi—1.
=17 The Graphical Loop
b=3 ‘ 4 .. 9 | 10 .. | 18 Invariant is False, as
i=10 l‘read ‘multi ‘lied in‘ t;) be ml‘ﬂti lie‘d z @ > b the relative po-
p = 181440 already p b P sition of the bound-
aries is not respected
a=3 The Graphical Loop
b=9 ‘ 4 .. ‘ | 10 .. 17 18 Invariant is False, as
{17 airead - ‘ N "7 the relative positions
y multiplied inp ~ to be multiplied of b and i is not re-
p = 181440 spected
The Graphical Loop
Invariant is True,
as the green zone
a=3 3 . .
b =17 4 .. 9 10 .. 18 is empty and p is
i3 1 1 1 1 1 1 1 1 i an empty product.
p=1 to be multiplied - Nothing has been
done: this state corre-
sponds a particular
initial state.
The Graphical Loop
Invariant is True.
a=3 18 The blue zone is
b=17 ‘ 4 : 9 10 - ‘ 18 empty and nothing
i=18 ‘ ‘ ‘ S | Z has to be done: this
_ 177’ already multiplied in p state corresponds to

a particular final
state.

Table 2.1: Evaluation of the Graphical Loop Invariant shown in Figure 2.1 for several states

space points. The color code of the Graphical Loop Invariant is respected : a is in
,b + 1in wine and i in olive.
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On the other hand, Rules 5 and 6 are related to the semantic, i.e., the meaning of the drawing:
they determine what is represented, aligned with the particular problem to solve.

However, one should note that some of the syntax rules also contain semantic-related guide-
lines. For example, adding the boundaries actually increases the information contained in the
picture. In fact, the graphical elements of the Loop Invariant, that are required by the syntax
rules, provide meaning just by their presence in the drawing.

Of course, the seventh rule is not a drawing guideline but ensure a strong link between the
Graphical Loop Invariant and the code that is the core and purpose of our methodology.

In addition to using these guidelines as a reminder to help to find a Graphical Loop Invariant,
they enable to assess a particular drawing. For this purpose, we have also proposed an error
taxonomy that is presented in Chap. 4. In the following, we detail each rule and provide

explanations on its raison d’étre in line with our methodology.

2.1.2.1 Rule 1 — The drawing shall correspond to the problem and be labelled

The first part of this guideline may appear as obvious. It recommends to draw an accurate
representation of the data or the data structures that are concerned by the particular problem
to be solved. It also reminds to carefully think about the data that must be processed by the
program. Hence this guideline emphases on the correct definition of the problem inputs and their
types, as the way to represent them will depend on this last piece of information.

The second part of the guideline — to label the drawing — consists in writing the name of
any depicted data structure next to it (most of time, it is a variable or constant name). One can
see why it is essential if several data structures are handled by the program, as they could be
mistaken during the code writing. However, it is always useful to accurately label data structures,
even the single ones. In order to use the Graphical Loop Invariant to deduce the code instructions,
one must think on the basis of a drawing that may contain a lot of information. Any annotation
in the Graphical Loop Invariant could refer to a particular data structure that must therefore be
clearly identifiable to insure the consistency of the whole drawing.

This corresponds to the integer line, labelled Z in Fig. 2.1.

2.1.2.2 Rule 2 — The boundaries of the problem shall be provided

The reason of the existence of this guideline is straightforward. First, it helps representing the
limit of the problem to be solved and reminds to determines these limit before code writing. This
requires to have previously clearly stated the goal of the program.

Second, when the Graphical Loop Invariant is used to deduce code instructions, it prevents
some common mistakes such as array out of bound errors or overflow. These errors should indeed
be more unlikely if the length of the data structures are properly mentioned in the Graphical
Loop Invariant.

This corresponds to a and b in Fig. 2.1. We also drew b + 1 that must not be considered in the
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problem to avoid coding mistakes.

2.1.2.3 Rule 3 — One (or more) Dividing Line(s) shall be provided

The Dividing Lines are the core of the Graphical Loop Invariant Based Programming methodology.
They symbolize the division between what was already computed by the program and what should
still be done to reach the program objective. They enable to graphically manipulate the drawing
in order to deduce the code instructions, as it is further illustrated in Sec. 2.1.3.

This corresponds to the red line in Fig. 2.1.

2.1.2.4 Rule 4 — Each Dividing Line shall be properly labelled

Since a Dividing Line separates what has been done and what is going to be, that means that if
we depicted such a line on the data representation as the program is executed, this line would
move from a position to another: the first position would correspond to the initial state while
the last position would correspond to the final one. As the position of the line during the code
execution is moving, the Dividing Line must be labelled with a variable name (or an expression
involving at least one variable). This guideline thus can help to declare new variables that are
needed in the code, such as, for example, array indexes. These new variables are often iteration
variables: they are used to span the range of interest delimited by the problem boundaries (See

Rule 2).

This corresponds to the variable i in Fig. 2.1.

2.1.2.5 Rule 5 — The drawing shall be labelled for explaining what has been achieved so far

Once again, this guideline holds several purposes. On one hand, it helps thinking about the
behaviour of the program. In order to determine “what has been achieved so far”, one should ask

the question:

In order to reach the program goal, what should have been computed until now?

Which variable properties must be ensured?

Most of the time, this reflection phase highlights either the need for additional variables that
contain partial results or relationships between variables that must be conserved throughout
the code execution. On the other hand, the information about what has been achieved so far is
crucial during the code writing as it helps to decide what are the instructions to be performed
during an iteration, i.e., to deduce the Loop Body.

This corresponds to the green arrow in Fig. 2.1.
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2.1.2.6 Rule 6 — The drawing shall be labelled to indicate what should still be done

This may perhaps appear as the less important guideline as it does not bring additional informa-
tion in the Graphical Loop Invariant. In fact, if we expressed a Graphical Loop Invariant as a
formal one, there would be no logical notation to describe “what should still be done!” Neverthe-
less, drawing an area indicating what should still be done (from now on, let us call it the “to do
area”) is a good way to ease the representation of the initial and final states of the program. In
the initial state, this “to do area” should span over all the data that are concerned by the program.
On the contrary, In the final state, this area should have disappeared while the only remaining
area represents what has been achieved by the program. It is then easy to check if the purpose of
the program is met in such a state.

Moreover, when deducing the code instructions, this “to do area” helps to deduce the updates
of the variables labelling the Dividing Lines, since the lines have to be moved in order to shrink
the area.

At last, one should note that this rule is of high importance when proposing a Loop Variant
to show loop termination as the size of the “to do area” is often a good candidate for the Loop
Variant (or a good hint to find a proper one).

This corresponds to the blue arrow in Fig. 2.1.

2.1.2.7 Rule 7 — All the named structures and variables shall be present in the code

One one hand, the most straightforward meaning of this guidelines is to actually use the Graphical
Loop Invariant to deduce the code instructions, as shown in Sec. 2.1.3. On the other hand, this is
also a reminder to check if all the variables identified during the reflection phase which is the

drawing of the Graphical Loop Invariant were actually included in the code instructions.

2.1.3 Using the Graphical Loop Invariant to deduce the code instructions
2.1.3.1 Introduction

Once a Graphical Loop Invariant meeting the seven guidelines previously introduced is drawn,
it can be used to write the loop instructions'?. The general pattern of such a loop and the code
locations where the Loop Invariant must be True is reminded in the Listing 2.1. Since a Loop
Invariant must be True just before the evaluation of the Loop Condition, it is obviously the case
at line 3. The evaluation of the Loop Condition is not supposed to modify the truth value of the
Loop Invariant!! hence the Loop Invariant is also True at lines 6 and 10. Finally, it is up to the

programmer to make sure that the Loop Invariant is True at line 8, at the end of the iteration,

10 In this chapter, we focus of this particular usage of the Graphical Loop Invariant. Of course, it can be used
to prove the partial correctness of the code, or to explain how a loop works but it is important to note that, in our
approach, the code is not written yet! And the Graphical Loop Invariant is needed to do so.

11 To make it simple, we do not consider here side effect expressions, e.g., pre- or post-increment.
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just before the Loop Condition is evaluated, before the potential next iteration.

// Pre
ZONE 1
// Inv
while (LOOP CONDITION)
{
// Inv A loop_condition
ZONE 2
// Inv
}
// Inv A —loop_condition
ZONE 3
// Post

Listing 2.1: Pattern of a loop

One can see in the pattern four parts that must be completed: ZONE 1, ZONE 2, ZONE 3, and
LOOP CONDITION. By replacing each part by the proper expression or instruction(s), we will form
the code. It is worth noting that deducing the replacement of each part can be done independently,
and this, with the help of the Graphical Loop Invariant.

To be precise, each part is surrounded, in the pattern, by two commentaries that represent
conditions that must be satisfied, i.e., be True (e.g., in Listing 2.1, ZONE 1 (line 2) is surrounded
by Pre (line 1) and Inv (line 3)). While writing the code of a particular part, we must take for
granted the information contained in the condition that precedes it and find instructions that

will ensure that the condition that follows it is True. The following details theses four steps :

1. Deducing variables initialisation (ZONE 1) from the drawing of the initial state;
2. Deducing the Loop Condition from the final state ;
3. Deducing the Loop Body (ZONE 2) from the Graphical Loop Invariant;

4. Deducing the instructions coming after the loop (ZONE 3) from the final state ;

These four steps can be followed in any order, except that determining the Loop Body may
require to know the Loop Condition. Both initial and final states are obtained from the Graphical

Loop Invariant through graphical modifications that are detailed below.

2.1.3.2 Deducing variables initialisations from the drawing of the initial state

The initial values of the variables can be read in the drawing of the initial state (See Fig. 2.2b).
This picture is obtained from the Graphical Loop Invariant (See Fig. 2.2a) by shifting the Dividing
Line (in red) to the left in order to make the green zone disappear. Of course, the variable labelling

the Dividing Line (i) is shifted to the left accordingly and stay at the right of the Dividing Line
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Figure 2.2: Graphical Loop Invariant and particular cases for computing the product of integers
between a and b.

(otherwise the depicted situation would not respect the Graphical Loop Invariant anymore! — See
Sec. 2.1.1.1). Doing so, we can see in Fig. 2.2b that the initial value of i must be a. As far as the
variable p is concerned, we know from the Graphical Loop Invariant (Fig. 2.2a) that its value
corresponds to the product of the integers present between a and the left-side of the Dividing
Line. As this zone is empty, we deduce the initial value of p is the empty product, i.e., 1. The

Listing 2.2 sums up the deduced instructions.

int i = a;

int p 1;

Listing 2.2: ZONE 1

12 By writing this, we do not agree with Dijkstra [56] who recommended to “choose [the] guards as weak as
possible” (p.57). In this case, that would mean to use i # b+ 1 instead of i <b. Dijkstra mention two reasons: 1) using
i#b+1 enables to conclude that i =b+ 1 “upon termination without an appeal to the [Loop Invariant ]” (p.56); 2) it
“makes termination dependent upon (part of) the [Loop Invariant i.e., here, i <b+ 1] and is therefore to be preferred
for reasons of robustness.” (ibid.). On the contrary, a stronger guard enables 1) to represent the relationship between
the iteration variable and the boundaries, helping to reduce errors such s overflow; 2) it is safer against infinite loop,
regardless how the iteration variable is modified in the Loop Body; 3) it gives an hint on how the iteration variable
should be modified to meet the Stop Condition. We think these reasons advocate for using strong guards, in particular
in CS1I course. From a computer security point of view, using “robust loop termination conditions” is the MSC21-C
recommendation of the SEI CERT C Coding Standard [177] .
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2.1.3.3 Deducing the Loop Condition from the final state

Determining the Loop Condition requires to draw the final state of the loop. Ie., a state in which
the goal of the loop is reached. Since the purpose of our problem is to compute the product of
the integers between a and b, we can obtain such a representation from the Graphical Loop
Invariant (Fig. 2.2a) by shifting the Dividing Line (in red) to the right. As in the previous point,
the labelling variable i at the same time as the Dividing Line. This graphical manipulation
leads to Fig. 2.2c. From this Figure, one can read that the goal of the loop is reached when
i =b+1 and the iterations must thus be stopped. The Stop Condition of the loop is therefore
i =b+ 1. The Loop Condition, being the logical negation of the Stop Condition, is then i #b+ 1.
We recommand?, to properly illustrate the relation between i and b, to use a stronger condition
that is i <b+1 or i <b that is, of course, equivalent. The listing 2.3 shows the corresponding

piece of code.

while (i <= b)

Listing 2.3: LOOP CONDITION

2.1.3.4 Deducing the instructions coming after the loop from the final state

As we just represented the final state (See Fig. 2.2c), we can observe that the variable p contains
the product of the integers a and b that is the goal of the program. Thus, there is nothing to do
after the loop.

Please note that ZONE 3 is not necessarily empty: e.g., think about a program that compute
an average of a certain numbers of values. In this case, the loop would sum and count the values;

ZONE 3 would be the division of the sum by the number of counted values.

2.1.3.5 Deducing the Loop Bodyfrom the Graphical Loop Invariant

Determining the Loop Body is often the most difficult step. We start from what we know: both
the Loop Condition and the Graphical Loop Invariant are True (See the general loop pattern in
Listing 2.1). To be more explicit, we use a new representation of the Graphical Loop Invariant
(See Fig. 2.3a). We must find instructions that will make progress the situations towards the
goal of the program. In other words, make the green zone increase and make the blue zone
decrease. As the green zone represents the integers that are multiplied in p (thus from a to i-1),
we can make grow this zone by multiplying the next integer to p. This next integer is read in the
Graphical Loop Invariant at the right of the Dividing Line: this is i.

After having multiplied p by i, the situation in Fig. 2.3b is obtained. It must be noted
that is not the Graphical Loop Invariant any more since the variable i is now at the left of the
Dividing Line. In this particular situation, the Graphical Loop Invariant is False (see Sec. 2.1.1.1),

whatever the particular values of a,b,i, or p! According to the loop pattern (See listing 2.1), we
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(c) Restored Graphical Loop Invariant.

Figure 2.3: Determining the loop body from the Graphical Loop Invariant.

must restore the Graphical Loop Invariant, i.e., make it true again, before the end of the Loop
Body. How can this be done? By comparing the Figures 2.3a and 2.3b, we can see that in the
Graphical Loop Invariant, the value labelling the right side of the Dividing Line is i and in
the current situation, this is i+1. Therefore, by assigning the value i+1 to i (i.e., increasing i),
the Graphical Loop Invariant is restored (See Fig. 2.3c, that is strictly equivalent to Fig. 2.3a).
Finally, Listing 2.4 shows the loop body instructions.

{

++1i

Listing 2.4: ZONE 2

2.1.3.6 Final code and Loop Variant

int 1 = a;
int p = 1;
while (i <= Db)
{
p *= 1;
++1;
+

// ZONE 3: Nothing to do

Listing 2.5: Final Code

The final code is given in Listing 2.5. As far as the Loop Variant is concerned, it can also

be obtained from the Graphical Loop Invariant: here, this is the expression of the length of the
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* * * * * *
* * *
* * * * * *

* * * * *

(a) width =5 (b) width = 3 (c) width =1

Figure 2.4: Examples of hourglasses with different widths.

blue arrow, i.e., b —i + 1. It is obvious that this quantity is an integer, strictly positive if the loop

condition is true and that decreases from an iteration to another.

2.1.4 Positioning the Graphical Loop Invariant with Respect to Problem Solving

[Nouveaul]

[to be moved elsewhere] One of the limit of the Graphical Loop Invariant Based Program-
mingmethodology is the capacity of its user to represent graphically problems. As long as they
figures how to illustrate a problem with a drawing,[(insert this)]

In the previous sections, we introduced the Graphical Loop Invariant Based Programming
methodology and illustrated it with an example involving a simple problem. As for now, we have

not yet discussed important questions :
* How can we know that loops are needed to solve a problem?
¢ And if so, how many of them?

These questions do not belong, strictly speaking, to the Graphical Loop Invariant Based
Programming methodology, which focuses on writing the loops. However, they will be answered
thanks to a preliminary analysis of the problem to solve. As for the GLIBP methodology, we
promote to make a drawing of the problem and to leverage this picture to make arise possible sub-
problems, that are easier to solve (which is referred as applying a divide and conquer strategy),
and to identify, for each sub-problem, if a loop is required to solve it.

Let us take the example of a problem consisting in drawing an hourglass shape:

HOURGLASS:

Input — An odd positive integer width.

Output — A hourglass-shaped text composed of asterisks (x) whose base length
is width.

Fig. 2.4 shows several examples of hourglasses.
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height
* o (= width)

* * * * * * * «—

* * * * * * * * X

width

Figure 2.5: Using a drawing to make arise simpler sub-problems

2.1.4.1 Dividing the Problem into simpler Sub-problems

In order to analyse the HOURGLASS problem, we begin with an accurate drawing of an hourglass
(here of width equal to 9) that can be seen in Fig. 2.5. We call this figure "accurate" because
it shows all the detalils, including the white-space characters (spaces and newlines, in gray in
Fig. 2.5) required to obtain an hourglass when printing on standard output.

Then, by looking at the figure, we can recognise repeating patterns. As can be seen in Fig. 2.5,
a pattern consisting of spaces followed by stars and a newline (squared in blue in Fig. 2.5) repeat
itself several times. How many times? Let us call this quantity the height of the hourglass. The
height of the hourglass is equal to its width but the following will show that we do not need to
know that to solve the problem.

From Fig. 2.5, we also note that the hourglass shape can be divided into two simpler parts: a
top trapezoid and a bottom triangle, as it is depicted in Fig. 2.5 thanks to an horizontal red line.
In the top trapezoid, the "spaces/stars/newline" patterns evolve from top to bottom by increasing
the number of spaces and decreasing the numbers of stars. On the other hand, in the triangle,
the evolution of the "spaces/stars/newline" patterns is mirrored: the spaces decrease while the
stars increase.

To sum up, we identified three sub-problems (SP):

SP1: Print a “spaces/stars/newline” pattern;

SP2: Print a trapezoid;

SP3: Print a triangle.

We can even divide the SP1 into smaller sub-problem calls, since printing a "spaces/stars/mew-
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line" pattern consists in printing a certain number of spaces, followed by a certain number of

stars, followed by a newline. We denote this sub-problem as SP4:
SP4: Print a character a certain number of times.

As a result, SP1 will use SP4 several times; SP2 and SP3 will both use SP1 and the HOUR-
GLASS problem will consist in applying SP2 followed by SP3, as shown in Listing 2.6.

void hourglass (int width){
width = (width % 2)? width : width + 1; // Handle even width
printTrapezoid(width); // SP2
printTriangle (width); // SP3

Listing 2.6: Code for the HOURGLASS problem

For the following, let us assume that we have already solved the SP4 (which is quite simple
and require a loop to print several times the same character) and that we have a function PRINTC

that enable us to print a character several times:

PRINTC:

Input — A character c and a positive integer nb

Output — Print nb times the character c.

Thanks to PRINTC, implementing SP1 is straightforward since it consists of three calls to the

function, as it can be seen in Listing 2.7.

void printSpacesStarsNL (unsigned int nbSpaces, unsigned int nbStars){

printc (nbSpaces, ’ ’); // SP4
printc(nbStars , ’*’); // SP4
printc (1 , ’\n’);// SP4

Listing 2.7: Code for the SP1 — Print a “spaces/stars/newline” pattern

2.1.4.2 Solving SP2: print a trapezoid

Let us focus on the top part of the Fig. 2.5, that forms the trapezoid. The first line of the trapezoid
consists of width stars while the last one consists of 3 stars. Printing the lines of the trapezoid
require to repeat the SP1 several time. To do so, a loop is needed. From the top of the Fig. 2.5,
let us draw a Dividing Line that separate the lines already printed and the remaining ones. By
doing so, we get the Graphical Loop Invariant of the SP2, shown in Fig. 2.6.

The Graphical Loop Invariant helps us to identify variables: the number of stars nbStars,

which will be the iteration variable. One also could have used the number of spaces nbSpaces as
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Figure 2.6: Graphical Loop Invariant for the top triangle of the hourglass

void printTrapezoid (unsigned int width){
// Parameter verification is omitted.

unsigned int nbStars = width;
unsigned int nbSpaces = 0;

while (nbStars >= 3){
printSpacesStarsNL (nbStars, nbSpaces); // SP1
nbStars -= 2;
nbSpaces += 1;

Listing 2.8: Code for the SP2 — print a trapezoid

iteration variable. The number of spaces in the next line to be printed is equal to the number of
lines already printed.

The initial values of the variables is easily calculated: nbSpaces is the number of printed
lines, hence 0; nbStars is the number of stars in the first line to be printed, hence width.

The loop has to be stopped when the number of stars is less than 3 and the Loop Condition is
therefore nbStars >= 3. It is worth noting that if the hourglass width is 1 (see Fig. 2.4c), the
Loop Condition is false before the first iteration and the loop is not executed.

After having printed the line (thanks to SP1), we restore the Graphical Loop Invariant by
subtracting 2 to the numbers of stars and by incrementing the number of printed lines (i.e.,
nbSpaces).

The code corresponding to the SP2 is shown in Listing 2.8. To solve the SP3: printing a
triangle, one could draw a Graphical Loop Invariant with a triangular shape and follow a similar

approach. The code of the SP3 is given in Listing 2.9 without further development.

2.1.4.3 Another possible problem division

Another cut in the hourglass One could have cut the hourglass in such a way that it consisted

of a top triangle and a bottom trapezoid, as shown in Fig. 2.7. The program would look like to
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void printTriangle (unsigned int width){
// Parameter verification is omitted.

nbStars = 1;

nbSpaces = width / 2;

while (nbStars <= width){
printSpacesStarsNL (nbStars, nbSpaces); // SP1
nbStars += 2;
nbSpaces -=1;

Listing 2.9: Code for the SP3 — print a triangle

* * * * * * * «—

* * * * * * * * *

width

Figure 2.7: A different division of the hourglass

the one already presented in Listing 2.8. However, since the numbers of stars of the triangle
would range from width to 1 by decreasing their number by 2 at each iteration, there is a risk of
infinite loop due to an underflow if the Loop Condition is not carefully chosen (e.g., if one blindly

replace the loop condition by nbStars >= 1).

A one-size-fit-all loop This solution would consist in using a single loop to solve the problem.
The following illustrates why we do not recommand doing so. A Graphical Loop Invariant for
such a single loop would look like Fig. 2.8. Two iterations variables were introduced: i and j
that represent the current row and column, respectively. At each iteration, a character is printed
depending on the values of i and j.

Finding the conditions upon which a certain character must be printed can once again be
eased by a drawing. Fig. 2.9 shows an hourglass annotated with four diagonal segments and their
respective equations. Those segments and the horizontal line divide the drawing in six areas:

three at the top and three at the bottom. Each of the three correspond to a character among the
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Figure 2.8: A Graphical Loop Invariant for the HOURGLASS problem solved with a single loop.
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void hourglass (unsigned int width){
// Parameter verification is omitted.

unsigned int i = O;
unsigned int j 0;

while(j < width){

if (j <= width / 2)
// Top part
if (i < j)
printc(l, > ’); // Red area
else
printc(l, ’x*’); // Blue area
else
// Bottom part
if (i < (width - 1) - j)

printc(l, > ?); // Yellow area
else
printc(l, ’*’); // Green area
++1;
if (((j < width / 2) && (i == width - j)) // Cyan line
[l ((j >= width / 2) && (i-1 == j))) // Orange line
{
printc(l, ’\n’);
i = 0;
jtts

}

Listing 2.10: Code for the HOURGLASS problem with a single loop. The comments in the loop
body refer to Fig. 2.9.

space, the star and the newline. The segments equations enable to write alternative statements
in the code (see Listing 2.10).

2.1.4.4 Which division is preferable?

The previous section shows how Graphical Loop Invariant Based Programming methodology fits
in the broader context of problem solving. In order to divide a complex problem into simpler
sub-problems, a graphical approach has several advantages. First, it allows to identify repeating
patterns that will require loops. Second, the drawings may be adapted into Graphical Loop
Invariants, as in the example of the SP2 of the HOURGLASS problem.

As we show in the last example, trying to solve a problem (which is not that difficult) in a
unique loop leads to a code that is longer, requires more calculation during the writing of the code
(see Fig. 2.9), is less reusable and less maintainable hence error prone.

As the division in sub-problems is not unique, when should we stop dividing? A rule of thumb
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is to keep sub-problems easy to solve. We recommand to try to limit a sub-problem to one short
loop, properly documented by its Graphical Loop Invariant. This is in line with coding best

practice of keeping short the length of functions [136].

2.1.5 Conclusion

In the above presentation of our methodology, we focused on graphical modifications and ob-
servation of the Graphical Loop Invariant to deduce codes instructions. We proposed a lot of
drawings that explicit our approach. It goes without saying that most of the drawings are, in
practice, not necessary. This is, for example, the case of the Fig. 2.3. In addition, when the
methodology is mastered, even the Figures 2.2 may be just imagined on the basis of the sole
Graphical Loop Invariant that is actually drawn. However, we do not recommend to just think
about the Graphical Loop Invariant without sketching it: applying graphical transformations on
an image that is just thought is rather complex and may lead to programming errors. We insist
on the code deduction phase: the algorithm is deduced from the Graphical Loop Invariant that is
a particular representation of the actual data the programmer must deal with and nothing else,

a remark at the end of Sec. 2.2.3.1 illustrates accurately our point.

2.2 Applying GLIBP to Common Data Structures

The following section presents several common data structures and describes how they may be
graphically represented and the information contained in their drawings. Of course, using a
particular shape to represent a data structure is not mandatory but in the context of a lecture,
it would be better to keep using the same pattern for a particular data and make sure that the
picture meaning is shared by both the teaching team and the students. One must emphasis on

these points :

The shape of the design and why it is relevant;

The part of the drawing that should be labelled;

The position of particular pieces of information (e.g., boundaries);

The meaning of the relative position of the several elements in the picture;
* The graphical elements that represent specific implementation details (e.g., pointers).

In the following, we keep using our colour code previously introduced. Table 2.2 shows for
each element present in a Graphical Loop Invariant, the colour that we used and reminds the
guideline that is associated with the represented element (see Sec. 2.1.2).

The rest of this section is organised in this way: Sec. 2.2.1 reminds the way of representing a

graduated line; Sec. 2.2.2 shows how to represent the digits of a number and illustrates how it
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Elements in the picture Colours Rule #
Names of the structures _ Rule 1
Minimal boundaries Rule 2

Maximal boundaries _ Rule 2

Sizes of the data structures _ Rule 2

Dividing Lines B Rule 3
Dividing Lines labels _ Rule 4
What has been achieved so far _ Rule 5

“To do” zones _ Rule 6

Properties that are conserved _ Rule 5
Rule 6

Table 2.2: Colour code for the elements in the graphical representation of data structures and
Loop Invariants. Rule numbers refer to Sec. 2.1.2.

may save us from complex calculation; Sec. 2.2.3 introduces the way of representing arrays, shows
how to find a Graphical Loop Invariant from the Postcondition and details how the Graphical
Loop Invariant can be used to illustrate how a loop works; Sec. 2.2.4 shows how to draw lists and
elaborates on pointers manipulation illustration rendered handy in our framework. Sec. 2.2.5
shows to draw queues and stacks in several way and discusses when to use a particular pattern
rather than another. Finally Sec. 2.2.6 addresses graphs, Graphical Loop Invariants for for-each

loops and GLIBP methodology in the context of oriented-object programming.

2.2.1 Graduated Lines

One of the most basic pattern is the graduated line, allowing us to represent ordered sets such
as subsets of Natural or Integers. Fig. 2.10 shows the graphical representation of such a line.
The line is labelled with the set name (e.g., N or Z, as in the Graphical Loop Invariant used
in the previous section (See Fig. 2.1)). Each tick on the line corresponds to a value and all the
represented values are offset by the same step (x in Fig. 2.10). The arrow at the far-right of
the line indicates the increasing order of values. A value located at the right of another will,
consequently, be greater than this last. Fig. 2.10 also shows how the boundaries should be placed
at both ends of the picture. One can directly see at a glance that the figure represents the relation
a <b. Sec. 2.1.3 illustrates how to deduce code instructions from a Graphical Loop Invariant

drawn from this pattern.

T This representation is naturally inherited from numbering systems (i.e., N =a,_1 x b lig n—2 % B 24 4
a1 xbl+agxb? or Z;:ola,- x bl), where a; €{0,1,...,b-1}
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a+x a+2x ... b-2x b—«x b+x

L L L L L L \
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U 4
Set Name

Figure 2.10: A line for representing ordered sets e.g., Natural or Integers

Number: drpg| - | dj |dj=1| -+ | d1

Figure 2.11: Pattern for Graphical Loop Invariant involving number representations

2.2.2  Number Representations

For problems concerning number representations (whether they are binary, decimal, hexadecimal,
...), one can represent this number as a sequence of digits named d jT, like in Fig. 2.11. The most
significant digits are at the right and the least significant ones at the left.

Often, the d; are not variables used in the code but rather figure the information contained
in an actual variable, as it can been seen in the example (See Fig. 2.12). If a program must
investigate the values of the digits in a certain order, it is possible to mention in the picture which
is the first and last digits to be handled, as it is, for example, done in Fig. 2.11 where the least
signifiant digit (in orange) will be used first and the most significant one (in magenta) will be

used last.

2.2.2.1 Example: Reversing the Digits of a Number

To illustrate the pattern for representing numbers, here is an example of problem:

REVERSENUMBER:

Input — A positive integer s

Output — A number r whose decimal representation is the decimal digits of s

taken in reverse order.

The corresponding Graphical Loop Invariant is provided in Figure 2.12. First of all, there
are two numbers in this problem: the source s and the result r. Hence the Graphical Loop
Invariant must represent both numbers and here we see why correct labels are essential: we
will not confuse the two numbers using the Graphical Loop Invariant. We first represent the
initial value of s, that we label sg (See in the top of Fig. 2.12) and we represent the number r that
contains several (but not all) digits d from sg (See in the bottom of Fig. 2.12). A Dividing Line is
drawn to represent which part of sg was already reversed in r and the green zones are labelled
accordingly. The remaining digits of sy constitute the “to do zone”. These remaining digits will

be in fact contained in the current value of s that will help us to enumerate all the digits of sg
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Figure 2.12: Graphical Loop Invariant involving number representations: the REVERSENUMBER
problem

through the iterations. We coloured s in Fig. 2.12 in the same color as the Dividing Line labels

because it is its role. To be precise, s will be our iteration variable, as can be seen in Listing 2.11.

const int B = 10;

int r = 0;
while (s)
{

r = r % B;

r + s % B; // % is the modulo operator
s = s / B;
}

Listing 2.11: Code for the REVERSENUMBER problem, whose Graphical Loop Invariant is
depicted in Fig. 2.12. The code does not depend on the base B.

2.2.2.2  The Graphical Loop Invariant May Save us from Complex Calculation

Using the Graphical Loop Invariant (See Fig. 2.12) save[s] us from rather complex computation.
Let us illustrate that by expressing the values of s and r with mathematical notations. If we

develop the initial decomposition of s (denoted by sg) in decimal digits, we get the equation 2.1:

logsol | S0
so= ). 10]({-—<J naod.lO) (2.1
s 10/

In this equation, the terms (H—&J mod 10) correspond to the digits d; and [logso] corresponds

to the value £ — 1, all depicted in Fig. 2.12. We can then express the final value of r (denoted by
rr) that is computed by the program and get the equation 2.2:

[logso) (1 so
re=y 10k—L7({-—TJInod1o) (2.2)
= 10/
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As far as the values of s and r after a certain number of iterations i are concerned, they can

be calculated thanks to resp. equations 2.3 and 2.4.

logsol | S0
s= Z 1077 (LOJIiJ mod 10) 2.3)
j=i
i-1 (1 so
r=Y 10+t ( {WJ mod 10) (2.4)
j=0

One can see that if i =0, i.e., before the loop, s = sg. At the end of the loop, all the digits of s
have been reversed in r and i = & = [logso] + 1 and thus r = r¢ while s = 0 (it is indeed the Stop
Condition). Increasing the number of iterations decreases the number of terms in the sum 2.3
(i.e., the number of digits of s) and increases those in the sum 2.4 (i.e., the number of digits of r).
This is exactly what is done by the program (See Listing 2.11).

Writing all those equations are not necessary in the Graphical Loop Invariant Based Pro-
gramming framework. The careful representations of sg, s, and r in Fig. 2.12 are enough to lead
to a correct code. Thanks to the drawing, we do not need to know the exact number of digits in s
and r and the picture expresses well how the digits of r are related to those of sg without the
need for complex mathematical notations. This demonstrates clearly the advantage of a graphical
approach, especially in the context of a CS1 course taken by students that are not particularly
skilled in maths (e.g., here, the Capital-sigma notation “}_” or the modulo operation “mod” could

be confusing since they are not used to them).

2.2.3 Arrays

An array is a ordered collection of elements of the same type. Each element can be directly
accessed thanks to its relative position called index. The number of elements stored in a array
is its size. The indices range from 0 to size — 1. Arrays are basic data structures: they can be
used to build more complex ones. The simplest implementations of the arrays store the elements
contiguously in memory (this is the case for C arrays [180]) making accesses to their elements

very efficient.

A:

Figure 2.13: Pattern for Graphical Loop Invariant involving an array A of size N

Fig. 2.13 shows the representation of an array A containing N elements. The pattern follows
a rectangular shape to depict the contiguous storage of the elements. Above this rectangle, we
indicate indices of interest: at least the first (i.e., 0) and the size N. It is important to see that N is
written at the right of the array’s border to mean that N is not a valid index as it is out of the

array’s bound that are in [0..N — 1]. The name of the array is written at its left.
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2.2.3.1 Finding the Loop Invariant from the Postcondition: the Example of the Binary Search

The problem illustrating the array pattern is the binary search that consists in locating a

particular value in a strictly'® sorted array. The problem specifications are the following:

BINARYSEARCH:

Input — A, a strictly sorted array of N integers and X, an integer

Output — A integer i such that 0 <i <Nand A[i] = X if X is in the array tab,

—1 otherwise. tab is not modified.

Sorted and unmodified

Figure 2.14: Postcondition of the BINARYSEARCH problem

A good starting point to find a Graphical Loop Invariant is to begin with the representation of
the problem Postcondition. In Fig. 2.14, we represent such a state in the case where X was from
the beginning in A. Since the searched value is present, we write X somewhere in the rectangular
shape. The Postcondition uses the letter i to denote the index of X, thus we write i just above the
X. By doing so, we create 3 parts in the array A: before X, X itself, and after X. In Fig. 2.14, we also
add the array bounds and the properties that were kept True by the program: A is sorted and is
left unmodified. In order to obtain a Graphical Loop Invariant, we must modify the Postcondition
to represent the general situation of the loop, in which X was not yet found. We must then replace
the particular position i by a zone in A where X could be found. We can do that easily by taking
the two bars that surround X in Fig. 2.14 and shift both of them towards the array bounds.

N

A: X could be here

A
\

Sorted and unmodified

Figure 2.15: Example of Graphical Loop Invariant involving an array: binary search

We obtain the Fig. 2.15 that just has to be properly labelled in order to be a Graphical Loop
Invariant. In the left part of A, we conclude that all the elements are lesser than X since the array

is sorted and X is the middle part of A. We can make the same reasoning about the right part of

13 To handle the case of a non-strict sorting, the Graphical Loop Invariant (and thus the program) must be modified

accordingly.
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A in which all the elements are greater than X. We notice that there are two Dividing Lines in
the array and we label them with two variables 1 and u (for resp. lower and upper index). The
middle part of the array, where X could be present must be investigated by the program and is

labelled accordingly.

1 u N-1|N
A: <X |To beinvestigated| ->X

A
\4

Sorted and unmodified

Figure 2.16: Example of Graphical Loop Invariant involving an array: BINARYSEARCH

Finally, we get the Fig. 2.16 that is the Graphical Loop Invariant for the BINARYSEARCH
problem. It is worth noting that the color of the property “Sorted and unmodified” was not chosen
randomly: it is a mix of blue and green that are used for respectively what should be done and
what has already been achieved. In fact, it mentions a property that is already established
(green) and this property must be kept True as the iterations go (blue). Hence mixing both blue
and green is the best way to respect our own colours usage rules. The code of BINARYSEARCH
problem is given in Listing 2.12.

int binarySearch(int *A, int N){
int 1 = 0, u = N-1;

//Invariant

while (1l < uw){
//Invariant A Loop Condition
int m = (1 + u) / 2;
if (Alm] < X)

1 =m+ 1;

else if (A[m] > X)
u=m - 1;

else
u =1 = m;

//Invariant A —Loop Condition
if (Aful == X)

return u;
else

return -1;

Listing 2.12: Code for the BINARYSEARCH problem

To sum up, it may be easy to draw a Graphical Loop Invariant from the representation of
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the problem Postcondition: one has to relax the Postcondition drawing to make appear a more
general situation in which a “to be investigated” zone is visible (this always require to move one
or more Dividing Line(s)) and then finish to label the new picture to respect the seven guidelines

of the Graphical Loop Invariant (see Sec. 2.1.2).

Important note When deducing the code of the BINARYSEARCH problem, the fact that the
zone to be investigated is divided by two at each iteration is a consequence of the particular
properties exhibited by the array A. Some programming books (see Sec. 1.5.3) straightforwardly
presents this algorithm by stating that the search zone is divided in half at each iteration, doing
so, they start by cutting off the reflection phase that make appear the interesting and efficient
part of the algorithm! On the other hand, our framework allows to make the learners discover by
themselves the efficient algorithm from the properties that are observed in the data that must be

processed by the program to be written.

2.2.3.2 lllustrate how an Algorithm Works thanks to the Graphical Loop Invariant

Since the beginning of this chapter, we focus on the Graphical Loop Invariant as a tool to deduce
code instructions. In the following, we are going to detail another use of this drawing: to illustrate
how an algorithm works. Let us imagine that we just discovered the code provided in Listing 2.12
and that we do not know its purpose. One of the best documentation for this piece of code is, in
fact, its Graphical Loop Invariant!

Indeed, just by looking at it (see Fig. 2.16), we can understand that the algorithm investigates
the content of an array A of size N thanks to index variables 1 and u and that another variable X is
involved. 1 (resp. u) delimits a zone of elements of A less (resp. greater) than X. This information
is available at a glance!

Of course, we need the Postcondition to understand the goal of the program but the Graphical
Loop Invariant reveals us nearly all the implementation details.

Moreover, if we wish to precisely explain the instructions of Listing 2.12 from lines 7 to 11,
we will use the Graphical Loop Invariant, again. Here is how it can be done.

First, we place in the picture of A the variable m introduced at the line 7: m is in the middle of
1 and u. This situation is shown in Fig. 2.17a.

Then, if the test A[m] < Xis True, we can draw the Fig. 2.17b. As it can be seen in the Figure,
we can conclude that all the elements in A[0..m] are less than X since A[0] and A[m] are both less
than X and the array is sorted. In conclusion, we can read the new value of 1 in Fig. 2.17b: it
must be m+ 1 as 1 delimits a zone of elements less than X (see Listing 2.12, line 9).

On the other hand, if it is the test A[m] > X that is True, the Fig. 2.17c can be drawn. From
the Figure, we conclude that all the elements in A[m..N — 1] are less than X and the new value of u
must be m— 1 (see Listing 2.12, line 11).

