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Abstract

Quantum simulation with ultracold atoms gained a lot of traction recently by proposing a
framework with a lot of flexibility, versatility and tunability to emulate diverse quantum ef-
fects. It indeed provides the ideal playground to study many–body effects in a well–controlled
environment and is particularly useful in the domain of quantum coherent transport of waves
in random media. The purpose of this thesis is to study several configurations of coher-
ent transport within random media with Bose–Einstein condensates and to investigate the
interplay between coherence and interaction effects. In particular, we start by numerically
studying Aharonov–Bohm oscillations in the transmission of particles across the eponymous
rings in a 1D configuration. When exposed to a suitably chosen disorder potential, those
rings yield oscillations with double frequency, which are routinely encountered in solid–state
physics where they are referred to as Al’tshuler–Aronov–Spivak oscillations, similar in essence
to coherent backscattering and weak localisation. We then study the behaviour of those os-
cillations in the presence of interaction within Aharonov–Bohm rings and find that in the
mean–field regime, they are inverted for finite interaction. Truncated Wigner simulations
are then carried out in the same scenario and indicate that the inversion should be observ-
able for realistic atomic and experimental parameters with 39K atoms, although dephasing
of the oscillations is observed at strong interaction owing to interaction–induced inelastic
scattering. A first–order nonlinear diagrammatic theory is then presented and benchmarks
our numerical findings. The question of the inversion prevalence is then investigated in a
2D scenario, following state–of–the–art observations in the literature. It has indeed been nu-
merically observed that coherent backscattering is inverted in the mean–field approximation
for finite interaction strength. We numerically confirm this observation with our study and
extend it beyond the mean–field approximation by applying the truncated Wigner method.
These simulations show that the inversion prevails beyond the mean–field regime and should
moreover be observable experimentally with 87Rb atoms for realistic parameters, despite a
partial dephasing. This dephasing however completely eclipses interference effects and washes
out this signature of antilocalisation for stronger interaction.





Résumé

La simulation quantique avec des atomes ultrafroids connaît ces dernières années un franc
succès notamment en raison de l’écosystème qu’elle propose. Dans ce contexte, il est ainsi
possible d’étudier et de simuler divers effets quantiques avec un degré de flexibilité, de poly-
valence et d’ajustabilité impresionnant. En effet, la simulation quantique fournit le cadre
idéal pour étudier des effets quantiques à N corps dans un environnement bien contrôlé
et est particulièrement indiquée pour étudier des problèmes de transport cohérent d’ondes
de matière dans des milieux aléatoires. L’objet de cette thèse de doctorat est d’investiguer
plusieurs scénarios s’inscrivant dans cette thématique à l’aide de condensats de Bose–Einstein
et d’examiner la compétition entre les effets d’interférence et d’interaction. En particulier,
nous commençons par nous intéresser aux oscillations, dites d’Aharonov–Bohm, de la trans-
mission de particules au travers des anneaux portant le même nom, à une dimension. En
présence d’un désordre adéquat au sein de tels anneaux, ces oscillations laissent place à des
oscillations d’une fréquence double, connues comme oscillations d’Al’tshuler–Aronov–Spivak,
dans la transmission moyennée de particules. Ces oscillations, fréquemment rencontrées en
physique de l’état solide, ont un mécanisme sous–jacent très similaire à celui de la localisation
faible ou encore de la rétrodiffusion cohérente. Ensuite, nous examinons le comportement de
telles oscillations en présence d’interaction au sein d’anneaux d’Aharonov–Bohm et montrons
une inversion de ces oscillations dans l’approximation à champ moyen. Des simulations trun-
cated Wigner réalisées dans le même contexte indiquent que l’inversion devrait être observable
expérimentalement pour des atomes de 39K avec un jeu de paramètres réalistes, malgré que
la diffusion inélastique ne mène à un déphasage des effets d’interférence pour une interaction
plus intense. Nous présentons ensuite une théorie diagrammatique nonlinéaire du premier
ordre qui confirme ces observations. La prévalence de cette inversion est enfin examinée dans
un scénario à deux dimensions, conformément à la littérature qui indique une inversion de la
rétrodiffusion cohérente. Nous confirmons ce résultat dans l’approximation à champ moyen
et étendons les simulations dans un contexte plus général au moyen de la méthode “truncated
Wigner”. Cette méthode indique que l’inversion prévaut au–delà du régime à champ moyen
et devrait être observable expérimentalement avec des atomes de 87Rb, malgré la présence
d’un déphasage partiel. À plus forte interaction, ce dernier éclipse d’ailleurs complètement
la signature d’antilocalisation observée.





Acknowledgments

My journey as a PhD student is about to end and what an adventure it was! At the conclu-
sion of this journey and although it is not in my nature to be demonstrative, I better realise
that some people were/are/shall be very important to me and I would like to thank them
hereby.

I first would like to express my deep gratitude to my advisor Prof. Peter Schlagheck for
many reasons. The most obvious one is for having given me the opportunity to carry out
a PhD thesis under your guidance. I consider myself as very lucky to have benefited from
your profound knowledge of physics and mathematics, but also from the wide freedom and
flexibility of work you encouraged within the group. Despite your busy schedule, you have
always found some time for helping me by answering my numerous questions. I also thank
you for the proofreading of this manuscript and your criticisms. It was a real honour to be
your PhD student.

My thanks also go to Prof. Andreas Buchleitner, Prof. Nicolas Cherroret, Prof. Ngoc Duy
Nguyen, Prof. John Martin and Prof. Thierry Bastin who kindly accepted to constitute my
jury of thesis. I wish you a reading as pleasant as possible.

The next person I would like to thank is Dr. Julien Dujardin, who most kindly welcomed me
in the group when I was a young graduate student. Entering the research world is kind of
intimidating, but you introduced me smoothly to the domain of ultracold atoms and I really
enjoyed the working atmosphere with Cyril around Aharonov–Bohm rings. I also would like
to thank you for proofreading this manuscript, so many years after your defence. . .
By the way, I also thank Dr. Cyril Petitjean for the precious help he provided me regarding
Aharonov–Bohm rings and also for his friendliness and good mood.

I now would like to thank Dr. Josef Rammensee from the university of Regensburg. Your
help regarding the diagrammatic theory around Al’tshuler–Aronov–Spivak oscillations was
very precious. I have been very impressed by your mastery of diagrammatic techniques and
express you my gratitude for having worked with us on this challenging topic. I hope Chap-
ter 6 honours your work as it should.

My thanks go now to my office mates, Emeline, Antoine and Lionel. It was a real pleasure
to have so kind and friendly colleagues at my sides and also, to meet the woman of my life.
I enjoyed all the discussions we had regarding various topics such as video games, tennis,
sports in general, politics, “why LaTeX or inkscape is still bugging again?” and . . . about



physics of course! Such a nice working atmosphere is rare and I’m glad I was involved in.

My next thanks go to the other PhD students in the building. First of all, to Guillaume
with whom I had to pleasure to teach the programming lessons. It was a pleasure to work
with you and I’m glad we were so often on the same wavelength. I also appreciated all
the discussions we had regarding our mutual passion for physics. I want to thank Elodie
for her kindness and her permanent good mood. It is always a pleasure to hear someone
knocking at the door and to discover that you has simply come to ask how it is going. I
also want to thank Céline for all the discussions we had that often ranged beyond physics
and that were always pleasant. I also would like to thank Pierre and Florence with whom
it is also always a pleasure to discuss. I also want to thank Thomas for his friendship, for
the regular lifts from office back to home and for his careful proofreading of this manuscript.
Your meticulous work has contributed to enhance the quality of this document. I am very
grateful for that and intend to return the favour in proper time. My only regret is that
we did not have more time to spend, and maybe to collaborate, together. I would like to
thank Dr. Quirin Hummel who worked as a postdoc. I would have appreciated to have more
regular conversations with you in German, but unfortunately, the epidemic decided otherwise.

Finally, I have to thank my family. My parents, first, who have encouraged and stimulated
my eager to learn from the very early childhood and have put me in the best conditions to
carry out my studies. Last, but not least, I want to thank Emeline simply for who she is. I
am very glad to have met you at the office. My life has changed since then and I enjoy every
second spent on your side. You have indirectly contributed a lot to this thesis, but also and
above all, you have made me a happy man.

Computational resources have been provided by the Consortium des Équipements de Calcul
Intensif (CÉCI, see http://www.ceci-hpc.be/), funded by the Fonds de la Recherche Scien-
tifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region.

http://www.ceci-hpc.be/


Contents

Abstract iii

Résumé v

Acknowledgments vii

Introduction 1

1 Wave propagation in disordered media 9
1.1 Absorption and scattering of light . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Wave absorption by the medium . . . . . . . . . . . . . . . . . . . . . 10
1.1.2 Scattering by the medium and the different transport regimes . . . . . 10

1.2 Multiple scattering of coherent waves in disordered media . . . . . . . . . . . 13
1.2.1 Incoherent transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Interference–induced enhancement of the return probability . . . . . . . . . . 20
1.3.1 Phase coherence length . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Paths pairings that are robust to disorder averaging . . . . . . . . . . 21
1.3.3 Weak localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.4 Coherent backscattering . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.5 Nonlinear weak localisation and coherent backscattering . . . . . . . . 27

1.4 Anderson localisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.1 Coherent forward scattering as an indicator of Anderson localisation . 31

2 Bose–Einstein condensates: a source of coherent matter waves 35
2.1 From Maxwell–Boltzmann to Bose–Einstein distribution . . . . . . . . . . . . 35
2.2 Bose–Einstein condensation of an ideal gas in a harmonic trap . . . . . . . . 37
2.3 Quantum scattering theory and atom–atom interaction . . . . . . . . . . . . . 42

2.3.1 Quantum scattering theory for a dilute gas at low temperature . . . . 42
2.3.2 Low energy scattering in the far–field limit . . . . . . . . . . . . . . . 45
2.3.3 Tuning the effective interaction by leveraging Feshbach resonances . . 48

2.4 Mean–field description of Bose–Einstein condensates . . . . . . . . . . . . . . 49
2.5 Atom lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.1 Theoretical description of an atom laser . . . . . . . . . . . . . . . . . 54
2.6 Quantum transport with atom lasers in open systems . . . . . . . . . . . . . 57

2.6.1 Transparent boundary conditions . . . . . . . . . . . . . . . . . . . . . 57
2.6.2 Smooth exterior complex scaling . . . . . . . . . . . . . . . . . . . . . 60

ix



2.6.3 Application to atom lasers . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Description of many–body effects beyond the mean–field regime 65
3.1 Phase–space formulation of classical mechanics . . . . . . . . . . . . . . . . . 66
3.2 Phase–space formulation of quantum mechanics . . . . . . . . . . . . . . . . . 67

3.2.1 Properties of the Wigner function . . . . . . . . . . . . . . . . . . . . 70
3.2.2 Gallery of Wigner functions . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2.3 Time evolution of the Wigner function and operator correspondences . 75
3.2.4 Truncated Wigner method . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 Truncated Wigner method applied to open quantum systems . . . . . . . . . 79
3.3.1 Sampling of the initial quantum state . . . . . . . . . . . . . . . . . . 79
3.3.2 Evolution equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3.3 Computation of observables . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.4 Validity of the truncated Wigner method . . . . . . . . . . . . . . . . 83

4 Transport of Bose-Einstein condensate through Aharonov–Bohm rings 85
4.1 Aharonov–Bohm effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Aharonov–Bohm Gedankenexperiment . . . . . . . . . . . . . . . . . . 87
4.1.2 Aharonov–Bohm effect in condensed–matter physics . . . . . . . . . . 89

4.2 Description of the scattering region and Aharonov–Bohm rings . . . . . . . . 90
4.2.1 Description of the scattering region . . . . . . . . . . . . . . . . . . . . 91

4.3 Mean–field equations of the system . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4 Reflection and transmission across an Aharonov–Bohm ring . . . . . . . . . . 94
4.5 Aharonov–Bohm oscillations in the transmission . . . . . . . . . . . . . . . . 98

4.5.1 Interaction effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 AAS oscillations of interacting bosonic matter wave beams 105
5.1 From Webb to Sharvin–Sharvin experiment . . . . . . . . . . . . . . . . . . . 105
5.2 Theory of Al’tshuler-Aronov-Spivak oscillations . . . . . . . . . . . . . . . . 108

5.2.1 Formulation of the scattering problem in terms of Green’s functions . 109
5.2.2 Green’s function of a 1D infinite lattice . . . . . . . . . . . . . . . . . 111
5.2.3 Green’s function of the ring . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2.4 Theory of Al’tshuler–Aronov–Spivak oscillations . . . . . . . . . . . . 116

5.3 From Aharonov–Bohm to Al’tshuler–Aronov–Spivak oscillations . . . . . . . . 121
5.4 Inversion of AAS oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.1 Al’tshuler–Aronov–Spivak oscillations beyond the mean–field regime . 125
5.4.2 Experimental observability of the AAS oscillations inversion . . . . . . 128

6 Diagrammatic theory for AAS oscillations in the presence of interaction 131
6.1 Fundamental building blocks of the diagrammatic theory . . . . . . . . . . . . 132
6.2 Resummation of diagrams in the noninteracting case . . . . . . . . . . . . . . 133

6.2.1 Diagrams related to effective reflection and transmission at a junction 133
6.2.2 Families of diagrams that join the junctions . . . . . . . . . . . . . . . 136
6.2.3 Family of diagrams connecting the ring to the leads . . . . . . . . . . 138
6.2.4 Total reflection and transmission amplitudes in the noninteracting case 140

6.3 Resummation of diagrams in the interacting case . . . . . . . . . . . . . . . . 142
6.3.1 First–order correction to the reflection and transmission amplitudes . 147

x



6.3.2 Ensemble average of the reflection and transmission probabilities . . . 149
6.4 Confrontation of the diagrammatic theory to the numerical results . . . . . . 150

7 Inversion of CBS with interacting ultracold bosons: a tW approach 155
7.1 Description of the scattering geometry . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Numerical discretisation procedure . . . . . . . . . . . . . . . . . . . . . . . . 159
7.3 Coherent backscattering peak . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4 Angular resolved current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.5 Inversion of coherent backscattering beyond the mean–field regime . . . . . . 170

Conclusion 177

A Numerical integration routine 183
A.1 Taylor’s method for numerical integration . . . . . . . . . . . . . . . . . . . . 183
A.2 Numerical routine for integrating the 1D field equations . . . . . . . . . . . . 185
A.3 Numerical routine for integrating the 1D field equations (tW method) . . . . 187
A.4 Numerical routine for integrating the 2D field equations . . . . . . . . . . . . 191
A.5 Numerical routine for integrating the 2D field equations (tW method) . . . . 192

B Introduction to Green’s functions 197
B.1 Green’s function of an ordinary differential equation . . . . . . . . . . . . . . 197

B.1.1 Green’s function of the classical harmonic oscillator . . . . . . . . . . 199
B.2 Green’s function of a partial differential equation . . . . . . . . . . . . . . . . 201

B.2.1 Green’s function of the Schrödinger equation . . . . . . . . . . . . . . 201
B.3 Perturbative series for the full Green’s function . . . . . . . . . . . . . . . . . 203

C Analytical expression for the quantum noise 205
C.1 Propagation on a semi–infinite lattice . . . . . . . . . . . . . . . . . . . . . . 205
C.2 Quantum noise in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 206

D Derivation of the motion equation for the truncated Wigner method 211

E Overview of the numerical integration package 213
E.1 Data preparation layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
E.2 Propagation layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
E.3 Postprocessing layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

List of publications 217

Bibliography 219

xi





Introduction

Until the very end of the 19th century, the description of nature essentially rested on two
classical theories supposed to explain all observed phenomena. On the one hand, in combina-
tion with the Lorentz’s expression of the electromagnetic force acting on a charged particle,
Maxwell’s equations describe wave propagation of electromagnetic waves. They provide the
suitable framework to study the electromagnetic component of the surrounding world. On
the other hand, Newton’s equations for motion describe the time evolution of a set of parti-
cles, provided that the proper initial conditions are known. With these two sets of equations
(although their resolution can be tedious), physics was perceived as a nearly mature and
fully–mastered science [1], since solving those equations is a problem rather algebraic than
physical. It was actually believed at that epoch that new significant discoveries were ex-
ceedingly remote and that the next progress in physics would only consist in more precise
estimations of some fundamental constants [2].

However, some phenomena observed by researchers were unexplainable in terms of classical
mechanics: the blackbody radiation, the Compton effect, the stability of the atom, the pho-
toelectric effect or the Stern and Gerlach experiment, to mention some famous examples.
For instance, this latter experiment only finds an explanation by introducing a quantity that
does not have any classical analogy: the intrinsic spin angular momentum. The photoelec-
tric effect was explained in 1905 by Einstein who assumed that light is composed of small
energy packets (later called photons) and that energy exchanges are discrete, as was postu-
lated earlier by Planck. It gave rise to the famous Planck–Einstein relation that describes
electromagnetic waves with a particle model, thereby introducing the wave–particle duality
of light, that led to a certain confusion in the conception of light, and paving the way for
quantum mechanics.

Louis De Broglie extended in 1924 the wave–particle duality to matter, indicating that to
every massive particle is associated a wave of wavelength λdB = h/p, where h is the Planck
constant and p the momentum of the particle. This hypothesis, quickly confirmed experi-
mentally by the diffraction of electrons by Davisson and Germer, constitutes the foundation
of quantum mechanics. This new branch of physics describes a particle by a complex–valued
function ψ(r, t) called the wavefunction. Its physical meaning is revealed by its square mod-
ulus which provides the probability density of finding the particle at the position r and the
time t [3]. Therefore, the knowledge of ψ(r, t) supplies all the possible information about the
particle. Knowing the initial state ψ(r, t0), the state of the particle at time t is provided by

1



2

the Schrödinger equation

i~
∂

∂t
ψ(r, t) = − ~

2

2m
∆ψ(r, t) + V (r, t)ψ(r, t),

with m the mass of the particle and V (r, t) an external potential.

The advent of quantum mechanics allowed physicists to make tremendous progress in the
understanding of nature, from the very fundamental level with a fully–fledged description of
the atom, to a more applied level with the explanation of the laser process or the transistor–
based electronics. It has also provided a suitable framework to study light–matter interaction,
which has been since then a very active field of research. Light and matter have always been
closely related in our conception of nature. From the foundations of quantum mechanics to
the advent of the laser, it played a crucial role both from the theoretical and applied points of
view. For instance, one of the lowest temperatures ever measured in the universe results from
the fine control of this interaction. As we shall address in this manuscript, it has allowed one
to reach Bose–Einstein condensation, a very peculiar state of matter that shall be of central
relevance in this manuscript.

This new state of matter, as it is sometimes called, is obtained thanks to sophisticated tech-
niques that bring the temperature of an atomic vapour very close to the absolute zero. At
those temperatures, particles actually exhibit a very different behaviour, as is illustrated
with a gas made of N indistinguishable particles. This system is described by a wavefunc-
tion ψ(r1σ1, . . . , rNσN ) with |ψ(r1σ1, . . . , rNσN )|2 giving the probability density to find the
particle i with the spin σi at the position ri, with i = 1, 2, . . . , N . As a result of the symmetri-
sation postulate [3], any observable related to such a system of N indistinguishable quantum
particles should be left unchanged after permutation of two particles. The wavefunction of
the system should also be left unchanged after two permutations of the same pair of parti-
cles. This implies that the many–body wavefunction describing the system is either entirely
symmetric or entirely antisymmetric under particles permutation. The symmetric or anti-
symmetric feature of the many–body wavefunction is dependent on the integer or half–integer
feature of the particle intrinsic spin. As a result of the spin–statistics theorem [4], particles
with half–integer spin are referred to as fermions whilst those with integer spin are referred
to as bosons. They obey the following statistical distribution

ni =
gi

exp
(
Ei−µ
kBT

)

± 1
, (1)

where the positive sign stands for the Fermi–Dirac statistics (for fermions) and the nega-
tive sign stands for the Bose–Einstein statistics (for bosons). Those statistical distributions
provide the average number ni of particles of energy Ei (with degeneracy gi) at thermal equi-
librium for a system at the temperature T and the chemical potential µ. Both of which are
well approximated by the Maxwell–Boltzmann distribution for high temperatures so that the
effect of the specific statistics is only significant at low temperatures. This feature is however
absolutely remarkable, as we discuss below for bosons.

Indeed, based on the seminal work of Bose [5], Einstein predicted theoretically [6, 7] in 1925
that for a bosonic gas at temperatures very close from the absolute zero, a large fraction of
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the particles occupy the ground state of the many–body system and populate it macroscopi-
cally, forming a giant matter wave called a Bose–Einstein condensate. The first experimental
observation of Bose–Einstein condensation in 1995, with 87Rb atoms by Cornell and Wie-
man [8] at Boulder and with 23Na atoms by Ketterle [9] at MIT, confirmed this prediction
and paved the way for a very rich and new physics. This scientific feat was rewarded by the
Nobel prize in physics in 1997.

Since its experimental realisation, Bose–Einstein condensation has gained traction, both from
the theoretical and experimental point of views. It indeed opens a new dimension in the area
of precision measurements [10–13], provides a useful tool in quantum information [14–16], al-
lows to address various questions related to many–body physics [17] and opens new prospects
in many other domains.

There are actually lots of possible applications in the context of precision measurements.
Bose–Einstein condensates can be for instance used in accelerometers or gravimeters to im-
prove their precision. They can also be used to improve the most accurate setup for measuring
time: atomic fountains [11]. In this regard, the NASA Cold Atom Laboratory [18] very re-
cently obtained a Bose–Einstein condensate in the International Space Station [19]. This
realisation is an astonishing tour de force: it was realised in a hostile environment within
a setup that has the dimension of a mini–fridge, controlled remotely from the Earth and
allowed to achieve colder temperatures compared to Earth–bound facilities. This realisation
is a major milestone, opening new prospects in terms of the definition of the time unit and
the related practical applications, such as the establishment of the international atomic time,
tests of General Relativity, guiding per satellite, synchronisation of telecommunication net-
works, to mention a few examples.

At a more fundamental level, quantum information may also benefit from the use of Bose–
Einstein condensates. They are proposed by some research teams to be used as a communi-
cation channel between the many cores of a quantum computer. This approach would allow
to reduce the number of bits required for a computer and thereby to address decoherence,
which is a major problem faced in the realisation of a such a device and that increases with
the number of bits [20–26].

Another most prominent research area related to Bose–Einstein condensation (and more
generally to ultracold gases) is quantum simulation of many–body phenomena that generally
arise in condensed–matter systems [27]. Ultracold atoms provide an unprecedented degree
of flexibility, tunability and control [28] that allows one to purely focus on many–body phe-
nomena by getting rid of undesirable side effects, such as those induced by impurities or
dislocations of the lattice–like structure or electrons–phonons coupling, that are common,
for example in the field of condensed matter physics. Some new prospects towards a novel
range of phenomena related to condensed matter physics and otherwise unattainable are then
rendered possible, as well as to address issues that nowadays remain open.

It is for instance possible to create an optical lattice, in analogy with a tight–binding model,
by forming a standing wave obtained by properly interfering counterpropagating lasers. It
thus creates a potential landscape made of spatially periodic minima in which particles can



4

be trapped. Those trapped particles can move from one site to another through quantum
tunnelling, thereby providing a setup very similar to electrons moving in a conductor sample.
The power of quantum simulation is revealed when one wants to study the effects of chang-
ing parameters of the system. Whereas ultracold atoms allow very easily to, for example,
modify the on–site atomic density or to tune the lattice spacing, a variation of one of those
parameters in a solid–state system would require the creation of a new sample with the de-
sired properties. Ultracold atoms allow to tune the atom–atom interaction from attractive
to repulsive or from short to long range by leveraging the Feshbach tuning [29]. They also
make possible to engineer more complicated geometries and to envisage various scattering
and disorder potentials or to create artificial gauge fields [30, 31] that act on neutral atoms
as a magnetic field would on electrons.

Ultracold atoms thus provide a formidable toolbox to study complex situations originating
from solid–state physics such as effects related to mesoscopic quantum transport, giving rise to
an emerging subfield of atomic physics: atomtronics [32–35], the ultimate goal of which being
to realise logical devices and operations with ultracold atoms (see Ref. [36] for a roadmap
of this intriguing and exciting field of research). An example of the atomtronic equivalent
of a simple electronic circuit, consisting in a wire connected to a power input, is provided
in Fig. 1, where the role of the battery poles is played by two reservoirs at the chemical
potentials µL and µR and that of the resistor is played by an optical lattice. A chemical
potential bias induces a current from the higher to the lower chemical potential reservoir, as
particles are injected in the optical lattice and tunnel from one site to a neighbour site in a
situation totally analogous to the quantum transport of current carriers in a metallic sample.

Figure 1 – Panel (a): a simple electronic circuit. Panel (b): atomtronic equivalent
consisting in two reservoirs, maintained at the chemical potentials µL and µR,
that are connected to an optical lattice. As a result of a chemical potential bias
between the reservoirs, a net atomic current that follows this bias is induced.
This kind of atomtronic setup provides a very flexible and tunable model to
study mesoscopic electronic transport.

As Fig. 1 illustrates in a simple situation, atomtronics provides a framework to study a
wide variety of mesoscopic phenomena. Those are of particular relevance not only at the
fundamental level but also at the applied level. The increase of processors speed indeed faces
nowadays the limit of miniaturisation: at several nanometers (silicon atomic radius is about
0.21 nm), quantum effects related to the transport of electrons become more and more sig-
nificant [37]. Below those scales, as the size of such structures becomes comparable with the
electronic wavelength, further miniaturisation of logical electronic devices such as transistors,
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which are the building blocks of microprocessors, demands a fully–fledged understanding of
mesoscopic transport of electrons [38, 39], upon which the working principle is based. In
this context, the study of source–drain transport processes is of particular relevance because
they represent a probe that can be used to explore coherence or interaction effects in vari-
ous situations, such as quantum dots [40] or Aharonov–Bohm rings [41–44], to mention a few.

Several experiments have been successfully carried out by the group of Esslinger using
fermionic 6Li atoms [45–48]. As a starting point of their source–drain transport experi-
ments, they studied the ohmic conduction attributed to a narrow channel linking the two
reservoirs. They then examined the advent of superfluidity in the latter scenario and showed
how a bias in the chemical potential between the two reservoirs of atoms could be leveraged
to create an atomic thermoelectric heat engine. They also observed a quantised conductance
of the channel as is predicted by the Landauer–Büttiker formalism [38, 49] and as is experi-
mentally observed with a two–dimensional electron gas through a quantum point contact [50].

These impressive experiments have demonstrated the power of atomtronics but also yield
a lot of open questions related to interaction effects because they were realised with weakly
interacting fermions. From the theoretical point of a view, addressing those effects demands a
substantial effort and remains nowadays considerably unfathomed. As a matter of fact, such
a study requires to be able to account for many–body correlation and quantum coherence
within a complex geometry consisting of a finite scattering region in the presence of inter-
action joining two (possibly macroscopic) reservoirs without interaction, as Ref. [51] indicates.

Those coherence effects, and more specifically their interplay with the above–mentioned in-
teraction effects, constitute a research field on their own and encompass a lot of intriguing
phenomena and open questions. Indeed, as a result of quantum interferences, coherent waves
crossing a weakly disordered region show a noteworthy increase of the related (macroscopic)
reflection and a concomitant drop in the related transmission, which is known in mesoscopic
physics as weak localisation [52, 53]. The same mechanism is also encountered with coher-
ent light crossing a disordered sample made of point–like scatterers, where interferences are
responsible for an increase of the backscattered current, which is referred to as coherent
backscattering [54–56].

Coherent backscattering was also experimentally observed in 2012 with ultracold bosonic
atoms propagating towards a 2D disorder potential [57,58]. Investigating interaction effects,
that are most naturally present within a Bose–Einstein condensate, is a complex task in this
context. This was studied with a nonlinear diagrammatic theory of coherent backscatter-
ing [59]. This has also been numerically studied in the idealised scenario of a matter plane
wave propagation obtained by an atom laser that emits bosonic atoms propagating towards
a 2D disorder potential. The numerical integration of the mean–field equations arising in the
mean–field approximation in a quasi–steady context yields an interaction–induced inversion
of the coherent backscattering peak [60]. This peak inversion is also found for Bose–Einstein
condensates that propagate towards irregularly shaped billiard geometries [61]. Many–body
diagrammatic approaches indicate that this inversion only prevails in the mean–field regime
of very weak interaction and that a dephasing should appear in a more realistic context of
stronger interaction [62]. Questions related to the experimental observability of this effect
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thus arise and we try to shed more light on this issue in this manuscript.

The in–depth study and understanding of the interplay between coherent and interaction
effects in the context of quantum transport of ultracold bosonic particles is fundamental. It
allows to (at least partially) answer some of the above fundamental and general many–body
related questions, which is already most satisfactory as such. It is also essential for the design
and implementation of atomtronic devices that encompass source–drain scenarios, where a
coherent flow of atoms is produced between several reservoirs as a result of chemical potential
bias, like for instance transistors or diodes whose working principle would lie on atom–atom
interaction effects [32–35]. Any logical operation performed with such atomtronic devices
would prevent heat generation and preserve quantum coherence, thereby paving the way for
the design and realisation of quantum computing schemes, which are the holy Grail for many
researchers (see the nice and recent review article about atomtronics [63]).

Outline of the manuscript

The focus of this thesis is brought on the intriguing competition between coherent and in-
teraction effects with matter waves obtained with Bose–Einstein condensates. We made an
effort in proposing a pedagogical approach, without sacrificing the rigour, of the underlying
concepts with the hope that this manuscript benefits to a great number of readers. We also
note that the present work – more specifically the methodologies developed in Chapters 2
and 3 – is based on the work of Dr. Julien Dujardin who brought significant progress in the
context of coherence and interaction effects with Bose–Einstein condensates [51]. In this con-
text, our work exploits the framework built by Dr. Dujardin in a different, although similar,
context.

In the first chapter, we introduce the physics related to the transport of coherent waves in
random media. We start by the incoherent, classical, description of transport that neglects
interference effects based on the assumption that they do not contribute to averaged trans-
port observables. This approach, that portrays waves transport as a diffusive process, allows
us to introduce fundamental transport lengths, such as the scattering mean free path or the
transport mean free path. We then show how in certain scenarios, namely weak localisation
and coherent backscattering, interference effects alter the classical diffusive picture. Ander-
son localisation and the underlying theories are then discussed as a spectacular suppression
of diffusion solely owing to interference effects.

The second chapter is dedicated to an introduction to Bose–Einstein condensates that are
a central thematic of this manuscript. The quantum scattering theory is then investigated
in details as it allows us to model atom–atom interaction whose importance is here primor-
dial. Those condensates are usually described in the mean–field approximation which is then
adapted to model atom lasers that can be seen as a source of quasi monochromatic matter
waves. We finally conclude the chapter by introducing the numerical mean–field discreti-
sation of the equations governing atom lasers including how to implement smooth exterior
complex scaling, a technique employed to model open systems.
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In the third chapter, we introduce the truncated Wigner method that allows us to describe
quantum transport beyond the mean–field approximation by mimicking quantum fluctua-
tions that are not captured by this approximation. In particular, this supplies the proper
framework to address the dephasing–related questions, as it models both elastic and inelastic
scattering. We start by introducing phase–space techniques in the familiar context of clas-
sical mechanics. This appealing formulation is then extended to quantum mechanics, which
introduces the Wigner function as an extension of the classical probability density related
to the system state. The related motion equation is then particularised to atom lasers, as a
foundation of subsequent studies using the truncated Wigner method. This chapter, as well
as Chapter 2, is based on the work of Dr. Julien Dujardin [51].

The fourth chapter marks the starting point of the study of quantum transport across
Aharonov–Bohm rings. The related Aharonov–Bohm effect is first introduced as a conse-
quence of the gauge invariance of the Schrödinger equation. Aharonov–Bohm rings, that we
model as a two–arms interferometer penetrated by an artificial gauge flux, are then discussed.
The scattering region that we study is made of an Aharonov–Bohm ring connected to two
semi–infinite matter wave guides, one of which being coupled to a reservoir, following the
principle of atom lasers. Interaction effects are finally investigated on the transmission of
atoms across the ring.

In the fifth chapter, we present Al’tshuler–Aronov–Spivak oscillations that occur in the en-
semble averaged transmission across Aharonov–Bohm rings in the presence of a weak and
smooth disorder. A semiclassical theory of Al’tshuler–Aronov–Spivak oscillations based on a
formulation of the scattering problem in terms of Green’s functions is derived and reveals the
intimate connection between those oscillations, weak localisation and coherent backscattering.
It also lays the foundations for the diagrammatic theory developed in Chapter 6. Numerical
results related to the study of interaction effects on Al’tshuler–Aronov–Spivak oscillations
are then presented first in the mean–field approximation and then by means of the truncated
Wigner method. We conclude the chapter by examining the experimental observability for
realistic atomic species.

In the sixth chapter, we expose the diagrammatic theory of Al’tshuler–Aronov–Spivak os-
cillations mainly developed by our collaborator, Dr. Josef Rammensee. Based on a Green’s
function formulation of the scattering problem, Dr. Rammensee derived a full resummation of
scattering paths involved in the semiclassical noninteracting Green’s function, instead of fo-
cussing only on the leading order terms. After that, the resummation technique is generalised
to a perturbative expansion of the Green’s function in terms of the interaction parameter,
up to the first order. A comparison between the numerical and the diagrammatic results is
then finally performed.

The seventh and last chapter is finally dedicated to a study of quantum transport of Bose–
Einstein condensates in 2D disorder in the presence of atom–atom interaction. This work
positions itself as a natural extension of the work initiated by Hartung [60] in the mean–field
approximation. We first present the scattering region we study and how coherent backscat-
tering emerges in the mean–field simulations both in the ensemble averaged momentum dis-
tribution and backscattered current. As expected from Ref. [60], an inversion of the coherent
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backscattering peak is found in the presence of interaction. We then extend the description
of this problem by using the truncated Wigner method that once again allows us to model
inelastic scattering on top of elastic scattering. We conclude this chapter by examining the
experimental observability of the peak inversion, regarding the presence of dephasing for finite
interaction strengths.



Chapter 1

Wave propagation in disordered

media

In this chapter, we begin by introducing absorption and scattering of waves that take place
when a wave crosses a medium. We specifically focus on scattering, which is a central the-
matic of this manuscript, and whose different regimes may be primarily characterised by a
fundamental quantity: the scattering mean free path. This quantity allows to identify three
main regimes of transport. The first regime consists in a ballistic motion where the wave
essentially propagates in the sample in straight line, without any scattering event. The sec-
ond one is called the single scattering regime and consists in a single scattering event during
the traversal of the sample. The third and most intricate is the regime of multiple scattering
that typically occurs in random media. Such media, which are equivalently referred to as
disordered media, can be colloquially described as media whose physical properties are ran-
dom functions of both position and time, for instance owing to the presence of scatterers at
random positions.

The physics emerging from the transport of coherent waves in such random media is very
rich but also challenging to describe. As a starting point, we formalise the problem by a
complex field, representing the wave, that obeys a Helmholtz equation. This applies in many
transport situations, such as for instance to describe the transport of electrons within a solid
or the transport of light in a cloud. The complex field that solves the wave equation has the
physical picture of a summation over all possible scattering paths within the random medium
and is leveraged to obtain observables. However, owing to the complexity of the propagation,
such a deterministic description must be abandoned to the profit of a stochastic description
of waves transport. This method consists in an ensemble averaging of the observables of
relevance over several scattering configurations.

A first approach is to assume that interferences between scattering paths, that are for instance
contained in the wave intensity, cancel each other and do not survive ensemble averaging.
Based on that assumption, they are neglected to simplify the description. This boils down
to a classical sum of intensities that results in a diffusive motion. We show that this diffusive
motion finds applications for instance in deriving Ohm’s law or describing heat transport in
solids, but also completely fails in some contexts.

9
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Indeed, the diffusion can be mitigated or even completely suppressed as a result of interference
effects which are of primal importance in some contexts. Weak localisation and coherent
backscattering that occur in the weak disorder limit are then discussed as an illustration of the
importance of interference effects. We also discuss the strong disorder limit that is related to
Anderson localisation and present the related theories. We finally briefly introduce coherent
forward scattering, which is a higher order interference effect that is, in some contexts, a key
indicator of Anderson localisation in the momentum space.

1.1 Absorption and scattering of light

When a wave propagates within a certain medium, two main phenomena generally enter
into competition: absorption and scattering. They can both have significant effects and
applications.

1.1.1 Wave absorption by the medium

We consider for simplicity the propagation of an incident beam of light. Provided the inci-
dent light traversing the medium possesses an energy compatible with a transition energy of
the particles constituting the medium, a transition can occur. This transition may take the
simple form of an electronic transition, where a photon from the incident beam is absorbed
by an atom of the crossed medium, or a more complicated transition, for instance rotational,
vibrational or both (Raman transition). The incident beam loses energy during such a tran-
sition and is globally attenuated because the exchanged energy is dissipated through either
radiative or non–radiative processes. The global attenuation of the incident light beam is
described by the Beer–Bouguer–Lambert law that provides the intensity as

I(x) = I0e
−κx, (1.1)

where x is the direction of propagation of the incident beam, I0 its initial intensity and κ
the absorption coefficient that depends on the absorption cross–section and on the number
of absorbers.

1.1.2 Scattering by the medium and the different transport regimes

Another mechanism for the attenuation of the incident light beam is scattering by the
medium. In case of light transport, several mechanisms are responsible for scattering, de-
pending on the size σ of the scatterer compared with the wavelength λ of the waves, as is
illustrated in Fig. 1.1.
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Figure 1.1 – Different scattering limits and the related models are considered, de-
pending on the wavelength λ of the incident light and the characteristic dimension
σ of the scatterer.

The first limit is obtained when the wavelength of the incident beam is much larger than the
dimension of the scatterer, λ ≫ σ which is described by Rayleigh scattering [64–67]. This
model predicts a scattered intensity that scales as 1/λ4 and is mostly isotropic. It results that
Rayleigh scattering is very wavelength–selective, as for instance, a blue light of λ ≈ 400 nm
yields a scattered intensity ten times larger than a red light of λ ≈ 700 nm. It provides an
explanation for the blue colour of the sky at midday, as the blue component of the incident
sun light is scattered much more than the red one. On the other hand, it also explains why
the sky appears red by the end of the day, as every component of the incident light beam but
the red one has been previously scattered.

If the size of the scatterer is of the same order of magnitude as the incident wavelength,
namely λ ≈ σ, scattering processes are best described by Mie theory [68]. Contrarily to
Rayleigh scattering, Mie scattering is not as wavelength–selective but is strongly anisotropic
as it favours forward scattering. This is the scattering process that produces the milky white
light by misty and foggy days (or when a high concentration of pollutants is present), as the
incident light is scattered by the large water droplets in suspension in the surrounding air.

When the wavelength of the incident wave is much smaller than the dimension of the scatterer,
namely λ ≪ σ, geometrical optics is applicable and the waves are treated in terms of rays.
The subsequent reflection and refraction occurring at the interface separating two media of
different refractive indices are described by means of Snell–Descartes laws for reflection and
refraction. It provides for instance an explanation for halos, as sunlight or moonlight is
refracted by ice crystals in cirrus clouds.

Regimes of scattering

We now distinguish several scattering regimes and for that purpose, we introduce the elastic
scattering mean free path ls = 1/(ρsσs), where ρs is the density of scatterers and σs the
related scattering cross section1. The scattering mean free path is the average distance that
separates two successive elastic scattering events. Depending on the ratio between ls and
the characteristic length L of the medium, three different scattering regimes emerge, as is
sketched in Fig. 1.2.

1We note that strictly speaking, this expression for the scattering mean free path related to an incident
wave of wavevector k crossing a medium with a density of scatterers ρs is valid only in the weak disorder limit
(or dilute regime) characterised by ρs/k

3 ≪ 1. This regime is to be opposed to the strong disorder regime.
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Figure 1.2 – Sketch of the possible waves transport regimes. If the elastic mean
free path ls is much larger than the sample size L, then the transport is ballistic.
If they are comparable, then the transport is said quasi ballistic and propagating
waves are essentially scattered once during their traversal of the sample. If the
mean free path is much smaller than the sample size, the transport turns to the
multiple scattering regime made of many scattering events.

The ballistic regime ls/L ≫ 1

When the scattering mean free path is much larger than the characteristic length of the sam-
ple, the waves propagate as a projectile does. Such a motion typically occurs in very pure
media where the scatterers density is small or for systems with low characteristic size. It is
for instance achieved in ballistic point contacts [50, 69], in InSb mesoscopic structures [70],
in InGaAs open quantum dots [71,72], in carbon nanotubes [73,74] or in graphene nanorib-
bons [75]. However, besides those very specific systems related to mesoscopic physics, such
ballistic transport does not generally occur owing to the complexity of disordered media.

The single scattering regime ls/L ≈ 1

When the scattering mean free path is comparable with the dimension of the system, waves
are typically scattered once across their traversal of the medium. This scattering regime is
in general not the most common one. It is however frequently encountered in optically thin
media, because the photons exit the medium very quickly, without many scattering events.
It can also occur in artificial situations, for instance in scattering experiments involving a
single scattering centre.

Such a scattering regime yields a random direction for the scattered wave, as it strongly
depends on the specific details of the collision which are not exactly known and might ad-
ditionally evolve in time. This random feature is to be opposed to the following regime
of scattering that, kind of counterintuitively, appears as more deterministic owing to the
smoothing that results from the numerous scattering events that average this randomness
out. This regime of multiple scattering, which we extensively discuss in the following, lies at
the heart of our work.
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The multiple scattering regime ls/L ≪ 1

In the third case where the scattering mean free path is much smaller than the size of the
sample, the incident wave is likely to be scattered many times before exiting the medium.
Such situations occur for instance in the radiative transfer, for X–rays that are scattered by
a crystal, for acoustic waves propagating across porous media, or regarding the irregularities
in the ionosphere that multiply scatter radio waves, to name a few examples.

From the point of view of the incident beam, such a medium is then qualified as random
because of the multiple random scattering taking place during its traversal of the disordered
sample, either because the position of the scatterers is not known or because they slightly
move with time. More formally, those disordered media are described in terms of a quantity
that displays pronounced spatial variations [76], such as the refraction index for the trans-
port of light or the density of matter for acoustic waves. As a consequence, it is not very
useful nor desirable to deterministically describe such transport problems in terms of a fixed
configuration of the scatterers. A statistical approach describing the scattering in terms of
an ensemble average over many different configurations of the scatterers is therefore more
suitable.

A lot of very interesting phenomena occur in the context of coherent transport of waves
through random media, which we understand as transport processes capable of giving rise to
interference effects, owing to their sensitivity with respect to the phase of the wavefunction
ψ(r). In the context of solid–state physics for instance, those interference effects may have
dramatic effects. Anderson showed in 1958 that interference can render a metallic conductor
insulating due to a sufficiently strong disorder that localises waves, which is referred to as
Anderson (or strong) localisation [77]. It has been later shown that Anderson localisation
goes well beyond solid–state physics and is a universal effect of coherent waves propagating
within a random medium.

1.2 Multiple scattering of coherent waves in disordered media

One very important and fundamental aspect of waves is their ability to exhibit interferences,
as a result of an existing phase coherence relationship which is revealed when superposing the
interfering waves. This ability is exacerbated in a random medium, which can be modelled as a
collection of point scatterers at random positions. In the context of electronic transport within
a solid, the role of the scatterers is played by the imperfections in the crystal lattice structure,
such as vacancies, dislocations, or impurities. In the present context of the transport of light,
scattering occurs owing to random changes in the refractive index of the medium, for instance
because of the presence of fat molecules or proteins in a glass of milk or due to the presence
of water droplets that scatter the light in a thick cloud. Waves propagating in such media
are described by the complex field ψ(r) ∈ C which, as indicated in Ref. [78], obeys the wave
equation

(∆ + k2)ψ(r) = −k2V (r)ψ(r), (1.2)

and where

V (r) = V0

N∑

n=0

δ(r − rn), (1.3)
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accounts for the presence of a scattering potential made of identical isotropic scatterers at
random positions. Equation (1.2) applies as well for describing electronic transport as for the
transport of light. Indeed, under certain assumptions Eq. (1.2) is equivalent to the stationary
Schrödinger equation2 and to the Helmholtz equation for electromagnetic waves [78]. In the
former case, the complex field ψ(r) is called the wavefunction whilst in the latter, it refers
to the electric field. Relevant transport quantities such as the conductance of a disordered
sample in the electronic context or such as the light intensity in the transport of light are
related to the square modulus of ψ(r) which can be obtained by solving Eq. (1.2) for a
particular disorder configuration. The formulation of the wave equation (1.2) stimulates to
treat the right hand side as an inhomogeneity and to elaborate a solution by using the Green’s
function method3, which yields the formal solution

ψ(r) = ψ0e
iki·r − k2

∫

G0(r, r′)V (r′)ψ(r′)d3r′, (1.4)

which is a self–consistent equation known as the Lippmann–Schwinger equation, where ψ0 is
the amplitude of the incident wave and ki is the related wavevector. The first term in the
right hand side of Eq. (1.4) is the solution of (∆ + k2)ψ(r) = 0, that is, Eq. (1.2) in the
absence of scattering potential. This homogeneous wave equation describes in this case the
propagation in free space. In the second term of the right hand side of Eq. (1.4), we have
introduced G0(r, r′), the Green’s function obtained as the solution of

(∆ + k2)G0(r, r′) = δ(r − r′), (1.5)

which is an equation very similar to Eq. (1.2), with the right hand side corresponding to a
point source at r = r′ described by a delta distribution. This technique allows to convert the
partial differential equation (1.2) into an integral equation (1.4), in principle easier to solve or
at least, more prone to allow the use of approximation techniques. Indeed, the self–consistent
shape of Eq. (1.4) motivates a solution obtained iteratively that can be written, assuming an
incident plane wave, as

ψ(r) = ψ0e
iki·r

− k2
∫

G0(r, r′)V (r′)ψ0e
iki·r

′
d3r′

+ k4
∫∫

G0(r, r′)V (r′)G0(r′, r′′)V (r′′)ψ0e
iki·r

′′
d3r′d3r′′

− . . . , (1.6)

which is known as a Born series and which has a quite intuitive physical interpretation. The
inspection of the Born series in Eq. (1.6) actually shows that the different terms appearing
in the summation have a common structure. They consist in free propagations described
by G0(r, r′) separated by scattering events described by the interaction with the scattering
potential at a given position, as is sketched in Fig. 1.3. The integration over the dummy

2The equivalence is straightforwardly shown by defining k2 ≡ 2mω/~ and V (r) ≡ −Ṽ (r)/(~ω). The
resulting stationary Schrödinger equation describes a quantum particle of energy E = ~ω that propagates
towards the disorder potential Ṽ (r), for instance an electron within a disordered metallic sample.

3This method is very commonly used in this manuscript. The reader can find a (hopefully) pedagogical
introduction to this technique in Appendix B.
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variables appearing in a specific term of Eq. (1.6) is then understood as an integration over all
paths that end at position r and implies the exact number of scattering events contained in
this specific term. For instance, the last line of Eq. (1.6) describes all imaginable paths that
consist in two scattering events of the incident wave and ends up at position r. This term is
represented by the third term in the first line of Fig. 1.3, where the integration appearing
in Eq. (1.6) is implicitly understood in this diagram, so that this term contains all paths
featuring two scattering events.

Figure 1.3 – Physical picture of the terms appearing in the Born series (1.6). The
solution ψ(r) of the Lippmann–Schwinger equation (1.4) is written as a sum of
many scattering paths consisting in free propagations interrupted by various scat-
tering events. An implicit summation over the fixed scattering centres positions
is understood for each diagram.

The physical picture portrayed in Fig. 1.3 incites to reformulate the solution (1.6) of Eq. (1.4)
in a very intuitive form. The wave at position r is then explicitly expressed as

ψ(r) =
∑

γ

ψγ , (1.7)

that is, a summation of partial waves along all possible and imaginable scattering paths γ
that end at position r, irrespective of the number of scattering events they encompass. This
writing is perfectly equivalent to Eq. (1.6) provided the sum over all paths γ is understood
as the sum of all paths that end at position r in every possible manner. The square modulus
of ψ(r) written in the form (1.7) is given by the pictorial equation

, (1.8)

where the green circles represent the point scatterers, the blue line denotes a path γ and the
red line the complex conjugate of the partial wavefunction along path γ′. The double sum
appearing in Eq. (1.8) can be split into two contributions

|ψ(r)|2 =
∑

γ

|ψγ |2 +
∑

γ 6=γ′

ψ∗
γ′ψγ , (1.9)

where the first term corresponds to the classical contribution, which pairs of paths are in the
specialised literature referred to as Diffuson, whilst the second one encompasses contributions
giving rise to interferences.
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Eq. (1.9) provides an explicit solution to the Lippmann–Schwinger equation. This solution
in terms of a particular disorder landscape provides a rather complicated structure which is a
signature of the underlying specific scattering configuration. This solution is not particularly
relevant in a transport experiment since the exact positions r1, . . . , rN of the scatterers are
not precisely known and those scatterers can also be in motion. This highlights the need of
a statistical approach to obtain average properties. Since the motion occurs on a timescale
typically much larger than the duration of the experiment, the principle of the statistical
approach is to determine ψ(r) for several static realisations of the disorder potential that
differ from one another and to average over those disorder landscapes. This leads us to define
the ensemble average of |ψ(r)|2, which reads

〈|ψ(r)|2〉 =
∫

. . .

∫

|ψ(r)|2dr3
1 . . . dr

3
N , (1.10)

where the angled brackets 〈·〉 indicate the ensemble average, obtained by averaging over
all scattering centres positions, which boils down to averaging over many static disorder
configurations.

1.2.1 Incoherent transport

A first approach to determine 〈|ψ(r)|2〉 is to simplify the expression for ψ(r) by neglecting the
interference terms in Eq. (1.9), based on the assumption that the coherent contribution gets
randomised from one disorder configuration to another, so that they cancel each other and
finally yield a zero average contribution. In fact, the minimum phase difference between two
different paths is of the order of kls and is obtained with two paths that are identical to each
other, apart from one different scattering centre. As Ref. [76] indicates, in most situations4,
kls ≫ 2π and the overall phase difference therefore fluctuates from one disorder realisation
to another by an amount much larger than 2π. The overall phase of the second term in
Eq. (1.9) is therefore treated as a random number uniformly distributed in [0, 2π[ from which
we expect no contribution in average.

This leaves us with |ψ(r)|2 defined as a sum of probabilities to follow each individual path
ending at position r. Such a classical pairing of paths is illustrated in Fig. 1.4. In this
approximation, the phases acquired along ψγ and ψ∗

γ are identical and yield a vanishing
phase difference between them.

4This is indeed the case for instance for light propagation within clouds where kls ∼ 108 but also for
electronic transport within gold for which kls > 100 [76].



1.2. Multiple scattering of coherent waves in disordered media 17

Figure 1.4 – Example of a classical pairing of paths, referred to as Diffuson, which
further gives an interpretation of the transport of waves in terms of a random
walk process where the total intensity at point r is obtained by adding up the
intensities of each individual path.

In this classical picture, the transport shall be later understood as a random walk process
where the intensities of the involved paths are basically summed up. Despite its rather crude
and peremptory assumption that interferences between paths do not contribute to ensemble
averaged transport quantities, this approach knew some great success. It was for instance
applied by Drude [79–81] for evaluating the conductance of a metallic sample or by Chan-
drasekhar in the radiative transfer [82]. It also spectacularly fails in some contexts, as we
shall show later.

Putting aside those failures of the description of wave transport in random media in terms
of a sum of classical intensities for the moment, we briefly develop this approach in order
to introduce certain quantities relevant in a waves transport context and to provide a base-
ment for the discussion of interference effects. In the weak disorder regime kls ≫ 1, which
corresponds to a situation where the distance that separates the scattering centres is large
compared to the wavelength of the incoming wave, it is possible to provide an expression
for the ensemble average of |ψ(r)|2. In the following, we note I(r) ≡ 〈|ψ(r)|2〉 the intensity
at point r and I0(r) ≡ |〈ψ0(r)〉|2 the incident intensity at the same position. In the case of
isotropic point scatterers that we considered upon here, I(r) is given by

I(r) = I0(r) +
4π
ls

∫

|〈G0(r, r′)〉|2I(r′)d3r′

= I0(r) +
1

4πls

∫
e−|r−r′|/ls

|r − r′|2 I(r′)d3r′, (1.11)

which is referred to as the Bethe–Salpeter equation [83], that consists here in a sum of two
contributions [78]. The first contribution is the square modulus of the ensemble averaged in-
cident intensity that propagates towards r without scattering. In the case of an incident plane
wave ψ0 = exp(ikz) of wavevector k propagating in the z–direction within a semi–infinite
medium with boundary at z = 0, it is given by I0(r) = I0 exp(−z/ls). This expression recalls
Beer–Bouguer–Lambert law that describes the global exponential attenuation of an incident
wave by a factor related to the elastic scattering mean free path. It translates the depletion of
the incident beam into the various scattered modes. The second contribution represents the
scattered intensity I(r′) at position r′ that propagates towards position r. This propagation
is described by a factor related to the specific radiation pattern of the scatterers that weights
the intensity. In the simple case of isotropic scattering that we consider here, this factor de-
scribes an isotropic spherical propagation of I(r′) towards position r, but more sophisticated
radiation patterns can be readily envisaged.
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Since only the square modulus of ψ(r) enters Eq. (1.11), we qualify as incoherent the kind
of transport processes described by this equation. We already highlighted that as such, this
contribution is not affected by any dephasing mechanism. Under the assumption that it does
not vary appreciably over the elastic scattering mean free path, the intensity I(r) can be
expanded in Taylor series

I(r + r′) = I(r) + r′
· ∇I(r) +

1
2!

(
r′

· ∇
)2
I(r) + . . . (1.12)

and inserted into Eq. (1.11) with the substitution r′ → r′−r. This readily yields the following
stationary diffusion equation [78]

l2s
3

∆I(r) + I0(r) = 0 (1.13)

for the ensemble averaged intensity, with a source term I0(r) = I0 exp(−z/ls).

Very similarly, it is possible to obtain a time–dependent version of Eq. (1.11) that may be
used with time–varying sources [39] and which is given by

∂

∂t
〈I(r, t)〉 = DB∆〈I(r, t)〉 + J0(r, t), (1.14)

where J0(r, t) is the flux density at position r and time t. We have introduced the Boltzmann
diffusion coefficient DB = vlB/d, with v the group velocity of the wave, d the space dimen-
sion and lB the Boltzmann transport mean free path that shall be discussed in detail later.
This Boltzmann diffusion coefficient characterises for instance how a wavepacket spreads in
time in such a medium, as we have the linear relation (∆r)2 = 2dDBt which is typical for a
diffusion process [84]. Eq. (1.14) essentially tells us that the average intensity for the wave
under consideration undergoes a random walk [39]. This kind of equations finds applications
in the description of heat conduction, in which context it is referred to as heat equation, or
in the description of Brownian motion. In the context of electronic transport, this equation
which emerges in the Drude model, predicts a linear relation between the current density and
the electric field, with the Drude conductivity as proportionality coefficient. It thereby yields
a microscopic picture for the well known Ohm’s law [81,85].

On top of the first length scale introduced earlier, namely the elastic scattering mean free
path, the Boltzmann diffusion coefficient introduces a second length scale which is referred
to as the Boltzmann transport mean free path and denoted by lB . This new length scale is
related to the elastic mean free path ls through

ls
lB

= 1 − 〈cos θ〉f = 1 −
∫ 2π

0
cos θf(k, θ)dθ, (1.15)

where θ denotes the scattering angle, 〈·〉f is the average over the phase function f(k, θ) that
parametrises the radiation pattern by providing the scattering intensity in the direction in-
dicated by θ. This phase function encodes the potential anisotropy of the scatterers (or the
scattering potential). For perfectly isotropic scattering, this function is equal to one and the
cosine averages to zero, yielding lB = ls. For more correlated disorder potentials, ls < lB and
forward scattering is enhanced. This provides an intuitive interpretation of the Boltzmann



1.2. Multiple scattering of coherent waves in disordered media 19

transport mean free path. Indeed, after a scattering event, the direction and phase of the
wave are modified. This Boltzmann transport mean free path is the length required for the
wave to get randomised and forget about its initial direction. In the context of the random
walk undergone by the average intensity, we therefore associate the Boltzmann transport
mean free path with the average step of this random walk [86].

The anisotropy of the scattering depends on how the de Broglie wavelength λdB = 2π/k
compares with the typical size σ of the scatterers, which in the context of a correlated
continuous disorder is referred to as the correlation length of the disorder. As a general
condition, we note that ls ≤ lB, as we have already highlighted. In most situations, several
scattering events are required to significantly bend the trajectory of the wave and deflect it
from the initial direction, which implies that ls ≪ lB. This is the case when kσ ≫ 1 and
implies that forward scattering is clearly favoured compared to scattering in other directions
of space. In that case, scattering occurs in a cone centred around the forward direction and
whose aperture is 2θ, where θ is the angle between the incident and the scattered direction.
On the other hand, in very limited situations, a single scattering event can totally scramble the
incident direction, which implies that ls . lB . This happens when the de Broglie wavelength
is much larger than the typical size of the scatterers (or the correlation length for a continuous
disorder potential), that is when kσ ≪ 1. In such situations, scattering centres are perceived
as point–like scatterers by the wave and scattering is almost perfectly isotropic (see Fig. 1.5
for a sketch of the two scattering regimes).

(a) ls ≈ lB (b) ls ≪ lB

Figure 1.5 – Panel (a): When the de Broglie wavelength of the incident wave is
much larger than the typical size σ of the scatterers, i.e. kσ ≪ 1, scattering is
almost isotropic, so that after a single scattering event, the direction of propa-
gation gets totally randomised, leading to ls ≈ lB. Panel (b): When kσ ≫ 1,
scattering is strongly anisotropic and forward scattering is favoured leading to
ls ≪ lB : several scattering events are required in order to scramble the initial
direction and phase of the wave. Adapted from [87].

Related to the two mean free path scales, it is possible to introduce two time scales, namely
the elastic scattering time τs = ls/v and the Boltzmann transport time τB = lB/v. They
respectively represent the time separating two subsequent elastic scattering events and the
time required for the initial direction of the wave to get randomised. Those two transport
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quantities are related through [39]

τB =
τs

1 − 〈cos θ〉f
. (1.16)

Following the previous discussion, it is not surprising that τs ≤ τB. Indeed, when kσ ≪ 1,
elastic scattering is isotropic and 〈cos θ〉f ≃ 0 because θ is uniformly distributed in [0, 2π].
This implies that a single scattering event is likely to fully randomise the incoming direction
and we have τs ≈ τB . On the other hand, when kσ ≫ 1, forward scattering is enhanced and
θ ≃ 0, which implies that 〈cos θ〉f ≃ 1 and τs ≪ τB .

1.3 Interference–induced enhancement of the return proba-

bility

1.3.1 Phase coherence length

In addition to the two length scales previously discussed, we now introduce the phase coher-
ence length Lφ. It can be defined as the length over which a phase coherence relation can
be maintained, in the sense that over that distance, any existing phase relation between two
waves gets destroyed owing to inelastic processes introducing irreversibility. It plays a crucial
role as a threshold to the advent of coherent effects.

As we have indeed seen in the previous discussion, even with an assumption as crude as
to neglect all interference terms when computing ensemble averages, it is possible to intro-
duce several microscopic quantities relevant in a transport of waves context and to provide
satisfactory descriptions of macroscopic phenomena based on those concepts. This works
particularly well provided the system is at high temperature. In this case, the phase coher-
ence length Lφ is usually much smaller than the typical size L of the system, rendering the
related interference effects negligible [88]. However, as we develop below, interference effects
can play a major role in the context of transport within random media as soon as L . Lφ.

When interference effects are involved, the notion of phase coherence between the interfering
waves indeed emerges. Because elastic scattering by the disorder potential is not the only
scattering mechanism in play in such a context, we note that phase coherence is fragile and
subject to destruction in the presence of inelastic scattering or any other dephasing mecha-
nism.

Such inelastic processes indeed modify the phase of the wave in a non deterministic manner
because they randomly occur, consequently randomising the underlying phase. The loss of
coherence is due to such inelastic processes which encompass all interaction processes between
the coherent wave and its surrounding. For example, in the context of electronic transport,
those scattering events can take the form of an interaction between the electron and an im-
purity that possesses internal degrees of freedom or an electron–phonon coupling between
the electron and the phonon sea (which is strongly enhanced by the temperature) or, more
simply, an electron–electron interaction through the Coulomb potential.

This highlights the crucial relevance of the phase coherence length, since it determines the
length scale beyond which quantum interference effects are destroyed by the irreversibility
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caused by inelastic scattering. Therefore, in the limit where L . Lφ, the system is in a coher-
ent regime governed by phase coherent effects, whilst in the limit where L ≫ Lφ, interference
effects are largely destroyed and the system is in a classical incoherent regime for which we
provide introductory details in the previous section. This regime is frequently encountered
at high temperatures that favour irreversibility mechanisms (for instance, the coupling of
electrons with phonons is significantly enhanced with T ), thereby reducing Lφ.

We now describe in which context those coherence effects may play a role that can dramati-
cally alter the classical transport picture. In Eq. (1.9), which we recall here for convenience,

|ψ(r)|2 =
∑

γ

|ψγ |2 +
∑

γ 6=γ′

|ψ∗
γ′ | · |ψγ |ei(φγ−φγ′ ), (1.17)

and where the second term is written in polar notation, the square modulus of ψ(r) is ex-
pressed as a sum of classical contributions, which we discussed in details in the previous
section, and a second term. This term is expressed as a sum of interfering pairs of different
paths. In the presence of dephasing mechanisms that yield a phase coherence length smaller
than ls and lB, any initially existing phase relation between such paths cannot be main-
tained, not even between two successive scattering events. Consequently, interference effects
play absolutely no role in this regime of dominant dephasing. In order to be able to observe
interference effects, it is indeed necessary that the phase coherent length Lφ be much larger
than the elastic scattering mean free path, so that ls, lB ≪ Lφ in order for phase coherence
to be preserved for multiple scattering events.

1.3.2 Paths pairings that are robust to disorder averaging

In the following, we implicitly assume that we work in a regime of large phase coherence
length ls, lB ≪ Lφ and we examine the implications of interference effects on wave trans-
port. In that case, interfering paths mostly display ordinary structures such as the two paths
sketched in Fig. 1.6(a). The phase difference φγ − φγ′ between those paths is a signature of
the very specific scattering sequence they describe. Such contributions yield a complicated
structure for the intensity I(r) that is therefore a signature of the specific disorder landscape.
Because of their random nature, they do not survive the ensemble average, contrarily to very
particular pairings, as we show by closely following the discussion in Refs. [87,89].

To understand the emergence of pairings robust to ensemble averaging, we consider a plane
wave of incident wavevector ki propagating in a disordered medium made of point scatterers.
The complex amplitude related to an incident wave of wavevector ki diffracted into a wave
pointing in the direction kf reads

A(ki,kf ) =
∑

ri,rf

f(ri, rf )ei(ki·ri−kf ·rf ), (1.18)

where ri (resp. rf ) is the first (resp. last) encountered scatterer and

f(ri, rf ) =
∑

Γ

fΓe
iδΓ (1.19)

is the complex amplitude related to the propagation from ri to rf . This amplitude is expressed
as a sum of the complex amplitudes fΓ exp(iδΓ) associated with each path Γri→rf

≡ Γ
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beginning at position ri and ending at position rf . Introducing the points r′
i and r′

f , the
intensity of the scattered wave is yielded as

|A(ki,kf )|2 =
∑

ri,rf

∑

r′
i
,r′

f

f∗(r′
i, r

′
f )f(ri, rf )ei(ki·ri−kf ·rf )e−i(ki·r′

i−kf ·r′
f

). (1.20)

The double summation encompasses a lot of contributions that are encoded in the pairings
f∗(r′

i, r
′
f )f(ri, rf ). Most of them average out for a large number of disorder configurations

and bring no average contribution, but some of them are robust to ensemble averaging, as
we highlight below. To stress this, we explicitly write

f∗(r′
i, r

′
f )f(ri, rf ) =

∑

Γ

∑

Γ′

fΓf
∗
Γ′ei(δΓ−δΓ′) (1.21)

which reveals the phase difference δΓ − δΓ′ between two paths Γ and Γ′. As we already
discussed, this phase difference displays in general large fluctuations, at least of an amount
kls, which is the minimum phase difference obtained by two paths that differ only by one
scattering centre. As we already pointed out, Ref. [76] indicates that kls can range from
kls ≈ 102 for the electronic transport across relatively clean metals to kls ≈ 108 for light
propagation through a foggy atmosphere.

Consequently, those fluctuations average out for most pairings, except, for instance, for those
such that Γ = Γ′, which gives rise to the previously described incoherent contribution5. In the
absence of any time–reversal symmetry breaking mechanism6, another contribution for which
the amplitudes of the paired paths is the same is found when Γ and Γ′ represent paths which
are time–reversed of each other and thus contain visits of the same sequence of scattering
centres in the reversed order. Such pairings yield a phase difference δΓ − δΓ′ = 0 owing to the
symmetry of the experienced elastic scattering events and provided the length of the paired
paths does not exceed the phase coherence length7. Such paths correspond to ri = r′

f and
rf = r′

i and their pairing provides the ensemble averaged intensity of the scattered wave as

〈|A(ki,kf )|2〉 =

〈
∑

ri,rf

|f(ri, rf )|2
(

1 + ei(ki+kf )·(ri−rf )
)
〉

. (1.23)

This equation still features the presence of a phase difference ∆φ = (ki + kf ) · (ri − rf ) that
results from the diffraction of the incident wave from ki to kf . This phase difference vanishes
for instance when ri = rf , as in Fig. 1.6(b) or when ki = −kf , as in Fig. 1.6(c).

5We note that Γri→rf
= Γ′

r
′

i
→r

′

f
implicitly implies that ri = r′

i and rf = r′
f , yielding exponentials equal to

one in Eq. (1.20). We recover the classical contribution of an overall intensity obtained as a sum of classical
intensities, as discussed previously.

6Such as a (if needed synthetic) magnetic field.
7This may also be explained following the argument developed in [90]. The Green’s function appearing in

Eq. (1.4) turns out to be

G0(r, r′) =
eik|r−r

′|

4π|r − r′|
= G0(r′, r), (1.22)

and, owing to the presence of a strongly fluctuating factor |r − r′| in the exponential, yields robust to disorder
averaging contributions when it is paired with itself (its complex conjugate). On top of the obvious Diffuson
contributions that such an argument involves, the symmetry of the Green’s function also indicates the presence
of Cooperon contributions originating from the pairing between G∗

0(r′, r) = G∗
0(r, r′) and G0(r, r′).
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(a) Ordinary pairing (b) Weak localisation (c) Coherent backscattering

Figure 1.6 – Panel (a): Pairing of ordinary scattering paths which do not survive
the ensemble average owing to their sensitivity to a specific disorder configuration.
Panel (b): pairs of path forming closed loops giving rise to weak localisation.
Panel (c): pairs of paths increasing the backscattered intensity and giving rise to
coherent backscattering.

In the former case, the probability to return to the origin is enhanced due to closed loop struc-
tures, which is known as weak localisation [52,91]. In the latter case, the intensity is increased
in the backscattered direction, which is known as coherent backscattering [54,92,93]. We also
note that either for weak localisation or coherent backscattering, the probability to return to
origin or to be scattered in the backwards direction is twice the classical probability, as is clear
from Eq. (1.23). Both weak localisation and coherent backscattering are closely related phe-
nomena, as they share the same underlying mechanism of constructive interferences between
counterpropagating loops. This mechanism is also responsible for Al’tshulter–Aronov–Spivak
oscillations [94–96] in Aharonov–Bohm rings [41,42,44], as is thoroughly discussed in Chap-
ter 5. In the weak disorder limit kls ≫ 1, which is to be opposed to the strong scattering
regime kls ≪ 1 that shall be discussed in Section 1.4 dedicated to Anderson localisation,
only the Diffuson8 and Cooperon9 contribute to the ensemble averaged observables in leading
order of 1/(kls) [90]. Higher order interference effects originating from pairings of more so-
phisticated scattering paths do not significantly contribute in this limit and can be therefore
neglected in a first approach. They are however much more significant in a strong disorder
regime.

1.3.3 Weak localisation

Due to the closed loops sketched in Fig. 1.6(b), diffusive transport faces localisation ef-
fects because of which the waves tend to remain at their initial position. This mitigates the
diffusion, as the underlying diffusion constant D = DB + δD is reduced compared to Drude–
Boltzmann incoherent propagation [39], because the (small) weak localisation correction δD
is negative. This reduction of the diffusion constant highlights the outcome of microscopic
quantum interference phenomena on macroscopic quantities. As was shown around 1980 in
two theoretical studies [52, 91], positive corrections to the classically predicted resistivity of
a disordered mesoscopic sample must indeed be added owing to weak localisation effects.

8Which produces the mostly angle–independent incoherent background.
9Which is responsible for weak localisation and coherent backscattering.
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Weak localisation was already experimentally studied at the same time in the context of
solid–state physics, as it explains the unexpected dependence of resistivity of thin metallic
films with respect to the temperature. For instance, Ref. [97] is dedicated to experimen-
tal measurements of the magnetoresistance of a two–dimensional electron gas in several Si
MOSFETs, which are reported in Fig. 1.7(a). At low temperatures, a classically unexpected
high resistance is observed as a result of weak localisation effects. A clear decrease of the
resistance is encountered with increasing temperature, as is expected owing to the reduction
of weak localisation effects. This reduction results from the drop of Lφ with temperature,
thereby reducing the number of scattering trajectories participating to weak localisation, as
paths longer than Lφ lose phase coherence. The same reduction of weak localisation effects
is also observed in the presence of an increasing perpendicular magnetic field H. Magnetic
fields are indeed known for breaking the time–reversal symmetry in the sense that the phases
related to time–reversed paths become different in the presence of a magnetic field.

This particularity may be experimentally leveraged in order to distinguish the classical resis-
tance from weak localisation corrections. From simple arguments indeed, one can estimate
which magnetic field intensity starts to destroy weak localisation effects by dephasing inter-
fering trajectories. Amongst all paths Γ that give rise to weak localisation, those encircling
the largest area are the most sensitive to the presence of a perpendicular magnetic field as
each path acquires a phase shift proportional to the enclosed surface. This largest area is
most often obtained with paths of maximal length, comparable with the phase coherence
length10.

Based on this observation and considering for simplicity that the surfaces begot by such
paths are circle–like surfaces, one can derive an expression for the experienced phase shift
as a function of the perpendicularly applied magnetic field. It serves as a starting point to
estimate which field intensity starts to dephase those paths and to mitigate weak localisation
effects. As the magnetic field is further increased, shorter paths giving rise to smaller enclosed
areas are also affected and get dephased. This yields a smaller correction for weak localisation
effects that can even be suppressed for sufficiently high magnetic field. Nevertheless, a robust
to disorder averaging maximum of resistivity still prevails as a signature of weak localisation
for field intensities close to zero because the system is in this case time–reversal invariant.
This dependence of weak localisation with respect to an external magnetic field motivates a
magnetic field–dependent weak localisation correction to the resistivity [88].

10All paths of length comparable with the phase coherence length do not necessarily enclose the largest
area possible. One can for instance think of a path withdrawn into itself, yielding a shrivelled enclosed area.
The class of largest possible enclosed areas is however most likely obtained with paths of maximal length,
dictated by Lφ, that describe in two dimension circle–like surfaces.
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(a) (b)

Figure 1.7 – Decrease of the magnetoresistance of a (a) 2DEG in MOSFET struc-
tures (extracted from [97]) and (b) thin Mg films (extracted from [53]) with in-
creasing perpendicular magnetic field H and temperature T . This reduction of
weak localisation effects results from phase coherence length limiting mechanisms
(temperature) or time–reversal symmetry breaking mechanisms (magnetic field).

This reduction – and even cancellation – of weak localisation effects by time–reversal symme-
try breaking mechanisms, such as an external magnetic field, offers a possibility to separate
the classical magnetoresistance from the corrections due to quantum interference effects,
highlighting the importance of the latter. Another experimental study of this issue is also
reported in Ref. [53] whose main results are reproduced in Fig. 1.7(b) that shows the mag-
netoresistance of a thin Mg film as a function both of the temperature and of the magnetic
field. Similar results are obtained both regarding the dependence with respect to the temper-
ature as well as for regarding the dependence with respect to the magnetic field. The same
experimental study of weak localisation is also provided for thin Cu films [98], for thin Cs
films [99] or for InSb thin films [100], to name a few of the numerous experimental evidences
of weak localisation in the context of solid–state physics.

1.3.4 Coherent backscattering

A manifestation of weak localisation in the context of transport of light across random me-
dia is coherent backscattering. Indeed, pairings of time–reversed paths yield a robust to
disorder averaging constructive interference that increases the probability of backscattering,
and thereby the backscattered current. This enhancement is much easier to observe as such
than the enhancement of the probability of coming back to the origin in a weak localisation
scenario.

The scattering paths depicted in Fig. 1.6(c) display a phase shift that can be written ∆φ ≃
k|ri − rf |θ for small angles θ between ki and kf . It is clear that a perfectly zero phase
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shift is obtained for θ = 0, as we already highlighted. Owing to the diffusive behaviour
of the averaged intensity, |ri − rf | behaves as the square root of the number of scattering
events experienced along the path. Several interference patterns for different pairings of
time–reversed paths are sketched in Fig. 1.8 in coloured dash–dotted lines. As expected, all
those patterns display a maximum at θ = 0, whilst the other maxima depend on the number
of scattering events contained in the scattering sequence. The total averaged intensity is
obtained as a weighted sum of all those interference patterns. The weighting factor is provided
by |f(ri, rf )|2 in Eq. (1.23) and is all the lower as the path is long, which indicates that short
length paths have more importance than long ones in the summation appearing in Eq. (1.23).

Figure 1.8 – Qualitative sketch of interference patterns related to individual pair-
ings of time–reversed paths and of the coherent backscattering peak that results
from the weighted superposition of those patterns. Coloured dash–dotted lines:
interference pattern produced by specific path pairings. Black dotted line: diffu-
sive background arising from averaged classical contributions (Diffusons). Solid
black line: coherent backscattering peak due to constructive interferences around
θ = 0 (Cooperons). Adapted from [76].

As a result of the superposition of all those interference patterns, the structure depicted in
black solid line in Fig. 1.8 emerges. Away from θ = 0, a flat diffusive background is encoun-
tered as results from the classical contributions. Close to θ = 0 however, as all interference
patterns show constructive interferences, a peak of conic shape, which is referred to as the co-
herent backscattering cone, is encountered. The width of this cone is proportional to 1/(kls)
and is governed by short length scattering paths [39]. Its measurement can be leveraged
to measure the elastic mean free path experimentally. As is obvious from Eq. (1.23), this
peak is theoretically exactly twice as bright as the diffusive background. In practice however,
short length scattering paths consisting in an immediate backreflection at the first scattering
event mitigate this picture. Those paths of large importance in the summation in Eq. (1.23)
are actually identical to their time–reversed twin and hence do not participate to coherent
backscattering.

Long before the advent of the nowadays frequently admitted explanation detailed above, co-
herent backscattering was already observed in 1893 in the opposition surge in the rings of
Saturn [101]. Indeed, light emitted from the Sun gets multiply scattered by small particles
in the rings of Saturn and causes the rings to appear much brighter in the backscattered
direction, as has for instance been photographed in the early 2000’s by Cassini.
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It has emerged at approximately the same epoch as weak localisation, as a theoretical
study [92], immediately followed by experimental observations [54, 93], reported an increase
of the scattered current in the backscattered direction. Those experimental evidences where
obtained by illuminating an aqueous medium containing small polystyrene spheres in suspen-
sion with visible light. Both references report an enhancement of the backscattered intensity
within a narrow cone, however less pronounced than the expected factor 2 enhancement ow-
ing to the angular dependence of the scattering of light by the polystyrene spheres. Ten years
later, this factor enhancement was achieved by illuminating BaSO4, ZnO and TiO2 powders
with laser light [102].

Since then, coherent backscattering is observed and studied in a very wide array of domains.
It has for instance been theoretically studied for light propagating across 3D disordered slabs
obtained with speckle fields [103], or experimentally observed with classical waves such as
acoustic waves [104] or elastic waves [105] and can even be exploited to characterise human
bones [106]. Another potential and less expected application is found in the petroleum search
and deep underground probing. Signatures of coherent backscattering and weak localisation
have indeed been found by recording the ground motion with a series of geophones after
striking a sledgehammer on the ground [107,108].

Coherent backscattering of light by ultracold atoms was first reported in 1999 in Nice [109],
as a laser illuminating a scattering sample made of laser–cooled gas of Rubidium atoms
showed an increased backscattered intensity, paving the way for numerous studies of co-
herent backscattering with ultracold atoms. More recently, ultracold atoms were used not
as scattering medium but directly as a coherent source. Indeed, following the theoretical
proposal in Ref. [110], a group of experimental physicists in Palaiseau reported the direct
observation of coherent backscattering of ultracold atoms in the presence of a 2D disorder
landscape created by means of optical speckle fields [57]. Similar results were also found at
the same time in Nice [58]. Time–of–flight imaging shows that a Bose–Einstein condensate,
initially in a well–defined momentum state pi, gets elastically scattered and hence populates
all states of constant energy in the momentum space, with a higher population encountered
in the momentum state corresponding to −pi. These studies initiated a large number of
other studies related to coherent backscattering in the context of ultracold atoms.

1.3.5 Nonlinear weak localisation and coherent backscattering

A very legitimate question that immediately arises in the context of coherent backscattering
with ultracold atoms is the effect of a many–body interaction that is most naturally present
within Bose–Einstein condensates. Both coherent backscattering and weak localisation are
indeed affected by nonlinearities, as a general diagrammatic theory indicates [59], both for
the propagation of light across a nonlinear Kerr medium [111, 112] and for the transport of
ultracold atoms towards disordered potentials [60,61].

In the context of light transport, the presence of a nonlinearity trivially mitigates phase co-
herence and the related peak height, as is found in Ref. [113] for backscattering of light by cold
atoms. More spectacularly, a narrow dip in the backscattered direction is encountered in the
angular profile of the light scattered by a disordered opaque medium, owing to the presence of
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a nonlinearity [114]. The phase coherence length in this reference scales as Lφ ∝ 1/θ, which
indicates that the lower θ, the longer the involved relevant paths. The emergence of the dip
is then attributed to a path length selective nonlinearity that increases the sensitivity to ab-
sorption of long paths, that mostly play a role around θ = 0, more than the one of short paths.

In the context of quantum transport of matter waves, the presence of a many–body atom–
atom interaction gives rise, in the mean–field description, to an effective interaction energy
which is accounted by a nonlinearity in the Gross–Pitaevskii equation. Numerical mean–
field studies related to the transport of a Bose–Einstein condensate across a 2D disordered
slab [60] or through irregularly shaped billiard geometries [61], both performed in the context
of a quasi–stationary reachable scattering state, indicate that owing to the presence of a finite
nonlinearity in the related Gross–Pitaevskii equation, coherent backscattering gets inverted.

These mean–field studies suffer however a drawback in the sense they are only valid in the
limit of a very weak interaction strength. It therefore appears reasonable to question the
extension of the validity of the mean–field approach, more specifically to which extent the
predicted peak inversion prevails in a regime extending beyond the mean–field description. A
dephasing of coherent backscattering is indeed expected for strong interaction, a study based
on diagrammatic many–body techniques indicates [115]. As a matter of fact, in the presence
of interaction, inelastic scattering processes which are beyond the scope of the mean–field ap-
proach yield an energy redistribution amongst the interacting particles. This energy spectrum
causes the production of an incoherent contribution to the current which can, for sufficiently
strong interaction, dominate the coherent contribution and wash out coherent interference
effects. This inelastic scattering–induced coherence loss and the resulting thermalisation are
indeed confirmed in Ref. [116] which is dedicated to the theoretical and numerical study of
an out–of–equilibrium Bose–Einstein condensate prepared in a configuration very similar to
that in Ref. [57].

1.4 Anderson localisation

As is clearly evidenced by weak localisation and the related coherent backscattering, interfer-
ences between scattering paths have significant effects on the transport, as those microscopic
phenomena diminish the classically expected macroscopic conductivity, which is translated
into a reduced diffusion constant. Yet more astonishing is the annihilation of transport that
takes place in the context of Anderson localisation and which turns a metallic conductor into
an insulator of zero conductivity.

In his famous seminal paper [77], Anderson theoretically studied the electronic transport
within a semiconductor as a result of scattering by crystal defects and investigated to what
extent the Drude–Boltzmann theory remains valid in the presence of a strong disorder. He
used a tight binding formulation of noninteracting electrons propagating on a lattice with uni-
form hopping term and randomly distributed on–site energies that model a disorder potential.

For sufficiently strong disorder, he showed that any electron gets localised at its initial posi-
tion in the sense of an exponentially vanishing probability of escaping its initial lattice site
by diffusive motion, resulting, in the words of Anderson, in the “absence of diffusion”. This
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annulation of the diffusion constant and the resulting annihilation of transport is entirely
due to coherent interference effects that, in the context of a sufficiently strong disorder, lead
to an elastic scattering mean free path which is comparable to the de Broglie wavelength of
the electrons. In such a context of a mean free path becoming comparable to – and even
shorter than – the wavelength, the wave picture starts to get qualitatively deprived of its
substance [117, 118]. It indicates that the electron is constantly scattered before any prop-
agation can occur, so that the treatment of a diffusive propagation resulting from a plane
wave motion interrupted by many scattering events collapses. This situation occurs as soon
as kls ≈ C ∼ 1 which is known as the Ioffe–Regel criterion [119] that defines the strong
scattering regime and which applies in the infinite space.

This Ioffe–Regel criterion appears as a selective criterion that allows to discriminate between
a regime of parameters giving rise to spatially localised waves and a regime of parameters that
yields spatially extended waves that propagate diffusively, portraying Anderson localisation
as a phase transition between those two regimes [120]. This transition which, in the context
of electronic transport across a metal, turns this metallic sample into a perfect insulator [77],
appears at the so–called mobility edge [118]. This localised regime introduces a new length
scale ξloc, which is referred to as the localisation length and most naturally appears as the
characteristic length parameter in the spatial exponential decay of the modulus square of the
localised wavefunction.

As the discussion above highlights, in the strong scattering regime, the semiclassical picture
of a plane wave motion between scattering events breaks down and fails at describing strong
localisation. In this context, a new phenomenological approach was proposed by the gang
of four (Abrahams, Anderson, Licciardello, Ramakrishnan) in 1979 [121] who followed the
works of Thouless [122]. This approach consists in considering that the localisation properties
of the system under study are governed by a single parameter, which is referred to as the
dimensionless conductance g(L), and its dependence with respect to the system size L. This
dimensionless conductance is expressed as

g(L) =
τH

τTh
, (1.24)

that is, as the Heisenberg time τH which is the time scale required by the system to resolve
its discrete energy spectrum and where quantum effects become inevitable [123] divided by
the Thouless time τTh, required for an electron to diffusively traverse the sample and reach
the system boundary. This dimensionless conductance reveals two opposite regimes. On the
one hand, when g ≫ 1, or equivalently τH ≫ τTh, quantum interference effects are suppressed
before playing a significant role and classical diffusive transport is obtained. On the other
hand, when g ≪ 1, or equivalently τH ≪ τTh, strong localisation is achieved and the wave
does not reach the boundary of the system.

The scaling theory is devoted to linking those two limits and to describing what happens
between them. For that purpose, the scaling parameter is defined as the logarithmic derivative
of the dimensionless conductance with respect to the size of the system

β =
d ln g
d lnL

≡ β(g), (1.25)
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where a strong assumption has been made, namely that β depends only on g (and on the di-
mensionality by extension) and not upon the microscopic transport properties of the medium.
Despite its crudeness, this hypothesis has been verified by renormalisation group studies [124]
and a self–consistent theory of Anderson localisation [125]. This approach of a single param-
eter scaling law provides a unified framework in which transport properties are described by
β(L) both in the weak and strong scattering regimes. Fig. 1.9, which is extracted from [126],
shows the dependence of β(g) as a function of the dimensionless conductance g in dimension
1, 2 and 3.

Figure 1.9 – Dependence of β(g) as a function of the dimensionless conductance
g in dimension 1, 2 and 3. In 1D and 2D, Anderson localisation always occurs
whilst in 3D, there is a phase transition from a spatially localised to an extended
regime which occurs at the mobility edge, when the red curve crosses the log g
axis. This figure is extracted from [126].

The curves depicted in Fig. 1.9 are very interesting and reveal that a genuine (second or-
der) phase transition from a spatially localised regime to an extended regime only occurs in
3D (and beyond) at the mobility edge, which separates the weak from the strong scattering
regimes for which the Ioffe–Regel criterion can be used as a discriminating criterion. Con-
versely, for a disordered system in 1D or 2D, there is no such phase transition and there are
no extended states. The scaling parameter β(g) is indeed always found negative and implies
that the dimensionless conductance g monotonically decreases with the system size L, which
in turn indicates that g ≪ 1 and that a strongly localised regime in achieved, irrespective
of the size of the system. However, the related localisation length is usually very large for
such systems, exceeding the size of the system within which waves propagate in the extended
regime so that weak localisation effects remain nonetheless observable. Anderson localisation
is however granted to occur when the system is large enough, irrespective of the disorder
regime.

Although very satisfactory from the qualitative point of view, the scaling theory fails at
predicting the critical exponents around the critical point. This theory was extended by
Vollhardt and Wölfle to give rise to the microscopic self–consistent theory of Anderson locali-
sation [125] that predicts very precise localisation lengths in 1D and 2D and is satisfactory in
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3D but fails at predicting the critical exponent of the related phase transition. Very recently,
the emergence of the landscape theory as a universal mechanism for Anderson and weak lo-
calisation [127,128] provides perspectives of a more accurate prediction of the mobility edge
and of the critical exponent, which nowadays remains an open and challenging question.

Despite its current profound implications on the physics of waves transport within random
media, the paper of Anderson largely went under the radar of the scientific community be-
fore 1970, as it was cited only 30 times the first ten years that followed its publication [126],
whereas it is nowadays cited more than 5000 times. Anderson localisation has indeed been
observed and studied in a wide variety of contexts, both for classical or quantum waves,
which is not surprising considering the ubiquity of Anderson localisation as an interference
phenomenon. It was for instance experimentally observed with light11 in disordered me-
dia [129, 130] or within photonic crystals [131]. It has also been encountered in the acous-
tics domain for ultrasound [132, 133] but also with microwaves [134]. Experimental signa-
tures in the direct space for ultracold atoms were recently evidenced by a research group in
Palaiseau [135] and by another research group in Florence [136]. Finally, it has also been
studied in the momentum space [110,137–140].

1.4.1 Coherent forward scattering as an indicator of Anderson localisation

As we have highlighted below, Anderson localisation is an extremely active field of research,
especially in the framework of ultracold atoms where signatures of Anderson localisation are
actively sought, particularly in the momentum space. The idea of such studies is to prepare
a wavepacket narrowly centred around an initial momentum state and to analyse how the
ensemble averaged momentum distribution evolves in time. In this context and driven by
the signature of weak localisation in this space (coherent backscattering), a group led by C.
Miniatura searched for an equivalent signature of Anderson localisation in the momentum
space. A first numerical study [141], dedicated to the investigation of a wavepacket propa-
gating towards a 2D disordered potential in a configuration very similar to that in Ref. [110],
reports the time evolution of the ensemble averaged momentum distribution of Ref. [110], for
which a signature of Anderson localisation is expected at long times. Beyond the localisation
time tloc, they noticed the emergence in the forward direction of a peak very similar to the
coherent backscattering peak, which effect is referred to as coherent forward scattering. At
long times, those peaks form a twin structure which is shown in Fig. 1.10.

11Photons do not interact contrarily to electrons, which constitutes a simplified context of work.



32 Wave propagation in disordered media

Figure 1.10 – Disorder average of the momentum distribution of matter waves
with initial momentum ki = (1.5/ζ, 0) that displays the twin peaks structure
featuring coherent back and forward scattering. The latter peak that appears
around the localisation time tloc, which corresponds to the time required to reach
the localisation length ξloc, is a signature of Anderson localisation in the momen-
tum space. Adapted from [141] and [142].

Contrarily to coherent backscattering which is nowadays well understood in terms of con-
structive interferences between time–reversed scattering paths, coherent forward scattering
is more complicated to portray. Ref. [143] indicates that this effect appears as a consequence
of higher order interferences, such as for instance paths which yield back and forth scattering
sequences between the back and forward directions, two examples of which being sketched in
Fig. 1.11 for the second order. Those paths can be understood as higher order interference
terms compared to the Cooperon that give rise to weak localisation and coherent backscat-
tering. Indeed, as we mentioned earlier, those terms are only the leading order terms in a
weak disorder scenario.

(a) Second order Cooperon (b) Second order Diffuson

Figure 1.11 – Scattering paths related to second order Cooperon and Diffuson,
adapted from [76].

This mechanism of back and forth scattering does not play a significant role in the diffusive
regime, contrarily to the case of a localised regime, which typically occurs for Anderson lo-
calisation for which interference accumulate to yield a notable peak in the forward direction.
Ref. [143] further indicates that this peak should also be visible in a confined region of space
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of extension less than the localisation length. Beyond its fundamental relevance as such, this
effect is particularly interesting as it is, as we have highlighted, a key indicator and signature
in the momentum space of the onset of Anderson localisation [144, 145] under the condition
that the atomic motion is not constrained by any artificial mechanism in the propagation
direction [143].

The experimental observation of coherent forward scattering poses a substantial problem
owing to the lack of experimental realisations of energy–filtering methods, although there
exists a proposal of such for ultracold atoms [146]. Indeed, as Ref. [147] states, those methods
are necessary to target a very narrow energy window to circumvent the scrambling of the
dependence of the diffusion constant and the localisation length with respect to the energy.
This reference suggests that, despite those practical difficulties, the experimental observation
of coherent forward scattering should indeed nowadays be possible for a quantum kicked rotor
system. It has nevertheless to our knowledge for the moment not been observed yet.





Chapter 2

Bose–Einstein condensates: a

source of coherent matter waves

In this chapter, we introduce the framework of ultracold atoms through Bose–Einstein con-
densates that provide a formidable toolbox for quantum simulation of many–body physics
systems. We start by introducing how Bose–Einstein condensation naturally emerges from
the related distribution when an ideal gas of bosonic particles in a trap is cooled down to very
low temperatures, following Einstein’s theoretical model. Bosonic particles forming a conden-
sate in this context however do exhibit interaction, which brings us to the quantum scattering
theory that finally results in the famous Gross–Pitaevskii equation describing atom–atom in-
teraction within the condensate in the mean–field approximation. With those tools at our
disposal, we shall be in a position to discuss atom lasers that are a key ingredient to produce
highly coherent quantum matter waves that can be used in the context of the transport of
coherent waves within random media.

2.1 From Maxwell–Boltzmann to Bose–Einstein distribution

The description of a macroscopic system containing a large number of particles in terms of
microscopic quantities requires a statistical approach. Indeed, solving Newton’s law for each
particle not only comprises a prohibitively large number of equations1 but also involves errors
on the collisions between particles that propagate exponentially in the presence of particle–
particle interaction.

A first statistical approach arose by the end of the 19th century with the kinetic theory of
gases and is due to Boltzmann who derived a statistical distribution referred to as Maxwell–
Boltzmann distribution (see Refs. [149, 150] for more information). This law describes the
distribution of discernable2 particles of a classical gas in thermal equilibrium amongst the

1For a room of volume V = 100 m2 and particles density n = p/kBT ≈ 2 · 1025 per unit volume, where p
is the ambient pressure, T the ambient temperature and kB = 1.38 × 10−23 m2 kg s−2 K−1 is the Boltzmann
constant, each particle being completely defined by its position r(t) and momentum p(t) at time t, this
amounts to considering approximately 1028 coupled ordinary differential equations [148]!

2The notion of discernibility is intuitively understood as the possibility to label and monitor the time
evolution of each particle.
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energy levels at disposal and is, in the absence of degeneracy, yielded as

〈n̂k〉MB =
1

eβ(Ek−µ)
, (2.1)

where 〈n̂k〉MB is the average population of the state with energy Ek, µ is the chemical po-
tential of the particles gas and β = 1/(kBT ), with kB = 1.38 × 10−23 m2 kg s−2 K−1 the
Boltzmann constant and T the temperature of the gas.

Some time later, Bose wrote a paper about a new derivation of Planck’s law for black body
radiation. In this novel approach, he treated the thermal radiation as originating from a gas
made of identical and indistinguishable particles later called photons. This novel concept
of indistinguishability, although natural in quantum mechanics3, is totally innovative and
contrasts with the treatment of Boltzmann. It has also deep consequences on the equilibrium
state that is attained as it originates from the number of possible manners to distribute the
particles amongst the reachable energy states. Indistinguishability decreases the number of
accessible configurations and hence enhances the importance of a given configuration, thereby
favouring condensed configurations, as the problem of distributing N particles in two boxes
illustrates [151].

Bose sent his work to Einstein who translated the article into German and published it in
Zeitschrift für Physik [5]. Short after, Einstein extended Bose’s work to a gas of indistin-
guishable and noninteracting atoms, leading to Bose–Einstein distribution that provides the
number of atoms of energy Ek as

〈n̂k〉BE =
1

eβ(Ek−µ) − 1
=

z

eβEk − z
, (2.2)

where we have introduced the fugacity z = exp(βµ) that is sometimes used to write Bose–
Einstein distribution. An important physical constraint comes with this distribution, namely
that the chemical potential is such that µ < E0 (or equivalently in terms of the fugacity
that 0 < z < exp(βE0)), where E0 is the lowest eigenvalue of the Hamiltonian describing
the system under study, in order to prevent the occupation number of a hypothetical state
of energy less than µ to be negative. It provides an upper bound on the number of particles
populating the excited states

〈N̂〉exc =
∑

k>0

1
eβ(Ek−µ) − 1

< 〈N̂ 〉max
exc =

∑

k>0

1
eβ(Ek−E0) − 1

(2.3)

obtained by setting µ to its maximal value E0. The value 〈N̂〉max
exc is called the saturation

number and indicates that if the average number 〈N̂〉 of particles in the system is larger
than 〈N̂〉max

exc , then 〈N̂ 〉0 = 〈N̂〉 − 〈N̂ 〉max
exc necessarily lie in the ground state, as a preliminary

signature of Bose–Einstein condensation [152]. In particular, this accumulation in the ground
state does not depend upon the energy spacing between the ground state and the first excited
state and occurs at every temperature. It requires however all the more particles that the
temperature is high to significantly populate the ground state.

3Owing to the possible overlap of the wavepackets related to various particles, it is impossible to discrim-
inate one particle amongst the others. Evaluating the probability that a specific particle occupies a given
position is abandoned to the benefit of determining the probability of finding a particle at position r.
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Fig. 2.1(a) shows the average ground state population as a function the energy difference
E0 − µ and Fig. 2.1(b) shows the average population as predicted by the Bose–Einstein
distribution (2.1) versus the energy Ek for different values of the fugacity z.
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Figure 2.1 – Upper panel: average population of the ground state as a function
of the energy difference E0 − µ. As µ → E0, the population of the ground state
becomes infinitely large and diverges. Lower panel: Bose–Einstein distribution
as a function of the energy Ek for different values of the fugacity z. The higher
the fugacity, the more particles populate the low energy modes.

Fig. 2.1(a) highlights that the average ground state population

〈n̂0〉 =
1

eβ(E0−µ) − 1
(2.4)

becomes infinite when the chemical potential reaches its upper bound, µ → E0, which is a key
ingredient of Bose–Einstein condensation. This is confirmed by Fig. 2.1(b) which illustrates
that, when z → exp(βE0) (or equivalently µ → E0), the low energy states feature a much
higher population than the high energy states, indicating a tendency to aggregate in the low
energy states when the fugacity (or the chemical potential) tends to its upper bound.

2.2 Bose–Einstein condensation of an ideal gas in a harmonic

trap

Bose–Einstein condensation as predicted by Einstein is expected to occur in free space. Tem-
peratures required for a significant population of the ground state to emerge are nevertheless
extremely low, so that cooling and trapping4 techniques must be used to be able to experimen-
tally produce a Bose–Einstein condensate [153]. For this reason, we describe in the following

4For those very low temperatures, material boundaries such as a glass container are not suitable to confine
the gas as all particles would immediately stick to the walls.
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how this phenomenon occurs in a harmonic trap modelled by the harmonic potential

V (r) =
1
2
mr2ω2, (2.5)

with r being the distance from the centre of the trap, ω ≡ ωx = ωy = ωz is the uniform
confinement frequency and m the mass of the bosonic particles. The Hamiltonian related to
this system reads

Ĥ =
p̂2

2m
+ V (r) (2.6)

for which the eigenvalues read

En =
(

nx + ny + nz +
3
2

)

~ω, (2.7)

where nx, ny, nz ∈ N are the mode indices of the trap. The average number of particles
contained within the Bose gas is provided as a sum over all average occupation numbers
〈nnx,ny,nz〉 of each mode nnx,ny,nz , with nx, ny, nz ∈ N. This is yielded as

〈N̂〉 =
∑

n

1
eβ(En−µ) − 1

=
∑

n

z

eβEn − z
, (2.8)

whilst the average occupation number of the specific 〈nnx,ny,nz〉 state is provided by the Bose–
Einstein distribution (2.2) that yields the constraint that the fugacity must take values in the
range [0, exp(3β~ω/2)]. As a matter of convenience and following the discussion in Ref. [154],
the ground state energy can be absorbed in a rescaled chemical potential µ̃ = µ − 3~ω/2
which in turn modifies the eigenvalues as Ẽn = (nx + ny + nz)~ω and also yields rescaled
fugacity z̃ = z exp(−3β~ω/2) varying between 0 and 1. This transformation preserves the
Bose–Einstein distribution provided one expresses it in terms of the rescaled eigenvalues,
chemical potential and fugacity.