To be complete, we should also develop graphically the case in which A[m] == X but we will
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1 m u N-1[N
A: <X ? ->X

A
Y

Sorted and unmodified

(a) Positionning m

ml1 u N-1|N
<X ->X

A: -<X

A
\

Sorted and unmodified

(b) 1 is updated since A[m] <X

1 u|m
A: <X >X

->X

A
\4

Sorted and unmodified

(c) uis updated since A[m] > X

Figure 2.17: Explaining graphically the instructions of the loop body

Lo [ oo [ o] o>

(a) Simply Linked List
RS R = e B e - DY R
Figure 2.18: Patterns for Simply and Doubly Linked List

(b) Doubly Linked List

not because it is very simple: this situation corresponds to the Postcondition (see Fig. 2.14).
In conclusion, we have shown in this section how the Graphical Loop Invariant is a good way

to document a loop and how, on the basis of it, we can illustrate every single loop instructions.

2.2.4 Linked Lists

A List is a collection of elements that can be accessed in a sequential ordered. A Linked List
is a sequence of cells. Each cell contains both data and a link to another cell. The link may be

14 or a pointer (a variable that stores an address), as it is the case in the following

a reference
examples.
Fig. 2.18a shows a Singly Linked List whose cells are linked by a unique pointer to the

next cell. A cell can contain multiple pointer, as it is shown in Fig. 2.18b that depicts a Doubly

14 E.g.,in Java [77]
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Linked List: each cell is linked to the previous and next cells in the list. The last cell of the
linked lists and the first cell of the doubly linked list contain a special pointer, represented by an
oblique bar, that means that they are not linked to another cell. In both Fig. 2.18a and Fig. 2.18b,
the pointers to the lists, that are named L, are drawn at the left and point to the first cell of their
respective list. In the pictures, the elements in the lists are noted e; with i ranging from 0 to

n—1. n is the length of the list and the position i of an element is often called its rank.

2.2.4.1 lllustrating Data Structure Internals

prev. next

Figure 2.19: A Doubly Linked List Cell

The way we represent the lists cells is directly derived from their implementation. Fig. 2.19
allows to take a closer look at a doubly linked list cell. The pointers to a previous cell or a next cell
are named prev and next respectively and are depicted as arrows. The field used to store the cell
information is called data. The C implementation of such a cell is provided by the Listing 2.13.
Of course, this representation of a cell is not new (e.g., [77] uses it too) but it fit particularly well
in our programming framework since it keeps the drawing close to the code (see Sec. 2.1.2, rule
7).

typedef struct cell{
T data;
struct cell *prev;
struct cell *next;
} DLinkedList

Listing 2.13: Structure of a Double Linked List Cell

2.2.4.2 Dealing with Pointers: the Example of the Copy of a Double Linked List

In order to illustrate the Graphical Loop Invariant Based Programming methodology with the

lists, let us introduce the problem consisting in copying a doubly linked list:

COPYLIST:

Input — A doubly linked list L

Output — Cc, a copy of L, which is left unmodified
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'—‘@‘ C/17]

[ - 2REHET

Unmodified

N

<

- <

Already copied from L to Cc To be copied

Ce nmﬁ

Figure 2.20: Graphical Loop Invariant of the COPYLIST problem

The corresponding Graphical Loop Invariant is shown in Fig. 2.20. The list L to be copied is
entirely drawn and the fact that the list will not be modified is written below it. To represent a
general situation in which only a part of the list L has been copied, a Dividing Line is placed in
the middle of it. The cell in L at the right of the Dividing Line is the next cell to be copied and
must be accessible with a pointer. We then draw such a pointer and name it p. We then label the
drawing with what should still be done: to copy the rest of L, starting by the cell pointed by p.
Finally, we indicate that the cells of L from the first to the one before p were copied in the list Cc.
Of course, we represent that list just below L with the same data content in the cells. In order to
make the list Cc grow, one must have access to its last cell: this is why the pointer q is introduced.

The code for the COPYLIST problem is shown in Listing 2.14.

DLinkedList *copyList(const L #*DLinkedList)

{
DLinkedList *p = L->next;

DLinkedList *Cc = malloc(sizeof (DLinkedList));
Cc->data = L->data;

Cc->prev NULL;

Cc->next = NULL;

DLinkedList *q = Cc;

// Invariant

while(p !'= NULL)

{
q->next = malloc(sizeof (DLinkedList));
g->next->data = p->data;
q->next->prev = q;

NULL;

q->next ->next
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q->next;

Q
Il

p = p->next;

return Cc;

Listing 2.14: Code for COPYLIST problem

P
Li 71— I Lle (01| T <o 1
h Unmodified .
> < >
Copied from L To be copied
to Cc
Cc| e > €0
K
[ )
q

Figure 2.21: Variables initialisation is eased

Once again, the Graphical Loop Invariant enabled us to initialise the variables (i.e., the ZONE
1, see Listing 2.14, lines 3 — 10). This initial situation is shown in Fig. 2.21: p must point to
the second cell of L; Cc must be a list of a single cell, that is the copy of the first cell of L and q
must point to the single cell of the list Cc. The Fig. 2.21 was obtained from Fig. 2.20 by shifting
the Dividing Line to the left until the list Cc contains only one cell. Shifting the Dividing Line
further to the left would have given a situation in which p would have pointed to the first cell
of L and Cc would have been an empty list but q would not have been initialised and thus the
Graphical Loop Invariant would not have been respected! In conclusion, a proper manipulation
of the Graphical Loop Invariant allows to ease even quite complex variables initialisation.

Finally, grasping how pointers work may be difficult for first-year students [43], especially
when dealing with a data structures such as a linked list which contains a large number of them.
In the example of the COPYLIST problem, a new cell has to be created and linked at the end of
the list Cc. To ease students understanding, it is common to decompose the pointers operations
and to explain them with an illustration. This is of course possible in the GLIBP framework.
More, using a picture from the beginning makes those graphical approaches straightforward

and natural. In Fig. 2.22, we represent the appending of a new cell to the list Cc. One can see
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From the Loop Invariant

Figure 2.22: Appending a cell to a linked list

Step in . Line in

Fig, 2.0 Operation Listing 2.14

1 Updating the next field of the last cell of Cc 15

2 Updating the data field of the new cell 16

3 Updating the prev field of the new cell 17
Initialize the next field of the new cell to NULL 18

Table 2.3: Matching between Fig. 2.22 steps and Listing 2.14

in the Figure that the respective situations of Cc and q were directly taken from the Graphical
Loop Invariant (see Fig. 2.20). After having allocated a new cell, there are four steps that are
listed in the Table 2.3. This table also references the line of Listing 2.14 corresponding to each

instruction.

2.2.5 Queues and Stacks

The previous sections have presented the application of the Graphical Loop Invariant Based Pro-
gramming methodology applied to some data structures: number lines, number representations,
arrays, and lists. This is not a comprehensive list of the capabilities of this programming method:
as long as a data structure can be drawn, all the loops that manipulate it can be written with
Graphical Loop Invariants. It is up to the programmer to propose a relevant drawing that exhibit
the main properties of the data structure he wishes to use. Let us take two more examples with
the queue and the stack.

A Queue is a collection of elements that follows a First-In First-Out (FIFO) access policy:
the elements are stored in the order of their entry and the first element to come out is the first

that entered the queue. There are thus two allowed operations:
* enqueue: adding an element at the end of the queue (which is often referred as its tail)
* dequeue: removing an element from the beginning of the queue (which is often referred as
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Table 2.4: Queue and Stack patterns
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its head).

On the other hand, a Stack is a collection of elements that follows a Last-In First-Out
(LIFO) access policy: the elements are stored in the order of their entry and the first element to

come out is the last that entered the stack. There are two basic operations :
¢ push: adding an element on the top of the stack.
* pop: removing an element from the top of the stack.

Table 2.4 proposes several way of representing queues and stacks. Each drawing represent
either of the two data structures in which the elements from A to E were added in the lexicographic
order. The first column shows abstract views of these data structures: One can see the head,
tail[,] and the FIFO policy of the queue and the top and the LIFO policy of the stack.

The second column of the Table shows the same structures but implemented with an array.
For the queue, two array indices head and tail are used and the elements of the queue is stored
between them. For the stack, an index represents the top position. For both structures, the array
may be larger than the actual number of elements and the array size is of course drawn as well.

The third and last column show the queue and stack implemented as lists. The queue is
implemented with a doubly linked list with a pointer head pointing to the first element and a
pointer tail pointing to the last one. On the other hand, the stack can be implemented with a
singly linked list with a pointer top pointing to the element at the top of the stack stored in the
first cell of the list.

Which drawing to choose to make a Graphical Loop Invariant? It depends on the program to
be written. If it consists in using an already implemented data structure through an interface,
the abstract drawing is probably the best solution. If it consists in implementing a new function
in the source code of a data structure library, the methodology recommand to draw a Graphical
Loop Invariant that represents as best as possible the real data implementation and therefore to

go for the array, the list or whatever is used in this particular case.

2.2.6  Graphs and Trees

The previous sections have introduced basic data structures exhibiting a linear common pattern:
numbers in an enumeration, digits of a number, elements of an array, cells of a list,. . . all of them
form sequences that may be graphically represented in a one-dimensional way.

The Graphical Loop Invariants do not need to be restricted to one-dimensional shapes. The
section Sec. 2.1.4 already gave a flavour of that matter with a hourglass-shaped Graphical Loop
Invariant that was not, in that case, the most appropriate representation to easily solve the

problem. In this section, we describe non-linear shaped Graphical Loop Invariants, taking graphs

15 In this section, we focus on connected and undirected graphs to illustrate our programming methodology. Graphs

implementation, properties and algorithms are discussed in dedicated books, e.g., [42, 77].
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Figure 2.23: A graph consisting of 9 vertices labelled from A to | and 15 edges, the shortest paths
from every vertices to A and the corresponding spanning tree.

as examples.

Let be G = (V,E), an undirected and connected'® graph that consists of a set of vertices V
connected by edges e such that all e € E. Such a graph is shown in Fig. 2.23a.

Let us define a path in a graph as a sequence of alternating vertices and edges such that
for all successive vertices in the path, there exists an edge in the graph that links them. For
example, in Fig. 2.23a, there are paths between all the nodes since the graph is connected.
A—-C—-F—-G-1-E is a path between vertices A and E. C — A — F — E is not a path since edges
A —F and F - E do not exist. The length of a path is the number of edges in the path. The length
of A—-C—-F—-G-1-E is 5. A shortest path is a path of minimum length. The shortest path
between A and E is A — B — E, with a length of 2. There may be several shortest paths between
two vertices,e.g., A—B—F and A-C-F.

We are going to apply GLIBP methodology in the context of graphs with this problem:

SHORTESTPATHTOVERTEX:
Input — An undirected and connected graph Graph g and start, a vertex
belonging to g.

Output — Annotate each vertex of g with its distance to start and the next

vertex on a shortest path to start.

If the graph shown in Fig. 2.23a and vertex A are given as inputs to SHORTESTPATHTOVER-
TEX, the result could!'® be the graph shown in Fig. 2.23b, whose shortest paths to vertex A are
highlighted in blue, forming thus a spanning tree that is represented in Fig. 2.23c.

16 Since the shortest paths are not unique, those that are actually kept as a result depends on the particular

implementation of the graph.
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2.2.6.1 Graph Abstract Data Type

There are several ways to implement a graph : one can use adjacency lists, an adjacency matrix,
an adjacency map,... but here, we do not focus on a particular graph implementation: we assume
that we have one that complies with the graph abstract data type and possesses at least the

following operations [77] :

vertices() Get an iterator of all the vertices.

outGoingEdges(v) Get a collection of the edges going out of the
vertex v.

opposite(v, e) Get the other vertex that is on the same edge e
as the vertex v.

neighbours(v) Return the neighbours of the vertex v, i.e., the
subset N c V containing the vertices that are

connected to the vertex v by a single edge.

neighbours operation is the application of opposite (v, e) toall edges returned by outGoingEdges (v)

2.2.6.2 Graphical Loop Invariant and Oriented Object Programming

In order to illustrate how Graphical Loop Invariant fits in Oriented-Object (OO) programming
paradigm and to simplify the reading of the code, we amend our pseudocode with the following
0O features:

¢ Instances are created with new;
* Objects are passed by references;
¢ Attributes and methods are accessed with the dot (.) operator.

* Objects attributes are accessible, regardless of the proper visibilities they should have if

OO principles were correctly applied.

E.g., g.neighbours(v) will denote a call to the method neighbours on an instance of a

Graph g with an instance of Vertex v given as actual parameter.

2.2.6.3 Graphical Loop Invariant depicting graphs

As usual, we start by drawing the result of the problem (see Fig. 2.23b). In such a final situation,
all the vertices of the graphs were discovered (i.e., added in a shortest path to the start vertex).

To get an Graphical Loop Invariant, we represent a situation in which some (but not all)
vertices at a certain distance from the start vertex were discovered. This is what is shown in

Fig. 2.24: D, E and F are at a a distance 2 of A, as well as G that has not been discovered yet.
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Vertices whose
distance and
shortest path to
start are known

Vertices
that are
not yet
discovered

‘I'),
®
/

Vertices from which
new vertices may
be discovered

Figure 2.24: Graphical Loop Invariant for the SHORTESTPATHTOVERTEX problem

C which is at a distance 1 from A must have been discovered before D, E and F (the closer the
vertex the sooner they must be discovered to ensure shortest paths by construction).

Doing so, we established three kinds of vertices:

1. Those that were discovered and whose neighbours were discovered too;
2. Those that were discovered but not their neighbours;
3. The undiscovered ones.

In Fig. 2.24, discovered vertices are drawn in green to follow our colour code of what was
previously achieved. The undiscovered vertices are thus coloured in blue. We must also memorise
in a data structure the newly discovered vertices to continue the discover of their neighbours
in the next iterations. What should be the access policy of such a data structure? Since it may
contain vertices with different distances from the start and that vertices closer to start are
discovered first, a FIFO structure is required to handle the vertices in the proper order. In our
example, C must be retrieved before D, E or F to discover G at a distance 2 of A.

The code corresponding to the Graphical Loop Invariant shown in Fig. 2.24 is presented in

Listing 2.15. The careful reader will have recognised a breadth-first search algorithm.

Graph shortestPathToVertex (Graph g, Vertex start) {
// Check that start is in g.vertices() (omitted)

foreach(Vertex v in g.vertices()) {
v.dist = UNKNOWN; // Special value for not yet computed distances
v.prev = NULL;

Queue g = new Queue();
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start.dist = 0;

q.enqueue (start);

while (!q.isEmpty O) A
Vertex v = q.dequeue();

foreach(Vertex n in g.neighbours(v)) {

if (n.dist == UNKNOWN) {
n.dist = v.dist + 1;
n.prev = v;

q.enqueue (n) ;

}

return g;

Listing 2.15: Code for SHORTESTPATHTOVERTEX problem

2.2.6.4 For-each loops, iterators and Graphical Loop Invariant

k elements already elements to be
produced by the produced by the
iterator and iterator and
processed to be processed

Figure 2.25: A one-size-fit-all Graphical Loop Invariant for iterators and for-each loops

In Listing 2.15, we have written three loops : a while loop, based on the Graphical Loop
Invariant shown in Fig. 2.24, and two for-each loops. The reader may ask themself where are
their respective Graphical Loop Invariant? In fact, such simple for-each loops performing the
very same operation on every elements of a collection (often enumerated by an iterator) have the
same type of Graphical Loop Invariant.

One can create a “Meta” Graphical Loop Invariant that covers all these loops, once for all.
The drawing is simplistic and writing the corresponding code is rather trivial. Such an Graphical
Loop Invariant is shown in Fig. 2.25.

Generally speaking, we do not recommend to stop drawing Graphical Loop Invariant for
for-each loops, especially if the operation performed in the Loop Body has complex side effects.
However, we acknowledge that some simple loops may be written without the help of a Graphical
Loop Invariant. Moreover, in the context of presenting the interest of GLIBP, choosing such trivial

loops as use cases would be counterproductive to make one’s point.
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2.3 Comparison Between Graphical and Non-Graphical Loop Invariants

1 u N
A: -<X |To be investigated| ->X

A

Sorted and unmodified

Figure 2.26: Graphical Loop Invariant for BISECTIONSEARCH (already presented in Sec. 2.2.3

This section examines other ways of representing an Loop Invariant, namely the formal Loop
Invariant and its natural language translation. We will illustrate both of them with the Loop
Invariant for the BISECTIONSEARCH problem (see Sec. 2.2.3). In order to ease the comparison
between the different representations, the Graphical Loop Invariant for the BISECTIONSEARCH
is reminded in Fig. 2.26 and the following will use the same colour code as in the Figure, although
this last one may help to render the Non-Graphical Loop Invariants more readable than they

actually are!

2.3.1 Formal Loop Invariant

A formal Loop Invariant is exactly what proposed Dijkstra [56]. The formal Loop Invariant for

the bissection search is the following:

Inv=A= 1A (2.5)
AO0<sl<u<N (2.6)
AV, 0<i< JA[Z] < Al + 1] 2.7)
AV, 0<i<1,A[i]<X (2.8)
AVi,u<i<DNA[i]>X (2.9

The equation (2.5) means that the array A is not modified. The equation (2.6) indicates the
relative positions of the indices 1 and u with respect to the boundaries 0 and N. The equation (2.7)
states that the array is sorted (since for all couples of contiguous elements, the one that follows is
always bigger than the one it precedes). The equations (2.8) and (2.9) describe the zone were the
elements are less than X and greater than X, respectively.

At first glance, a neophyte cannot see that the array is divided in three zones but a more
trained eye will identify the quantifications as zones in the array. Still, it is worth noting that
there is no way to express formally the existence of the “to do zone” with formal notations. Since
we explained in Sec. 2.2.3.1 that this zone comes into play when finding the Loop Invariant from

the Postcondition, this operation is therefore a bit more difficult with formal notations!”.

17 When justifying an example of Postcondition transformation into an Loop Invariant, Dijkstra invokes his

experience [56, p. 53]. We cannot assume that a neophyte benefits from the same experience!
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The manipulation of notations like the equations (2.5) to (2.9) to write code may quickly

become tedious. It is possible to simplify it with predicate definitions:

Sorted(T',a,b)=Vi,a<i<b,T[i1<T[i+1] (2.10)
Less(T,a,b,x)=Vi,a<i<b,Tlil<x (2.11)
Greater(T,a,b,x)=Vi,a<i<b,Tli]l >« (2.12)

And the Formal Loop Invariant becomes:

Inv=A=A (2.13)
AO=<l<su<N (2.14)
A Sorted(A,0,N—1) (2.15)
ALess(A,0,1,X) (2.16)
A Greater(A,u+ 1,N,X) (2.17)

Introducing the three predicates enhances the clarity when reading the Loop Invariant but
barely helps when it comes to write the code! For example, to initialise the variables 1 and u, we
have to find two values that make the Formal Loop Invariant True, i.e., the terms (2.14), (2.16)
and (2.17) must be all True with this particular choice.

Considering the definition of the predicates Less and Greater, we can take particular values
of 1 and u that make the universal quantifications trivially True. This is, of course, the case if
we take 1 =0 and u=N-1 (one could also argue that these particular values are suggested by
the term (2.14). However, we still have to manipulate logic formulae to find the initialisation of
the variables while we just read them in a drawing when we used the Graphical Loop Invariant!

Similar arguments may be advanced about deriving other parts of the loop.

2.3.2 Loop Invariant in Natural Language

A Loop Invariant in Natural Language would look like this:

* “The array A is sorted and unmodified.
® Ais divided in three zones:

1. The elements in A[O .. 1-1] are lesser than X;
2. The elements in A[u+1 .. N-1] are greater than X;

3. The remaining part (A[l .. u]) has to be investigated for X.”

This Loop Invariant contains the same information as in the Graphical Loop Invariant and

the Formal Loop Invariant. Admittedly, one could argue that the notation A[i. . j] is yet too
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formal but that just would help us to make our point: this kind of Loop Invariant is practically
useless to deduce the code.

First of all, it requires mathematical and logical skills to evaluate a sentence as logically
True! If we take the example of the initialisation of 1, concluding that “The elements in A[0..0-1]
are lower than X” is trivially True asks for recognizing an universal quantification over an empty
set. We might as well directly write a Formal Loop Invariant!

Moreover, this Loop Invariant lacks of accuracy as the relative positioning of the three zones

is unclear to figure.

2.3.3 Conclusion

Both the Formal and the Natural Language Loop Invariants require mathematical and logical
skills to be used to deduce the code. Moreover, there is a kind formality / human readability
trade-off between these two. On one hand, the Loop Invariant in Natural Language may be
useful to describe how the loop works while the formal one requires to dive into logic formulae.
On the other hand, the Formal Loop Invariant is more handy to deduce the code, provided the
programmer is used to it.

Anyway, the Graphical Loop Invariant brings the best of both worlds: it is clear enough to
illustrate how the loop works, even better than the Loop Invariant in Natural Language and it
enables to deduce the code with much less skills requirement than the Formal Loop Invariant!

Finally, as proving the code correctness is concerned, we recommand, of course, to go for the

Formal Loop Invariant that is the only version that allows to write formal proofs.

2.4 GLIBP Methodology and predicate transformers

Previous sections mentioned that the GLIBP methodology required to draw a Graphical Loop
Invariant and use it to deduce code instructions thanks to drawing manipulations. We explain
here that these are in line with the predicate transformers introduced by Dijkstra, namely the
weakest precondition.

To illustrate this, we introduce the Dutch national flag problem. This problem was proposed
by W.H.J. Feijen. In the following, the design and colours of our flag may appear as a French one:

it is a mere coincidence.

DUTCHFLAG:
Input — A flag (i.e., an array) containing elements of three colours: blue, white
and red, in any order.

Output — The flag with the colours in the proper order: blue first, then white

and red. The result must be a permutation of the initial flag.
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b r N-1|N
flag:

Figure 2.27: Postcondition for the DUTCHFLAG problem

b W r N-1|N
flag:

Figure 2.28: Graphical Loop Invariant for the DUTCHFLAG problem. the flagpermflag, part is
omitted (one could add a double arrow spanning the entire flag to mention it.

Calling it the “French flag problem” would allow to insist easily that the algorithm should
work on several corner cases such as all-white (French royal flag), all-blue (royal again, without
the lilies) or all-red (Paris Commune flag) flags. Usually, it is also requested that the colours
positions are are just swapped, leading to a linear algorithm (or any other constraint that lead to

this conclusion).

The Postcondition is given in Fig. 2.27. As we are going to compare drawings manipulations
and weakest precondition computation, we must introduce a formal version of the Postcondition.

In order to do so, we first introduce the predicate Colour:

Colour(f,i,j,c)=VEk,0<i<j,flkl=c (2.18)

which is true when the portion of the flag f[i..j — 1] is coloured in plain colour ¢. We can the

express the Postcondition:

Post=0<b=<r=N
A Color(flag,0,b,Blue)
A Color(flag,b,r, White) (2.19)
A Color(flag,r,N,Red)
A flag perm flag,

Where X permY means that X is a permutation of Y.
The Loop Invariant should denote that a part of the flag is still unordered (see Fig. 2.28 and

equation 2.20). Using this Loop Invariant suggests to introduce a variable w.
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Inv=0sb=sws=srsN
A Color(flag,0,b,Blue)
A Color(flag,b,w, White) (2.20)
A Color(flag,r,N,Red)
A flag permflag

The unordered area is bounded by w and r. If this unordered area span the entire flag, this

suggests to have as initialisation the following commands:

int w = 0;

int r = N;

Listing 2.16: DUTCHFLAG: first try for INIT instructions

One can compute wp(w=0;r =N;, Inv) to figure the initial value of b and ensure this is

compatible with the problem’s Precondition :

wpw=0;r=N;, Inv)=0<b<0A<r=N (2.21)
A Color(flag,0,b,Blue) (2.22)

A Color(flag,b,0, White) (2.23)

A Color(flag,r,r,Red) (2.24)

A flagpermflag, (2.25)

(2.26)

The line 2.22 imposes b = 0. Therefore, lines 2.23 to 2.25 simplify to true since Colour(f,x,x,c)
is true for any x. At the beginning of the program, by definition, flag = flag,, hence, we can

conclude that

Pre = wp(INIT, Inv) (2.27)

where INIT is the following instructions (in any order):

// a.k.a “INIT’

int b = 0;
int w = 0;
int r = N;

Listing 2.17: DUTCHFLAG: final INIT instructions

In the GLIBP methodology, we would have derived the very same instructions by gliding the
two Dividing Lines to expand the grey zone, as can be seen in Fig. 2.29. As such, manipulating

the drawing consists in graphically computing wp(INIT, Inv).
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o
H

flag:

Figure 2.29: wp(INIT, Inv) for the DUTCHFLAG problem. One can check that this situation can
be deduced from the Precondition

To be precise, here is our point:

The Graphical Loop Invariant Based Programming methodology asks for represent-
ing conditions on state and thus predicate (namely, the Loop Invariant). In this

framework, the graphical transformations are predicate transformers.

Until now, we have shown that it worked for an example of composition of variable assign-
ments. It also work for alternative constructs. In the DUTCHFLAG problem, we have three
variables : b, w and r. The two former should increase and the later should decrease as the loops
run. Here again, the weakest precondition can be used to determine upon which condition the

commandsb = b + 1,w = w + 1landr = r - 1 may be executed:

wpw=w+1, Inv)=0<b<s(w+1)<r=<N
A Color(flag,0,b,Blue)
A Color(flag,b,w + 1, White)
A Color(flag,r,N ,Red)

(2.28)

A flag perm flag,
=Inv Aw <r Aflaglw] = White

wp(r=r—-1, Inv)=0<b<w<(r-1)<N
A Color(flag,0,b,Blue)
A Color(flag,b,w, White)
A Color(flag,r — 1,N,Red)

(2.29)
Aflag permflagg
=InvAw<rAflaglr—1]=Red

From 2.28 and 2.29, one can conclude that w < r should be ensured in the loop. In fact, it is

the Loop Condition, as (Inv Aw = r) = Post. Both equations give us the condition upon which their
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commands must be activated: w should be increased if f1ag[w] = White and r should be decreased

if flaglr — 1] = Red. b’s situation is a bit more complex, as

wp(b=b+1, Inv)=0<(b+1)<w<r<N
A Color(flag,0,b + 1,Blue)
A Color(flag,b + 1,w, White) (2.30)
A Color(flag,r,N,Red)
A flag perm flag,

requires that flag[b] = Blue. That is not ensured by the invariant because flag[b] is
supposed to be White! What if we exchange b and w colours before increasing b ? We introduce
the notation swap (b,w) that is self-documenting. A real function would require a reference to a

flag, which is omitted here for the sake of brevity.

wp(swap(b,w);b=b+1, Inv) =
wp(swap(b,w);, wp(b=b+1, Inv))=0<(b+1)<w=r=<N
A Color(flag,0,b,Blue)
A Color(flag,b,w, White) (2.31)
A Color(flag,r,N,Red)
Aflaglw] = Blue
Aflagperm flagq

This cannot be deduced from the Loop Invariant since (b + 1) < w violates the first part. However,

one could try to have (b +1) <(w + 1), suggesting to also increase w. This leads to:

wp(swap(b,w);w=w+1;b=b+1, Inv)=
wp(swap(b,w);, wp(w=w+1;b=b+1, Inv))=0=<(b+1)<(w+1)<r=<N
A Color(flag,0,b,Blue)
A Color(flag,b + 1,w, White)
A Color(flag,r,N ,Red)

(2.32)

Aflaglw] = Blue
Aflaglb] = White
Aflagperm flag,
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That simplifies into

wp(swap(b,w);w=w+1;b=b+1, Inv)=
=0=(b+)=s(w+l)<=r=N

A Color(flag,0,b,Blue)
A Color(flag,b,w, White) (2.33)
A Color(flag,r,N,Red)
Aflaglw] = Blue
A flag perm flag,

This requires that w < r, that is ensured by the Loop Condition. The sequence of instructions

can be activated if flag[w] = Blue.

What if flag[w] = Red? We can swap positions w and r - 1 and then decrease r (see above).

At the end, we only have to branch on the value of flag[w],a s can be seen in Listing 2.18.

void dutchFlag(flag, N) {
int b = 0, w = 0, r = N;
while(w < r) {
switch(flagl[w]) {
case white:
w += 1;
break;
case red:
swap (flag, w, r-1);
r =1 - 1;
break;
case blue:

swap (flag, w, b);

b =Db + 1;
w =w + 1;
break;

Listing 2.18: DUTCHFLAG program

All these computations could be easily avoided using the GLIBP methodology. Equation 2.28
is depicted in Fig. 2.30, equation 2.29 in Fig. 2.31 and equation 2.33 in Fig. 2.32. In practise, it is
even not required to be aware of the concept of weakest precondition to use the Graphical Loop
Invariant to deduce code instructions! One can be satisfied with a well-executed drawing. This
example shows that our methodology is both theoretically well grounded and within a first year

student reach.
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(Inv Aw <r A flaglw] = White) > wp(w=w+ 1,Inv)

b Wl W+l r N
flag:
Inv again:

b w’ r N
flag:

Figure 2.30: DUTCHFLAG problem: graphical weakest precondition for the White area. In order
to restore the Loop Invariant when w is increased, flag[w] must be White.

wp(swap(w,r—1); r=r—-1, Inv)

wp(r =r—1, Inv)

b W r N
flag:
Inv again

b W r’ N
flag:

Figure 2.31: DUTCHFLAG problem: graphical weakest precondition for the Red area. In order to
restore the Loop Invariant, if r is decreased, one should ensure that flag[r-1] is Red. That is
the case if flag[w] is Red before swapping w and r-1 positions.
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wp(swap(b,w); b=b+1; w=w+1; Inv)

b w r N

|

flag:

wp(b=b+1; w=w+1; Inv)

flag:

[
=
=
=

Inv again

b’ W’ r N

|

flag:

Figure 2.32: DUTCHFLAG problem: graphical weakest precondition for the Blue area. In order
to restore the Loop Invariant if b is increased then w must be increased too. One should ensure
first that flag[w] is White and flag[b] is Blue. This will be the case if flag[w] is Blue before
swapping w and b positions.






CHAPTER

LEARNING TOOLS

HIS CHAPTER introduces tools we developed to help students grasping how to draw Graph-
ical Loop Invariants. Sec. 3.1 firstly present an application to draw and to manipulate
Graphical Loop Invariant in a web browser. This application is called “Graphical Loop In-

variant Drawing Editor (GLIDE)”. Second, Sec. 3.2 presents the Blank Graphical Loop Invariant,

that enables to use a graphical approach in the context of automatic assessment.

3.1 GLIDE

GLIDE is an application written in javascript using the FabricJS HTML5 canvas library [193]. It
enables students to easily draw Graphical Loop Invariants that respect the guidelines mentioned
in the Sec. 2.1.2. The application is able to provide students with feedback about their drawing.
Finally, a validated drawing can be graphically manipulated to deduce the code as described as
in Sec. 2.1.3.

The application GUI is fairly simple, as illustrated in Fig. 3.1. There are five buttons whose

Figure 3.1: GLIDE Graphical User Interface: five buttons and a canvas
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Table 3.1: Effect of the five buttons of GLIDE GUI

Button Effect

PIECE OF INVARIANT Enables to select a Loop Invariant pattern. Sec. 3.1.1
elaborates on the available patterns inspired by Sec. 2.2.

ADD Actually draws the selected pattern in the canvas.

DEFINE A ZONE Enables to draw a zone between two bars. Sec. 3.1.2 ex-
plains what we mean by bars and Sec. 3.1.3 details how
zones can be added in the drawing.

VALIDATE Launches several tests checking whether the Loop Invari-
ant respects the guidelines (see Sec. 2.1.2). More details
are provided in Sec. 3.1.5. After having passed the vali-
dation, a Graphical Loop Invariant can be manipulated
to derive the initial and final situations to deduce code
instructions (see Sec. 3.1.6).

DELETE Enables to delete an item from the canvas (see
Sec. 3.1.4.1).
. 0 1 2 3 i-1 i n1 n
Line: [ | 1 1 « L1 - L

Text:ap + a1xX" + axx2+ ... + ax' + ... + apx"

Array :

Figure 3.2: Pattern available in GLIDE to draw Graphical Loop Invariants. The text zone is here
used to depict a polynomial thanks to subscripts and superscripts

utility is shown in Table 3.1. The rest of the GUI consists of a canvas where the elements that
form the Loop Invariant can be drawn.

The remainder of the section details GLIDE capabilities: the available patterns (see Sec. 3.1.1),
how to draw Dividing Lines (see Sec. 3.1.2), how to add zones (see Sec. 3.1.3), how to edit a
drawing (see Sec. 3.1.4), the validation process (see Sec. 3.1.5), and how the drawing can be

manipulated to expose particular situations and to derive the associated code (see Sec. 3.1.6).

3.1.1 Available patterns

In the current GLIDE implementation, three patterns are available (this is sufficient for our CS1
course), they are illustrated in Fig. 3.2. All these three patterns follows the guidelines provided

in Sec. 2.2 about representing data structures:

¢ The graduated line (see Sec. 2.2.1). The ticks of the line that is going to be drawn are

prompted to the user who may type specific ones as a string of values separated by semi-
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colons. Inserting dots between two semicolons creates a gap in the line. Fig. 3.2 shows such

a line for which the user would have entered the string “0;1;2;3;...;i-1;i;...;n-1;n’

(which is the default value pre-written in the prompt window);

¢ The text that allows to represent a large number of problem (any text content can be typed
in the light grey zone)and, of course, the best way to depict strings. Fig. 3.2 shows how to
use the text to represent a polynomial thanks to subscripts and superscripts. A sequence of
the form “a_b” will be drawn in the canvas as “ap” and a sequence of the form “a”b” will

« ab”

be drawn in the canvas as . For now, subscripts and superscripts cannot be mixed nor

nested.

¢ The 1-dimension array. The pattern consists of the typical rectangular shape of the array
(see Sec. 2.2.3), surrounded by two vertical bars used to precise the array first and last

indices (or the array size).

A given Graphical Loop Invariant may include multiple patterns (e.g., several arrays or an
array and a text). One just have to click several times on the ADD button to draw as many times

the selected pattern.

3.1.1.1 Future Work

The list of available patterns can be extended. The first candidates are the other data structures

presented in Sec. 2.2: the lists, queues, stacks, etc.

3.1.2 Dividing Lines

The user can click on a pattern drawn in the canvas to add a movable Dividing Line and label
it (the cursor shape changes into 4-). The array pattern exhibits also vertical lines but they are
not Dividing Lines and so they cannot move. All bars sharing a common variable name in their
label are coloured in red when hovered, regardless of the pattern they belong to. This allows us
to document several patterns with the same variable (e.g., for browsing two arrays with the same

index position).

3.1.3 Defining zones

Two bars!® can be linked with an horizontal coloured bar, defining so a zone. The legend of the
zone must be provided in the box of the same colour. When defining a zone, its colour can be
chosen. By default, the colours of consecutive defined zones are selected froma circular queue of
20 distinct hues [183], easily distinguishable, even by colour-blind people.

An example of fully labelled Graphical Loop Invariant is provided in the Fig. 3.4a.

18 Here, by “bar”, we mean either a Dividing Line or a fixed vertical bar that forms the boundary of an array. Both

ends of the line and text patterns may also be selected to create a zone
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QSome(hmg should be written here,
councerning what has been done or
is going to be.

Figure 3.3: GLIDE screenshot. Missing items or errors are mentioned in red. More details about
the problem and how it can be solved is provided by a tooltip.

3.1.4 Editing a Graphical Loop Invariant
3.1.4.1 Deleting elements

Dividing Lines and zones can be deleted by clicking on the DELETE button when selected or by
pressing the delete key of the keyboard.

It is worth noting that the patterns cannot be deleted in this way. In order to suppress them,
one have to restart from a blank canvas. Rule 1 of our methodology states to draw a shape that
is relevant for the problem. Using the wrong pattern thus means that the problem is either
not clearly defined or not well understood by the programmer. Restarting from a blank sheet
and correct one’s problem definition is always a good solution if a problem arises at this first

programming step.

3.1.4.2 Modifying elements

The graduated lines may be redrawn with new ticks after double clicking on the triangle that
forms the arrow of the line (the cursor shape changes into the cell shape (i.e., ¥ when hovering
the arrow).

All the text contents can be edited (the cursor shape changes into the text editing symbol, i.e.,
D). The zones labels can be dragged to any position in the canvas. The horizontal position of a

zone colour bar can be adjusted at will (the cursor shape changes into ().

3.1.5 Graphical Loop Invariant Validation

The application can perform several checks ensuring the methodological guidelines (see Sec. 2.1.2)
are respected. Table 3.2 resumes the tests that are performed to validate a drawing and provides,
for each test, the guideline that is enforced. If one of the tests fails, an error is reported in red in
the canvas and a tooltip appears when the mouse hovers the red zone, as depicted in Fig. 3.3.

It is worth noting that these tests can only challenge the syntactical part of the guidelines
(e.g., the presence of a particular item) and not their semantics (e.g., the soundness of a particular

drawing with respect to the problem actually being tackled). Nevertheless, the tool was designed
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Table 3.2: GLIBP guidelines and the corresponding verifications performed by GLIDE

Guideline Verification performed

Rule 1 All the patterns must be named thanks to the text label at their left.

Rule 2 The boundaries of the array patterns must be provided (the boundaries
of the graduated lines and texts are always present by design).

Rule 3 The presence of at least one Dividing Line is ensured by the need of at

least two different zones.

Rule 4 All the DLS must be labelled at their left or at their right. If both labels
are used, a symbolic computation verifies that they represent consecutive
integers (e.g., N—-i—1 and —i + N are supposed by the program to be
consecutive integers).

Rule 5 There should be at least one zone that indicates what was previously
computed. GLIDE does not understand the zone legend but consider all
string that do not start with “To be” or composed of question marks as
compliant.

Rule 6 One zone that designates what should be done. Its legend must start
with “To be” or be fully composed of question marks to be considered
by GLIDE as compliant. In order to be user-friendly, the french regular
expression that handles the verification of this rule is even more complex
and tolerates the common grammar mistake consisting in confusing
infinitive and past participle of first group verbs.

to give students quick feedback on the form of their Graphical Loop Invariant and serve as a

reminder in case of missing items.

3.1.6  Writing the Code with GLIDE

Once the validation step is passed without error, GLIDE can be used to write the associated piece
of code, as explained in the Sec. 2.1. The DLS can be actually moved to transform the Loop
Invariant into the initial step (ZONE 1) and the final step (ZONE 3). To move a Dividing Line, one
just has to point to it with the mouse and maintain the left click during the displacement (the
cursor shape is changed into Q).

From the initial steps, the initial values of the variables can be deduced, GLIDE can even
highlights the matching of two overlapping bars, as illustrated in Fig. 3.4b. The final state
illustrates the Loop Condition, as shown in Fig. 3.4c.

Is is also possible, thanks to symbolic computation, to ask GLIDE to compute the length of a
selected zone by pressing on the “T” key (T is for Termination). Doing so for the “to do” zone of a
Graphical Loop Invariant often gives the Loop Variant of the corresponding code. However, this
functionality was never unveiled to the students to not make them rely too much on a software
(we took the decision after having watched all the seasons of Mayday: Air Disaster TV show [39]

that relates too much air crashes due to over-confidence in the autopilot).

79



80 CHAPTER 3. LEARNING TOOLS

<X to be investigated .>X

..J0 | ul... N-1|N
A:

Sorted and unmodified

(a) Graphical Loop Invariant

o to be investigated u..
|0 N-1 |N
A: ;
Sorted and unmodified

(b) Initial state

to be investigated | Sorted and unmodified

(c) Final state

Figure 3.4: Illustration of GLIDE capabilities when writing the code



3.2. BLANK GRAPHICAL LOOP INVARIANT FOR AUTOMATIC ASSESSMENT

3.2 Blank Graphical Loop Invariant for automatic assessment

In our CS1 course, small programming exercises that are automatically corrected have been
introduced (see Chap. 9). As most of these exercises consist in writing loops and as the course
requires to write loops based on Graphical Loop Invariants (see Sec. 2.1), these exercises must
embed Loop Invariants so that students can train themselves. At first, it may appear difficult to
combine automatic correction and graphical representation. We solve this by asking students to
fill in a Blank Graphical Loop Invariant. Such a blank drawing depicts only the general shape
that should follow a correct and rigorous Loop Invariant. Students must then annotate properly
the figure so that the drawing becomes their Loop Invariant for their solution to the particular
problem to be solved. The following details an example of Blank Graphical Loop Invariant.
The chapter 5 addresses an evaluation of the impact of the Blank Graphical Loop Invariant on

student’s learning.