Separating the average population of the ground state from the other states, the average
number of particles in the trap is written

〈N̂〉 =
1

e−βµ̃ − 1
+
∑

n6=0

1
eβ(En−µ) − 1

=
z̃

1 − z̃
+
∑

n6=0

z̃

eβEn − z̃
, (2.9)

and highlights once again an unbounded growth of the average ground state population in
the limit z̃ → 1. As we earlier discussed, the excited states population gets bounded in this
limit by the critical (or saturation) number

Ncr ≡ 〈N̂〉max
exc =

∑

n6=0

1
eβEn − 1

, (2.10)

which is referred to as the saturation of the excited states. A direct consequence is that,
at fixed temperature T , if the trap contains an average number of particles higher than the
critical number Ncr, the difference between those two quantities necessarily populates the
ground state. Furthermore, the injection of a new particle into the trap leads to a very high
probability to condense in the ground state. The excited population is then referred to as
the thermal cloud whilst the ground state population is referred to as the condensate. It
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is important to note that the critical number Ncr remains finite, whereas the ground state
population can be arbitrarily large compared to that of the thermal cloud. In the formal limit
z̃ → 1 and when β~ω ≪ 1, the critical number can be computed as Ncr = [kBT/(~ω)]3ζ(3)
and the average number of particles is yielded [154] as

〈N̂ 〉 =
z̃

1 − z̃
+Ncr, (2.11)

where ζ(3) ≈ 1.202 is the Riemann zeta function and where we have once again separated the
ground state contribution from the thermal cloud, because of the divergence of the ground
state population in the limit z̃ → 1.

Conversely, condensation is also highlighted when the number of particles is constant and
the temperature lowered. This is a common situation since Bose–Einstein condensation is
usually achieved by first loading traps with N particles and then progressively lowering the
temperature. Indeed, the critical number Ncr is an increasing function of the temperature
that allows us to define a corresponding critical temperature by setting 〈N̂〉 = Ncr, which
yields

kBTcr = ~ω 3

√

N

ζ(3)
. (2.12)

This critical temperature corresponds to a threshold below which bosonic particles deplete
the thermal cloud and feed the condensate by significantly populating the ground mode, as
is qualitatively illustrated in Fig. 2.2.

Figure 2.2 – Schematic population of the energy levels of a trapped gas of bosonic
particles. When T ≫ Tcr, bosons populate the energy levels similarly as would be
prescribed by the Maxwell–Boltzmann distribution. Around the critical temper-
ature T ≈ Tcr, bosons start to condense in the ground state and when T ≪ Tcr,
the majority of the bosonic particles occupy the ground state.

As Fig. 2.2 illustrates, for high temperatures such that T ≫ Tcr bosonic particles populate
the energy levels as would be prescribed by the Maxwell–Boltzmann distribution, as the
Bose–Einstein distribution is safely approximated by the latter in this limit. As the tempera-
ture is lowered to reach to the critical temperature T ≈ Tcr, the formation of the condensate
is triggered and a non negligible fraction of the total particles condense in the ground state.
In the limit T ≪ Tcr, the majority of the particles lie in the ground state and populate it
macroscopically. The thermal cloud can even be entirely emptied and the condensate made
of all trapped particles in the theoretical limit T → 0.
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The related de Broglie wavelength

λdB(T ) =

√

2π~2

mkBT
(2.13)

at temperature T also provides qualitative information of the system behaviour at low tem-
peratures. Indeed, at high temperature T ≫ Tcr, the de Broglie wavelength λdB of the
particles is extremely short compared with the mean distance separating the particles and
they can be safely described in terms of point–like particles following the Maxwell–Boltzmann
distribution. However, around the critical temperature, one can show [29] that both thermal
the de Broglie wavelength (2.13) and the mean spacing d between particles are of the same
order of magnitude, whilst below Tcr, the de Broglie wavelength spreads and overlaps with
that of other bosonic particles. That portrays Bose–Einstein condensation as the emergence
of a giant matter wave of bosonic particles at low temperatures. This behaviour is illustrated
in Fig. 2.3 which shows a graphical illustration of the de Broglie wavelength in different
temperature regimes.

Figure 2.3 – Scheme of the de Broglie wavelength in different regimes of tem-
perature. When T ≫ Tcr, bosonic particles can be safely treated as classical
point–like particles obeying Maxwell–Boltzmann distribution. When T ≈ Tcr,
atomic wavepackets start to overlap to form a giant matter wave when T ≪ Tcr,
referred to as Bose–Einstein condensate. Adapted from [155].

Temperatures required to obtain Bose–Einstein condensation experimentally, that are typi-
cally hundreds of nanokelvin, rendered its observation totally impossible until the advent of
laser cooling techniques. One had thus to wait for 70 years for the first experimental obser-
vation with 87Rb atoms in 1995 by the group of Cornell and Wieman [8] at Boulder (JILA)
and with 23Na atoms by the group of Ketterle [9] at MIT. The famous picture of the Nobel
lecture [156] illustrating the experimental velocity distribution of a gas 87Rb atoms in three
typical temperature regimes is shown in Fig. 2.4.
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Figure 2.4 – First experimental observation of Bose–Einstein condensation by
imaging the velocity distribution of a Bose gas of 87Rb atoms at different tem-
perature regimes. The left panel for which T ≫ Tcr shows a statistical population
of the energy states. The atomic cloud is still quite hot and the velocity distri-
bution wide. In the middle panel corresponding to T ≈ Tcr, a strong blue peak
appears as a signature of a high population of the ground state that indicates
the formation of the condensate. For T ≪ Tcr, as in the right panel, a quite
pure condensate is obtained and only the ground state is appreciably populated.
Picture adapted from [156].

Fig. 2.4 shows the velocity distribution of the trapped atoms that first statistically popu-
late the energy levels of the trap at high temperatures (left panel). The thermal cloud is
largely populated as the width of the velocity distribution indicates and no emergence of a
significantly high population of the ground state is yet to be noticed. As the temperature is
progressively lowered by evaporative cooling, a macroscopic population of the ground state
(middle panel) emerges and highlights the formation of the condensate around Tcr. A lower
temperature further depletes the thermal cloud to yield a very pure condensate, where nearly
all 87Rb atoms contained in the trap populate the ground state (right panel). For this spec-
tacular achievement, Cornell and Wieman together with Ketterle were rewarded by the Nobel
prize in physics in 2001.

However, far from being an ultimate accomplishment, this observation stimulated many other
subsequent experiments and paved the way for a very rich physics. Amongst those early ex-
periments, a significant part were devoted to alkali atoms, mainly for three reasons. Indeed,
owing to the presence of an intrinsic magnetic moment, they can be easily confined within
a magnetic trap. Furthermore, the energy difference between the ground state and the first
excited state of alkali atoms lies in the optical or near–infrared regime for which lasers are
readily available to cool them down. Finally, alkali atoms are characterised by the presence
of an unpaired electron that most naturally results in a weak atom–atom interaction (that
can be exploited as a probe to study many–body interaction effects or to realise evaporative
cooling). For those reasons, alkali atoms are a suitable candidate for Bose–Einstein conden-
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sation and it is thus not surprising that the first Bose–Einstein condensates are made of alkali
atoms, although other kinds of species have also been used.

Bose–Einstein condensates were indeed obtained with numerous bosonic species such as
1H [157], 4He [158, 159], 7Li [160, 161], 23Na [9], 39K [162], 40Ca [163], 41K [164], 52Cr [165],
85Rb [166], 87Rb [8], 84Sr [167], 86Sr [168], 88Sr [169], 133Cs [170,171], 160Dy [172], 162Dy [172],
164Dy [173], 168Er [174], 170Yb [175] and 174Yb [176]. Bose–Einstein condensates of mixtures
of different isotopes of the same element were also obtained, as for instance sympathetic
cooling of a mixture of 87Sr and 88Sr [169]. Mixtures of different species were also cooled
down and trapped to reach Bose–Einstein condensatation like 84Sr or 88Sr with evaporatively
cooled 87Rb [177], or 41K with 87Rb [164] or even a mixture of 133Cs still with 87Rb [178] to
name a few.

The ideal picture of a noninteracting Bose–Einstein condensate depicted until here is never-
theless modified by atom–atom interaction. Indeed, contrarily to the prediction by Einstein
of Bose–Einstein condensation of an ideal gas in free space, atom–atom interaction plays a
major role within traps. Owing to the accumulation of bosonic particles in the ground state
of the confining trap, a high density is obtained in the centre of the trap and interaction
plays in this context an important role, deforming the harmonic potential experienced by the
atoms and increasing the critical value Ncr [29].

2.3 Quantum scattering theory and atom–atom interaction

As we have highlighted, atom–atom interaction plays an important role in trapped Bose–
Einstein condensates. However, at the very opposite naive conception one might have, this
interaction should not be considered as an inconvenience but rather as a probe to explore
many–body effects in a highly controlled environment. It is especially valuable in the context
of quantum simulation where ultracold atoms provide an unprecedented framework for the
emulation of complex many–body systems, for instance originated from condensed matter
physics.

Quantum scattering theory provides the suitable framework for describing atom–atom inter-
action within ultracold gases. Scattering experiments indeed generally supply a remarkable
investigation tool for atomic and nuclear physics, as they provide not only information about
fundamental matter (the discovery of the atomic nucleus or some elementary particles, . . . )
but also about fundamental interactions between particles. The principle lies in illuminating
a target with an incident beam and measuring the deflection of that beam by the target,
which makes it a quite simple experiment to carry out. Depending on the experiment, the
incident beam can be either light or massive particles, the (de Broglie, in case of massive
particles) wavelength of which being comparable to that of the scatterers.

2.3.1 Quantum scattering theory for a dilute gas at low temperature

In this section, we consider the collision in free space of two identical atoms of mass m at
positions r1 and r2 and interacting in the dilute regime via the two–body van der Waals
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interaction potential that is asymptotically described by

U(|r1 − r2|) ∼
{

1/|r1 − r2|α for |r1 − r2| → 0

−C6/|r1 − r2|6 for |r1 − r2| → ∞
, (2.14)

where C6 > 0 is a constant related to the specific particles under study and α is a constant.
This potential vanishes as 1/r6 for large r whilst it diverges for short atom–atom distances
owing to the Coulomb repulsive force between each atomic nucleus. It indicates that at large
distance, it acts as an attractive potential whilst at short distance, it is strongly repulsive
owing to the overlap of the atomic electronic clouds. Repulsive and attractive forces equili-
brate somewhere between those two asymptotic regimes, which results in a global minimum
that features the possibility to form a diatomic molecule. The exact and detailed shape of
the van der Waals potential is unfortunately in general not known analytically.

A gas with a density n of atoms in the trap is said dilute in the sense of an average interatomic
distance d = n−1/3 much larger than the typical range r0 of the atom–atom interaction [153].
As a consequence, three–body or higher order collision processes are much less likely than
atom–atom collisions, which justifies the restriction to a two–body interaction potential [29].
Because the dilute regime allows to work with asymptotic expressions for the scattering
wavefunction we are interested in, the scattering properties shall be entirely described in this
context by the scattering amplitude. Therefore, the fine details of the scattering potential
are not required for a reliable description of the collision process.

The two–body Hamiltonian describing this system is given by

Ĥ = − ~
2

2m

(

∂2

∂r2
1

+
∂2

∂r2
2

)

+ U(r1 − r2). (2.15)

Given that the interaction potential only depends on the distance between the two particles,
it is then quite natural to decouple the centre–of–mass motion from the dynamics of the
relative motion through a change of reference frame. In the centre–of–mass reference frame,
where we note the relative position r = r1−r2, the Hamiltonian governing the relative motion
is provided by

Ĥ =
p̂2

2µ
+ U(r) (2.16)

and describes the motion of a particle with reduced mass µ = m/2 and relative momentum
p = (p1 − p2)/2 in the presence of a central scattering potential U(r). This change of
reference frame casts the two–body problem into an effective one–body scattering problem
described by the following time–dependent Schrödinger equation

i~
∂

∂t
Ψ(r, t) =

(

− ~
2

2µ
∆ + U(r)

)

Ψ(r, t), (2.17)

generated by the Hamiltonian (2.16), with Ψ(r, t) the wavefunction for the relative motion.
In the steady–state regime and if the incident matter waves have well–defined energy Ek =
~2k2/2µ, with k ∈ R, we can treat them as plane waves and make the Ansatz Ψ(r, t) =
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ψ(r)e−iEkt/~. The scattering states ψ(r) of the relative motion are then solution of the
stationary Schrödinger equation

(

− ~
2

2µ
∆ + U(r)

)

ψ(r) = Ekψ(r). (2.18)

In view of applying the technique of Green’s functions to solve Eq. (2.18), in a fashion very
similar to that in Chapter 1, we rewrite Eq. (2.18) under the following form

(∆ + k2)ψ(r) =
2µ
~2
U(r)ψ(r), (2.19)

where we treat the right hand side as an inhomogeneity, although it is proportional to ψ(r).
This equation can be solved by the technique of Green’s functions which yields the solution
under the integral form

ψ(r) = φ0(r) +
2µ
~2

∫

G(r − r′)U(r′)ψ(r′)dr′, (2.20)

where the first term φ0(r) corresponds to the incident wave and satisfies the homogeneous
Helmholtz equation (∆ + k2)φ0(r) = 0. Since we treat the incident waves as plane waves, we
write

φ0(r) = φ0e
ik·r = φ0e

ikz (2.21)

with φ0 the incident amplitude of a wave propagating, without loss of generality, along the
z–axis. The second term of Eq. (2.20) is obtained thanks to the Green’s function G(r − r′)
which satisfies

(∆ + k2)G(r − r′) = δ(r − r′), (2.22)

where the inhomogeneous part of Eq. (2.19) has been replaced by a delta distribution. This
equation, that just involves a delta distribution instead of the (possibly complicated) scatter-
ing potential is much easier to solve than the original equation (2.19) and allows one to write
Eq. (2.19) under the formally equivalent self–consistent integral form (2.20). The Green’s
function in Eq. (2.22) is given by

G±(r − r′) = − 1
4π

e±ik|r−r′|

|r − r′| , (2.23)

that describes a spherical wave and where the ± sign delineates the existence of a Green’s
function related to ingoing waves (−) and another one to outgoing waves (+). The choice
between those depends upon the problem one wants to solve. Since we are looking here for
scattering states, we are looking for states corresponding to outgoing waves, which amounts
to keeping the positive sign in the exponential, that is the (+) Green’s function in (2.23). It
turns out that Eq. (2.20) can be written as

ψ(r) = φ0e
ikz − µ

2π~2

∫
eik|r−r′|

|r − r′| U(r′)ψ(r′) d3r′, (2.24)

which is known as the Lippmann–Schwinger equation [179]. This self–consistent equation
remains implicit for the solution ψ(r), but marks the starting point for an iterative solution
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based on successive approximations

ψ(r) = φ0e
ikz

− µ

2π~2

∫

G(r − r′)U(r′)φ0(r′) d3r′

+
(

µ

2π~2

)2 ∫∫

G(r − r′)U(r′)G(r′ − r′′)U(r′′)φ0(r′′) d3r′d3r′′

− . . . ,

= φ0e
ikz +

∞∑

n=1

[(

− µ

2π~2

)n ∫

. . .

∫

G(r − r1)U(r1)

. . . G(rn−1 − rn)U(rn)φ0(rn)d3r1 . . . d3rn

]

. (2.25)

We observe that each contribution describes a sequence of free propagations from point rn to
point rn−1 described by the Green’s function that are interrupted by scattering events, those
contributions forming a so–called Born series. This reflects that ψ(r) is composed of a sum of
contributions ranging from the direct contribution of the incident wave that directly reaches
r to the contribution that includes an infinite number of scattering events of the incident
wave before reaching r, as is diagrammatically shown in Eq. (2.26)

(2.26)

In practice, one truncates the Born series, which amounts to writing the approximation of
order n of the solution as

ψ(n)(r) = φ0e
ikz − µ

2π~2

∫

G(r − r′)U(r′)ψ(n−1)(r′) d3r′, (2.27)

and iterating step by step to obtain this approximation of order n of the solution from
that of order n − 1. It is common to truncate the Born series at the first order, hence
putting ψ(r′) ≡ φ(r′) in the right–hand–side of (2.27), thus giving rise to the so–called Born
approximation [180] that is given by

ψ(1)(r) = φ0e
ikz − µ

2π~2

∫

G(r − r′)U(r′)φ0(r′) d3r′. (2.28)

Although this method is approximative, since it describes the scattered wave only in terms
of the incident wave and waves issued from a single scattering event, it is used in various
configurations [181,182].

2.3.2 Low energy scattering in the far–field limit

Since in a dilute gas the relevant length scale for interaction is much lower than the average
atom–atom distance [29], we are interested in the asymptotic behaviour of the solution ψ(r)
in the far–field limit, corresponding to r → ∞. Because the integration in (2.24) is in practice
restricted to a spatial extension given by the finite range R of the scattering potential, we
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can safely write in the limit R ≪ r that |r−r′| ≃ r−r′
·er, where er is a unit vector pointing

in the direction carried by r. This allows us to express the Green’s function (5.8) as

G±(r − r′) ≈ − 1
4π
eikre−ikr′

·er , (2.29)

and the Lippmann–Schwinger equation (2.24) exhibits the asymptotic expression given by

ψ(r)
R≪r≈ φ0e

ikz +
[

− µ

2π~2

∫

e−ikr′·erU(r′)ψ(r′) d3r′
]

︸ ︷︷ ︸

f(k,k′)

eikr

r
, (2.30)

where we have introduced the scattering amplitude f(k,k′) that characterises the angular
dependence of the scattering state in the direction carried by k′. This expression for the
asymptotic behaviour for R ≪ r of the scattering state shows that the scattering state consists
in the sum of the incident wave and an outgoing spherical wave weighted by a directional
factor f(k,k′) that encodes all the physics related to the scattering potential, as illustrated
in Fig. 2.5.

Figure 2.5 – In the far–field limit, an incident plane wave eikz is scattered as an
outgoing spherical eikr/r wave weighted by the scattering amplitude f(k,k′) that
encodes the directional dependence of the scattered wavefunction owing to the
details of the scattering potential.

Due to the very low temperatures involved with Bose–Einstein condensates, the associated
average kinetic energy and wavevector are also very small. In the limit of low energy collisions
where both k → 0 and k′ → 0, we can write that eikz → 1, eikr → 1 and consequently that
e−ikr′

·er → 1. In this formal combined limit, the scattering amplitude reads

f(k,k′)
k→0≈ − µ

4π~2

∫

U(r′)ψ(r′)d3r′ ≡ −aS , (2.31)

where aS is the so–called s–wave scattering length. In the low energy limit, as entirely governs
the scattering, since the wavefunction provided in Eq. (2.30) reads

ψ(r)
k→0≈ 1 − aS

r
, (2.32)



2.3. Quantum scattering theory and atom–atom interaction 47

where we have set the amplitude φ0 of the incident wave to one for simplicity. Since the
scattering amplitude is perfectly isotropic, the scattered wavefunction acquires a perfectly
spherical symmetry, irrespective of the exact shape and details of the scattering potential.
Therefore, in the low–energy limit, any scattering potential that is designed to provide the
same scattering length also yields the same wavefunction (for R ≪ r) as the true interaction
potential. This can be leveraged to replace the complicated (and whose analytical expres-
sion is lacking) van der Waals interaction potential with a pseudopotential that is carefully
designed to produce the same s–wave scattering length. Amongst all pseudopotentials that
yield the same s–wave scattering length, we should choose one that renders the calculations
easy.

Owing to the diluteness of the gas, that implies an interparticle distance much larger than the
length scale relevant for interaction, it is most natural to choose a contact pseudopotential,
as was first proposed by Fermi [183]. This pseudopotential reads

UF(r) = gδ(r), (2.33)

where the interaction strength g must be determined so that a scattering process in the pres-
ence of the pseudopotential (2.33) in the low energy limit ends up with the same value for as
as would arise in the presence of the true interaction potential. This appealing pseudopoten-
tial however raises a divergence when inserted in the Lippmann–Schwinger equation (2.24),
owing to the presence of a 1/r singularity in the resulting equation.

The Fermi–Huang pseudopotential provides a solution to that issue. It is quite similar in
essence to the Fermi pseudopotential and essentially consists in a regularisation of this pseu-
dopotential in such a way that it can handle the presence of a 1/r singularity. Its action in
position representation on the total wavefunction ψ(r) reads

UFH(r)ψ(r) = gδ(r)
∂rψ(r)
∂r

(2.34)

and provides the following wavefunction when inserted in the Lippmann–Schwinger equa-
tion (2.24)

ψ(r) = eikz − 1
2π~2

gµ + ik

eikr

r
, (2.35)

that is, the same form as Eq. (2.30). In the low–energy scattering limit where k, k′ → 0 and
provided that we define the interaction strength as

g =
2π~2aS
µ

=
4π~2aS
m

, (2.36)

we can write the wavefunction ψ(r) in the same way as in Eq. (2.32). The interaction
strength defined in Eq. (2.36) governs entirely the atom–atom interaction in the low–energy
limit without requiring the knowledge and full details of the atom–atom interaction potential:
it only depends upon the s–wave scattering length. The same definition of the interaction
strength g would have been obtained by computing the scattering amplitude in the Born
approximation

f (1)(k,k′) = − µ

2π~2

∫

G(r − r′)UFH(r′)φ(r′) d3r′ (2.37)
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with the Fermi–Huang pseudopotential UFH(r) used instead of the exact scattering potential
U(r). Therefore, for such a pseudo–potential, the scattered part of the wavefunction can be
considered as a small perturbation in comparison to the incident wave and the Fermi–Huang
pseudopotential gives always rise to scattering only in the s–wave channel, not only when
k → 0.

2.3.3 Tuning the effective interaction by leveraging Feshbach resonances

When there exists a closed channel that possesses a bound state whose energy matches the
kinetic incident energy E → 0 of the free colliding particles, as is shown in Fig. 2.6, a
coupling between that closed channel and the entrance channel may be realised, provided
such a coupling exists. In that case, there is a non negligible probability that the particles
collide in the closed scattering channel to form a metastable state of short lifetime. This
coupling between the entrance and the closed channels may dramatically alter the atomic
s–wave scattering length and is known as Feshbach resonances [184,185] (see the nice review
articles [17,186]).

Figure 2.6 – Working principle of Feshbach resonances where a controlled coupling
between the entrance channel and a closed channel may be realised to tune the s–
wave scattering length and the effective atom–atom interaction strength. Figure
adapted from [29].

The closed channel is referred to as closed because asymptotically, it is unreachable due to its
energy that is forbidden for the colliding particles that most naturally scatter in the entrance
channel. The coupling may be achieved by any mechanism that connects the two channels.
The most frequent mechanism is to use an external magnetic field B that modifies the energy
of the bound state in the closed channel due to the Zeeman effect. This magnetic dependence
of the bound state energy allows one to finely tune the energy gap ∆E and by extension the
s–wave scattering length whose expression is given in Ref. [187], that is,

as = abg

(

1 +
∆B

B −B0

)

, (2.38)
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where abg is the background scattering length, B0 is the resonant magnetic field and ∆B is
the so–called resonance width. Since no constraint act on the sign of neither abg nor ∆B, the
s–wave scattering length can be tuned positive or negative by leveraging those magnetically–
induced Feshbach resonances. The atomic gas can therefore switch from a repulsive to an
attractive interaction and vice–versa. There exists other coupling mechanisms, such as for
instance by laser light (optically–induced Feshbach resonances) that can be useful when the
tuning by a magnetic field is not present.

2.4 Mean–field description of Bose–Einstein condensates

Bose–Einstein condensation has been qualitatively described, as well as how to handle the
presence of an atom–atom interaction in the low energy limit. In this section, we establish
the suitable mathematical framework to describe Bose–Einstein condensates in the mean–
field limit, which is of fundamental relevance in the context of this manuscript. To that end,
we consider a dilute gas of bosonic particles that interact through the two–body interaction
potential U(|r − r′|) and that is under the influence of an external potential V (r, t). This
potential can be for instance a confinement potential that models a trap and/or a disorder
potential towards which the bosonic particles propagate. Such a system is governed by the
many–body Hamiltonian

Ĥ =
∫

ψ̂†(r, t)

(

−~
2

2m
∆ + V (r, t)

)

ψ̂(r, t)dr

+
1
2

∫∫

ψ̂†(r, t)ψ̂†(r′, t)U(|r − r′|)ψ̂(r′, t)ψ̂(r, t)drdr′, (2.39)

where ψ̂(r, t) (resp. ψ̂†(r, t)) is the annihilation (resp. creation) field operator that destroys
(resp. creates) a particle at position r and time t. As bosonic operators, they satisfy the
following commutation relations

[

ψ̂(r, t), ψ̂†(r′, t)
]

= δ(r − r′), (2.40)
[

ψ̂(r, t), ψ̂(r′, t)
]

=
[

ψ̂†(r, t), ψ̂†(r′, t)
]

= 0. (2.41)

Field operators are related to creation and annihilation operators associated with an or-
thonormal single–particle basis |φk〉 through

ψ̂(r, t) =
∞∑

k=0

〈r|φk〉 âk (2.42)

ψ̂†(r′, t) =
∞∑

k=0

〈r|φk〉∗ â†
k, (2.43)

where âk (resp. â†
k) is the annihilation (resp. creation) operator related to the mode k

âk |n0, n1, . . . , nk, . . .〉 =
√
nk |n0, n1, . . . , nk − 1, . . .〉 (2.44)

â†
k |n0, n1, . . . , nk, . . .〉 =

√
nk + 1 |n0, n1, . . . , nk + 1, . . .〉 , (2.45)
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where nk is the eigenvalue of the number operator n̂k = â†
kâk corresponding to the occupation

number of the k mode. As bosonic operators, they also have to obey

[âk, â
†
k′ ] = δkk′

[âk, âk′ ] = [â†
k, â

†
k′ ] = 0.

The total number of particles can be expressed via those operators through

N =
∞∑

k=0

â†
kâk =

∫

ψ̂†(r, t)ψ̂(r, t)dr. (2.46)

Following the prescription of the previous section, we replace the true van der Waals interac-
tion potential U(|r − r′|) by the Fermi–Huang pseudopotential which results in the following
two–body Hamiltonian

Ĥ =
∫

ψ̂†(r, t)

(

−~
2

2m
∆ + V (r, t)

)

ψ̂(r, t)dr +
g

2

∫∫

ψ̂†(r, t)ψ̂†(r′, t)ψ̂(r′, t)ψ̂(r, t)drdr′,

(2.47)

with the interaction strength g defined in Eq. (2.36). The time evolution for the field operators
is given by the Heisenberg equation

i~
∂

∂t
ψ̂(r, t) =

[

ψ̂(r, t), Ĥ
]

(2.48)

which allows us to write, owing to the commutation relations of the bosonic fields prescribed
in Eq. (2.41), that

i~
∂

∂t
ψ̂(r, t) =

[

−~
2

2m
∆ + V (r, t) + g

∫

ψ̂†(r′, t)ψ̂(r′, t)dr′
]

ψ̂(r, t). (2.49)

Solving this equation for a reasonable number of particles demands a formidable amount of
numerical resources and justifies that we simplify the description by using a mean–field the-
ory that provides the behaviour of the interacting condensate in terms of physical parameters.

As we already highlighted, the ground state of a Bose–Einstein condensate is much more
populated than any other mode so that n0 ≫ ni for every i > 0. This justifies to decompose
the creation field operator as

ψ̂(r, t) = 〈r|φ0〉 â0 +
∞∑

k=1

〈r|φk〉 âk = φ0(r, t)â0 + δψ̂(r, t), (2.50)

where we have noted φ0(r, t) = 〈r|φ0〉 and separated the ground state from the excited states,
following the same argument as previously. Because only the ground state contributes signif-
icantly to the total population, we can treat the contribution of the other modes constituting
the thermal cloud as a small perturbation δψ̂(r, t) to the field operator ψ̂(r, t).
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The essence of the mean–field approximation is to replace quantum operators by c–numbers.
To that end, we neglect the perturbation δψ̂(r, t) to the field operator ψ̂(r, t) in Eq. (2.50)
and define the condensate wavefunction [153,154] as

ψ(r, t) = 〈. . . ,N − 1, . . .| ψ̂(r, t) |. . . ,N , . . .〉 ≈
√

Nφ0(r, t). (2.51)

We then apply the Bogoliubov prescription and replace the field operator ψ̂(r, t) by the con-
densate wavefunction ψ(r, t) defined in Eq. (2.51). This replacement is justified in the limit
of a very large number N in the ground state, since the action of â0 or â†

0 (which are the
only surviving operator in Eq. (2.50) and its complex conjugate if one neglects the perturba-
tion δψ̂(r, t) compared to φ0(r, t)â0) onto the ground state yields N ± 1 ≈ N , which mostly
preserves the condensate. The field operator now matches a classical field and thus describes
the system as a classical object, following exactly the same procedure as in electrodynamics,
where the electromagnetic field description replaces a description in terms of photons. This
treatment works particularly well for dilute gases at extremely low temperatures [29].

If we inject the expression of the wavefunction condensate defined in Eq. (2.51) in the Hamil-
tonian in Eq. (2.49), we obtain

i~
∂

∂t
ψ(r, t) =

[

−~
2

2m
∆ + V (r, t) + g|ψ(r, t)|2

]

ψ(r, t), (2.52)

which is referred to as the time–dependent Gross–Pitaevskii equation [188,189] that describes
the ground state of a Bose–Einstein condensate in the mean–field limit. It appears as a non-
linear Schrödinger equation with a nonlinear interaction energy g|ψ(r, t)|2 that results from
the mean–field description of the many–body problem in terms of an effective one–body
problem. This interaction energy is proportional to the interaction strength g and to the
local density of particles at position r and acts as an effective potential generated by the
other particles. It works particularly well for very weak interaction strengths for which the
depletion of the condensate due to interaction to the benefit of the thermal cloud is negligible.

Provided that the nonlinearity is small enough and the external potential is static, a stationary
scattering state is found by using the separation Ansatz

ψ(r, t) = ψ(r)e−iµt/~, (2.53)

where µ is the chemical potential, and which, after insertion in Eq. (2.52), yields
(

−~
2

2m
∆ + V (r) + g|ψ(r)|2

)

ψ(r) = µψ(r). (2.54)

A major drawback of this equation is that the convergence towards a stable steady scattering
state is limited to very weak interaction strengths [190], as for higher nonlinearities, a steady
state might be unreachable, owing to the presence of dynamical instabilities [191,192]. Fur-
thermore, the mean–field approximation does not take into account inelastic scattering that
plays a major role in the presence of finite interaction, as we discussed in Chapter 1. The
truncated Wigner method that we extensively discuss in Chapter 3 offers a solution to those
drawbacks.
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Despite those limitations, the Gross–Pitaevskii equation has been successfully applied in a
wide variety of contexts, ranging from the description of Bose–Einstein condensates in optical
lattices [193] or the propagation of solitons [194] to the study of Josephson effect with Bose–
Einstein condensates [195,196], to name a few.

2.5 Atom lasers

Amongst all their fascinating properties, Bose–Einstein condensates exhibit a high degree of
coherence related to the phase of the condensate wavefunction. That high degree of coher-
ence can be highlighted through the ability of the condensate to display interference effects,
in great analogy with interference effects that occur with coherent light. This has been for
instance demonstrated by measurements of the spatial coherence of Bose–Einstein conden-
sates in a double slit–like experiment [197] (usually referred to as the Munich experiment)
or by the interference between two freely expanding Bose–Einstein condensates [198]. As
we explain in the following, those properties of coherence are leveraged to produce coherent
matter wave beams referred to as atom lasers.

Indeed, motivated by the optical laser that allows to produce a beam of photons that is
highly monochromatic, coherent, directional and that can be sharply focussed, researchers
were in the 90’s interested in realising a device with similar properties but which emits mat-
ter waves instead of photons. The exceptional degree of coherence featured by Bose–Einstein
condensates makes it an ideal candidate to produce such coherent matter waves, as the above
discussion highlights. Condensates indeed contain a large number of bosonic particles that
macroscopically occupy the ground state, all of which thus sharing the same wavefunction
with a well–defined phase. It is then not surprising that Bose–Einstein condensates were used
as a coherent source of matter waves in the first experimental atom laser that was realised by
the end of 1996 [199] and was quickly followed by experimental realisations of other research
groups [200–202].

The notion of coherence in this context is to be understood in terms of the ability for the
bosonic matter wave from a Bose–Einstein condensate to display interference effects resulting
from the interference of the various wave components that form the matter wave beam, as in
Refs. [197, 198]. This offers a very sensitive probe to explore interference effects in complex
many–body systems. It indeed opens immediate applications in the context of atom optics,
atom interferometry and even atom holography [203] but also offers new perspectives for
the realisation of bosonic atomtronic components [204–206] as well as to allow comparison
with their fermionic equivalent [45,207,208]. Beside this high coherence degree, atom lasers
are also an ideal source producing nearly monochromatic matter waves [209] which can be
approximately described as plane waves. Compared to the transport of a wavepacket, this
description of the matter waves in terms of plane waves allows to put aside an additional
complexity, for instance related to the width of the wavepacket, in the scattering arising in
transport processes and settles an idealised context for their theoretical description.

The principle of an atom laser is to outcouple atoms from a trapped Bose–Einstein conden-
sate into a waveguide in a finely controlled manner. Depending on whether the trap used to
confine the atoms is optical or magnetic, several outcoupling methods are envisaged. In the
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case of optical traps, the outcoupling can be performed by varying the depth of the optical
trap so that atoms can tunnel out [209]. For magnetic traps, the principle is to transfer atoms
from the hyperfine trapped state to an untrapped state. This transfer can be performed either
via a multiphoton optical transition, which is known as Raman atom lasers [201, 210, 211]
or by applying a monochromatic radio–frequency radiation (the so–called radio–frequency
knife [199,202,212,213]). It consists in sending an electromagnetic radiation that couples the
trapped hyperfine state with a state that is not affected by the trapping potential and which
is then referred to as untrapped state, so that the radiation “cuts” atoms from the trap to
the free space.

Because atoms possess a mass, they fall under the action of gravity so that their de Broglie
wavelength λdB = h/mv decreases quickly as a result of their fall. This is a major drawback
because a large and well–defined de Broglie wavelength is required in various studies related
to quantum transport. The solution proposed in Ref. [212] is to superimpose to the magnetic
trap a horizontal matter wave guide, which can be obtained by illuminating the released atoms
by a far detuned laser beam, that cancels the effects of gravity and squeezes the motion of
the atoms in the x–direction. In great analogy with an optical laser, this setup, which is
sketched in Fig. 2.7, provides a one–dimensional flux of atoms that is highly coherent and
whose de Broglie wavelength can be adjusted by varying the frequency of the radio–frequency
radiation, although some atoms (∼ 15% in Ref. [214]) are found in some transverse excited
states of the waveguide.

Figure 2.7 – Panel (a): Sketch of a typical atom laser where atoms are outcoupled
from a Bose–Einstein condensate to a one–dimensional matter wave guide where
plane waves e±ikx are injected, forming a one–dimensional beam of monochro-
matic coherent matter waves of tunable wavelength λdB. Panels (b)–(c): Exper-
imental realisation [212] of an atom laser where a horizontal optical potential is
superimposed to the magnetic trap, allowing that outcoupled atoms are squeezed
in the x–direction to form an atom laser. Right panel adapted from [212].

In the experimental realisation depicted in Fig. 2.7(b)–(c), the experimental setup produces
a condensate containing a high number N of 87Rb atoms at a very low temperature T and
the chemical potential µ and which are in the hyperfine |F,mF 〉 = |1,−1〉 trapped state.
We treat this condensate in the idealised limit N → ∞ and T → 0. The outcoupling of
atoms from the condensate consists in flipping the spin of the atoms, thereby coupling the
“low–field seeker” |F,mF 〉 = |1,−1〉 trapped state to the |F,mF 〉 = |1, 0〉 state, which is not
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affected by the presence of a magnetic trap. This coupling is performed by applying a radio–
frequency radiation [202] which releases atoms in the matter wave guide with the kinetic
energy mv2/2 = µ. The matter wave guide is obtained by imposing a strong confinement
realised in the presence of the following optical potential

Vwg(r) =
1
2
mω2

⊥(x)(y2 + z2) (2.55)

that squeezes the motion of the untrapped atoms along the x–direction.

2.5.1 Theoretical description of an atom laser

In order to provide a set of evolution equations for the field operators related to the atoms
of the system under study, we introduce the field operator Ψ̂(r, t) of the atoms in the matter
wave guide, which are in the hyperfine |F,mF 〉 = |1, 0〉 untrapped state. We also introduce
Φ̂(r, t), the field operator of the atoms which are still confined within the source, in the
hyperfine |F,mF 〉 = |1,−1〉 trapped state. In the absence of interaction between the atoms
within the trap, as well as in the absence of interaction between trapped and untrapped
atoms, the many–body Hamiltonian related to this system reads [215]

Ĥ =
∫

Ψ̂†(r, t)

(

− ~
2

2m
∆ + V (r)

)

Ψ̂(r, t)d3r +
∫

Φ̂†(r, t)

(

− ~
2

2m
∆ + Vtrap(r)

)

Φ̂(r, t)d3r

+
∫∫

U(|r − r′|)Ψ̂†(r, t)Ψ̂†(r′, t)Ψ̂(r′, t)Ψ̂(r, t)d3rd3r′

+
∫

C(t)Ψ̂†(r, t)Φ̂(r, t)d3r +
∫

C∗(t)Φ̂†(r, t)Ψ̂(r, t)d3r, (2.56)

where U(|r − r′|) is the atom–atom interaction term between outcoupled atoms, C(t) is the
coupling strength between the source and the matter wave guide and V (r) = Vext(r)+Vwg(r)
is the total potential. The coupling strength between the source and the matter wave guide
is adiabatically ramped from zero to a constant value which is related to the strength of the
applied radio–frequency field. The Heisenberg equation provides equations of motion for the
field operators which evolve according to

i~
∂Ψ̂(r, t)
∂t

=

(

− ~
2

2m
∆ + V (r)

)

Ψ̂(r, t) + U(|r − r′|)Ψ̂†(r, t)Ψ̂(r, t)Ψ̂(r, t) + C(t)Φ̂(r, t)

(2.57)

i~
∂Φ̂(r, t)
∂t

=

(

− ~
2

2m
∆ + Vtrap(r)

)

Φ̂(r, t) + C∗(t)Ψ̂(r, t). (2.58)

In the idealised limit of N → ∞ and T → 0 that we initially considered, we can neglect
the population of the thermal cloud and assume that all atoms are in the ground state. We
thus make the single mode decomposition Ansatz for the field operator of the atoms in the
reservoir Φ̂(r, t) = φ0(r)φ̂S(t), where φ0(r) is the ground state wavefunction of energy µ and
φ̂S(t) the related field operator.

Similarly, we also assume that the propagation in the matter wave guide occurs in the trans-
verse ground state χ0(y, z). We thus decompose the field operator Ψ̂(r, t) of the atoms in the
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matter wave guide as Ψ̂(r, t) = χ0(y, z)ψ̂(x, t), with ψ̂(x, t) the field operator related to that
decomposition [51]. This allows us to rewrite the evolution equations for the field operators
as

i~
∂ψ̂(x, t)
∂t

=

(

− ~
2

2m
∂2

∂x2
+ V (x)

)

ψ̂(x, t) + g(x)ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t) +K(x, t)φ̂S(t) (2.59)

i~
∂φ̂S(t)
∂t

= µφ̂S(t) +
∫

K∗(x, t)ψ̂(x, t)dx, (2.60)

where we have defined the coupling strength as

K(x, t) = C(t)
∫∫

χ∗
0(y, z)φ0(r)dydz (2.61)

and g(x) the effective 1D interaction strength. The short–range atom–atom interaction is
modelled by a contact potential that, in the presence of a strong harmonic confinement of
frequency ω⊥(x), yields an effective 1D interaction strength given by

g(x) =
mω⊥(x)

2π~
U = 2~ω⊥(x)aS . (2.62)

In order to simplify the description, we suppose that the source is strongly localised at position
xS , which amounts to choosing an idealised profile for the coupling and make the separation
Ansatz K(x, t) = κ(t)δ(x − xS), where κ(t) is a function that describes how the coupling
strength evolves with time. Considering the macroscopic population of the condensate and a
reasonably weak coupling, we can assume that for finite time evolution, the condensate is not
significantly altered by its depletion into the matter wave guide. This argument motivates
to perform the Ansatz φS(t) = 〈φ̂S(t)〉 = φSe−iµt/~ which enables to get rid of the specific
equation related to the source, as Eqs. (2.59) and (2.60) are written

i~
∂ψ̂(x, t)
∂t

=

(

− ~
2

2m
∂2

∂x2
+ V (x)

)

ψ̂(x, t) + g(x)ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)

+ κ(t)δ(x − xS)φS(t)e−iµt/~ (2.63)

i~
∂φS(t)
∂t

= κ∗(t)ψ̂(xS , t). (2.64)

Indeed, we make the assumption that the coupling κ(t) is vanishingly weak such that κ(t) → 0
in such a manner that the product N |κ(t)|2 remains finite. In that formal limit, we can write
φS =

√
N [1 + O(|κ(t)|2)] for any t, so that in first approximation, the source population

remains constant and the matter wave guide does not influence it, as Refs. [51,216] indicate.
In practice, this corresponds to a reservoir that contains a large number of particles submitted
to a very weak radio frequency field. This allows us to rewrite the equation for the field
operators related to the atom in the matter wave guide as

i~
∂ψ̂(x, t)
∂t

=

(

− ~
2

2m
∂2

∂x2
+ V (x)

)

ψ̂(x, t)+g(x)ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)+
√

Nκδ(x−xS)e−iµt/~,

(2.65)
and to neglect the time evolution of φS(t).
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This equation does in general not possess an analytical solution, which motivates a numerical
integration. To this end, we discretise the continuous scattering region of length L in a 1D
grid of L sites which we label by α ∈ Z and spaced by δ. In this framework, the kinetic
energy operator appearing in Eq. (2.65) is expressed in terms of a finite–difference scheme

− ~
2

2m
∂2

∂x2
ψ̂(x) ≃ − ~

2

2m
ψ̂(x+ δ) + ψ̂(x− δ) − 2ψ̂(x)

δ2

= Eδψ̂(x) − Eδ
2

[

ψ̂(x+ δ) + ψ̂(x− δ)
]

,

where we have introduced the on–site energy Eδ = ~
2/mδ2 and a nearest–neighbour hopping

term −Eδ/2. The discretised version of Eq. (2.65) takes the form

i~
∂ψ̂α(t)
∂t

= (Eα+Vα)ψ̂α(t)−Eδ
2

[

ψ̂α−1(t) + ψ̂α+1(t)
]

+gαψ̂†
α(t)ψ̂α(t)ψ̂α(t)+

√
Nκδα,αS

e−iµt/~,

(2.66)
where the field operator ψ̂α(t) at site α corresponding to position x = δα is defined accord-
ing to ψ̂α(t) ≡ ψ̂(δα, t)

√
δ. With this discretisation scheme, the disorder and the interaction

strength also acquire an on–site expression which are yielded as Vα ≡ V (δα) and gα ≡ g(δα)/δ
in Eq. (2.66).

As we already explained, we consider here the formal limit of a very weak coupling κ(t)
between the source and the lead that is adiabatically and smoothly ramped on with time
and reaches a value κ → 0 such that N |κ(t)|2 remains constant [212,217,218]. Consequently,
this combined limit yields a constant number of atoms in the scattering region. A stationary
many–body scattering state with energy µ establishes after a long enough propagation time.
This scattering state corresponds to a coherent superposition of plane waves of wavenumber
given by

k =
1
δ

arccos
(

1 − µ

Eδ

)

(2.67)

and directly related to the dispersion relation of the lattice

µ = Eδ[1 − cos(kδ)]. (2.68)

It is also characterised by a stationary density and current of atoms which are given by

ρ∅ =
1
δ

N |κ|2
µ(2Eδ − µ)

(2.69)

j∅ =
1
~

N |κ|2
√

µ(2Eδ − µ)
, (2.70)

as can be obtained by solving Eq. (2.66) for a 2–sites system and computing the related
density and current [51].
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2.6 Quantum transport with atom lasers in open systems

The infinite extension system described by Eq. (2.65) can be conceived in terms of an open
quantum system provided we restrict the presence of disorder and interaction to a specific
finite region of space, which, along with its surrounding, we refer to as scattering region. This
approach is particularly useful as we are very interested in the interplay between interference
and interaction effects which occur in a finite region of space. Following the terminology used
in mesoscopic physics and in Refs. [51,218] that inspire the present discussion, we name left
and right leads the spatial regions situated at the left and the right of the scattering region,
as is depicted in Fig. 2.8(a).

Figure 2.8 – Panel (a): Typical atom laser configuration modelled as an open
system where only a finite extension scattering region is relevant. Panel (b):
Discretisation of the scattering region.

This separation follows from the spatial dependence of the confinement potential resulting
from the far detuned laser beam used to create the waveguide. Indeed, the waist of this
laser beam is very narrow in a specific region of space which results in a locally stronger
confinement that increases the atomic density and consequently the interaction energy. It
allows us to model the scattering region as an open system and thus to focus on a finite region
of space instead of the infinite extension system described in Eq. (2.65). We now explain how
this quantum open system is modelled.

2.6.1 Transparent boundary conditions

Following the approach developed in [51, 218], we start by regrouping all the local field
operators ψ̂α into a vector of field operators denoted by ψ̂ and whose expression in the
basis |α〉 is yielded as

ψ̂ =
∞∑

α=−∞
ψ̂α |α〉 , (2.71)
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where the orthonormal local sites are such that 〈α|α′〉 = δαα′ . This allows us to compactly
express Eq. (2.66) in Dirac notation

i~
∂

∂t
ψ̂ =

(

Ĥk + V̂ + Û
)

ψ̂ + |S〉 , (2.72)

with Ĥk the kinetic Hamiltonian describing a free propagation, V̂ the scattering potential,
Û an operator related to the effective potential due to the nonlinear interaction term in
Eq. (2.66) and a coherent source term |S〉 = κ

√
N e−iµt/~ |αS〉, with |αS〉 being the source

site.

We choose to note α = 0 the first site of the scattering region and α = N the last one, which
allows us to separate the total wavefunction as

ψ̂ = P̂LL
ψ̂αLL

+ P̂Qψ̂αQ
+ P̂LR

ψ̂αLR
, (2.73)

with the projectors P̂LL
, P̂Q and P̂LR

being defined on the local orthonormal grid basis states
|α〉 as

P̂LL
=

−1∑

α=−∞
|α〉 〈α| , P̂Q =

N∑

α=0

|α〉 〈α| , P̂LR
=

∞∑

α=N+1

|α〉 〈α| , (2.74)

and satisfying P̂X P̂Y = δXY P̂X , with X,Y = LL,Q,LR as well as P̂LL
+ P̂Q + P̂LR

= 1̂. The
scattering region is labelled by Q whilst the left and right lead are labelled by LL and LR. This
separation of the system between the scattering region and the rest of the infinite space, as
well as the possibility to solve Eq. (2.72) outside the scattering region more easily, motivates
the use of the Feshbach projection operator formalism [184, 185], also called Feshbach–Fano
separation, which reveals why we introduced projectors in Eq. (2.74). In the local basis |α〉,
the Hamiltonian in Eq. (2.72) yields matrix elements given by

〈α| Ĥk |α′〉 = Eδδα,α′ − Eδ
2

(δα,α′−1 + δα,α′+1) (2.75)

〈α| V̂ |α′〉 = δα,α′Vα (2.76)

〈α| Û |α′〉 = δα,α′gα|ψα|2. (2.77)

The spatial separation of the system in three regions gives rise to a set of three coupled
evolution equations that are given by

i~
∂ψ̂LL

∂t
= ĤLL

ψ̂LL
+ ŴLLQψ̂Q (2.78)

i~
∂ψ̂Q
∂t

=
(

ĤQ + V̂Q + ÛQ
)

ψ̂Q + ŴQLL
ψ̂LL

+ ŴQLR
ψ̂LR

+ |S〉 (2.79)

i~
∂ψ̂LR

∂t
= ĤLR

ψ̂LR
+ ŴLRQψ̂Q, (2.80)

where |ψX〉 = P̂X |ψ〉 denotes the wavefunction projected on the X = LL,Q,LR region,
ĤX = P̂XĤP̂X the Hamiltonian related to the X = LL,Q,LR region and finally

ŴLLQ = −Eδ
2

|−1〉 〈0| = P̂LL
ĤP̂Q = Ŵ †

QLL
(2.81)

ŴLRQ = −Eδ
2

|N〉 〈N + 1| = P̂LR
ĤP̂Q = Ŵ †

QLR
. (2.82)
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The power of the Feshbach projection operator formalism lies in that Eqs. (2.78) and (2.80)
are linear equations that describe free propagation. Their solution is thus readily obtained
by formal integration and may hence be injected in Eq. (2.79) yielding

i~
∂ψ̂Q
∂t

=
(

ĤQ + V̂Q + ÛQ
)

ψ̂Q + |S〉

− i

~

∫ t

t0
ŴQLL

e−i(t−t′)ĤLL
/~ŴLLQψ̂Q(t′)dt′

− i

~

∫ t

t0
ŴQLR

e−i(t−t′)ĤLR
/~ŴLRQψ̂Q(t′)dt′

+ ŴQLL
e−i(t−t′)ĤLL

/~ψ̂LL
(t0)

+ ŴQLR
e−i(t−t′)ĤLR

/~ψ̂LR
(t0), (2.83)

where the second and third lines describe the flow of bosonic particles exiting the scattering
region into the two leads whilst the fourth and fifth lines describe the entrance of bosonic
particles that were initially present in the left and right leads and penetrate the scattering
region after some time.

We now evaluate the integrals appearing in the second and third lines of Eq. (2.83) by
computing

ŴQLL
e−i(t−t′)ĤLL

/~ŴLLQ =
E2
δ

4

∫ π

0
|〈−1|k(LL)〉|2e−i(t−t′)Ek/~ |0〉 〈0| dk (2.84)

ŴQLR
e−i(t−t′)ĤLR

/~ŴLRQ =
E2
δ

4

∫ π

0
|〈k(LR)|N + 1〉|2e−i(t−t′)Ek/~ |N〉 〈N | dk, (2.85)

where we have introduced the normalised continuum eigenstates of each waveguide |k(LL)〉
and |k(LR)〉. In the local basis |α〉, they take on a form related to Bessel integrals which, for
the left lead, is yielded as

〈α|k(LL)〉 =

√

2
π

sin [αk] with α < 0 (2.86)

and, for the right lead, as

〈α|k(LL)〉 =

√

2
π

sin [(α−N)k] with α > N, (2.87)

with 0 ≤ kδ ≤ π. Those eigenstates are related to the following continuous eigenvalues

Ek = Eδ[1 − cos(kδ)] − µ (2.88)

and are such that 〈k(LL)|k̃(LL)〉 = 〈k(LR)|k̃(LR)〉 = δ(k − k̃). Since 1 − cos(kδ) ≃ (kδ)2/2
for kδ ≪ 1 and since Eδ = ~

2/(mδ2), we find that Ek ≃ ~
2k2/2m − µ, hence, up to the

constant shift µ, tends to the continuous dispersion relation of a free wave. As a result of the
discretisation procedure we used, Eq. (2.88) imposes that 0 < µ < 2Eδ in order to give rise
to a wave that propagates in the lead. We are finally left with a set of integro–differential
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equations for each of the N + 1 sites of the scattering region which are given by

i~
∂ψ̂α
∂t

= (Eδ + Vα) ψ̂α − Eδ
2

[

ψ̂α−1(1 − δα,0) + ψ̂α+1(1 − δα,N )
]

+ gαψ̂
†
αψ̂αψ̂α +

√
Nκδα,αS

e−iµt/~

− i

~
(δα,0 + δα,N )

E2
δ

2

∫ t

t0
Mα(t− t′)ψ̂α(t′)dt′

+ δα,0χ̂0(t) + δα,N χ̂N (t), (2.89)

where we have introduced

χ̂0(t) = Eδ

−1∑

α′=−∞
Mα′(t− t0)ψ̂α′(t0) (2.90)

χ̂N (t) = −Eδ
∞∑

α′=N+1

Mα′−N (t− t0)ψ̂α′(t0), (2.91)

as well as

Mα(τ) =
iα

2

[

Jα−1

(
Eδτ

~

)

+ Jα+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~, (2.92)

where Jα is the Bessel function of the first kind and order α. The details of the derivation
can be found in Appendix C.

Eq. (2.89) describes exactly the time evolution of the field operators ψ̂α since, until now, no
approximation has been performed. The second line of Eq. (2.89) describes the depletion of
the scattering region by particles leaving in one of the two leads whilst the third line Eq. (2.89)
describes the injection of particles initially in one of the two leads into the scattering region,
thereby corresponding to transparent boundary conditions. Although exact with respect to
the discrete equation (2.66), this approach faces the major drawback of being extremely slow
in practice. Indeed, integrals in the second line of Eq. (2.89) have to be computed at each
time step, which demands a huge numerical effort since the 1/

√
z decrease of Jα(z) renders

any cutoff in the related integrals impossible [51,218]. In the following, we introduce smooth
exterior complex scaling to efficiently replace those integrals.

2.6.2 Smooth exterior complex scaling

The idea when dealing with a quantum open system numerically is to absorb the outgoing
flux of atoms. There are several possibilities of doing so, for instance by implementing absorb-
ing boundary conditions through the so–called one–way wave equation method [219]. The
underlying idea is to modify the dispersion relation at the boundaries so that only outgoing
waves are allowed whilst those in the opposite direction are not permitted. This method is
straightforwardly implemented in combination with a Crank–Nicolson integration scheme [60]
but is sharply µ–dependent. This is a major drawback in the context of our work, since in-
elastic scattering occurring for finite interaction is responsible for creating a broad spectrum
of energies associated to outgoing waves. Another possibility is to use complex absorbing
potentials [220,221], where a finite imaginary part is added to the potential in order to damp
out outgoing waves. However, the introduction of this imaginary part can be responsible for
non desirable backreflection and must therefore be suitably chosen.
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These drawbacks can be circumvented by employing the method of complex scaling [222–227]
that allows to deal with a broad variety of energies and that is more efficient than complex
absorbing potentials [218]. In one dimension, it consists in introducing the complex path
z = F (x) 7→ z = xeiθ in the complex plane with θ, the rotation angle that should be suitably
chosen to damp outgoing waves. For simplicity, we perform this transformation onto the x
coordinate of a one–dimensional Schrödinger equation

i~
∂

∂t
ψ(x, t) = − ~

2

2m
∂2

∂x2
ψ(x, t), (2.93)

describing the free 1D propagation of a particle, instead of Eq. (2.65). Solutions of the
time–independent Schrödinger equation (2.93) for a fixed energy E are readily found out to
be

ψ(x) = A+e
ikx +A−e

−ikx, (2.94)

with A± the amplitude related to the left and right propagating plane waves. The rotation
considered here yields

ψ(z) = A+e
ikxeiθ

+A−e−ikxeiθ

= A+e
ikx cos θe−kx sin θ +A−e−ikx cos θekx sin θ. (2.95)

This transformation has rendered outgoing solutions elements of the Hilbert space L
2(R),

whereas ingoing solutions are not square integrable, yielding A− = 0 [218]. The complex
scaling proposed here thus solves the problem of outgoing waves but generally poses diffi-
culties, because an external potential cannot necessarily be expressed in terms of complex
coordinates and nonlinearities arising in a nonlinear Schrödinger equation can furthermore
cause numerical troubles [228–230].

Smooth exterior complex scaling [231, 232] solves this problem by considering a position–
dependent rotation angle θ ≡ θ(x). The idea is to leave the spatial coordinate unchanged
within the scattering region (so that both external potential and nonlinearity are not affected)
and to smoothly ramp the rotation angle from 0 to a suitable value θ at the boundaries.
We formally write the coordinate transformation in the context of smooth exterior complex
scaling as Ûθ and its action on the wavefunction is given by

Ûθψ(x, t) =

√

∂z(x)
∂x

ψ [z(x), t] (2.96)

with the complex coordinate z(x) being defined as

z(x) =
∫ x

x0

q(x′)dx′. (2.97)

The function q(x) is written as

q(x) = 1 + (eiθ − 1)u(x), (2.98)

with u(x) a smooth switching function that goes from zero to 1 over a certain spatial distance,
as is shown in Fig. 2.9(c). The Schrödinger equation (2.93) governing the evolution of the
wavefunction is then transformed according to

i~
∂Ûθψ(x, t)

∂t
= ÛθĤÛ

−1
θ Ûθψ(x, t) (2.99)
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which leaves us with the evaluation of the transformed Hamiltonian ÛθĤÛ
−1
θ . The derivatives

transform with respect to z according to [51,218]

∂

∂x
=
∂z

∂x

∂

∂z
=

1
f(z)

∂

∂z

∂2

∂x2
=

1
f(z)

∂

∂z

(
1

f(z)
∂

∂z

)

=
1

f2(z)

(

∂2

∂z2
− f ′(z)
f(z)

∂

∂z

)

and allow to write the transformed Schrödinger equation as

i~
∂Ûθψ(x, t)

∂t
= − ~2

2m
1

f2(z)

(

∂2

∂z2
− f ′(z)
f(z)

∂

∂z

)

Ûθψ(x, t). (2.100)

Before applying this procedure to the study of atom lasers, we finally note that smooth
exterior complex scaling was first introduced with a very different purpose from absorbing
outgoing waves in quantum open systems. The idea was to unmask resonance states of Hamil-
tonians featuring a structure intertwining bound states, resonance states and a continuum of
states. Indeed, as the Hamiltonian is transformed according to ÛθĤÛ

−1
θ , the bound states

are left unchanged, the continuum of states is rotated in the complex plane along a straight
line with the angle 2θ, whereas the resonance states acquire a complex energy that allows to
separate them from the continuum [233].

2.6.3 Application to atom lasers

Smooth exterior complex scaling provides a convenient way of modelling the infinite extension
system described in Eq. (2.89) as a finite extension open system. The implementation of
smooth exterior complex scaling allows us to rewrite Eq. (2.89) as

i~
∂ψ̂α
∂t

= (Eδ/qα + Vα − µqα) ψ̂α − Eδ
2

[

Jα−ψ̂α−1 + Jα+ψ̂α+1

]

+ gαψ̂
†
αψ̂αψ̂α +

√
Nκ(t)δα,αS

+ δα,0χ̂0(t) + δα,N χ̂N (t), (2.101)

where we introduced the effective hopping term

Jα± =

(

1
qα±1

− δ

2
q′
α±1

q2
α±1

)

(2.102)

with qα = q(x = αδ). The on–site potential Vα and the on–site interaction strength gα are
preserved by this transformation because they are only present within the scattering region
that is left unchanged by smooth exterior complex scaling. The third line of Eq. (2.89),
that describes the decay of outgoing waves by means of transparent boundary conditions
applied at the most left and right sites of the scattering region, is now handled by smooth
exterior complex scaling which damps outgoing waves out over a certain distance. The last
line of Eq. (2.89), that is not modified by smooth exterior complex scaling, is still present in
Eq. (2.101) and describes how an initial population outside the scattering region penetrates
into it after some finite time.

In order to provide a mean–field description of Eq. (2.101), in the limit of a large number of
atoms N → ∞ and very weak interaction strength, we apply Bogoliubov’s prescription and
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replace the field operators by c–numbers ψ̂α → ψα ≡ 〈ψ̂α〉 and ψ̂†
α → ψ∗

α ≡ 〈ψ̂†
α〉. This allows

us to cast the many–body problem into an effective one–body problem described by

i~
∂ψα
∂t

=
(
Eδ
qα

+ Vα − µqα

)

ψα − Eδ
2

[Jα−ψα−1 + Jα+ψα+1] + gα|ψα|2ψα +
√

Nκδα,αS
,

(2.103)

that contains a nonlinear interaction energy and where the last line of Eq. (2.101) has van-
ished owing to the initially perfectly empty leads χ0(t0) = χN (t0) = 0.

This equation is numerically integrated in the absence of disorder potential and interaction
from an initially empty waveguide to reach a stationary scattering state whose spatial density
is shown in Fig. 2.9(d), for illustration of smooth exterior complex scaling purposes.

Figure 2.9 – Implementation of smooth exterior complex scaling to an atom laser
scenario. The three upper (a)–(c) panels show the complex function q(x) that
is used in mean–field equations, the complex coordinate z(x) and the smooth
switching function u(x) used to model the x–dependence of q(x). Panel (d)
shows a typical atom laser scenario in the absence of disorder potential and
nonlinearity. After some transient time, a steady density establishes to the value
predicted by Eq. (2.69) as shown in dashed line. Outside the scattering region,
outgoing particles are efficiently damped over ≈ 25 sites by smooth exterior
complex scaling. Numerical parameters: µ/Eδ = 0.2 and θ = 0.3.
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Fig. 2.9(d) illustrates the density |ψ(x)|2 of the steady scattering state ψ(x) that is reached
after some transient time related to the chemical potential of the source and the extension
of the scattering region. Smooth exterior complex scaling absorbs outgoing waves over a
distance of ≈ 25 sites, which settles the typical scenario studied in the following chapters, in
the presence of more sophisticated geometries, of disorder potential and interaction.



Chapter 3

Description of many–body effects

beyond the mean–field regime

In this chapter, we introduce the truncated Wigner method that is a recurrent tool used in
our work to describe many–body effects beyond the traditional mean–field approximation.
More specifically, the truncated Wigner method mimics the initial quantum fluctuations that
are not captured by a mean–field description and provides a suitable description of inelas-
tic scattering processes that arise in the presence of finite interaction. Indeed, it has been
shown that the presence of a weak atom–atom interaction in the context of quantum trans-
port towards disorder potentials generates inelastic scattering processes [62, 115] which can
compromise coherent effects.

We start be recalling some basic concepts of classical phase–space mechanics. Those concepts
are useful to build the Wigner function, a quasiprobability distribution used in the quantum
formulation of phase–space that provides a description of a quantum system state equivalent
to that provided by a density operator ρ̂. We show some of the underlying key properties
and give some examples of Wigner functions that are considered in our work, namely those
of a vacuum state and, more generally, of a coherent state. We also provide the Wigner
function of a thermal state and of a Fock state, which is an example of a non–classical state
that highlights the possible negativity of the Wigner function, in contrast to a classical prob-
ability distribution. For this reason, the Wigner function is referred to as a quasiprobability
distribution.

We then derive the evolution for the Wigner function and show where the truncated part of
the method name comes from. This truncation is necessary to allow numerical integration
of the underlying evolution equation and gives rise to a set of coupled Langevin equations
for each mode of the system. It allows one to compute expectation values of observables
through an average over trajectories evolved along those Langevin equations and whose initial
conditions are sampled according to the Wigner function of the system at initial time t0. The
formalism developed in this chapter is then used and particularised to atom lasers, setting the
framework we work with for the rest of this manuscript. A discussion related to the validity
of the truncated Wigner method is finally performed.

65
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3.1 Phase–space formulation of classical mechanics

A classical system with 2N degrees of freedom can be described in terms of its generalised
coordinates q ∈ R

N and the related canonically conjugated momentum p ∈ R
N . The under-

lying space of dimension 2N spanned by (q,p) is called the phase space. The data of both q
and p at time t gives a point in that phase space. That point represents the whole dynamics
of the system at time t and we call it a microstate of the system. It evolves with t in the
phase space as prescribed by Hamilton equations







dqi
dt

=
∂H

∂pi
dpi
dt

=
∂H

∂qi

with i = 1, . . . , N, (3.1)

where H is the Hamiltonian related to the system. In the simple case of a system displaying
one–dimensional motion, such as a 1D mass–spring system, the underlying phase space is a
plane and the trajectory that solves Eqs. (3.1) is readily representable in the 2D phase space
(in this example of a 1D mass–spring system, the trajectory is an ellipse of constant energy),
but it is in general not so easily drawable because of the dimension of the underlying phase
space.

Following the principle of a statistical (Gibbs) ensemble, we now consider a collection of vir-
tual copies of the system under study at the same energy. Those copies are macroscopically
identical but microscopically different and represent a possible state that the system might
occupy, thereby forming a probability distribution for the state of the system. The replace-
ment of the Dirac peaks associated to the microstates of the system expresses statistical
uncertainties or the lack of knowledge of the system [234]. We therefore define a probability
distribution ρ(q,p; t) that is positive and normalised such that

∫∫

ρ(q,p; t)dNq dNp = 1 (3.2)

and which gives the probability that the system is in the state (q,p). The conjugated variables
q and p are hence considered as random variables following the probability density ρ(q,p; t).
The latter can be used to compute the ensemble average at time t of an observable A(q,p)
through

〈A(t)〉 =
∫∫

A(q,p)ρ(q,p; t)dN q dNp, (3.3)

and can also, by means of partial integration over one of the two conjugated variables, yield
the marginal distribution over the other one

ρp(q; t) =
∫

ρ(q,p; t)dNp and ρq(p; t) =
∫

ρ(q,p; t)dNq. (3.4)

As is usually done in probability theory, a probability distribution can be described by its
characteristic function χ(ξ1, ξ2) = 〈ei(ξ1·p+ξ2·q)〉 = Tr(ei(ξ1·p+ξ2·q)) through its Fourier trans-
form

ρ(q,p; t) =
1
π2N

∫∫

χ(ξ1, ξ2)e−i(ξ1·p+ξ2·q)dNξ1 dNξ2, (3.5)
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and vice–versa. The characteristic function entirely describes the probability distribution be-
cause its value for ξ1 = ξ2 = 0 is one and its derivatives at that point yield all the moments
of the conjugated variables q and p.

The time evolution of ρ(q,p; t) can be inferred by means of the Liouville theorem which
states that the phase–space distribution function ρ(q,p; t) is constant along the trajectories
of the system

dρ(q,p; t)
dt

=
∂ρ(q,p; t)

∂t
+ {ρ(q,p; t),H(q,p)} = 0, (3.6)

where

{A,B} =
N∑

i=1

[
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

]

(3.7)

are Poisson brackets [235,236]. The time evolution of ρ(q,p) with respect to t is prescribed
by

∂ρ(q,p; t)
∂t

= −{ρ(q,p; t),H(q,p; t)}, (3.8)

which is known as Liouville equation [3]. This partial differential equation contains the time
evolution of the system as a result of external forces and of the coupling with its environment.

3.2 Phase–space formulation of quantum mechanics

The procedure developed for classical mechanics can be straightforwardly generalised to quan-
tum mechanics1, as was first proposed by Wigner in 1932 [240, 241]. We aim at defining a
probability distribution ρ(q,p) in the quantum phase space that describes the quantum
system that is in a state characterised by the density operator ρ̂. This ideal probability
distribution, that would yield only positive numbers and that would be normalised to unity,
could then be used to compute expectation values of an observable A as

〈A(t)〉 =
∫∫

A(q,p)ρ(q,p; t)dpdq, (3.9)

exactly as in classical mechanics. This appealing formulation allows to use functions rather
than quantum operators. However, even in the absence of statistical uncertainties, it faces
the impossibility to simultaneously determine conjugated variables of the same system with
an arbitrary accuracy, as is stated by Heisenberg uncertainty relations.

It is nevertheless possible to deal with some functions that play an analogous role to proba-
bility distributions in the classical phase space. The price to pay being that those functions
do not fulfil all properties required to be named a probability distribution: they are referred
to as quasiprobability distributions.

To obtain such a quasiprobability distribution, we start by introducing α = q + ip and
ξ = 1

2 (ξ1 + iξ2), with α ≡ α1, . . . , αν , . . . , αN and ν = 1, 2, . . . , N the mode index. This

1We recommend to the interested reader the reading of the nice review articles dedicated to phase–space
quantum mechanics [237] and its applications in the context of the truncated Wigner method [238,239].
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allows us to rewrite Eq. (3.9) as

〈A(t)〉 = Tr
[

ρ̂Â
]

=
∫∫

f
(Â)
W (α,α∗)W (ρ̂)(α,α∗, t)dNα dNα∗, (3.10)

that is an integral over the phase space of a function f (Â)
W (α,α∗) related to the observable of

interest and weighted by the Wigner distribution W (ρ̂)(α,α∗, t) that contains all information
about the state of the system and which we still need to properly define. It thus appears
that there exists a link between quantum expectation values of observables and phase–space

averages. In order to exploit this link in Eq. (3.10), the function f (Â)
W (α,α∗) of the operator

Â related to the observable under study must be written in a way that we try to make clear
in the following.

The rule for determining the function f
(Â)
W (α,α∗, t) is to use the Weyl correspondence rule

that prescribes to express the operator related to the observable of interest in terms of power
series of the creation and annihilation operators which are symmetrically, or Weyl, ordered

Â =
N∏

ν=0

∞∑

nν=0

∞∑

mν=0

c(Â)
nνmν

(

â†nν
ν âmν

ν

)

W
, (3.11)

where c
(Â)
nνmν are coefficients related to the decomposition of the operator Â in terms of

symmetrically ordered products of the creation and annihilation operators related to each
mode ν. In Eq. (3.11), (â†nν

ν âmν

ν′ )W designs the symmetric, or Weyl, ordering2 of non–
commutating operators which gives, if we take the simple example of the single–mode operator
Â(â, â†) = â†

ν â
2
ν ,

Â(â, â†) = â†
ν â

2
ν ⇒ (â†

ν â
2
ν)W =

1
3

(

â†
ν â

2
ν + âν â

†
ν âν + â2

ν â
†
ν

)

, (3.12)

where we have introduced the vector â = [â0, . . . , âν , . . . , âN ]T (resp. â† = [â†
0, . . . , â

†
ν , . . . , â

†
N ]T )

that contains all annihilation (resp. creation) operators related to each mode ν. In general,
such a symmetric ordering contains Nν = (nνmν)!/(nν !mν !) terms per mode ν associated
with all possible permutations of the nν creation operators and the mν annihilation opera-
tors and must hence be normalised by Nν . Following Weyl correspondence rule for writing
the operator Â related to observable A, we express the corresponding function as

f
(Â)
W (α,α∗) =

N∏

ν=0

∞∑

nν=0

∞∑

mν=0

c(Â)
nνmν

α∗nναmν , (3.13)

where c(Â)
nνmν are the same coefficients appearing in the decomposition of Â in terms of Weyl or-

dered products of the creation and annihilation operators related to each mode ν in Eq. (3.11).

2Since creation and annihilation operators do not commute, there are as many different quasiprobability
distributions as they are different orderings. Another frequently used ordering is the Wick, or normal, ordering
where all creation operators are at the left of the annihilation operators. This yields the so–called Glauber–
Sudarshan P distribution [242, 243]. One can also define the antinormal ordering where all annihilations
operators are at the left of creation operators, thereby giving rise to Husimi Q distribution [244].
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To obtain the Wigner function that links phase–space averages to quantum expectation val-
ues, we introduce the (Weyl ordered) characteristic function3, as was done in the classical
phase–space formulation,

χ
(ρ̂)
W (ξ, ξ∗, t) = 〈D̂(ξ, ξ∗)〉 = 〈ρ̂eξ·â†−ξ∗

·â〉 = Tr
[

ρ̂eξ·â†−ξ∗
·â
]

= Tr

[

ρ̂
N∏

ν=0

eξν â
†
ν−ξ∗

ν âν

]

, (3.14)

the latter being the expectation value of the Glauber displacement operator D̂(ξ, ξ∗) of the
system in the ρ̂ state.

The Wigner function can be obtained by means of the Fourier transform of the Weyl ordered
characteristic function, yielding

W (ρ̂)(α,α∗, t) =
1
π2N

∫∫

Tr
[

ρ̂eξ·â†−ξ∗·â
]

e−i(ξ·α+ξ∗·α∗)d2Nξ

=
1
π2N

∫∫

Tr






ρ̂ exp





N∑

η=0

(ξηâ†
η − ξ∗

η âη)










exp

[

−i
N∑

ν=0

(ξναν + ξ∗
να

∗
ν)

]

d2Nξ

=
1
π2N

N∏

ν=0

∫∫

Tr



ρ̂
N∏

η=0

eξη â
†
η−ξ∗

η âη



 e−i(ξναν+ξ∗
να

∗
ν)d2ξν . (3.15)

The characteristic function χ
(ρ̂)
W (ξ, ξ∗, t) can, similarly to the Wigner function, be used to

compute quantum expectation values of Weyl ordered products of creation and annihilation
operators through

〈(â†nν
ν â

mν′

ν′ )W〉 = Tr
[

ρ̂(â†nν
ν â

mν′

ν′ )W
]

=
∂nν+mν′

∂(iξ∗
ν)nν∂(iξν′)mν′

χ(ξ, ξ∗)

∣
∣
∣
∣
∣
ξ=ξ∗=0

=
∂nν+mν′

∂(iξ∗
ν)nν∂(iξν′)mν′

∫

W (ρ̂)(α,α∗, t)ei(ξ·α+ξ∗
·α∗)

∣
∣
∣
∣
∣
ξ=ξ∗=0

d2Nα

=
∫

α∗nν
ν α

mν′

ν′ W (ρ̂)(α,α∗, t)d2Nα, (3.16)

illustrating that differentiation in the direct space becomes multiplication by the complex
numbers αν and α∗

ν′ in the reciprocal space [51]. As already stated, we observe that phase–
space averages such as Eq. (3.10) and Eq. (3.16) are associated to quantum expectation
values of symmetrically ordered observables expressed in terms of creation and annihilation
operators. Weyl correspondence rule thus provides a very powerful tool to compute quantum

3As a Taylor series expansion of the displacement operator D̂ shows, it is already Weyl ordered. It is
nonetheless possible to define different characteristic functions that are normal or antinormal ordered and
which Fourier transform yields the Glauber–Sudarshan P distribution and the Husimi Q distribution. Those
characteristic functions are closely related one to each other and so are the resulting distributions which are
formally equivalent one to each other [245,246]. Each representation may have its advantages and drawbacks
with respect to the studied system.
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expectation values by means of phase–space averages that involve functions instead of oper-
ators.

As an example, let us show how this formalism can be used to compute the expectation value
of the single–mode occupation number operator N̂ν = â†

ν âν of mode ν. The expectation value
〈(N̂ν)W 〉 of the Weyl ordered operator is directly obtained as

〈(N̂ν)W〉 =
∫∫

f
(N̂ν)
W (α,α∗)W (ρ̂)(α,α∗, t)dNαdNα∗, (3.17)

but is not exactly the quantum expectation value we are looking for, namely 〈Nν〉. We make
use of the bosonic commutation relation [âν , â

†
ν′ ] = δνν′ and symmetrise the number operator

related to the mode ν as

N̂ν = â†
ν âν =

1
2

(

â†
ν âν − âν â

†
ν

)

− 1
2

= (â†
ν âν)W − 1

2
= (Nν)W − 1

2
. (3.18)

The expectation value of interest is thus related to the expectation value of the Weyl ordered
number operator related to the mode ν as 〈N̂ν〉 = 〈(â†

ν âν)W〉 − 1
2 and we can use Eq. (3.17)

to compute it, thereby yielding

〈N̂ν(t)〉 = 〈(â†
ν âν)W〉 − 1

2
=
∫∫

α∗αW (ρ̂)(α,α∗, t)dNα dNα∗ − 1
2

(3.19)

=
∫∫

α∗
νανW

(ρ̂)(α,α∗, t)dNαdNα∗ − 1
2
. (3.20)

We have therefore mapped the computation of the expectation value of a quantum observable
to a phase–space average thanks to the Weyl correspondence rule. As we have already stated
earlier, although this formulation resembles very much to a classical formulation of phase–
space, the difference lies in that the Wigner function W (ρ̂)(α,α∗) describing the state of the
system is not a probability distribution. It indeed does not fulfil all the properties required
to be named a probability distribution: it contains the whole quantum feature of the system.

3.2.1 Properties of the Wigner function

• The Wigner function is real–valued

(W (ρ̂))∗(α,α∗, t) =
1
π2N

∫∫

Tr
[

ρ̂eξ
∗
·â−ξ·â†

]

ei(ξ
∗
·α∗+ξ·α)d2Nξ

=
1
π2N

∫∫

Tr
[

ρ̂eλ·â†−λ∗·â
]

e−i(λ·α+λ∗·α∗)d2Nλ = W (ρ̂)(α,α∗, t),

(3.21)

as could be infered from its definition by performing the variable substitution λ → −ξ
and λ∗ → −ξ∗.

• The Wigner function is normalised
∫∫

W (ρ̂)(α,α∗, t)dNαdNα∗ = Tr(ρ̂) = 1, (3.22)

as could be deduced by setting Â ≡ Î in Eq. (3.10) and exploiting that the trace of the
density operator ρ̂ is known to be equal to one.
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• The marginal distribution of the Wigner function related to one of the two canonically
conjugated variables yields the probability distribution associated with that variable,
as can be proved by partial integration over one of those two variables. Let us write
α = αr + iαi and ξ = ξr + iξi and integrate W (αr,αi) over αi. We can write
∫

W (ρ̂)(αr,αi, t)dαi =
1
π2N

∫∫∫

Tr
[

ρ̂e(â†−iαr+αi)·(ξr+iξi)−(â+iαr+αi)·(ξr−iξi)
]

d ξrd ξidαi

=
1
π2N

∫∫∫

e−2iαr·ξr+2iαi·ξiTr
[

ρ̂eâ†·(ξr+iξi)−â·(ξr−iξi)
]

d ξrd ξidαi

=
1
πN

∫

e−2iαr·ξr Tr
[

ρ̂e(â†−â)·ξr

]

d ξr

=
1
πN

∫

e−2iαr·ξr

∫

e2ip·ξr 〈p| ρ̂ |p〉 d pd ξr

=
1
πN

∫∫

e2i(p−αr)·ξr 〈p| ρ̂ |p〉 d pd ξr

= 〈αr| ρ̂ |αr〉 = Pr(αr), (3.23)

where we have used twice the identity
∫

e±2ia·bdb = πNδ(a). (3.24)

As Eq. (3.23) shows, partial integration over αr (resp. over αi, as could be similarly
proven) renders the probability distribution of αi (resp. of αr) and the Wigner function
thus resembles very much in this respect to a joint probability distribution for αi and αr
(or two any other canonically conjugated variables such as α and α∗). It can however
contain negative values (examples of which are given below) as a result of quantum
interferences, explicitly violating one of Kolmogorov axioms a probability distribution
must fulfil and is thereby referred to as quasiprobability distribution.

3.2.2 Gallery of Wigner functions

We show in the following the one mode Wigner function for several common states, namely
coherent, thermal and Fock states, based on their density operator.

Coherent states

The symmetric characteristic function associated to the coherent state |α0〉 described by the
density operator ρ̂coh = |α0〉 〈α0| is given by

χ
(|α0〉〈α0|)
W (ξ, ξ∗) = Tr

[

|α0〉 〈α0| eξ·â†−ξ∗·â
]

= 〈α0| eξ·â†−ξ∗·â |α0〉

= e
1
2

(ξ·α∗
0−ξ∗·α0) 〈α0|α0 + ξ〉 = eξ·α

∗
0−ξ∗·α0e−|ξ|2/2,

whose Fourier transform yields the Wigner function

W (|α0〉〈α0|)(α,α∗) =
1
π2

∫∫

eξ·α
∗
0−ξ∗·α0e−|ξ|2/2e−i(ξα+ξ∗α∗)dξ dξ∗ (3.25)

=
2
π
e−2|α−α0|2, (3.26)
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which is a Gaussian of mean µ = α0, standard deviation σ = 1/2 and peak value 2/π at
α = α0. As a Gaussian, the Wigner function related to coherent states is positive definite
everywhere and qualifies as a true phase–space probability distribution. Three examples for
different values of α0 are shown in Fig. 3.1.

Figure 3.1 – Wigner functions of three coherent states for different values of α0.

When α0 = 0 + 0i, as in Fig. 3.1(a), the related coherent state is referred to as a vacuum
state, which has probably the most simple Wigner function one can think of. As Ref. [247]
indicates, such a probability distribution in the phase space classically corresponds to the
phase–space density of a collection of oscillators, with statistical fluctuations of zero mean and
isotropic 1/2 variance. Those statistical fluctuations naturally emerge as vacuum fluctuations
in a quantum mechanical context, even if the system lies in a pure vacuum state. Those
isotropic vacuum, or quantum, fluctuations and the related 1/2 variance, are not described
by a mean–field method that assumes a perfectly zero field for a vacuum state. Figs. 3.1(b)
and 3.1(c) show two coherent states that correspond to vacuum states translated by the
Glauber displacement operator in the phase space. They exhibit the same behaviour and
variance as the vacuum state in Fig. 3.1(a), but display a translated mean α0. Ref. [247]
indicates that this variance also originates from vacuum fluctuations that, for instance, would
inevitably arise in the coherent state produced by a high quality laser of coherent amplitude.
In some cases, especially if α0 → ∞, one might neglect the fluctuations around the mean
value, which amounts to approximate the state of the system by a purely classical field with
well defined amplitude and phase.

Fock states

The density operator of the Fock state |n〉 is given by ρ̂|n〉 = |n〉 〈n| and leads to the charac-
teristic function

χ
(|n〉〈n|)
W (ξ, ξ∗) = Tr

[

|n〉 〈n| eξ·â†−ξ∗·â
]

=
∞∑

j=0

〈j|n〉 〈n| eξ·â†−ξ∗·â |j〉 = 〈n| eξ·â†−ξ∗·â |n〉

= e−|ξ|2/2 〈n|
∞∑

k=0

(ξ · â†)k

k!

∞∑

l=0

(−ξ∗ · â)l

l!
|n〉 = e−|ξ|2/2Ln(|ξ|2), (3.27)
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where Ln(x) is the nth Laguerre polynomial. This allows for the determination of the related
Wigner function through the Fourier transform

W (|n〉〈n|)(α,α∗) =
2
π

(−1)ne−2|α|2Ln(4|α|2). (3.28)

Three examples for the Fock states |1〉, |3〉 and |5〉 are shown in Fig. 3.2.

Figure 3.2 – Wigner functions of three different Fock states.

Owing to the property that the nth Laguerre polynomial Ln(x) possesses n real roots, the
related Wigner function oscillates strongly, all the more with high n. This also implies that
the Wigner function of Fock states takes negative values which disqualifies it as a probability
distribution. This negativity can be on the other hand leveraged as an indicator of the
nonclassicality of the underlying physical state [248].

Thermal states

The density operator for a thermal state at thermal equilibrium with chemical potential µ
and reservoir temperature T = 1/(βkB), with kB the Boltzmann constant, is provided by

ρ̂th =
(

1 − e−β(Ei−µ)
) ∞∑

n=0

e−nβ(Ei−µ) |n〉 〈n| , (3.29)

where Ei are the eigenenergies of the system in the grand canonical ensemble. The density
operator thus consists in a statistical mixture of Fock states weighted by coefficients that
depend upon the population of the energy levels. The related characteristic function then
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reads

χ
(ρ̂th)
W (ξ, ξ∗) =

(

1 − e−β(Ei−µ)
)

Tr

[ ∞∑

n=0

e−nβ(Ei−µ) |n〉 〈n| eξ·â†−ξ∗·â
]

=
(

1 − e−β(Ei−µ)
) ∞∑

j=0

〈j|
∞∑

n=0

e−nβ(Ei−µ) |n〉 〈n| eξ·â†−ξ∗·â |j〉

=
(

1 − e−β(Ei−µ)
) ∞∑

j=0

e−jβ(Ei−µ) 〈j| eξ·â†−ξ∗·â |j〉

=
(

1 − e−β(Ei−µ)
)

e−|ξ|2/2
∞∑

j=0

e−jβ(Ei−µ) 〈j|
∞∑

k=0

(ξ · â†)k

k!

∞∑

l=0

(−ξ∗ · â)l

l!
|j〉

=
(

1 − e−β(Ei−µ)
)

e−|ξ|2/2
∞∑

j=0

e−jβ(Ei−µ)
j
∑

k=0

(−1)k|ξ|2k
(k!)2

j(j − 1) . . . (j − k + 1)

=
(

1 − e−β(Ei−µ)
)

e−|ξ|2/2
∞∑

j=0

e−jβ(Ei−µ)Lj(|ξ|2), (3.30)

where

Ln(x) =
n∑

m=0

(−1)m
n!

(m!)2(n−m)!
xm (3.31)

is the nth Laguerre polynomial. Since the generating function of Laguerre polynomials reads

∞∑

n=0

tnLn(x) =
1

1 − t
etx/(1−t), (3.32)

we can finally write

χ
(ρ̂th)
W (ξ, ξ∗) = e− |ξ|2

2
coth[β(Ei−µ)/2]. (3.33)

This allows us to write the Wigner function for a thermal state as

W (ρ̂th)(α,α∗) =
2
π

1

coth
(
β(Ei−µ)

2

)e−2|α|2/ coth[β(Ei−µ)/2]. (3.34)

Three examples for different values of Γk = coth [β(Ei − µ)/2] are shown in Fig. 3.3.
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Figure 3.3 – Wigner functions of three thermal states for different values of Γk =
coth [β(Ei − µ)/2].

Because of the underlying density operator that is obtained as a sum of Fock states, which
are purely quantum states whose Wigner function may be negative as we highlight in the
following, it should appear natural that the Wigner function of a thermal state would also be
oscillatory and takes negative values. However, the weighted sum over Fock states yields the
Wigner functions shown in Fig. 3.3, for three different values of Γk. They are also Gaussian
that are everywhere positive definite and that are more spread than the Gaussian related to
coherent states which reflects the classicality of the related thermal field.

3.2.3 Time evolution of the Wigner function and operator correspondences

Still following the analogy with classical mechanics, the time evolution equation for the
density operator is found through canonical quantisation. The classical variables are replaced
by quantum operators and Poisson brackets by commutators, which yields

i~
∂ρ̂

∂t
= [Ĥ, ρ̂], (3.35)

which is known as the von Neumann equation [3], the quantum analogue of the Liouville equa-
tion. The linear mapping we have introduced between quantum operators and their associated
function renders possible to write the time evolution equation for the Wigner function based
on the von Neumann equation. If the Hamiltonian of the system is expressed in terms of â†

ν

and âν , the commutator appearing in the von Neumann equation involves products of the
density operator and annihilation/creation operators. One should then compute the Wigner
functions of those quantities and relate them to the Wigner function of the system described
by the density operator ρ̂, which is achieved by Fourier transforming Tr

[

âν ρ̂e
ξ·â†−ξ∗·â

]

. We
first note, by using the invariance of the trace under circular permutation and using the
Baker–Hausdorff formula [249,250] that

Tr
[

âν ρ̂e
ξ·â†−ξ∗·â

]

= Tr
[

ρ̂eξ·â†
e−ξ∗·âe−|ξ|2/2âν

]

=
(
ξ

2
− ∂

∂ξ∗

)

χ
(ρ̂)
W (ξ, ξ∗), (3.36)
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whose Fourier transform provides

W (aν ρ̂)(α,α∗) =
∫∫

Tr
[

âν ρ̂e
ξ·â†−ξ∗

·â
]

e−i(ξ·α+ξ∗
·α∗)d2Nξ

=
∫∫ (

ξ

2
− ∂

∂ξ∗

)

χ
(ρ̂)
W (ξ, ξ∗)e−i(ξ·α+ξ∗

·α∗)d2Nξ

=
(

αν +
1
2
∂

∂α∗
ν

)

W (ρ̂)(α,α∗), (3.37)

after integrating by parts [239, 251]. It thereby highlights a functional rule that is used to
establish a link between the Wigner function associated to the action of annihilation/creation
operators on the density operator (and vice–versa) and the corresponding effect on the Wigner
function of the system. They are four such combinations and the effect on the Wigner function
is obtained similarly as in Eq. (3.37), yielding a set of correspondence rules

W (âν ρ̂)(α,α∗) =
(

αν +
1
2
∂

∂α∗
ν

)

W (ρ̂)(α,α∗) (3.38)

W (â†
ν ρ̂)(α,α∗) =

(

α∗
ν − 1

2
∂

∂αν

)

W (ρ̂)(α,α∗) (3.39)

W (ρ̂âν)(α,α∗) =
(

αν − 1
2
∂

∂α∗
ν

)

W (ρ̂)(α,α∗) (3.40)

W (ρ̂â†
ν)(α,α∗) =

(

α∗
ν +

1
2
∂

∂αν

)

W (ρ̂)(α,α∗). (3.41)

This set of correspondence rules allows to derive a motion equation for the Wigner function.
We consider for instance a typical discrete two–body Hamiltonian

Ĥ = −J

2

N∑

ν=0

(

â†
ν âν+1 + â†

ν+1âν
)

+
N∑

ν=0

Vν â
†
ν âν +

1
2

N∑

ν=0

Uν â
†
ν â

†
ν âν âν , (3.42)

where J is the hopping energy from a site to its nearest neighbour, â†
ν (resp. âν) is the cre-

ation (resp. annihilation) operator at site ν, Vν is the value of the potential at site ν and Uν
is the interaction term at site ν. This Hamiltonian is very typical from scenarios involving
quantum transport of interacting ultracold atoms trough disorder potentials, as we study
in this manuscript. More generally, it describes interacting systems that can be defined on
a grid with possibly sophisticated links like in small–world networks [252, 253] that find ap-
plications in a wide array of domains that extend beyond the scope of ultracold atoms physics.

The von Neumann equation explicitly reads in this case

i~
∂ρ̂

∂t
= −J

2

N∑

ν=0

(

[â†
ν âν+1, ρ̂] + [â†

ν+1âν , ρ̂]
)

+
N∑

ν=0

Vν [â†
ν âν , ρ̂] +

1
2

N∑

ν=0

Uν [â†
ν â

†
ν âν âν , ρ̂].

We use the correspondence rules in Eqs. (3.38–3.41) for computing the equivalence in terms
of W (ρ̂)(α,α∗) of the Wigner functions associated to the commutators appearing in the above
equation, such as W ([â†

ν âν ,ρ̂])(α,α∗), and have the following motion equation for the Wigner
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function4

i~
∂

∂t
W (ρ̂)(α,α∗) =

N∑

ν=0

[

− J

(
∂

∂αν
αν+1 − ∂

∂α∗
ν

α∗
ν+1

)

+ Vν

(
∂

∂αν
αν − ∂

∂α∗
ν

α∗
ν

)

− Uν

(
∂

∂αν
αν − ∂

∂α∗
ν

α∗
ν

)

(|αν |2 − 1)

+
Uν
4

(

∂2

∂α2
ν

∂

∂α∗
ν

αν − ∂

∂αν

∂2

∂α∗2

ν

α∗
ν

)]

W (ρ̂)(α,α∗). (3.43)

This partial differential equation provides the time evolution of W (ρ̂)(α,α∗). As such, it
contains the same information as the von Neumann equation (3.35) for the density operator
ρ̂ and reproduces the exact evolution of the system. One faces however the very high difficulty,
not to say impossibility, to numerically integrate it owing to the excessively large dimension
of the underlying phase space considered in realistic configurations such as those we study.
An approximation is usually performed at this stage, which leads to the truncated Wigner
method.

3.2.4 Truncated Wigner method

As is formally shown in Ref. [254], if the on–site density |αν |2 ≫ 1 is high enough and the
interaction term Uν is small enough, one can safely neglect the third order derivative terms
appearing in (3.43) and thereby truncate it, giving its name to the method. One is then left
with a Fokker–Planck equation

i~
∂

∂t
W (ρ̂)(α,α∗) =

N∑

ν=0

[

− J

(
∂

∂αν
αν+1 − ∂

∂α∗
ν

α∗
ν+1

)

+ Vν

(
∂

∂αν
αν − ∂

∂α∗
ν

α∗
ν

)

− Uν

(
∂

∂αν
αν − ∂

∂α∗
ν

α∗
ν

)

(|αν |2 − 1)

]

, (3.44)

with only a drift term and no diffusion term. This Fokker–Planck equation can be mapped
to a set of coupled Langevin equations for the canonically conjugated variables αν(t) and
α∗
ν(t) which become now time–dependent. The solution of those coupled Langevin equations

provide trajectories along which the Wigner function remains constant. Omitting the explicit
time–dependence of αν(t) and α∗

ν(t) for compactness, this infinite set of Langevin equations
reads

i~
∂αν
∂t

= −J (αν+1 + αν−1) + Vναν + Uν
(

|αν |2 − 1
)

αν (3.45)

and represents an evolution equation for each site ν considered in the Hamiltonian (3.42), very
similarly to the discretised evolution equation one would obtain in a mean–field framework
by replacing quantum operators by classical fields. An analogous equation is obtained for α∗

ν .
These evolution equations may be used to compute the expectation values of an observable,

4The whole derivation of this equation can be found in App. D.
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as was already stated in Eq. (3.16),

〈(
N∏

ν=0

â†nν
ν âmν

ν

)

W

〉

t

=
N∏

ν=0

∫∫

α∗nν
ν αmν

ν W (ρ̂)(α,α∗; t)d2Nα

=
N∏

ν=0

∫∫

α∗nν
ν αmν

ν W (ρ̂)(α,α∗; t0)d2Nα,

=
N∏

ν=0

lim
Nt→∞

1
Nt

Nt∑

k=1

α∗nν

ν,k (t)αmν

ν,k (t) ≡
N∏

ν=0

α∗nν
ν (t) αmν

ν (t), (3.46)

where we have used that along the trajectories which are solution of Eq. (3.45), the Wigner
function is conserved (conservation of phase–space volumes) [255]. Quantum observables are
then obtained by writing the Wigner function related to the initial system state and using it
as a probability distribution to sample Nt independent trajectories that are evolved along the
mean–field trajectories solutions of Eq. (3.45). This sampling of the initial state constitutes
the main difference with a mean–field approach, where an initial empty system involves that
all the classical amplitudes are initially set to zero. In contrast with this approach, the trun-
cated Wigner method specifies that those classical fields acquire random values prescribed
by the related Wigner function, which accounts for the presence of initial vacuum fluctua-
tions [238].

In summary, one computes random initial conditions sampled by the Wigner function of
the system at initial time t0, each realisation of those initial conditions giving rise to a
distinct mean–field trajectory in the phase space explored by the system. The evolution
equation is provided by the mean–field Langevin equation (3.45) for the mode ν. Owing
to its resemblance with the Gross–Pitaevskii equation, it is sometimes called a stochastic
Gross–Pitaevskii equation. Even though it explicitly contains no stochastic terms, we are
fully entitled to qualify it as stochastic. Indeed, the initial sampling according to the Wigner
function related to the initial state of the system introduces the presence of quantum noise,
as we explicitly show in the following for atom lasers. The expectation value of an observable
expressed in terms of Weyl ordered operators is then finally performed by means of an average
over all mean–field trajectories, as is prescribed by Eq. (3.46). This procedure is summed up
and sketched in Fig. 3.4.



3.3. Truncated Wigner method applied to open quantum systems 79

Figure 3.4 – Principle of the truncated Wigner method. A large number Nt

of classical field amplitudes αk and α∗
k are sampled according to the Wigner

function associated to the density operator ρ̂ describing the state of the system
at initial time t0. This sampling accounts for the presence of initial quantum
fluctuations. Those Nt amplitudes are each evolved according to a Langevin
equation whose solution describes a trajectory in the underlying phase space.
Quantum expectation values of symmetrically ordered, in terms of creation and
annihilation operators, observables are computed through phase–space average
that boils down to computing an average over the initial conditions of the classical
amplitudes αk and α∗

k at time t.

3.3 Truncated Wigner method applied to open quantum sys-

tems

In the following subsections, we first explain how to sample the initial quantum state related
to an atom laser system and then apply the procedure previously described to derive an
evolution equation for the sampling points in this context. We finally specify how to compute
observables based on an average over the trajectories evolved along the evolution equation.

3.3.1 Sampling of the initial quantum state

The Wigner function related to the whole system can be written as

W({ψα, ψ∗
α}, t0) = WSR({ψα, ψ∗

α}, t0) × WS(φS , φ∗
S , t0), (3.47)

where WSR({ψα, ψ∗
α}, t0) is the Wigner function related to the scattering region (SR) and

WS(φS , φ∗
S , t0) is the Wigner function related to the reservoir (S) of bosonic atoms.

On the one hand, the scattering region is assumed to be initially totally empty at t = t0,
leading to a Wigner function obtained as the product of vacuum Wigner functions

WSR({ψα, ψ∗
α}, t0) =

∏

α

(
2
π

)

e−2|ψα|2 , (3.48)
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which are coherent states |α0 = 0〉 whose Wigner function is given in Eq. (3.26) and sketched
in Fig. 3.1(a). The initial state is thus sampled by complex Gaussian random variables and
the classical field amplitudes are consequently determined as

ψα(t = t0) =
1
2

(Aα + iBα) (3.49)

where Aα and Bα are real and independent Gaussian random variables fulfilling

Aα = Bα = 0, (3.50)

Aα′Aα = Bα′Bα = δα′α, (3.51)

Aα′Bα = 0, (3.52)

where the overline notation · denotes an average over the random variables. This sampling
implies a zero average for the field amplitudes ψα = 0 but also, in great contrast with a
mean–field treatment, a finite variance |ψα|2 = 1/2, as is illustrated in Fig. 3.1(a). This
finite variance can be understood in terms of a half pseudo particle initially present on each
site. This interpretation of the finite variance for the field amplitudes in terms of a half
fictitious particle widely prevails in the literature, although it is formally valid only in the
context of the vacuum Wigner function [256].

On the other hand, the reservoir of bosonic particles is populated with a large number N → ∞
of bosonic atoms which allows us to safely model it as a coherent state |α0 = φ0

S〉 whose Wigner
function is given in Eq. (3.26) and an illustration in Fig. 3.1(b) and (c). It explicitly reads
here

WS(φS , φ∗
S , t0) =

(
2
π

)

e−2|φS−φ0
S

|2. (3.53)

Owing to the very large number of particles contained in the reservoir, we describe the source
term classically by setting φ0

S =
√

N , because both the amplitude and the phase of the source
display a negligible relative uncertainties.