3.2.1 Example of Blank Graphical Loop Invariant

Let us take as an example the problem consisting in finding the intersection of two sets (stored in

sorted arrays):

ARRAYINTERSECTION:

Input — Two sorted arrays of integers A, of size N, and B, of size M, and a empty

array C of size L large enough (i.e., L = min(M,N))

Output — C contains the integers common to A and B and the function returns

the number of elements in C

An example of Blank Graphical Loop Invariant is provided in Fig. 3.5. The instructions state

that the numbered boxes 1. to 15. should be replaced by variables, constants names, or left blank.

Table 3.3: Available choices for the boxes 16 to 28. The T refers to the sentence at the bottom of
Fig. 3.5.

For the boxes 16 to 24 For the box 25 For the boxes

26 to 28
1. sorted 1. different from; 1. Zone Al
2. sorted and unmodified 2. found in; 2. Zone A2
3. unmodified 3. browsed in; 3. Zone B1
4. to be investigated 4. analysed in; 4. Zone B2
5. available space 5. singular to; 5. Zone C1
6. F 6. alien to; 6. Zone C2
7. (nothing) 7. common to. 7. Zone 51
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2]
A:

< el >

< 7] - ] >
B:

< o] >

< 0] - 5L >
C:

< 2] >

< 5] - il >

+ All the elements | 25.] 26.]and |27.|are in | 28. .

Figure 3.5: Blank Graphical Loop Invariant for the problem ARRAYINTERSECTION

The boxes 16. to 28 have to be replaced by a number in [1..7] corresponding to the multiple
choices presented in Table 3.3, or left blank. The multiple choices contain some inconsistent
possible answers. The bottom line of Fig. 3.5 contain a sentence that should eventually be used
to express what was already achieved by the previous iterations.To ease understanding, we
recommand to always add a mock example of such a replacement in the exercises instructions.

Designing a Blank Graphical Loop Invariant is a difficult task: one must find an equilibrium
between, on one hand, not giving too much information in the blank drawing that would render
the exercise too easy or limit students’ creativity and, on the other hand, giving too much
possibilities (e.g. by increasing the box numbers) that would make the exercise either over-
complicated, either much more difficult to automatically correct, since all the correct possibilities
of box replacements must be considered during the correction. For example, in Fig. 3.5, we fixed
the positions of the array A, B and C.

By doing so, we made the drawing respect the Rule 1 of our methodology’s guidelines (see
Sec. 2.1.2). The Rule 3 is also implicitly enforced since the Fig. 3.5 already exhibits the Dividing
Lines.

The Blank Graphical Loop Invariant can be related to instructional scaffolds, definded in [68]
as “temporary support structures faculty put in place to assist students in accomplishing new

tasks and concepts they could not typically achieve on their own”, i.e., here, we propose exercises
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Table 3.4: An example of a student’s answer. The drawing corresponding to the 28 substitutions
listed in this Table is provided in Fig. 3.6

1.0 8. _ 15. L 22. 7
2.1 9._ 16.2 23.6
3._ 100M 17.7 24.5
4. 11.0 18._ 25.7
5N 12. % 19.2 26.1
6.0 13._ 20.7 27.3
7.7 14, _ 21.7 28.5
0 i N
A:
B Sorted and unmodified g
0 J M
B:
h Sorted and unmodified -
0 k L
C:
h ¥ "~ Available space g
1 All the elements common to Zone Al
and Zone B1 are in Zone C1.

Figure 3.6: Blank Graphical Loop Invariant for the problem ARRAYINTERSECTION filled with
the student answers listed in Table 3.4

that do not ask students to draw an Graphical Loop Invariant from scratch but offering them a
correct template they just have to fill in.

Table 3.4 shows what a student’s answer looks like: each number corresponds to a coloured
box in Fig. 3.5. The Graphical Loop Invariant thus specified is shown in Fig. 3.6. Some simple
expressions (e.g., £ +1 and N — j) may be specified as indices. The box content left blank (e.g., box
4 or 18) means that nothing must be drawn. How such a filled in Graphical Loop Invariant can

be submitted to an automatically assessed is the subject of Chap. 7.
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CHAPTER

ERRORS TAXONOMY AND GLIBP METHODOLOGY RECEPTION

HIS chapter tackles the students reception of the GLIBP methodology by answering to

the following research questions:

RQ 1.1 How the students seize the opportunity to practice the GLIBP
methodology?

RQ 1.2 What kind of error are committed using the GLIBP methodology?

RQ 1.3 Can we link the error committed with the GLIBP methodology to
programming errors?

RQ 1.4 How the GLIBP methodo is perceived by the students?

The chapter is organized as follows: we first propose a taxonomy of the errors committed
by students when using Graphical Loop Invariant in Sec. 4.1. Then, Sec. 4.2 describes the
methodology we used to answer the research questions. Sec. 4.2 presents our results and Sec. 4.4

them. Finally, Sec. 4.5 concludes this chapter.

4.1 Errors Taxonomy

In order to analyse the errors committed while using the GLIBP methodology, we built a list of
performance markers that indicate whether a particular Graphical Loop Invariant, Loop Variant,
or code are in line with our methodology or not. This list is shown in Table 4.1 that is divided
in three main parts corresponding of what is assessed: the Graphical Loop Invariant, the Loop
Variant, or the code. Each performance marker is labelled with an identifier (see column “ID”
in Table 4.1) to easily refer to each marker in the text and in plots. The following details the

rationale of the taxonomy we propose.
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Table 4.1: Errors Taxonomy for the GLIBP methodology

Point of Interest ID Description Rule(s)

GLI-SY; The Graphical Loop Invariant is syntactically
correct (Rule 1 — Rule 4 met)
Syntax GLI-SY9 The drawing is not labelled (with variable) Rule 1

GLI-SYs The drawing has no boundaries Rule 2
Graphical GLI-SY4 The drawing has no Dividing Line Rule 3
Loop GLI-SYs The Dividing Line(s) is (are) not documented Rule 4
Invariant with variable(s)

GLI-SE; The Graphical Loop Invariant is semantically
correct (Rule 1 and Rule 5 — Rule 7 met)

GLI-SEg The Graphical Loop Invariant is unrelated to Rule 1
the problem to be solved

GLI-SEg The drawing has no sense w.r.t. the problem to Rule 1
be solved

GLI-SE4 The Graphical Loop Invariant does not contain Rule 5
information on what has been achieved so far
by previous loop iterations

GLI-SE; The Graphical Loop Invariant does not contain Rule 6
information on what remains to compute

GLI-SEg There is no relationship between variables in Rule 7
the Graphical Loop Invariant and in the code

Semantic

Lvy Correct
Lvy Not provided
Loop
Variant Lvg Incorrect
Lvy The Loop Variant is not an integer function
Lvs The Loop Variant is not decreasing at each
iteration
CODE; Correct and built upon the Graphical Loop In-
variant
CODEg Not provided
CODEg The piece of code does not solve the problem
CODE4 Buffer overflow
Code

CODE5 Incorrect ZONE 1 (variable unrelated with
Graphical Loop Invariant)

CODEg Incorrect ZONE 1 (variable not initialized ac-
cording to Graphical Loop Invariant)

CODEy Incorrect Loop Condition

CODEg Infinite Loop

CODEg Incorrect ZONE 2

CODE19 Incorrect ZONE 3




4.1. ERRORS TAXONOMY

4.1.1 Graphical Loop Invariant

We started from the guidelines we presented in Sec. 2.1.2. For six rules over seven, breaking the
rule corresponds to a specific error (see Table 4.1, last column). As can be seen in the Table, we
distinguished two categories of possible errors, i.e., syntactic and semantic ones that come from
the rules categorisation we introduced in Sec. 2.1.2.

Concerning the Rule 1 (i.e., the drawing shall correspond to the problem and be labelled), it
may be broken in three different situations: either the label of the drawing is lacking or incorrect
(GLI-SYg), or the shape of the drawing does not correspond to the problem to be solved (GLI-SEg
and GLI-SE3). The first way is rather a syntax error while the second and third ones are rather
semantic issues. Note that the difference between GLI-SE9 and GLI-SEj is subtle: GLI-SEg
refers to a Graphical Loop Invariant that is correct but unrelated to the problem to be solved
(e.g., the problem is about to sort an array while the Graphical Loop Invariant is about a binary
search). GLI-SEg focuses on the drawing that is unrelated to the problem (e.g., a problem that
ask to draw a square on the standard output, while the Graphical Loop Invariant illustrates an
array).

In addition to these eight markers, we added two more to label syntactically (GLI-SY;) and

semantically (GLI-SE1) correct Graphical Loop Invariants.

4.1.2 Loop Variant

The performance markers associated with the Loop Variant directly come from its definition. A
Loop Variant-candidate is considered incorrect if it is not an integer function (Lv4 —e.g., if the
Stop Condition of the loop, which has a Boolean value, is proposed) or if its value is not decreasing
as the iterations go (Lvs). Lvs refer to the other incorrect cases, e.g., the Loop Variant value is
negative while the Loop Condition is true or a function containing variables that are not present
in the Graphical Loop Invariant or in the code. We also added a marker to use when the Loop

Variant is not provided (Lvg) and a last to label correct Loop Variants (Lvy).

4.1.3 Code

In Sec. 2.1.3, we divided the code of a loop into three zones and our taxonomy reflects this scheme.
In ZONE 1, the variables may be not related to the Graphical Loop Invariant or to the problem to
be solved (CODE5). They also may not be initialised according to the Graphical Loop Invariant
or in a way that solves the problem (CODEg). CODE7 focus on the Loop Condition correctness.
CODEg (resp. CODE19) mentions an error in ZONE 2 (resp. ZONE 3). We added a marker for when
the code is absent (CODE3) and one for codes that do not solve the problem (CODE3). We also

added markers for common errors such as buffer overflow (CODE4) and infinite loops (CODEg).
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4.2 Methodology

In order to evaluate the students reception of the GLIBP methodology, we follow the “3 P’s
framework” of Verpoorten et al. [185] which recommends consistent analysis of any pedagogical
innovation by gathering and meshing three types of data that reflect aspects of the students’
learning experience: Participation, Performance, and Perception. All chapters presenting results
in the remainder of this document will also be organised in the same way.

In the next sections, we present results and discuss them to answer the following questions:

RQ 1.1 How the students seize the opportunity to practice the GLIBP
methodology?

RQ 1.2 What kind of error are committed using the GLIBP methodology?

RQ 1.3 Can we link the error committed with the GLIBP methodology to
programming errors?

RQ 1.4 How the GLIBP methodo is perceived by the students?

The answer to the RQ 1. 1 requires to analyse participation data (see Sec. 4.2.1). The answers
to the RQ 1. 2 and RQ 1. 3 use mainly performance data (see Sec. 4.2.2). Finally, the answer
RQ 1. 4 is based on perception data (see Sec. 4.2.3).

Both participation and performance data were collected during the academic year 2019—2020.
During the year 2019-2020, 82 students were enrolled for our CS1 course, 71.2% of them were
in their first year at the university (the other either repeated the year, either reoriented from
another curriculum).

As far as the perception data is concerned, we collected it from academic years 2017-2018 to
2019-2020.

4.2.1 Learning Analytics

During the semester, various PA are provided to students in addition to classic practical sessions
(exercises and labs). Two types of PA are proposed: those that are automatically graded with a
tool we designed (see Chap. 7) and those that are manually graded by the educational team.

On the total of five PA graded automatically over the semester, three of them focus on
Graphical Loop Invariant based programming (For more information about these PAs, see
Chap. 9). For each PA graded automatically, each student works in isolation, on their own
computer, and can submit their solution up to three times (a message containing feedback and
feedforward are received for each submission). In addition, students are helped in the Graphical
Loop Invariant construction through the Blank Graphical Loop Invariant (see Sec. 3.2).

The manually graded PA refers to the Mid-Term exam, typically organised around the end
of October or the beginning of November and the Final Exam, organised in January. Those
manually graded PA correspond to exercises on paper, without any kind of help (no computer, no

Blank Graphical Loop Invariant).
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Table 4.2: Programming activities (Programming Activities (PA)) organized during the semester
and for which we can assess the usage of the Graphical Loop Invariant. The column “Grading”
provides information on the way the PA was evaluated. Automatic refers to automatic grading
with blank Graphical Loop Invariant provided. In that case, students can submit their code up to
three times, each submission providing feedback and feedforward. Manual means that students
do the PA on paper, without any help, and is manually graded by the educational team. The
column “ID” refers to identifier used for each PA in text and plots. Some PAs requires multiple
loops, this information being provided by column “Details”.

# Grading Topic ID Details

1 Automatic Drawing geometrical figure on stan- PA; Outer loop
dard output based on particular char- PAs Inner loop

acters

2 Manual Counting the number of ’1’ in binary PAs Outer loop
representation of numbers €[1;n] PAs Inner loop

3 Automatic Compressing an integer array into an PAs A single loop
other

4 Automatic Twins prime numbers (n and p, prime PAg is_prime(x) function
and n > p, are said twins if n—p=2) PA; display_twins(x) procedure

5 Manual Luhn algorithm with an array PAag A single loop
Pa, Pa;
Pa,
Semester End
e} 1S o0—0 o0—0—0
Pa,
Pa, Exam Period End

Semester Stlart IE.xam Periold Start,

g o P P g P @

@%QR e\ch ‘ﬂodg x‘ﬁo‘] Q%Oec q}oe@ x@*‘

Figure 4.1: Positioning of PAover the semester.

Table 4.2 summarizes the various PA, while Fig. 4.1 positions the PAover the semester.

Our Graphical Loop Invariant Drawing Editor (GLIDE) (see Sec. 3.1) requires a registration
based on students’ University ID. We monitored students’ GLIDE usage over the semester by
logging connection attempts, connection duration, and usage of the tool (i.e., Graphical Loop

Invariant drawings and Graphical Loop Invariant validation).

The PAsubmission (both automatic and manually graded) with connection to GLIDE corre-
spond to the Participation data of the 3 P’s framework [185].
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Table 4.3: Surveys Respondents. N is the total number of students. # is the number of respondents.
Two percentages are provided: %(Total) is computed on the total number of enrolled students
and %(Part.) on the number of Participants in the Final Exam

Respondents
Year N # 9% (Total) % (Part.)
2017-2018 72 28 38.9 50.0
2018-2019 76 22 28.9 47.8
2019-2020 82 16 19.5 26.7

422 Performance Tests

Each PA(see Table 4.2) comes with three pieces of information: the Graphical Loop Invariant, the
Loop Variant, and the code written in C. This allows us to assess students’ performance according
to the error taxonomy presented in Sec. 4.1.

For PAgraded automatically, the output of the program we use (see Chap. 7) comes with
information allowing us to map their performance with markers provided in Table 4.1. For PA
manually graded, the educational team manually maps students production with the markers.

Also, each time the students make use of GLIDE, in particular by clicking on the “Validate”
button, several tests are launched in order to check whether the Graphical Loop Invariant
respects the rules of tha GLIBP methodology (See Sec. 2.1), mainly those related to the syntactical
aspect of the Graphical Loop Invariant (GLI-SY;_5 in Table 4.1) as well as the presence of a
zone describing what has already been achieved so far (GLI-SE4 in Table 4.1) and what remains
to compute GLI-SE5 in Table 4.1). The output of the validation process on the GLIDE has been
logged.

All of these correspond to the Performance data of the 3 P’s framework [185].

4.2.3 Surveys

We conducted two sort of surveys that we call the one-time surveys and the long-term survey.
Both surveys were anonymous, to let the student express themselves freely. This dataset

corresponds to the Perception data of the 3 P’s framework [185].

4.2.3.1 One-time Surveys

First, from academic years 2017-2018 to 2019-2020 we surveyed students having followed our
CS1 course, after the Final Exam, during the second semester. Table 4.3 presents the numbers
of respondents each year and compares them to other course statistics. The number of answers
we received may appear as few if they are compared to the total number of students. However,
the last column of Table 4.3 provides the proportion of respondents computed on the number
of participants in the final Exam. In 2017-2018 and 2018-2019, one can see in the Table that
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Figure 4.2: Participation rate to the long-term survey (36 answers over 60 surveyed students).
The orange bar corresponds to the percentage of respondents in the corresponding Academic Year,
while the blue bar refers to the percentage of respondents in the overall 36 answers.

nearly half of them answered the surveys. As far as 2019-2020 is concerned, we have received
16 answers (to be compared with 82 enrolled students). But, when looking at the number of
students who still follow their curriculum during the second semester (roughly 30 students'®), 16

answers represents half of them.

4.2.3.2 Long-term Surveys

We surveyed students who have followed our CS1 course during the past years. Over the 60
surveyed students, we received 36 answers (60% of respondents). Those answers are distributed

as shown in Fig. 4.2

4.3 Results

4.3.1 Participation Data

Fig. 4.3 shows participation data. In particular, Fig. 4.3a focuses on PA participation (participation
rate — top plot — and number of submission — bottom plot — per PA), while Fig. 4.3b focuses on the
GLIDE tool.

The top plot of Fig. 4.3a presents the participation rate to the PA (PA;). The translation of the
code associated with each PA is available in Table 4.2. 80% of the students took part in PAj o,
86% in PA3 4, 61% in PAs5, 46% in PAg 7, and 73% in PAg.

The bottom plot of Fig. 4.3a presents the number of submissions per PA. As the automatically

graded PA’s are concerned, the students are allowed to submit up to three times. One can see

19 Unfortunately, it is usual in our country to have a high attrition rate (see Chap. 11)
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(a) PA participation (82 students). (b) GLIDE participation (56 students).

Figure 4.3: Participation results.

that they were 150 submissions for PA; o, 64 for PAg 4, 109 for PA5, 95 for PAg 7, and 55 for Pag.20

Fig. 4.3b describes students’ usage of GLIDE. It is worth noticing that only 56 students (68.3%
of the total) have used GLIDE (its usage has not been made mandatory).

If we look first at the distribution of the drawings (orange curve), we see that 20% of the
students have never used the tool, i.e., they only created an account. In addition, half of the users
submitted less than five drawings over the semester, 20% submitted ten drawings or more while,
finally, the remaining 10% submitted more than 25 drawings.

The blue curve in Fig. 4.3b provides the distributions of sessions, i.e., a time frame during
which a student is connected on the GLIDE, draws Graphical Loop Invariants, and possibly
validates them. The average session lasts 46min (minimum being Omin, 1st quartile (P25) being
1min, 2nd quartile (median) begin 3min, 3rd quartile (P75) being 13min, max being 27h). As the
distribution is concerned, one can see that a large majority (70% of the users) used the GLIDE for
less than five sessions.

Finally, the green curve in Fig. 4.3b illustrates how students use the GLIDE for validating
their Graphical Loop Invariant, i.e., how often they click on the “Validate” button (see Sec. 3.1).
This button must be used in order to validate a drawing and, then, to use the resulting picture
as a Loop Invariant to write the related piece of code. One can see that 40% of the users never
requested for a validation of their drawings (they just left the website and the GLIDE recorded
their performance). Another 40% of the users tried to validate five drawings or less. The rest of

the users (20% of them) validated five drawings or more.

20 The number of submissions does not match with participation rate for PAg 4 and PAg. This is due to the fact
that the (raw) number of “submission” may be lower than the students having participated to the PA (i.e., number of

participants > number of responses for the dedicated questions).
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4.3.2 Performance Data

Fig. 4.4a shows the distributions of the errors made by the students over all PA with respect to
performance markers (see Table 4.1). Looking at the orange curve (GLI-SE2_g), one can see that
60% of the Graphical Loop Invariant over all PA does not contain any semantic errors. 20% of
them contain at least one semantic error and the remaining 20% contains two semantic errors or
more.

The blue curve (GLI-SY2_5) shows that nearly 40% of the Graphical Loop Invariant does not
contain any syntactic error. Another 40% of the Graphical Loop Invariant contains one error and
the remaining 20% contains two errors ore more.

The green curve (LVa_5) shows that more than half of the submissions have a correct Loop
Variant.

The red line (CODEg_.1¢) follows roughly the same trend as the blue one. 45% of the pieces of
code submitted are correct, nearly 40% of the code contains one error, and the remaining 15%

contains two errors ore more.

Fig. 4.4b provides the distributions of errors, with respect to performance markers, for the
GLIDE tool. The errors detected by the GLIDE are mostly the syntactic ones.

The blue and orange lines overlap. They both show that 70% of the drawings are free from
GLI-SY2 and GLI-SY3 errors. 25% of the drawings contains one error and the remaining 5%
contains more than two errors.

The green line shows that most of the dividing lines were labelled: more than 80% of the
drawings does not contain any GLI-SY5 error. 10% of the drawings contains one error. The
remaining 10% contains two errors or more, with the maximum value in a same drawing being
79 (The student actually drew 79 dividing lines without labeling them).

The red line indicates that 65% of the drawings does not contain any GLI-SE4 error. 20% of
them contains one error, 10% of them contains two error, and the remaining 5% contains three
errors or more.

As purple line presents that nearly 50% of the drawings are free from GLI-SY5 errors while
25% of them contains one error, 20% of them contains two errors and the 5% remaining contains

three errors or more.

4.3.2.1 Markers Distribution by PA

The results fromFig. 4.4a can be deepen by looking at the markers distributions for each individual
PA. This can be achieved with Fig. 4.5

Fig. 4.5a focuses on the Graphical Loop Invariant syntax markers. The GLI-SY; (Syntax is
correct) is the most frequent marker for PA7 (71%) and for nearly half of the PA; submissions
(46%). For other PA (PAs_g), the GLI-SY; is low.

GLI-SY2 (Unlabelled drawing) is the most frequent marker for both PAs and PA4 (resp. 79%
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Figure 4.4: Cumulative error distribution with respect to performance markers.
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Figure 4.5: Performance marker distribution for Graphical Loop Invariant (syntax and semantic),
Loop Variant, and code produced by students during each PA.

and 83%) and quite prevalent for the PAg (43%).

GLI-SY3 (Absence of boundaries) is the most prevalent marker for PA; (50%), PAy (88%),

and PAg (96%). This error is also present in more than 20% of the submissions of the others PA,
especially nearly half (49%) of those for PAs5.

The marker GLI-SY4 (No dividing line) is very uncommon for all PA. But, while dividing lines

are present in most of the drawings in each PA, they are sometimes not properly labeled, as the

marker GLI-SY5 (Unlabelled dividing line) is the most prevalent for PA5 and quite common to
PAg (34%) and PAg (25%).
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Fig. 4.5b displays the distribution of the Graphical Loop Invariant semantic markers. One
can see that GLI-SE; (Semantic is correct) is the most prevalent marker for PA;, PAg, PAg, and
Pas.

The marker GLI-SEg (No relation to the problem) is quite uncommon for all PA, except PA4
(37%).

A trend can be seen for PA3 4 g (the Mid-Term and the Final Exam). The marker GLI-SE3
(Drawing has no sense) is very common (resp. 63%, 52%, and 36%), as well as the marker GLI-SE4
(No info about what has been achieved) (resp. 51%, 48%, and 66%). As GLI-SEg (Relationship
with the code) is concerned, it is the most prevalent marker for both PA4 and PAg.

Regarding PAs5, that tackles Loop Invariant describing algorithm on arrays, the most frequent
markers are GLI-SE4 (62%), GLI-SE5 (No info about what remains to compute — 59%), and
GLI-SEg (No relationship with the code — 58%).

Fig. 4.5¢ shows that the Loop Variant is either correct (Lv1) or incorrect (Lvg) for most of PA.
This marker distribution goes from resp. 62% and 36% for PA; to resp. 27% and 70% for PAs. For
PA3 4 (Mid-term Exam), a large number of Loop Variants were not provided (resp. 22% and 29%).

Fig. 4.5d presents the markers related to the code. Over all the PA, one of the most prevalent
marker is CODE; (Code is correct), especially for PA; (44%), PAg (46%), PA4 (34%), and PAg (30%).
CODEj3 (Code does not solve the problem) is the most frequent marker for PA4 (40%) and PAg
(36%) that are both related to Exams (resp. Mid-term and Final one). CODEg (Incorrect zone 1) is
the most prevalent marker for PA; (43%) and the marker CODE7 (Incorrect Loop Condition) is
the first marker for PAg (67%). Regarding PAs, several markers are above 20%: CODE4, CODEg,
CODE7, CODEg, and CODEqy.

4.3.2.2 Correlation between Program Quality and Graphical Loop Invariant

One of the most interesting question concerning performance data is: does the Graphical Loop In-
variant based programming lead to better quality programs? Fig. 4.6 shows several probabilities
computed for each PA. The variable A refers to a correct piece code while B refers to a correct
Graphical Loop Invariant. Thus P(A|B) is the probability to have a correct piece of code if the
Graphical Loop Invariant is correct and P(A|B) is the probability to have an incorrect piece of
code if the Graphical Loop Invariant is incorrect. It is worth noticing that the Graphical Loop
Invariant is likely to be noted as incorrect since one semantic or syntactic error is enough to
consider it as incorrect. The same rule is applied regarding the code. This explains the small
P(A|B) values.

4.3.3 Perception Data
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Figure 4.6: Program quality (X-Axis) over the various PA (Y-Axis). A refers to a correct code
(CODE;) produced (A being therefore an incorrect code —i.e., at least one of the CODE2_ 19 has
been marked). B refers to a correct Graphical Loop Invariant (GLI-SY; and GLI-SE;) (B being
therefore an incorrect Graphical Loop Invariant — i.e., at least one of the GLI-SYy_5 or the
GLI-SEg_g has been marked). P(...|...) refers to the conditional probability. For instance, P(A|B)
is the probably of producing a correct piece of code given that the associated Graphical Loop
Invariant was correct.

4.3.3.1 Opinions about the GLIBP Methodology

According to the one time surveys results, A majority of respondents declares each year that “they
feel they can make a good use of the Loop Invariant to write a loop code” (see Fig. 4.7a — 20/28 in
2017-2018, 20/22 in 2017-2018 and 11/16 in 2017-2018).

Moreover, half of them or more acknowledges that “the Loop Invariant enabled them to
understand how loops work” (see Fig. 4.7b — 14/28 in 2017-2018, 17/22 in 2017-2018 and 9/16 in
2017-2018).

In 2019-2020 survey, we deepened our investigation about the reception of the GLIBP method-
ology. We asked students what they thought about being forced to draw a Graphical Loop
Invariant before writing any piece of code. 75% of the answers were positive: 25% (4/16) ac-
knowledged it as a reflection phase; 18.8% (3/16) mentioned the rigor needed to solve a problem;
18.8% (3/16) declared that they would draw a Graphical Loop Invariant in any case and 12.5%
(2/16) recognized it was a useful visualization process. On the other hand, 25% of the answers
were negative: two respondents stated this was part of the course, hence mandatory, one answer
mentioned this was useless since the loops studied in the course were trivial and another one

declared that they preferred using formal Loop Invariant (i.e., written as formal logic formulae).
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Figure 4.7: Responses to the one time surveys from 2017-2018 to 2019—2020. All the plots use a
Likert [126] scale.

4.3.3.2 Compliance with The GLIBP Methodology

We also asked students for how many automatically graded PAs they initialised their variables
thanks to the Graphical Loop Invariant (see Fig. 4.8, bottom lines). The majority of respondents
declares having done that for 2 or 3 PA in 2018-2019 and 2019-2020.

With respect to establishing the Loop Condition, the majority of students recognizes relying
on the Loop Invariant every years (see Fig. 4.8, middle lines).

Regarding the Loop Body, a large majority of the respondents declares having used the Loop
Invariant for 1 PA or less in 2017-2018 (20/28) and 2019-2020 (12/16). In 2018-2019, half of
them used the Loop Invariant for 1 PA or less (see Fig. 4.8, top lines).

Finally, the long term survey results are depicted in Table 4.4. These results show that the
Loop Invariant based methodology is still used by a majority of the students (72.1%) after the
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EEl 0 Challenge I 1 Challenge

Deduced the Loop Body 11
Established the Loop Condition 6 7

Initialised the variables ) 8

HEE 2 Challenges

BN 3 Challenges

9 7 1

6 5

0o 2 4 6 8 10 12 14

16 18 20 22 24 26 28

Nb Answers

(a) 2017-2018

HE 0 Challenge I 1 Challenge

Deduced the Loop Body 7 4
Established the Loop Condition 6 2

Initialised the variables 8 3

HEE 2 Challenges

BN 3 Challenges

6 5

0 2 4 6 8 10

12 14 16 18 20 22

Nb Answers

(b) 2018-2019

B 0 Challenge I 1 Challenge

HE 2 Challenges

BN 3 Challenges

Deduced the Loop Body 8 3 3 2
Established the Loop Condition 4 3 3 6
Initialised the variables 4 3 6 3
0 2 4 6 8 10 12 14 16
Nb Answers

(c) 2019-2020
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Figure 4.8: Responses to the one time surveys from 2017-2018 to 2019-2020. We asked students
for how many PAs they use their Graphical Loop Invariant to perform the actions written on the
Y-axis. It should be noted that here, PA1 and PAg as well as PAg and PA7 account for a single PA.

The maximum is therefore 3 PAs.

Table 4.4: Answers to the question “Does the Graphical Loop Invariant based programming,
introduced in CS1, help you afterwards when solving problems?” (N = 36). We excluded from the
answers the CS2 course that also relies on Loop Invariant and is given by the same educational

team.

Answers # %

Have regularly used Loop Invariant 17 472
Have used Loop Invariant in subsequent courses 4 11.1
Have used informally Loop Invariant 5 13.8
Never have used again Loop Invariant 10 27.7
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CS1 course. 47.2% regularly uses it, 13.8% mentions using an informal Loop Invariant, and
11.1% declares using it in subsequent courses (different from the CS2 course taught by the same

educational team). 27.7% has never used it again.

4.4 Discussion

4.4.1 Participation Data

The data has shown that the participation decreases as the semester goes on (see Fig. 4.3a,
top). Results show that students tend to abandon the curriculum during the semester, as the
participation rate to PA decreases over time. One should note that the participation to the Final
Exam (PAg) is mandatory to continue the curriculum during the second semester and to keep the
education grant (if any), possibly explaining its (relatively) high participation rate.

Concerning the GLIDE tool, Fig. 4.3b shows that a majority of students used it for few than 5
sessions. One may note that these sessions took place in October, when students were introduced
to the tool. We notice a minority of students used the tool during more than 15 sessions (10% of
the users), those sessions being quite spread over the semester, indicating so a regular usage.

The validations figures corroborate this as a majority of them were triggered by a minority of
users. One should note that only 22.5% (90/399) of the drawings passed the validation process
and could be used to write pieces of code.

The students can hence be split in two main categories: (i) a majority of them used the GLIDE
once or a bit more as a try and submitted a small number of drawings and, (ii), a minority of
users submitted drawings throughout the semester.

This suggest to bring some improvement to GLIDE such as easier drawing, easier handling,
more consistency with the course, possible export of the drawing to PDF (for assignment re-

ports),...

4.42 Performance Data

From the distribution of the errors over all the PA (see Fig. 4.4a), we can conclude that all the
curves follow the same trend: between 40% and 60% of the programs does not contain errors,
80% of them contains one error and 20% contain two errors or more.

One should note that the errors concerning the Loop Variant are not cumulative. This explains
that the number of error is either 0 or 1.

As far the code is concerned, this means that less than half of the programs are correct.

From the errors distribution for the GLIDE tool (see Fig. 4.4b), we can observe that the curves
corresponding to semantic markers (SE4 and SE5) are under the curves relative to syntactical
markers (SYs_5), even though these semantic errors are easily avoidable: the drawing has just

to be labelled properly. These mistakes reveal a certain lack of students’ involvement in the use
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of the GLIDE tool, as it was also suggested by the few number of validations discussed earlier.

4.42.1 Markers Distribution by PA

Several markers are more prevalent for the PAs 4 and PAg which correspond to the Mid-Term
Exam and the Final Exam, respectively. This is the case of GLI-SY9 (see Fig. 4.5a), GLI-SE3 and
GLI-SEg (see Fig. 4.5b). These errors can be partially explained by the absence of blank Graphical
Loop Invariant during the Exams: students have to produce a Graphical Loop Invariant from
scratch and label it properly. Our data shows students have issues doing that.

On the other hand, the large prevalence of the GLI-SE; PA1, PAg, PAg and PA7 (see Fig. 4.5b)
suggest a positive bootstrap effect from the Blank Graphical Loop Invariant provided in the
automatically corrected PA (see Sec. 3.2).

Among the automatically corrected PA, PA5s shows more semantic error. The nature of the
problem to be solved in the PA (array manipulations) is certainly at the root of those issues. One
can also see that this PA shows a high prevalence of GLI-SE3 and GLI-SE5 (resp. No boundaries
and no Dividing Line label) that may explain CODE4, CODEg and CODE7 errors (resp. Buffer
Overflow, Variable not initialised according to the Graphical Loop Invariant and Incorrect Loop
Condition).

From these markers distributions over the PAs, one can also conclude that the students do
not seem to progress over the semester. Most of the errors indeed remain, especially those that
can be easily avoided such as drawings lacking of labels. This suggests again a lack of students
involvement that was also observed in GLIDE usage.

Regarding the bootstrap effect of the blank Graphical Loop Invariant, it surely helps students
in finding a Graphical Loop Invariant (and thus a solution) for complex PA (see PAj) but,
unfortunately, it does not enable them to develop skills that could be reused for other PAs, such
as the Mid-Term and Final Exam.

All of this argues in favour of a careful teaching of the programming methodology by constantly

referring to the rules when building a Graphical Loop Invariant and deducing the code.

4.42.2 Correlation between Program Quality and Graphical Loop Invariant

At first glance, one can see in Fig. 4.6 that P(A|B) has a high value for almost every PA. One can
see in the Table that, P(ZIE) > P(A|B) for all the PAs. This is in line of our expectations about
the programming methodology: an erroneous Graphical Loop Invariant is likely to lead to an
incorrect program.

In the same way, P(A|B) = P(A|B) for PA;_5 and PAg: if the Graphical Loop Invariant is
correct, it is more likely to get a correct code. For PAg, the proportion of correct Graphical
Loop Invariant is very small and for PA7, the CODEg (variables not initialized according to the
Graphical Loop Invariant) is the most prevalent marker concerning the code (see Fig. 4.5d) and

is a code vs. Graphical Loop Invariant matching error.
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To sum up, these performance data tends to suggest that when applied correctly, the Graphical
Loop Invariant based programming methodology does help in writing correct pieces of code but
the high number of incorrect codes and Graphical Loop Invariant advocates deepening our

investigations.

4.4.3 Perception Data

The surveys being anonymous and conducted after the course end (during the second semester),
we had no mean to collect the opinion of the students who left the CS curriculum.

Concerning the answers we collected, On one hand, the students seem to acknowledge the
importance of the GLIBP to help them to understand how loop work (see Fig. 4.7b) and declare
feeling able to use it for programming (see Fig. 4.7a).

On the other hand, they do not fully apply it when they could (see Fig. 4.8), as it was previously
shown in Fig. 4.5.

As time goes by, a majority of the students declares keeping using the GLIBP methodology

and not only for subsequent courses, therefore recognising it as usefull (see Table 4.4.

4.5 Conclusion

This chapter addressed the student reception of the GLIBP methodology. We presented and
discussed participation, performance and perception data that enable us to answer the following
research questions :

RQ 1. 1 How the students seize the opportunity to practice the GLIBP methodology?

One can first conclude that our programming methodology does not help in keeping the
students in the class, although this is not its goal.

Regarding the tools, the participation in automatically graded programming activities follows
students’ involvement, while for the GLIDE tool, two students profiles arise: a majority of students
used it close to its introduction in early October (as a kind of curiosity) while a minority of them
kept using it as a companion tool during the semester. We can also add that the students do not
fully practice the methodology since they are few to validate their Graphical Loop Invariants
with the GLIDE tool.

RQ 1. 2 What kind of error are committed using the GLIBP methodology?

We proposed a taxonomy of errors based on the guidelines to carefully depict a Graphical
Loop Invariant. The frequency of the errors depend on the programming tasks but regarding
the Graphical Loop Invariant, drawings lacking of boundaries, unlabelled Dividing Line(s) and
lack of relationship with the code are the most prevalent errors. This is unfortunate since these
elements are required to use the Graphical Loop Invariant at its full potential to deduce the code
instructions.

Data show that some errors can be mitigated thank to Blank Graphical Loop Invariant that
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seem to have a bootstrapping effect on the students performance during the semester. However,
this effect does not seem to have an impact on students performance at the Mid-Term and Final
Exam.

RQ 1. 3 Can we link the error committed with the GLIBP methodology to programming errors?

The data presented in the chapter tend to show that an incorrect Graphical Loop Invariant is
more likely to be correlated to an incorrect code while a correct Graphical Loop Invariant is more
likely to be correlated to a correct code. As the methodology requires to draw a Graphical Loop
Invariant to deduce the code, this suggest that the Graphical Loop Invariant does help in writing
piece of code. The relationship between Graphical Loop Invariant and code correctness must be
further investigated and is discussed in Chap. 5.

RQ 1. 4 How the GLIBP methodology is perceived by the students?

The students who are still enrolled during the second semester acknowledges the GLIBP
methodology as useful to understand how a loop works and declare they feel able to properly use
it to write a code.

However, when they are in a situation to apply the methodology, it appears from the survey
results that they not necessarily use it at its full potential: while they often deduce the variables
initialisation and the Loop Condition, they use it much less as far as the Loop Body is concerned.

On the other hand, order students who took formerly our CS1 course reported using regularly

the Graphical Loop Invariant, sometimes in a more informal form.

451 Future Work

The taxonomy of errors could be amended in the future to represent more accurately common
students errors. For example, we proposed the marker CODE4 to represent buffer overflow but
we could think of other errors like dereferencing Null-pointer, memory leaks, etc. depending on
the context in which the taxonomy is used.

Such a taxonomy would also enable to design a system capable of generating custom exercises,
based on the most frequent errors committed by a student to allow them to overcome their

learning gaps or practice in the subjects they is less proficient in.
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CHAPTER

FIRST STEPS TOWARDS EVALUATION OF THE BLANK GRAPHICAL
LOOP INVARIANT

HIS chapter was originally intended to answer the RQ 1. 5 Does the Graphical Loop
Invariant Based Programming methodology enable to write better pieces of code? Un-
fortunatelly, due to the COVID-19 pandemic [190], there was a second lock-down at

the time we planned to conduct our experiment, during the first semester of the academic year
2020—-2021. We hence were forced to collect our data remotely, especially regarding the Graphical
Loop Invariant. In order to mitigate this limitation, we decided to use the Blank Graphical Loop
Invariant (see Sec. 3.2) in our data collection. Our Research Question has therefore been slightly

modified and become:

RQ 1.5 Does the Blank Graphical Loop Invariant enable to write better

pieces of code?

The rest of the chapter is organised as follows: Sec. 5.1 details the methodology to asses the
Blank Graphical Loop Invariant; Sec. 5.3 discusses the experiments results. Finally, Sec. 5.4
proposes some experimental parameters regulation, the Blank Graphical Loop Invariant usage,

and concludes on further work.