3.3.2 Evolution equation

The evolution equation is obtained by applying the aforedescribed procedure to atom lasers,
which amounts to solving

i~
∂ψα
∂t

= (Eδ/qα + Vα − µqα)ψα − Eδ
2

[Jα−ψα−1 + Jα+ψα+1] + gα(|ψα|2 − 1)ψα

+
√

Nκ(t)δα,αS
+ δα,0χ0(t) + δα,NχN (t), (3.54)

where the field operators have been replaced by classical field amplitudes. The effective
hopping term

Jα± =

(

1
qα±1

− δ

2
q′
α±1

q2
α±1

)

(3.55)

and qα are introduced to implement smooth exterior complex scaling, in accordance with the
procedure detailed in Chapter 2. Eq. (3.54) also contains the terms χ0(t) and χN (t) that
naturally arise when converting the spatially infinite atom–laser system to a finite extension
system by imposing transparent boundary conditions, as described in Chapter 2. Those
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terms represent particles that are initially contained in the left or right lead and penetrate
the scattering region after some finite time. Contrarily to the mean–field approach followed
in Chapter 2, where we initially set all amplitudes to zero, corresponding to an initially
empty scattering region, the sampling by the Wigner function is such that those amplitudes
initially acquire random values. Consequently, the presence of initial random values for the
field amplitudes yields a non vanishing contribution for χ0(t) and χN (t) that is interpreted
as a quantum noise that penetrates into the scattering region at some finite time t. This
quantum noise5 is yielded as

χ0(t) = Eδ

−1∑

α′=−∞
Mα′(t − t0)ψα′(t0) (3.56)

χN (t) = −Eδ
∞∑

α′=N

Mα′−N (t− t0)ψα′(t0), (3.57)

with

Mα(τ) =
iα

2

[

Jα−1

(
Eδτ

~

)

+ Jα+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~, (3.58)

where Jα is the Bessel function of the first kind and order α. The related autocorrelation
function is provided by [216]

χ∗
0(t)χ0(t+ τ) = χ∗

N (t)χN (t+ τ) = −iM0(τ). (3.59)

3.3.3 Computation of observables

As is prescribed by Eq. (3.46), quantum expectation values related to observables are obtained
through phase–space averages. In the case of the total on–site density, it reads

nα(t) = 〈n̂α(t)〉 = 〈â†
α(t)âα(t)〉 = |ψα(t)|2 − 1

2
, (3.60)

where the subtraction of 1/2 in the density that naturally emerges from the expression of the
density operator in terms of a Weyl ordered operator (see Eq. (3.20)) compensates for the
initial half pseudo particle present on each site, as a result of the sampling of the initial state
by complex random numbers. The total on–site current is given by

jα(t) =
iEδ
2~

〈

â†
α+1(t)âα(t) − â†

α(t)âα+1(t)
〉

=
iEδ
2~

ψ∗
α+1(t)ψα(t) − ψ∗

α(t)ψα+1(t). (3.61)

Those contributions are referred to as total because they contain both the coherent and
incoherent contributions. As we already highlighted earlier, this coherence is to be understood
in terms of the ability for the several wave components of the incident atomic beam to display
interference effects that result from a phase–coherence relation, which may be compromised
by inelastic scattering that scrambles such a phase–coherence relation. This coherence is
explicitly defined below for instance for the on–site density

ncoh
α (t) = |〈âα(t)〉|2 =

∣
∣
∣ψα(t)

∣
∣
∣

2
, (3.62)

5Its explicit expression is derived in Appendix C.
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and the on–site current

jcoh
α (t) =

iEδ
2~

(

〈â†
α+1(t)〉 〈âα(t)〉 − 〈â†

α(t)〉 〈âα+1(t)〉
)

=
iEδ
2~

(

ψ∗
α+1(t)ψα(t) − ψ∗

α(t)ψα+1(t)
)

. (3.63)

The notion of coherence is now clarified, because the averages in Eqs. (3.62) and (3.63) pre-
serve an existing phase coherence relation, whilst the averages performed in Eqs. (3.60) and
(3.61) do not. This is best understood when comparing Eq. (3.60) where the square modulus,
that kills the overall phase related to each trajectory in the phase space, is performed before
the average, in great contrast to Eq. (3.62) where the average is performed before the square
modulus.

The incoherent contribution is identified as the difference between the total and the coherent
contribution. In the case of the on–site current and density, it is explicitly yielded as

nincoh
α = nα − ncoh

α , (3.64)

jincoh
α = jα − jcoh

α . (3.65)

In the absence of atom–atom interaction, both the mean field approximation and the evolution
equation in the framework of the truncated Wigner method boil down to the traditional
Schrödinger equation. In this case, predictions of the truncated Wigner method reduce to
the mean–field predictions, and the total contribution is identical to the coherent one, as is
illustrated in Fig. 3.5.
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Figure 3.5 – Mean–field and truncated Wigner simulations performed in the ab-
sence of disorder and atom–atom interaction. Apart from the fluctuations related
to the finite number of trajectories in the phase space, both the total and coher-
ent contributions are equal to the mean–field prediction. The negative density in
the complex scaling region is an artefact of the method. Numerical parameters:
µ/Eδ = 0.2, ρ∅δ ≃ 2.77,

√
N |κ|/Eδ = 1 and 100 trajectories.

We note that the negative density encountered for δx < 50 or δx > 150 is an artefact of the
method. Indeed, as prescribed in Eq. (3.60), one has to subtract 1/2 from the total density
when computing it. However, smooth exterior complex scaling that is implemented in spatial
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regions characterised by δx < 50 or δx > 150 absorbs every outgoing wave and damps the
density to zero, resulting in a negative quantity when computing the total density (3.60).
This region is however not of interest for the simulations.

Owing to the finite number of phase–space trajectories, truncated Wigner curves however
display oscillations around the mean–field prediction whose amplitude decreases with a higher
number of trajectories. In practice, a compromise must be made between the numerical effort
required to compute a higher number of trajectories and the accuracy of the predictions.
Fortunately, it has been shown [257] that the truncated Wigner method provides a reliable
description of disorder averaged quantities that shall be of primal relevance in the context
of our work. This shall be leveraged to reduce the number of required truncated Wigner
trajectories to obtain accurate predictions of quantities of relevance in a context of quantum
transport towards disorder.

3.3.4 Validity of the truncated Wigner method

We could not end this chapter by eluding the primordial discussion about the validity of the
truncated Wigner method. Until the truncation of the motion equation (3.43), the phase–
space dynamics of the system described by a density operator ρ̂ was formulated in an exact
manner. The omission of those third order derivatives in Eq. (3.43), necessary for numeri-
cal integration purposes, is perfectly justified in the limit of large on–site populations and
weak interaction strength, as is formally shown in Ref. [254]. This regime corresponds to the
mean–field regime which we precisely want to emancipate from.

This seek of a universal validity criterion for the truncated Wigner method still nowadays
remains, to the best of our knowledge, an open question. A path integral formulation of
the truncated Wigner method by Polkovnikov [258,259] provides corrections to the quantum
dynamics that go one order beyond the truncation and which can be exploited as a validity
criterion for a truncated Wigner simulation, thereby providing a controlled environment of
simulation. Whereas it is in principle possible to evaluate those corrections explicitly, it is in
general very demanding to do so for systems represented by Wigner functions containing a
large number of modes.

Owing to the complexity of the aforedescribed evaluation, the validity of a simulation gener-
ally remains an issue. With the starting point that the truncated Wigner method is asymp-
totically exact for short–time evolutions [258], it emanates from the literature that two classes
of regimes of validity related to short and long times dynamics are usually assessed [256].

If the Wigner function can be written as a product of Gaussian Wigner functions, the
method is granted valid for short times if the system exhibit a sufficiently high spatial den-
sity [239, 260]. This validity criterion is less restrictive than the usual expectation that all
modes display a large population, because it is not necessary that all modes be widely pop-
ulated to reach a spatially high density, which extends the validity domain of the method.
Other studies indicate that the truncated Wigner method is not reliable when the number
of atoms contained in the system becomes overshadowed by quantum noise issued from the
sampling of the initial state [254]. A criterion for the long time evolution is supplied by the
same paper that provides a maximal temperature for the system beyond which the validity
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is not granted [254].

Those criteria, which at least have the merit of existing, do not inform about the validity
limitations that come in the presence of an atom–atom interaction. A possibility to circum-
vent that issue is to compare the findings of the truncated Wigner method with findings of
other methods, such as for instance those related to the use of the positive–P representation
method [261]. Another possibility is to confront the results to those of a genuine quantum
method such as matrix product state (MPS) [262–264] that is based on the density matrix
renormalisation group (DMRG) [265] or tensor product states [266]. Those methods are in
principle exact, even for finite interaction, but are numerically very inefficient as soon as
the number of atoms involved in the computation becomes large. A qualitative picture of
the regime of validity for the truncated Wigner method in the presence of an atom–atom
interaction is sketched in Fig. 3.6.

Figure 3.6 – Qualitative scheme of the validity regime of the truncated Wigner
(tW) method that bridges the gap between the classical mean–field (MF) regime
of large number of atoms and very weak interaction strength, and the quantum
regime of low number of atoms and finite interaction strength, where genuine
quantum methods such as the matrix product state (MPS) method work the
best.

Fig. 3.6 shows the two opposite mean–field and quantum regimes. When the number of
atoms is very large and the atom–atom interaction strength very low, a mean–field description
provides reliable results. At the opposite limit of few atoms contained in the system and a
finite atom–atom interaction strength, a fully–fledged quantum method is usually applied.
Truncated Wigner method bridges the gap between those two regimes, whose boundaries, as
well the regime of application of the truncated Wigner method are not accurately defined.



Chapter 4

Transport of Bose-Einstein

condensate through

Aharonov–Bohm rings

This chapter is devoted to the study of the 1D transport of Bose–Einstein condensates across
a two–arm interferometer subject to an artificial gauge flux, which is referred to as an
Aharonov–Bohm ring, owing to the analogy with the eponymous effect. The Aharonov–
Bohm effect and the related oscillations, routinely encountered in solid–state physics, are
first theoretically presented as a manifestation of wave coherence in a macroscopic trans-
port related observable. In the presence of disorder, those Aharonov–Bohm rings are known
to yield Al’tshuler–Aronov–Spivak oscillations in the ensemble averaged transmission, which
shall be the subject of the next chapter.

This is what we highlight with Bose–Einstein condensates. To that purpose, we present
the geometry that we study in this chapter and the following, and derive the related field
equations that we numerically implement. We then show how Aharonov–Bohm oscillations
arise in the transmission of particles across the ring. Since many–body interaction effects
are a central thematic of this work, we study Aharonov–Bohm oscillations in the presence of
finite interaction. This is also an opportunity to perform truncated Wigner simulations, as
presented in Chapter 3, to investigate many–body effects beyond the mean–field approxima-
tion. We shall then be in a position to introduce the presence of disorder and examine its
competition with interaction effects, which is the subject of the next chapter.

4.1 Aharonov–Bohm effect

In classical electromagnetism, the vector potential A and the scalar potential ϕ are mathemat-
ical artefacts introduced to reformulate Maxwell equations in a more convenient and practical
form. This reformulation implies two coupled second–order partial differential equations for
the potentials A and ϕ, also referred to as gauge fields, instead of the four coupled Maxwell
equations for the electric field E and the induction magnetic field B. They are related to
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each other through

B = ∇ × A (4.1)

E = −∇ϕ− ∂A

∂t
. (4.2)

This appealing formulation of electrodynamics in terms of potentials, that by definition solves
two of the Maxwell equations, is commonly used to express motion equations in Hamiltonian
or Lagrangian form. It however remains artificial in the framework of classical mechanics
because the potentials are ambiguous and even not measurable, contrarily to the fields E and
B. Indeed, a gauge transformation of those gauge fields

A → A′ = A + ∇χ (4.3)

ϕ → ϕ′ = ϕ− ∂χ

∂t
, (4.4)

where χ ≡ χ(r, t) is a scalar field referred to as gauge function, has absolutely no physical
effect and yields the same E and B fields, which is known as gauge invariance. Therefore,
any couple (ϕ′,A′) is physically equivalent to the couple (ϕ,A), provided there exists a gauge
function χ(r, t) such that they are gauge transforms of each other. A gauge condition, such
as Lorenz or Coulomb gauge, enforcing a relation between ϕ and A, is frequently employed
to deal with the ambiguous nature of the potentials.

In quantum mechanics however, as Aharonov and Bohm have shown in their famous article
Significance of Electromagnetic Potentials in the Quantum Theory [41], the potentials are of
more fundamental nature than in classical mechanics, since the vector potential can affect
the behaviour of a particle moving a region where both E and B are absent. To illustrate it,
we start from the time–dependent Schrödinger equation

i~
∂ψ(r, t)
∂t

=
1

2m

(
~

i
∇ − qA

)2

ψ(r, t) + qϕψ(r, t) (4.5)

that describes a free particle of charge q and mass m in the presence of non–zero vector
potential A and scalar potential ϕ. Under a gauge transformation of the potentials (ϕ,A) to
(ϕ′,A′) following Eqs. (4.3) and (4.4), the Schrödinger equation (4.5) transforms according
to

i~
∂ψ′(r, t)

∂t
=

1
2m

(
~

i
∇ − qA′

)2

ψ′(r, t) + qϕ′ψ(r, t) (4.6)

with the gauge transformed wavefunction ψ → ψ′ = Uψ, with U = eiqχ(r,t)/~. Therefore,
gauge transforming the potentials affects the wavefunction too, namely through a global phase
factor [267–269] related to the scalar field χ appearing in the gauge transformation (4.3) and
(4.4). Thus, a local rotation of the phase of the wavefunction is equivalent to transforming
the potentials acting on the charged particles. A multiplication of the wavefunction by a
global phase factor eiθ, with θ ∈ R, yields a state indistinguishable from the original one, the
same probability density, the same probability current and the same expectation values, as
this phase factor cancels out in the related computations. Such a transformation is a global
U(1) gauge transformation. When this phase factor related to the gauge function χ addi-
tionally depends on the spatial coordinate r, the gauge invariance of ψ(r, t) is a local U(1)
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gauge invariance. The Hamiltonian of the system appearing in Eq. (4.5) is also left invariant
under a transformation with the local gauge χ(r, t), which implies that the Schrödinger equa-
tion (4.5) is gauge invariant under transformations (4.3), (4.4) and that ψ → ψ′ = eiqχ(r,t)/~ψ.

This local phase factor related to the gauge transformation parametrised by the gauge func-
tion χ(r, t) is of peculiar relevance for the Aharonov–Bohm effect. Indeed, Aharonov and
Bohm have imagined a situation where the induction field B = ∇ × A = 0 vanishes, whereas
the vector potential does not. This happens for a particular choice of the gauge function1

such that A = −∇χ, which yields A′ = 0 when using the gauge transformation (4.3). Ex-
perimentally, this may be realised by an infinite solenoid that produces a net magnetic flux
φ, but no induction field outside. The gauge function χ(r, t) is then written as

χ(r, t) = −
∫

Γ
A(r, t) · dr, (4.7)

where Γ is the path followed by the particle. This gauge function yields the gauge transformed
wavefunction as

ψ(r, t) → ψ′(r, t) = ψ(r, t) exp
(

−i q
~

∫

Γ
A(r, t) · dr

)

, (4.8)

as well as the gauge transformed Schrödinger equation

i~
∂ψ′(r, t)

∂t
=

−~
2

2m
∆ψ′(r, t), (4.9)

which is nothing less than the Schrödinger equation for a free particle in the absence of vector
potential. Therefore, the presence of a non–vanishing vector potential A amounts to multi-
plying the wavefunction of a free particle by a local phase factor exp [(iq/~)

∫

Γ A(r, t) · dr].

4.1.1 Aharonov–Bohm Gedankenexperiment

The idea of Aharonov and Bohm is to highlight the physical relevance of this phase factor
through a double slit interference setup. An electron beam is split into two parts that follow
interfering paths that go on both sides of the encircled magnetic flux produced by an infinite
solenoid, before interfering downstream on a screen, as is sketched in Fig. 4.1.

1We note that this choice fulfils B = 0.
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Figure 4.1 – Gedankenexperiment of Aharonov and Bohm. An electron beam is
split into two parts that travel around each side of an infinite solenoid and that in-
terfere downstream on a screen. Although the two beams experience no magnetic
field along their trip, a phase is acquired due to a non vanishing vector potential
A. This phase is experimentally highlighted by a flux dependent interference
pattern at the recombination of the beams. Figure adapted from [268].

The electronic wavefunctions along each path, ψu(r, t) and ψd(r, t), are related through the
wavefunction ψ′(r, t) for a free particle through

ψu(r, t) = ψ′(r, t) exp
(
iq

~

∫

Cu

A · dr

)

(4.10)

ψd(r, t) = ψ′(r, t) exp
(
iq

~

∫

Cd

A · dr

)

. (4.11)

Owing to the superposition principle, the total wavefunction at a point P of the screen is
given by ψ(rP , t) = ψu(rP , t) + ψd(rP , t) so that the intensity at that point is given by

|ψ(rP , t)|2 = |ψu(rP , t) + ψd(rP , t)|2

= |ψu(rP , t)|2 + |ψd(rP , t)|2 + 2 Re
(

ψu(rP , t)ψ∗
d(rP , t)e

iq[χu(rP ,t)−χd(rP ,t)]/~
)

.

(4.12)

Thanks to Stokes theorem, we can rewrite the phase difference as

δ ≡ χu(rP , t) − χd(rP , t) =
∫

Cu

A · dr −
∫

Cd

A · dr =
∮

C
A · dr =

∫∫

B · dS = φ, (4.13)

because Cu − Cd ≡ C is a closed contour that encircles the solenoid. The phase shift between
the two interfering trajectories is thus related to the magnetic flux φ traversing the solenoid
and the intensity at point P finally reads

|ψ(rP , t)|2 = |ψu(rP , t)|2 + |ψd(rP , t)|2 + 2 Re
(

ψu(rP , t)ψ∗
d(rP , t)e

iqφ/~
)

. (4.14)

A flux dependence is consequently encountered on the interference pattern, although particles
did not penetrate the solenoid and never experienced any induction field B, in great contrast
with the classical intuition.
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4.1.2 Aharonov–Bohm effect in condensed–matter physics

This effect was first discovered in 1949 by Ehrenberg and Siday [270] who derived, in a paper
that then widely went under the radar of the scientific community [271], a relation between
the phase shift of interfering electron beams and the magnetic flux enclosed in a long solenoid
disposed close to the beams. They also established the optical significance of the gauge free-
dom on A. Aharonov and Bohm rediscovered the effect2, that nowadays bears their names3,
ten years later and published their seminal paper [41] that shook the scientific community
and gave rise to an abundant literature dedicated to the observation of the effect and its
fundamental implications. Probably because of its conclusion that is counterintuitive with
respect to classical mechanics and because it has important implications at the very funda-
mental level [273–275], this effect was the object of a vast controversy: it generated more
than three hundreds of papers until 1989 [276].

A first early experimental confirmation was brought by Chambers [277] and other similar
experiments that were conducted at that epoch. Nevertheless, some authors [278–283] ques-
tioned the validity of those results, arguing that owing to the finiteness of the solenoid or to
the imperfectly shielded magnets that are used in practice, any effect on the charged parti-
cles is due to a leakage of induction field rather than to the vector potential itself4. In 1986,
Tonomura and colleagues [284] found a way to deal with those side effects. They developed
a toroidal magnet which, exploiting the Meißner effect, they covered with niobium, which is
superconductor under T = 9 K and perfectly shields the magnet below that temperature.
They sent a collimated electron beam across a Fresnel biprism to separate the beam into two
and placed the aforementioned shielded magnet perpendicularly along one of the two paths.
They observed a shift of the interference pattern between particles that have crossed the
torus by the inside and those that have crossed it by the outside, providing robust evidence
for the existence of Aharonov–Bohm effect and putting an end to the controversy.

Since then, the Aharonov–Bohm effect has become a central thematic of study in mesoscopic
physics [285, 286] and is even predicted [287] and observed [288] with neutral particles that
carry a non zero magnetic moment. Webb et. al. [42,44] have also detected Aharonov–Bohm
oscillations in the conductance of ordinary metal rings penetrated by a magnetic flux φ and
crossed by an electron beam, forming a matter wave interferometer that provides another
experimental observation of Aharonov–Bohm oscillations which can be used as a probe to
investigate phase coherence effects in electronic systems [289]. Until nowadays, ≈ 70 years af-
ter the publication of the paper of Ehrenberg and Siday, Aharonov–Bohm oscillations remain
an active field of research [290–292] and shall probably remain so in the foreseeable future.

2Aharonov and Bohm learned about the work of Ehrenberg and Siday after the publication of [41] and
acknowledged it in their subsequent article [272]: Further Considerations on Electromagnetic Potentials in the

Quantum Theory.
3In a sense, one could think it would be much fairer to speak about the Ehrenberg–Siday–Aharonov–Bohm

effect rather than referring to Aharonov and Bohm alone. We however stick to the latter denomination in
conformity with the usage in the literature.

4See Ref. [271] for an instructional review of the criticism brought at that time to the experiments and how
it helped Tonomura to design an experiment that brought a solid evidence of the existence and observation of
the effect.
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Stimulated by the advent of ultracold atoms that have become a real tool for quantum
simulation, as they provide a flexible framework to emulate various quantum effects (see [27]
for a recent review of the state of the art), Aharonov–Bohm oscillations have also been
experimentally observed with ultracold atoms [293–295] and widely used as a probe in various
studies [291,296–302]. In the following, we describe the geometry we study to highlight those
oscillations with Bose–Einstein condensates.

4.2 Description of the scattering region and Aharonov–Bohm

rings

Following the principle of the setup used in the experimental observation of the effect [42], we
study so–called Aharonov–Bohm rings. Those rings simply consist in a two–arm structure
that is pierced by a flux Φ, forming a matter wave interferometer. This system is connected
to two waveguides, as is sketched in Fig. 4.2.

Φ

1

2

Figure 4.2 – Schematic description of a transport experiment of ultracold atoms
through an Aharonov–Bohm ring penetrated by a flux Φ = 2πqφ/h. The ring is
connected to two semi-infinite waveguides, which forms a two–arm interferometer.
The flux Φ breaks the time–reversal symmetry of the ring and is responsible for
a phase difference between interfering trajectories related to any injected beam
propagating towards the ring. This results in periodic oscillations in the transport
properties, such as the transmission of particles.

Experimentally, a ring–shaped optical lattice can be produced by interfering two red–detuned
lasers: a plane wave with a Laguerre–Gauss lasing mode whose rotational symmetry is lever-
aged, resulting in a series of traps arranged along a ring [303, 304]. That optical lattice can
be connected to two semi–infinite leads to experimentally implement the scheme depicted in
Fig. 4.2. This is achieved by engineering a horizontal atomic matter wave guide in an arbi-
trary direction. This is obtained by utilising a far–detuned laser beam, as is done in Ref. [212].
Owing to the neutral nature of the ultracold atoms that are used in such experiment, the role
of the magnetic flux Φ is played by a light–induced synthetic gauge flux. This artificial flux
can be for instance produced by coupling two internal atomic states by means of a close–to–
resonance laser beam, which produces a geometrical phase [305], similar to what would be
implemented by a magnetic field [306,307]. Indeed, this light–induced coupling confers to the
atomic wavefunction a phase shift similar to that a vector potential would yield on a charged
particle. Moreover, owing to the Zeeman effect, in the presence of an authentic magnetic
field, the coupled energy levels acquire a spatial dependence that renders the artificial field
space–dependent too. Of course, there also exists more sophisticated schemes for producing
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light–induced synthetic gauge fields, as is reported in Refs. [30,31].

This kind of toroidal lattices are suitable candidates for the study of the Aharonov–Bohm
effect. For example, in the context of electronic transport, this geometry leads to Aharonov–
Bohm oscillations in the current when the ring is exposed to a magnetic field [308]. Indeed,
in the presence of a flux Φ that breaks the time–reversal symmetry down, any particle beam
injected upstream of the ring gets separated into partial waves that interfere, as a result of
the phase they acquire during their traversal of the ring. This interference is responsible
for periodic oscillations in the transport properties of the ring, such as the transmission of
particles which can be defined as the ratio between the outgoing current and the injected
current of particles.

The injection of particles towards Aharonov–Bohm rings is performed following the working
principle of atoms lasers that we extensively described in Chapter 2. They indeed produce
matter plane waves with a well–defined energy that are well suited for the study of coherent
effects. The injection of a wavepacket instead of a plane wave produced by atom lasers
would introduce a more complicated treatment of the scattering processes without adding
necessarily useful ingredients to the discussion.

4.2.1 Description of the scattering region

The geometry previously described is depicted in Fig. 4.3(a) and takes the form of an atom
laser injecting particles towards an Aharonov–Bohm ring connected to two semi–infinite mat-
ter wave guides.

in
te
raction

Figure 4.3 – (a) Injection of a Bose–Einstein condensate in the left matter wave
guide towards the Aharonov–Bohm ring, following the working principle of an
atom laser. (b) Discretisation of the continuous geometry depicted in (a) in a
series of equidistant sites.
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The reservoir containing N → ∞ atoms is maintained at the temperature T = 0 K and the
chemical potential µ. It injects plane waves e±ikx of wavevector k into the left matter wave
guide, those waves propagating both in the direction of increasing and decreasing x. This
guide is connected to the left side of an Aharonov–Bohm ring with tunable artificial gauge
flux Φ. A second matter wave guide is connected to the right side of the ring. Particles
crossing the ring acquire a path–dependent overall phase that yields, as previously described,
interferences that are responsible for Aharonov–Bohm oscillations. A many–body model for
this setup can be derived, very similarly to the approach we followed in Chapter 2.

In view of numerically integrating this model, we proceed to the discretisation of the 1D
space, as is shown in Fig. 4.3(b), which results in a series of sites separated by the constant
spacing δ and labelled by α. Consequently, this system is governed by a discrete Hamiltonian
split into several contributions that we discuss in the following.

The two semi–infinite matter wave guide are described by the discrete Hamiltonian

ĤLL
=

−1∑

α=−∞

[

Eδâ
†
αâα − Eδ

2

(

â†
α−1âα + â†

αâα−1

)]

(4.15)

ĤLR
=

∞∑

α=NR

[

Eδâ
†
αâα − Eδ

2

(

â†
α+1âα + â†

αâα+1

)]

, (4.16)

where we have introduced â†
α (resp. âα) the bosonic creation (resp. annihilation) operator

at site α. The discretisation procedure gives birth to an on–site energy Eδ = ~
2/(mδ2) and

to nearest neighbours hopping terms −Eδ/2 that express the tunnelling from one site to its
nearest neighbours. Indices in the interval [0, NR − 1] are excluded from the summations in
Eqs. (4.15) and (4.16) because they refer to ring sites, whilst the rest of indices stand either for
the left lead (]−∞,−1]) or for the right lead ([NR,∞[). As is explained in Chapter 2, smooth
exterior complex scaling [222–227,231,309] shall be implemented according to Ref. [216] for
absorption at both ends of the leads, as we show later on in the mean–field equations.

Following the atom–laser approach developed in Chapter 2, the reservoir of N → ∞ atoms
maintained at chemical potential µ is modelled by a coherent and point–like source whose
discretised Hamiltonian reads

ĤS = µb̂†b̂, (4.17)

where b̂† (resp. b̂) denotes the bosonic creation (resp. annihilation) operator of particles in the
source S. For the sake of simplicity, we make the Ansatz of a strongly localised source that
injects atoms at one single site labelled αS . This is described by the coupling Hamiltonian

ĤSLL
= κ(t)â†

αS
b̂+ κ∗(t)b̂†âαS

. (4.18)

This idealised coupling gives rise to injected particles propagating in both directions of de-
creasing and increasing α. Particles propagating in the direction of increasing α face the ring
on their trip, yielding back–reflected (either by direct reflection or after a trip inside the ring)
and transmitted waves.

The ring symmetry is broken by the presence of an artificial gauge flux Φ, responsible for
an Aharonov–Bohm phase θ = Φ/NR, with NR the number of ring sites. This is reflected
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as an additional a Peierls [310, 311] phase factor e±iθ in the related hopping terms that are
depicted in blue in Fig. 4.3(b). A positive (resp. negative) sign is associated to a hopping in
the clockwise (resp. counterclockwise) direction. Because we want to investigate many–body
interaction effects on the transport properties of the system, interaction is brought in the
system via the effective 1D interaction parameter g = 2~ω⊥aS/δ [312]. In the presence of an
interaction that is spatially restricted inside the ring, the ring Hamiltonian is formulated as

ĤR =
NR−1
∑

α=0

[

Eδâ
†
αâα − Eδ

2

(

â†
α−1âαe

iθ + â†
α+1âαe

−iθ
)

+
g

2
â†
αâ

†
αâαâα

]

. (4.19)

The ring is finally coupled to each lead through the Hamiltonian

ĤLR = −Eδ
2

(

â†
−1â0 + â†

0â−1 + â†
NR/2âNR

+ â†
NR
âNR/2

)

(4.20)

that expresses the coupling between the left lead to the ring through the hopping from site −1
to site 0 and vice–versa, as well as between the ring and the right lead through the hopping
from site NR/2 to site NR and vice–versa.

All together, these Hamiltonians form the total Hamiltonian describing the system under
study

Ĥ = ĤLL
+ ĤLR

+ ĤS + ĤSLL
+ ĤR + ĤLR, (4.21)

which we can write in a more compact and concise form

Ĥ =
∞∑

α=−∞

(

Eδâ
†
αâα +

g

2
â†
αâ

†
αâαâα

)

+
∑

α,α′

Jαα′ â†
αâα′ + κ(t)â†

αS
b̂+ κ∗(t)b̂†âαS

+ µb̂†b̂, (4.22)

where Jαα′ is the matrix element encoding the hopping from site α to site α′, possibly
including the proper phase factor if α and α′ are ring sites. More precisely, those matrix
elements read

Jαα′ = −Eδ
2







1 if |α− α′| = 1 and α,α′ /∈ R
1 if α,α′ → junction

eiθ if α′ = α+ 1 and α,α′ ∈ R
e−iθ if α′ = α− 1 and α,α′ ∈ R
0 otherwise

, (4.23)

where the notation R stands for the ring.
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4.3 Mean–field equations of the system

Starting from Hamiltonian (4.22), we want to find the evolution equation of the annihilation
operators, which, in the Heisenberg picture, is provided by the Heisenberg equations

i~
∂âα(t)
∂t

= −[Ĥ, âα(t)]

= Eδâα(t) +
∑

α′

Jαα′ âα′(t) + gαâ
†
α(t)âα(t)ψα(t) + κ(t)δα,αS

b̂(t) (4.24)

i~
∂b̂(t)
∂t

= −[Ĥ, b̂(t)]

= µb̂(t) + κ∗(t)âαS
(t). (4.25)

Following the principle of the mean–field approximation, in the limit of large on–site densities
and very weak interactions, quantum field operators are replaced by complex scalar fields

âα(t) 7−→ ψα(t) = 〈âα(t)〉e−iµt/~ (4.26)

b̂(t) 7−→ χ(t) = 〈b̂(t)〉e−iµt/~, (4.27)

related to their expectation values. With this substitution, the mean–field equations govern-
ing the dynamics of the system read

i~
∂ψα(t)
∂t

= (Eδ − µ)ψα(t) +
∑

α′

Jαα′ψα′(t) + gα|ψα(t)|2ψα(t) + κ(t)δα,αS
χ(t) (4.28)

i~
∂χ(t)
∂t

= κ∗(t)ψαS
(t), (4.29)

with initial conditions ψα(t0) = 0 and χ(t0) =
√

N , corresponding to empty waveguides,
an empty ring, and a source consisting in a coherent Bose–Einstein condensate made of N
atoms. The mean–field approximation consists in casting the initial many–body problem into
an effective one–body problem that is formalised by the nonlinear equation (4.28), where the
nonlinearity describes an effective potential experienced by an atom as a result of the pres-
ence of the other ones.

Following exactly the same approach as for atom lasers in Chapter 2, we set that χ(t) ≃
√

N
for all finite t, and we solely focus on the evolution of ψα, which is described by a nonlinear
Schrödinger equation with a source term [215,313,314]

i~
∂ψα(t)
∂t

= (Eα − µ)ψα(t) +
∑

α′

Jαα′ψα′(t) + gα|ψα|2ψα(t) +
√

Nκδα,αS
, (4.30)

the last term of which being a constant in time. Before we apply smooth exterior complex
scaling and numerically integrate this equation in Section 4.5, we derive an expression for the
reflection and transmission in a steady regime.

4.4 Reflection and transmission across an Aharonov–Bohm

ring

In order to obtain an expression for the stationary reflection and transmission, we start by
rederiving the injected mean density and probability current. For that purpose, we consider
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the mean–field equation describing an infinite lead into which a source injects particles. This
equation is given by

(Eδ − µ)ψα − Eδ
2

(ψα+1 + ψα−1) +
√

Nκ(t)δααS
= 0, (4.31)

that is, a discretised version of Eq. (2.65), where the mean–field prescription (4.26) and (4.27)
are performed. We first solve it for α 6= αS , in which case it reduces to

(Eδ − µ)ψα − Eδ
2

(ψα+1 + ψα−1) = 0, (4.32)

which is a discretised version of the wave equation

− ~
2

2m
∂2

∂x2
ψ(x) = µψ(x) (4.33)

that describes the propagation of plane waves with energy µ. Consequently, we make the
usual plane wave Ansatz, consisting in finding a solution of the form

ψα = Aeikδα +Be−ikδα (4.34)

in Eq. (4.32), where A and B are the amplitudes related to the plane waves propagating in
directions of increasing and decreasing α. This Ansatz, when injected in Eq. (4.32), gives
back the dispersion relation of the lattice

µ = Eδ[1 − cos(kδ)] ⇔ kδ = arccos
(

1 − µ

Eδ

)

. (4.35)

Computing the related one–dimensional probability current, given by

j(x, t) =
~

2mi

(

ψ∗(x, t)
∂ψ(x, t)
∂x

− ψ(x, t)
∂ψ∗(x, t)

∂x

)

, (4.36)

and which discretised version, obtained by means of a finite–difference scheme, reads

jα =
Eδ
2i~

(ψ∗
αψα+1 − ψα+1ψ

∗
α) , (4.37)

we find that

jα =
Eδ
2i~

[

|A|2
(

eikδ − e−ikδ
)

+ |B|2
(

e−ikδ − eikδ
)]

=
Eδ
~

sin(kδ)
(

|A|2 − |B|2
)

. (4.38)

Therefore, the plane wave corresponding to the amplitude A describes a plane wave with
current in the direction of increasing α, whilst the component related to the amplitude B
emits in the direction of decreasing α.

Including the treatment of the source amounts to modifying our plane wave Ansatz (4.34)
into

ψα =

{

A1e
−ikδα α ≤ αS

A2e
ikδα α ≥ αS ,

(4.39)
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as we assume that the reservoir is the only source of emitted waves and that upstream and
downstream of the source, the solution is a plane wave given by (4.34), as it solves the
finite–difference equation (4.32). When α = αS , both amplitudes have to coincide

ψαS
= A1e

−ikδαS = A2e
ikδαS ≡ A. (4.40)

This new amplitude A allows us to rewrite our Ansatz (4.39) in a more compact form

ψα =

{

Ae−ikδ(α−αS ) α ≤ αS
Aeikδ(α−αS ) α ≥ αS ,

⇔ ψα = Aeikδ|α−αS | (4.41)

The identification of the amplitude A is performed by inserting (4.41) into Eq. (4.31) for
α = αS , yielding for the amplitude

A =
κ

√
N

µ− Eδ(1 − eikδ)
=

κ
√

N
i
√

µ(2Eδ − µ)
=

κ
√

N
iEδ sin(kδ)

(4.42)

and for the on–site wavefunction

ψα =
κ

√
N

iEδ sin(kδ)
eikδ|α−αS |, (4.43)

where we have exploited the dispersion relation (4.35) and Eδ sin(kδ) =
√

µ(2Eδ − µ) to
transform amplitude A. The square modulus of this amplitude gives the mean density of
particles that the source injects in the waveguide

ρ∅δ = |ψα|2 = |A|2 =
|κ|2N

E2
δ sin2(kδ)

=
|κ|2N

µ(2Eδ − µ)
(4.44)

whilst the stationary injected current is given by Eq. (4.37) that finally yields

j∅ =
Eδ
~

|A|2 sin(kδ) =
1
~

|κ|2N
Eδ sin(kδ)

=
1
~

|κ|2N
√

µ(2Eδ − µ)
, (4.45)

that is, the density and current given in Eqs. (2.69) and (2.70).

With those expressions established, we are now in a position to derive the steady reflection
and transmission across the ring. In the limit of large propagation times and very weak
nonlinearity, Eq. (4.30) is indeed expected to produce a stationary solution, which is found
by solving the steady mean–field equation

(Eα − µ)ψα +
∑

α′

Jαα′ψα′ + gα|ψα|2ψα +
√

Nκδα,αS
= 0. (4.46)

This equation will allow us to derive an expression for the reflection and the transmission of
particles across the ring. The scattering state that is realised in stationary regime admits the
form

ψα =
κ

√
N

iEδ sin(kδ)

(

eikδα +R(Φ)e−ikδα
)

≡ ψLL

α,k + ψLL

α,−k, (4.47)
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in the region upstream from the ring, where αS < α < 0, as well as

ψα =
κ

√
N

iEδ sin(kδ)
T (Φ)eikδ(α−NR+1) ≡ ψLR

α,k, (4.48)

in the region downstream from the ring, when α ≥ NR.

In the upstream region, this scattering state consists in a superposition of the incoming
plane wave (with wavenumber k) and a reflected plane wave (with wavenumber −k). The
related amplitude is multiplied by the reflection probability amplitude R(Φ) that accounts
for the possible reflection by the ring (either a direct reflection or after an exploration of the
ring) in the upstream matter wave guide. In the right matter wave guide however, only the
transmitted plane wave, obtained by multiplying the incident plane wave by the transmission
probability amplitude T (Φ), is propagating.

The reflection R(Φ) and transmission T (Φ) probability amplitudes parametrise in which ex-
tent the incident wave is split into a reflected and a transmitted wave. They depend not only
on the Aharonov–Bohm flux Φ, through which they include interference phenomena, but also
on the interaction, on the presence of disorder5 within the ring and upon the on–site energy
at the junction sites. Their square modulus, |R(Φ)|2 and |T (Φ)|2, are called the reflection
and transmission probabilities and are of central importance in the study of transport across
Aharonov–Bohm rings since they inform about the interferences taking place within such
rings.

The current associated to the scattering state in the downstream region (where αS < α < 0)
reads

jα =
Eδ
~

|κ|2N
µ(2Eδ − µ)

sin(kδ)
(

1 − |R(Φ)|2
)

≡ jLL

α,k − jLL

α,−k, (4.49)

whilst the current in the upstream region (where α ≥ NR) reads

jα =
Eδ
~

|κ|2N
µ(2Eδ − µ)

|T (Φ)|2 sin(kδ) ≡ jLR

α,k, (4.50)

where the incoming (resp. reflected) current jLL

α,k (resp. jLL

α,−k) with wavenumber k (resp. −k)

in the left matter wave guide, as well as the transmitted current jLR

α,k in the right matter
wave guide, were calculated using the discretised expression (4.37) for the current, with ψα
given by Eqs. (4.47) and (4.48). This current must be conserved, as particles are conserved,
implying that jLL

α,k = jLL

α,−k + jLR

α,k.

The reflection and the transmission, that can be respectively interpreted as the reflected and
transmitted currents divided by the injected current, are given

|R(Φ)|2 = jLL

α,−k/j
LL

α,k (4.51)

|T (Φ)|2 = jLR

α,k/j
LL

α,k, (4.52)

with |R(Φ)|2 + |T (Φ)|2 = 1, as is deduced from current conservation.

5See the next chapter dedicated to the inversion of Al’tshuler–Aronov–Spivak oscillations.
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4.5 Aharonov–Bohm oscillations in the transmission

In this section, we present numerical results that are obtained by numerically integrating
Eq. (4.30) to which we apply smooth exterior complex scaling. This amounts to integrating

i~
∂ψα(t)
∂t

=
(
Eδ
qα

− µqα

)

ψα(t) +
∑

α′

Jαα′ψα′(t) + gα|ψα(t)|2ψα(t) +
√

Nκδα,αS
, (4.53)

with qα being introduced for implementing smooth exterior complex scaling (see Section 2.6.2).
We also note that non–zero matrix elements Jαα′ , that encode neighbourly relations between
sites, are also subject to complex scaling following the shape indicated in Eq. (2.102). As
initial conditions, we choose ψα = 0 at initial time t = t0 which corresponds to an initially
empty scattering region.

As we have already mentioned, interferences due to the artificial gauge field are responsible
for oscillations of period 2π in the transport properties, such as the transmission. Fig. 4.4
shows, in the absence of interaction, a typical oscillation in the transmission resulting from
the phase difference between interfering paths. The flux dependence of the transmission is
a clear signature of the Aharonov–Bohm effect. The typical shape of the oscillations in the
transmission depicted Fig. 4.4 is frequently encountered in the dedicated literature, in great
accordance with the results of Ref. [315] or with the conductance oscillations in Aharonov–
Bohm rings [316] for electrons, in nanowires [317] or in graphene rings [318].

Figure 4.4 – Transmission as a function of the artificial gauge flux Φ penetrat-
ing the ring in the absence of interaction. Because of the breaking of the ring
symmetry due to the artificial gauge flux Φ, flux–dependent interferences occur.
They can be tuned from constructive to destructive and vice–versa by varying
Φ: Aharonov–Bohm oscillations are encountered. Inset: circles whose filling is
proportional to the on–site density. Depending on the value of Φ, the sites are
approximately equivalently populated or display, on the contrary, a large density
imbalance from a site to its nearest neighbour. When Φ = π, a transmission
blockade is encountered as a result of destructive interferences. Numerical pa-
rameters: µ/Eδ = 1 and ρ∅δ ≃ 2.77.

The inset of Fig. 4.4 shows circles whose filling is proportional to the on–site density. As a
result of the flux–dependent interferences, discrepancies in the on–site density are found de-
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pending on the value for Φ. At a maximum of the transmission, all sites display approximately
the same density, whilst at the minimum of transmission, a significant density imbalance is
found from one site to its nearest neighbours: some sites are densely populated whereas
their neighbour exhibit zero density. As the flux is modulated, it can turn interferences from
constructive to destructive and vice–versa. This can even induce a transmission blockade
characterised by a zero density at the exit and all downstream sites, as is encountered when
Φ = π.

4.5.1 Interaction effects

While the literature contains several studies about interaction effects for electrons [319–322],
the subject is less documented for bosonic particles. Many–body interaction effects on the
transmission are investigated both in the mean–field regime and by means of the truncated
Wigner method that we described in details in Chapter 2 and that we implement accordingly.
For that purpose, we numerically integrate Eq. (3.54) in the absence of disorder potential
and with hopping terms particularised to the specific geometry we study, which yields the
following equation

i~
∂ψα(t)
∂t

=
(
Eδ
qα

− µqα

)

ψα(t) +
∑

α′

Jαα′ψα′(t) + gα(|ψα(t)|2 − 1)ψα(t)

+
√

Nκδα,αS
+ δα,0χ0(t) + δα,NχN (t), (4.54)

where, for convenience sake, we repeat here some part of the explanation coming after
Eq. (3.54) about the meaning of the various terms appearing in the numerically integrated
equation. The noise terms χ0(t) and χN (t) are given by

χ0(t) = Eδ

−1∑

α′=−∞
Mα′(t − t0)ψα′(t0) (4.55)

χN (t) = −Eδ
∞∑

α′=N

Mα′−N (t− t0)ψα′(t0), (4.56)

with

Mα(τ) =
iα

2

[

Jα−1

(
Eδτ

~

)

+ Jα+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~, (4.57)

where Jα is the Bessel function of the first kind and order α. They represent the quantum
noise entering the scattering region at time t owing to the sampling of the initial state. The
truncated Wigner method allows to take into account the incoherent contribution to the
transmission, which is defined as

T incoh = T tot − T coh. (4.58)

The total and coherent contributions are defined according to the procedure detailed in
Chapter 3, namely

T tot = 〈jtot〉/j∅ (4.59)

T coh = 〈jcoh〉/j∅. (4.60)
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The total current is given in Eq. (3.61), that is,

jtot =
iEδ
2~

ψ∗
α+1(t)ψα(t) − ψ∗

α(t)ψα+1(t), (4.61)

the coherent contribution is provided by Eq. (3.63), that is,

jcoh =
iEδ
2~

(

ψ∗
α+1(t)ψα(t) − ψ∗

α(t)ψα+1(t)
)

, (4.62)

and the expression of the injected current j∅ is recalled in Eq. (4.45).

The presence of finite interaction is accounted for and controlled by the interaction strength
g in the mean–field equation (4.30). Interaction is spatially restricted only inside the ring, in
accordance with an experimental situation where, due to the transverse confinement, collisions
are much more likely to occur within the ring than outside. A mean–field simulation (solid
black curve of Fig. 4.5) for g/Eδ = 0.1 shows that, in comparison with the mean–field
simulation of Fig. 4.4 performed in the absence of interaction, the maxima of transmission
are slightly displaced and the transmission blockade is preserved.
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Figure 4.5 – Mean–field (MF) and truncated Wigner (tW) simulations of the
transmission as a function of the artificial gauge flux Φ penetrating the ring. The
truncated Wigner results show that, owing to the presence of interaction, the
perfect transmission occurring in the mean–field regime is inhibited and become
only maxima. In addition, those maxima of transmission are displaced away
from Φ = π. The transmission blockade at Φ = π is also removed, as a result
of the creation of incoherent particles, resulting from inelastic scattering, within
the ring that do not interfere. Numerical parameters: µ/Eδ = 1, ρ∅δ ≃ 2.77,
g/Eδ = 0.1 and 20000 trajectories.

The blue curve, that shows the total transmission in the truncated Wigner framework, in-
dicates that, compared to the mean–field simulation depicted in solid black, the perfect
transmission in the mean–field regime is inhibited and the related maxima of transmission
are displaced away from Φ = π. Resonant transmission peaks move further away from Φ = π
as g increases and can even disappear if g is strong enough, as is shown in Fig. 4.7. This
decrease of the transmission with increasing interaction strength is in qualitative agreement
with the related decrease of conductance observed in Ref. [319] for interacting electrons.
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The comparison stops here, because the underlying mechanism is very different owing to the
electron–electron interaction which is of long–range nature, in contrast to the contact inter-
action we consider in our work and, most importantly, because we are dealing with a bosonic
type of particle.

Truncated Wigner simulations also reveal an incoherent transmission that suspends the trans-
mission blockade at Φ = π. This suspension is entirely due to incoherent particles because
the coherent transmission at Φ = π remains perfectly blocked. Indeed, this blockade is due
to the destructive interference between incoming coherent waves interfering together inside
the ring. The creation of incoherent particles inside the ring is a result of inelastic scattering
processes taking place only within the ring and partially destroys interference effects, as in-
coherent waves are dephased and mostly do not interfere.

A further investigation about the competition between the interference effects due to coherent
waves and the creation of incoherent particles is performed in Fig. 4.6. It displays the on–site
density in the ring and in the upstream and downstream matter wave guides for particular
values of the artificial gauge flux associated to maxima and a minimum of transmission. The
density is represented by circles whose radius is proportional to the local value of the density.

Figure 4.6 – Truncated Wigner simulations of the on–site density within the ring
and both in the upstream and downstream leads, in the neighbourhood of the ring
for particular values of the artificial gauge flux. The density is represented by cir-
cles whose radius is proportional to the local value of the density. Panels (a) and
(c) correspond to maxima of the total truncated Wigner transmission, at Φ ≃ π/2
and Φ ≃ 3π/2. For those values of Φ, transmitted particles are nearly equiva-
lently distributed between coherent and incoherent particles. Panel (b) shows
on the other hand the on–site density for a minimum of transmission encoun-
tered when Φ = π. Destructive interferences suppress the coherent transmission,
but a small on–site density nevertheless prevails downstream, due to incoherent
particles. Numerical parameters: µ/Eδ = 1, ρ∅δ ≃ 2.77 and g/Eδ = 0.1.

Figs. 4.6(a) and 4.6(c) show the on–site density for respectively Φ ≃ π/2 and Φ ≃ 3π/2,
which are the values of the artificial gauge flux for which the truncated Wigner total trans-
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mission is maximal. They indicate that a branch of the ring is clearly privileged in terms of
coherent density, the choice of the branch depending on the value taken by Φ. For Φ ≃ π/2,
the upper branch displays a large on–site coherent density whereas the lower branch displays
a weak coherent density, the role of the branches being inverted for Φ ≃ 3π/2. Downstream of
the ring, the on–site density does not vary appreciably from one site to its neighbour, which
is not surprising because the only particle flux in that region is directed in the direction of in-
creasing α and no interference mechanism is present outside the ring. In that region of space,
although a coherent contribution is still present, the incoherent contribution dominates the
density.

Fig. 4.6(b) shows the on–site density for Φ = π which corresponds to the minimum of the
transmission. For that particular flux, both arms are populated with approximately the
same density which is sometimes mainly coherent, sometimes mainly incoherent because of
the spatially varying profile of the coherent density. Since incoherent particles display en-
ergies ranging within a certain energy spectrum, they mostly do not interfere and populate
both arms nearly similarly. In the downstream region, in contrast with panels (a) and (c),
the density is found totally incoherent because coherent particles interfere destructively at
the exit junction and cause a coherent transmission blockade, as was found both in mean–
field (black curves) and truncated Wigner (green curve) simulations, shown in Fig. 4.5. As
a result of particle conservation and due to the transmission blockade, a higher density is
found upstream compared to the panels (a) and (c). The relatively low incoherent on–site
density encountered in the upstream lead confirms that the incoherent particles are created
inside the ring, which is not surprising insofar interaction, and the related inelastic scattering
processes that generate those incoherent particles, is only present inside the ring.

As the interaction strength is increased, the contribution of incoherent particles becomes
more and more prominent and modifies the transmission profile, as Fig. 4.7 indicates.
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Figure 4.7 – Truncated Wigner simulations of the total transmission as a function
of the artificial gauge flux Φ penetrating the ring for an increasing interaction
strength controlled by g/Eδ ∈ [0; 0.05; 0.1; 0.15]. As the interaction strength
is increased, maxima are progressively displaced, flattened and even removed
for higher interaction strengths, as well as the transmission blockade at Φ =
π that gets suspended. Incoherent particles, whose density increases with the
interaction strength, overshadow the interference pattern carried by coherent
particles as they dominate the total transmission. Inset: total and incoherent
transmission at Φ = π. The transmission for this particular flux is entirely due
to the incoherent contribution that suspends the coherent transmission blockade.
Numerical parameters: µ/Eδ = 1 and ρ∅δ ≃ 2.77.

Maxima are first progressively displaced and lowered before being suppressed. The trans-
mission blockade at Φ = π is also progressively removed by dephased incoherent trajectories,
which is the only underlying mechanism responsible for the blockade suspension. The inter-
ference pattern carried by coherent particles is progressively drowned and dominated by a
flatter, incoherent, transmission profile that results from dephasing. Refs. [323–325] indicate
that, in great contrast with their fermionic counterpart for which they persist in the presence
of interaction, Aharonov–Bohm oscillations are washed out for sufficiently strongly interact-
ing bosons, which looks in qualitative accordance with our numerical findings. The statistics
of the particles, as well as the interparticle interaction nature, have a marked influence on
the Aharonov–Bohm oscillations [36].

Destruction of the Aharonov–Bohm oscillations for higher values of the interaction strength
is illustrated by mean–field simulations, as is depicted in Fig. 4.8 for g/Eδ = 0.2, reveal-
ing oscillations that are an artefact of the mean–field approach. That curve indeed features
bistability and indicates that the overall matter wave coherence is destroyed, as is stated in
Refs. [216,313,314,326]. This is not surprising since the very existence of a reachable steady
scattering state is only ensured for small nonlinearities in the Gross–Pitaevskii equation [190].
For higher nonlinearities, dynamical instabilities generally occur [191, 192] and the conver-
gence towards a steady scattering state is not guaranteed, rendering the process abidingly
time–dependent [327].
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Figure 4.8 – Mean–field (MF) and truncated Wigner (tW) simulations of the
transmission as a function of the artificial gauge flux Φ penetrating the ring.
Owing to dynamical instabilities arising for finite nonlinearities, artificial oscil-
lations are encountered in the mean–field transmission, indicating a breakdown
of matter wave coherence. Truncated Wigner simulations corroborate this ob-
servation, as the incoherent contribution is the most prominent one, confirming
a dephasing of quantum interference effects, as a result of inelastic scattering.
Numerical parameters: µ/Eδ = 1 and ρ∅δ ≃ 2.77 and g/Eδ = 0.2.

Truncated Wigner simulations supplied in Fig. 4.8 show and confirm that phase coherence
is destroyed. The related quantum interference effects are dephased for g/Eδ = 0.2 and
stronger interaction, as the incoherent contribution due to inelastic scattering governs the
total transmission. Aharonov–Bohm oscillations are washed out by dephasing and confirm
the accordance of our numerical findings with Refs. [323–325]. However, owing to significant
remnants of coherent components of the atomic cloud near Φ = 0 and Φ = 2π, oscillations
that look like Aharonov–Bohm oscillations are still encountered. They are nevertheless also
expected to be washed out for stronger interactions.



Chapter 5

Al’tshuler–Aronov–Spivak

oscillations of bosonic matter wave

beams in the presence of interaction

This chapter is dedicated to the study of matter wave transport across disordered Aharonov–
Bohm rings in the presence of atom–atom interaction. As we first discuss from an experi-
mental point of view, the presence of a smooth and weak disorder converts Aharonov–Bohm
oscillations in the ensemble averaged transmission of particles across the ring into Al’tshuler–
Aronov–Spivak oscillations that have twice the frequency of the latter.

Based on the Green’s function of the system we study, and that we introduced in Chap-
ter 4, we theoretically demonstrate the advent of Al’tshuler–Aronov–Spivak oscillations in
the ensemble averaged transmission by highlighting the crucial role of robust pairings of
time–reversed partners in the averaging process.

Those oscillations are then studied numerically, especially in the presence of weak atom–
atom interaction. Mean–field simulations show a crossover from constructive to destructive
interferences: Al’tshuler–Aronov–Spivak oscillations are reverted due to weak interaction.
This antilocalisation scenario is then investigated beyond the mean–field regime by means of
the truncated Wigner method. Those simulations are then leveraged to address the question
of the experimental observability of the inversion of Al’tshuler–Aronov–Spivak oscillations.

5.1 From Webb to Sharvin–Sharvin experiment

Most early experimental evidences of the Aharonov–Bohm effect were performed in the vac-
uum [277, 284, 328], following the Gedankenexperiment presented in the seminal paper of
Aharonov and Bohm [41]. In this Gedankenexperiment, electrons travel in the vacuum around
an infinitely long solenoid and can be described in terms of a wavefunction that propagates
following a plane wave motion. In contrast with this idealised propagation for the electrons,
in the experiment of Webb that highlights Aharonov–Bohm oscillations in the magnetoresis-
tance of a gold ring [42], electrons propagate diffusively in a disordered medium, as they do
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in every non superconducting metal.

Some static defects of the underlying lattice–like structure, such as impurities, vacancies or
dislocations of atoms cause elastic scattering1 of the wavefunction related to the electron.
For that reason, the conduction process in normal metals is diffusive and can be described
in terms of a random walk for the electrons with an elastic scattering mean free path that
depends on the degree of disorder (which is proportional to the density of scatterers) of the
metal. As a consequence, the electronic motion turns from ballistic in the vacuum to very
diffusive in normal metals since, in practice, the size of the sample is large compared to the
scattering mean free path2, so that an electron propagating in this random medium is scat-
tered many times [44].

Because of the presence of disorder and the related elastic scattering events, the question
to know whether the phase coherence is preserved or destroyed after the traversal of such a
disordered medium in the diffusive regime of multiple scattering was open until 1981. Ac-
cording to Washburn and Webb [44], the most dominant opinion was that Aharonov–Bohm
oscillations would be destroyed. The culprit for this loss of coherence would be elastic scat-
tering, as Ref. [329] indicates. On the other hand, theoretical physicists [330] claimed that
Aharonov–Bohm oscillations are preserved by disorder and the related elastic scattering, the
responsible for the destruction of the Aharonov–Bohm oscillations actually being inelastic
scattering.

A theoretical answer to that question was brought in 1981 by Al’tshuler, Aronov and Spivak,
who theoretically studied weak localisation in doubly connected disordered conductors [95,96]
and predicted oscillations, with half the period of Aharonov–Bohm oscillations, that nowa-
days bear their names3. Its experimental counterpart was brought a few months later by
Sharvin and Sharvin, who performed measurements of the magnetoresistance of long and
hollow, thin–walled, Mg cylinders [94] and observed the oscillations predicted by Al’tshuler,
Aronov and Spivak, indicating that phase coherence is not affected by elastic scattering.
This has been confirmed by Büttiker [331], who indicates that the phase shift resulting from
the elastic scattering by impurities does not suppress phase coherence nor introduces any
irreversibility [39], in contrast with inelastic scattering which introduces dephasing in the
oscillations. This was also later confirmed by the Webb experiment [42] and by other exper-
iments [332, 333]. Elastic scattering indeed modifies the phase of the electron wavefunction
in a deterministic manner4 and does not randomise it.

The measurements by Sharvin and Sharvin are characterised not only by the presence of

1Because the mass of the scattering centre – which often happens to be that of an ion – in such scattering
events is large compared to that of an electron, the scattering can be considered as elastic.

2In the experiment of Webb and colleagues, the characteristic size of the gold ring is ∼ mm [42] while the
mean free path is typically several nanometers.

3Al’tshuler–Aronov–Spivak oscillations are in the literature frequently referred to as h/2e oscillations,
sometimes as Sharvin–Sharvin effect or seldom as disordered Aharonov–Bohm effect.

4All the electrons that traverse the same series of elastic, reversible, scattering events possess the same
relative phase one with respect to the others, both at the beginning and at the end of the traversal. Their
phase coherence relation is thus maintained during such a traversal punctuated by the same elastic scattering
events.
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Al’tshuler–Aronov–Spivak oscillations, but also by the absence of Aharonov–Bohm oscil-
lations. Similar experiments have been reproduced by other research groups, either with
cylinders [334] or arrays of loops [335–337] and all confirmed both the presence of Al’tshuler–
Aronov–Spivak oscillations and the absence of Aharonov–Bohm oscillations. At the temper-
ature they worked, Sharvin and Sharvin estimated that the phase coherence length Lφ of the
electrons is of the same order of magnitude as the circumference of the cylinder. Because this
cylinder is much longer than Lφ in this experiment5, it can be thought as a stack of many
non–correlated Aharonov–Bohm rings of circumference ∼ Lφ along which phase coherence
should be maintained, each of which with its own disorder landscape. The magnetoresistance
of such a cylinder is then obtained as the ensemble average over the rings, or equivalently,
over the disorder configurations.

Trajectories similar to the paths depicted in Fig. 5.1(a) interfere with a relative phase that
is a signature of the experienced disorder configuration. Owing to the specificity of this rela-
tive phase at zero flux to the disorder realisation, such pairs that carry an Aharonov–Bohm
contribution do not survive ensemble averaging because the individual relative phases they
carry are not correlated and the related oscillations consequently average out in the cylinder
of Sharvin and Sharvin.

On the contrary, pairings of trajectories similar to those depicted in Fig. 5.1(b), which are
time–reversed counterpart of each other and experience the same sequence of elastic scatter-
ing events in the reversed order, all display the same relative phase (which is zero because
those paths consists in the same scattering events in the reversed order) at zero flux. They
thus survive ensemble averaging to give rise to Al’tshuler–Aronov–Spivak oscillations, con-
firming that phase coherence is preserved by disorder [44]. Such pairs of paths, referred to
as Cooperons in analogy with Cooper pairs in superconductivity, significantly enhance the
probability to return to the origin and the underlying backscattering.

This enhancement reveals the intimate connection between Al’tshuler–Aronov–Spivak os-
cillations, weak localisation and coherent backscattering which are discussed in Chapter 1.
The doubling of frequency (or halving of period) of Al’tshuler–Aronov–Spivak oscillations
compared to Aharonov–Bohm oscillations is best explained with Fig. 5.1, because the flux
encircled by trajectories such as those depicted in Fig. 5.1(b) is double the flux encircled by
trajectories such as those depicted in Fig. 5.1(a).

5In practice, Sharvin and Sharvin have estimated that at the working temperature of their experiment,
electrons could maintain a phase coherence relation over a length of the order of magnitude of the circumference
of the cylinder. In order to have an insight, the cylinder has a diameter of 1.5 µm and a length of L = 1 cm,
which gives L/Lφ ≃ 2100.
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Figure 5.1 – (a) Example of a pair of paths that interfere to give rise to Aharonov–
Bohm oscillations with a random relative phase at zero flux, depending on the
disorder landscape. Those contributions vanish out after ensemble averaging. (b)
Example of a pairing between a path and its time–reversed counterpart, made of
the same series of scattering events in the reversed order. Those pairings exhibit
the same relative phase at zero flux and survive the ensemble average to generate
Al’tshuler–Aronov–Spivak oscillations.

The Sharvin–Sharvin experiment demonstrates that some interference effects survive ensem-
ble averaging. This ensemble averaging process is nevertheless not a necessary condition
to observe Al’tshuler–Aronov–Spivak oscillations, since they are also present for a single
realisation of the disorder potential, namely for instance for a single ring as in Webb experi-
ment6 [42]. Indeed, the magnetoresistance of the gold ring shows the typical Aharonov–Bohm
oscillations due to pairings similar to that depicted in Fig. 5.1(a), but also displays weaker,
half–period oscillations, as Fourier power spectrum reveals [42]. Although in such a con-
figuration both oscillations coexist, Al’tshuler–Aronov–Spivak oscillations are hidden by the
stronger amplitude Aharonov–Bohm oscillations and ensemble averaging provides a way to
highlight Al’tshuler–Aronov–Spivak oscillations by destroying Aharonov–Bohm oscillations.

Since their experimental observation, Al’tshuler–Aronov–Spivak oscillations have been inves-
tigated in details in the context of disordered mesoscopic physics of which they have become
a central thematic. They have indeed been encountered with cylinders [334], with arrays of
loops [335–337], with mesoscopic disordered rings [43, 338–341] made of normal metals, in
ballistic Aharonov–Bohm billiards [342], in semiconductors [343], in superconductors [344] in
nanoscale topological insulators [345] and even in optics [346].

5.2 Theory of Al’tshuler-Aronov-Spivak oscillations

Aharonov–Bohm rings, studied in Chapter 4 and whose main ingredients are briefly recalled
in Fig. 5.2 for the sake of convenience, are excellent candidates to observe Al’tshuler–Aronov–
Spivak oscillations with ultracold bosons, provided a disorder potential is present inside the
ring. However, in order to observe Al’tshuler–Aronov–Spivak oscillations in a more convincing

6Webb and colleagues indeed designed a ring of characteristic length smaller than Lφ which can be seen
as an individual realisation of one of Sharvin–Sharvin rings. Because phase coherence is preserved along this
gold ring, it can be referred to as a coherent conductor.
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manner, we shall average the relevant observables over many disorder configurations to cancel
Aharonov–Bohm contributions.

in
te
raction

a

nd disorder

Figure 5.2 – (a) A reservoir, made of a trapped Bose–Einstein condensate at
zero temperature and maintained at the chemical potential µ, is connected to a
matter wave guide in which it injects plane waves going both in the direction of
increasing and decreasing x. This guide is connected to an Aharonov–Bohm ring
with tunable artificial gauge flux Φ. A second matter wave guide is connected to
the other side of the Aharonov–Bohm ring. (b) Modelling of the system sketched
in the panel (a) in terms of a quantum graph with two vertices, two internal
bonds of finite length and two external bonds of infinite extension.

We first theoretically demonstrate the advent of Al’tshuler–Aronov–Spivak oscillations in this
context of ensemble averaging over disorder configurations within Aharonov–Bohm rings. We
model the ring as a quantum graph [347–349] with two vertices at the ring junctions, two
internal bonds of finite length representing the arms of the ring and two external bonds of
infinite extension standing for the two semi–infinite matter wave guides.

5.2.1 Formulation of the scattering problem in terms of Green’s functions

Our first goal in this section is to derive a theory explaining the appearance of Al’tshuler–
Aronov–Spivak oscillations based on the Green’s function of the system, following a scattering
matrix approach with two leads. This amounts to solving [326]

Ĝ−1(µ)ψ = ψS , (5.1)

where we have introduced the (retarded) Green’s function of the system

Ĝ(µ) =
1

µ− Ĥ + iǫ
. (5.2)
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Without the source, the Hamiltonian describing the system we study can be split into sub–
Hamiltonians describing each region of the system and cast into the form

Ĥ = ĤLL
+ ĤR + ĤLR

+ ĤLLR + ĤLRR

= P̂LL
ĤP̂LL

+ P̂RĤP̂R + P̂LR
ĤP̂LR

+
(

P̂LL
Ŵ P̂R + P̂RŴ P̂LL

)

+
(

P̂RR
Ŵ P̂R + P̂RŴ P̂LR

)

= ĤLL
+ ĤR + ĤLR

+
(

ŴLLR + ŴRLL

)

+
(

ŴLRR + ŴRLR

)

, (5.3)

following the principle of the Feshbach projection operator formalism [184,185], as in Chap-
ter 2. In Eq. (5.3), we have introduced the projectors P̂X which satisfy

P̂X P̂Y = δXY P̂X , ∀X,Y = LL,R,LR (5.4)

and project a state |ψ〉 onto either the left lead (LL), the ring (R) or the right lead (LR).
The compact notation ĤX = P̂XĤP̂X has been employed for the sub–Hamiltonians and
ŴXR = P̂XŴ P̂R = Ŵ †

RX for the junctions Hamiltonians. Eq. (5.3) consequently allows us
to write the wavefunction of the scattering system as

|ψ〉 = P̂LL
|ψ〉 + P̂R |ψ〉 + P̂LR

|ψ〉 = |ψLL
〉 + |ψR〉 + |ψLR

〉 , (5.5)

that is, as a sum of the wavefunction in each lead and the wavefunction of the ring. By
introducing the retarded Green’s function at energy µ

ĜX(µ) =
1

µ− ĤX + iǫ
, (5.6)

still with the notation X = LL,R,LR, we can write the Schrödinger equation in each region,
following a scattering matrix formalism, as

Ĝ−1
LL

(µ) |ψLL
〉 + ŴLLR |ψR〉 = P̂LL

|ψS〉 (5.7)

Ĝ−1
LR

(µ) |ψLR
〉 + ŴLRR |ψR〉 = 0 (5.8)

Ĝ−1
R (µ) |ψR〉 + ŴRLL

|ψLL
〉 + ŴRLR

|ψLR
〉 = 0. (5.9)

Injecting Eqs. (5.7) and (5.8) into (5.9), we arrive at the following expression for the ring
wavefunction

|ψR〉 = −
[

Ĝ−1
R (µ) − Σ̂LL

(µ) − Σ̂LR
(µ)
]−1

ŴRLL
ĜLL

(µ) |ψS〉 , (5.10)

where we have introduced the so–called self–energy

Σ̂X(µ) = ŴRXGX(µ)ŴXR, ∀X = LL,LR. (5.11)

This finally allows us to write the wavefunction in the leads

|ψLL
〉 = ĜLL

(µ) |ψS〉 + ĜLL
(µ)ŴLLR

(

Ĝ−1
R (µ) − Σ̂LL

(µ) − Σ̂R(µ)
)−1

ŴRLL
ĜLL

(µ) |ψS〉
(5.12)

|ψLR
〉 = ĜLR

(µ)ŴLRR
(

Ĝ−1
R (µ) − Σ̂LL

(µ) − Σ̂LR
(µ)
)−1

ŴRLL
ĜLL

(µ) |ψS〉 . (5.13)
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In these expressions, the junctions Hamiltonians explicitly read

ŴLLR = −Eδ
2

|−1〉 〈0| , (5.14)

ŴLRR = −Eδ
2

|NR〉 〈NR

2
| , (5.15)

where, for the sake of clarity, we recall that the ring extends from site |0〉 to site |NR − 1〉.
One still has to find an expression for the Green’s functions of the ring and leads. The latter
is quite simple to obtain but the former is a little bit mode tedious.

5.2.2 Green’s function of a 1D infinite lattice

The discretised Hamiltonian of an infinite extension lead is provided, in the local lattice sites
basis |α〉, by

Ĥ =
∞∑

α=−∞
Eδ

(

|α〉 〈α| − 1
2

|α〉 〈α+ 1| − 1
2

|α+ 1〉 〈α|
)

=
∫ π

−π
Ek |k〉 〈k| dk, (5.16)

with Eδ = ~
2/(mδ2) the on–site energy, Ek = (1 − cos kδ)Eδ and 〈α|k〉 = eiαk/

√
2π. The

related Green’s function is then written as

Ĝ(µ) = lim
ǫ→0+

1

µ− Ĥ + iǫ
= lim

ǫ→0+

∫ π

−π

1
µ− Ek + iǫ

|k〉 〈k| dk, (5.17)

which yields, in the lattice sites representation |α〉,

〈α| Ĝ(µ) |α′〉 = lim
ǫ→0+

1
2π

∫ π

−π

ei(α−α′)k

µ− (1 − cos kδ)Eδ + iǫ
dk. (5.18)

Using the fact that for |ǫ| ≪ 1, we have the identity

1
2π

∫ π

−π

eilϕ

cosϕ+ x+ iǫ
dϕ =

[

−(x+ iǫ) + i
√

1 − (x+ iǫ)2
]|l|

i
√

1 − (x+ iǫ)2
, (5.19)

we can rewrite Eq. (5.18) as

〈α| Ĝ(µ) |α′〉 = lim
ǫ→0+

[

Eδ − µ− iǫ+ i
√

(µ+ iǫ)(2Eδ − µ− iǫ)
]|α−α′|

iE
|α−α′|
δ

√

(µ+ iǫ)(2Eδ − µ− iǫ)
, (5.20)

which ultimately yields, for 0 < µ < 2Eδ ,

〈α| Ĝ(µ) |α′〉 =
ei|α−α′|k

i
√

µ(2Eδ − µ)
=

ei|α−α′|k

iEδ sin(kδ)
, (5.21)

that is the expression of Green’s function of an infinite extension lead in the basis |α〉.

5.2.3 Green’s function of the ring

In the following, we first derive the one–dimensional Green’s function of a closed clean ring.
We then explain how this Green’s function can be modified to take into account the presence
of a smooth and weak disorder. Finally, we describe how the Green’s function describing such
a disordered ring can be modified to model an open ring, connected to the two semi–infinite
leads.
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Green’s function of a closed clean ring

In the absence of disorder and interaction, the discretised Hamiltonian related to a closed
Aharonov–Bohm ring of NR sites is given in the local lattice sites basis |α〉, by

ĤR =
NR−1
∑

α=0

Eδ
(

|α〉 〈α| − e−iΦ

2
|α〉 〈α+ 1| − eiΦ

2
|α+ 1〉 〈α|

)

. (5.22)

Its eigenvalues are En = Eδ [1 − cos(2nπ/NR − Φ)] and its eigenstates are given by

|n〉 =
1√
NR

NR−1
∑

ν=0

e2iπnν/NR |ν〉 , (5.23)

with ν = 0, . . . , NR − 1. With the eigenvalues and eigenvectors at our disposal, we are now
in a position to express the Green’s function of the closed ring

ĜR(µ) =
1

µ− ĤR + iǫ
=

NR−1
∑

n=0

1
µ− En + iǫ

|n〉 〈n| , (5.24)

which, in site representation |α〉, reads

Gαα′ = 〈α| ĜR |α′〉 =
1
NR

NR−1
∑

n=0

e2iπ(α−α′)n/NR

µ− [1 − cos(2nπ/NR − Φ)]Eδ + iǫ
(5.25)

=
e(|α−α′|−L)Φ̃ sin(|α− α′|kδ) − ei|α−α′|Φ̃ sin ((|α− α′| − L)kδ)

Eδ[cosLΦ̃ − cos(Lkδ)] sin kδ
(5.26)

=
1

iEδ sin kδ

[

ei|α−α′|(kδ+Φ̃)
∞∑

n=0

einL(kδ+Φ̃) + ei(L−|α−α′|)(kδ−Φ̃)
∞∑

n=0

einL(kδ−Φ̃)
]

, (5.27)

with Φ̃ = Φ sign(α − α′) and where we have used an application of the geometric series and
applied Liouville’s theorem to compute the second and third above lines [326]. Therefore,
the free one–dimensional Green’s function between sites α and α′ consists in a sum over each
possible path going from α to α′. Amongst those paths and depending on the sites location,
some paths may visit the junctions many times, thus consisting of many explorations of the
ring arms.

Green’s function of a closed smoothly and weakly disordered ring

In the case of a ring containing smooth and weak disorder, some factors appearing in the
Green’s function of the clean ring have to be replaced, namely

eiLkδ → ei(Φu+Φd), (5.28)

with Φu and Φd the phases due to the disorder in the upper and lower arms, which phases
are given by

Φu =
NR/2−1
∑

α=0

kα, (5.29)

Φd =
NR−1
∑

α=NR/2

kα, (5.30)
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where kαδ = arccos(1 − (µ−Vα)/Eδ) is the disorder–dependent local wavevector. Due to the
presence of disorder within the ring, we must also make the following substitution

ei|α−α′|k → exp

(

i sign(α− α′)
α−1∑

α′′=α′

kα′′

)

, (5.31)

which ultimately gives the Green’s function of a smoothly and weakly disordered ring

Gdis
αα′ =

1
iEδ sin kδ

{

exp

(

iδΦ̃ sign(α− α′)
α−1∑

α′′=α′

kα′′

) ∞∑

n=0

ein(Φu+Φd+LΦ̃)

+ exp

[

i

(

Φu + Φd − LΦ̃ − δ sign(α− α′)
α−1∑

α′′=α′

kα′′ + |α− α′|Φ̃
)] ∞∑

n=0

ein(Φu+Φd−LΦ̃)

}

(5.32)

that still needs to be connected to the two leads.

Green’s function of the coupled ring

Finally, the last missing ingredient in the description of the problem is to connect the closed
disordered ring described by its Green’s function (5.32) to the semi–infinite leads whose
Green’s function is provided in Eq. (5.18). In this case, we are left with the calculation of
(

Ĝ−1
R − (Σ̂LL

+ Σ̂LR
)
)−1

that can be expanded in a perturbative series of the self–energies,
hence giving rise to a Dyson series

(

Ĝ−1
R − (Σ̂LL

+ Σ̂LR
)
)−1

= ĜR + ĜR(Σ̂LL
+ Σ̂LR

)ĜR

+ ĜR(Σ̂L + Σ̂R)ĜR(Σ̂LL
+ Σ̂LR

)ĜR + . . . (5.33)

The total Green’s function of the system is then expressed as a sum over scattering paths
within the ring, with the possibility of reflection, transmission or exit each time a junction
is visited. Adopting a quantum graph view of our system, the ring and the leads can be
represented in this formalism as a graph with two vertices, two internal bonds of finite length
and two external bonds of infinite extension. On this graph, the total Green’s function may
be written in a more compact form

G(α,α′, µ) =
1

iEδ sin(kδ)

∑

γ

Aγe
iSγ/~, (5.34)

that is, a sum over all possible scattering paths γ linking two given points α′, α at the
chemical potential µ on the graph, with multiple scattering events occurring at the junctions
and plane wave propagation in between, as is described in the Dyson series (5.33). In the
above equation, Sγ = kδnγ is the accumulated action integral along the path γ going from
α′ to α at chemical potential µ, with nγ giving the number of sites visited in the related
path. This action integral is weighted by the amplitude Aγ = rnrtnt , which is obtained by
multiplying the reflection and transmission matrix elements at each junction encountered by
the path γ, where nr (resp. nt) is the number of reflections (resp. transmissions) at each
junction along that path. Our task is now to derive those matrix elements by solving the
scattering across a symmetric Y–junction problem, in order to gain more insight in those
amplitudes.
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Scattering across a symmetric Y–junction

A symmetric Y–junction consists in three identical semi–infinite leads that are connected to
a central junction, as is depicted in Fig. 5.3. Sites in the leads are labelled by the index α,
with α ∈] − ∞,−1] for the left lead, α ∈ [1u,∞[ for the upper right lead and α ∈ [1l,∞[ for
the lower right lead. Those sites possess an energy Eδ and a nearest neighbour hopping term
−Eδ/2, whilst the junction at α = 0 possesses the energy EY .

Figure 5.3 – The symmetric Y–junction is made of three semi–infinite leads with
sites labelled by α (with α ∈] − ∞,−1] for the left lead LL, α ∈ [1u,∞[ for the
upper right lead LRu and α ∈ [1l,∞[ for the lower right lead LRl), with the
energy Eδ and the nearest neighbour hopping term −Eδ/2 that are connected
to site α = 0 with energy EY . An incoming plane wave eikδα can either be
transmitted, resulting in an outgoing plane wave teikδα or either backreflected,
resulting in reikδα.

The Hamiltonian describing the leads reads

ĤLX
=
∑

α

(

Eδ |α〉 〈α| − Eδ
2

|α+ 1〉 〈α| − Eδ
2

|α〉 〈α+ 1|
)

, (5.35)

with X = L,Ru, Rl denoting either the left lead or the upper/lower right lead, with α laying
in the previously mentioned intervals. The Hamiltonian of the junction, as well as those of
the connections to the junction read

ĤY = EY |0〉 〈0| (5.36)

ĤY↔LL
= −Eδ

2
(|−1〉 〈0| + |0〉 〈−1|) (5.37)

ĤY↔LRu = −Eδ
2

(|0〉 〈1u| + |1u〉 〈0|) (5.38)

ĤY↔L
Rl

= −Eδ
2

(

|0〉 〈1d| + |1d〉 〈0|
)

, (5.39)

and the total Hamiltonian describing that system is finally provided by

Ĥ = ĤLL
+ ĤLRu + ĤL

Rl
+ ĤY + ĤY↔LL

+ ĤY↔LRu + ĤY↔L
Rl
. (5.40)

The related stationary Schrödinger equation to solve reads

Ĥ |ψ〉 = µ |ψ〉 , (5.41)
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with µ = Eδ(1 − cos(kδ)). We once again assume that there is only one contribution: the
contribution incoming from the source, travelling from the left towards the ring. Therefore,
the left lead contains both an incident (eikδα) and a reflected (re−ikδα) plane waves, whilst the
two right leads contain only those waves that were transmitted across the junction, namely
teikδα. An Ansatz to solve the Schrödinger equation is thus found to be

ψα =







eikδα + re−ikδα for α = −∞, . . . ,−2,−1,

1 + r = t for α = 0,

teikδα for α = 1u, 1l, 2u, 2l, . . .

(5.42)

and it will allow one to determine the values of r and t by solving

EY ψ0 − Eδ
2

(ψ−1 + ψ1u + ψ1l) = µψ0, (5.43)

the Schrödinger equation at the junction site α = 0. Inserting Ansatz (5.42) into Eq. (5.43),
we finally find

r = − 1 − EY /Eδ + 1
2e
ikδ

1 − EY /Eδ + eikδ − 1
2e

−ikδ , (5.44)

t =
i sin kδ

1 − EY /Eδ + eikδ − 1
2e

−ikδ . (5.45)

Those probability amplitudes satisfy the continuity and conservation of current equations

1 + r = t (5.46)

|r|2 + 2|t|2 = 1. (5.47)

In the continuous limit where the spacing δ → 0 vanishes, a nonvanishing transmission is
obtained only for EY = 3

2Eδ, which yields

r = − eikδ − 1
2eikδ − 1 − e−ikδ

kδ→0−→ −1
3
, (5.48)

t =
eikδ − e−ikδ

2eikδ − 1 − e−ikδ
kδ→0−→ 2

3
. (5.49)

Here, we choose EY = Eδ, which corresponds to the case of a nearly closed ring (actually, with
nearly disconnected arms) that is weakly connected to the waveguides, as well as µ = 0.2Eδ .
This choice yields the following expressions for r and t:

r = − eikδ

2eikδ − e−ikδ = −43
97

+
24
97
i (5.50)

t =
eikδ − e−ikδ

2eikδ − e−ikδ =
54
97

+
24
97
i, (5.51)

which are the values that we further use in the simulations and in the development of the
diagrammatic theory in Chapter 6.
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5.2.4 Theory of Al’tshuler–Aronov–Spivak oscillations

Smooth and weak disorder

As we have explained earlier, disorder is a key ingredient in obtaining Al’tshuler–Aronov–
Spivak oscillations: it thus needs to be carefully chosen. The disorder we use to derive
the theory of Al’tshuler–Aronov–Spivak oscillations and that we shall use in the numerical
simulations is, in the continuous space, generated by the following convolution product

V (x) = V̄0

∫
1

√

σ
√
π

exp

[

−(x− y)2

2σ2

]

η(y)dy, (5.52)

where V̄0 is the amplitude of the disorder and σ its correlation length [257,350]. The correlator
η(y) is a Gaussian random white noise with zero mean and unit variance, i.e. 〈η(x)η(y)〉 =
δ(x − y), with 〈·〉 denoting the ensemble average. We have written this disorder potential
in such a manner that the probability to obtain a particular value for V follows a Gaussian
distribution

P (V ) =
1

√

2πV̄0

e−V 2/(2V̄0)2
. (5.53)

This choice for the disorder potential in Eq. (5.52) implies a vanishing ensemble averaged
value 〈V (x)〉 = 0, as well as a correlation length σ defined through the Gaussian two–point
correlation function

〈V (x)V (x′)〉 = V̄ 2
0 exp

(

−|x− x′|2
4σ2

)

. (5.54)

Following the discretisation scheme introduced in Chapter 2, we have to discretise the δ
distribution appearing in the two–point correlation function of the correlator η(y). This
boils down to drawing complex random numbers ηα following a Gaussian distribution and
fulfilling 〈ηαηα′〉 = δα,α′ . The discretised disorder potential is then obtained by taking the
convolution product of those random numbers with a Gaussian envelope, which gives birth
to the following on–site energies

Vα = V̄0

NR∑

α′=0

1
√

σ
√
π

exp

[

− δ2

2σ2
(α− α′)2

]

ηα′ , (5.55)

The random values generated for Vα must be correlated by the discrete convolution over a
correlation length σ ≫ δ (in order that the discretisation scheme captures the details of the
disorder). The resulting disorder potential varies slowly and smoothly over the correlation
length σ.

The disorder has been chosen such that the ensemble averaged mean of Vα is zero and the
ensemble averaged standard deviation is V̄0. In order to render a semiclassical treatment
of the disorder potential possible, the disorder strength V̄0 has to be weak compared to the
chemical potential µ, yielding V̄0 ≪ µ. We must also impose that the correlation length σ be
large compared to the wavelength λ, yielding σ ≫ λ. The length of each arm should moreover
contain at least several times the correlation length σ but also remain much smaller than the
localisation length lloc in order to avoid the localised regime. In the case of a Gaussian
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disorder potential, the localisation length is given by ξloc ∝ exp(4k2σ2) [350]. It is finally
possible to combine all length scales requirements on disorder related lengths in the compact
form

δ ≪ λ ≪ σ ≪ L ≪ ξloc, (5.56)

where all conditions must simultaneously be enforced, as well as the condition V̄0 ≪ µ on the
disorder strength.

Semiclassical treatment of the disorder potential

The Green’s function of the whole system is, as we have shown earlier, given by

G(α,α′, µ) =
1

iEδ sin(kδ)

∑

γ

Aγe
iSγ/~. (5.57)

Because the disorder present within the ring is assumed to be weak and smooth, we are
allowed to safely neglect reflections that could possibly occur within the arms of the ring.
Indeed, we assumed that the disorder amplitude is such that V̄0 ≪ µ and its correlation
length σ is such that kσ ≫ 1, implying a slow variation of the disorder over a length scale
given by the wavelength λ. Under those assumptions, the action integral in the upper (resp.
lower) arm consequently takes on the form

Su = ~

NR
2

−1
∑

α=0

arccos
(

1 − µ− Vα
Eδ

)

(5.58)

≃ ~

NR
2∑

α=0

[

arccos
(

1 − µ

Eδ

)

− Vα
√

µ(Eδ − µ)

]

(5.59)

= ~
NR

2
kδ − ~

Eδ sin(kδ)

NR
2∑

α=0

Vα, (5.60)

where one has to replace u by l and adapt the summation indices to obtain Sl. This allows us
to treat the phase factors eiSu/~ and eiSl/~ as random complex numbers following a uniform
distribution over the complex circle with unit radius provided that

〈

1
Eδ sin(kδ)

NR
2∑

α=0

Vα

〉

=
1

Eδ sin(kδ)

NR
2∑

α=0

〈Vα〉 = 0 (5.61)

and
〈





1
Eδ sin(kδ)

NR
2∑

α=0

Vα






2
〉

−






〈

1
Eδ sin(kδ)

NR
2∑

α=0

Vα

〉





2

≫ π2. (5.62)

The average value of the disorder is zero by construction, so that the condition expressed in
Eq. (5.61) is automatically fulfilled. To enforce the second condition, expressed in Eq. (5.62),
we need to choose the length L of the arms large enough, depending upon the disorder
strength V̄0, in order for the variance of the accumulated phase to satisfy Eq. (5.62).
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In the additional presence of an Aharonov–Bohm flux Φ, the phase factors become

exp
(
i

~
Su

)

= exp
[

i

(

Φu ± Φ
2

)]

(5.63)

and

exp
(
i

~
Sd

)

= exp
[

i

(

Φd ∓ Φ
2

)]

, (5.64)

where Φu and Φd are real random numbers following a uniform distribution law taking values
in [0, 2π[, as previously explained. The presence of the Aharonov–Bohm phase is responsi-
ble for an additional phase ±Φ/2 acquired each time an arm is crossed from a junction to
the other one, the + (resp. −) sign corresponding to the clockwise (resp. counterclockwise)
direction. It is remarkable that the effects of both the disorder potential and the flux Φ are
encoded in the phase factors exp

(
i
~
Su
)

and exp
(
i
~
Sd
)

with expressions as simple as those
in Eqs. (5.63) and (5.64).

The goal is to compute both the reflection and transmission probability amplitudes across
the ring. They are obtained from the Green’s function G(α,αS , µ) provided in Eq. (5.57),
where the site α is chosen downstream (resp. upstream) of the ring for the transmission (resp.
the reflection). We are now in a position to give some concrete example of what the Green’s
function looks like. As we said, in the semiclassical context, the Green’s function consists in a
sum over interfering classical paths linking two sites of the unperturbed system with a path–
specific phase taking into account the disorder and the Aharonov–Bohm flux along each path.

In the example of the path provided in Fig. 5.4 that shows a global outgoing path consisting
in two visits of the upper branch and one of the lower, we have

Aγ = t3r

Sγ = 2Su + Sd − Φ/2 = 2Φu + Φd − Φ/2,

that is, a product of transmission and reflection probability amplitudes and a sum of phases
resulting from the multiple visits of each arm and where r and t are given by Eqs. (5.44) and
(5.45).

Figure 5.4 – Example of a possible classical path consisting in two explorations
of the upper branch and one of the lower, with three transmission events and one
reflection event in between.

All classical paths considered in the semiclassical Green’s function are sequences of explo-
rations of ring arms with reflection or transmission scattering events at the junctions. It
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implies that the amplitude Aγ is computed as a product of r and t at each reflection or
transmission event and that the reduced action Sγ is obtained by summing the phases due
to disorder, depending upon the number of visits of each arm and the overall net phase re-
sulting from the Aharonov–Bohm flux Φ. The shape of the paths allows for a diagrammatic
and more visual representation of the Green’s function, as is seen in Fig. 5.5.

Figure 5.5 – Diagrammatic representation of reflection and transmission scatter-
ing events as well as paths consisting in the single exploration of the upper or
lower arm of the ring, either in the forward or backward direction.

These are the building blocks for the diagrammatic theory that we shall develop in Chapter 6.
They allow us to express any journey within the ring, as complicated as it can be, as a
combination of arbitrary explorations of both arms separated by reflection or transmission
events. This representation allows for a concise form for the Green’s function of the system
that can be written as

(5.65)
As we see, a diagrammatic representation is much easier to deal with and also paves the way
for a more physical interpretation when computing the reflection or transmission, which are
given by

|R(Φu,Φd,Φ)|2 = E2
δ sin2(kδ)|G(αS , αS , µ)|2 =

∑

γ,γ′:αS→αS

AγA
∗
γ′ exp

(
i

~
(Sγ − Sγ′)

)

(5.66)

|T (Φu,Φd,Φ)|2 = E2
δ sin2(kδ)|G(α,αS , µ)|2 =

∑

γ,γ′:αS→α

AγA
∗
γ′ exp

(
i

~
(Sγ − Sγ′)

)

, (5.67)
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which is diagrammatically represented, in the case of the reflection, by

(5.68)

This diagrammatic representation shall be of particular relevance and clarity when computing
the disorder average of the reflection and the transmission. Thanks to the fact that Φu and
Φd can be safely considered as real random numbers uniformly distributed in [0, 2π[, the
ensemble average over the disorder configurations can be mapped to an average over Φu and
Φd. In the case of the reflection, this for instance yields

〈

|R(Φu,Φd,Φ)|2
〉

=
1

4π2

∫ 2π

0

∫ 2π

0
|R(Φu,Φd,Φ)|2d Φud Φd, (5.69)

where R(Φu,Φd,Φ) is the reflection amplitude related to the specific disorder realisation that
generates the phases Φu and Φd. Outside the ring, each path acquires the same phase so
that no phase difference between two particular paths is due to the exploration of the leads.
Therefore, the overall phase difference between two particular paths results only from the
exploration of the ring.

Using the following identity from the distribution theory

1
(2π)2

∫ 2π

0

∫ 2π

0
ei(nu−n′

u)Φu+i(nd−n′
d
)ΦddΦudΦd = δnun′

u
δndn

′
d

(5.70)

for nu, n′
u, nd, n

′
d ∈ N0 representing the number of comprehensive visits of each arm associated

to γ and γ′, we observe that only pairs of paths (γ, γ′) with the same number of visits of the
upper arm nu = n′

u and of the lower arm nd = n′
d survive the disorder average. The physi-

cal interpretation results from this statement but is best explained using the diagrammatic
representation of the disorder averaged reflection

(5.71)

which, in addition to the classical contribution of paths interfering with themselves, as the
three first terms above, also contains interferences between time–reversed partners. Keeping
only the dominant contributions, the disorder averaged reflection and transmission read

〈|R(Φ)|2〉 = |r|2 + 2|t|4|r|2 + 2|t|6(1 + cos 2Φ) + O((r, t)10) (5.72)

〈|T (Φ)|2〉 = 2|t|4 + 2|t|4|r|4 + 8|t|6|r|2 + 2|t|8 − 1.6|t|6 cos 2Φ + O((r, t)12). (5.73)

All terms contributing to a cos Φ oscillation display a nonzero net power of the complex ran-
dom numbers eiΦu and eiΦd and are therefore washed out by the averaging process, hence
suppressing the Aharonov–Bohm contribution.
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Compared to Aharonov–Bohm oscillations, we observe here a doubling of the frequency, that
can be explained because the relevant trajectories for Al’tshuler–Aronov–Spivak oscillations
are twice longer than those relevant for Aharonov–Bohm oscillations, therefore accumulating
twice more flux. Indeed, reflecting trajectories necessarily accumulate a phase which is a
multiple of Φ, since they contain an odd number of individual explorations of the ring arms,
each of which contributing for an additional phase ±Φ/2, depending upon the direction the
trip is performed. Such interfering trajectories thus exhibit a phase difference which is a mul-
tiple of 2Φ, hence doubling the frequency of the oscillations compared to Aharonov–Bohm
oscillations.

The mechanism behind Al’tshuler–Aronov–Spivak oscillations is the following: in addition to
the classical contribution of paths interfering with themselves, only paths which are time–
reversed of each other lead to interferences that survive the ensemble averaging process. This
particular feature highlights the intimate connection between Al’tshuler–Aronov–Spivak oscil-
lations, weak localisation and coherent backscattering. Indeed, exactly as in weak localisation
and coherent backscattering, this mechanism leads to a time–reversed sensitive increase of
the reflection probability associated with a concomitant drop in the transmission, as the
dependence in the artificial gauge field Φ in Eqs. (5.72) and (5.73) demonstrates.

5.3 From Aharonov–Bohm to Al’tshuler–Aronov–Spivak os-

cillations

As we have seen in the previous sections, the presence of smooth disorder destroys Aharonov–
Bohm oscillations after ensemble averaging but preserves Al’tshuler–Aronov–Spivak oscilla-
tions. We illustrate those observations with the numerical integration of Eq. (4.53) in the
presence of the on–site disorder potential described in Eq. (5.55). This amounts to numeri-
cally integrating

i~
∂ψα(t)
∂t

=
(
Eδ
qα

+ Vα − µqα

)

ψα(t) +
∑

α′

Jαα′ψα′(t) + gα|ψα(t)|2ψα(t) +
√

Nκδα,αS
, (5.74)

for increasing values V̄0 of the disorder strength and with initial conditions corresponding
to an initially empty scattering region, that is ψα = 0 at initial time t = t0. For the sake
of convenience, we repeat here some of the explanations previously given about some of the
terms appearing in the above equation. The factor qα has been introduced to implement
smooth exterior complex scaling, as explained in Section 2.6.2. Neighbourly relations are
encoded by the matrix elements Jαα′ whose shape is given in Eq. (4.23) and are also subject
to complex scaling, following the shape indicated in Eq. (2.102).

We compute the transmission of particles across the ring, which is defined as

〈|T (Φ)|2〉 =
〈jα〉
j∅

, (5.75)

where 〈·〉 stands for the ensemble averaging process, where the on–site current is defined by

jα =
iEδ
2~

[
ψ∗
α+1ψα − ψ∗

αψα+1
]

(5.76)
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and the injected current j∅ is defined in Eq. (2.70), that is,

j∅ =
1
~

N |κ|2
µ(2Eδ − µ)

. (5.77)

The results regarding the ensemble averaged transmission for several values of the disorder
strength are shown in Fig. 5.6.

Figure 5.6 – Ensemble averaged transmission across the Aharonov–Bohm ring
versus the enclosed artificial flux Φ for several disorder amplitudes V̄0 in the
absence of interaction. The transmission is averaged over 20000 realisations of
a Gaussian correlated disorder of correlation length σ = 20δ. Owing to the
increase of the disorder amplitude, Aharonov–Bohm oscillations (orange curve)
of period 2π are progressively damped out and let emerge Al’tshuler–Aranov–
Spivak oscillations (black curve) of period π. Numerical parameters: µ/Eδ = 0.2
and NR = 200 sites and

√
N |κ|/Eδ = 1.

As is expected from the theory developed earlier, a progressive increase of the disorder ampli-
tude V̄0 induces a decay of the Aharonov–Bohm contribution in the ensemble averaged trans-
mission. We observe that for V̄0/Eδ = 0.0238, those oscillations have completely vanished
and give way to oscillations of half period π which are identified to as Al’tshuler–Aronov–
Spivak oscillations. The oscillations for V̄0/Eδ = 0.0238 have a shape nearly identical to
that encountered in the disorder averaged conductance of a normal metal ring [351]. In the
following studies, we work with the disorder amplitude V̄0/Eδ = 0.0238 that yields a regime
where the assumption to treat the phase factors due to disorder as complex random numbers
of modulus equal to one is valid.
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The underlying interferences can be illustrated with the ensemble averaged on–site density,
as is shown in Fig. 5.7.

1 2 3 4 5 6 7

Figure 5.7 – Ensemble averaged on–site density of atoms for the particular value
of the enclosed flux Φ = π/2 in the absence of interaction. The on–site density is
averaged over realisations of a Gaussian correlated disorder taking random values
in [−0.0119, 0.0119] with correlation length σ = 20δ. The entrance and exit of
the ring are the seat of systematic interferences between particles. Numerical
parameters: µ/Eδ = 0.2 and NR = 200 sites and

√
N |κ|/Eδ = 1.

Fig. 5.7 highlights that close to the entrance and exit junctions of the ring, robust interfer-
ences between particles take place. A quite homogeneous mean on–site density is however
encountered deep inside the ring as well as in the downstream region where only particles
going to the right are travelling.



124 AAS oscillations of interacting bosonic matter wave beams

5.4 Interplay between disorder and interaction effects: inver-

sion of Al’tshuler–Aronov–Spivak oscillations

In this section, we investigate the effects of the presence of interaction whose strength is
progressively increased. Fig. 5.8 shows the results of mean–field simulations displaying the
ensemble averaged transmission as a function of the flux Φ penetrating the ring for different
values of the interaction strength g.

0 π/2 π 3π/2 2π
0.15

0.25

0.35

0.45

0.55

Φ

〈|
T
(Φ

)|
2
〉

g/Eδ = 0 g/Eδ = 0.0001 g/Eδ = 0.0002

g/Eδ = 0.0005 g/Eδ = 0.001 g/Eδ = 0.002

Figure 5.8 – Mean–field simulations of the ensemble averaged transmission versus
the enclosed artificial flux Φ in the presence of interaction for N |κ|2 = E2

δ ⇔
〈â†
αâα〉 ≃ 2.77. The transmission is averaged over 20000 realisations of a Gaussian

correlated disorder taking random values in [−0.0119, 0.0119] with correlation
length σ = 20δ. As the interaction strength is increased, the oscillations are first
flattened and then inverted: the maxima at Φ = π/2 and 3π/2 become minima
and the minima at Φ = 0, π and 2π become maxima. Numerical parameters:
µ/Eδ = 0.2 and NR = 200 sites.

In a first regime that ranges from g/Eδ = 0 to g/Eδ = 0.0005, we observe that the presence
of interaction yields a reduction of the oscillations amplitude, resulting in a flattening of the
Al’tshuler–Aronov–Spivak oscillations. For interaction strengths larger than g/Eδ = 0.0005,
Al’tshuler–Aronov–Spivak oscillations are progressively inverted and the minimum at Φ =
π/2 turns to a maximum, in qualitative agreement with the coherent backscattering inver-
sion [60,352].