5.1 Methodology

5.1.1 Impossibility of Randomized Controlled Trial

The Randomized Controlled Trial (RCT) is a well-know method to determine whether a particular
protocol show evidence of efficacy and is broadly used, e.g., in medicine [188]. It consists mainly in

dividing at random the population on which the protocol is going to be tested in two subgroups:
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Group A BGLI

Group B Control

Q0 000|000O0O0
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Q0 000|000O0O0
Q0 000|000O0O0
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Q0 000|000O0O0
Q0 000|000O0O0

Figure 5.1: Representation of a Randomized Control Trial

a group that follows the protocol and a control group (see Fig. 5.1 for an application to GLIBP
evaluation). Most of time, the control group receives another already known protocol to allow the
comparison with the one that is assessed or a fake protocol (which is known, in medicine, as a
placebo). The randomisation of the population division reduces biases. If the experimenter does
not know if they delivers the assessed protocol or the placebo to a person who has either no idea

the subgroups they belongs to, the study is said to be double-blinded.

As far as the assessment of the Blank Graphical Loop Invariant (or even the Graphical Loop
Invariant) is concerned, a RCT is not feasible and, we believe, unethical. In fact, this is not
feasible because there is no mean to divide the students cohort into two subgroups with the first
programming with the help of Graphical Loop Invariant and the second with a kind of placebo
Loop Invariant. We also did not previously identify another standard programming methodology
in the literature that could be used by the control group (see Sec. 1.5).

For ethical reasons founded on equity between students, we could not afford, in first year, to
divide the the students cohort into two groups, one of which would have learned the Graphical

Loop Invariant Based Programming methodology and the other, as control group, would not.

5.1.2 Crosover RCT

To overcome the limitation of the RCT, we set up a Crossover RCT (see Fig. 5.2): the student
cohort is randomly divided in two groups of the same size. The students are asked to solve two
problems. Group A students are asked to solve the first problem using the GLIBP methodology
and the second problem without it. On the contrary, group B students are asked to solve the
second problem using GLIBP methodology and the first problem without it. Each subgroup acts
as a control group for one of the two problems: group A for the problem 2 and group B for the

problem 1.
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Problem 1 Problem 2
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Figure 5.2: Representation of a Crossover Randomized Control Trial

5.1.3 Experimental Process

Our experiment took place on November 25th, 2020. Students did not know the Blank Graphical
Loop Invariant was assessed but were told it was a mean to practise before the exam. After the
experiments, all the students received a semi-automatically generated feedback. The duration of
the experiment was set to two hours in order to fit in the course schedule to not impair with the

students normal workload.

5.1.3.1 Problems

The first problem we consider is to calculate if an integer is a polydivisible number that we
denote as Pp. The second problem is to compute the Gini Index from two arrays containing the
cumulated proportions of the population and the corresponding cumulated proportions of their
incomes using the Brown [35] formula, that we denote as Pg. Both problems definitions are

summed up hereafter:

POLYDIVISIBLE NUMBER (Pp):

Input — An integer number and its number of digits nb_digits

Output — Display on the standard output whether number is a polydivisible
number (i.e., all the truncations of its decimal representation are divisible

by their numbers of digits) or not.
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< > number
dlde-1|di-2| oo | dj |dja| e | du | do Number numberg: | dp 1 |dp—g| - | dj |dj-1| - | da
All the previous "~ Tobetested |  All the previous
are their of numbers are divisible by
their number of digits
And % = ,J= And k =nb_digits,, j =nb_digits,—nb_digits
(a) Blank Invariant for Pp. Multiple choices for boxes (b) Expected Invariant (among others) for Pp

1 and 4 to 8 are shown in Table 5.1

Figure 5.3: Blank Graphical Loop Invariant and expected answer for Pp

Table 5.1: Loop Invariant for Pp: Multiple choices for boxes 1. and 4. to 8.. Expected answers are
italicised.

Box 1. Boxes4.and 7. Box5. Box 6. Box 8.

1. Word 1. digits 1. divided by 1. digit 1. To be displayed
2. Digit 2. factors 2. summed to 2. factor 2. To do

3. Number 3. terms 3. multiplied by 3. term 3. to be decypher
4. Array 4. polydivisible 4. subtracted from 4. polydivisible 4. To be divided
5. Drawing 5. bits 5. divisible by 5. bit 5. To be tested

6. Sentence 6. numbers 6. isolated by 6. number 6. To be browsed

#include <stdio.h>

int main(void){
unsigned int number = ...;
unsigned int nb_digits = .5
const unsigned int number_O = number;
const unsigned int nb_digits_0O = nb_digits;

// Your code will be pasted here

}// end main

Listing 5.1: Code to be filled in with the student answer for Pp

GINI COEFFICIENT (Pg):

Input — Two sorted arrays X and Y of size N+1 containing real numbers between
0.0 and 1.0

Output — Display on the standard output the corresponding Gini coefficient
when X and Y respectively contain the cumulated proportions of the popu-
lation and the corresponding cumulated proportions of their incomes, i.e.,
G=1-YV M Xps1 — Xp) (Vi1 +Y3)

Concerning the Pp problem, the Blank Graphical Loop Invariant provided to Group A students

is shown in Fig. 5.3a while an example of expected solution is provided in Fig. 5.3b. The multiple
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i [
X: |Already computed| To be computed
) - Unmodified
i N |t
2.] Y: |Already computed| To be computed
) i Unmodified
And equals the And s equals the partial sum
(a) Blank Invariant for Pg (b) Expected Invariant (among others) for Pg

Figure 5.4: Blank Graphical Loop Invariant and expected answer for Pg

Table 5.2: Loop Invariant for Pg: Multiple choices for boxes 15. to 20. and 22. and 23. Expected
answers are italicised.

Boxes 15. to 18. Boxes 19. and 20.  Boxes 22. and 23.
1. To be computed Modified division

2. Already computed Unmodified total

9. To be filled in Displayed sum

10. Already filled in Gini partial

#include <stdio.h>

int main(void){
const unsigned int N = ...;
float X[N+1];
float Y[N+1];
// Code to populate arrays X and Y with values
// this code is hidden from students.

// Your code will be pasted here

}// end main

Listing 5.2: Code to be filled in with the student answer for Pg

choices that are available for boxes 15 to 20, 22 and 23 the Blank Graphical Loop Invariant are
shown in Table 5.1. The other boxes must be replaced by variable or constant names or simple
expression including variables and constants. We also provide both groups students with a code
template shown in Listing 5.1.

As far as the Pg is concerned, the Blank Graphical Loop Invariant provided to Group B
students is shown in Fig. 5.4a while an example of expected solution is provided in Fig. 5.4b. This
last figure is coloured with the colour code introduced in Chap. 2. The multiple choices that are
available for boxes 1 and 4 to 8 of the Blank Graphical Loop Invariant are shown in Table 5.2.
The other boxes must be replaced by variable or constant names or simple expression including

variables and constants. We also provide both groups students with a code template shown in
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Table 5.3: Groups for the experiment to asses Blank Graphical Loop Invariant

Subgroup Size GLIBP Control

GroupA 24 Pp Pg
GroupB 26 Pg Pp

Listing 5.2.

The students are asked to return an answer containing:
¢ The code for the Pp problem;
* The code for the Pg problem;

¢ Depending on the group they belong to, what should replace the boxes in the Blank

Graphical Loop Invariant they are asked to used.

To do so, we provide them a template they have just to fill in to complete their answer.

At the time of the experiment, students have already been asked to use Blank Graphical Loop
Invariant at least three times: twice in the context of what we call the Programming Challenges
Activity (PcA) (see Chap. 9 and following) and in the context of a mid-term exam. We therefore
assumed students were familiar with both the Blank Graphical Loop Invariant and the answer
submission process.

The Table 5.3 sum up the parameters of the experiment.

5.1.3.2 Collecting Students Answers

In order to collect students answers, we used a submission platform that is able to run scripts
as soon as a file is submitted. The program called Correction Automatique et Feedback des
Etudiants (CAFE) (see Chap. 7) analyses the student file and delivers them a report that contains
information on their submission, namely the student’s codes for both Pp and Pg problems and
how their Graphical Loop Invariant is understood: the student submitted what should replace
the boxes and CAFE displays the drawing obtained after the replacement. The student then can
check their answer. During the experiment, the students answer are simply collected and the

CAFE’s report does not contain any information about the correctness of the answer.

5.1.3.3 Correction

The correction was semi-automatic. After the end of the experiment, another instance of CAFE

was run to preprocess students files. For each student it produced a preprocessed file containing:
¢ The student’s code for Pp problem;
* The student’s code for P problem;
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¢ The translation of the student’s Graphical Loop Invariant into a human-readable figure;

* The results of the execution of programs obtained after the compiling of both problems

codes. Each program was assessed with few test cases.

These preprocessed files were saved into separate directories for both groups. At this time, each
student’s file was named according to the student’s ID. Before the correction of the Graphical
Loop Invariant (performed by a human), the students files were renamed with a number (from 0
to N — 1, where N is the group size). These numbers were randomly attributed to the files.
Both the codes and the Graphical Loop Invariants were corrected by a member of the ped-
agogical team according to the error taxonomy introduced in Chap. 4. It is worth noting that
the codes and Graphical Loop Invariants for Pp (resp. Pg) in Group A (resp. Group B) were
corrected separately: the corrector did not know what was the student’s performance regarding

the Graphical Loop Invariant while correcting the code.

5.1.3.4 Students Feedback

As we presented this experiment as a practise exercise before the exam, we sent to all the
participants a feedback about their performance. It was semi-automatically generated: since the
codes and Graphical Loop Invariants corresponded to performance markers of our error taxonomy,
we converted the performance markers corresponding to a student’s answer into remarks that we
concatenated to form a feedback message. We also added an overall comment the corrector wrote

during the correction step.

5.1.3.5 Possible Biases

This study has been foreseen since August 2020 when we did not know there would be a second
lock-down. As the students would benefit from it as a rehearsal exercise, we decided to still
conduct the experiment.

Albeit we tried to reduce the biases as best as possible, e.g., by reordering and randomly
renaming the students file and by correcting the codes and the Graphical Loop Invariants

separately; we were not able to control several parameters that are listed in the following:

* The workplace: each student works from home and their environment may have an

influence on its work;

* The understanding of the instructions: the teaching team was available to answer students

questions but could not do so as well as in a classroom;

¢ The time students allocated to a particular problem. We asked them to allocate it evenly on

both problems but we did not have the mean to check;
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* The order in which the problems were solved by the students: they may be less successful in

the second one (e.g., due to tiredness), which is referred as carry-over effect in the literature;

¢ Students collaboration: we could not check if the students collaborated while they were
supposed to work alone. Even for a practical exercise, any student could copy another

student’s answer for the sake of receiving a positive feedback.

5.2 Hypotheses

Since we believe our methodology does help to write correct pieces of code, we formulate the

following hypotheses:

Hyp 1 Group using Graphical Loop Invariant has better performance than the other group.

Hyp 2 Among Graphical Loop Invariant users, a better Graphical Loop Invariant leads to better

piece of code.

To define the performance associated with the Graphical Loop Invariant and the code, we

refer to our own error taxonomy (see Chap. 4) and we provide the following definitions:

Correct Graphical Loop Invariant refers to a Graphical Loop Invariant labelled with the
markers GLI-SY; and GLI-SE; i.e., a Graphical Loop Invariant whose syntax and semantic

are both correct ;

Correct code refers to code that once compiled and executed, shows the expected behaviour.
Unlike the marker CODE1, the assessed code does not require to have been build upon a

correct Graphical Loop Invariant ;

Better Graphical Loop Invariant A Loop Invariant is said better than another if it is labelled

with fewer GLI-SY and GLI-SE markers (excluding markers GLI-SY; and GLI-SE;);

Better code A code is better than another if it is not a “very incorrect code” and if is labelled
with fewer CODE markers (except CODE;)

Very incorrect code A code labelled with at least one of the following markers: CODEg, CODE3,
CODE4, and CODEg. As a result, all the code that are not “very incorrect” are better than

the very incorrect ones and comparing two very incorrect codes is not relevant.

5.3 Results

In order to verify our first hypothesis, we counted the correct codes, for each problem in each

subgroup. According to our hypothesis, students using the GLIBP methodology should perform
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Table 5.4: Proportions of correct codes among the subgroups. # column refers to the number of
correct codes. (/N) column recalls the group size. The last two columns refer to y2 independence
test statistics (including Yates’ correction) and its associated p-value.

GLIBP Control
#UN) % #UN) % y2  p-value
Pp 5(/24) 20.8 14(/26) 53.8 4.457  0.034
P; 11(/26) 42.3 8(/24) 333 0.131  0.718

Pp+Pg 16(/50) 32.0 22(/50) 44.0 1.061 0.303

Table 5.5: Proportions of correct codes among the students of subgroups who committed least
than 4 errors in their Graphical Loop Invariant. # column refers to the number of correct codes.
(/N) column recalls the group size. The last two columns refer to y? independence test statistics
(including Yates’ correction) and its associated p-value.

GLIBP Control
#UN) % #UN) % y2  p-value
Pp 4(/12) 333 8(/16) 50.0 0.246  0.620
P; 6(/16) 375 6(/12) 50.0 0.076  0.783

Pp+Pg 10(/28) 35.7 14(/28) 50.0 0.656 0.418

better. Results are shown in Table 5.4 and Table 5.5. Table 5.5 focuses on students whose
Graphical Loop Invariant are either correct or labelled with less than 4 markers. The rationale
of this filter is that our methodology consists in deducing the code from a correct Graphical Loop

Invariant. Thus we compare students who make the fewest mistake with it.

For each lines in the tables, we performed a chi-square independence test with Yates’s
correction (as the degree of freedom is 1). The Hy null hypothesis is “There is no relationship
between using (or not) the Graphical Loop Invariant and the code correctness” and the Hy4
alternative hypothesis is “There is a relationship between using (or not) the Graphical Loop
Invariant and the code correctness”. The test statistics and its p-value are provided in the tables.
As can be seen in the table, except for the first line of Table 5.4, the p-values are above the 0.05

significance level and the null hypothesis cannot be rejected.

As far as the first line of Table 5.4 is concerned, the p-value 0.034 is less than the significance
level and the null-hypothesis can be rejected in favour of the alternative one: there is a relation-
ship between using (or not) the Graphical Loop Invariant and the code correctness. The table
shows that students from the control group (who does not use the Graphical Loop Invariant)

perform better than the students who were asked to draw a Graphical Loop Invariant.

Given these first results in regards of our hypotheses, we do not deepen the analysis of the

experiment data.
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5.4 Conclusion and Further Work

The experiment was not able to show a positive effect of the Graphical Loop Invariant on the
students’ coding performance (see Table 5.4 and Table 5.5).

Even worse, the first line of Table 5.4 suggests that for problem Pp, asking students to draw
a Graphical Loop Invariant was harmful! This is a very unexpected and counter-intuitive result
because in this case, the figures do not take account of the student’s actual aptitude to draw a
Graphical Loop Invariant. As if just asking to use the Blank Graphical Loop Invariant had a
negative impact on students’ performance. We cannot bring a better explanation than the two
groups being not even in term of performance from the start i.e., Group B performed better than
Group A, regardless of students’ mastery of the Graphical Loop Invariant. Either because we
failed at constituting random even groups or because students collaborated in Group B, what we
could not ensure due to the experiment conditions.

For the very same reason, we could not ensure the students actually used their Graphical
Loop Invariant to deduce the code instructions.

Although this experiment is not a success, we propose regulations for both new experiment

on the GLIBP methodology and the teaching of the methodology itself.

5.4.1 Conducting experiments on Graphical Loop Invariant

In order to conduct new trials on Graphical Loop Invariant, we suggest to not perform them
through a remote system but in a classroom. Hence, the students cannot collaborate and the
teaching team can be present to answer all the questions that arise.

We suggest to try to have a larger test population to rise the accuracy of the results and
ensure their statistical significances. It would be interesting to carefully assess all the data
structure templates (see Sec. 2.2) to see if some of them lead to better codes and why.

We recommend to write the instructions for the Graphical Loop Invariant so that the students
are asked to explain how they use it to derive the code, forcing them to actually (at least) try to
use it.

Assuming new studies confirm that the Graphical Loop Invariant is harmful, one must then

study why a graphical methodology confuse so much the students.

5.4.2 Using GLIBP methodology

Beyond the lack of statistical significance or the results of the study, there is a risk that the
GLIBP methodology could be harmful to students. Here are some recommendations on its usage

to prevent such bad impacts:

* Make sure all the students understand well the drawing pattern presented in Sec. 2.2;
* Train students to use Blank Graphical Loop Invariant;
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* While presenting the Graphical Loop Invariant, use consistently a colour code for the
elements drawn in the Loop Invariant;

¢ Until evidences of (Blank) Graphical Loop Invariant benefit are brought forward, do not use

either the Graphical Loop Invariant or the Blank one in a summative remote assessment.
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CHAPTER

AUTOMATIC CODE ASSESSMENT AND FEEDBACK BACKGROUND

HIS CHAPTER introduces the second part of the document, dedicated to a tool we de-
veloped, Correction Automatique et Feedback des Etudiants (CAFE), that is able to
automatically assess student programs. Sec. 6.1 presents the related work about au-

tomatic feedback generation and program assessment. Sec. 6.2 sums up the advantages and
drawbacks of such systems. Sec. 6.3 presents our research questions which link automatic assess-
ment to the GLIBP methodology introduced in the previous part of the document. Eventually,
Sec. 6.4 introduces our tool, CAFE, and positions it with regard to the state of the art.

6.1 Related Work on Automatic Feedback

A lot of systems for automatic assessing students programs have been already proposed. Thantola
et al. [92] and later Keuning et al. [101] review most of them. We do not pretend here to present
a deeper analysis. However, Table 6.1 shows a few of systems and solutions that we consulted to
align our solution to the state of the art. The column “Grade?” indicates whether the tool embed
a feature to grade students.

Most of the tools produce feedback i.e., information provided to the student about their
performance. Most of time, the student’s program is assessed through unit testing and the
feedback consists in listing the cases for which the tests failed and the ones for which they
succeeded (which is referred as simple feedback in [101]). As far as the tools in Table 6.1
are concerned, the column “Comments” indicates that we provide, in the following, further
information of the tool particular features, especially in term of more informative feedback (which
is referred as elaborated feedback in [101]).

Marwan et al. [137] propose what they call an Adaptative Immediate Feedback (AIF) that

works in the context of a block-based programming environment. The system continuously
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Table 6.1: Tools and concepts about automatic feedback generation. Column “Grade?” is marked
with v if the corresponding reference (see “Ref.” column) mentions the tool is able to compute a
grade. A v/ in the “Comments” column means that the corresponding tool or concept feedback is
further discussed.

Name or concept Ref. Grade? Comments
Adaptative Immediate Feedback [137] v
AutoGrader [85] v v
AutomataTutor [46] v v
CodeOcean [170] v v
Coderunner [129] v
CodeRunner plug-in to assess OpenGL [191] v v
CodingBat [153]

Coursemarker [87] v v
Feedback from Error Model [172] v
Flexible Program Alignment [135] v
GradelT [151] v v
INGInious [61] v
MobileParsons [99] v
MUMUKI [24]

My Lab Programming [154] v

Problets [110] v v
Solutions spaces analysis [159] v
UNLOCK [18] v
Verificator [157] v
Web-CAT [61] v v
CAFE Chap. 7 v

GLIDE Sec. 3.1

analyses the students’ work and detect if an objective is fulfilled. As soon as it is the case, a
panel listing all the objectives is directly updated and a positive message containing emojis
(selected according the state of the student work) is displayed in a pop-up to congratulate, cheer
or encourage them. The system is well received by students, improve the retention in CS, the

students’ engagment, performance and learning.

AutoGrader [85] leverages Object Oriented interfaces to launch students’ tests.

Automata [46] is a tool to assess and provide feedback on Deterministic Finite Automata that
accept strings matching a certain pattern. The tool leverages DFA properties to propose students

either counterexample of incorrect processed strings or hints that indicate how to modify their

answers.

CodeOcean [170] is “an educational, web-based execution and development environment
for practical programming exercises designed for the use in Massive Open Online Courses”. It

enables MOOC tutors to write their own unit tests to deliver custom feedback to students. The
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tool offers the possibility for a student to ask other students questions about its own code.

Wiinsche et al. [191] present a solution based on CodeRunner [129] to assess OpenGL com-
puter Graphics assignments. The paper presents several solution to grade such graphical
problems: compare pixels colors; ask for students to determine correct parameters of a function;
analyse parametric equations instead of their 3D rendering and analysing intermediate OpenGL
state rather than drawing the corresponding object.

Coursemarker [87] performs unit tests, as well as typographic test (i.e., testing the indent,
the presence and length of comments, the identifier name choice and length, etc.) and feature
test (eg testing whether a switch or an if-then-else was use). It enables the teacher to provide
feedback but it is not clear in what extent.

Singh et al. [172] propose more advanced automatic feedback by providing, to students, a
numerical value (the number of required changes) and the suggestion(s) on how to correct the
mistake(s).

Marin et al. [135] propose a method using program dependence graphs (PDG) and semantic
information extracted from the programs that computes repair suggestions to correct a program.
The method constructs the PDGs for both the correct and incorrect programs. Then, it computes
an alignment between the graphs i.e., it determines which vertex in the smaller graph is similar
to which vertex in the larger one. Then, based on which program is the correct one from the
smaller or the larger, it can suggest to add or remove code instructions.

GradelT [151] is a grading tool that assess programs by performing unit tests comparing
the program result with an expected output. The tool embeds a feature that is able to repair
non-compiling code before the tests. The tool delivers an improved feedback that consists in
providing richer information with the compiler message, such as an explanation of the compiler
message, an example of correct statement and a counter-example of an incorrect statetement.

MobileParsons [99] is a tool built on js-parsons [97] for solving Parsons problem on mobile.
The app can deliver richer feedback by detecting the code chunks that do not belong to the
longest common subsequence shared with a model. The tool also recognises answers previously
tried by students preventing them to be bogged in loops when finding a solution. The tool also
limit feedback queries to force students to think about what they’re doing instead of using a
trial-and-error strategy.

Kumar’s Problets [110] enables step by step code execution as part of feedback.

Rivers and Koedinger [159] propose to use solution spaces that is a graph representing the
path taken by a student from a problem to the correct answer. The solutions spaces is built by
analysing previous students data. By determining the position in the solution spaces of a new
program, authors suggest it would be possible to provide accurate feedback of this new program.

UNLOCK [18] tackles the problem solving skills in general, not just coding skills.

Verificator [157] is a DevC++ plug-in that enable student to write, test and debug their

programs. To prevent students from copying code and writing a lot of instructions without
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checking the syntax, it forces them to type the instructions and to compile their code after a certain
number of lines typed. The output of the compiler is enriched to made it more understandable.
Verificator also enables to enforce good programming habits such as coding style.

Web-CAT [61] makes students write their own unit tests and assesses their code coverage.

6.2 Advantages and Drawbacks of Automatic Feedback

This section sums up the advantage and drawbacks on students learning presented in the papers
listed in Table 6.1. Some of them do not provide any evaluation of the effect on students (e.g.,
[85, 99, 135, 159, 170, 172]).

The majority of the papers that reports an effect of students perception and learning actually
reports broadly positive effects or positive effects with few caveats. We wonder to what extent
this might be due to publication biases (i.e., tools that do not show evidence of positive effects
would not be published, as it is well studied in health research [173]).

6.2.1 Advantages

The first and foremost advantage of automated systems is that they enable to assess a very large
students cohort [51, 87, 129, 170], some of them are therefore used in the context of MOOCs.

Regarding the feedback that is provided, the positive effects reported are positive students
reactions [137, 157]; an increase in student retention [24, 137]; better student understanding of
their mistakes [46] or of the subject [191]; engagement [137] or motivation [87] improvement,;
better student performance [87, 137] and better learning [137, 157].

As far as the gradation is concerned, Higgins et al. [87] reports that Coursemarker grades “at
least as well as human do”, saving so hours. GradelT [151] was compared to manual grading
and the results show that both human and automatic gradings were close, GradelT being more

consistent than humans.

6.2.2 Drawbacks

Parihar et al. [151] assessed the quality of the feedback provided by GradelT with (only) 8
students. In majority, the feedback is considered as substantially better than the compiler
message but, in some cases (e.g., multiple errors on the same line), the enriched feedback can be
incorrect and thus confusing.

Radosevic et al. [157] report that students using Verificator declared that frequent compila-
tions took them time and that the limitation before compiling seemed them too strict.

In addition to the papers previously presented in Table 6.1, Hsu et al. [89] present the student
reception of tool for grading short answer that is based on Artificial Intelligence techniques.
They report that some students developed folk theories about how the grader worked and that

“misalignment between folk theories about how the autograder worked and how it actually worked
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could lead to suboptimal answer construction strategies”. They thus recommend to implement a
“robust appeal process” for students considering the tool graded them badly.

Leite and Blanco [115] compared the student reception of human and automatic feedback
in the context of an Al introductory course with programming assignments. The students were
divided in two groups. Both received detailed automatic feedback and one group “received
human-written feedback describing how their programs’ syntax relates to issues with their logic,
and qualitative (style) recommendations for improving their code”. The study suggest also in a
complementary analysis of their data that ‘ students in the middle two quartiles of the human
feedback group performed much better overall than those that received computer feedback.”. The

study concludes that “disambiguation is one main purpose of human feedback”.

6.3 Research Questions

Systems to automatically assess student programs and provide them with feedback seem to be
promising and beneficial for the students. But since our CS1 course introduces the Graphical
Loop Invariant Based Programming methodology (see Sec. 2.1) that relies on Graphical Loop

Invariant to write pieces of code, the following questions quickly arise:

RQ 2.1: Can we get a system that automatically assess the GLIBP and provide relevant feedback?

RQ 2.2: How the feedback produced by such a system is received by students?

The Chap. 7 answers positively to the first question by presenting the tool we developed,
CAFE. The next section positions CAFE with the state of the art, especially Keuning et al. [101]
classification.

The Chap. 8 addresses the evaluation of the feedback provided to the students by CAFE.

6.4 Introduction to CAFE

We propose CAFE [119, 123], a program that assesses and grades students exercises and deliver
them a message containing feedback and feedforward (i.e., hints on how to improve one’s perfor-
mance) information. As far as the GLIBP methodology is concerned, CAFE can assess both a code
and the Graphical Loop Invariant that was used to deduce it. To correct automatically Graphical
Loop Invariants, CAFE relies on the Blank Graphical Loop Invariant introduced in Sec. 3.2.

The feedback and feedforward produced by CAFE were carefully based on the literature
promoting self-regulated learning. Among the established quality criteria for feedback (Keuning
et al., 2019), CAFE instantiates the following procedural items: (i) individualized feedback [104],
(ii) feedback focused on the task, not the learner [146], and, (iii) feedback made directly available
to the student to prevent them from becoming bogged down or frustrated [105].
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Content-wise, following Keuning et al. classification [101], which extends Narciss’ [145], CAFE
feedback falls within

¢ the Knowledge About Task Constrains CAFE is able to verify if a particular library
function was used (whether it is mandatory or prohibited by the task), as well as for
particular language instructions (if/then/else vs switch, loops types, etc.), operators or

additional variables.

¢ the knowledge About Mistakes. CAFE performs unit testing (“test failure”), compiles
students’ code and, in case of compilation errors, warns the students (“compilation errors”),
it can detect out-of-bound accesses and infinite loops (“solutions errors”) and, finally, checks
the number of iterations, as well as the proper use of memory allocation (“performance
issues”). For all of these points of interest, CAFE provides a detailed description of the

mistake.

¢ the Knowledge About How to Proceed. Through feedforward, CAFE provides references
to the theoretical course or hints about actions to be taken to improve the solution, as well

as hints about improvement to the submitted exercise.

¢ the Knowledge About Meta-cognition. CAFE checks that the student’s code matches
with Graphical Loop Invariant (allegedly) used to derive it and thus increases metacognitive

awareness [156].

The next chapter details in depth how CAFE works and is implemented.
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CAFE PRINCIPLES

HIS CHAPTER introduces our tool for automatically assessing students’ programming
exercises which is named after the French acronym Correction Automatique et Feedback
des Etudiants (CAFE) [119, 123]. We use CAFE as part of the Programming Challenges

Activity (PcA), that is a programming activity spread over the semester that allows students
to submit pieces of code (called Challenges) on an on-line platform (developed for assignment
submissions) that are then automatically corrected and graded. Each student also receives
feedback and feedforward for each piece of code submitted.

CAFE is precisely the program that is run on the on-line platform and has two main roles: (i)
to correct and grade exercises (including the correction and grading of Graphical Loop Invariant
and programs written in the context of the GLIBP methodology) and (ii) provide students with
feedback and feedforward, enabling them to correct their exercises and to submit again improved
versions.

This chapter strictly focuses on how CAFE works and is implemented?!. Sec. 7.1 discusses how
students submit their pieces of code to CAFE, in particular focusing on how to fill a template that
will be properly understood by CAFE. Sec. 7.2 presents an overview of the correction operated by
CAFE in three main steps further detailed below: the preprocessing (see Sec. 7.3), the correction

(see Sec. 7.4) and the generation of a message containing feedback and feedforward (see Sec. 7.5).

7.1 Interacting with CAFE

As its French name indicates, CAFE allows to automatically correct students exercises and to

provide them with feedback (feedforward has been added later and does not fit in the anagram).

21 The Pca is presented and evaluated in the chapters 9 and 10 respectively.
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Download

Template and
Instructions
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Correct Fill Template
answers with answers

Send exercise
To CAFE

Get CAFE
Response

[Need for resubmitting
and submission allowed] [Else]

Figure 7.1: Activity Diagram of a Student submission to CAFE

Fig. 7.1 shows a UML® Activity Diagram [27] illustrating how a student can use CAFE: they
first downloads the exercises instructions and a template. Once the template is filled with the
student’s answers, forming their submission file, they sends this file to CAFE. CAFE corrects
and grades the submission and responds with a message that contains a grade, feedback and
feedforward. If the student want to submit again and has the opportunity to do so, they may
correct their submission file and submit again. The submissions modalities (subject, time, number,

etc.) are discussed in the chapters 9 and 10.

7.1.1 Exercises Instructions

The instructions describe the tasks students have to achieve and how the template must be
filled to provide a valid submission (i.e., to be properly understood by CAFE). The Listing 7.1
presents an example of code template provided in a exercise instructions (this is called “Solution
Template” by Keuning et al. [101]). The goal of this exercise is to compute the intersection of two
sorted arrays, A and B, and to place the result in a third one, C. As it can be seen in the Listing,
the arrays are already declared and filled with values although this part is hidden to students.
The students only have to complete the code that actually computes the intersection. Note that
imposing the name of the arrays eases the exercise correction (for more details see Sec. 7.4).

As far the GLIBP methodology is concerned, CAFE was designed to assess both the Graphical
Loop Invariant and the Loop Variant used by a student to write their code. The way a student
communicates their Graphical Loop Invariant — the Blank Graphical Loop Invariant — has been

discussed in Sec. 3.2.
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7.1.2 Template

The template is a simple text file whose format follows very basic rules: the answers are delimited
by the special symbol "#". C-style comments are allowed, everything else is considered as an
answer. With such rules, the template is easily parsed. An example of template, already filled
with a student’s answer is presented in the Listing 7.2. The C syntax highlighting enables to
distinguish the reminders of instructions (i.e., the comments in blue) and the student’s answers.

In particular, the lines 10 to 23 show how the Graphical Loop Invariant is encoded (see
Sec. 3.2). As the Loop Variant is concerned, it is expressed, in the template, as a simple C

expression.

7.1.3 CAFE Response

After each submission, a message is quickly provided to the student. This message contains the
student’s mark, as well as information about how CAFE understood their submission, feedback
on their performance, and feedforward advices (i.e., what should they do to improve their mark).
Each piece of feedforward advice is either informational (e.g., the instructions were not properly
followed and should be re-read carefully), either theoretical (e.g., some theoretical concepts
seem to not be properly understood and a reference to the course material is provided), either
regulational (i.e., recommendations on actions that should be taken for improving the answer).
Fig. 7.5 provides an example of a part of the message that could have been provided after
the submission of the exercise corresponding to the instructions presented in Sec. 7.1.1. As can
be seen in Fig. 7.5, the message structure follows submission template (See Listing 7.2). The
Graphical Loop Invariant formed by the combination of the Blank Graphical Loop Invariant
from the instructions (See Sec. 3.2) and the content that should replace the boxes specified by

the student in their submission (See Listing 7.2) is clearly displayed. Moreover, the feedforward

#include <stdio.h>

int main ()A{
const unsigned int N = ...;
const unsigned int M = ...;
const unsigned int L ...; // large enough
int A[N];
int B[M];
int C[L];

// Arrays A and B are filled with values (code not provided)
// Your code will be inserted here.

}//End of the program

Listing 7.1: Code template provided to the student.
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/* Exercise: Arrays and Loop Invariant
Some reminders about the submission process and the statement

Invariant

Encode your Loop Invariant below. For your convenience, Box
numbers are already written

*/

H
PO

N/ N O O N
—. O =1

-]
6
5

25. 7
1
3
28. 5
/* Encode your Loop Invariant above */
#

v / *

Variant

Encode your Loop Variant below, as a valid C expression x/
M+ N -1 -

/* Encode your Loop Variant above */

#

/ *

Code

Type your code below, i.e. what should replace the line "Your code
will be inserted here" in the template. */
int 1 = 0, j = 0, k = 03
while(i < N && j < M){
if (A[i] < B[jl) ++i;
if (ALi] > BLj1) ++3;
if (A[i] == B[j1){ Clk++] = A[i]; ++i; ++3;}
+

/* Type your code above */

Listing 7.2: Exercise template to fill and submit to CAFE
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Figure 7.2: Overview of a Student’s Input Processing

information is framed to draw student’s attention.

7.2 Overview: Processing a Student's Input in Three Main Steps

CAFE [119] is written in Python 2.7 and easily extensible for new features. The Python script is
run in a dedicated sandbox (for avoiding any security issue), on a submission platform, each time
a student submits an exercise. Currently, correcting and grading an exercise is done in three
main steps, as illustrated in Fig. 7.2: (i) the preprocessing (i.e., splitting the submitted exercise
into several answers — see Sec. 7.3), (ii) the correction per se (i.e., each answer is corrected,
graded, and commented — see Sec. 7.4), and (iif) message generation (i.e., the various grades are
combined and comments are concatenated to form the message to be provided to students — see
Sec. 7.5).

It is worth noting that the steps are independent from each other: one can easily modify the
correction step as soon as it handles the answers from the preprocessing and generates data that
can be transformed into a message at the next step. Moreover, the following illustrates the three
main steps with correction of exercises consisting in writing pieces of code in C but CAFE itself
does not depend on a particular language. In particular, handling code written in Python would
be straightforwardly easy.

If an unexpected runtime error occurs and an exception is thrown, it is caught and transformed
in an error message that is delivered to the student (See Fig. 7.2, top right). The message states
an error occurred and that the corresponding Challenge grade is 0/20 (by default, we consider
the error is due to the student’s file content). It also prompts the student to quickly contact the

Teaching Assistant.
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7.3 Preprocessing: from a Student’s Submission to a List of Answers

A submitted exercise contains both pieces of code and text (e.g., the Graphical Loop Invariant
that helped writing the code — see Chap. 2 and Sec. 3.2). The preprocessing step consists in
extracting the text and using the code to generate the student’s answers that will be corrected in
the next step.

This is illustrated in Fig. 7.3: the first preprocessing operation aims at splitting the student
file into several slices and at isolating the text on one hand and the code on the other hand
(CAFE must be configured to know which slice contains text or code). Both pieces of text and
preprocessed code fragments form what we call “pieces of answers” that may be grouped and
selected to form the actual answers that are considered by the correction step. E.g., the Loop
Invariant and the code it helped to write are the combination of (resp.) a text and a code that
eventually form an answer.

The main step in the preprocessing consists in compiling and executing the student’s program.
Before compiling, the student’s pieces of code are injected into a larger file. At the beginning of the
semester, when some C language features (e.g., functions) were not yet introduced, it enables to
put each piece of code in its own test function and call it at will in a test suite. The file containing
student’s pieces of code may be compiled with as many other source files as desired: they just
have to be put in the right directory with a makefile.

One can then see in Fig. 7.3 that the pieces of code are used in several ways to generate three

sort of pieces of answers:

Formatted code It is just the texts of all the student’s pieces of code that are formatted into a
single text string in order to be lexically and syntactically analysed during the correction
step (the syntax parser take a C source file content as input and the student’s pieces of

code, taken separately, might not pass the parsing, hence this formatting).

Compiler output It is the result of the compilation. A compilation failure means that the
student did not submit a valid C code. If the compilation failed, the compiler message is
modified to be more readable: the student code fragments are added and the line numbers
in the compiler output are modified so that they only reference displayed student code.
This modification is mandatory since the student code was merged in a bigger file and
the original compiler output is related to this file, whose content does not need to (and

sometimes must not) be revealed to the student.

Program Result After a first compilation, the student code may be modified to ease correction

(see Sec. 7.4) and is thus compiled again?? into an executable program that is run. This

22 The makefile must accept two targets, “check” and “main” that correspond respectively to student code syntax
check and actual compilation with the teacher test suite. This feature also allows to write conditional preprocessor

directives in the source files that include or not code depending on the target.
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executable writes information to the standard output (either because the student was
asked to print something in stdout, either because the tests of their program did so — e.g.,
for displaying the particular parameters values with which their code was tested) and
terminates with a certain status number. Both the content of the standard output and the

status form what we call the program result.

7.4 Correction: from a Lists of Answers to a List of Marks and Remarks

This steps consists in applying, to each answer produced by the preprocessing step, a correcting
function that is in charge of comparing the answer with the expected result(s). CAFE was designed
not only to be able to perform unit tests (see Sec. 7.4.1) but can also verify if constrains established
in the exercise instructions are respected (see Sec. 7.4.2) and assess if the Graphical Loop
Invariant Based Programming methodology was followed while programming (see Sec. 7.4.3).

As far as the C language is concerned, the correction step is able to detect infinite loops (see
Sec. 7.4.4); to count iterations to enforce eventual complexity constrains (see Sec. 7.4.4.1); to
detect out-of-bounds accesses (see Sec. 7.4.4.2) and to mock standard library functions to offer
better feedback on their usage (see Sec. 7.4.4.3).

During the correction step, each test, each check can give rise to a remark. Hence each
correction function handling an answer will generate a list of remarks and a grade, as depicted

in Fig. 7.2. Both of them are eventually handled by the message generation step (see Sec. 7.5).

7.4.1 Correction Principles and Grade Computation

# CAFE's Python implementation

class ExerciseGT (GroundTruth):

def __init__(self):

self .structure = [
{'action': self.correct_invariant,
'params': {},

'weight': 8.,},

{'action': self.correct_output,
'params': {},
'weight': 12.,},]

# Numbers refer to

self .requirements = ((0,2), (4,5,6))

Listing 7.3: General Form of an class Inheriting from Groundtruth.

Writing the correction for an exercise in CAFE requires to write Python functions that will

correct the answers generated from the student file by the preprocessing step. These correction
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Table 7.1: Pieces of answer example. They are related to the exercise shown in Listing 7.2

Piece of answer

Encoded Loop Invariant
Loop Variant

Text of the code
Compilation result

Test result 1

Test result 2

Test result 3

OB WIN = O FHF

functions must be provided via an object inheriting from the GroundTruth class, which contains
pre-defined methods (e.g., a method for computing students final mark).

Listing 7.3 shows an example of such a class that specifies how to combine the pieces of
answers into answers and which correction method must be called to handle each answer.

The class defines two fields: structure and requirements. structure is a list of dictionaries

that contain three informations:

action A reference to a method to correct an answer;

params A dictionary of named parameters to be passed to the action method,
weight The weight of the correction function result in the final mark

The requirements are used to inform CAFE which pieces of answers must be combined to
form an answer. Each inner tuple form an answer combination and the tuples order correspond
to the actions order in the structure list.