Indeed, the minima in the ensemble averaged transmission which are located at Φ = 0, π, 2π
can be interpreted as maxima of reflection whilst the maxima located around Φ = π/2 and
3π/2 can be interpreted as minima. We expect that this inversion remains quantitatively the
same in a large range of parameters defining the disorder potential, provided the disorder
remains in the regime giving rise to Al’tshuler–Aronov–Spivak oscillations. This regime is on
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the one hand characterised by a disorder that is sufficiently strong to allow the phase factors
eiΦu and eiΦd to be treated as complex random numbers lying on a circle of unit radius in
the complex plane. On the other hand, that regime is also such that the disorder remains
sufficiently weak and smooth, in order to prevent any partial or even total reflection inside
the arms of the ring. In order to assess whether this effect is observable experimentally,
we must have access to the coherent and incoherent contributions to the ensemble averaged
transmission, which is not reachable by means of a mean–field approximation that only models
elastic scattering.

5.4.1 Al’tshuler–Aronov–Spivak oscillations beyond the mean–field regime

In order to implement the truncated Wigner for the system described in Section 5.2, we once
again follow the procedure detailed in Chapter 3. This amounts to numerically integrating

i~
∂ψα(t)
∂t

=
(
Eδ
qα

+ Vα − µqα

)

ψα(t) +
∑

α′

Jαα′ψα′(t) + gα(|ψα(t)|2 − 1)ψα(t)

+
√

Nκδα,αS
+ δα,0χ0(t) + δα,NχN (t), (5.78)

where, for the sake of convenience, we once again give some explanation about some of the
terms appearing in that equation. The noise terms χ0(t) and χN (t) are given by

χ0(t) = Eδ

−1∑

α′=−∞
Mα′(t − t0)ψα′(t0) (5.79)

χN (t) = −Eδ
∞∑

α′=N

Mα′−N (t− t0)ψα′(t0), (5.80)

with
Mα(τ) =

iα

2

[

Jα−1

(
Eδτ

~

)

+ Jα+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~, (5.81)

where Jα is the Bessel function of the first kind and order α. They represent the quantum
noise entering the scattering region at time t owing to the sampling of the initial state. The
truncated Wigner method allows to take into account the incoherent contribution to the
transmission, which is defined as

T incoh = T tot − T coh. (5.82)

The total and coherent contributions are defined according to the procedure detailed in
Chapter 3, namely

T tot = 〈jtot〉/j∅ (5.83)

T coh = 〈jcoh〉/j∅. (5.84)

The total current is given in Eq. (3.61), that is,

jtot =
iEδ
2~

ψ∗
α+1(t)ψα(t) − ψ∗

α(t)ψα+1(t) (5.85)
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the coherent contribution is provided by Eq. (3.63), that is,

jcoh =
iEδ
2~

(

ψ∗
α+1(t)ψα(t) − ψ∗

α(t)ψα+1(t)
)

, (5.86)

and the expression of the injected current j∅ is recalled in Eq. (5.77).

We evaluate the transmission (total, coherent and incoherent) in two different regimes. The
first context is related to an interaction strength for which no inversion is found, corresponding
to parameters yielding the orange curve in Fig. 5.8 (mean–field simulation with g/Eδ =
0.0002). We have performed 6 sets of simulations, with different values for both δρ∅ and g,
their product being kept constant and equal to gρ∅ = 0.0002Eδ . Those panels are shown in
Fig. 5.9.
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Figure 5.9 – Truncated Wigner simulations of the ensemble averaged transmission
as a function of the enclosed artificial flux Φ for different interaction strengths g
and injected densities δρ∅, the product δρ∅g = 0.0002 being kept constant. This
scenario corresponds to a mean–field regime where no inversion of the oscillations
is obtained. The transmission is averaged over 1000 realisations of a Gaussian
correlated disorder taking random values in [−0.0119, 0.0119] with the correla-
tion length σ = 20δ, each of which performed with an average of 100 realisations
over the initial conditions. In this regime of very weak nonlinearity, the oscilla-
tions keep an AAS structure and the transmission remains mostly coherent, even
for high interaction strength and low injected density. Numerical parameters:
µ/Eδ = 0.2 and NR = 200 sites.

As is seen in Fig. 5.9, the structure of the oscillations that emerged from the mean–field
approach is preserved, even for high interaction strengths and very low injected densities,
the most important contribution remaining the coherent one. However, inelastic scattering
becomes more prominent as g is increased and δρ∅ decreased. Those inelastic processes
are responsible for a dephasing between interfering trajectories that can yield a structure-
less curve, owing to the shape of the incoherent contribution. This dephasing effect must
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be carefully assessed in order to evaluate whether the effect under study is experimentally
observable or hidden behind dephasing. The goal is to give a threshold beyond which the
incoherent contribution becomes the most important one. Based upon that threshold, we
aim at choosing an atomic species for which an experimental observation of the effect should
be possible.

We now investigate in which extent the inversion remains observable as the interaction
strength is increased and the injected density decreased. To this end, we realise truncated
Wigner simulations in a context where the inversion is completely developed, which is ob-
tained for g/Eδ = 0.002 in the mean–field simulations, as the black curve of Fig. 5.8 shows.
We have also performed 6 sets of simulations, with different values for both δρ∅ and g,
their product being kept constant and equal to gρ∅ = 0.002Eδ . Those results are shown in
Fig. 5.10.
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Figure 5.10 – Truncated Wigner simulations of the ensemble averaged trans-
mission as a function of the enclosed artificial flux Φ for different interaction
strengths g and injected densities δρ∅, the product δρ∅g = 0.002 being kept con-
stant. This scenario corresponds to a mean–field regime where an inversion of
the oscillations is fully developed. The transmission is averaged over 1000 realisa-
tions of a Gaussian correlated disorder taking random values in [−0.0119, 0.0119]
with correlation length σ = 20δ, each of which performed with an average of
100 realisations over the initial conditions. In this regime of fully developed in-
version of AAS oscillations, the coherent part carries all the inverted structure
whilst incoherent scattering processes take more and more importance as the in-
teraction strength is increased and the injected density decreases. Far away from
the mean–field limit, this coherent contribution is hidden by a large incoherent
part which dominates, indicating the presence of dephasing for strong interaction.
Numerical parameters: µ/Eδ = 0.2 and NR = 200 sites.

Fig. 5.10 indicates that the inverted structure revealed by the mean–field simulations is
formally due to a coherent contribution, which confirms that the inversion of the minimum in
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the ensemble averaged transmission at Φ = π and the coherent backscattering inversion have
the same origin. As the interaction strength is increased and the injected density decreased,
the simulations indicate that the inversion is not strictly restricted to a mean–field regime and
extends beyond. However, the structure related to the inversion gets progressively hidden
by a flat and structureless incoherent contribution originating from inelastic scattering. For
stronger interaction, this incoherent contribution completely dominates and indicates the
presence of dephasing, as is expected from many–body diagrammatic techniques [62].

5.4.2 Experimental observability of the inversion of Al’tshuler–Aronov–

Spivak oscillations

The challenge is to assess in which regime of injected density a realisation of a quantum trans-
port experiment that is designed to observe the inversion of AAS oscillations would lie. Atoms
of 87Rb are good candidates for such experiments since they are the most frequent atomic
species used to produce a Bose–Einstein condensate. Such a species is indeed relatively easy
to evaporatively cool due to its cooling–compliant atomic structure [353] and also possesses
a positive s–wave scattering length that generates a repulsive interaction which prevents a
condensate made of 87Rb atoms from collapsing. We thus evaluate whether the inversion
of AAS oscillations is observable with 87Rb atoms for realistic experimental parameters. As
indicated in Eq. (2.62), the effective one–dimension interaction strength is controlled by

g =
2~ω⊥aS

δ
, (5.87)

and the injected density ρ∅ is related to the density per unit length ρ̄(x) through ρ∅ = δρ̄(x).
Therefore, the nonlinearity we chose in the simulations takes on the form

gρ∅ = 2~ω⊥aS ρ̄(x) = 0.0055Eδ . (5.88)

Owing to the chemical potential chosen in the simulations, we can write that Eδ = 5µ =
5mv2/2 which in turn allows to rewrite the density per unit length from Eq. (5.88) as

ρ̄(x) =
0.0275

4
mv2

~ω⊥aS
. (5.89)

Considering that Eδ = ~
2/(mδ2) and Eδ = 5mv2/2, we write the spacing as

δ2 =
2
5

~
2

m2v2
, (5.90)

which finally yields the injected density

ρ∅ = δρ̄(x) =
0.0275

4

√
0.4

v

ω⊥aS
. (5.91)

For a source that injects 87Rb atoms in the waveguide a with speed of v = 1 mm/s and
whose s–wave scattering length is aS = 5.313 × 10−9 m, we find that for a confinement
frequency ω⊥ = 2π × 1 kHz, the injected atomic density would correspond to the value
δρ∅ ≃ 0.0826. Those realistic experimental parameters correspond to a situation where
the inversion of Al’tshuler–Aronov–Spivak oscillations occurs in a regime where dephasing
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is dominant and overshadows the effect, as Fig. 5.10 indicates. We thus do not expect the
effect to be observable with 87Rb atoms. Other species, such as 39K atoms whose s–wave
scattering length may be tuned to very low values by means of Feshbach tuning [136] are
probably more appropriate candidates for an experimental observation of the inversion of
Al’tshuler–Aronov–Spivak oscillations. Indeed, 39K atoms possess a very broad Feshbach
resonance width ∆B [354] that allows for a very fine tuning of the interaction strength of
Bose–Einstein condensate of 39K atoms, whereas the resonance width related to 87Rb atoms
is narrower [355].





Chapter 6

Diagrammatic theory for

Al’tshuler–Aranov–Spivak

oscillations in the presence of

interaction

This chapter is devoted to a semiclassical diagrammatic mean–field theory of Al’tshuler–
Aronov–Spivak oscillations in the presence of interaction. This theory has been mostly de-
veloped by our collaborator, Dr. Josef Rammensee, from the university of Regensburg. We
explain in this chapter the main steps of his analytical theory that led to a joint publica-
tion [326].

The purpose of the diagrammatic theory is to solve the steady mean–field equation describing
transport of matter waves towards the scattering region studied in Chapter 5 by means of
Green’s functions, and to develop a perturbative theory of the non–interacting Green’s func-
tion by treating the atom–atom interaction as a small perturbation. We already initiated
this diagrammatic treatment by deriving a semiclassical expression for the noninteracting
Green’s function of a disordered Aharonov–Bohm ring connected to two semi–infinite leads
in the absence of atom–atom interaction. This Green’s function consists in a summation of
all the scattering paths that begin at one point and end at another one. This expression for
the Green’s function allows the calculation of the reflection (resp. transmission) probability,
provided the starting point is located in the left lead and the ending point in the left (resp.
right) lead. In the presence of a smooth and weak disorder, this approach has revealed dom-
inant Al’tshuler–Aronov–Spivak oscillations in the ensemble averaged transmission.

The first step in this diagrammatic theory is to perform an exact and genuine resummation
of the scattering paths involved in the semiclassical Green’s function instead of deriving only
the leading order terms, as in Chapter 5. More specifically, we focus on resumming the
part of the scattering paths that describe the motion within the ring, made of sequences of
explorations of both arms. After that, the next step is to perform a perturbative expansion
in the nonlinear parameter g. We do so until the first order in g, that allows to show a linear
effect in the interaction parameter on the ensemble averaged transmission, in good agreement
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with the numerical results. This agreement is however restricted to a regime that is limited
to a very weak interaction strength.

6.1 Fundamental building blocks of the diagrammatic theory

As we already explained in Chapter 5, the noninteracting Green’s function describing the
system can be expressed as a summation over all paths joining the two points of interest, α
and α′. Specifically, it reads

G(α,α′, µ) =
1

iEδ sin(kδ)

∑

γ

Aγe
iSγ/~. (6.1)

The idea behind the diagrammatic theory is to represent those scattering paths by diagrams
and to find a way to perform their full summation. We first observe that each scattering
path is built on the same skeleton: a trivial exploration of the leads and multiple visits of
each arms, with reflection and transmission events at the junctions. An example is shown for
instance for the following path

, (6.2)

that goes from αS to α, by describing a free propagation from the source αS to the en-
trance of the ring at site 0, followed by a clockwise visit of the upper arm of the ring and
finally a reflection at the site NR/2, i.e. the right junction, back to the point α located in
the upper arm. The bracketed factors represent the intermediate path followed inside the
ring, which we have separated from the direct trajectory between the departure/arrival and
the junctions, since the former can be of infinite complexity whilst the latter are quite simple.

All the building blocks appearing in Eq. (6.2) contribute as multiplicative factors, allowing
us to factor out the trivial explorations of the leads that are common to all paths from the
traversal of the ring. In the following, we focus on resumming the segments of path describing
the traversal of the ring, which are precisely those that generate Al’tshuler–Aronov–Spivak
oscillations in the ensemble averaged transmission. Fundamental building blocks have already
been introduced in this context, and we recall them from Chapter 5

= r, = = t,

= ei(Φu+ Φ
2 ), = ei(Φu− Φ

2 ),

= ei(Φd− Φ
2 ), = ei(Φd+ Φ

2 ).

(6.3)

Every time a junction is visited, a reflection or transmission event occurs, and the overall
amplitude Aγ of the path γ is multiplied by either r or t, thus highlighting that the longer a
path, the smaller its contribution, since |r| < 1 and |t| < 1. Every visit of an arm provides a
phase that depends both upon the direction of visit and the visited arm. A full exploration
of the ring yields a phase ±Φ so that a branch only yields a phase ±Φ/2, with the + sign
associated with the clockwise rotation and the − sign with the opposite (counterclockwise)
direction of rotation. Irrespective of the direction of rotation, a phase Φu is also acquired
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at each full traversal of the upper arm of the ring, and a phase Φd is obtained at each full
traversal of the lower arm.

Those building blocks – multiplicative amplitudes and phase factors – can be combined to-
gether to generate any sequence of explorations of the arms, and then combined to diagrams
representing the exploration of the leads or partial exploration of an arm to obtain a dia-
grammatic representation of the Green’s function (6.1). Equipped with this arsenal, our goal
is to perform a coherent resummation up to infinite order of all back and forth trajectories
which are comprised inside the ring.

6.2 Resummation of diagrams in the noninteracting case

The idea we follow in deriving a resummation of the diagrams is to group similar diagrams
together into families of diagrams sharing the same structure. For instance, a family contain-
ing all diagrams that traverse a given junction in a given direction: a member of this family
is shown in Eq. (6.4). It displays diagrams traversing the left junction from the bottom to
the top. The various families we shall present and their composing members are actually in-
timately related one to each other, certain directly through particular symmetry rules, others
through a self–consistent equation. Those families of diagrams finally allow to formulate a
compact expression for the reflection and transmission probability amplitudes that yield the
related probabilities through square modulation and ensemble averaging.

6.2.1 Families of diagrams related to effective reflection and transmission

at a junction

We can separate the diagrams representing back and forth trajectories into different families,
depending upon how they visit the junctions. A first family of diagrams is found, namely the
family that encompasses trajectories that enter and exit a junction the same way. With two
possible directions by junction, this family contains four members, namely

= + + + + + . . . (6.4)

= + + + + + . . . (6.5)

= + + + + + . . . (6.6)

= + + + + + . . . (6.7)

The direction pointed by the arrow and its curvature indicate which junction is traversed
and how. For instance, the red diagram appearing in Eq. (6.4) encompasses all trajectories
arriving from the lower branch to the left junction and, after a possible long and intricate
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trip, exit it to the upper arm, following the clockwise direction.

A second family of diagrams is found and contains diagrams that are, again after a possible
long and complicated trip, reflected at the same junction. It also contains four members
which are

= + + + + + . . .

= + + + + + . . .

= + + + + + . . .

= + + + + + . . .

The direction pointed by the arrow and its curvature also obviously indicate which kind of
resummed reflection we are dealing with.

We can couple those two families of diagrams, portraying effective resummed reflection and
transmission at a junction, to express it as self–consistent equations, exploiting the fact that
after an even number of explorations of the ring branches, the final junction is the same as
the initial one. This is diagrammatically expressed as

= + + + + , (6.8)

= + + + + , (6.9)

which is best understood in matrix form







 =







+












+ +

+ +












︸ ︷︷ ︸

=A(Φu,Φd,Φ)







 .
(6.10)

The solution of this equation is obtained by matrix inversion






 = [I −A(Φu,Φd,Φ)]
︸ ︷︷ ︸

=A(Φu,Φd,Φ)

−1







 = A(Φu,Φd,Φ)−1

[

t
r

]

. (6.11)
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In terms of the fundamental building blocks introduced in Eq. (6.3), we can express the
matrix A(Φu,Φd,Φ) = I −A(Φu,Φd,Φ) as

A(Φu,Φd,Φ) =












1 − − − −

− − 1 − −












=

[

1 − r2e2iΦu − t2ei(Φu+Φd+Φ) −rtei(Φu+Φd−Φ) − rte2iΦd

−rte2iΦu − rtei(Φu+Φd+Φ) 1 − t2ei(Φu+Φd−Φ) − r2e2iΦd

]

(6.12)

In order to invert the matrix A, we must compute

det[A(Φu,Φd,Φ)] =
(

1 − r2e2iΦu − t2ei(Φu+Φd+Φ)
) (

1 − r2e2iΦd − t2ei(Φu+Φd−Φ)
)

− r2t2
(

e2iΦd + ei(Φu+Φd−Φ)
) (

e2iΦu + ei(Φu+Φd+Φ)
)

= 1 + r4e2i(Φu+Φd) + t4e2i(Φu+Φd) − r2
(

e2iΦu + e2iΦd

)

− 2t2ei(Φu+Φd) cos(Φ)

+ r2t2ei(Φu+Φd)
(

ei(2Φu−Φ) + ei(2Φd+Φ)
)

− r2t2ei(Φu+Φd)
(

ei(2Φd+Φ) + ei(2Φu−Φ)
)

− 2r2t2e2i(Φu+Φd)

= 1 − r2
(

e2iΦu + e2iΦd

)

− 2t2ei(Φu+Φd) cos(Φ) +
(

r2 − t2
)2

e2i(Φu+Φd),

(6.13)

that must be different from zero for the matrix inversion to be possible. Due to the parity
of cos Φ, we observe that the determinant is left unchanged after a sign permutation of Φ,
which would for instance result from a horizontal mirroring of the ring, or a trip in the other
direction of rotation. Vertical mirroring also leaves the determinant unchanged, as this would
imply exchanging Φu and Φd which are perfectly symmetric in Eq. (6.13). Those symmetries
may be leveraged to derive resummed diagrams similar to and . Since our system is open,
the determinant is nonzero [356] and we obtain in this case

A(Φu,Φd,Φ)−1

=
1

det[A(Φu,Φd,Φ)]




1 − r2e2iΦd − t2ei(Φu+Φd−Φ) rt

(

e2iΦd + ei(Φu+Φd−Φ)
)

rt
(

e2iΦu + ei(Φu+Φd+Φ)
)

1 − r2e2iΦu − t2ei(Φu+Φd+Φ)



 .
(6.14)

In other contexts, the zeros of the denominator would indicate sets of parameters for which
the ring exhibit bound states at particular values of the artificial flux Φ [356]. We are now
in a position to compute the resummed diagrams, which are found to be

= t
1 +

(

r2 − t2
)

ei(Φu+Φd−Φ)

1 − r2 (e2iΦu + e2iΦd) − 2t2ei(Φu+Φd) cos(Φ) + (r2 − t2)2 e2i(Φu+Φd)
(6.15)

= r
1 − (

r2 − t2
)

e2iΦu

1 − r2 (e2iΦu + e2iΦd) − 2t2ei(Φu+Φd) cos(Φ) + (r2 − t2)2 e2i(Φu+Φd)
. (6.16)
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Amongst the four members of each of the two families of the resummed diagrams, we are
still left with the determination of three members of each, that are , , and , , . This

determination could be tediously achieved, similarly as for and , but we can also exploit
the symmetry properties of the determinant to obtain the diagrams under study by simply
modifying the numerator properly.

For instance, a modification of the direction pointed by an arrow of a resummed diagram
leads to a modification of the sign of Φ only, since the same branches are crossed but a clock-
wise rotation becomes counterclockwise and vice–versa. On the other hand, one can also flip
vertically a resummed diagram, leading to an exchange of roles between Φu and Φd, as well
as to a sign inversion in front of Φ. Finally, a diagram can also be flipped horizontally, which
does not change the branches that are crossed, but is responsible for another sign inversion
in front of Φ, since it once again inverts the direction of rotation.

All together, those observations allow us to write the complete set of resummed diagrams for
the effective reflection and transmission at a single junction as

= t
1 +

(

r2 − t2
)

ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
= (6.17)

= r
1 − (

r2 − t2
)

ei2Φu

D(Φu,Φd,Φ)
= (6.18)

= t
1 +

(

r2 − t2
)

ei(Φu+Φd+Φ)

D(Φu,Φd,Φ)
= (6.19)

= r
1 − (

r2 − t2
)

ei2Φd

D(Φu,Φd,Φ)
= . (6.20)

Those resummed diagrams will be of particular relevance as building blocks to construct
diagrams that join a junction to the other one.

6.2.2 Families of diagrams that join the junctions

It is possible to discriminate diagrams connecting the two junctions depending upon where
they start and end, but also upon the way each junction is crossed. A first example consists
in the resummed diagram that encompasses all diagrams representing paths that join the left
to the right junction by starting and ending their trip in the lower branch. Such a resummed
diagram is obtained as

= + ,

translating that this resummed diagram combines two scenarios. A first case consists is an
effective transmission described by at the left junction from the lower to the upper branch,
followed by a direct traversal of the upper branch to the right junction, which is exited by
the bottom, after a last transmission event. A second possibility is an effective reflection
described by at the left junction from the lower branch to the same branch, followed by
a direct traversal of the lower branch to the right junction, on which a last reflection event
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occurs. Finally, the resummed diagram under study is obtained by summing and after
multiplying each of those by the proper factors

= t
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
ei(Φu+ Φ

2 )t+ r
1 − (

r2 − t2
)

ei2Φu

D(Φu,Φd,Φ)
ei(Φd− Φ

2 )r

=
r2ei(Φd− Φ

2 ) + t2ei(Φu+ Φ
2 ) − (

r2 − t2
)2 ei(2Φu+Φd− Φ

2 )

D(Φu,Φd,Φ)

= e−i(Φd+ Φ
2 ) r

2e2iΦd + t2ei(Φu+Φd+Φ) − (

r2 − t2
)2 e2i(Φu+Φd)

D(Φu,Φd,Φ)

= e−i(Φd+ Φ
2 )
(

1 − r2e2iΦu − t2ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
− 1

)

, (6.21)

where we have brought the phase factor e−i(Φd+ Φ
2 ) out to exploit the symmetry rules detailed

earlier in order to obtain the other diagrams. A second example of resummed diagram is a
diagram that encompasses all diagrams representing paths that join the left junction to the
right one by starting their trip in the lower branch and ending it in the upper branch. Such
a resummed diagram is obtained as

= +

= t
1 +

(
r2 − t2

)
ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
ei(Φu+ Φ

2 )r + r
1 − (

r2 − t2
)

ei2Φu

D(Φu,Φd,Φ)
ei(Φd− Φ

2 )t

=
rt
(

ei(Φu+ Φ
2 ) + ei(Φd− Φ

2 )
)

D(Φu,Φd,Φ)

= e−i(Φu− Φ
2 )
rt
(

e2iΦu + ei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
. (6.22)

Thanks to the diagrams in Eqs. (6.21), (6.22) and to the symmetry rules of the system, we can
derive the other ones. For instance, inverting the arrow whilst keeping the starting and ending
branches invariant, which is equivalent to switching from a clockwise to a counterclockwise
exploration of the ring, or vice–versa, altogether results in a sign inversion in front of Φ. A
second example consists in keeping the arrow invariant, but modifying both the starting and
ending branches. Such an operation amounts to exchanging the roles of Φu and Φd. Those
symmetry rules applied to Eq. (6.21) allow us to write

= e−i(Φd+ Φ
2 )
(

1 − r2ei2Φu − t2ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
− 1

)

, (6.23)

= e−i(Φd− Φ
2 )
(

1 − r2ei2Φu − t2ei(Φu+Φd+Φ)

D(Φu,Φd,Φ)
− 1

)

, (6.24)

= e−i(Φu− Φ
2 )
(

1 − r2ei2Φd − t2ei(Φu+Φd+Φ)

D(Φu,Φd,Φ)
− 1

)

, (6.25)

= e−i(Φu+ Φ
2 )
(

1 − r2ei2Φd − t2ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
− 1

)

. (6.26)
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The symmetry rules can also be applied to Eq. (6.22) in order to write

= e−i(Φu− Φ
2 )
rt
(

e2iΦu + ei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
(6.27)

= e−i(Φd+ Φ
2 )
rt
(

e2iΦd + ei(Φu+Φd+Φ)
)

D(Φu,Φd,Φ)
= , (6.28)

= e−i(Φu+ Φ
2 )
rt
(

e2iΦu + ei(Φu+Φd+Φ)
)

D(Φu,Φd,Φ)
(6.29)

= e−i(Φd− Φ
2 )
rt
(

e2iΦd + ei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
= . (6.30)

The equivalence between and , as well as for and naturally results
from the symmetry rules. Indeed, they are obtained one from another by inverting the direc-
tion of the arrow and the starting and ending junctions, which leaves the diagram invariant
since it results in a double sign inversion in front of Φ.

6.2.3 Family of diagrams connecting the ring to the leads

Another family of diagrams is found and encompasses all diagrams that connect the ring
to the junction, either the left lead to the left junction, or the right junction to the right
lead. That family contains only six members instead of eight, because there is no trajectory
associated with paths consisting in entering the right junction from the right lead, since
there is no injection of particles in the right lead. A first diagram, namely , encompasses
all diagrams whose starting point is in the left lead and that effectively penetrates the ring
by the upper arm. This resummed diagram is provided by

= + +

= t+ t

(

1 − r2ei2Φd − t2ei(Φu+Φd−Φ)

D(Φu,Φd,Φ)
− 1

)

+ t
rt
(

e2iΦd + ei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)

= t
1 − r2ei2Φd − t2ei(Φu+Φd−Φ) + rte2iΦd + rtei(Φu+Φd−Φ)

D(Φu,Φd,Φ)

= t
1 − (r − t)

(

rei2Φd − tei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
.

The same symmetry rules can be exploited once again to obtain the five remaining diagrams
and mainly consists in inverting the sign in front of Φ properly and exchanging Φu with Φd
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when needed. Those rules allow us to write

= t
1 − (r − t)

(

rei2Φd − tei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
= , (6.31)

= t
1 − (r − t)

(

rei2Φu − tei(Φu+Φd+Φ)
)

D(Φu,Φd,Φ)
= , (6.32)

= t
1 − (r − t)

(

rei2Φd − tei(Φu+Φd+Φ)
)

D(Φu,Φd,Φ)
, (6.33)

= t
1 − (r − t)

(

rei2Φu − tei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
. (6.34)

A second (and last) family of resummed diagrams encompasses diagrams representing paths
consisting in the effective traversal of the ring from one junction to the other. Such an
effective traversal consists either in paths starting in one lead and ending in one branch at
the opposite junction, or either in paths starting in a branch and ending in the lead connected
to the junction opposite to the first encountered. A concrete example of such diagrams is the
one representing a path whose starting point is located in the left lead, and the ending point
is in the upper arm, after a visit of the ring. This diagram is represented by the following
analytical expression

= +

= t
1 − (r − t)

(

rei2Φd − tei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
ei(Φu+ Φ

2 )r

+ t
1 − (r − t)

(

rei2Φu − tei(Φu+Φd+Φ)
)

D(Φu,Φd,Φ)
ei(Φd− Φ

2 )t

= t
rei(Φu+ Φ

2 ) − r (r − t)
(

rei(Φu+2Φd+ Φ
2 ) − tei(2Φu+Φd− Φ

2 )
)

D(Φu,Φd,Φ)

+ t
tei(Φd− Φ

2 ) − t (r − t)
(

rei(2Φu+Φd− Φ
2 ) − tei(Φu+2Φd+ Φ

2 )
)

D(Φu,Φd,Φ)

= e−i(Φu− Φ
2 )t

rei2Φu − r (r − t)
(

rei2(Φu+Φd) − tei(3Φu+Φd−Φ)
)

D(Φu,Φd,Φ)

+ e−i(Φu− Φ
2 )t

tei(Φu+Φd−Φ) − t (r − t)
(

rei(3Φu+Φd−Φ) − tei2(Φu+Φd)
)

D(Φu,Φd,Φ)

= e−i(Φu− Φ
2 )t

rei2Φu + tei(Φu+Φd−Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
. (6.35)
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As usual, we can use the symmetry properties of the ring to derive the other members of this
family of resummed diagrams, which are given by

= e−i(Φu− Φ
2 )t

rei2Φu + tei(Φu+Φd−Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
= (6.36)

= e−i(Φd+ Φ
2 )t

rei2Φd + tei(Φu+Φd+Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
= (6.37)

= e−i(Φu+ Φ
2 )t

rei2Φu + tei(Φu+Φd+Φ) − (r − t)
(
r2 − t2

)
ei2(Φu+Φd)

D(Φu,Φd,Φ)
(6.38)

= e−i(Φd− Φ
2 )t

rei2Φd + tei(Φu+Φd−Φ) − (r − t)
(

r2 − t2
)

ei2(Φu+Φd)

D(Φu,Φd,Φ)
. (6.39)

As for the previous family, only six diagrams populate this family, because diagrams associ-
ated with a path coming from the right junction are not related to a physical situation, since
no particles are injected from the right lead. Our toolbox is now complete and we are in a
position to express the noninteracting Green’s function in terms of resummed diagrams. This
formulation of the problem not only allows for a visual expression of the reflection and trans-
mission probability amplitudes, but also provides an elegant and concise manner to compute
them.

6.2.4 Total reflection and transmission amplitudes in the noninteracting

case

We have everything relevant at our disposal to write a diagrammatic expression for the
noninteracting Green’s function, no matter the location of sites α and α′. For instance, if
we choose the sites α and α′ both in the upper branch, the Green’s function takes on the
following form

, (6.40)

where we have introduced the Heaviside step function Θ(·) to distinguish whether the site α
is located to the left (α < α′) or to the right (α > α′) of the site α′. In the particular case of
this example, the exact details of the disorder are required to compute the phase correctly,
since the latter diagrams include incomplete traversals of the branches. Fortunately, the
calculation of the reflection and transmission amplitudes implies only full explorations of
the branches. Phases outside the ring, which are those of a plane wave motion, appear by
pairs cancelling each other in the action difference in Eqs. (5.66) and (5.67), due to complex
conjugation of the Green’s function. Our diagrammatic toolbox allows us to write the total
reflection amplitude R(0)(Φu,Φd,Φ) for a particular disorder configuration characterised by
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Φu and Φd and the gauge field Φ. This reflection amplitude is computed according to

R(0)(Φu,Φd,Φ) = [iEδ sin(kδ)G(αS , αS , µ) − 1] e−2i|α|kδ

= + +

= r + t2
re2iΦu + tei(Φu+Φd−Φ) − (r − t)

(
r2 − t2

)
e2i(Φu+Φd)

D(Φu,Φd,Φ)

+ t2
re2iΦd + tei(Φu+Φd+Φ) − (r − t)

(
r2 − t2

)
e2i(Φu+Φd)

D(Φu,Φd,Φ)

= r + t2
r
(

e2iΦu + e2iΦd

)

+ 2tei(Φu+Φd) cos(Φ) − 2 (r − t)
(
r2 − t2

)
e2i(Φu+Φd)

D(Φu,Φd,Φ)
,

where we have introduced the phase factor e−2i|α|kδ to compensate the phase acquired from
the source to the left junction back and forth and subtracted one in order to exclude the in-
coming wave from the treatment of the reflection amplitude. Very similarly, the transmission
amplitude T (0)(Φu,Φd,Φ) is obtained thanks to the Green’s function linking the source to
any site α located after the ring

T (0)(Φu,Φd,Φ) = [iEδ sin(kδ)G(αS , α, µ)] e−i(|αS |+α−NR)kδ

= +

= t
1 − (r − t)

(

rei2Φd − tei(Φu+Φd−Φ)
)

D(Φu,Φd,Φ)
ei(Φu+ Φ

2 )t

+ t
1 − (r − t)

(

rei2Φu − tei(Φu+Φd+Φ)
)

D(Φu,Φd,Φ)
ei(Φd− Φ

2 )t

= t2
ei(Φu+ Φ

2 ) − (r − t)
(

rei(Φu+2Φd+ Φ
2 ) − tei(2Φu+Φd− Φ

2 )
)

D(Φu,Φd,Φ)

+ t2
ei(Φu+ Φ

2 ) − (r − t)
(

rei(2Φu+Φd− Φ
2 ) − tei(Φu+2Φd+ Φ

2 )
)

D(Φu,Φd,Φ)

= t2
ei(Φu+ Φ

2 ) + ei(Φd− Φ
2 ) − (r − t)2 ei(Φu+Φd)

(

ei(Φu− Φ
2 ) + ei(Φd+ Φ

2 )
)

D(Φu,Φd,Φ)
,

where we have once again introduced the phase factor e−i(|αS |+α−NR)kδ to compensate the
phase acquired as plane wave motion between the source located at αS and the left junction
at 0 as well as between the right junction and the point α located after the ring.

Our noninteracting diagrammatic theory will be complete as soon as we take the square
modulus of R(0)(Φu,Φd,Φ) and T (0)(Φu,Φd,Φ) and perform the average over all disorder
phases Φu and Φd uniformly lying in [0, 2π]

〈

|R(0)(Φu,Φd,Φ)|2
〉

=
1

4π2

∫ 2π

0

∫ 2π

0
|R(0)(Φu,Φd,Φ)|2dΦudΦd (6.41)

〈

|T (0)(Φu,Φd,Φ)|2
〉

=
1

4π2

∫ 2π

0

∫ 2π

0
|T (0)(Φu,Φd,Φ)|2dΦudΦd. (6.42)
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Those integrations are numerically performed by means of a Monte–Carlo integration scheme
and shall be confronted to the numerical results obtained in Chapter 5.

6.3 Resummation of diagrams in the interacting case

Our goal here is to make use of the principles introduced in the noninteracting case to derive
a similar approach taking interaction into account. We discriminate the scattering paths
where interaction is taken into account depending upon their ending point α is located in the
lower or in the upper branch of the ring, and upon it is approached from the left or from the
right. The wavefunction ψα is, following the approach developed until here, written as a sum
of diagrams that share the same meaning as in the noninteracting case1. If, for instance, the
ending point α is located in the upper branch, we can write

, (6.43)

and the interpretation of such diagrams is immediate in the framework detailed in the non-
interacting case. A horizontal flip of such diagrams also directly provides ψα in case the final
point α is located in the lower branch. Although the interpretation is quite simple, the cal-
culation of those green diagrams requires great care and to introduce more tools. Following
the approach of Refs. [61,90], we represent by a black box

,

the intermediate site α′, where the wave interacts with itself nonlinearly through the density
|ψα′ |2, as is suggested by the mean–field Gross–Pitaevskii equation. We also need a diagram-
matic representation of ψ∗

α, as the density implies a complex conjugation of the wavefunction,
which we present below

, (6.44)

and where dotted lines, in contrast to solid lines, indicate complex conjugation. As we already
stated, the wavefunction at site α follows a self–consistent equation

ψα =
√

Nκ(t)G(α,αS , µ) +
∑

α′

G(α,αS , µ)gα′ |ψα′ |2ψα′ , (6.45)

1We employ the green colour to differentiate interacting diagrams from noninteracting ones.
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which takes the form of a set of four diagrammatic coupled equations that we have to solve.
The first one is given by

= − igeff

[
∑

α′

upper
branch

dx′
(

+

)2(

+

)

(

θ(α− α′) + +

)

+
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lower
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(

+

)2(

+

)(

+

)]

.

(6.46)

The second equation is provided by

= − igeff

[
∑

α′

upper
branch

(

+

)2(

+

)

×
(

θ(α− α′) + +

)

+
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(
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)2(

+

)(
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)]
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(6.47)

The third equation reads

= − igeff

[
∑

α′
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branch

dx′
(

+

)2(

+

)

×
(

+

)

+
∑

α′

lower
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(

+

)2(

+

)

×
(

θ(α− α′) + +

)]

.

(6.48)
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The fourth and last equation reads

= − igeff

[
∑

α′

upper
branch

(

+

)2(

+

)(

+

)

+
∑

α′

lower
branch

(

+

)2(

+

)

×
(

θ(α− α′) + +

)]

.

(6.49)

In the four equations above, we have defined

geff =
gN |κ(t)|2

[Eδ sin(kδ)]3
=

g

Eδ

ρ∅δ

sin(kδ)
, (6.50)

the effective interaction strength. It depends not only on the true interaction strength g, but
also on the mean density ρ∅ of particles that are injected in the ring from the source. This is
understood in terms of scattering processes that become more likely and more significant in
case of a high density of particles. It also finally depends upon the wavevector through the
1/ sin kδ ≃ 1/kδ dependence, indicating interaction effects that are more important for small
wavevectors. As is usual with self–consistent equations such as Eqs. (6.46), (6.47), (6.48) and
(6.49), the insertion of the left–hand–side into the right–hand–side produces a formal power
series in the perturbation parameter geff.

In accordance with the noninteracting case, the reflection (resp. transmission) amplitude is
obtained by choosing the final site α in the wavefunction (6.43) either in the left (resp. right)
waveguide, which is diagrammatically written as

(6.51)

Those expressions can in principle be computed up to the desired order in geff but require
for this purpose the exact disorder potential at each visited site to be able to evaluate the
phase resulting from the incomplete traversal of one arm of the ring, due to the occurence of
an interaction event within the explored arm.

However, as in the noninteracting case, a large number of diagrams do not survive the disorder
averaging and only pairs of diagrams that share the same number of full explorations of
branches do. Consequently, only diagrams which, after pairing, show no phase due to an
incomplete traversal of an arm have a chance to contribute to disorder averaged quantities.
This can be either due to a net extension to a phase corresponding to a full exploration



6.3. Resummation of diagrams in the interacting case 145

of an arm or either due to the cancellation by a net phase with an opposite sign resulting
from an incomplete traversal in the other direction. This observation allows us to select the
interaction events based upon the structure they display. Interaction events displaying the
following structure

, (6.52)

as well as similar structures obtained by symmetry operations around the horizontal and
vertical axes or complex conjugation, produce only phases resulting from total explorations
of branches. Indeed, an arrow is paired with its complex conjugate , thereby cancelling
the phase produced by each other, whilst the two arrows left add their phase up, to
produce a global phase that results from full traversals of branches, consequently removing
the α′ dependence. On the contrary, structures like the following

, (6.53)

as well as similar structures obtained by symmetry operations around the horizontal and
vertical axes or complex conjugation, produce a phase, resulting from a partial exploration of
branches, because the arrows implied in such structures do not cancel or extend each other.
As such, structures appearing in (6.53) and those obtained by symmetry or complex conju-
gation, produce a non–compensated phase that will be responsible for the damp out in the
averaging process.

This observation allows us to exclude interaction events that display a structure depicted
in (6.53) or similar ones, not that they do not contribute to individual realisations of the
reflection and transmission amplitudes (which we are not interested in), but they vanish
when computing the disorder averaged reflection and transmission probabilities. Keeping
only structures depicted in (6.52) is achieved by introducing a new wavefunction, which
differs from the true wavefunction appearing in Eq. (6.43) in the extent that scattering paths
involving structures which we excluded are not considered. This amounts to redefining the
diagrams by explicitly excluding forbidden paths. Such a definition, of course, will not yield
the true wavefunction for an individual disorder realisation but produces the same results
when transport quantities are averaged over a large number of disorder realisations. Such a
substitution amounts to replacing Eq. (6.46) by

= − igeff

{
∑
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branch

[ (

+ 2θ(α− α′) + 2

)

+

(
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+
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[ (

+ 2

)

+

(

2 +

)]}

, (6.54)
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where the presence of the factor 2 in the above expression results from the square that
appears in Eq. (6.46) and expresses the two possibilities one has when one wants to build
such a diagram from the diagram at disposal in Eq. (6.46). A more compact version of (6.54)
is found and reads

= − igeff
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(6.55)

as well as for the second interacting diagrams
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, (6.56)

but also the third
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(6.57)

and finally the fourth and last diagram
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Finally, with the help of those resummed diagrams, we are in a position to formulate the
effective reflection amplitude as

R(coh, eff)(Φu,Φd,Φ) = + +

= + +

− igeff

∑
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]
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]
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


 , (6.59)

and the effective transmission amplitude as

T (coh, eff)(Φu,Φd,Φ) = +

= +

− igeff
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


 . (6.60)

Whilst the above expressions in Eqs. (6.59) and (6.60) theoretically permit to compute the
exact ensemble averaged reflection and transmission probabilities, we restrict in the following
to a first–order, linear, correction in the effective interaction geff.

6.3.1 First–order correction to the noninteracting reflection and transmis-

sion amplitudes

The first–order correction is simply obtained by replacing each interacting resummed diagram
by its noninteracting counterpart, which amounts to replacing the green parts by equivalent
red parts, followed by a partial traversal of the arm, in Eqs. (6.59) and (6.60). In this
approximation, the α′ dependence in the summations carried out in Eqs. (6.59) and (6.60)
vanishes, the sum is performed immediately and simply yields an additional NR/2 factor. In
the case of reflection, the diagrammatic correction in the first–order to the noninteracting
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reflection amplitude is obtained as

∆R(1)(Φu,Φd,Φ) = R(coh, eff ,1)(Φu,Φd,Φ) −R(0)(Φu,Φd,Φ)

= −igeff
NR

2

[ [ ] [
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] 
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+
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



]

. (6.61)

We once again want to stress that this correction is meaningless and useless on its own, since
some diagrams have been arbitrarily excluded. It is only when averaged over Φu and Φd that
this correction makes sense, in the context of the first–order approximation. Eq. (6.61) shows
that the linear correction to the ensemble averaged probability of reflection is obtained due
to the set of scattering paths that penetrate the ring and interact at some point in one of the
arms with the density |ψ|2 (which is diagrammatically represented by paired diagrams of a
path depicted in solid lines and combined with its complex conjugate in dashed lines). After
this interaction event took place, those paths continue their traversal of the arm to reach the
opposite junction and the ring is finally exited back to the incident lead.

The first–order correction to the transmission is obtained similarly, that is, by replacing each
interacting resummed diagram by its noninteracting counterpart, which once again amounts
to replacing green parts of the diagrams by a red resummed diagram followed by the partial
exploration of the arm. The α′ dependence also disappears in the summations carried out in
Eqs. (6.59) and (6.60) which only leaves a NR/2 factor. The correction in the first–order to
the noninteracting transmission amplitude is diagrammatically written as

∆T (1)(Φu,Φd,Φ) = T (coh, eff ,1)(Φu,Φd,Φ) − T (0)(Φu,Φd,Φ)
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]

. (6.62)

The physical interpretation is almost identical compared to that of the reflection. The cor-
rection is indeed obtained due to the set of scattering paths that penetrate the ring, interact
with the density |ψ|2 at some point in one of the branches, pursue their exploration of the
arm to the opposite junction and exit the ring by the downstream lead. An analytical for-
mula for Eqs. (6.61) and (6.62) can be found by replacing the diagrams by their analytical
counterpart but is rather cumbersome. Since it brings no added value to the discussion, we
do not provide this lengthy expression.
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6.3.2 Ensemble average of the reflection and transmission probabilities

The ensemble average is performed exactly as in the noninteracting case, which in the case
of reflection provides

〈
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〉

=
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4π2
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0
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The first–order correction to the ensemble averaged reflection is found to be

∆
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This is once again best written and understood under diagrammatical form

∆
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Also, we note the following identity
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(6.67)

that results from the symmetry that exists when one flips a diagram around the horizontal
axis, which simply amounts to swapping Φu and Φd. Eq. (6.67) is used to bring Eq. (6.65)
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under a more compact and concise form
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A very similar result is obtained for the first–order correction to the transmission probability
and is diagrammatically written as
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(6.69)

Those expressions are numerically integrated and compared with our numerical findings of
Chapter 5.

6.4 Confrontation of the diagrammatic theory to the numer-

ical results

In this section, we confront the results obtained by the numerical integration of the equations
related to mean–field and truncated Wigner simulations to the diagrammatic predictions.
That comparison is shown in Fig. 6.1. An excellent, almost perfect, agreement is found
between the mean–field results and the diagrammatic predictions in the absence of interaction:
both approaches benchmark each other.
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Figure 6.1 – Mean–field simulations of the ensemble averaged transmission versus
the enclosed artificial flux Φ in the presence of interaction for N |κ|2 = E2

δ ⇔
〈â†â〉 ≃ 2.77. The transmission is averaged over 20000 realisations of a Gaussian
correlated disorder taking random values in [−0.0119, 0.0119] with correlation
length σ = 20δ. Diagrammatic theory predictions are represented in dashed lines
of the same colour as the corresponding mean–field simulation. Diagrammatic
predictions at Φ = 0, π and 2π are excluded owing to the presence of divergences.
Numerical parameters: µ/Eδ = 0.2 and NR = 200 sites.

In the presence of interaction, a good qualitative and quantitative agreement in first found,
for weak values of the interaction strength, that is for g such that g/Eδ . 0.0002. For larger
values of the interaction strength however, significant deviations are encountered. This is
not surprising since, as Fig. 6.2 indicates, the inversion shows a nonlinear dependence in
the interaction strength. Those deviations indicate that our first–order diagrammatic model
underfits the inversion, as quadratic and higher order corrections become more and more
prominent at higher interaction strength.

Not shown in Fig. 6.1 are numerical divergences at Φ = 0, π and 2π that arise in the Monte–
Carlo method that we use to numerically perform the disorder average of the transmission.
A possible explanation for the origin of those divergences could be inferred from the deter-
minant (6.13) that vanishes for Φ = 0, π and 2π when Φu ≃ Φd, which is not accompanied
by a concomitant drop out of the numerator [356].

Away from those particular values of the gauge flux Φ, the Monte–Carlo integration fortu-
nately converges. Fig. 6.2 is dedicated to the study of the ensemble averaged transmission
probability as a function of the interaction strength g for Φ = π/2 and serves as a comparison
of the diagrammatic results with the numerical ones.
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Figure 6.2 – Comparison between the numerical, mean–field and truncated
Wigner, ensemble averaged transmission at Φ = π/2 and the first–order dia-
grammatic theory predictions. The transmission is averaged over 20000 realisa-
tions of a Gaussian correlated disorder taking random values in [−0.0119, 0.0119]
with correlation length σ = 20δ. Good agreement is found for weak interac-
tion strength where the transmission decreases approximately linearly with g.
Numerical parameters: µ/Eδ = 0.2 and NR = 200 sites.

As expected from a first–order perturbative theory, a linear transmission is found, with
negative slope. An excellent agreement between diagrammatic and numerical results is en-
countered for weak interaction strengths, as was already highlighted. However, the slope of
the linear predictions from the diagrammatic theory is steeper than the slope of the numerical
results, highlighting that the diagrammatic theory seems to (slightly) overestimate interac-
tion effects in that regime of parameters.

The disagreement between the curves is probably due to a lack of the diagrammatic theory
itself, as higher order terms might correct this overestimation and are clearly missing for
high interaction strengths. Indeed, for higher interaction strengths, the significant deviations
already observed in Fig. 6.1 are also present. The parabolic–like shape of the mean–field
results seems to indicate that quadratic corrections to the ensemble averaged transmission
would describe the inversion much more accurately. Whilst it is almost certain that quadratic
corrections would yield better predictions, it might be that higher order terms are neverthe-
less also required because Fig. 6.2 is drawn for Φ = π/2 only.

We also note that in the formulation of the diagrammatic theory, the junction energies have
been treated as constant, whereas they are also subject to the disorder potential. This de-
pendence in the disorder potential is not accounted for in the theory, and the reflection and
transmission probability amplitudes at a junction, r and t, should acquire a dependence in
the specific disorder landscape. This dependence could possibly soften the slope of the linear
decrease of the transmission, but also fill the slight gap that exists in Fig. 6.1 in the absence
of interaction.
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Finally, we note that whereas the diagrammatic theory predicts a linear decrease of the trans-
mission for very weak values of g, it fails at explaining the mechanism behind the inversion
of Al’tshuler–Aronov–Spivak oscillations that thus remains an open question. However, it
provides a solid theoretical background and paves the way for an enhancement that goes
through the calculations of higher order corrections. Owing to the prohibitively large num-
ber of involved diagrams, this calculation requires to target diagrams robust to ensemble
averaging and resumming them, similarly as in Refs. [61,62,90].

Similarly to the derivation of Al’tshuler–Aronov–Spivak oscillations in Chapter 5, where a di-
agrammatic expression of paths contributing to those oscillations was presented in Eq. (5.71),
we investigate the leading order diagrams in r and t in the correction to the reflection. Those
diagrams are obtained from Eq. (6.68) that we develop in terms of the shortest paths con-
tained. Diagrams surviving the ensemble average are given by

∆
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. (6.70)

In Eq. (6.68), the left bracket contains diagrams that generate the diagrammatic expression
for R(0)∗(Φu,Φd,Φ). These terms contribute here with a constant multiplicative factor r∗.
Indeed, compacting the expanded notation above in terms of interacting diagram yields self–
averaging contributions, an example of which being shown below

that carries no Φu nor Φd dependence [356]. This kind of self–dressing diagram is intriguing
on its own since its absent in other studies dedicated to diagrammatic studies [61,62,90].