Let us take the example of Listing 7.2. During the preprocessing, it will be divided in three
slices: Graphical Loop Invariant, Loop Variant and code. The preprocessing step will also add
other pieces of answer after the code compilation and the program execution®®. They are all listed
in Table 7.1.

The numbers in the requirements value in Listing 7.3 follow the numbering of the pieces of
answer from Table 7.1. It means that the method correct_invariant must be given the encoding
of the Loop Invariant (0) and the code (2) as parameters, whereas the method correct_output
will received the three tests results (4,5,6).

The Listing 7.4 shows and explains the principal part of a correction function. It is this kind
of function references that are passed as values in the structure field of the GroundTruth (see
Listing 7.3, e.g., correct_invariant).

The correction function performs unit test, i.e., comparison between the student answer and

the expected behaviour.

23 The number of test results (here: 3) depends on the number of tests launched on student’s program.
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# CAFE's Python implementation
# To be put in an object inheriting of GroundTruth class
def correct(self, student_answer , **xkvargs):

nnon

Return: a list of remarks and a grade

nnon

# 1. Compute the expected values or use the ones passed as params
expected_result = f(student_answer, **kvargs)

# 2. Analyse the student answer passed
answer_part = g(student_answer)

# 3. Create an empty commentaries list and put the grade at maximum value
coms = []
grade = TOTAL

# 4. For one test

# 4.1 Add Title and display info
coms += TITLE("Question X: a title")
coms += DISP("Some Information")

# 4.2 Compare answer and expected values:
test = h(expected_result, answer_part)

# 4.3 Compare answer and expected values:
if (test):
# Success: display a positive message
coms += DISP(Positive Message)

else:
# Failure: add a remark, a code and a priority and decreases grade
coms += REMARK("This is incorrect because... ", code, priority)
grade -= penalty

# Perform other tests if needed

# At the end, return the grade (/1) and the commentaries
return grade/TOTAL, coms

Listing 7.4: General Form of a Correction Function. f, g and h are teacher defined operations

and can be as complex as necessary.

As far as assessing the program is concerned, the comparison between the program result
and the expected result may be processed either by the C code itself that embeds the student

code as a subroutine. In this case, the Python correction function just consists in parsing a report

that is printed on stdout by the C code.

On the other hand, the C code may just invoke the student code and make sure that its result

is printed on the standard output. The Python correction function then parses this result and

compute the comparison with the expected behaviour.

In both case, we recommand to make the program that launches the student code print
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the parameters with which the student code was invoked on stdout in order to later use this
information while generating the response message.

One can see in Listing 7.4 that the function generates a list of remarks (TITLE, DISP and
REMARK). They refer to ways of providing student with feedback and feedforward (See Sec. 7.5).
In addition to a list of remarks, the correction function must also return a grade that is a real

number in [0..1].

7.4.2 Enforcing the exercises constrains

Some exercise instructions may contain constrains such as using a particular loop type or limit
the number of selection statements (i.e. if and switch [180]), ete. In order to enforce such
constrains, CAFE is able to perform a lexical and syntactical analysis of C source code thanks to a
module based on pycparser [22].

By default, the analysis of the code computes all this information that may be used in the

following of the correction if it is relevant :
1. Each type of loops is counted: while, for, and do-while.

2. All the jump statements are counted. Most of time [Always?], jumping from the Loop
Body does not respect the GLIBP methodology: goto — always to penalise its usage [54] —,

continue, break (used outside switches), and return.

3. All Identifiers, arrays, and initial values are registered: the identifiers themselves as well
as their initial values are stored in a dictionary; in particular, the identifiers used as indices

are isolated and the arrays names are gathered too.

The list of the arrays names allows to limit their usage to those defined by the exercise
instructions. The list of indices and the initial values are helpful to confront a code and its

Loop Invariant (see below).

4. All the selection statements (i.e., if and switch) are counted so that their use may be

constrained. Two counts are carried out: inside and outside the loops.

5. All the called functions are remembered in a set. It allows either to restrict the use of
particular libraries (e.g., math.h) or to check if a particular function is actually properly
called by a code (e.g., in an exercise tackling code modularity). In addition, it is better
to make sure that a student code compiles even if it means including a large number of
needless (or even forbidden) libraries: the called functions set allows eventually to tackle
the instructions enforcement and to deliver a precise and more understandable feedback
message in case of problem. Otherwise, trying to compile a code that does not include a

particular library leads to a linking error that is often hard to decipher by a neophyte.
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6. CAFE can be asked to list the operands of a certain operator. It will produce two separate

lists:

* a list containing both operands of all the matching binary operator occurrences;

* alist of the R-values of all the assignment-expressions if the considered operator has

an assignment-operator version.

An example of use-case for this feature is an exercise that would ask to compute a value
with only multiplication and division by 2. CAFE would therefore make 4 lists of operands

for the operators *, /, *= and /=.

7. For each loop, a list of information is gathered: its type, its nesting level, its guard, and the
list of identifiers in its guard. The two last pieces of information are used to confront a code

with its Loop Variant (see below).

7.4.3 Assessing the Compliance with the GLIBP Methodology

Regarding the Loop Invariant, the correction step verifies that what has been proposed as
replacement of the boxes (see Sec. 3.2) is relevant. Most of the time, several answers are possible
and are considered by CAFE.

Concerning the Loop Variant correction, the expression provided by the student is evaluated
by giving particular values to each identifier of the expression. CAFE checks that the proper
variable names (inferred from the Loop Invariant) appear both in the expression and in the code
and that the value of the expression decreases at each iteration.

There is always the risk a student will submit their exercise with the Loop Invariant produced
after the code, which clearly violates the methodology we propose (see Chap. 2). To limit this
risk, CAFE checks if variables used in the Loop Invariant are consistent with the one in the code
and if they are initialised accordingly (i.e., this corresponds (partially) to ZONE 1 in the GLIBP
methodology). The matching between the Loop Condition and the Loop Invariant is checked by
verifying that the Loop Condition makes used of the proper variables and leads to the correct
number of iterations.

The Loop Body is not checked against the Loop Invariant as it would be too time consuming
to design a system that would cover all the code alternatives. If both the Loop Invariant seems
correct and the code produces the expected results, we “a priori” believe the student has followed
the methodology. Anyway, a student that would write the code first and later the Loop Invariant

would, first, work twice and, second, just lie to themself.

7.4.4 Detecting Infinite Loops

During the preprocessing step, the student’s code is always run with a timer. If the student

program is still running at the timeout, it is terminated (a TERM signal is triggered) and the
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status of the student’s program is equal to 124 rather than 0. This execution status is part of the
answer delivered to the correction step.

A timeout terminated program can then be considered as an infinite loop in the correction
step. Of course, the time allowed for the program execution must be chosen to be sufficiently long,

depending on the particular programming task asked as exercise to avoid false-positives.

7.4.4.1 Counting lterations

As mentioned in Sec. 7.3, CAFE can modify C code in order to count the number of iterations.
This may be useful to enforce some complexity constrains. Here is how it is done. First, a special
C header is included in the student code. This header contains, among others things, two macro
definitions: while(...) and for(...) and global variables declaration (for_loopcounter and
while_loopcounter (see Listing 7.5)). Both macros are variadic (the number of their arguments
is variable) just to allow the use of the comma (i.e., ,) C operator. We remind the reader that the
comma operator takes to operands opl and op2. Evaluating the expression opl , op2 consists
in evaluating op1 then op2 (the evaluation order is guaranteed). The value of the expression
opl , op2 has the same value as op2 and the evaluation of op1 is thus only useful if it has side

effects (e.g., in this use case, incrementing a counter at each iteration).

#define while(...) while(++while_loopcounter, __VA_ARGS__)
#define for(...) for(__VA_ARGS__ , ++for_loopcounter)

extern int for_loopcounter;

extern int while_loopcounter;

Listing 7.5: Macro Definition to Count Iterations

The results of these macro expansions is presented in the Listings 7.6, 7.7, and 7.8. One can
see in these Listings that while_loopcounter will contain the number of guard evaluations (i.e.,
the number of iterations +1) after the execution of a while loop and the number of iterations
after a do. . .while loop execution.

As far as for_loopcounter is concerned, it will contain the number of iterations of a
for loop after its execution. If several loops are nested, the interpretation of the value of
while_loopcounter and for_loopcounter depends on the loops types and their respective num-
ber of iterations. For example, if two while loops are nested and if the inner loop takes a iterations

while the outer one takes b, while_loopcounter will contain the value (¢ +1)xb+1=ab+b+1.

// Before macro expansion:
while(i < N)
{

// Loop Body

// After macro expansion:
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while (++while_loopcounter , i < N)

{
// Loop Body

Listing 7.6: While Loop Modification to Count Iterations

// Before macro expansion:
do
{
// Loop Body
¥
while (i < N);

// After macro expansion:
do
{
// Loop Body
}

while (++while_loopcounter , i < N);

Listing 7.7: Do While Loop Modification to Count Iterations

// Before macro expansion:
for(i = 0; i < N; i++)
{

// Loop Body

// After macro expansion:
for(i = 0; i < N; i++, ++for_loopcounter)
{

// Loop Body

Listing 7.8: For Loop Modification to Count Iterations

7.4.4.2 Detecting Out-Of-Bound Accesses

C language does not offer any mechanism to verify that an array is accessed within its boundaries.

The Gnu C Compiler (gcc) offers a way of warning about “subscripts to arrays that are always out

of bounds” [176] thanks to the option ~-Warray-bounds but that does not prevent the user from

out-of-bounds accesses at the runtime. The solution we propose to detect these illegal accesses is

based on the fact that the C standard guarantees that theses two expressions, in which both E1

and E2 are expressions, are identical [180, p. 58]:

e E1[E2]
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e (x((E1) + (E2)))

In our solution, instead of manipulating a pointer to an array, we use a pointer to a more
complex structure, called fake_array that contains a bigger array than needed. This bigger
array embeds the array actually used by the student but allow them to write a code that overflows
without triggering a segmentation fault.

The fake_array pointer is always handled by methods ensuring the data consistency. All
of this is hidden from to the student whose code is assessed for obvious pedagogical reasons.
Listing 7.9 shows a function implemented by a student who used A[i] to access the (i+1)th
element of the array A. Between the two compilations2?, the left and right square brackets were
respectively replaced by left and right parentheses thanks to a script launched by the makefile.

Now, the code contains A(i) that is the syntax of a function call or a macro with parameters.

void student_function(int *A, unsigned int N)

{
for(int i = 0; i <= N; ++1i)
printf ("%d\n", A(i)); // modified on purpose from
//printf ("%d\n", A[il]); thanks to, e.g., a script
}

Listing 7.9: An Example of Student Code Involving an Array

By using the proper macro definition (see Listing 7.10), we can replace A(i) by the derefer-
encing of the result of a call to a a function, called get, that returns a pointer.

The idea behind this operation is that get (A, i) returns the value A + i that once derefer-
enced is equal to (x(A + i)) that is equivalent to A[i], as we previously mentioned.

In the Listing 7.10, one can see that the type of the array behind which we hide a more
complex structure (i.e., FAKE_TYPE) is also a macro and is hence configurable at compilation time.
The macro defined at the line 1 works only with the array A and must be repeated if there are
other arrays. As a consequence, the names of the arrays manipulated in such corrected exercises

must be known and fixed in the instructions.

#define A(...) (xget(A, (__VA_ARGS__)))

#define FAKE_TYPE int

// MAllocate space for the structure that replace the array and return a pointer
// to it.

// @param the size of the array the user thinks they is using.

FAKE_TYPE #*new_tab(int);

// Get the element at index ’index’ in the fake array and check for bad

24 We remind the reader that the code is compiled twice with two different make targets, enabling us to also run

scripts between the two compilations
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length

Y

OFFSET true_length

> >

OFFSET OFFSET

array

Figure 7.4: The array stored in the struct fake_array. The value of true_length
is equal to 2 x OFFSET + length. The two sub arrays raw[0..0FFSET-1] and
raw[true_length-OFFSET. .true_length-1] are supposed to be left empty during a normal
use and any modification correspond to an out-of-bounds access.

// accesses.

// @param fake_array a pointer to a more complex structure

// @param index the index in the array the user thinks they is using.

// Q@return The expected value at the index in the array if the index is in the
// array bounds. Undefined otherwise

FAKE_TYPE *get (FAKE_TYPE xfake_array, int index);

// Get the number of out-of-bounds accesses intended using a fake_array since
its

// creation

// @param fake_array a pointer to a more complex structure

// Q@return the number of out-of-bounds accesses involving the fake array.

int get_bad (FAKE_TYPE #fake_array);

// Other methods to ease the fake array manipulation not detailed here.

Listing 7.10: Header for Out-Of-Bound Accesses Checking

The Listing 7.11 shows the details of the structure fake_array that contains an array, its
length and the number of bad accesses to this array. When allocating a new fake_array to
be used with a student code, we allocate a larger array than needed to prevent student’s bad
accesses to cause segmentation faults. The structure fake_array stores thus both the real array
and its length (resp. raw and true_length) and the array intended to be actually used by the
student and its length (resp. array and length). array is thus a sub array of the array raw, as
it can be seen in Fig. 7.4.

In Listing 7.11, one can also see that every call to get function register bad accesses to the
structure fake_array. All the functions for manipulating the fake_array structure receive a
pointer to the FAKE_TYPE (the type the user thinks they is using) and must thus first cast it to
the proper type before accessing its fields.

#define OFFSET 4
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struct fake_array{
int bad_accesses;
int true_length;
int length;
FAKE_TYPE *xraw;
FAKE_TYPE *array; // Points to a sub array of ’raw’

FAKE _TYPE *new_tab(int N)

{
struct tab *T = malloc(sizeof (struct tab));
T->raw = (FAKE_TYPE *) calloc(N + 2 x OFFSET, sizeof (FAKE_TYPE));
T->array = T->raw + OFFSET;
T->length = N;
T->true_length = N + 2 * OFFSET;
T->bad_accesses = 0;
return (FAKE TYPEx*) T;
+

FAKE_TYPE *get (FAKE_TYPE xfake, int 1)

{
struct fake_array *obj = (struct fake_array *) fake;
if(i < 0 || 1 >= obj->length)
++(obj->bad_accesses);
return obj->array + 1i;
b

int get_bad (FAKE_TYPE xfake)
{
struct fake_array *obj = (struct fake_array x*) fake;

return obj->bad_accesses;

Listing 7.11: Module for Out-Of-Bound Accesses Checking

The Listing 7.12 shows a student’s code after the macro expansion. The Listing 7.13 presents
a use case for checking out-of-bound accesses: first the fake_array is created, then it must
be initialised. After that, the student’s code may be called. Eventually, the number of bad
accesses can be retrieved from the fake_array structure to be, e.g., printed to be forwarded to

the correction step as part of the student’s answer.

void student_function(int *A, unsigned int N)

{
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for(int i = 0; i <= N; ++i)
printf ("%d\n", (xget(A, (i))));

Listing 7.12: Student’s Code after Macro Expansion

void assistant_function(void)

{
int N = ...;
// 1. Create a fake_array

int *fake_array = new_tab(N);

// 2. Initialise the fake array

Functions not presented

// 3. Call student’s code

student_function(fake_array, N);

// 4. Using the number of illegal accesses, e.g.

printf ("00B accesses: %d\n", get_bad(fake_array));

Listing 7.13: Out-Of-Bound Accesses Checking Use Case Example

7.4.4.3 Leveraging Macros to Mock Standard Functions

In order to assess the correct utilisation of C standard library functions such as malloc, free,
or even fopen, fprintf, etc., one can again use macros that expand into corresponding mock

functions. There are several advantages to do so:
¢ It avoids to make student code actually manipulate dynamic memory or files ;

¢ The execution of the student code does not fail on the first incorrect behaviour and all their

code may be assessed throughout a complete use case scenario ;

¢ All the corner cases of the standard functions can be assessed. For example, it is easier to
mock a malloc function returning a NULL pointer in case of error [76] rather than try to

reproduce this behaviour during a test ;

¢ It allows to make better feedback since a macro expansion can add information, e.g., the
calling function name and line number as it can be seen in Listing 7.14. The remark

delivered to the student is therefore more precise (see Listing 7.15).

Mock functions thus defined do not need to exactly mimic the behaviours of the mocked
functions. Instead, they just have to offer the same interface and their definitions often just

consist in performing tests on their parameters and on other functions possibly called before
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them. For example, a mock_free function replacing a call to free would check that malloc (i.e.

mock_malloc) was previously called to allocate the memory pointed by the pointer passed as its

parameter.

// __LINE__ expands into the line number where malloc is called

// __func__ expands into the function name string in which malloc is called
#define malloc(...) mock_malloc((__VA_ARGS__), _ _LINE__, __func__)

// Mock malloc behaviour and perfom verifications.

// @param size same parameter as malloc

// @param line a line number where the function is called

// @param function the function name where the

// Q@return a pointer mocking the result of a call to malloc(size)

void *mock malloc(size t size, int line, comst char *function);

Listing 7.14: Example of Mock Function Declaration: malloc

FILE *mock_fopen(const char *path, const char #*mode, int line,

const char *function)

{
// Decide 1if the call should success depending on the scenario, in a
// dedicated function
if (fopen_failure())
return NULL;
// Can be used later in feedback
printf ("Function %s, line %d: opening of file %s in <Y%s> mode",
function, line, path, mode);
// Redirect (here, writing) to standard output.
return stdout;
}

Listing 7.15: Example of Mock Function Definition: fopen

7.5 Message Generation: from a List of Remarks to a Message Containing
Information, feedback and feedforward

For each student’s answer, the correction steps generates a mark and a list of remarks. To

illustrate this, the right part of Fig. 7.5 shows the type of the remarks constituting the final

message that is delivered to the student. They are four types of remark generated by the

correction step:

TITLE It is used to structure the feedback and to help the student to understand which part of

their submission is commented (See Fig. 7.5, in green). A TITLE must always start each
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Figure 7.5:

CHAPTER 7. CAFE PRINCIPLES
Hello! Your grade is .../20. Here are some details about your Remarks
result:
Array Out Of bounds: Use your Loop Invariant while you FEED-
write the loop body. Check all the indexes while accessing FORWARD
array elements. (‘Out)
Loop Invariant Correction } TITLE
Here is how the system understood your Invariant:
0 il N
A: Zone Al Zone A2
<—>
Sorted and unmodified
0 il M
B: Zone Bl Zone B2
<>
Sorted and unmodified
0 k| L
C: Zone C1 | Zone C2
< > < >
T Avail. space
t ALl the elements common to Zone Al and Zone Bl are in Zone Cl
About the array A:
Detected variable: i
[Same remarks about j (resp. k) in arrays B (resp. C)]
Code analysis:
-> The variable i does not seem to be initialized according to REMARK
your Loop Invariant. prio: 50
[Same remarks about j and k, with same code and priority] code: Tnit’
Variables initialization according to the Loop Invariant:
Thanks to the Loop Invariant, draw the initial situation. FORWARD
Deduce from it the initial value of the variables you use (‘Init’)
in your code.
Code execution } TiTLE
When C is not empty (There are common values to A and B):
An Array Out Of Bound Error was detected. This is an important
issue!
ExAMmP
Input were: N =9, M =38 prio: 2035
A: [2 5 8 16 18 21 24 28 36] code: ‘Out’
B: [7 17 19 23 28 31 36 39]
[... (Other cases are also tested)]
[Other tests: Part. cases (N, M = 0), Iterations count, etc.]
Overall recommendations
Do not hesitate to submit again. Sincerely.

An example of Message. The right column indicates which type of remark was used
to build each part of the message (See Sec. 7.5 and 7.5.1).
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new question correction to ensure the feedback readability. Each TITLE defines thus a new

section.

DiISPLAY It is used to display unconditionally a message, for instance, an introductory text (See

Fig. 7.5, in orange).

REMARK It is used to provide comments on a student’s performance (See Fig. 7.5, in purple). In
addition to a text that will be displayed, a code and a priority number must be specified for
each Remark. The code is related to a feedforward message that is printed in the feedback

according to rules depending on the priority number. These rules are detailed in Sec. 7.5.1.

EXAMPLE Like a Remark, it contains a message, a code, and a priority (See Fig. 7.5, in magenta).
Unlike a Remark, the printing of their associated message is not mandatory. This feature

can be helpful to shorten the final message.

The message generation consists in merging and formatting all these remarks into a single
text. The remarks order is preserved. Some feedforward remarks can be inserted in the remarks
(See Fig. 7.5, in blue), as detailed in the following. Finally, each type of remarks has its specific
format style, e.g., the title are underlined and the feedforward remarks are framed to increase

the readability of the message, as illustrated in Fig. 7.5.

7.5.1 Adding feedforward

The process of adding feedforward remarks is shown in Fig. 7.6 that consists of two columns. The
left one represents the remarks as they were generated by the correction step while the right one
shows the remarks list after the feedforward information was added. For more readability, the
colour code used in Fig. 7.6 is the same as in Fig. 7.5.

In order to provide feedforward to students, the REMARKS, and the EXAMPLES can be tagged
with a code and a priority number (both depicted, in the left of Fig. 7.6). Each code refers to a
feedforward message that suggests an action to be taken to correct the code: it can be a short
remainder of the GLIBP methodology, a link to a theoretical lesson to be read again or more
generally a piece of advice.

The priority number is used to decide whether this message will be eventually displayed. For
each code present in the list of remarks produced by the correction step, the total priority (.e.,
the sum of all the priority numbers with the same code) is computed. For instance, in Fig. 7.6,
the REMARK with the code “Var” is issued two times, hence the total priority of this code will be
200+ 200 =400. The feedforward message associated with the n codes having the highest total
priority are actually inserted in the message to the student. Thus, the number of feedforward
messages is limited to avoid overloading students with a too long message. However, the priority
mechanism helps to select the most relevant messages, ensuring the message personalisation.

The number of feedforward messages that are printed (n) was fixed to five after a discussion with
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Figure 7.6: Adding Feedforward during Message Generation
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[Below
[Above remark
remark threshold]
threshold]
[Highest Priority [Among n
AND above [Else] most [Not in n
warning highest most
threshold] priorities] highest
priorities]
[Appear in| [Appear in
a unique several
section] sections]

Front Section End Overall . Omitted
Recomendation

Figure 7.7: Determining the position of a feedforward message

a delegation of students during a focus group (see App. B). In case of numerous remarks of high
priority, that are above a remark threshold, the filtering is by-passed and they are still printed.

The feedforward messages can be inserted at several places in the message: in front, at the
end of a section, as an overall recommendation or omitted, as described below and illustrated in
Fig. 7.7.

In Front The message corresponding to the highest total priority that is above a warning
threshold is placed in at the very beginning of the message, as a warning, to draw the
student’s attention. For example, in Fig. 7.6, this is the case of the feedforward labelled

“Out”, because of its highest priority that is above the warning threshold.

At the end of a section All the feedforward messages that correspond to a unique section of the
message (defined by a TITLE, see above) are displayed as close as possible to the question

they are related to, i.e., at the end of the section

As an overall recommendation All the feedforward messages that correspond to several sec-

tions are placed at the end of the message as an overall recommendation.

Omitted All the other feedforward messages that are not among the highest priorities nor above

the remark threshold are simply omitted.

At present, all the remarks particular values (i.e., their priorities as well as the remark and
warning thresholds) must be defined by the programmer of an exercise correction. From an
exercise to another, the same remarks could have different priorities depending on the focus the

corrector wishes to give to a certain subject in the context of the exercise.
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7.6 Plagiarism Detection

CAFE does not detect plagiarism itself. However, it can preprocess students submissions files to
create for each student, a syntacly correct C source file (which the original student file is not)

that can be understand by a plagiarism detector, such as MOSS [166].

7.7 Conclusion and Future Work

This chapter presented in depth how CAFE works and provided a lot of implementation details.
CAFE not only correct and grade student programs but also assess the use of GLIBP methodology
and make possible to enforce programming constrains, be they lexical or related to the code
complexity.

Some verifications require even to modify the student code and these operations are hidden
from them and performed seamlessly, while enabling to better assess their performance. It is
worth noting that some errors, such as infinite loops and out-of-bounds accesses would be much
more difficult to systematically detect if the correction was performed by hand.

Eventually, CAFE provide the student with a message containing feedback and feedforward
that is tailored from the student’s own performance.

As a future work, extending further CAFE’s features would always be an interesting idea but

we think that these points deserve to be addressed in the first place:

¢ Give CAFE some memory to remember the errors a student committed in previous exercises.
It would help to provide them with a better feedback and feedforward, e.g., by focusing on
the errors they keeps doing or to personally congrats them when they eventually get rid of

an error theystruggled with.

* Change the way the student submit its Graphical Loop Invariant and its code. Graphical
Loop Invariant Drawing Editor (GLIDE) (see Sec. 3.1) could be adapted to serve as a GUI to
submit Graphical Loop Invariant to CAFE.

e Upgrade the form of the message provided by CAFE. A better message would contain
colours, image (e.g., of the Graphical Loop Invariant), better text, hyperlink to the course

web page, etc.
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HE PREVIOUS CHAPTER introduced the program Correction Automatique et Feedback des
Etudiants (CAFE) which provides, as the name indicates, feedback message to students.

This chapter tackles the answer to the research question:
RQ 2.2 How the feedback produced by CAFE is received by students?

To answer this question, we analyse performance and perception data. The rest of the chapter
is organised as the following: Sec. 8.1 introduces our methodology, Sec. 8.2 presents the results

and Sec. 8.3 discusses them. Finally, Sec. 8.4 draws a conclusion.

8.1 Methodology

Following Verpoorten et al. [185] framework (See Sec. 4.2), we analyse performance and perception
data. However, we do not include participation data to our analysis. We believe Participation

data is not relevant here?®.

8.1.1 Performance Data

Here, by performance, we mean the success in submitting an answer to CAFE, regardless its
correctness (which is further tackled in Chap. 10). Before any correction step, a submission

process can fail in three main ways:

1. The file submitted to CAFE is not correctly formatted (e.g., submitting a docx file instead of
a txt file);

25 Chapters 10 and 11 analyse these kind of data in the context of a teaching activity build upon CAFE.
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2. The instructions that are specific to a particular programming activity were not followed

(e.g., the submitted file has a wrong file name);
3. The code that was submitted could not be compiled.

CAFE has been used to correct students answer for 5 years in the context of a Programming
Challenges Activity (PCA) (see Chap. 9 and following). We collected and analysed the messages
delivered by CAFE after each submission between academic years 2016-2017 and 2019-2020 for
6 Challenges each year.

8.1.2 Perception Data

Table 8.1: Surveys Respondents. N is the total number of students. # is the number of respondents.
Two percentages are provided: %(Total) is computed on the total number of enrolled students
and %(Part.) on the number of Participants in the Final Exam

Respondents
Year N # 9% (Total) % (Part.)
2017-2018 72 28 38.9 50.0
2018-2019 76 22 28.9 47.8
2019-2020 82 16 19.5 26.7

Between academic years 2017-2018 and 2019-2020, surveys were carried out after the final
exam. The surveys were online and anonymous in order to let the students express themselves
freely. These are the same one time surveys as the ones presented in Chap. 4 but we focus here
on the effect of the message delivered by CAFE on students perception and behaviours. Table 8.1

recalls the number of respondents to each survey and compare them to other course statistics26.

8.2 Results

8.2.1 Performance

The students performance in submitting files to CAFE is shown in Fig. 8.1. As it can be seen
in the Figure, the majority of submissions are successful, except for Challenges #0 and #1 in
2018-2019.

As far as academic year 2016—2017 is concerned, the number of formatting errors is quite
constant over the Challenges (see Fig. 8.1a). The instructions issues mainly concern the Challenge
#0. Compiling error show a peak for Challenge #1 then slightly increase from Challenges #2 to
#4.

From 2017-2018 to 2019-2020, a decrease in the number of submission problems can be

26 This Table is identical to Table 4.3.
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Figure 8.1: Submissions problems using CAFE

observed as the Challenge number increases (see Fig. 8.1b, Fig. 8.1c and Fig. 8.1d). The decreases
in formatting and instructions issues are steeper as these problems arise mainly in the first
Challenges. In 2018-2019 and 2019-2020, one can observe an increase for the last Challenge #5,

that was problem-free the previous years.

8.2.2 Perception

Fig. 8.2 shows the students opinions about the message they received from CAFE.

First, the students acknowledge the messages are sufficiently clear and understandable
(22/28, “quite often” and “very often” in 2017-2018; 15/22 for 3 Challenges or more in 2018-2019;
13/16 for 3 Challenges or more in 2019-2020 — see Fig. 8.2, 1st lines).

Second, When asked if the feedback and feedforward helped them to better understand the

course content, 18/28 respondents reported that this was the case “quite often” and “very often”
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Figure 8.2: Students’ survey responses. The first three lines correspond to information the
students received through feedback from CAFE. The last four lines correspond to the students’
reported reactions prompted by feedback.
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in 2017-2018; most of them reported that this was the case for three Challenges or more (13/22
in 2018-2019, 12/16 in 2019-2020 — see Fig. 8.2, 2nd lines).

When asked if the feedback made them realise that they had a learning gap, a majority of
them answered it was so in 2017-2018 (21/28, “quite often” and “very often”) and in 2019-2020
(12/16 for 3 Challenges or more). The figures nearly reach half of the respondents in 2018-2019
(10/22 for 3 Challenges or more — see Fig. 8.2, 3rd lines).

The rest of Fig. 8.2 gives insight into how the students used the feedback/feedforward between
consecutive submissions. In fact, most of the respondents reread the theory course (16/28 quite
and very often in 2017-2018, 13/22 in 2018—-2019 and 9/16 in 2019-2020 for three Challenges or
more — see Fig. 8.2, 4th lines). Much less students retried some additional exercises (Fig. 8.2,
5th lines), looked for information on the course website (Fig. 8.2, 6th lines) or asked the teaching

team questions (Fig. 8.2, 7th lines).

8.3 Discussion

8.3.1 Performance

Trends in 2016 are very different from the other years (see Fig. 8.1a) because it was the first
year CAFE was used and the program itself was modified in order to be more resilient to
submission problems. Some recurring formatting issues were indeed addressed and solved
thanks to submissions failure reports. The message from CAFE in case of submission problem
also has been improved. This explains that the next years, the number of formatting errors
drastically decreases after the first Challenges.

There was no compiling errors in Challenge #5 in 2016-2017 and 2017-2018 just because the
activity did not consist in programming. This was no more the case the following years. The new
version of the activity includes exercises about dynamic allocation and pointers (more information
in Chap. 9) that may confuse students and make the compiling errors number rise.

The down trends from the first Challenge to the last, observed from 2017-2018 to 2019-2020
(see Fig. 8.1b, Fig. 8.1c and Fig. 8.1d) can be explained in two ways. First, the students learn from
CAFE message how to submit properly and try to compile their code before submitting it to CAFE.
Second, we should mention that the number of students submitting to CAFE decrease from an
Challenge to another (this is not visible in Fig. 8.1 but is studied in Chap. 11). With this in mind,
one can argue that only engaged students keep participating in the Challenges and try to make

as few errors as possible while submitting to take benefit from the message CAFE delivers.

8.3.2 Perception

Concerning the clarity and readability of the message generated by CAFE, students acknowledge
their quality but there is still room for their improvement.
As for the students’ reactions to the feedback and feedforward (see Fig. 8.2, lines 4 to 7), it is
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not surprising that a majority of the respondents reread the theory course for more than three
Challenges because CAFE directs them specifically to the course (e.g., gives the exact location of
the relevant subsection). The other actions are less often explicitly suggested. Contact with the
teaching team is the last resort if the student has a question about the feedback or a problem
with the CAFE system itself. However, CAFE has been designed to limit that kind of interaction.

With regard to the feedback portion of the information transmitted by CAFE about the
students’ performance (see Fig. 8.2, lines 2 and 3), the data tends to show that it is useful for the

students to know where they went wrong, if we follow the classification by Keuning et al. [101].

8.4 Conclusion

This chapter studied how the message generated by CAFE was received by the students. Data
shows that during the year, it helps students reducing the number of submission errors.

In most cases, students acknowledge the clarity and the understandability of the message
they received. It helps them to understand the course and to realise whether they have a learning
gap, even providing them with references to the course notes to overcome it, thus helping them
in their learning.

In the future, to further improve the message from CAFE, one could think to no longer use a
text output. Historically, the message was mailed to the student but nowadays, students read
it on the website of the submission platform on which CAFE is run. Giving up text for a better
format would allow for better graphics and colours in the message.

As far as the feedback and feedforward are concerned, they are designed by the teaching team
for each particular Challenge and it may be a time consuming task. A trade-off should be found
between the quality of the message and the time taken to program it.

If CAFE was more integrated to the GLIBP methodology, e.g., if the Graphical Loop Invariant
Drawing Editor (GLIDE) (see Sec. 3.1) and CAFE were used together, one could more easily
measure thanks to GLIDE the effect of the message received from CAFE on the student’s Graphical
Loop Invariant and codes. This would enable to tailor CAFE’s message even more for a particular

programming exercise and a particular student.
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CHAPTER

INTRODUCTION TO THE PROGRAMMING CHALLENGES ACTIVITY

HIS CHAPTER presents the evolution of our CS1 course taught at the University of Liege,
Belgium. Over the last seven years several teaching activities have been thought to
complement traditional theoretical courses and exercise sessions in order to promote

students’ engagement. The result is aligned with (i) the principles of Assessment for Learning
(AfL), which consists in leveraging the assessment to improve the students learning, and (i7) the
concept of blended learning, (i.e., mixing in-class and on-line teaching activities). This chapter
describes the difficulties the students faced and what we implemented to assist our course
evolution, in particular a Programming Challenges Activity (PCA). The subsequent chapters in
this part provide an evaluation of the PCA. Chap. 10 focuses on the students’ reception of the

PcA and Chap. 11 analyses the contribution of the PCA to the course in line with the AfL.

9.1 Need for a Pca

Teaching Introduction to Programming (i.e., CS1) is known to be a difficult task for many students
and has been the topic of a large number of research studies [131, 139]. In recent years, various
studies have demonstrated that, often, students following a CS1 class encounter difficulties in
understanding how a program works [168], how to design an efficient and elegant program [45],
dealing with loops and conditional [37] , problem solving and mathematical ability [139], and in
checking whether a program works correctly [21]. These are particular examples of difficulties
faced by students we also observed in our CS1 class.

For a long time, the failure rate and withdrawal ratio of our students have been high, as it is
the case with other CS1 courses [17, 187]. Although the situation has slightly positively evolved
in the recent years [23], this is not the case in Belgium where the failure rate in Belgium for 1st

year student is still around 70% [8].This figure can be partially explained by the open access
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policy for higher education in Belgium. This has meant that some students come to university
without important background skills for particular courses of study. However, this situation
should not be taken as a pretext for inaction but rather as a call for the improvement of courses
and teaching.

Literature in educational psychology has highlighted many predictors of student success in
higher education [59] . Among the various parameters favouring it, some can be influenced by
the teacher practices, namely those that lead to more student engagement [127].

A few years ago, we decided to make our CS1 course change from a traditional course (i.e., ex
cathedra theoretical lessons with exercises sessions) towards a new approach that would promote
engagement, potentially be more motivating for first year students, and that would provide them
with more feedback. Additionally, we also wanted students to practice more.

When we began the design of Correction Automatique et Feedback des Etudiants (CAFE) (see
Chap. 7), we identified we could leverage its usage to mould our course on the AfL. approach [147,
164, 189], which seemed to us a promising way to achieve our goals. Sambell et al. [164] describes
AfL as:

“[Aln integrated approach to teaching, assessment and supporting student learning.
Our view of assessment is broad. It includes summative assessment activities but also
assessment which plays a vital role in improving students’ progress and attainments

and is embedded in teaching.” (p. 147)

This part discusses that evolution of our CS1 course over the last seven years. We believe
that experience gained with this course evolution is quite general and could be easily transferred

by any educational team eager to adopt AfL in their course.

9.2 Evolution of the CS1 Course

Our CS1 course is provided during the first semester at the University of Liege (between mid-
September until mid-December). During the All-Saints week, mid-term exams (Mathematics,
Physics, CS1, and Foreign Language) are organised for first year students. After two revision
weeks in December, the final exam is held in January. The CS1 course has been offered to
students since 2013 and, originally consisted of traditional theoretical lectures, exercises (i.e.,
programming tasks on paper), and lab sessions (i.e., programming tasks in front of computers).
Regarding the assessment, we followed Faculty guidelines by organising the mid-term exam
and the final exams. In order to ensure the students learn the theory (i.e., the rules of the
programming language that must be known to ensure the course understanding as the semester
goes on), five short multiple choices questions (MCQ) tests [38] were organised during the
semester. In 2015, due to the low passing rate in the Computer Science section, remedial classes
were introduced and made mandatory for students failing at the mid-term exams (not only for

the CS1 course but also in Mathematics, Physics, and Foreign Language).
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Assessment Weight
MCQ 10%
Pca 10%
Mid-Term Exam 15%
Final Exam 65%

Table 9.1: Weights of the assessment in the final mark

MCQ;q, Chally MCQ3 Exam

Chally MCQq4

Semester End

e

MCQs, Challs

MidTerm

Chally Exam Period End
Semester Stalrt \ Chlallg \ \ E.‘(‘al}l Period Stlart
o0 & & N N oC o0 Y BPRNY
AD C N Ao ° N W AD o NS & AD & NS ¥ AD »

Figure 9.1: Example of a semester timeline (here, the academic year 2019-2020)

The core change took place in 2016 when we introduced a Programming Challenges Activity
(PcaA, see the next section), i.e., a teaching activity spread over the whole semester and consisting
in submitting small pieces of code — called Challenges — on a platform running our program CAFE
(see Chap. 7). The introduction of the PCA marked the beginning of the course transformation
into blended learning [28, 78], which is defined as

“['TThe combination of traditional face-to-face and technology-mediated instruction.” [78]

In 2018, the subject covered in the last Challenge was extended to the last chapter of the
course (i.e., dynamic memory allocation) because we observed the students had struggled to
master it.

To sum up, Table 9.1 lists all the assessments and their respective weights in the final mark
and Fig. 9.1 shows an example of semester timeline including all the assessments: the MCQ, the

PcaA and the two exams.

9.3 Programming Challenges Activity

The Programming Challenges Activity (PCA) consists of six assignments called Challenges

distributed throughout the first semester, approximately every two weeks. Challenges account
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Mid-Term Exam
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Figure 9.2: Challenges timeline. The column at the right shows the Challenges’ subjects.

for 10% of the final grade, each Challenge having the same weight (i.e., 2%). Each Challenge
consists in a programming/algorithmic task.

Fig. 9.2 shows the Challenges timeline. The first Challenge (called “Challenge 0”) allows
students to feel comfortable with CAFE (in particular the feedback), but also on how to submit a
challenge and, consequently, does not account in the final mark. The five subsequent Challenges
do account in the final mark. They are of increasing complexity (from a simple loop to write —
Challenge 1 — to a modular program solving a reasonably complex problem — Challenge 4). The
last Challenge is dedicated to pointers and dynamic allocation, as we noticed those particular
topics appear to be difficult for students. The particular shape of Fig. 9.2 also represents,
on the right side, a knowledge gauge filling up during the semester: Challenge 2 relies on
knowledge/understanding acquired with Challenge 1, Challenge 3 on Challenge 1 and 2, and so
forth.

9.3.1 Challenges

A Challenge lasts three days. The first day, the subject is made available for download on the
course blackboard. In addition to the subject, students must download a template to fill in with
their answers. The correct way to format the answer in the template is provided in the Challenge
subject as well as in the template itself. Once ready, the student answer can be uploaded to CAFE
via a web platform. CAFE immediately corrects it and produces a feedback and a feedforward that

are directly made available to the student (see Chap. 7). They can then consider these feedback
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and feedforward to improve their answer and submit it again [62]. This process enables the
students to learn from their errors by actually taking into account the feedback and feedforward
and by submitting an improved solution, closing so the feedback loop [29]. Doing so prevents also
the student from being bogged down.

Students can submit again up to two times, hence totalling three submissions. Karavirta
et al. [98] have shown that students submitting a lot of time pieces of code for online assessment
without necessarily getting good grades are inefficient in their work. As a conclusion, Karavirta
et al. [98] suggested to limit the number of resubmissions in order to "guide [students’] learning
process” (p. 238). This is exactly what has been done with CAFE. We decided to limit the
number of submissions to three to avoid ‘trial and error’ process that is in contradiction with our
programming methodology (see Chap. 2). Students have three days to complete a Challenge. At

the end, only the last submission accounts for the mark.

9.3.2 Dealing with absences and Trump Cards

During the semester, students are allowed to skip one of the Challenges (except the Challenge 0
designed to get students familiar with the submission process on CAFE), what we call ‘playing
one’s Trump Card’. This means that, when the Trump Card is played by a student, the Challenge
does not account in the student’s final mark. It is enough not to submit any response to a Chal-
lenge to play the Trump Card. This possibility was set up for two reasons: first, to avoid student
excuses when not submitting their Challenge [32], second, to increase students’ perception of

controllability, inducing higher motivation [186].

9.4 Assessment for Learning

Since the introduction of the PCA, all teaching activities have complemented each other to align

with the six principles of Assessment for Learning (AfL) presented by Sambell et al. [164].

1. The PcA and both mid-term and final exams consist of solving genuine programming tasks.
These do not only assess the final product (i.e., the program) but also the use of a proper
programming methodology that led to the formation of the program. This refers to the AfLL

principle of “authentic assessment” [164, p. 6].

2. CAFE offers students the possibility to have up to two free submissions (they receive
feedback about their performance without affecting their grades). Moreover, prior to MCQ,
students have the opportunity to train themselves with mock MCQ, available on the course

blackboard. This ensures to “balance summative and formative assessment” [ibid.].

3. Students may submit an answer up to three times during each Challenge [98] and receive

feedback after each submission. Mock MCQ provide students with immediate feedback.
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By doing so, we “create opportunities for practice and rehearsal” in “low-stakes teaching
activities” [164, p. 6]. Even though both MCQ and PCA are graded, they do not account for
a large amount in the final mark (10% for the MCQ and 10% for the PCA).

4. The feedback provided by CAFE after each submission, the correction of the mid-term exam,
and the mandatory remedial courses provide students with “formal feedback to improve
learning” [ibid.]. Formal feedback encompasses teacher’s comments on student’s work as

well as and “self- and peer review and reflection” [ibid.].

5. The PcCA introduction has enabled us to also change the way we organise the exercise and
lab sessions. The students work in small groups in the classroom and can discuss with each

other and with the pedagogical team gaining “opportunities for informal feedback” [ibid.].

6. As the course focuses on a programming methodology, it also covers the good practices
of a programmer: how to test one’s code, how to efficiently search for help in the proper
resources (documentation, Internet, etc.) in order to turn students into “effective lifelong
learners” [164, p. 71.

9.5 Conclusion and Research Questions Introduction

This chapter describes why we decided to implement a Programming Challenge Activity (PCA) and
how we did so. That enabled us to align our CS1 course to the six principles of the Assessment for
Learning. We hypothesise these six principles will contribute to increasing students’ engagement.

In the following of this document’s third part, we addresses the following research questions:

RQ 3.1: Does the PCA and its multiple features promotes student’s engagement during the
semester?

This question is studied in Chap. 10.

RQ 3.2: Does the course transformation through AfL lead to a stronger students’ engagement and
a higher success rate?

This question is studied in Chap. 11.
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HIS CHAPTER presents the students’ reception of the Programming Challenges Activity

(PcA) through the analysis of participation, performance and perception data collected

from academic years 2016-2017 to 2019-2020. Data shows that students do take
opportunity to submit several times and benefit from it. Observed submission behaviours enable
us to conclude on the soundness of the PCA parameters (duration, number of resubmissions,
difficulty). In addition, figures exhibit the same trends from year to years hence strengthening
our conclusions. Sec. 10.1 introduces the methodology and the data we used to evaluate the PCA.
Sec. 10.2 presents the results and Sec. 10.3 discusses them. Sec. 10.4 concludes the evaluation.
Chap. 11 focuses on the integration of the PCA in our CS1I course and the effect of the course

transformation it enabled (see Chap. 9).

10.1 Methodology

This chapter reports on students’ exposure to the PCA. The results are presented and discussed
according to the 3P framework [185] which recommends consistent analysis of any pedagogical
innovation by gathering and meshing three types of data that reflect aspects of the students’
learning experience: Participation, Performance and Perception. Our investigation is guided by

the question:

RQ 3.1 Does the PCA and its multiple features promotes student’s engagement

during the semester?

These effects will be explored through three hypotheses:

Participation: all students seize the learning opportunity represented by the PCA
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Performance: participation in the PCA leads to learning gains in programming

Perception: students report satisfaction regarding their experience with the PcA

10.1.1 Cohorts Presentation

Table 10.1 presents statistics about the students who took the course from academic years 2016—
2017 to 2019-2020. The audience of our course rose from 54 students in 2016-2017 to 82 in
2019-2020. Most of them are freshpeople (i.e., they were in their first year at the university).
The table also provides the final exam participation and success rate figures. The success rates

figures are consistent with the success rate for first year university students in Belgium [8].

10.1.2 Data Sources
10.1.2.1 Participation Data

The submission platform on which CAFE is run allows us to gather various pieces of data:
submission time, number of submissions, and the student’s mark given by CAFE. The various
submission times for a particular Challenge and a particular student can be used, for instance, to

determine the amount of time between two submissions.

10.1.2.2 Performance Data

As this chapter is focused on the PCA, we use, as performance data, the grades automatically

computed by CAFE (see Sec. 7.4.1) after each submission during the PCA. Comparing the first

Table 10.1: Statistics about the students who took our CS1 course from Academic years 2016—
2017 to 2019-2020. “N” is the total number of enrolled students. “Fresh people” refer to new
students. “Repeat.” refers to repeater. “Transfer” are students who changed their programs.
“Part.” refers to students who took the final exam, “Sign.” are student who were present without
taking the exam (in French, we call it a “signature”). “Abs.” refers to the absentees. The raw final
pass rate counts all the student while the adjusted one only counts the participants. “SR” and
“FR” stands for Success and Failure Rates, respectively.

Origin Final Exam Final Exam Pass Rate

. Fresh .
Academic N res Repeat. Transfer Participation
People

# %

2016-2017 54 42 78
2017-2018 72 53 T4
2018-2019 76 64 84
2019-2020 82 59 72

Raw Adjusted
Year

% # % Part. Sign. Abs. SR FR SR FR

6 9 17 889 56 5.6 389 611 438 56.2
13 10 14 778 9.7 9.7 250 750 321 679
8 6 8 605 211 184 23.7 763 39.1 60.9
10 15 18 73.2 159 11.0 19.5 80.5 26.7 73.3

oo O © W | F
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Table 10.2: Surveys Respondents. N is the total number of students. # is the number of
respondents. two percentages are provided: %(Total) is computed on the total number of enrolled
students and %(Part.) on the number of Participants in the Final Exam

Respondents
Year N # % (Total) % (Part.)
2017-2018 72 28 38.9 50.0
2018-2019 76 22 28.9 47.8
2019-2020 82 16 19.5 26.7

and last grade obtained by a student during the same Challenge enables us to observe their

progression.

10.1.2.3 Perception Data

Between academic years 2017-2018 and 2019-2020, surveys were carried out after the final
exam. The surveys were online and anonymous so that the students could express themselves
freely. These are the same surveys as the ones already presented in Chapters 4 and 8 but we
focus here on the PCA reception. Table 10.2 recalls the numbers of respondents each year and

compares them to other course statistics?’.

27 This Table is identical to Table 4.3 and Table 8.1
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Figure 10.1: Distribution of students’ participation in the PCA over the semester. “Trump Card”
refers to students not submitting for the first time and “Absence” to students not submitting for
at least the second time (or, in the case of Challenge 0, for the first time, since the Trump Card
was not available for that Challenge). The absence for Challenge 1 in 2017 refers to a student
who enrolled later in the semester.

10.2 Results

10.2.1 Participation: all students seize the learning opportunity represented by the Pca
10.2.1.1 Taking Challenges and Using Trump Cards

Fig. 10.1 shows the students’ participation in the PCA over the semester. Each year, the partici-
pation decreased during the semester in absolute numbers from 85% (peak for Chall. #2) to 72%
in 2016; from 74% to 60% in 2017; from 83% to 29% in 2018 and from 83% to 56% in 2019 (see
blue, orange and green in Fig. 10.1). Logically, we can see a parallel rise in absences from 15% to
26% in 2016; from 3% to 28% in 2017; from 16% to 54% and from 13% to 38% in 2019 (see purple
in Fig. 10.1). As far as the “Trump Cards” are concerned (see red in Fig. 10.1), they are played
in majority for the Challenge 1 and one can also observe a peak for Challenge 3 (in 2016 and
2018 and 2019) and Challenge 4 (in 2017). Overall, 46% of the students did all of the Challenges
in 2016; 12.5% in 2017; 7% in 2018 and 30.5% in 2019. The downtrend in participation did not
affect triple submissions, which stood at 50% of participants of most of the graded Challenges
(see green in Fig. 10.1).
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Figure 10.2: Distribution of submissions per day during the PcA

10.2.1.2 Submission time

Time of submission during the Challenge Each Challenge begins on a Wednesday at 4:00
p.m. and ends on Friday at 6:00 p.m. Fig. 10.2 shows that Friday (in green) is the preferred day
for the first submission for a majority of the graded Challenges, rising even up to 60% of the
submissions for Challenges #1 in 2016; #1 and #4 in 2017; #2, #4, and #5 in 2018 and #3 and #5
in 2019. Thursday (in orange) is the second most popular day for the first submission, mainly
for Challenges #1 (in 2018 and 2019), #2 (in 2016 and 2017) and #3 (in 2016, 2018 and 2019).
For nearly all of the Challenges, fewer than 20% of the students made their first submission on
Wednesday.

Fig. 10.3 deepens this analysis by using a heat map graph to provide an overview of the
hourly distribution of submissions. On Wednesday, the first submissions occur mainly before

9:00 p.m only in 2018 (see Fig. 10.3c) while other years show night work (i.e., after 10:00 p.m.).
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Figure 10.3: First submission time heat map. The color represents the percentage of submissions
(N is the total number of students). Red indicates more submissions; blue indicates fewer. The
reader should be warned that each heat map exhibits its own percentage range.

Thursdays show more night work, for nearly all Challenges and all years. Fridays show a large
number of last-minute first submissions (i.e., 2 or 3 hours before the deadline). Finally, there
are also some students who submit on Thursday and Friday mornings, when other lectures are
scheduled.

Time between submissions One of the main features of CAFE is that it provides the students
with feedback and feedforward. To take advantage of this information, students should spend
some time between submissions. Fig. 10.4 provides a degree of insight into the time intervals
between consecutive submissions for all Challenges. All of the curves follow the same profile
from year to year, except for Challenge 0. During Challenge 0, almost 80% of the resubmis-
sions occurred within 1 hour. For the other Challenges, between 10% and 15% of consecutive

submissions are less than 5 minutes apart. As well, about 60% of the resubmissions occurred
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Figure 10.4: Time between submissions for a Challenge. This figure plots an empirical cumulative
distribution function of the time difference in minutes between consecutive submissions. Note
that a logarithmic scale is used for the x-axis: time intervals (5 min, 1 h, 8 h, 12 h, and 1 day) are
represented by black vertical bars to make the figure easier to read

between 5 minutes and 1 hour. The plateaus between 4 hours and 12 hours indicate that very
few students wait that length of time before submitting again. Finally, between 10% and 20% of
the consecutive submissions are more than 12 hours apart. Challenge #5 in 2017 may seem to be
an exception but it exhibits in fact the same trend shifted to the right (50% of the resubmissions

within 1 hour, nearly 30% between 1 and 5 hours and a plateau between 5 and 16 hours).

10.2.2 Performance: participation in the PCA leads to learning gains in programming

10.2.2.1 Inter-Challenge Scores

Fig. 10.5 shows a box plot of the students’ marks obtained for their first submission in each
Challenge. Considering the four quartiles of the mark distribution, the box plots reveal that
first-submission results tend to decrease as the semester goes along for years 2017 to 2019. One

can also see that in 2016, the grades are not decreasing. In 2016 and 2017, Challenges #5 show
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Figure 10.5: Box plot of the students’ results for their first submission for each Challenge. Each
dot represents a result. The boxes and whiskers represent the four quartiles

more success than in the next years.

10.2.2.2 Intra-Challenge Scores

Since CAFE allows students to resubmit enhanced solutions to a Challenge, it is worth making
sure that multiple submissions for a given Challenge do indeed enable students to improve their
results. Fig. 10.6 shows, for each year, the relationship between the first and the last submission
result for all the Challenges in the year. The X-axis is the result (over 20) of the first submission
and the Y-Axis is the result (over 20) of the last submission (either the second or the third one).
Over the grade scale (20), 10 is the minimum to succeed and values < 10 correspond to a failure.
All the dots above the bisector of the first quadrant are related to an improvement between the
first and the last submissions. One can see that is is the case for all the years. The year 2019 (see
Fig. 10.6d) shows more points in the bottom left part of the graphs, referring to students who

failed at a Challenge, even a majority of them still improved their results.
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Figure 10.6: Improvement through multiple submissions. The X-axis is the result after the first
submission and the Y-axis is the result of the last submission. The results (over 20) are both
computed by CAFE. Each dot represent a Challenge and all the Challenge of a same semester
are plotted on the same figure. The subplots above and at the right of the graphs represent the
distribution of the Challenge grades for the first and last submissions, respectively.
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(b) “Submitting five Challenges consisting in writing code to solve a problem made me feel confident about my
programming skills.”

Figure 10.7: Responses to the surveys from 2017-2018 to 2019-2020. All the plots use a Likert
[126] scale.

Additionally, one can observe each year a vertical “bar” at 0 on the X-Axis: this corresponds
to student who failed at the first submission with the lowest grade but eventually finished with

succeeding.

10.2.3 Perception: Students Report Satisfaction Regarding their Experience with the Pca
The survey received 28 responses in 2017-2018, 22 responses in 2018—-2019 and 16 responses in
2019-2020 from students who took part in the Challenges (see Table 10.2).

10.2.3.1 Overall Benefits of the Pca

Respondents claim to benefit from the PCA, since a large majority of them (27/28 in 2017-2018,
19/22 in 2018-2019 and 16/16 in 2019-2020) agree with the statement “Submitting 5 Challenges
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Figure 10.8: Students’ survey responses to the question: for how many Challenges the feedback
message prompted you to take advantage of an additional submission?

Table 10.3: Reasons given in response to the question: “Why did you play your Trump Card when
you did?” (N2o18-2019 = 22, N2019-2020 = 16)

# Chall. 2018-2019 # Chall. 2019-2020
1 2 3 4 5 Z% 1 2 3 4 5 Z(%)
Organisational problem 2 2 2 2 8(36) 1 1 2 4(25)
To save my grade (not lower it) 6 6(27)
“Laziness” 1 1 209
“Too complicated” (perceived difficulty) 1 1(4) 1 1 1 3(19
Never played it 5(23) 9 (56)

consisting in writing code to solve a problem was a good way to make me work regularly” (see
Fig. 10.7a). Most respondents (20/28 in 2017-2018, 18/22 in 2018—-2019 and 12/16 in 2019-2020)
also agreed with the statement “Submitting 5 Challenges consisting in writing code to solve a

problem made me feel confident about my programming skills” (see Fig. 10.7b).

10.2.3.2 Reasons for Playing the Trump Card

The students were asked why they played their Trump Card when they did. As shown in
Table 10.3, in 2018-2019, 23% (5/22) of the respondents never played their Trump Card. A

deeper analysis of the students who never played their Trump Card reveals that that year, all of
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them responded to the survey. As the year 2019-2020, we can see in Table 10.3 that a majority
of respondents never played their Trump Card (56%, 9/16) while the proportion of non played
Trump Card was of 30.5% (25/82) of the students.

In 2018-2019, the most common reason to play one’s Trump Card (8/22, 36%) was an organi-
zational problem (e.g., lack of time to complete the Challenge) and was quite well distributed
throughout the semester (the Trump Cards played by the respondents that gave this reason
are spread over all of the PCAs — see Table 10.3). The second most common reason was always
mentioned in relation to Challenge 5: 27% of the students (6/22) were afraid that they would lower
their grade if they took the Challenge or were already satisfied with their grade. They adopted a
strategy that gave more weight to the score already “earned” than to the experience they could
gain by completing Challenge 5. Apart from these main reasons, one student mentioned the
difficulty of Challenge 4 and two of the respondents confessed to some “laziness.”

In 2019-2020, respondents who played their Trump Card mention also organisational prob-
lems (25%, 4/16) and their perception of the difficulty of the Challenges (19%, 3/19) as a reason to

use their Trump Card.

10.3 Discussion

10.3.1 Participation: all students seize the learning opportunity represented by the Pca
10.3.1.1 Taking Challenges and Using Trump Cards

For all of the Challenges, a majority of participants actually took advantage of resubmitting to
improve their performance (see Fig. 10.1). This is exactly what the PCA was designed for, in
line with the creation of “opportunities for practice and rehearsal” espoused by the AfL [164].
Similarly, participants took the opportunity to play their Trump Card regularly throughout the
semester. In this respect, two very different behaviours could be distinguished: some students
used it as it was intended and others simply dropped the course, in which case their first absence
was labelled as a Trump Card. These latter students did not participate in subsequent Challenges.
Each year, the number of drop-outs increased regularly over the semesters. A steep increase can
be seen for Challenges 3 or 4 (depending on the year), which came right after the mid-term exam
(see Fig. 10.1). This suggests that the mid-term exam results made some students decide to drop
the course (and perhaps change their program)?®. By the end of the semester, the absence rates
for the Challenges #4 and #5 seem to be a good proxy to measure the dropouts: each year, those

figures are aligned with the final exam participation rate (see Table 10.1 and Fig. 10.1).

28 1t is worth noting that a mid-term exam is organized for several courses: Maths, Physics, CS1, and English. This

means that dropping out may not necessarily be related to results for our CS1 mid-term exam in particular.
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10.3.1.2 Submission time

The Results section presents data regarding the submission times during the course of a Challenge
and the time between consecutive submissions. The following discusses the PCA parameters

related to this data, i.e., the length of the Challenge and the number of submissions allowed.

Time of submission during the Challenge Currently, each Challenge takes place over three
days: from Wednesday at 4:00 p.m. to Friday at 6 p.m. At first glance this may seem short,
but the problems to be solved are not that difficult. In fact, designing a Challenge consists in
finding a good balance: the problem should be difficult enough to challenge the students without
overwhelming them with work. An increase in length could be considered, but Challenges could
not last for more than one week; otherwise, they might interfere with the students’ workload
for their other first year courses. It is also worth noting that each Challenge is aligned with
other teaching activities in our CS1 course (theory lectures, practical sessions, multiple choices
questions (MCQ)) that all address the same topic. To a certain extent, and following Nicol’s
second principle of good assessment and feedback practice consisting in encouraging students
to spend “time and effort” on challenging learning tasks” on a regular basis [147, p. 32], the
Challenge’s rhythm helps to pace the students’ study and work. Keeping this in mind, if a
Challenge lasted much longer, there would be a risk of some students being left behind through
procrastination and putting off the moment they decide to focus on a Challenge. In addition,
one could think about just adding the weekend to the Challenge (i.e., from Wednesday, 4:00 p.m.
to Sunday, 6:00 p.m.), but the various data discussed in this paper show that this would not
be effective. Indeed, we have shown that a majority of students are more likely to make their
first submission on Friday (currently the last day of the Challenge) than on any other day (see
Fig. 10.2). It is worth noting that the lectures are held on Wednesdays. If the students are tired,
this could explain why they do not begin to submit on that day. If the Challenge included the
weekend, we could assume that a certain number of first submissions would be delayed until the
Saturday or even Sunday, since the students tend to submit close to the deadline (see Fig. 10.3).
While an automatic correction system could clearly handle such a schedule, the teaching team
would not be available in case of problems (e.g., technical issues with the submission platform).
Finally, the students’ quality of life would be affected if they chose poorly and put off doing their
work until the Sunday. Taking all this into consideration, extending the length of the Challenges

does not seem advisable.

Time between submissions The number of available submissions was meant to be a scarce
resource so that students would think twice before submitting and take time to reflect on
the feedback and feedforward they received. Currently, we allow up to three submissions
per Challenge, following the recommendations of Karavirta et al. [98], who clustered several

behaviours in a group of students using an automatic assessment tool with an unlimited number
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of submissions. Among these, they identified those they call “the iterators” who submit a high
number of times without necessarily getting good grades, which indicates that they are not
working effectively. Karavirta et al. thus recommend limiting the number of resubmissions
to “guide [them] in their learning process.” We could increase the number of resubmissions
to 4 or even 5. However, increasing the number of submissions too much would decrease the
risk per submission. That would allow students to perform a kind of “test-driven development”
(i.e., submitting quickly while the tests generate errors), which is contrary to the programming
methodology taught in the course. This behaviour can, in fact, be observed in Challenge 5 (see
Fig. 10.4): more than 20% of students resubmitted within 5 minutes, even if, at first glance,
this is not the best way to benefit from the feedback and feedforward provided. Moreover, the
CAFE system was not designed to be used like this, since it also emphasizes the programming
methodology being learned by the students. On the other hand, if the number of submissions
is increased and the students do take time and make use of the opportunity to close the gap
between their last submission and a better outcome, thus completing the feedback loop [163], it
means that more time should be given for the Challenges. The previous section explains why this
is not desirable. Finally, if the students still need more time and more feedback for a particular

Challenge, it would indicate that the Challenge was too difficult and should be redesigned.

10.3.2 Performance: participation in the PCA leads to learning gains in programming
10.3.2.1 Inter-Challenge Scores

The decreases observed throughout the semester (see Fig. 10.5) could be explained by the increase
in the tasks covered by the Challenges, which are cumulative: students might experience
a snowball effect if they progressively accumulated learning gaps. But it should be kept in
mind that Fig. 10.5 shows students’ marks for the first submission, and CAFE allows several
submissions. For Challenges 0 and 1, nearly 20% of students made a single submission: students
getting a good grade on the first attempt do not need to resubmit. For Challenges 2 to 5, the lower
results make resubmission essential in order to make progress and accumulate knowledge. This
is not surprising. In fact, it is exactly why multiple submissions were allowed in the first place,
followed by feedback that the students could use to progressively improve their performance.
In 2016 and 2017, the Challenge #5 did not address the dynamic memory allocation. This can
explain the increase in the results.

On the other hand, the results in 2016 may be explained by two factors. First, it was the first
year the PCA and CAFE were proposed to students and some bugs and problems arose during
the first Challenge explaining the lower grades at the first submissions. Second, the plagiarism
detection was not yet implemented and systematically used (see Sec. 7.6). This was the case for
the next years. However, the plagiarism detection does not allow to spot all the cheaters and the
fraud prevention must be repeated each year. This is probably why the first Challenge results are

higher than the rest, e.g., in 2017. Each year, we unfortunately caught a few students in the act.
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10.3.2.2 Intra-Challenge Scores

Data show that the multiple submissions opportunities offered by the PCA enable students to
improve their performance (see Fig. 10.6). Yet, data also show students do not necessary use
their three submissions (see Fig. 10.1). We conclude that they may be satisfied with their score.
On the other hand, students who were not satisfied could submit again, since the PCA allows
this, establishing itself as a tool likely to have a positive impact on the goals students set for
themselves and their ability to feel highly committed, reducing so one of the seven cause of
student withdrawal pointed by Tinto [182].

As the vertical bar at 0 on the X-axis is concerned, this can be explained by compiling or
formatting issues (see Chap. 8) at the first try. Such errors are graded with a 0/20 and PCA’s
multiple submissions allow students to correct their file. Of course, if a student encounters a
problem with CAFE for which they is not responsible, the teaching team ensures that they does
not lose a submission. This kind of situation is less likely to happen since we learned from four

years of PCA and adapted CAFE accordingly.

10.3.3 Perception: Students Report Satisfaction Regarding their Experience with the Pca
10.3.3.1 Limitations Due to the Number of Answers

Every year, while the survey link was sent to all enrolled students, we had no means of collecting
opinions from those who chose not to respond (whether they left the program or not). These
opinions would have been valuable in our analysis.

In 2017-2018 and 2018-2019, we collected 28 answers that is roughly half of the students
who continued to follow the CS curriculum during the second semester The second semester of
academic year 2019-2020 was marked by the COVID-19 pandemic [190]. This may explain the
low number of respondents that year.

In 2018-2019, all the students who never played their Trump Card answered the survey
and in 2019-2020 a majority of respondents never played it (see Table 10.3). This suggest we
collected the opinion of rather highly committed students.

However, we do not observe discrepancies in the responses collected in the three years we

conducted the surveys (see Fig. 10.7 and Fig. 10.8).

10.3.3.2 Overall Benefits of the Pca

The students’ perceptions tend to confirm that the PCA achieved one of its primary goals, i.e.,
to make them work on a regular basis. Students also state that they gained confidence in
their programming skills (see Fig. 10.7). This result is consistent with the purpose of “creating
opportunities for practice and rehearsal” from the AfLL [164]. Moreover, they acknowledged that
the feedback itself encouraged them to take advantage of an additional submission (see Fig. 10.8,

first lines). As for the students’ reactions to the feedback and feedforward (see Fig. 10.8, lines 4
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to 7), it is not surprising that a majority of the respondents reread the theory course for more
than three Challenges because CAFE directs them specifically to the course (e.g., gives the exact
location of the relevant subsection). The other actions are less often explicitly suggested. Contact
with the teaching team is the last resort if the student has a question about the feedback or
a problem with the CAFE system itself. However, CAFE has been designed to limit that kind
of interaction. With regard to the feedback portion of the information transmitted by CAFE
about the students’ performance (see Fig. 10.8, lines 2 and 3), the data tends to show that it is
useful for the students to know where they went wrong, if we follow the classification by Keuning
et al. [101]. This result is also aligned with the AfL principle of providing students with “formal
feedback to improve learning” [164]).

10.3.3.3 Reasons for Playing the Trump Card

Introducing the Trump Card mechanism is a double-edged sword. On one hand, it was thought
that the Trump Card would make students take responsibility for their learning, avoid making
excuses for not submitting, and increase their perception of control over the course (and thus
their engagement and motivation). Data shows that some students indeed used their Trump
Card to cope with organizational issues (see Table 10.3).

On the other hand, it allows students to develop short-term strategies to maximise their PCA
grade (e.g., by avoiding a bad mark on a Challenge perceived as too difficult, see Table 10.3) that
can lead them to avoid practising the task featured in the Challenge that they discarded using the
Trump Card. This is illustrated by Challenge 5 in 2018-2019. According to the survey, at the open
question “The Challenge 5 submission rate was low this year. However, it had been announced
that one or more questions in the final exam would focus on the subject tackled by this Challenge.
In your opinion, what is the cause of this?”, some students (4/22) “regretted using [their] Trump
Card” and recognized that “taking the Challenge would have helped them for the final exam”.
If we deepen this analysis by looking at the final exam results for the questions addressing the
same subject as Challenge 5 (pointers and dynamic memory allocation), we observe that every
student who succeeded in Challenge 5 also got these questions right. It should be noted that they
first improved their score in Challenge 5 through multiple submissions. However, those who did
not submit code for Challenge 5 failed at the same kind of questions on the final exam.

We still believe that the Trump Card system must be maintained. However, this means, first,
that the students must be made more aware of the potential consequences of their choices (i.e.,
applying a poor/short-term strategy) and, second, that there must be debunking of any rumours
about the difficulty of a given Challenge that would discourage students from even trying it. This
has been done in 2019-2020 and the use of the Trump Card decreased, especially for the fifth
Challenge (see Fig. 10.1), thus validating this approach.
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10.4 Conclusion

This chapter discussed students’ acceptance of computer Programming Challenge Activities
(PcA) in our CS1 Course and presented data about the students’ participation, performance,
and perception. The PCA enables the students to work on a regular basis. Five times during
the semester, they submit programming exercises (called Challenges) on a web platform and
automatically get feedback and feedforward, which they can take into account to improve their
solution. They say that doing this gives them more confidence in their programming skills.

These promising results encourage the continued use of the PCA in the future. Also, providing
every student with individual feedback up to three times for each Challenge would not be feasible
without an automatic system like CAFE.

Furthermore, the data allows us to validate the PCA parameters, such as the schedule,
number of submissions, Trump Card and so on. For instance, the Trump Card system can be
maintained if the students are made more aware of the consequences of using it; the length of
the Challenge (three days) can be retained since a majority of students start to work on the last
day of a Challenge.

The analysis of participation data revealed a trend in dropping the course, with a peak just
after the mid-term exam. This phenomenon is not a particularity of the PCA, as it will be shown
in next chapter, in which we evaluate the impact of our CS1 course transformation on student’s

engagement and success rate.
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CHAPTER

PROGRAMMING CHALLENGES ACTIVITY AND ASSESSMENT FOR
LEARNING

HIS CHAPTERaims at evaluating the course evolution described in Chap. 9 that enabled
us to align the course to Assessment for Learning (AfL) principles. We hypothesised
that such modifications would lead to a increase in course engagement that eventually

could lead to better course performance. hence we formulate the following research question::

RQ 3.2 Does the course transformation through AfL lead to a stronger students’

engagement and a higher success rate?

The chapter is organised as the following: Sec. 11.1 introduces the methodology, Sec. 11.2

presents the results and Sec. 11.3 discusses them. Finally, Sec. 11.4 draws a conclusion.

11.1 Methodology

In order to measure the impact of the course transformation, we analyse data collected before
and after the introduction of the Programming Challenges Activity (PCA), namely from academic
year 2013-2014 to 2019-2020. The students cohorts that are considered are presented in
Table 11.1 (that contains, for the academic years 2016-2017 to 2019-2020 the same information
as Table 10.1). The total number of students rose from 2013 to 2019 (a growth rate of 41%). All
these years, more than 70% of students came for the first time to the university (labelled as fresh
people), almost 20% of the students reoriented from another curriculum (labelled as transfer
students) and the rest were repeaters.

In contrast to the other chapters in which we divided our data in three categories (Participa-
tion, Performance and Perception [185]), we do not include in this study Perception data as we
did not collect any before the introduction of the PCA.
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Table 11.1: Populations of the CS1 Course from Academic Years 2013-2014 to 2019-2020.

Academic Fresh Repeaters Transfer
Total People Students
Year

# % # % # %
2013-2014 58 43 T4 4 7 11 19
2014-2015 58 42 72 b5 9 11 19
2015-2016 52 41 79 1 2 10 19
2016-2017 54 42 78 3 6 9 17
2017-2018 72 53 74 9 13 10 14
2018-2019 76 64 84 6 8 6 8
2019-2020 82 59 72 8 10 15 18

11.1.1 Data Sources

Numerous data sources are considered, i.e., data directly retrieved from Correction Automatique
et Feedback des Etudiants (CAFE), the course Blackboard page, and the results of the assessments.
Except for teaching activities results, the analysis is focused on data about students’ engagement.
First, the platform on which CAFE is run enables us to retrieve data about students’ submissions,
namely the number of submissions per Challenge and the students’ results for each Challenge.
Second, the Challenge subjects can be downloaded from the Blackboard platform of the course.
The Blackboard usage statistics enable us to collect data about mock multiple choices questions
(MCQ). Finally, data about participation in all the assessments are used: there are five MCQ,

five Challenges, the mid-term exam, and the final exam.

11.2 Results

11.2.1 Participation

Fig. 11.1 presents the MCQ participation rate from 2013 to 2019. Since the MCQ take place at
the beginning of the session, these figures are a proxy of the course attendance. Taking each
year individually, the participation rates exhibit the same trends from year to year: the first
MCQ have a participation rate higher than 80% and it decreases a bit for the third MCQ. The
participation rate drops for MCQ4 and the decrease continues for MCQ5.

In Fig. 11.1, the participation rates are shown as decreasing over the years (except in 2016—
2017).

Fig. 11.1 shows also the participation to mock MCQ (at the right of the Figure) in 2018 and
2019. In 2018, the training rate is 10% below the participation rate for the MCQ 1 and 2. It
drops to 20% below the participation rate for the next MCQ. In 2019-2020, the participation

29 This is the same figure as Fig. 10.1
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Figure 11.1: Participation rate in the Multiple Choice Questions (MCQ) Tests from academic
year 2013—2014 to 2019-2020. The right part of the Figure also show the participation rate in
the mock MCQ collected in 2018 and 2019.
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Table 11.2: Participation in the Mid-Term and Final Exam from Academic year 2013—-2014 to
2019-2020. “Part.” is the proportion of students taking the exam; “Sign.” is the proportion of
students that are present without taking the exam (they sign the presence sheet); “Abs.” is the
proportion of absentees and “Exc” stands for “Excused” (i.e., students who cannot be present for a
good reason, generally a medical one).

Mid-Term Exam Final Exam

Part. Sign. Abs. Exc. Part. Sign. Abs. Exc.

Academic Year

2013-2014 91% 0% 9% 0% 87% 4% 9% 0%
2014-2015 88% 0% 10% 2% 83% 5% 12% 0%
2015-2016 77% 0% 21% 2% 77% 6% 15% 2%
2016-2017 89% 2% 9% 0% 89% 6% 6% 0%
2017-2018 86% 0% 13% 1% 8% 10% 10% 3%
2018-2019 80% 0% 15% 5% 61% 21% 18% 0%
2019-2020 86% 0% 10% 4% 73% 16% 11% 0%

rate rose while the training rate decreased, leading to a difference of 20% or more between the
training and the corresponding MCQ.

With respect to Challenges participation, Fig. 11.2 22 shows the proportion of the number
of submissions, as well as the proportion of students who did not submit the Challenge either
because they were absent or they played their Trump Card. Students who take the Challenges
mainly submit three times. On the other hand, the number of absentees grows as the semester
goes and there is often a big rise between the Challenge 3 and 4, i.e., when the results of the
mid-term exams are published to the students.

Participation figures in the mid-term and final exam are presented in Table 11.2 This table
shows that the participation in the midterm exam is fairly constant and always above 80%
except in 2015-2016 (77%). There are few students that sign the presence sheet without taking
the exam at mid-term and the proportions of absences vary between 9% and 15%, except in
2015-2016 (21%). On the other hand, the final exam participation is decreasing over time (except
in 2016-2017 that is an outlier, as for Challenge and MCQ participation). The mean participation
rate is 82.3% between 2013-2014 and 2015-2016 and 75% between 2016—2017 and 2019-2020.

11.2.2 Performance

Table 11.3 shows the link between participation to Challenges and the students’ performance from
Academic Year 2013—2014 to 2019-2020. For each year the PCA has been organised, the table
shows the cumulative number of students having submitted Challenges and the mean number of
completed Challenges per student (i.e., “Challenges Participation” columns). The table also shows
the cumulative number of Challenge submissions over the whole PCA, the cumulative average
number of submissions per student over the whole PCA, and the mean number of submissions

per individual participation (i.e., “PCA Participation” columns). Table 11.3 also provides data
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Table 11.3: Link Between Students Participation and Performance from Academic Years 2013—
2014 to 2019-2020. “#” refers to cumulative values. “Per Stu.” refers to the average per student.
“Per Part.” is the mean number of submissions per Challenge participation. SR and FR stand
respectively for Success Rate and Failure Rate. Total figures include students that did not
take the exam while “Adjusted” figures only include the students that took the Final Exam (in
January). There is no data from 2013 to 2015 regarding the Challenges and PCA since CAFE was
not yet implemented.

Course Performance

Academic N Chall. Part. PCA Part.
Year Total Adjusted
Per Per Per
# Stu. # Stu. Part. SR FR SR FR
2013-2014 58 - - - - - 259 741 33.3 66.7
2014-2015 58 - - - - - 121 879 146 854
2015-2016 52 - - - - - 173 827 22,5 775
2016-2017 54 240 444 535 991 223 389 61.1 43.8 56.2
20172018 72 214 297 478 6.64 223 250 75.0 32.1 679
2018-2019 76 202 2.66 473 6.22 234 23.7 76.3 39.1 60.9
2019-2020 82 267 3.21 647 7.80 242 19.5 80.5 26.7 733

Table 11.4: Description of the categories used in Fig. 11.3 in term of performance markers of our
error taxonomy introduced in Chap. 4

Category Description Markers
Correct The code has the intended behaviour CODEq
Incorrect The student committed a minor mistake Any markers except

CODEj, CODE3, CODE4
or CODE7

At least one among
CODE3, CODE4 or CODE7

The code presents syntax errors or does not make
any sense or contains a major mistake (either an
infinite loop or a Buffer Overflow)

Very Incorrect

about students’ performance: the success and failure rate (resp. SR and FR) in January (students
can retake the exam in June and August). Focusing on the students that take the exam enabled
us to evaluate more precisely the effect of the PCA introduction on the success rate. The success
rate dropped between 2013 to 2016. Starting from 2016-2017, the success rate increases. From
2015-2016 to 2016-2017, it almost doubled although the year 2016-2017 seems to be an outlier
in term of students’ participation (4.44/5 challenges per student) and success (43.8% actually
taking the exam).

Another way to assess the effect of the PCA is to look at the quality of code written by the
students at the Final Exam, in January. This is shown in Fig. 11.3. The figure shows the

proportion of codes that are Correct (i.e., the code has the intended behaviour), Incorrect (i.e., the
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Figure 11.3: Final Exam Code Quality from Academic Years 2014—2015 to 2019-2020. “Correct”
refers to codes that are (nearly) correct. “Incorrect” refers to codes that contain minor mistakes
and “Very Incorrect” refers to codes either that do not make any sense, presents syntax errors,
infinite loops or out-of-bound memory accesses.

student committed a minor mistake), or Very incorrect (i.e., the code presents syntax errors or
does not make any sense or contains a major mistake). Table 11.4 links those three categories
with code performance markers introduced in Chap. 4. The proportion of code labelled as Correct
increases from 28.6% (2014—-2015) and 29.0% (2015-2016) to 37.9% (2016—2017) and 33.3%
(2017-2018). However, 2018-2019 and 2019-2020 seem to be outliers.

11.3 Discussion

11.3.1 Participation

In Fig. 11.1, the decreasing participation in the third MCQ that take place shortly after the
mid-term exam (see Fig. 9.1) but before the results are made available to the students suggests
that the mid-term exam has an effect on students participation. Once the results are published,
one can see that the participation rate decrease continues for the subsequent MCQ. That rising
number of absences through the semester is indicative of abandonment since the MCQ take
place at the beginning of exercises sessions and are a proxy of the course attendance.

The introduction of the PCA (in 2016—-2017) does not seem to have modified that trend. On

the contrary, the participation rates in the MCQ are lower since then suggesting that, while the
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student numbers increased during that period (as can be seen in Table 11.1), the absenteeism rate
increased as well. This may be partially explained by the open access policy to higher education
in Belgium: students may enter the CS curriculum lacking some fundamental skills (e.g., in
maths) and are discouraged (e.g., by maths and physics courses that are also assessed during
mid-term exams).

As far as the PcaA itself is concerned, Fig. 11.2 shows that students do take the opportunity to
submit multiple times and may benefit from the feedback. This is exactly what CAFE was made
for, with AfL in mind, i.e., to offer “opportunities for practice and rehearsal” (AfL, 3rd principle).

However, they do not take all the opportunities to train since a majority of students play their
Trump Card during the PCA. In the same way, the mock MCQ participation rates are below 50%
(see Fig. 11.1). On one hand, taking all the opportunities to train could lead to better results. On
the other hand, the introduction of non-mandatory activities was thought to increase students’
perception of controllability that induces higher motivation [186]. We then can expect that a
student will not take all the offered exercises. In order to help them to make informed choices, we
deliver regularly during the semester feedback and feedforward about their performance (AfL,
4th and 5th principles).

Regarding the participation rates in the exams (see Table 11.2), the introduction of the PCA
does not seem to have affected the mid-term one. On the other hand, the final exam participation
is decreasing over time (except in 2016-2017 that is an outlier, as for Challenge and MCQ
participation). The introduction of the PCA does not seem to have reduced that trend. On the
contrary, the mean participation rate is 82.3% before the PCA and 75% after its introduction.
Note that this drop in the participation to the final exam is actually counter-balanced with an

increase in the success rate (see next section)

11.3.2 Performance

Table 11.3 shows that the academic year 2016-2017 (i.e., when the PCA was introduced) is a
the tipping point when the success rate started to increase above 30%. The year 2016-2017
was previously identified as an outlier in term of participation but the high participation is also
associated with an higher success rate (43.8%). The shift of the success rate may be explained
both by the fact that students can work on a regular basis thanks to the Challenge and because
the PCA grades take into account in their final mark, allowing them to increase it in a low-stakes
activity (AfL, 3rd principle).

As far as the quality of the code is concerned (see Fig. 11.3), one can first conclude that years
2018-2019 and 2019-2020 are outliers: the exam question may have been too easy in 2018-2019
while it may have been too difficult in 2019-2020, leading to respectively more Correct (60.5%)
and Very Incorrect codes (63.3%). Designing an exam question of the same difficulty from year to
year is a difficult task. Both questions in 2018-2019 and 2019-2020 required to browse an array.

The main difference between the two problems is that the 2019—-2020 one asked to write a result
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in the last index of the array (i.e., A[N-1]) and a lot of students wrote A[N], leading their code to
be labelled with the CODE4 — Buffer Overflow, that we consider a major mistake.

Nevertheless, the proportion of Correct code increases after the introduction of the PcA
(from 28.6% (2014-2015) and 29.0% (2015-2016) before to 37.9% (2016-2017) and 33.3% after).
Consequently, those who seriously engage in the PCA (and thus have practised and take advantage
of feedback and feedforward throughout the semester) are more likely to write a correct piece of

code at the end of the course.

11.4 Conclusion

The data presented in this chapter shows that the evolution of the CS1 course and alignment
with AfL principles have increased student engagement. Students have received earlier feedback
and feedforward to improve their performance.

However, the data has shown that the students do not take all the offered opportunities to
train themselves as far as, for example, the mocks MCQ are concerned.

Besides, the mean success rate (in January — students can retake the exam in June and
August) has risen from 18.4% between 2013 and 2015 to 26.8% (+ 45%) between 2016 and 2019
(See Table 11.3). It is encouraging to think that these figures can partially be attributed to the
course evolution, as also suggested in the Table.

The number of students exiting during the semester is still high, in particular after the mid-
term exam results are reported. This was one of the reasons to introduce AfL principles in the
course, especially feedback that may "Encourage positive motivational beliefs and self-esteem"
according to Nicol and Macfarlane-Dick [148]. Those students dropping out cannot be totally
eliminated, as their actions may be the result of the open-access policy to higher education in
Belgium.

From our perspective it is unfortunate to lose such a large portion of our students. We hope
that the CS1 course helps students understand the expectations and requirements of a university
curriculum, in terms of work and commitment and that they go on to succeed.

In our faculty, the enrolment in the Computer Science curriculum meets the general open-
access rule of Higher Education in Belgium. As far as the other curriculum organised in the
faculty is concerned, i.e., in Engineering, students must take an entrance exam (especially to test
their maths skills). The engineering faculties of the French part of Belgium claim that this exam
is responsible for their success rates that are significantly higher than in the other curricula [1]
and that passing this exam is a proxy for success in the studies university, regardless of their
subject [ibid.]. This tend to suggest the entrance examination actually ensure the motivation of
the students before they enter the curriculum. We do not think that this entrance policy would

be fit for the CS curriculum as it may discourage a lot of students profiles to enrol.
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EARNING how to program a computer is at the core of the first course of Computer Science
curricula [131], widely referred as CS1. In the context of the Higher Education in
Belgium, where the open-access education is the rule and thus one cannot make any

assumptions on students background, especially concerning their maths skills, we developed a
programming methodology based on Graphical Loop Invariant.

With the idea of getting the students work in a regular basis, we designed a teaching activities
consisting for students in submitting small pieces of code regularly during the semester: the
Programming Challenges Activity (PCA). Such an activity enabled us to align our CS1 course
towards the principles of the Assessment for Learning (AfL) [164].

Since the students were required to submit pieces of code during the semester and due to the
lack of human resources, we developed a program capable of automatically assessing their work
and providing them with feedback and feedforward, making them able to close the feedback loop
[29]. Thus was born Correction Automatique et Feedback des Etudiants (CAFE) [119, 123].

This document, divided in three parts, firstly describes our programming methodology and
its perception by the students. Secondly, the program CAFE is introduced and finally, we describe
and evaluate the PCA, as well as the contribution of the AfLL alignment to our CS1 course. Here

is a summary of this work.

12.1 Part I: Graphical Loop Invariant Based Programming

The first part presents our programming methodology, called Graphical Loop Invariant Based
Programming (GLIBP) that consists in drawing a Graphical Loop Invariant, which is a graphical
representation of the variables that are manipulated in a loop, as well as the relationship they

share. This picture must be drawn before writing the code, that is then deduced thanks to the
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Graphical Loop Invariant.

To help students to draw useful Graphical Loop Invariant (i.e.,, that will actually help them
in deducing their code), we provide them with seven rules: (1) The drawing shall correspond to
the problem and be labelled; (2) The boundaries of the problem shall be provided; (3) One (or
more) dividing line(s) shall be provided; (4) Each dividing line shall be properly labelled; (5) The
drawing shall be labelled for explaining what has been achieved so far; (6) The drawing shall be
labelled to indicate what should still be done; (7) All the named structures and variables shall be
present in the code.

We also explain how to leverage the Graphical Loop Invariant to deduce the code instructions
and illustrate on several examples how various data structures can be represented in our
framework.

We also introduce two tools that were though to ease the teaching of the GLIBP methodology.
First, Graphical Loop Invariant Drawing Editor (GLIDE) is an application that enables to draw
Graphical Loop Invariant and to receive feedback about the syntax of the drawing. GLIDE also
embeds a feature to help writing the code by supporting the graphical transformations described
by the GLIBP methodology.

We then address the reception of our methodology by answering the research questions
RQ 1. 1 to RQ 1. 4. Thanks to data collected from CAFE and GLIDE usages, we show that student
can practise the GLIBP methodology all along the semester. However, even if GLIDE enables
them to get preliminary feedback on their Graphical Loop Invariant, most of the students do not

take this chance.

After having introduced a taxonomy of the errors that was built upon the GLIBP’s rules, we
show that errors committed depend, of course, of the problem being solved but some of them are
recurrent, as the problem boundaries being missing; the lack of Dividing Line(s) labels and the
lack of relationship with the code. The number of errors does not seem to decrease during the
semester, as if all the programming activities were independent.

Students globally acknowledge the utility of the Graphical Loop Invariant to understand how
a loop works. In majority they feel they are capable of using the GLIBP methodology to write a
loop. However, they recognize they did not fully apply the methodology when they were supposed
to. This seem to suggest that the Graphical Loop Invariant is perceived as the vegetables in a
healthy diet: everybody will recognize they are useful but some would not complain if they are
absent. As the Graphical Loop Invariant is concerned, this explains why students do not take the
opportunity to validate their drawing in GLIDE or keep doing avoidable errors (like a missing
Dividing Line label) during the semester and even at the exam. This suggest, when presenting
the GLIBP methodology, to keep explaining how to leverage the Graphical Loop Invariant to

deduce the code instructions.

As data suggested that an incorrect Graphical Loop Invariant would be correlated to an

incorrect code and that a correct Graphical Loop Invariant would be more likely correlated to
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a correct code, we formulated the RQ 1. 5 to investigate the link between the Graphical Loop
Invariant and the code. The COVID-19 pandemic [190] forced us to lower our ambitions and we
had to focus in assessing the impact of the Blank Graphical Loop Invariant on the code quality.
We presented a Crossover Randomized Controlled Trial (CRCT) whose most of the results turned
out to not be significant enough to conclude. Still, we set the course for future experiment to
assess the GLIBP methodology.

12.2  Part Il: Automatic Correction and Feedback to the Students

The second part introduces CAFE, the system we have developed to assess both students program
and Graphical Loop Invariant and provide them with feedback and feedforward. CAFE is capable
to detect coding errors that are difficult to detect by hand (e.g., special cases of infinite loop)
or even when the code is run (e.g., out-of-bounds accesses) and is therefore valuable from a
teacher point of view. Moreover, CAFE provides to students a service that would be unfeasible
without such an automatic tool, although it requires for the teaching team to spend some times
on correction programming.

The reception of the response message generated by CAFE is addressed by the research
question RQ 2. 2. The submitting errors to CAFE decrease as the semester goes. CAFE’s message
are acknowledged to be clear, to help in course understanding and to make aware of an eventual

learning gap.

12.3  Part Ill: Programming Challenges Activity

The third part introduces the Programming Challenges Activity (PCA) and positions it with
respect to the other teaching activities of our CS1 course. The PCA enabled us to align the course
to the Assessment for Learning (AfL) principles.

The research question RQ 3. 1 addresses the evaluation of the PCA. Results show that
students do submit several times during the challenges and use their additional submission
to increase their performance. However, only a minority of them take the opportunity to take
several days to think about their work. Students recognise the PCA is a good way to make them
work on a regular basis and make them feel confident about their programming skills.

The research question RQ 3. 2 focuses on the evaluation of the course transformation. Data
show that the introduction of the PcA lead to higher success rate and seem to have increased the
quality of the code. However, the PCA does not seem to have risen the participation in the final
exam in January. While the number of students rose in recent years, the participation rate in the
final exam followed a reverse trend.

The regular measure of students participation, enabled by the multiple activities such as the
Challenges or the MCQs, reveal that the mid-term exams is the tipping point of the year, where

students decide to drop out.
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12.4 Future Work and Research Directions

12.4.1 Push forward the GLIBP methodology Assessment

Our attempt to experiment whether the Graphical Loop Invariant enables to write better code
(see Chap. 5) was not successful due to the second lock-down of the COVID-19 pandemic [190].
The experiment methodology described in Chap. 5 is a starting point to push further the
GLIBP methodology assessment. Once the effect of Graphical Loop Invariant on the code will
be clearly established, it will be possible to assess each component of the GLIBP methodology
to potentially adjust them: the number and the formulation of the rules, the shapes of the data
structures representations, the way we explain how to deduce code instructions from a Graphical

Loop Invariant, etc.

12.4.2 The Dropouts Case

The participation data analysed through the document show a large number of dropouts that
can be observed after the mid-term exam in November. The surveys were not able to collect the
opinions of the students who drop out during the semester. As such, the course abandonments
are a blind spot of the evaluation of new teaching initiatives, not only for our CS1 course but even
at the level of the first year of the Computer Science curriculum. Therefore, this problem should
be addressed at the faculty level.

12.4.3 GAMECODE: GLIBP methodology exercises

During CoVID-19 pandemic [190], the first lock-down forced us to switch to remote teaching. In
the context of a CS2 course that continues to use the GLIBP methodology (but also introduces
recursion, and basic data structures such as Files, Lists, Queues, and Stacks) we developed new
homework exercises instead of giving students yet another podcast in their course schedule.

We called these exercises GAMECODEbecause they are inspired from GameBooks in which
the reader can choose the path they takes to complete the story. With GAMECODE, students can
choose their own solving path for each exercise. Moreover, they could solve them at their own
convenience.

A GAMECODE exercise meets the following principles:

Stand-alone book a GAMECODE exercise is self-sufficient and contains the minimal informa-
tion to complete the exercise;

Just-in-time theory the theoretical reminders are placed where they are needed and are as
short as possible

“No spoilers hints" hints given to the students never reveal a solution, nor a part of it;

No single solution several solutions are always possible and a GAMECODE exercise always

references the course forum to discuss them with the teachers or pairs.
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When the pandemic is over, the effectiveness and interest of these exercises should be

evaluated.

12.4.4 Integrating CAFE, GLIDE and even the GAMECODES

In addition to provide CAFE and GLIDE with better GUISs, one could think to merge them into
a more powerful tool. The GUI of such a tool would show the Graphical Loop Invariant next
to the code and enable to go more intuitively from the Graphical Loop Invariant to the code
and vice versa. by doing so, the new tool would become a real IDE (Integrated Development

Environment)?.

12.4.4.1 Overview of such a Tool

The new tool could be used in four main modes:

PRACTISE This mode would proposed scripted exercises, inspired by the GAMECODE, of in-
creasing difficulties that would depend on the student level. Here, the tool would perform

formative assessment.

CHALLENGE This mode would embed all the Challenges of the PCA, providing summative
assessment in the context of low-stakes activity. The PCA could be gamified [52, 53, 84, 90,
175]: e.g., students would earn badges upon Challenges successes or other achievements,

such as properly use dynamic allocation function, declaring and using arrays, et ceetera.

EXAM This mode could be use for summative assessment at the end of the semester. The tool
would display less feedback but would register carefully students coding behaviour (e.g.,, it

could enforce the fact that the Graphical Loop Invariant is drawn before the code is written.

COMPANION This mode would enable the user to freely draw an Graphical Loop Invariant,
check its syntax (as GLIDE does), and then write the corresponding code. The code content
could also be checked to verify whether the data structure drawn and the variables in the

label are present in the code (Rule 7 of the GLIBP methodology, see Sec. 2.1)

All theses activities are already possible but the new tool would go further thank to the
synergy of CAFE and GLIDE features. For example, syntax highlighting in the Graphical Loop
Invariant could be rendered in the code too, the Graphical Loop Invariant could be used to
illustrate to the students why some errors occur such as infinite loops or out-of-bounds accesses.

As far as scripted exercises, challenges and exams are concerned, the tool could implement
the Blank Graphical Loop Invariant in a much more user-friendly way than today.

The communication with the teaching team would also be eased as the tool would simplify

the sharing of both the Graphical Loop Invariants and their respective codes with a teacher.

1 By the way, the GLIDE acronym would still fit perfectly.
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12.4.4.2 Data-Driven features

During all the programming activities, the new tool would keep track of all the mistakes commit-
ted by the users to customise the feedback and feedforward, as well as to recommand tailored
practise exercise in PRACTISE mode. This would require Artificial Intelligence Capabilities. The
information about common mistakes could also be retrieved by the teaching team, enabling to
regulate the lectures content or pace if they detect students collectively struggle on a particular
subject.

The time students take to correct a bug could be monitored to encourage struggling students
(like what Marwan et al. [137] propose).

An Al-capable tool could also ask users to rate some feedback and feedforward messages to

continually assess their quality.

12.4.4.3 Beyond Programming

Later, it would be interesting to study in what extent such a system capabilities could be reused
in the context of other courses and not only programming ones. The tool could leverage on one
hand the graphical manipulations and on the other hand, the assessment of reasoning about the
graphics. The first non-CS candidates would be geometry, physics but one could also think about

graph manipulation in economics.
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APPENDIX

GUARDED COMMANDS METALANGUAGE AND WEAKEST
PRECONDITION

HIS appendix presents the metalanguage introduced by Dijkstra [56] and compares it
with our pseudocode, especially in terms of the rules to compute weakest precondition.
Dijkstra’s metalanguage comprises variable assignment, alternative and repetitive

constructs. These instructions are listed in Listing A.1. It is worth noticing that the alternative
and repetitive constructs may have several guards (denoted by B; in Listing A.1)

Concerning the alternative construct, here is how it is evaluated: all the B; guards are
evaluated. Among all the guards that are evaluated to true, one of them is selected in a non-
deterministic way and then, its corresponding statement list is executed. If no guard is true, the
if..fi construct is equivalent to an abort instruction.

As far as the iterative construct is concerned, all the B; guards are evaluated. Among all the
guards that are evaluated to true, one of them is selected in a non-deterministic way and then,
its corresponding statement list is executed. Then, this process is reiterated until all guards
are false. If no guard were true at the beginning, the do..od construct is equivalent to a skip

instruction (i.e., an instruction that does nothing).

skip // Do nothing

abort // Abort

X = a // Assignment

x = 0; y := 1 // Composition

// Alternative construct (IF)

// If all guards are false, equivalent to abort
if By — SLi

0 Bg — SLg
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O B, — SL,

// Repetitive construct (DO)

// If all guards are false, equivalent to skip
do By; — SLjp

[0 Bg — SLog

0O B, — SLp
od

Listing A.1: Guarded commands metalanguage “cheatsheet”. The B; stand for Boolean

expressions and the SL; for statement lists

In the rest of the document, we use simpler alternative statement and loops. Listing A.2
presents the differences: our if statement always implies that, if its guard is false and no else-
statement has been specified, nothing is done. Our loops only have a unique guard (i.e., the Loop

Condition) and its corresponding statement list is the Loop Body

// Alternative construct (IF)
if (B)
SLthen
[else
SLelse
// Corresponds to:
if B — SLthen
O !'B — SLeise // A missing else clause corresponds to a skip
fi

// Repetitive construct (DO)
while (B)
SLbody
// Corresponds to:
do B — SLbody
od

Listing A.2: Guarded commands metalanguage version of our instructions

A.1 weakest precondition calculation

The semantics of the commands is documented thanks to the weakest precondition. As a reminder,
wp(S, R) is the weakest precondition upon which, the activation of the program S will terminate
and lead to the postcondition R. For each statement of Dijkstra [66]'s metalanguage, we provide
the weakest precondition calculation on a postcondition R as it appears in his book, on the
left-hand side of the page. When applicable, we also provide a translation in our own pseudocode

on the right-hand side of the page.
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A.1. WEAKEST PRECONDITION CALCULATION

A1l skip

For any condition R,

wp(skip, R)=R (A.1) wp(;, R)=R (A.2)
In other words, skip does nothing.

A.1.2 abort

For any condition R,

wp(abort, R)=F (A.3) Not applicable (A4)

Where F is “the predicate that is false in all point of the state space.” [56, p. 14]. Our

pseudocode does not need for an explicit abortion statement.

A.1.3 Assignment

For any condition R,

wp(x :=E, R) = R[E/x] (A.5) wp(x =E, R) = R[E/x] (A.6)

R[E/x] denotes the condition R where all the occurrences of x were replaced by E.

A.1.4 Composition

For any condition R,

wp(S1;S2, R)=wp(Sy, wp(Ss, R)) (A7) Idem (A.8)
In other words, the statement S will be executed before Ss.
A.1.5 Alternative construct
wp(IF, R)=(3j,1=sj< n’Bj) Wp(if (E) SLthen €1se SLeise, B) =
AN(Vj,1<j<n, (A.9) (E = wp(SLtnen, R)) (A.10)
B;> Wp(SLj , R)) A(—E = wp(SLeise, R))
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A.1.6 Iterative construct

Let BB=(B1VByV---VB,)
If, for all states
(P ABB)=> wp(IF, P) (A.11)

Then
(P Awp(DO, T)) = wp(D0, P A—BB) (A.12)

for all states.

This result is referred as the “fundamental invariance theorem for loop”. In the equation A.11,
the IF denotes a iterative construct where the do and od were replaced by if and fi, respectively.
In the equation A.12, wp(DO, T') means a terminating loop (In practise, the loop termination is
investigated separately, using the Loop Variant). To sum up, A.11 requires that P does not vary
upon the activation of one iteration of the loop and A.12 concludes it will not vary upon the whole

iteration (that does terminate). And yes, P is the Loop Invariant.
A.1.6.1 Using our pseudocode
Our loops have only one guard: while(B) SLyogy

If, for all states

(Inv A B) = wp(i£(B) SLypody, Inv) (A.13)

Then
(Inv Awp(while(B) SLypogy, 1)) = wp(while(B) SLyoay, [nv A 1B) (A.14)

for all states.
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APPENDIX

RESULTS OF THE FOCUS GROUP ON CAFE MESSAGES

HIS APPENDIX contains the transcript of the recording of the focus group on CAFE
messages, presented in Sec. 7.5. The font size was reduced on purpose to shorten the

text size.

Introduction

IFRES Supervisor — Bonjour a tous, Je m’appelle Laurent Leduc, je ne suis pas de votre fac, je viens de 'IFRES, je suis un
chercheur en pédagogie. LIFRES, c’est un institut de formation et de recherche en enseignement supérieur de 'université et je
travaille comme d’autres membres de notre équipe comme conseiller pédagogiques avec les profs pour optimiser la qualité des
dispositifs d’enseignements que vous avez. Et le professeur Donnet et Simon nous consultent réguliérement pour discuter de la
qualité de ce qui se fait dans votre cours de 1re année de M. Donnet. Donc I'idée, aujourd’hui, c’est pour autant que possible améliorer
la qualité des cours, c’est de prendre I’avis des étudiants. Vous avez été choisi, apparemment, je ne sais pas trés bien comment ¢a
s’est passé, pour participer a cette séance et je vous en remercie parce que I'idée, c’est vraiment que vous donniez votre avis sur - on
va parler plus spécifiquement - de la plateforme CAFE. Parlez vraiment trés librement, c’est pas une évaluation, c’est en dehors
du cours, 'idée est vraiment que sur bases des informations que vous nous donnez, on puisse faire autant que possible, c’est pas
toujours possible mais évoluer éventuellement le dispositif CAFE. Donc, sentez-vous vraiment libres de parler méme si Simon est 1a.
11 est 1a parce qu’il a besoin d’entendre, lui qui en est notamment le concepteur. C’est au bénéfice des étudiants de votre années et
des étudiants des années ultérieures que vous parliez librement, donc n’hésitez pas 4 la faire. Alors on va se centrer sur CAFE, qui
est donc cette plateforme de soumission de réponses a une série de devoirs (sic.). Le but, quand ils ont créé la plateforme CAFE, c’est
de vous donner l'occasion, a intervalles réguliers, de faire des exercices de codages. Ca vaut pour un certain nombre de points mais
T'une des forces de ce dispositifs...

Unidentified — (on frappe a la porte)

IFRES Supervisor — Oui, entrez !

Student 3 — Excusez-moi pour le retard

IFRES Supervisor — ... Donc jexpliquais que cest une consultation d’étudiants pour rendre un avis sur la plateforme CAFE,
pour essayer de la faire évoluer. Lune des forces du dispositif CAFE, cest qu’il vous permet notamment, pour chaque devoir (sic.),
d’avoir trois soumissions, a chaque fois. Et donc, pour chacune de ces soumissions, vous recevez un feed-back, c’est sur le feedback
qu’on va se concentrer aujourd’hui. Ce qu’on va faire, c’est qu’on va vous présenter - c’est ce que Simon vous a distribué, il va y
revenir dans un instant - on a subdivisé les feedbacks en différentes parties et ce qui nous intéresse, nous, c’est de voir, chacune de

ces sous-composantes du feedback que vous recevez, si ils (elles) vous apparaissent, pour vous, étudiants, utiles. Utiles, d’'une part,
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pour tirer le meilleur parti des trois soumissions qui sont a votre disposition, utiles pour vous rendre compte de ce qui est bon et pas
bon dans votre réponse : cela vous permet de comprendre ce qui marche bien ou marche pas bien dans votre réponse. Et enfin, est-ce
que ce feedback vous aide & vous améliorer, a rectifier le tir. Chaque fois qu’'on va voir une des sous-composantes, c’est un peu les
questions qu’on aura a 'esprit. Y’en a d’autres et c’est Simon qui va vous les présenter.

Teaching Assistant — Donc il y a cing critéres, on a envie de mettre le focus sur ces critéres-la : est-ce que les informations sont
données en quantité suffisantes ? Est-ce que, quand quelque chose est indiqué, il y a un lien explicite avec les critéeres d'une bonne
performance = un challenge qui aurait un résultat satisfaisant. Est-ce que vous dit le feedback est bien en lien avec ¢a ? Est-ce que ce
n’est pas heurtant / Est-ce que ¢a ne vous rebute pas ? Est-ce que c’est assez clair ? Dans la clarté, il y a parfois des informations qui
vous étre données, mais est-ce qu’il faut aussi une phrase d’introduction pour vous expliquer ce qui est mentionné dans le feedback.
On y reviendra. Quand il y a une recommandation, elles sont souvent encadrées, est-ce qu’elles ne sont pas trop générales ?

Teaching Assistant — Alors, je vous ai donné deux feuilles, la premiere feuille, en couleur, c’est une soumission pour le
Challenge # 2, elle est recto/verso. C’est un exemple de soumission et vous avez un feedback correspondant. Ici, dans les slides, on va
passer sur quelques sous-parties de ce feedback et a chaque fois, on va poser les différentes questions concernant ce que Laurent

vous a déja expliqué.

Clarté de I'encodage de I'Invariant

Teaching Assistant — Donc, tout d’abord, une premiére question, qui est moins sur le feedback, sur l'activité en elle-méme, vous
avez un rappel de la consigne avec I'invariant muet, et la facon de I'encoder, ici, dans le squelette, est-ce que pour vous, la consigne

est claire ? Premiére question, est-ce qu’il n’y a pas des points d’achoppement, ce genre de choses.

Several Students — Non

Student 1 — C’est ce que j’aurais fait si j’étais sur une feuille.

IFRES Supervisor — Tout le monde, parce que, exprimez vous tous, parce que c’est I'avis de tout le monde de fonctionner
comme cela ?

Several Students — Ouais

Student 1 — Ca a été

IFRES Supervisor — Sans réserves ? Vous n’avez pas de copains qui vous ont déja dit « ouais, c’est pas si clair » ?

Student 2 — Il m’a fallu un petit peu de temps, apres, c’est moi aussi qui me suis pas trés bien concentré dessus, pour comprendre
qu’il y avait les mots en dessous et qu’il fallait compléter de cette maniére-la. Apres, c’est chacun sa maniére de 'interpréter, c’est

peut-étre moi qui ai eu du mal a réfléchir comme ¢a. Mais y’a pas spécialement moyen de faire mieux que cela. Donc, a part ca...
IFRES Supervisor — OK donc la consigne est claire ?
Students Delegate — Ouais, c’est clair.

IFRES Supervisor — Parfait !

Feedback sur I'Invariant

Au sujet des titres

Teaching Assistant — On va tout de suite passer a la suite. Il y a tout d’abord ici, en jaune, dans lellipse : le feedback est subdivisé
en sections et chaque section a un titre, est-ce que, a chaque fois qu’il y a un titre, est-ce que vous voyez bien a quoi cela correspond
dans le feedback, quand vous voyez les différents titres ?

Several Students — Oui

Teaching Assistant — Globalement. De toute fagon, il y aura plusieurs sections, y’aura plusieurs titres, on reviendra dans la
suite, on reviendra sur chacun d’eux.

IFRES Supervisor — Sur celui-ci en particuliers, vous voyez ce qui se...

Several Students — Oui
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Au sujets du feedback sur I'lnvariant

Teaching Assistant — Je vais faire apparaitre ici différents rectangles, avec différentes parties, le rectangle bleu « voici comment le
systéme comprend ... » (lecture). La boite rouge : « Rappelez-vous, I'Inv ... ». Et ensuite dans la boite orange : « La variable i ne
semble pas ... ». Pour ces boites-1a, en quoi cela vous permet de tirer partie de vos trois soumissions ? Est-ce que cela vous permet de
vous rendre compte de ce qui est bon/pas bon, est-ce que cela vous aide a rectifier le tir ?

Student 1 — J’ai eu justement un probléme, j’ai eu la méme erreur dans mon Challenge, j’avais pas bien compris la derniére
case avec la fleche (« la variable i ne semble ...»). Moi, dans ma téte, i = 1, si la boite 5, c’est 1, cela doit normalement étre juste.
Comme vous m’avez expliqué, c’est initialisé a 1, du coup c’est la méme valeur, c’est ¢a que je n’avais pas bien compris. [Note : j’ai
déja affiché 1 ligne alors que rien n’a été affiché].

Teaching Assistant — Du coup, il n’y a pas assez d’explications a ce niveau-la ?

Student 1 — C’est moi qui avait mal compris.

Teaching Assistant — Si j’avais affiché 'Inv, en traduisant avec i qui vaut 1, pour montrer en quoi c¢’était incohérent, ¢ca aurait
peut-étre ?

Student 1 — Oui, voila, comme quand j’étais venu vendredi, vous m’aviez expliqué en quoi c’était faux.

Teaching Assistant — OK...

Student 1 — C’était plus complet que juste « ¢a ne semble pas initialisé a la valeur suggérée par I'Inv ».

Proposition de traduction de I'invariant dans la situation initiale

Teaching Assistant — Ca va. Peut-étre une traduction pourrait étre envisageable. A chaque fois qu'il y a des choses [remarques], ici
on va collecter des données, et on ne promet pas que chaque remarque va donner lieu & une amélioration, on va faire ce qu’il est
possible de faire.

IFRES Supervisor — Tout ce qu’on peut, c’est de prendre votre avis, ce n’est pas nécessairement possible, apres de le faire
mais au moins, on 'entend. C’est ¢a I'idée. Si on prend un peu cadre par cadre, le cadre bleu, vous voyez a quoi ¢a peut vous servir de
recevoir cette info-1a ?

Student 1 - Ben, oui.

Student 2 — Ouais, voir si la maniére dont le systéme comprend notre Inv est la maniére dont nous on le comprend, voir si c’est
la méme chose des deux cotés.

Students Delegate — Voir ce qu’on attend de nous en fait.

Student 1 — Si ce qu’on pensait dans notre téte a été retranscrit par la machine et donc...

IFRES Supervisor — Utile, donc cela

Several Students — Oui, oui, utile.

Suite des cadres

IFRES Supervisor — OK. Cadre vert ? Quest-ce que vous ? A quoi ca rime de vous dire ¢a ?

Student 1 — C’est nos erreurs, c’est ce qu’on a mal fait.

Teaching Assistant — OK. Est-ce qu’il faudrait une phrase qui introduit en disant : « passons en revue toutes les boites » ou
est-ce, pour vous, c’est pas nécessaire ?

Several Students — Non

Students Delegate — Tant qu'’il est écrit « boite 5 », donc voila.

Teaching Assistant — Tant que la boite est indiquée. OK. Le fait que rien ne soit dit au niveau des autres boites, boites 1,2,3,4,
est-ce que vous voudriez, est-ce que ce serait plus utile pour vous de savoir que, la [les] boites 1 a 4 sont correctes? Est-ce que le fait
que c’est sous-entendu...

Several Students — C’est implicite

Student 1 — oui, si c’est un feedback, ¢a doit nous donner [...] pour nous améliorer.

Teaching Assistant — Dans votre téte, un feedback, ¢a vous dit juste ce que vous avez mal fait ?

Several Students — Ouais

Unidentified — Un feedback automatisé, en tout cas, oui.

Teaching Assistant — OK. Si on prend maintenant le cadre rouge, « Rappelez-vous ... », L'indentation de ce commentaire,
est-ce que vous voyez que c’est en rapport avec la boite 6 ou pas ?

Student 1 — J’aurais pris plutdt global, moi.
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Teaching Assistant — OK. C’est vrai que cette remarque-la elle est, enfin... mais elle s’affichait surtout si la boite 6 était
incorrect en fait. Le « Rappelez-vous », c’est un peu un rappel théorique, est-ce que cela vous semble assez explicite ? Assez long ?
Est-ce qu’il faudrait détailler ce qu’'on entend par la ?

Student 3 — Etant donné qu’on a le cours comme support, je pense qu'un rappel comme ¢a suffit. Ce n’est pas la peine de donner
énormément d’information, de tout servir sur un plateau. Je pense que c’est assez clair mais sans... Ca pourrait toujours étre plus
complet, on pourrait mettre entre parenthéses, quoique non, c’est déja affiché au dessus de toute fagon.

Student 2 — Il faut que ¢a reste reste concis quand méme.

IFRES Supervisor — C’est I'avis de tout le monde ¢a ? J’entends bien votre avis mais...

Student 1 — Je suis d’accord.

Unidentified — Moi aussi

Student 3 — Je suis d’accord avec ¢a, sachant qu’il y a le cadre bleu en plus qui appuie un peu avec le « 1 <i <N +1 » (Plusieurs
étudiants : Oui). Avec le cadre rouge en rappel, je pense que, oui, c’est complet. C’est mon avis, en tout cas.

IFRES Supervisor — OK

Student 1 — Peut-étre nous donner des pistes, par ce que je me rappelle que, a un précédent Challenge, y’avait le numéro
du/des slides concernant I’erreur, pour aller voir dans le cours, ¢a peut faire gagner du temps et se focus sur d’abord notre erreur. Ca
pourrait étre pourquoi pas utile mais c’est, d'un autre coté, c’est vraiment nous méacher le travail en mode « Va voir slide 54 et relis !
». Ca peut nous aider.

Student 3 — Rajouter des références.

Student 1 — Autant nous aider pour qu’on comprenne mieux plutét que nous laisser patauger et au risque d’apprendre de
mauvaises choses.

Student 3 — Ce serait bien qu’il y ait un lexique des slides.

IFRES Supervisor — Oui, donc vous étes en faveur de cela quand méme, que l'information qui vous est donnée vous oriente
d’autant que possible sur ce dont vous avez besoin.

Several Students — Mmmm

IFRES Supervisor — OK

Teaching Assistant — Pour l'instant, tel que c’est codé, il y a un nombre limité de références au cours qui sont données pour
ne pas renvoyer des références vers 15 slides s’il y a 15 erreurs. Donc, ici & chaque fois, c’est dans les recommandations. Les
recommandations « va voir le cours », elles sont limitées a 3 par Challenge, je pense qu’a la fin de ’entrevue, on verra si 3, c’est

suffisant ou pas. On discutera peut-étre la-dessus [C’est passé a 5 apres e focus groupe]

Commentaires sur |'initialisation de la variable

Teaching Assistant — Sur l'initialisation de la variable, on va passer au slide suivant. La, j’ai mis le code en question. C’est le code
tel que I'étudiant ’a soumis. J’ai rappelé aussi le morceau d’Inv. Il y a la remarque qui dit « la variable i ... ». Et ensuite, il y a la
recommandation « Initialisation des variables selon 'INV ... ». Premiére chose, je vous ai mis en paralléle ici, le code, est-ce que pour
la question sur I'Inv, est-ce que vous avez besoin que code vous soit rappelé dans le feedback ou est-ce que pour vous, c’est clair que ...
Quand vous lisez le feedback,qu’est-ce que vous avez sous les yeux quand vous lisez le feedback ?

Unidentified — Ouais, la question quoi [’énoncé, on suppose]

Teaching Assistant — Y’a pas besoin de rajouter la ligne de code, 1a, qui soit ?

Students Delegate — Je ne pense pas que ca fasse du mal...

Student 2 — Apres, il faut pas que ¢a embrouille, si on a peut-étre plusieurs pistes et qu’on se dit : « c’est peut-étre dans le code
que j’ai mal fait un truc » alors que c’est pas spécialement ¢a, faut pas avoir 10000 pistes non plus.

Student 1 — Si c’est pas trop long comme le Challenge # 2, ¢a va : on peut aller chercher, si y’a 30/40 lignes grand max...

Students Delegate — Maintenant, si c’est quelque chose de, je ne sais pas, 100 lignes, vaut mieux avoir le bout de code qui pose
probléme.

Teaching Assistant — OK

IFRES Supervisor — Ca, ¢a vous permettrait de cibler I'endroit du code qui pose probléeme ?

Several Students — Ouais, Mmmm

IFRES Supervisor — Faut voir si on pourrait le faire, ¢a.

Teaching Assistant — A ce niveau-la, cest relativement possible. C’est codable [# TODO]

IFRES Supervisor — Mademoiselle, vous alliez parler ?

Students 5 & 6 — Non, non, j’écoutais...
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IFRES Supervisor — OK

Student 3 — Donc, la suggestion, c’est d’avoir cette aide-1a a partir du moment ot un code prend beaucoup de lignes ou un
certain nombre de lignes, c’est ¢a ?

Student 2 — Comme dans le terminal : quand on fait une erreur de syntaxe ou quoi

Student 3 — Pour le Challenge # 2, le code n’était pas long, on peut voir tout de suite...

Student 2 — Si t’as des erreurs de syntaxe dans ton code...

Unidentified - [... pas compris]

Student 2 — Pour des erreurs comme celle-1a, avoir I’équivalent du terminal qui nous cible bien ou est la faute, ¢ca pourrait aider.

Teaching Assistant — Et la recommandation dans I’encadré ? Est-ce que c’est pas trop général, trop bateau ? Si c’est cette
erreur-la, est ce que ¢a ne vous semble pas... La recommandation qui est donnée, est-ce que cela vous semble intéressant ? Ou pas
tellement, pour vous, c’est de toute facon ce qu’il faut faire dans ce cas d’erreur-la et c’est clair dans votre téte ?

Student 1 — Moi, ¢ca me parait logique de faire cela. C’est le concept de base de 1'Inv, oui, qui est ré-expliqué. Est-ce que ¢a peut
étre utile ? Oui. Ca dépend des gens, pour moi, personnellement, je sais qu’il faut que je refasse un dessin pour essayer de bien
comprendre... Enfin, avoir ce message-1a, ¢a ne va pas m’avancer dans la résolution de mon erreur.

Teaching Assistant — OK

IFRES Supervisor — C’est un peu trop général ?

Student 1 — Oui, ¢a ne me donne pas des pistes sur mon erreur & moi, c’est le concept de base de comment construire mon truc.

IFRES Supervisor — Les autres ? Par rapport a ce qu’il a dit ?

Students Delegate — Je suis d’accord avec lui, parce que c’est vrai qu’on nous dit juste ce qu’on doit faire, pas vraiment la voie
qu’on doit prendre. On dit : « fais ¢a » et voila, « fais le dessin ».

IFRES Supervisor — Est-ce que c’est mieux que rien ? Je veux dire, est-ce que c’est quand méme une petite bouée pour vous ?
Au moins, quand vous lisez ¢a, vous ne vous sentez pas abandonnés ou...

Student 3 — C’est un peu comme je le vois. C’est un commentaires qui pourrait étre utile pour les personnes qui, par exemple,
en début d’année, ne comprennent pas encore bien le principe des invariants et n’ont pas forcément assimilés la matiere.

IFRES Supervisor — OK

Teaching Assistant — Et si, a la place, il y avait par exemple « Initialisation des variables selon 'INV », je vous traduis
I'Invariant dans la situation initiale et ¢a donnerait : « J’ai déja affiché 1 premieére ligne du damier », est-ce que ¢a pourrait permettre
de mieux corriger ? Parce que, s'il y a déja 1 ligne alors que c’est au début du code, et qu’il n’y a encore rien d’affiché, ¢ca montre qu’il y
a un probléme dans le potage (sic.) ?

Student 3 — Ca aurait aidé plus, je pense. [# TODO]

Feedback sur le code

Affichage du résultat attendu, de I'étudiant et différence des deux

Teaching Assistant — OK. On passe a la [Suite]

IFRES Supervisor — Oui

Teaching Assistant — Ici, vous avez, sur la droite, le code qui a été produit par un étudiant et qui est relativement incorrect
parce que quand on prend le code, la plateforme le compile et 'exécute, et il y a la section « Vérification du dessin des damiers. ». Le
titre, est-ce que vous voyez bien & quoi cela correspond ?

Several Students — Ouais

Teaching Assistant — Ensuite, dans la suite, il y a ensuite ici la ligne ici en cyan : « Pour N =10, c1 =1, ¢2 =%, a la ligne 3 ».
La ligne 3, ca fait réf... Le code va imprimer tous les damiers et le comparer avec le damier attendu, et ensuite, il va sélectionner
au hasard des lignes qui ne sont pas cohérentes et 1a, dans le cadre rose, il vous montre une ligne qui était le résultat attendu, le
résultat de 'étudiant et ensuite, il imprime la différence. Est-ce que vous aviez tous bien compris ¢a comme ¢a ? La, que la ligne 3
fait référence a la 3e ligne du tableau de I’étudiant ou est-ce qu’il faut le préciser, par exemple, a la 3e ligne du damier.

Student 2 — Non, C’est bon.

Student 4 — ? Ca préte a confusion quand méme parce qu’on utilise déja les numéros de lignes pour le code. Si on utilise les
mémes notations pour les deux, ¢a peut préter a confusion.

Several Students — Ouais

Teaching Assistant — On pourrait confondre ¢a avec la troisiéme ligne de votre code ?
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Student 1 — C’est vrai
Student 2 — Oui, je suis d’accord.

Parametres utilisés pour le test

Teaching Assistant — OK, ¢a va. J’en prend note. Vous voyez tous pourquoi est-ce que je vous ai mis « Pour N =10, cl1={,¢c2=%»?

Student 1 — Oui

IFRES Supervisor — A quoi ¢a rime, & vos yeux de vous le donner, pourquoi est-ce Simon a décidé de vous donner ¢a comme
feedback ? C’est quoi l'intérét de vous donner ca ?

Student 1 — C’est un test. Si on était 'utilisateur et qu’on testait le programme de notre coté, on aurait ¢ca comme... c’est comme
chez nous, moi, je le teste d’abord de mon cdté pour voir si ¢ca marche et donc.

Student 3 — Donc on peut retester avec exactement les mémes valeurs, pour voir ce que ¢a donne.

IFRES Supervisor — C’est bien ¢a. Et ¢a vous aide de recevoir ¢a ? C’est utile, par rapport aux questions qui sont 1a [Au

tableau, présentées dans l'intro] ? C’est utile pour savoir ce que vous avez bien fait/pas bien fait, par exemple ?

Several Students — Oui, c’est assez clair

Teaching Assistant — La ligne différence, est-ce qu’elle est utile ou est-ce que si on I’avait pas mise, vous auriez pu voir vous
méme la différence entre le résultat attendu et votre résultat.

Students Delegate — Elle est utile parce lorsqu’il y a une seule différence, voila mais si y’en a plusieurs...

Student 1 — Pour ce cas-1a, c’est utile mais pour d’autres, peut-étre que ce sera moins utile.

Students Delegate — Ouais

Student 1 — A voir pour I'autre Challenge. Si c’est pas un damier ou autre chose, & voir avec ce qui est demandé. La, on voit
clairement la différence. Pour d’autres choses, on le verra peut-étre pas et ¢a peut étre utile d’avoir la différence.

IFRES Supervisor — Y'a aussi 'autre question. Est-ce que c’est utile pour rectifier le tir ? Ca n’a pas marché, donc vous allez
refaire une deuxiéme soumission. Oui? Vous pouvez développer un peu ? En quoi est-ce utile ?

Students Delegate — On sait qu'on a faux et on sait plus ou moins ot on a faux. La, on voit qu'on a un % de trop, donc on va
aller regarder dans le code ce qu’on doit faire pour ne pas 'avoir. Donc c’est utile, c’est comme si on compilait le programme et qu’on
le langait et on voit bien qu’on a pas ce qu'on attendait. Donc on essaie de voir ce qu’on peut faire pour avoir ce résultat attendu.

Student 3 — Ca nous met la comparaison sous les yeux, clairement. Je pense que c’est utile

Students Delegate — Oui.

IFRES Supervisor — Les filles, c’est votre avis aussi ?

Students 5 & 6 — Oui

Les étudiants et le débogage

Teaching Assistant — La démarche de débogage de votre code, ¢a vous parait limpide et que c’est de toute fagon comme cela que
vous devez procéder ? Y’a pas un moment donné, ou on afficherait un résultat et d’étre bloqué sur la question en ne voyant pas du
tout comment procéder ou est-ce que vous voyez directement ce que vous allez devoir entreprendre pour... ?

Student 3 — Je ne pense pas que cela nous donne la méthode de résolution, ¢a nous donne un résultat. La méthode de résolution,
je ne vois pas comment...

Teaching Assistant — Et quand vous avez ce genre d’erreur, est-ce que vous retournez voir 'Inv pour corriger le code ou est-ce
que vous allez directement dans le code ?

Student 2 — Personnellement, je touche a tout jusqu’a ce que ¢ca marche

Unidentified — Moi aussi

Teaching Assistant — OK

IFRES Supervisor — Et vous n’avez que trois soumissions, en définitive. Ca peut étre insuffisant, alors ?

Student 2 — Oui, mais on teste chez nous.

Student 1 — Moi, par exemple, quand je fais un Challenge, je regarde d’abord chez moi si ¢a fait le résultat attendu et si ¢ca
fonctionne, alors, 13, jenvoie. Seulement si ¢a marche chez moi.

Student 3 — De toute facon, CAFE teste I'Inv et dit si..., enfin I'invariant dépend du code.

Teaching Assistant — Il teste, il vérifie si I'initialisation est correcte dans le code et les autres parties du code sont testées

un peu différemment. Donc le nombre d’itérations, on va le voir ici dans la suite. On essaie un peu de tester toutes les zones. La

206



vrai zone qui est testée ici, c’est le corps de la boucle. Le corps de la boucle, on peut pas vérifier que tout le monde...parce que vous
étes libres de mettre ce que vous voulez dans le corps de la boucle, 'ordre des opérations, c’est vous qui décidez. Moi, je ne peux pas
vérifier ca tres facilement, c’est trés difficile a faire.

IFRES Supervisor — Et quand vous dites que vous le testez jusqu’a ce que ¢ca marche, vous persévérez, peut-étre que vous
étes des étudiants motivés, faut étre persévérant pour se dire « je vais le faire jusqu’a ce que ¢a marche », ou vous pensez que vos
condisciples font pareils et que c’est logique de fonctionner comme ¢a ?

Student 3 — Apres, c’est pas juste des tests aléatoires. On essaie de cibler, par exemple, c’est est-ce que j’ai mis < alors que c’est
< par exemple. Plus comme ¢a, si j’ai ce genre de choses. Si ¢a se trouve, c’est un truc tout béte comme ¢a, ¢a vaut le coup d’essayer.

Teaching Assistant — Est-ce que si j’avais ajouté une recommandation, du style, bon j’aurais peut-étre pu faire un test, par
exemple pour voir si votre résultat était plus long que le résultat attendu et donc il y aurait eu, dans une boite comme ¢a en disant «
Tiens, il semble avoir trop de caractéres, ¢a veut peut-étre dire que vous faites trop d’itérations sur la ligne, vérifiez votre gardien ».

Students Delegate — Ouais, vérifier le gardien

Teaching Assistant — Est-ce que cet indice-1a est utile ou pour vous, c’est de toute fagon le gardien qu’il faut aller voir ?

Students Delegate — En voyant ca, ...

Student 1 — En voyant ¢a, c’est déja expliqué

Student 3 — C’est affiché plus graphiquement, on va dire

Students Delegate — Y’en a qui ne comprennent pas forcément parce qu’ils commencent la programmation maintenant et j’en
connais, je vais pas donner des noms, j’en connais qui voient ¢a et qui ne pensent pas forcément que c’est le gardien qui est mal fait,
ou des choses comme ¢a. Mettre « vérifiez le gardien », ou quelque chose du genre pourrait aider certains.

IFRES Supervisor — Cest déja, pour un bon étudiant, de n’avoir pas, entre guillemets, que ¢a ?

Several Students — Ouais

Students Delegate — Enfin, quelqu’un qui a plus ou moins, qui comprend ce que c’est une boucle. Parce que tout le monde ne le
fais pas. Méme si on est censé le faire. Tout le monde ne comprend pas exactement ce que c’est une boucle et comment elle fonctionne.

Student 3 — On est pas tous égaux face aux (autres?)

IFRES Supervisor — Mesdemoiselles ?

Students 5 & 6 — Oui

IFRES Supervisor — Monsieur, je vous sens plus, mitigé.

Student 3 — Non, je processais 'information que je viens d’entendre.

IFRES Supervisor — (rires) OK

Cas particuliers et nombre d’itérations

Teaching Assistant — Elide suivant ? Donc on a encore ici deux titres : le « cas particuliers N = 0 » et « Vérification du nombre
d’itérations ». Vous voyez toujours a quoi correspondent les titres ?

Several Students — Moui

Teaching Assistant — OK. Pour le cas particulier, il va y avoir encore des boites qui vont apparaitre ici, en vert et en violet.
Vous voyez pourquoi est-ce qu’on teste de maniére indépendante et a quoi ¢a correspond ?

Student 1 — Je voulais, enfin, ¢ca, 8 moins que je me trompe, dans le Challenge, ce serait peut-étre intéressant de nous dire «
fais attention ». Moi quand j’ai vu ¢a, j’ai vu « cas particulier », j’ai eu juste, tant mieux, dans ma téte, je n’y avais pas pensé.

Student 2 — Je n’y avait pas fais attention non plus.

Student 1 — C’est peut-étre intéressant de ...

Teaching Assistant — En premieére approche, a la premiére soumission, vous faisiez pas attention au cas particulier

Unidentified — (V et PV) Non

Unidentified — Moi, j’ai pas du tout pensé

Student 2 — Moi tant mieux, j’ai pas pensé, j’aurais pu perdre des points la-dessus... Ces deux points-13, ce serait intéressant de
préciser de faire attention.

Teaching Assistant — Une ligne, par exemple dans I'énoncé qui dirait « attention, testez bien N =0 » ?

Student 2 — Ou alors, résoudre en dessous d’'un certain nombre d’itérations. Pour, je sais pas.

Student 1 — « Faire attention aux cas particuliers et au nombre d’itérations », ¢a pourrait étre...

IFRES Supervisor — Ca, pour le coup, c’est un critéere d'une bonne performance. Est-ce que vous seriez intéressé de recevoir
une espece de liste, des points d’attention que vous devriez a l'esprit ?

Students Delegate — Oui, ca serait bien.
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Student 1 — Oui, parce que 13, vraiment, quand j’ai rendu, j’y ai pas pensé d’un coup. Et apres, j’ai vu « ha ouais, c’est juste ».

IFRES Supervisor — Quelqu'un y avait pensé ?

Student 3 — Dans I’énoncé, ¢a parlait de nombres entiers supérieurs, c’est ¢ca ? Ca parlait pas...

Teaching Assistant — Nombre entier, N pair

Student 1 — 0, C’est pair, donc...

Teaching Assistant — Si vous ratez, si on vous dit « c’est des nombres entiers pairs », vous perdez des points parce que N =0 et
que vous avez complétement oublié de tester le cas, est-ce que vous vous sentiriez, je ne sais pas ? volé ?

Student 2 — Oui

Unidentified - Mmmmm

Student 1 — J’aurais le démon (sic.).

Student 2 — Moi, non

Student 4 — Ca n’a juste pas de sens de faire un code qui ne fait rien, en fait c’est pour ¢a. On n’imagine pas cette possibilité,
qui voudrait essayer de faire ¢a ? Pour moi, c’est un peu ca en tout cas.

Student 3 — Ce serait décevant de perdre des points pour un cas, enfin, c’est pas dans ’énoncé.

Unidentified — On aurait pas pensé

Student 3 — Voila, si on respecte les consignes de I'énoncé, qu’on nous informe pas, c’est dommage. Faut informer, en fait.

Teaching Assistant — Vous avez 'impression de vous faire entuber, « Ah, il a été trop spépieux » ?

Student 3 — Un petit peu.

Student 4 — C’est un cas qui doit étre quand méme pris en compte.

Students Delegate — Je pense ¢a aussi.

Teaching Assistant — Oui

Student 4 — C’est pas pour ¢a qu’on écrit le code.

Teaching Assistant — Faut vérifier...

Student 3 — On est en 1re année, on est en train d[emmerder ?] les étudiants

Unidentified — Peut-étre qu’ils ont fait des codes de merde ?

Teaching Assistant — Pas forcément, Je I'ai vu aprés mais il y a des gens qui font des gardiens avec N - 1 avec N unsigned, N -
1 unsigned, c¢a fait 4 milliards, ils essaient d'imprimer un damier de 16 milliards de milliards de caractéres et donc la machine de
soumission crache. Dong, c’est vrai, qu’a un moment donné, il vaut mieux attirer ’attention la-dessus.

Student 2 — Apres, c’est pas une question sur laquelle il faut compter des milliards de points.

Teaching Assistant — Non, il y a 2 pts sur 20, c’est pas...

Student 2 — C’est un cas qu’il faut quand méme prendre en compte, je trouve. On n’est pas obligé de nous pré-macher le travail

a4 200% non plus. C’est vrai que moi, j’y ai pas pensé, on aurait peut-étre di me mettre la puce a l'oreille mais...

Publicité de la répartition des points

Teaching Assistant — La part relative des différents criteres, est-ce que ¢a, par exemple, a chaque fois que y’a un titre, je pourrais
mettre la pondération en fonction du titre, est-ce que ? Il faut que je vois ¢a avec le Professeur Donnet, c’est pas moi qui décide si on
donne cette info. Mais est-ce que c’est une info intéressante ?

Several Students — Oui [# TODO]

Teaching Assistant — Par exemple, I'Inv, pour vous, qu’est-ce qui est le plus important dans le Challenge d’apres vous ?
Qu’est-ce qui est le plus coté ? Est-ce que c’est la partie code ou la partie Inv ?

Students Delegate — Linvariant ?

Teaching Assistant — D’apres vous, combien ? 50/50, 70/30 ?

Student 1 — 70/30 Plutét. 60/40.

Teaching Assistant — C’est 60/40 pour I'instant. Cette info-1a, est-ce que vous préférez ’avoir de base ou est-ce que vous
trouvez que le discours de Benoit Donnet au cours théorique de ce qu’il dit sur I'Invariant, est-ce que vous trouvez implicite que 'Inv
soit plus coté que le code ?

Students Delegate — Il I'a déja dit au cours, donc...

Student 2 — Oui, on a eu tout un cours sur I'Inv disant que c’était.

Students Delegate — Je vois pas comment ¢a pourrait nous aider parce qu pour que ¢a marche, on doit bien faire les deux.
Qu’on sache lequel des deux est plus c6té ou pas, ¢a ne change pas grand chose a notre probleme.

Teaching Assistant — Y’a des gens ...
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Students Delegate — On stresse plus s’il y a un probleme

IFRES Supervisor — Du point de vue pédagogique, je suis d’accord avec vous.

Teaching Assistant — C’est vrai, mais y’a différents types d’étudiants, y’a des étudiants qui, face & une difficulté, quand t’es a
la derniére soumission et que t’as plusieurs choses & corriger, y’a les étudiants dits stratégiques, qui vont préférer investir plus de

temps sur ce qui va rapporter le plus de point.

Publicité des points d'attention

IFRES Supervisor — Du point de vue de 'apprentissage, pour cette raison-la, c’est pas spécialement intéressant que vous ayez
ca. La question, c’est de savoir : tout d’'un coup, vous voyez une question sur le cas particulier, certains d’entre vous 'ont dit, vous
avez été relativement surpris que ¢a apparaisse dans le feedback, est-ce que vous auriez besoin, plutot d'une sorte d’énumération de
Tensemble des critéres ou des points que vous devez garder a 'esprit dans votre réponse, dont, en 'occurrence, les cas particuliers.

Student 4 — Dans ce cas-ci, ¢a peut étre intéressant d’avoir un, d’étre averti a ’'avance qu’il y a des cas particuliers auquel il
faut penser mais je ne pense pas qu’il faut aller trop dans les détails.

IFRES Supervisor — OK

Teaching Assistant — Ca, ¢a rajouterai, grosso-modo, 2 tiers de page, une page dans ’énoncé, '’énoncé ne deviendrait pas trop
long, si on fait toute une liste de truc tac, tac, tac, tac, tac ?

Student 3 — On peut pas lister, parler des cas particuliers en général ?

Teaching Assistant — Il serait mis par exemple « faites attention au cas part. N = 0 », ce genre de choses. Ou est-ce que vous
préférez une liste de tous les points d’attention ou est-ce que s’il y a une phrase, quelque part, dans I'énoncé, qui dit « attention, tenez
compte de N = 0 » en note de bas de page, est-ce que ¢a suffit ?

Several Students — Ouais.

Unidentified — Ca suffit.

Teaching Assistant — Et donc les recommandations, « Testez le code avec le cas part. ...», qu’est-ce que vous pensez de cette
recommandation ?

IFRES Supervisor — Utile ?

Student 3 — Ouais, c’est utile, je pense.

Unidentified - Mmmm

Unidentified — C’est [bon a prendre ?]

IFRES Supervisor — Clair pas trop général ?

Student 3 — Ce serait dans '’énoncé ou le feedback ?

Teaching Assistant — Le quoi ?

IFRES Supervisor — Ca, c’est dans le feedback.

Student 3 — L'information de tester... les cas part

Teaching Assistant — L'information « attention, testez N = 0 », ce serait dans ’énoncé. Ce serait par exemple, vous avez N,
pair avec un renvoi en note de bas de page, vous savez que j’aime bien les notes de bas de page, y’en a souvent une demi-douzaine.
Est-ce que y’en aurait pas trop a ce moment-la ?

Student 1 — Non, c’est comique [c’est le but]

Student 4 — Ca fait partie de '’énoncé aussi.

Teaching Assistant — Oui, c’est comique, dans 'Ingénu, ils procédent de 1a méme maniére. Hé hé

Student 3 — Si I’énoncé est bien, on va dire, sectionné, les informations affichées clairement...

Teaching Assistant — Et pour l'instant, c’est clair & vos yeux, vu qu’on en parle ?

Several Students — Oui

Student 3 — L'énoncé , ¢a va.

Nombre d’itérations

Teaching Assistant — Pour le nombre d’itérations, on met « N = 18, y’a 360 itérations., votre code ... », qu’est-ce que vous pensez de
ce genre de message ? Est-ce que vous voyez directement & quoi ¢a peut correspondre ?

Students Delegate — Le gardien, il est mal fait.

Teaching Assistant — Oui, on a pas envie d’étre heurtant, on va pas mettre « c’est mal fait ! ».

Student 1 — Moi, je vois qu’il y a 360 itérations. OK, trés bien, mais je ne vois pas a combien d’itérations je devrais étre
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techniquement. Ca m’avance pas. Ca produit trop mais combien de trop ? beaucoup trop ou ?

Student 3 — A combien on doit s’y attendre ?

Teaching Assistant — OK. Je pense que dans le Challenge qui arrive demain, il est marqué dans ’énoncé le nombre d’itérations
auquel on doit s’attendre. C’est dans I’énoncé. Ce sera testé de cette maniére 1a. Donc 1a ¢a serait... Et la recommandation pour
limiter le nombre d’itérations, « inspectez son gardien »,

Students Delegate — Ca c’est

Student 1 — Ca c’est nickel.

Teaching Assistant — Ca vous partait utile ? Ou trivial, comme recommandation ?

Student 2 — D’'une maniére, c’est pas déroutant non plus, donc pourquoi est-ce qu’on ’enléverait ?

Teaching Assistant — OK

Student 2 — Si y’en a qui pensent pas a ¢a a premiére vue.

IFRES Supervisor — Le commentaire n’est pas long

Student 2 — Oui, c’est 2 lignes.

Recommandation finale

Teaching Assistant — Slide Suivant. La derniére recommandation finale, dans le la page recommandations - c’est expliqué dans
le manuel « Comment comprendre le feedback » - s’il y a des recommandations qui sont communes a plusieurs sous-questions,
plusieurs titres, elles sont mises a cet endroit-la du document. Vous avez la recommandation, 1a : « Pour corriger vos Inv .. ». La
potentiellement, les deux invariants étaient incorrects et I'information est mise a cet endroit-la du feedback. Est-ce que c’est assez
clair, est-ce que ce n’est pas trop loin dans le feedback, parce qu'on a d’abord parlé du code et des cas particulier ? La place de la
recommandation finale ?

Student 4 — C’est un récapitulatif de tous les problémes, finalement.

Student 1 — Mouais

Teaching Assistant — Si des problémes plus ou moins communs parce que les autres recommandations ont déja été données,
en fait. Est-ce que ¢a géne pas que ce soit trop bas, comme ¢a.

Student 1 — Moi, quand je vois, ici, c’est un petit feedback mais s’il y a beaucoup d’erreur et apres, je vois ¢a, je me dis que, du
coup, je dois remonter pour aller voir. Peut-étre faire des recommandations par partie. Pour 'Inv , pour autre chose [# TODO : bonne
idée] au lieu de faire tout un gros bloc a la fin, plutét faire par partie comme ¢a on a bien les errerus qu’on a faite en haut et c’est plus
simple.

Teaching Assistant — Chapitrer un peu les titres, en fait ?

Student 1 — Oui

Teaching Assistant — Avec des sections et des titres dans la sections ?

IFRES Supervisor — En méme temps, vous trouvez que c’est un gros bloc, ce n’est pas trés trés long ?

Teaching Assistant — Il pourrait en avoir 3. Il pourrait avoir 3 blocs.

Student 1 — S’il y a une erreur, si c’est un Challenge plus long, et qu’il y a plus d’erreurs...

IFRES Supervisor — Ca sera long, oui, OK. Au niveau de la clarté ?

Unidentified — Clair

IFRES Supervisor — Pas trop général ?

Student 3 — C’est un peu le but de cette derniére recommandation [Non...]

Unidentified — Oui

IFRES Supervisor — Ok

Student 3 — Je trouve que c’est bien que ¢a se trouve a la fin. Ce format 13, c’est pas trés long non plus.

Conclusion et resoumission

Teaching Assistant — Ensuite,il y a le dernier cadre : « N’hésitez pas a soumettre si ... »
IFRES Supervisor — Ca vous incite ?
Student 1 — Ouais

Student 3 — On nous briefe, on nous a déja bien briefé au sujet des re-soumissions, je pense que c’est pas forcément utile comme
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info, mais ¢a cl6ture bien le feedback.
Student 2 — Ca cloture, ¢a résume bien
Student 1 - Il faut voir ¢a comme une fin de lettre, « Veuillez agréer, Monsieur/Madame, voila », c’est emballé

Student 3 — Une petite note sympathique

Cotation sur les 3 soumissions

Teaching Assistant — Au niveau de la re-soumission, est-ce qu’il y a des choses qui vous incitent, qui vous freinent de maniére
générale, a re-soumettre ?

Student 1 — Ouais, moi j’ai un truc, c’est le fait par exemple, si on est & deux soumissions et qu’il nous reste plus qu'une
soumission, que ¢a prenne, c’est logique mais en méme temps c’est chiant, que ¢a prenne la derniére soumission, les points de la
derniére soumission en compte. Par exemple, je prends pour le Challenge # 2, j’ai arrété au bout de 2 soumissions, j’aurais bien
voulu, 1) essayer pour du beurre apres la fin du Challenge, parce que ¢ca m’ennuie d’étre en erreur, j’ai envie d’avoir juste, quoi. Donc,
peut-étre qu'apres le temps du Challenge soit (sic.) fini, pouvoir quand méme le faire pour du beurre, et que [2)], ¢a ne prenne que la
plus grosse note au lieu que ¢a prenne la derniére note en compte. J’ai fait deux soumissions le # 3 et je suis resté sur une erreur.
C’est embétant mais c’est logique d’'un autre c6té sinon, c’est trop facile.

Student 3 — Personnellement, j’aurais apprécié, enfin, je sais pas si on peut obtenir une bonne note par hasard, mais je me suis
fait avoir par ce systéme que la derniére soumission compte et j’ai réussi a perdre le peu de points que j’avais lors du ler Challenge
parce que j’étais stressé pour la derniére soumission et j’ai changé complétement de stratégie.

Teaching Assistant — Ouais

Student 3 — Moi, je pensais, enfin, javais en téte que le programme, CAFE, prenait peut-étre la meilleure soumission, je ne
sais pas si c’est applicable ? Ca pourrait étre utile, je trouve, que CAFE garde, comment dire, la... compte-tenu du fait que CAFE
est performant et objectif, est censé étre objectif par rapport aux points qu’il donne, qu’il garde, peut-étre, la meilleure note ou la
meilleure performance. Le gars qui va oublier un « ; » pour sa derniére soumission et qui a fait un truc parfait pour la soumission 2,
un truc qui marche et qui veut 'améliorer et qui a, je ne vais pas le dire, pas de chance parce qu’on est censé étre des professionnels,
enfin, on est des étudiants, on est censé devenir professionnels, on peut vraiment perdre tout.

Teaching Assistant — Vous trouver ¢a un peu trop punitif, en fait ?

Students Delegate — La moyenne peut-étre ?

Unidentified — Ca pourrait étre ca.

Student 3 — C’est... je trouve ¢a un peu vache mais je comprends le principe.

Student 1 — La moyenne, je suis pas pour, enfin ...

Teaching Assistant — Ou des genre de points de participation si vous foirez a la derniére soumission ? Du style, vous faites 15,
18 et ensuite vous oubliez un « ; », vous avez pas 0, vous avez, je ne sais pas, un petit quelque chose, quand méme, pour ne pas...

Several Students — (rires)

Student 1 — Passer de 0 & 2

Teaching Assistant — Pas 2 mais bon...

Le stress

Student 3 — Y’a des éléves qui peuvent, un peu comme moi, se planter sur deux soumissions et puis, pour la troisiéme, recommencer
from scratch, recommencer tout un code et du coup, faire moins bien. A cause du changement de stratégie. J’ai eu ce probléme parce
que, dans la boucle for, javais mis une virgule et CAFE ne voulait pas me donner de feedback.

Teaching Assistant — Ouais.

Student 3 — Donc j’étais complétement stressé ce jour-la et puis, j’avais tout recommencé. Bon 13, javais quand méme eu plus
de points lors de la derniére soumission.

Teaching Assistant — Dans ce cas 13, c’est un peu un stress inhibiteur ?

Student 3 — Oui, ¢a ne donne pas envie de resoumettre trois fois.

Student 4 — Apres, dans ce cas-1a, ton compilateur doit te le dire a I'avance. Si tu testes pas ton code et que tu 'envoies
directement, c’est ta faute aussi je pense.

Teaching Assistant — Non, c’est ...

Student 3 — Le compilateur sait pas si ton gardien il est bon ou §’il a changgé.

Teaching Assistant — Mais 13, 'erreur au niveau de la virgule, ¢a a été corrigé dans CAFE
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Student 3 — Ah, excellent.

Teaching Assistant — Y’a du code - c’est pas pour ¢a qu’il faut mettre des virgules, c’est trés mauvais. -

Student 3 — J’en mettrai plus jamais

IFRES Supervisor — Les trois soumissions, c’est pas du tout 'idée que la 3e génére du stress, c’est de vous donner plusieurs
possibilités.

Teaching Assistant — C’est un peu dommageable que la 3e géneére ca. Peut-étre, on en discutera avec le prof [# TODO]. Parce
que les politiques : moi, je suis ouvert & vraiment tout, au niveau de CAFE et tout au niveau du cours, on peut méme discuter de
I’éventualité de ne pas faire d’examen, avec moi, on peut parler de ¢a, avec le prof, je ne pense pas... faut voir un peu ce que lui...

IFRES Supervisor — Il est trés constructif par rapport a ¢a, il sait vraiment entendre les... oui oui.

Teaching Assistant — En tout cas mes remarques... celles des étudiants, peut-étre pas. N’allez pas le dire.

Student 3 — J’ai donné ma suggestion...

Teaching Assistant — Non mais non [dans le sens ouil, ¢a peut... d’avoir quand méme des...

Student 3 — Ca peut rendre ou pas service

Reprise des questions générales

Teaching Assistant — Parce que pour l'instant, le fait que le dernier point qui est fait apparait au niveau de la soumission [la cotel,
Cest codé dans la plateforme et pas dans CAFE en fait mais on a quand méme l'historique de vos points, donc on sait quand méme
voir et on pourrait vous calculer une cote, c’est dans 'ordre du possible.

Student 3 — Ou refaire un calcul, pas forcément garder la derniére note, faire un calcul ...

Teaching Assistant — ... alambiqué. En fonction if machin else la face de la lune est dans le premier quartier, c’est la racine
cubique de la moyenne.

Several Students — (rires)

Student 4 — Ca peut avoir l'effet inverse si j’ai raté la premiére soumission pour une raison ou une autre, parce que j’ai bien
foiré quelque chose de béte, si je refais le 2e parfaitement j’ai 20/20. Si on prend la moyenne des deux, jaurai 10/20. Alors que la
premiére...

IFRES Supervisor — Absolument

Student 1 — La moyenne, c’est pas fou

Teaching Assistant — Ce serait pas forcément la moyenne, ce serait un truc intelligent, vous me connaissez.

Student 4 — Perdre des points parce que j’ai envoyé une bétise ou mal zippé mon truc ou quoi, c’est un peu dommage aussi.

Student 3 — Le but aussi, c’est de s’améliorer a chaque fois.

Teaching Assistant — Ouais

Unidentified — C’est trop punitif.

Teaching Assistant — Ca, & ce niveau-la, le niveau punitif au niveau du nom de I’archive, on a changé « Comment comprendre
le feedback », donc maintenant, dés qu’il y a un message qui vous arrive en anglais, c’est vraisemblablement parce qu’il y a une
erreur dans le nom de l'archive. Donc ¢a, il faut étre trés [vigilant]. Mais ¢a, peut vraiment rien faire car c’est pas nous qui contrdlons
le fait que la machine crashe si vous avez mis une parenthése dans le nom de I’archive. Ce n’est pas de mon ressort. Les autres qui
programment cette partie-1a, je leur ai déja dit que c’était béte mais, ¢a ne devrait pas ... [changer] mais bon, j’en peut strictement
rien. Sinon, au niveau général, maintenant qu'on a balayé tous les éléments du feedback, de maniére plus globale, si on interroge les
questions qui sont 1a.

IFRES Supervisor — La premiére ici, on vient de la poser un peu. La seconde, est-ce que dans I'information générale, dans
Iensemble du feedback, vous avez le sentiment d’avoir tout ce qu’il faut pour savoir ce qui est bon et pas bon dans votre code. Ou il y
a des informations qui vous paraissent encore vous manquer ?

Student 2 — Non, cest assez explicite. Je pense que quand on a, dans le cas, ici, avec ’accent circonflexe qui montre ou est
Perreur, y’a pas photo, quoi.

Students Delegate — Ouais

Student 2 — Y’a pas moyen de le mettre plus sous le nez que ¢a, je pense.

Student 1 — Pour le code, oui, je suis d’accord qu’on voit bien oit on a faux, c’est noté noir sur blanc. Peut-étre que, comme je
disait tantdt, pour I'Inv, pour le cas de ce Challenge-ci, j’ai pas trouvé ¢a assez explicite pour bien me montrer ou javais faux. Donc
voila . Mais pour le code, ¢a va.

IFRES Supervisor — Monsieur ?
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Student 4 — J’ai oublié ce que je voulais dire.

IFRES Supervisor — Est-ce qu’il y a des infos qui vous paraissent manquer a un moment ou a un autre ?

Student 1 — Non, parce qu’on nous précise bien correctement qu’est-ce qu’on doit aller revoir. Du coup, techniquement, ¢a doit
nous aider a rectifier le tir, vu que... Pour la grosse recommandation 14, on voit bien qu’est-ce qu’on doit aller revoir et quelle est la
méthode a suivre.

IFRES Supervisor — Et vous Monsieur, vous avez commencé votre phrase par « méme si »

Student 2 — J’ai dit, ouais, méme si on est fainéant comme moi et lire une grande feuille de texte, c’est pas toujours facile, les
conseils sont quand méme encadrés et c’est clair quoi. Donc y’a Inv SP1, Inv SP2, y’a ¢a, ¢a, ca... Par contre, des fois, c’est dans

I’énoncé ou1 j’ai un peu du mal & m’y retrouver mais pour une fois, c’est moi qui lit en diagonale.

Nombre de recommandations

Teaching Assistant — J’ai plusieurs questions a ce niveau-la. Les recommandations, pour I'instant, au niveau du logiciel, je les ai
limitées a 3 pour qu’il n’y en ai pas plus mais est-ce que je devrais en mettre 5 ? Est-ce que 10, ce serait pas trop ? Ou ? Qu’est-ce que
vous en pensez ?

Student 1 — Pour moi, si y’a des erreurs, pour toutes les erreurs, faut mettre des recommandations

Student 3 — Plus y’a de recommandations, plus ¢a aide, mais une maniére de les placer intelligemment par rapport aux
contenus, a la vérification. Je trouve que dans des cadres, c’est bien mis en évidence, ¢a ne géne pas l'information, le feedback.

Students Delegate — Tout dépend de la qualité de I'erreur, si c’est une erreur de syntaxe ou on a mis un « ; » 1a ot il ne fallait
pas ou quelque chose comme ¢a, mettre chaque fois ou il y avait un « ; » mal placé, c’est dommage. Mais si c’est quelque chose de plus
grave et de plus complexe, comme dans I'Inv. Imaginons qu’on doive faire un programme qui doive faire deux boucles et deux Inv, et
ce sont des fautes qui sont...

Teaching Assistant — Communes ?

Students Delegate — Peut-étre pas communes, parce si c’est commune, on peut les rassembler mais si c’est des fautes
différentes et importantes, on peut pas les zapper pour mettre juste trois recommandations. Peut-étre en mettre plus, tout dépend de
la gravité de l'erreur et de la complexité du Challenge. [# TODO: priorité au dela de laquelle la recommandation s’affiche de toute
fagon]

Student 3 — Pas plusieurs fois la méme recommandation.

Teaching Assistant — C’est déja géré par le code. Ca été pensé des le départ, heureusement. Y’aurait moyen de mettre plus de
recommandations, sachant que y’en aura jamais 2 les mémes et s’il y en a deux qui portent la méme partie, ce serait plus en fin de
document. C’est envisageable d’en mettre plus.

Student 3 — De toute fagon, je pense pas qu’il y ait des centaines de recommandations différentes qui peuvent survenir. C’est
souvent la méme chose.

Student 2 — Le compilateur et les tests qu’on fait & la maison filtrent le plus gros des erreurs. Non ? Toutes les recommandations
ont lieu d’étre.

Student 3 — On compile pas forcément, y’a peut-étre des gens qui...

Teaching Assistant — Ca s’est vérifié

Student 3 — ... qui vont soumettre comme ¢a sans ...

Students Delegate — Peut-étre dire dans ’énoncé « compilez avant »

Student 2 — Ca a déja été dit, ¢ca non ? Il me semble.

Teaching Assistant — C’est pas trivial de dire « compilez votre code avant » ?

Student 2 — Ouais, c’est ¢a essayer de voir si ¢a fonctionne.

Student 1 — Y’a beaucoup de rappels qui ont été faits et qui sont trivial, ¢a ne fait pas de mal. Moi, ¢a me parait logique,

peut-étre qu’a d’autres non.

Au sujet du squelette

Teaching Assistant — Le squelette, que vous avez sous les yeux, en bleu, il y a a chaque fois les rappels de la maniére de soumettre,
ou presque, avec un rappel d’énoncé ? Est-ce que c’est pas trop indigeste, par rapport a ’énoncé ? J’ai parfois I'impression d’écrire les
conditions générales d’'une assurance ou d’'un placement bancaire avec des...[Notes de Bas Pages] ?

Student 2 — Du moment que c’est structuré comme ¢a, non. C’est pas indigeste. Si on veut aller voir si on a oublié, « ah merde,

comment est-ce que je vais faire », bam : c’est directement mis, souligné et on n’a plus qu’a aller regarder.
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Teaching Assistant — Parce que 13, ici, j’ai en plus intentionnellement activé la coloration syntaxique avant de vous 'imprimer.
Est-ce que vous le faites aussi chez vous en coloration syntaxique pour voir la différence entre ?

Student 4 — Je pense que tout le monde le ferai

Students Delegate — Je le fais pas moi

Student 3 — Pour faire le code ?

Unidentified — Non...

Teaching Assistant — Le squelette. Quand tu prends le fichier chez toi Challenge3.txt et que tu affiches la coloration syntaxique
C, c’est ¢a que tu va avoir sous les yeux ou avec les couleurs que tu choisis dans ton logiciel.

Student 3 — A partir du moment ot je copie-colle dans le squelette, la coloration syntaxique... je ... pas.

Teaching Assistant — Pour vous, c’est assez clair, j’ai parfois des étudiants qui ont du mal a repérer 'endroit ot on place une
réponse, par exemple.

Student 3 — Voila, ca, je vais pas dire que j'ai des difficultés a placer une réponse mais ¢a peut arriver, je pense. La,ily a9
points et au dessus, il y en a 6, mais ne scrolant on peut ...

Teaching Assistant — confondre les deux ?

Student 3 — ... a confondre. Y’a pas vraiment de séparation entre Inv SP1 et SP2

Student 2 — Oui, peut-étre mettre une ligne de tirets dans le squelette.

Student 3 — Pour les distraits, y’aurait moyen de confondre. Ca m’est dja presque arrivé.

Teaching Assistant — Mettre une ligne de tiret. Ce serait les mémes couleurs que ¢a, y’aurait moyen. Segmenter, avoir presque
le méme titre « Inv SP1 » et vous verriez « Correction Inv SP1 » dans le feedback, ¢a, ¢ca pourrait étre utile aussi. [# DONE]

Unidentified - Mmmm

Teaching Assistant — OK

Recommandations 7 Demandes ? Imperfections ?

IFRES Supervisor — D’autres choses, que vous voulez dire sur le systéme CAFE en général ? Des recommandations ? Des demandes

? Des imperfections ?

Soumettre apres le timeout

Student 1 — Je crois que je I’ai dit : d’avoir la possibilité, apres le temps de soumission, que la machine puisse quand méme évaluer
notre Challenge. Je prends mon cas du Challenge 2, je suis resté a4 2 soumissions, j’ai pas tenté la 3e mais j’aurais bien voulu quand
méme que la machine corrige la 3e soumission pour du beurre entre guillemets. Pour pas que je reste sur une erreur et que je
comprenne mon erreur.

Student 3 — Voila, apres le timeout ...

Student 1 — Apres le vendredi, 18h.

Student 3 — ... que CAFE accepte encore des soumissions mais sans enregistrer le résultat.

Student 1 — Juste pour tester notre code et voir si c’est juste.

Student 3 — Une possibilité en plus, oui.

Remerciements, etc.

Teaching Assistant — Ok, en tout cas, un grand merci. On va voir ¢a. Le check pour du beurre apres la deadline, je viens de le noter,
¢a peut... J’en discuterai avec le prof. On va utiliser les données soit a des fins de recherche de notre c6té soit pour améliorer la
plateforme. Y’aura peut-étre des choses qui d’ici & demain... Demain, c’est le Challenge 3, je vais peut-étre déja mettre des choses...

Students Delegate — Une question pour demain...

Teaching Assistant — Est-ce qu’ily ale QCM 3 ?

Students Delegate — ... est-ce qu’il y a QCM ou pas demain ?

Teaching Assistant — Non, y’a une erreur sur eCampus apparemment.

Students Delegate — Donc y’a pas QCM demain ?

Teaching Assistant — Non. Ca [les docs papiers], je vais le recycler moi-méme, vous n’avez pas tellement besoin de ca... Et
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merci a tous !

IFRES Supervisor — Merci pour votre temps !
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