Finally, Eq. (6.70) gives the following numerical expression [356]

∆
〈

|R(1)(Φ)|2
〉

= geffNR [0.00210805 − 0.0252966 cos(2Φ)] + O
[

(r, t)10
]

, (6.71)
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where we use the following values

r = −43
97

+
24
97
i

t =
54
97

+
24
97
i, (6.72)

in accordance with the values used in the numerical simulations. Eq. (6.71) indicates an
expected increase in the reflection probability for Φ = π/2 and a corresponding drop in the
transmission probability [356]. We also note that Eq. (6.71) sort of a posteriori justifies our
choice of a weakly connected ring yielding expressions for r and t in Eq. (6.72), because the
real–valued expressions for r and t that would result from a fully connected ring obviously
bring no contribution in Eq. (6.70).



Chapter 7

Inversion of coherent backscattering

with interacting ultracold bosons: a

truncated Wigner approach

The recent observation of coherent backscattering with Bose–Einstein condensates in the mo-
mentum space by the group of A. Aspect in Palaiseau [57] as well in the laboratory of G.
Labeyrie in Nice [58] in the absence of interaction raises some questions related to the effects
of such atom–atom interaction which are most naturally present within Bose–Einstein con-
densates. To shed more light on this issue, we propose to study coherent backscattering in the
presence of atom–atom interaction in the idealised framework of a plane wave propagation
towards a two–dimensional disordered slab instead of a wavepacket of finite extent [57, 58].
Atom lasers appear in this context as the ideal candidate to produce such plane waves of
matter that allow us to put aside additional complexity, for instance related to the width of
the wavepacket, which would result in more complicated scattering processes (for instance
due to the superposition of the various energy components).

In this chapter, we begin by describing the two–dimensional scattering geometry we study and
formulate the many–body model we use in this context. This many–body model is discretised
and the resulting discretised equations are then numerically integrated in the mean–field ap-
proximation. A number of length scales related to transport processes that naturally emerge
in this context are then discussed, as well as the occurrence of coherent backscattering in the
momentum space. The effect of an atom–atom interaction in the mean–field approximation is
then investigated. We find that the coherent backscattering peak is inverted in the presence
of non–vanishing interaction, which indicates a crossover from constructive to destructive
interferences around the backward direction. Truncated Wigner simulations that allow to
go beyond the mean–field limit and to model inelastic scattering processes indicate that a
dephasing of interference effects is expected far beyond the mean–field limit. However, those
simulations also predict that for realistic experimental atomic and waveguide parameters,
the antilocalisation scenario appearing in the mean–field approximation prevails, despite a
partial dephasing.

155
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7.1 Description of the scattering geometry

We study the coherent transport of a Bose–Einstein condensate which contains N → ∞
particles and which is maintained at the temperature T = 0 and the chemical potential
µ. This Bose–Einstein condensate propagates towards a two–dimensional disorder potential
which can be, in the case of ultracold atoms, created by optical speckle fields [357–360]. The
restriction to a planar motion can be experimentally realised by superposing two counter-
propagating lasers to form a standing wave from which results a one–dimensional optical
lattice, as is sketched on Fig. 7.1. The particles injected towards this lattice are squeezed in
a stack of two–dimensional layers, leading to quasi two–dimensional motion between two ad-
jacent layers of the lattice. At this location, an effective quasi two–dimensional waveguide of
transverse extension a⊥(x) =

√

~/mω⊥(x) is formed, where ~ = h/2π is the reduced Planck
constant, m is the mass of the injected atoms and ω⊥(x) is the angular frequency of the
trap that produces the confinement. The transverse extension a⊥(x) is called the oscillator
length and is related to the transverse confinement whose longitudinal profile it characterises.

The situation under study is sketched in Fig. 7.1, where a condensate is outcoupled from a
reservoir and injected in a quasi 2D effective waveguide, similarly to the principle of an atom
laser [202,212–214,361–363].

Figure 7.1 – A Bose–Einstein condensate maintained at the temperature T = 0
and the chemical potential µ is injected into a quasi two–dimensional waveguide
of transverse extension a⊥(x) =

√

~/mω⊥(x) realised between two adjacent layers
of a 1D optical lattice within which it encounters a disorder potential.

To describe this quantum transport problem, we use a many–body model consisting in evo-
lution equations for the field operator ψ̂(r, t) of the bosonic particles in the scattering region,
where r ≡ (x, y) is the spatial position, and for the particle annihilation operator of the
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source φ̂S(t). These evolution equations are yielded as [215,326]

i~
∂ψ̂(r, t)
∂t

=

(

− ~
2

2m
∆ + V (r)

)

ψ̂(r, t) + g̃(r)ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t) +K(r, t)φ̂S(0)e−iµt/~φ̂S(t)

(7.1)

i~
∂φ̂S(t)
∂t

= µφ̂S(t) +
∫

drK∗(r, t)ψ̂(r, t), (7.2)

with V (r) the disorder potential and K(r, t) the position–dependent coupling strength that
describes the outcoupling process of atoms issued from the reservoir and injected towards
the scattering region. In Eqs. (7.2), we have introduced the 2D effective interaction strength
g̃(r). In the presence of a two–dimensional confinement whose transverse extension is given
by the position dependent oscillator length a⊥(x), it is yielded as g̃(r) ≡ ~

2g(x)/m, with the
2D effective dimensionless interaction strength

g(x) = 2
√

2
aS

a⊥(x)
, (7.3)

and aS the s–wave scattering length of the particles. Owing to the spatial profile of the
confinement potential, the dimensionless interaction strength possesses a spatial dependence
that is encoded in the oscillator length a⊥(x). In accordance with the profile sketched in the
zoom in Fig. 7.1, we model the dimensionless interaction strength as a constant equal to gmax

along the longitudinal extension of the disorder. It is smoothly and adiabatically ramped on
from zero at position xLb

to a finite value gmax at position xLe = xLb
+ ∆x and then ramped

off from gmax at position xRb
to zero at position xRe = xRb

+ ∆x, as is depicted in Fig. 7.2.

Figure 7.2 – Spatial profile of the dimensionless interaction strength g(x) along
the x–direction. It is smoothly and adiabatically ramped on from zero at position
xLb

to a finite value gmax at position xLe = xLb
+ ∆x and then ramped off from

gmax at position xRb
to zero at position xRe = xRb

+ ∆x following the smooth
switching function profile for the ramps.

An obvious choice for the interaction is obtained as a subtraction of spatially shifted hy-
perbolic tangents. The drawback with such a profile is that the interaction never reaches
perfectly 0 far away from the disordered region nor reaches gmax within. To circumvent
this major disadvantage and to ramp the interaction strength as smoothly as possible, we
use Hartmann’s smooth switching function [364] for the ramps and we set the interaction
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strength to a constant between the ramps. It is analytically yielded as

g(x) = gmax







0 for x ≤ xLb

f
(

x−xLe

xLb
−xLe

)

for xLb
< x ≤ xLe

1 for xLe < x ≤ xRb

f
(

x−xRb

xRe −xRb

)

for xRb
< x ≤ xRe

0 for xRe < x

, (7.4)

where we have used the function f : [0, 1] → R which is defined as

f(x) =
t(x)

t(x− 1) + t(x)
, (7.5)

with the test function

t(x) =







exp
[

−b
(

ax2 +
1

1 − x2

)]

for |x| < 1

0 for |x| ≥ 1
, (7.6)

where a = 0.557747 and b = 1.364054 are numerical parameters optimised by Hartmann [364]
so that t(x) is as smooth as possible.

The injection of a monochromatic and coherent (in contrast to a finite–width wavepacket
that would display a certain energy spectrum) beam of particles is described by the idealised
Ansatz of a strongly localised coupling

K(r, t) = κ(t)δ(x − xS)φ(y), (7.7)

that acts as a point–like source of particles with wavenumber k =
√

2mµ/~, localised at
position xS with a temporal profile specified by κ(t) and transverse profile φ(y) = 1. We
assume this profile to be homogeneous, unless explicit mention of the contrary. In order to
prevent the possible advent of dynamical instabilities during the propagation and to favour
numerical convergence towards a stationary scattering state, the coupling intensity κ(t) is
smoothly and adiabatically ramped from zero to a constant value κmax following Hartmann’s
smooth switching function [364]. It is analytically explicitly provided by

κ(t) = κmax







0 for t ≤ 0

f

(
ts − t

ts

)

for 0 < t ≤ ts

1 for ts < t

, (7.8)

with the function f defined in Eq. (7.5) and ts is the switching time of the source that must
be considered large enough in order to prevent oscillations in the density that delay the con-
vergence towards a steady scattering state.

Experimentally, this time–dependent coupling can be for instance realised by means of a
radio–frequency knife [212] whose intensity is varied according to the desired temporal profile.
The existence of a quasi stationary scattering state is only ensured for small nonlinearities in
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the Gross–Pitaevskii equation [190]. For higher nonlinearities, dynamical instabilities gener-
ally occur [191,192] and the convergence towards a steady scattering state is not guaranteed,
rendering the process abidingly time–dependent [327]. In order to avoid any back–action
of the nonlinearity with the source, we place the source sufficiently far upstream from the
interacting region, so that xS ≪ xL.

The disorder potential is controlled via

V (r) = V0

∫
1√
πσ

exp

(

−|r − r′|2
2σ2

)

η(r′)dr′, (7.9)

where V0 is the disorder strength, σ its correlation length and η(r) is a Gaussian white noise
correlator satisfying 〈η(r)〉 = 0 as well as 〈η(r)η(r′)〉 = δ(r−r′). This potential is such that its
probability distribution to obtain a certain value for V is given by the Gaussian distribution.

P (V ) =
1√

2πV0
e−V 2/(2V0)2

. (7.10)

This choice for the disorder leads to a vanishing average value 〈V (r)〉 = 0 (where 〈·〉 denotes
the random average) and to a Gaussian–shaped two–point correlation function

〈V (r)V (r′)〉 = V 2
0 exp

(

−|r − r′|2
4σ2

)

. (7.11)

It may be argued that a Gaussian disorder potential is a quite primitive and “academic”
approximation of the effective disorder potential that is experimentally generated by optical
speckle fields. A more convincing speckle potential is obtained following its experimental real-
isation consisting of a laser beam shining a diffusive plate with a circular aperture [357–360].
The Gaussian potential remains nevertheless easier to deal with. Furthermore, predictions
based on that choice for the disorder potential are expected to be very similar to those result-
ing from the choice of a speckle potential, provided both correlation lengths are equal and
although the Gaussian two–point correlator is not identical to the one describing an optical
speckle field [352,365].

7.2 Numerical discretisation procedure

The aforedescribed two–dimensional scattering region of length L and width W is sketched in
Fig. 7.3(a). It basically consists in a disordered slab of length LD surrounded by two regions
characterised by the absence of any disorder potential and towards which a coherent beam
of matter wave is injected, following the working principle of an atom laser. This scattering
region is discretised, giving birth to a regular grid of L × W sites labelled by l and w and
separated by the same spacing δ, which we choose in the following such that kδ = 1. A
finite–difference scheme is used to discretise the kinetic energy operator

∂2ψ̂(x, y)
∂x2

≃ ψ̂(x+ δ, y) + ψ̂(x− δ, y) − 2ψ̂(x, y)
δ2

, (7.12)

∂2ψ̂(x, y)
∂y2

≃ ψ̂(x, y + δ) + ψ̂(x, y − δ) − 2ψ̂(x, y)
δ2

. (7.13)
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This choice of a finite–difference scheme for the discretisation of the kinetic operator on the
two–dimensional grid leads to the on–site energy Eδ = ~

2/mδ2 and the nearest–neighbour
hopping term −Eδ/2. The numerical discretisation grid we use is sketched in Fig. 7.3(b).

Figure 7.3 – Panel (a): scattering region of length L and width W containing a
source injecting particles towards a disordered slab of length LD and width W.
Panel (b): regular grid resulting from the discretisation of the scattering region
resulting in L× W sites equally spaced by δ, of on–site energy Eδ and nearest–
neighbour hopping term −Eδ/2. The source is treated as being strongly localised
and injects particles at site lS towards the disordered slab containing LD × W
sites. Smooth exterior complex scaling is applied in the longitudinal direction
and periodic boundary conditions are applied in the transverse direction.

Following this discretisation procedure, the field operators are written on each site as a func-
tion of δ as ψ̂l,w(t) ≡ δ2ψ̂(x = lδ, y = wδ, t), whilst the on–site disorder potential is written
as Vl,w ≡ V (x = lδ, y = wδ) and the interaction strength as gl ≡ g (x = lδ) /δ2.

The discrete Hamiltonian describing our system is expressed as

Ĥ =
L∑

l=1

W∑

w=1

[

2Eδâ
†
l,wâl,w + Vl,wâ

†
l,wâl,w − Eδ

2

(

â†
l+1,wâl,w + â†

l,wâl+1,w

)

− Eδ
2

(

â†
l,w+1âl,w + â†

l,wâl,w+1

)

+ Eδglâ
†
l,wâ

†
l,wâl,wâl,w

]

+
W∑

j=1

[

κ(t)â†
lS ,j

b̂+ κ∗(t)b̂†âlS ,j
]

+ µb̂†b̂, (7.14)

with â†
l,w (resp. âl,w) the creation (resp. annihilation) operator at site (l, w) and b̂† (resp. b̂)

is the creation (resp. annihilation) operator of the source which is maintained at the chemi-
cal potential µ and the vanishing temperature T = 0. In the longitudinal direction, we use
smooth exterior complex scaling to absorb outgoing waves [216,222–227,231,232,309,326,366]
and we apply periodic boundary conditions in the transverse direction.

The Gaussian disorder potential is created within a slab of spatial extension LD × W. It is
explicitly generated by drawing complex Gaussian random numbers ξl,w fulfilling

〈ξl,wξl′,w′〉 = δl,l′δw,w′ (7.15)
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at each site within the disordered slab. Those complex Gaussian random numbers are then
convoluted with a Gaussian envelope, giving rise to the following expression for the disorder
at the point (l, w) of the disordered slab

Vl,w =
lend∑

l′=−lstart

∞∑

w′=−∞
Al,l′Aw,w′ξl′,w′, (7.16)

with the Gaussian weight

Aj,j′ =

√

V0δ√
πσ

exp

[

− δ2

2σ2

(
j − j′)2

]

, (7.17)

where V0 is the disorder strength and σ its correlation length. At the boundaries of the
domain along the transverse direction, periodic boundary conditions are applied, which must
also be enforced for the disorder potential. In practice, this is obtained by multiplying the
on–site disorder potential in Eq. (7.16) by Θl,w−nσ and Θl,w+nσ, where

Θk,k′ =

{

1 if k ≥ k′

0 otherwise
(7.18)

is the Heaviside step function, with n ∈ N sufficiently large (in practice, we have chosen
n = 5), in order to safely neglect the value of the Gaussian weight at the point. The on–site
disorder, compliant with the periodic boundary conditions, finally reads

Vl,w =
lend∑

l′=lstart

w+nσ∑

w′=w−nσ
Al,l′Aw,w′ξl′,w′ mod W , (7.19)

where W is the number of sites of the disordered slab along the transverse direction.

The on–site interaction parameter is defined as

U(x) = g̃/δ2 = gEδ =
4π~2aS√

2πmδ2a⊥(x)
(7.20)

and is modulated by the dimensionless interaction strength g(x) = 2
√

2πaS/a⊥(x). This
choice for the interaction parameter may however be problematic in the continuous limit
δ → 0, as convergence issues arise in that context [367]. However, as is shown in Ref. [352],
the correct scaling of the interaction parameter yields negligible corrections to the approxi-
mated scaling Eq. (7.20) far away from the continuous limit.

An equation of motion for the time evolution of the annihilation operators is obtained thanks
to the Heisenberg equation which, for the Hamiltonian specified in Eq. (7.14), explicitly reads

i~
∂âl,w(t)
∂t

= (2Eδ + Vl,w)âl,w(t) − Eδ
2

[âl−1,w(t) + âl+1,w(t)] − Eδ
2

[âl,w−1(t) + âl,w+1(t)]

+ Eδglâ
†
l,w(t)â2

l,w(t) + κ(t)δl,lS b̂(t) (7.21)

i~
∂b̂(t)
∂t

= µb̂(t) +
W∑

j=1

κ∗(t)âlS ,j(t). (7.22)
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In the absence of interaction and disorder, a steady many–body scattering state characterised
by the stationary density and current

ρ∅ =
1
δ2

N |κ(t)|2
µ(2Eδ − µ)

(7.23)

j∅ =
1
~

N |κ(t)|2
√

µ(2Eδ − µ)
(7.24)

is obtained, as is specified in Refs. [216,218,326,352].

The mean–field approximation consists in replacing the creation and annihilation operators
by c–numbers in Eqs. (7.21) and (7.22), which maps the many–body problem into an effective
one body problem with a nonlinear term describing the effective potential created by the N−1
particles and experienced by the N th particle. More specifically, we make the Ansatz

âl,w → ψl,w = 〈âl,w〉e−iµt/~ (7.25)

â†
l,w → ψ∗

l,w = 〈â†
l,w〉eiµt/~ (7.26)

b̂ → χ(t) =
√

N e−iµt/~, (7.27)

which yields the following mean–field equations

i~
∂ψl,w(t)
∂t

= (2Eδ + Vl,w − µ)ψl,w(t) − Eδ
2

[ψl−1,w(t) + ψl+1,w(t)] − Eδ
2

[ψl,w−1(t) + ψl,w+1(t)]

+ Eδgl|ψl,w(t)|2ψl,w(t) + κ(t)δl,lSχ(t) (7.28)

i~
∂χ(t)
∂t

=
W∑

w=1

κ∗(t)ψlS ,w(t), (7.29)

with the initial conditions ψl,w(t0) = 0 and χ(t0) =
√

N , corresponding to an empty scatter-
ing region and a coherent Bose–Einstein condensate within the reservoir of atoms.

Following the approach we developed in Chapter 2, we consider that the source is populated
with a very large number of atoms N → ∞ (for instance 105 atoms) and is coupled to the
waveguide by means of a small outcoupling amplitude (for instance κ ∼ 10−2 in the natural
units that we consider here). Therefore, since χ(t) =

√
N [

1 + O(|κ|2)
]

for some finite time
interval t−t0, we can claim that in the formal limit where the coupling κ tends to zero in such
a way that the product N |κ|2 is maintained constant, χ(t) is approximately also constant in
time. This latter approximation allows us to solely focus on Eq. (7.28) which appears as a
nonlinear Schrödinger equation with a source term [215,313,314] that explicitly reads

i~
∂ψl,w(t)
∂t

=

(

2Eδ
ql,w

− µql,w + Vl,w

)

ψl,w(t) − Eδ
2

[Jl−ψl−1,w(t) + Jl+ψl+1,w(t)]

− Eδ
2

[ψl,w−1(t) + ψl,w+1(t)] + Eδgl|ψl,w(t)|2ψl,w(t) +
√

Nκδl,lS . (7.30)

We have introduced in Eq. (7.30) an effective hopping term

Jl± =

(

1
ql±1,w

− δ

2

q′
l±1,w

q2
l±1,w

)

(7.31)
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that models smooth exterior complex scaling. In accordance with this method, we take ql,w =
1 within the scattering region in order to preserve the Hamiltonian from any scaling in that
region, whereas we enforce the absorption of outgoing waves by choosing ql,w smoothly ramped
to eiθ outside the scattering region which rotates the x coordinate in the complex plane
according to x 7→ z = xeiθ, with θ > 0 the rotation angle [216,222–227,231,232,309,326,366].

7.3 Coherent backscattering peak

We numerically integrate the mean–field equation (7.30) on the two–dimensional grid sketched
in Fig. 7.3(b), with initial conditions corresponding to an empty scattering region, i.e.
ψl,w = 0 at t = t0. The propagation described by Eq. (7.30) leads to a stationary and
stable scattering state [190], provided the nonlinearity remains sufficiently small in the Gross–
Pitaevskii equation (7.30). For higher nonlinearities, the existence of such a steady state is not
granted since dynamical instabilities generally occur [191, 327] and prevent the convergence
towards a stationary scattering state, because they render the scattering process abidingly
time–dependent. Our intention is precisely to prevent the advent of this turbulent regime
and to focus on quasi–steady scattering processes, which implies that we must restrict the
interaction strength to very low values.

The propagation described described by Eq. (7.30) is performed in the presence of many
realisations of the discrete disorder potential described in Eq. (7.19). In the absence of non-
linearity, each of those propagations yields a stationary scattering state related to the specific
disorder landscape encountered during the propagation, one of which being represented in
Fig. 7.4(a).

Figure 7.4 – Panel (a): the density |ψl,w|2 related to a scattering state that
is reached in steady state regime for a single disorder realisation. The white
dashed lines indicate the position of the disorder potential. Panel (b): Average
along the transverse direction of the ensemble averaged coherent mode |〈ψl,w〉|2
and of the density 〈|ψl,w|2〉. The exponential decay of the coherent mode allows
us to extract the scattering mean free path ls and the linear decrease of the
density supplies the transport mean free path ltr. The light grey square indicates
the position of the disorder potential. Numerical parameters: k =

√
2mµ/~,

kδ = 1,
√

N |κ|2m/(~2k2) = 1, 1000 realisations of a Gaussian correlated disorder
with disorder strength V0m/(~2k2) = 0.1 and correlation length kσ = 1, length
kLD = 100 and width kW = 120.
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An ensemble average of those scattering states is then performed and, depending on whether
the ensemble average is realised before or after taking the square modulus of the scattering
states, the coherent mode |〈ψl,w〉|2 or the on–site mean density 〈|ψl,w|2〉 are obtained. Aver-
ages over the transverse direction are shown for both quantities in Fig. 7.4(b).

As is expected from similar studies in the literature [60], the coherent mode follows an ex-
ponential decay |〈ψl,w〉|2 ∝ exp(−x/ls) along the longitudinal direction whose exponential
decay constant is given by the elastic scattering mean free path ls. An exponential fit of
the surrounded red curve of Fig. 7.4(b) yields kls ≈ 11, which first indicates that the set of
chosen numerical parameters lies in the so–called weak disorder regime for which kls ≫ 1.
Moreover, this value also specifies that ls ≪ LD, which corresponds to the diffusive regime,
as is confirmed by the linear decrease of the density along the longitudinal direction.

The Boltzmann mean free path can be computed from the elastic scattering mean path, as
it is yielded in the case of a Gaussian potential [39] by

ls
lB

= 1 − I1(2k2σ2)
I0(2k2σ2)

, (7.32)

where Iν(z) is the modified Bessel function of order ν, providing klB ≈ 37. As is usually the
case in two dimensions, this value yields a localisation length [368] provided by

ξloc = lB exp(πklB/2) ≫ L, (7.33)

which is far larger than any dimension of the scattering region, indicating that transport
occurs on a length scale much smaller than the localisation length ξloc.

The transport mean free path ltr [369] can also be extracted from the linear decrease [39,370]
in the longitudinal direction of the ensemble averaged density 〈|ψl,w|2〉 averaged along the
transverse direction which decreases like 〈|ψl,w|2〉 ∝ LD + 0.82ltr − x. This linearly decaying
law is obtained by a linear fit of the decrease that takes place within the disordered slab.
The distance between the x–intercept of this linear fit and the boundary of the disordered
slab corresponds to z0ltr, where z0 is a numerical factor such that z0 ≈ 0.82 in two dimen-
sions [369]. Based on Fig. 7.4(b) and on the previous discussion, we find that kltr ≈ 39,
which essentially indicates that the disorder slab favours forward scattering. This is indeed
expected for a correlation length kσ ≫ 1 that yields anisotropic scattering. An enhancement
in the forward direction is found compared to other directions, deviating from the simplified
case of point–like scatterers for which kσ ≪ 1 and that yields isotropic scattering.

The ensemble averaged momentum distribution in the two–dimensional space can be ob-
tained by means of a discrete two–dimensional Fourier transform of the ensemble averaged
wavefunction. With the purpose of relating the resulting various Fourier modes with spatial
directions for the outgoing current, we take this discrete Fourier transform in an upstream
region characterised by the absence of disorder and nonlinearity, so that the superposition
principle is applicable. In that case, the different Fourier modes can safely be associated to
outgoing waves which are characterised by the wavenumbers

kn =

√

k2 −
(

2πn
W

)2

ex +
2πn
W ey, (7.34)
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describing the propagation in a spatial direction characterised by the angle θn = arcsin[2πn/(kW)],
with n = −W/2,−W/2 + 1, . . . ,W/2. The resulting momentum distribution in the absence
of interaction is displayed in Fig. 7.5.

Figure 7.5 – Ensemble averaged momentum distribution in the two–dimensional
space obtained as a 2D discrete Fourier transform of the wavefunction describ-
ing the reached quasi–steady scattering state in the absence of interaction. A
signature of the incident plane matter wave is encountered in the form of a
substantial population (height cut) of the (kx, ky)/k = (1, 0) mode. States of
constant energy describing the circle k2

x + k2
y = k2 around the origin are almost

equivalently populated, with a notable increase of the (kx, ky)/k = (−1, 0) mode
related to the backscattered direction. Shown in inset is a zoom around this mode,
which highlights the presence of coherent backscattering. Numerical parameters:
k =

√
2mµ/~, kδ = 1,

√
N |κ|2m/~2k2 = 1, 1500 realisations of a gaussian cor-

related disorder with disorder strength V0m/~
2k2 = 0.1 and correlation length

kσ = 1, length kLD = 100 and width kW = 120.

Fig. 7.5 shows a strong peak (whose height is cut) at the (kx, ky)/k = (1, 0) mode which
most naturally results from the incident plane matter wave. As a result of elastic scattering
processes, the entire space formed by constant energy states is filled out almost equivalently,
which in two dimensions results in a ridge that follows the circle centred around the (0, 0)
mode and such that k2

x + k2
y = k2, indicating that all directions of reflection are nearly equiv-

alent, as is expected from an incoherent classical theory of diffusive transport [39]. Artificial
oscillations in the population of those states of constant energy are present for large angles ow-
ing to the finite spacing of the grid, as well as to the presence of periodic boundary conditions
in the transverse direction. Amongst the states that form the ridge, the (kx, ky)/k = (−1, 0)
mode stands out as it is reveals a signature of coherent backscattering, owing to its high
population compared to modes related to other scattering directions. This is best illustrated
in the inset of Fig. 7.5 that shows a zoom around the (kx, ky)/k = (−1, 0) mode and which
highlights a localised enhancement of population owing to coherent backscattering.
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Compared to the semiclassical expectation that predicts a factor two enhancement compared
to the incoherent background, the height of the coherent backscattering peak is here reduced.
This reduction is explained by the presence of short–length self–retracing paths, mostly paths
that consist in a single and immediate backreflection at the first scattering event that takes
place in the disordered slab. An example of such paths is given in Fig. 7.6.

Figure 7.6 – Example of a self–retraced path. Those paths consist in paths that
are backreflected at the first scattering event that takes place in the disorder
potential. Obviously, such a path is identical to its time–reversed counterpart
and hence do not enter in the Cooperon contribution that gives rise to coherent
backscattering.

That kind of paths is obviously identical to its time–reversed counterpart and their pairing,
consisting in a path paired with itself, therefore brings no contribution to coherent backscat-
tering. In a diagrammatic language, such single scattering paths appear as doubly counted in
the Diffuson and Cooperon contributions. It should therefore be excluded from the Cooperon
contribution, thereby reducing the expected enhancement of an amount given by their rel-
ative weight in the summation over backreflected paths that together give rise to coherent
backscattering. As is argued in Ref. [61], these self–retraced paths are further responsible for
the formation of a dip that arises in the presence of a mean–field atom–atom interaction and
whose depth should be quantitatively identical to the reduction of the peak height.

7.4 Angular resolved current

The previously described discrete two–dimensional Fourier transform certainly provides a
manner to visualise coherent backscattering, but it requires a large number of simulation
sites to produce an acceptable resolution. In order to limit the numerical effort, as well as to
deliver a more detailed study of coherent backscattering, we detail below how we can extract
the angular resolved current which relies on the reflected part of the wavefunction related to
the stationary scattering state.

A possibility to extract this reflected part consists in performing a discrete partial Fourier
transform ψ̃(x, ky) of ψ(x, y) along the transverse direction. At this point, both the incident
part and the reflected part are contained in ψ̃(x, ky) and we must separate those two parts.
We first make the general Ansatz that this wavefunction can be written as the superposition

ψ̃(x, ky) = α+ψ̃
(+)(x, ky) + α−ψ̃(−)(x, ky), (7.35)

with α+ (resp. α−) the amplitude of the incident (resp. reflected) wave and ψ̃(+)(x, ky) (resp.
ψ̃(−)(x, ky)) the related wavefunction. The separation is now achieved by evaluating ψ̃(x, ky)
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at positions1 x0 and x0 +∆ with ∆ > 0, and relating them thanks to the Ansatz in Eq. (7.35)

α+ψ̃
(+)(x0 + ∆, ky) + α−ψ̃

(−)(x0 + ∆, ky) = α+ψ̃
(+)(x0, ky)eikx∆ + α−ψ̃

(−)(x0, ky)e−ikx∆,
(7.36)

which finally renders the separation between the amplitude of the incident and reflected waves
possible and accessible.

Figure 7.7 – The partial discrete Fourier transform ψ̃(x, ky) of the wavefunction
related to the reached scattering state is evaluated at positions x0 and x0 + ∆
which are chosen in a region of space characterised by the absence of interaction
and disorder potential.

Eq. (7.36) is best understood when rewritten under the form of a 2 × 2 linear system of
equations

(

ψ̃(x0 + ∆, ky)
ψ̃(x0, ky)

)

=

(

eikx∆ e−ikx∆

1 1

)(

α+ψ̃
(+)(x0, ky)

α−ψ̃(−)(x0, ky)

)

, (7.37)

whose solution is yielded by matrix inversion as
(

α+ψ̃
(+)(x0, ky)

α−ψ̃(−)(x0, ky)

)

=
1

2i sin(kx∆)

(

1 −e−ikx∆

−1 eikx∆

)(

ψ̃(x0 + ∆, ky)
ψ̃(x0, ky)

)

. (7.38)

The Fourier transformed wavefunction is thus separated into an incoming and reflected com-
ponents at position x0. The reflected part, related to the backscattered current, is explicitly
provided by

α−ψ̃
(−)(x0, ky) =

ψ̃(x0, ky)eikx∆ − ψ̃(x0 + ∆, ky)
2i sin(kx∆)

. (7.39)

We are now in a position to compute the backscattered current based on |ψ̃n|2, where ψ̃n ≡
α−ψ̃(−)(x0, ky) is yielded by Eq. (7.39). Indeed, the periodic boundary conditions imposed

1In order for the superposition principle to be applicable, we must, as previously discussed, perform the
Fourier transform and thus choose x0 and x0+∆ in a region of space characterised by the absence of interaction
and disorder potential.
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in the transverse direction decompose the state under study into transverse eigenmodes to
which we associate an outgoing plane wave with wavevector

kn =







√

k2 −
(

2πn
W

)2

2πn
W







with n = −W

2
,−W

2
+ 1, . . . ,

W

2
− 1,

W

2
, (7.40)

describing the propagation in a spatial direction characterised by the angle θn = arcsin[2πn/(kW )],
as is shown in Fig. 7.8.

Figure 7.8 – Decomposition of the transverse wavevector ky into discrete modes
and the associated angles θn = arcsin[2πn/(kW )]. Figure adapted from [371].

The current density in the direction indicated by θn is finally expressed as

jn = 2π
~

m

√

k2 − k2
y|ψ̃n|2 cos(θn) (7.41)

and allows us to closely monitor coherent backscattering with a lower number of grid sites.

The angular resolved current which features a strong peak around θ = 0, corresponding to the
backscattered direction and closely related to the population peak for the (kx, ky)/k = (−1, 0)
mode in the momentum space displayed in Fig. 7.5, highlights the appearance of coherent
backscattering in the absence of interaction, as is shown by the light orange curve of Fig. 7.9.
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Figure 7.9 – Angular resolved current as a function of the backscattered angle
θn = arcsin[2πn/(kW)] for increasing values of the interaction strength g, with
error bars indicating the related standard deviation. The typical cone–shaped
coherent backscattering peak around θ = 0 emerges in the absence of interaction.
In the presence of interaction, this peak gets first mitigated and even vanishes
for g = 0.003, as the related light brown curve illustrates. For higher interaction
strengths, the peak is transformed into a pronounced dip. Inset: an incident wave
tilted by the angle φ−3 = arcsin[2π(−3)/(kW)] ≈ −0.16 rad yields the same co-
herent backscattering peak and related inversion in the presence of interaction, in
the direction opposite to the incident one. Numerical parameters: k =

√
2mµ/~,

kδ = 1,
√

N |κ|2m/~2k2 = 1, 1500 realisations of a gaussian correlated disorder
with disorder strength V0m/~

2k2 = 0.1 and correlation length kσ = 1, length
kLD = 40 and width kW = 120.

In the presence of weak but finite interaction whose strength is increased step by step, the co-
herent backscattering peak is first mitigated before being completely flattened for g = 0.003.
For higher interaction strength, namely for g = 0.009, the peak is inverted and becomes a
pronounced dip, revealing a crossover from constructive to destructive interferences, in qual-
itative agreement with a nonlinear diagrammatic theory of coherent backscattering [59]. Our
findings also turn out to be in excellent agreement with the numerical mean–field study of
Ref. [60] dedicated to coherent backscattering in two–dimensional disorder potentials and
upon which the present study is based.

In order to validate the mechanism behind this inversion as due to coherent backscattering
and not, for instance, as due to an artificial effect resulting from the specific geometry of the
disordered slab, we tilt the incident profile of the source by a finite angle

φ−3 = arcsin
[

2π(−3)
kW

]

≈ −0.16 rad (7.42)

which amounts to choosing the tilted transverse profile

φ(y) = exp
[

2iπ(−3)
kW y

]

(7.43)
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in Eq. (7.7) instead of a constant profile. As is shown in the inset of Fig. 7.9, the coherent
backscattering peak and the related dip that emerges in the presence of finite interaction
are both realised in the exact opposite direction, with characteristics (height and width) very
similar to those related to the peak appearing for a perpendicular incident wave characterised
by φ0 = 0 rad. We can thus conclude that this effect and the related inversion originate from
interference effects appearing in the pairing of time–reversed scattering paths.

As was already highlighted earlier, one of the main drawbacks of the mean–field approxi-
mation is to model only elastic scattering events. We have indeed stressed that inelastic
scattering events however play a major role in various situations, for instance in the case of
Al’tshuler–Aronov–Spivak oscillations inversion discussed in Chapter 5. This role is exacer-
bated with increasing interaction strengths and poses a fundamental question regarding the
emergence of dephasing of interfering trajectories which is precisely triggered by interaction.
More specifically, the question to determine whether the peak inversion prevails beyond the
mean–field regime or gets hidden behind dephasing remains open at this moment. In order
to answer this question and the related question regarding the experimental observability
of coherent backscattering inversion with the studied system, we use the truncated Wigner
method.

7.5 Inversion of coherent backscattering beyond the mean–

field regime

As we have explained in Chapter 3, the truncated Wigner method tries to mimic quantum
fluctuations, that are neglected within the mean–field approximation, by sampling the initial
quantum state, which offers a possibility to compute observables related to coherent as well
as to incoherent contributions. This notion of coherence shall be explicitly defined below and
refers to the ability of wave components of the bosonic matter wave beam to form coherent
superpositions that together interfere, in accordance with the principle of atom lasers. This
ability may be compromised by atom–atom interactions, that may give rise to a depletion
of the condensate state that constitutes the atom laser, thus forming what we refer to as
incoherent contributions that mostly do not interfere with each other and may yield to global
dephasing. We stress that the loss of this matter wave coherence as a result of finite inter-
action must not be confused with environment–induced decoherence in the many–body Fock
space that would arise if the system were coupled to a heat bath.

We start by sampling the initial quantum state with classical field amplitudes {ψl,w}. At
initial time t0, the scattering region (SR) is empty and the related Wigner function can be
written as a product of on–site vacuum Wigner functions

WSR({ψl,w, ψ∗
l,w}, t0) =

∏

l

∏

m

(
2
π
e−2|ψl,w|2

)

. (7.44)

The reservoir (S) of atoms contains a large number |χ|2 = N ≫ 1 of bosonic particles which
motivates us to treat this reservoir as a coherent state. In this case, the related Wigner
function is provided by

WS(χ, χ∗, t0) =
2
π
e−2|χ−

√
N|2 . (7.45)
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The Wigner function for the whole system is then naturally obtained as the product of (7.44)
and (7.45), which reads

W({ψl,w, ψ∗
l,w}, t0) = WSR({ψl,w, ψ∗

l,w}, t0) × WS(χ, χ∗, t0). (7.46)

Consequently, the classical field amplitudes are written as random complex Gaussian numbers

ψl,w(t = t0) =
1
2

(Al,w + iBl,w) , (7.47)

that account for initial quantum fluctuations. The numbers Al,w and Bl,w are real and
independent Gaussian random variables fulfilling

Al,w = Bl,w = 0,

Al′,w′Al,w = Bl′,w′Bl,w = δl,l′δw,w′ ,

Al′,w′Bl,w = 0, (7.48)

where · stands for an average over the random variables. In particular, Eqs. (7.48) imply
that the classical amplitudes are such that

ψl,w
∣
∣
t0

= 0 and ψ∗
l,wψl′,w′

∣
∣
t0

=
1
2
δll′δww′ . (7.49)

This initial – non vanishing – one half variance may somehow be conceived as a half pseudo
particle on each site which must be subtracted when computing the atomic density, as we
already discussed in Chapters 3, 4 and 5. This subtraction appears most naturally in the
Weyl–ordered representation of the total density.

We treat the source of atoms in a completely classical manner and set χ(t = t0) =
√

N
because of the large number of bosonic particles contained in the source that allows us to
neglect the relative uncertainties of both the amplitude and the phase of the source. As in the
mean–field treatment, we also choose κ(t) → 0 and concomitantly maintain N |κ|2 finite and
constant in order to neglect the source depletion or any back–action of the scattering region
onto the source [216]. We can once again, in this formal limit, focus on the evolution within
the scattering region which is prescribed by the evolution of the classical field amplitudes at
each grid point.

In order to obtain this equation, we apply the formalism described in Chapter 3 for imple-
menting the truncated Wigner method to the many–body model described in Eqs. (7.1) and
(7.2). The following evolution equation for the classical field ψl,w at site (l, w) is then yielded
as

i~
d

dt
ψl,w(t) =

(

2Eδ
ql,w

− µql,w + Vl,w

)

ψl,w(t) +
√

Nκδl,lS + Eδgl(|ψl,w(t)|2 − 1)ψl,w(t)

− Eδ
2

[Jl+ψl+1,w(t) + Jl−ψl−1,w(t)] − Eδ
2

[ψl,w+1(t) + ψl,w−1(t)]

+ χlL,w(t)δlL,w + χlR,w(t)δlR,w, (7.50)

where ql,w as well as the effective hopping term Jl± defined in Eq. (7.31) are introduced for the
implementation of smooth exterior complex scaling, with the same meaning as in Eq. (7.30).
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The main difference with the mean–field evolution equation (7.30) is the presence of quantum
noise in the third line of Eq. (7.50). Due to the sampling of the initial quantum state by
random numbers with vanishing mean but finite variance (as is shown in Eq. (7.49)) that
accounts for initial quantum fluctuations, and owing to the necessity of spatially truncating
the system into a finite simulation region, quantum noise originating from the left and from
the right of the simulation region enters the system [216]. This quantum noise, whose exact
shape is derived in Appendix C, is given by

χlL,w(t) = Eδe
−i(2Eδ−µ)τ/~

−1∑

l′=−∞
Ll′(τ)

W−1∑

k=0

Tk(τ)ηl′,k(0)e2πikw/W (7.51)

χlR,w(t) = −Eδe−i(2Eδ−µ)τ/~
∞∑

l′=1

Ll′(τ)
W−1∑

k=0

Tk(τ)ηl′,k(0)e2πikw/W , (7.52)

with τ = (t− t0) and

Ll(t − t0) =
il

2

[

Jl+1

(
Eδτ

~

)

+ Jl−1

(
Eδτ

~

)]

, (7.53)

where Jν(τ) are the Bessel functions of the first–kind of order ν and

Tk(t − t0) =
1√
W
eiEδτ cos(2πk/W )/~. (7.54)

Equipped with a proper sampling of the initial quantum state and with an evolution equation,
we still have to define how we compute observables. They are obtained, as is explained in
Chapter 3, by averages of the relevant observable over the initial many–body quantum state
sampling. We show how to do so for the (k, n) mode density in the momentum space, which
must be evaluated in a slab of L̃×W sites that is localised upstream of the disordered slab
and that should be, for the same reasons as in the mean–field treatment, characterised by
the absence of nonlinearity or disorder. This mode density is explicitly given by

ñk,n =
1
L̃W

〈∣
∣
∣
∣
∣

∑

l

∑

w

ψl,we−2πi(kl/L̃+nw/W )

∣
∣
∣
∣
∣

2〉

− 1
2
, (7.55)

where the subtraction of 1/2 compensates the initial one half variance of the classical field
amplitudes. The related coherent (k, n) mode density in the momentum space is given by

ñcoh
k,n =

1
L̃W

∣
∣
∣
∣
∣

〈
∑

l

∑

w

ψl,we−2πi(kl/L̃+nw/W )

〉∣
∣
∣
∣
∣

2

, (7.56)

and the incoherent one is then obtained through

ñincoh
k,n = ñk,n − ñcoh

k,n . (7.57)

The main difference between the total and the coherent contribution is due to the order in
which the square modulus and the averages (over the disorder and the initial conditions) are
performed. The total contribution is obtained when the square modulus, that destroys any
coherent effect, is performed first whilst the coherent contribution arises when the averages



7.5. Inversion of coherent backscattering beyond the mean–field regime 173

are first performed. We stress again that this notion of coherence is to be understood in
terms of the ability for the various wave components of the bosonic matter wave to yield
interference effects.

Following the same principle, we can also define a total, coherent and incoherent backscattered
current that are yielded as, in a very similar fashion as in the mean–field approximation,

jtot
n = 2π

~

m

√

k2 − k2
n

(

〈|ψ̃n|2〉 − 1
2

)

cos θn (7.58)

jcoh
n = 2π

~

m

√

k2 − k2
n|〈ψ̃n〉|2 cos θn. (7.59)

The incoherent part of the current is most naturally obtained as the subtraction of the
coherent contribution from the total one

jincoh
n = jtot

n − jcoh
n . (7.60)

This discrimination between the coherent and incoherent contribution to the backscattered
current allows us to examine the prevalence of the coherent contribution that carries the dip
structure in a regime that goes beyond the mean–field approximation, as well as to scrutinise
in which extent inelastic scattering dephases interference effects. It has indeed been stressed
in Chapter 5 that dephasing of interference effects is triggered by inelastic scattering that
reduces the phase coherence length and, at some point, annihilates coherent effects. Both
nonlinear diagrammatic theory [115] and numerical studies [372] indicate that far away from
the mean–field regime, a total dephasing is expected, thereby yielding a structureless current,
dominated by the incoherent contribution. Quantifying the advent of this regime of dominat-
ing dephasing is of crucial relevance in an experimental context since it provides indications
whether the inversion of coherent backscattering should be observable or not. Indeed, despite
a partial dephasing of coherence effects, a signature of the coherent backscattering inversion
might prevail in an experimentally accessible regime of parameters.

To shed more light on this issue, interaction effects beyond the mean–field regime are explored
within the parameter space begot by the on–site interaction strength g and the density per
unit surface ρ∅ with the constraint that their product yields a constant nonlinearity ρ∅g/k2.
Any increase of the interaction strength is then concomitantly accompanied by a decrease in
the density per unit surface. We start by investigating the importance of inelastic scattering
in a regime of mean–field parameters corresponding to the red curve of Fig. 7.9 for which
ρ∅g/k2 ≃ 0.00665. This curve shows a partial inversion of coherent backscattering and is
used as a starting point in the investigation of the coherence prevalence.

Figs. 7.10(b) and 7.10(c) indicate that within the mean–field regime, coherent effects domi-
nate the backscattered current and the peak inversion consequently prevails.
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Figure 7.10 – Truncated Wigner simulations of the angular–resolved backscat-
tered current. Panel (a) displays a mean–field simulation in the absence of in-
teraction (dotted orange curve) and in the presence of interaction (dashed red
curve) giving rise to CBS inversion. Panels (b)–(f) show truncated Wigner sim-
ulations of an increasing interaction strength g and a correspondingly decreasing
average density ρ∅, the product gρ∅/k2 ≃ 0.00665 being kept constant for all
simulations. The mean–field peak inversion is preserved beyond the mean–field
approximation in spite of an interaction–induced dephasing. Numerical param-
eters: k =

√
2mµ/~, kδ = 1, 500 realisations of a Gaussian correlated disorder

with disorder strength V0m/~
2k2 = 0.1 and correlation length kσ = 1, length

kLD = 40 and width kW = 120.

Panels (d)–(f) show that, despite a partial dephasing that mitigates the inversion of coherent
backscattering, this effect is preserved, even for densities as low as ρ∅/k2 ≃ 0.067.

We are in a position to examine the possible experimental observability with 87Rb atoms. As
we already mentioned, this atomic species is routinely employed to produce Bose–Einstein
condensates. The observability of the peak inversion with 87Rb atoms is hence of fundamen-
tal relevance.

The two–dimensional effective interaction strength is written as

g̃(x) =
~

2

m
g(x) = 2

√
2π

~
2

m

aS
a⊥(x)

, (7.61)

with a⊥(x) =
√

~/mω⊥(x) the oscillator length associated to the confinement frequency
ω⊥(x) of the trap. In the disordered slab, we can thus write the nonlinear parameter as

g̃(x)
ρ∅

k2
= 2

√
2π

~
2

m

aS
a⊥(x)

ρ∅

k2
. (7.62)
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All the simulations were performed with a chemical potential equal to µ = Eδ/2 = mv2/2,
that yields the wavevector k = mv/~ with v the velocity of the injected matter wave. The
nonlinear parameter is in the case of Fig. 7.10 chosen to ρ∅g(x)/k2 = 0.00665, which yields
the following injected density as

ρ∅ =
0.00665

2
√

2π

a⊥
aS
, (7.63)

which scales as the s–wave scattering length divided by the oscillator length. In the case of
87Rb atoms of mass m = 1.443×10−25 kg and s–wave scattering length aS = 5.313×10−9 m,
Eq. (7.63) predicts that for a confinement frequency of ω⊥/2π = 75 Hz, an injected density
ρ∅/k2 ≈ 0.31 is found. The regime of parameters corresponding to such an injected density
lies between the (d) and (e) panels of Fig. 7.10, which indicates that despite a partial dephas-
ing, as is found in those panels, the coherent backscattering inversion should be observable
experimentally.

In order to comply with our hypothesis of a propagation in the transverse ground mode, we
note that the velocity v of the injected particles related to the choice of parameters yields

v =

√

~ω⊥
m

= 0.00068 m/s, (7.64)

that enforces 1
2mv

2 < ~ω⊥ and allows a posteriori to have assumed a propagation in the
transverse ground state, as the incident kinetic energy is not high enough to populate the
transverse excited levels. We finally indicate that this velocity for the incident matter wave
yields a propagation in the supersonic regime, as the speed of sound within the condensate
is given by

vc =

√

ρ∅g3D

m
√
πa⊥

, (7.65)

where the 1/
√
πa⊥ factor comes from the transverse wavefunction in its ground state φ(z) =

e−z2/2a2
⊥/
√√

πa⊥ evaluated for z = 0 and where g3D = 4π~2aS/m is the 3D interaction
strength. The speed of sound in the condensate is then rewritten as

vc =

√√
2gρ∅

k2
v, (7.66)

confirming the prevention of the advent of superfluidity since vc ≃ 0.1v ≪ v, for the pa-
rameters used in Fig. 7.10 as well as for those used in Fig. 7.11. It thereby confirms the
possible experimental observability of coherent backscattering peak inversion in the presence
of a finite interaction strength with 87Rb atoms.

We still have to determine which regime corresponds to a dominating incoherent contribution
that induces dephasing. To that end, we investigate the regime related to the nonlinearity
that yields a full inversion of coherent backscattering in the mean–field approximation for
which we expect dephasing to be more pronounced, as is shown in Fig. 7.11.
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Figure 7.11 – Truncated Wigner simulations of the angular–resolved backscat-
tered current. The panel (a) displays a mean–field simulation in the absence of
interaction (dotted orange curve) and in the presence of interaction (dashed red
curve) giving rise to CBS inversion. Panels (b)–(f) show truncated Wigner sim-
ulations of an increasing interaction strength g and a correspondingly decreasing
average density ρ∅, the product gρ∅/k2 ≃ 0.00931 being kept constant for all
simulations. The deep dip that appears in the mean–field regime is little by little
destroyed by dephasing but still prevails in the (b)–(d) panels, before getting
hidden behind a structureless and mostly incoherent current in panels (e) and
(f). Numerical parameters: k =

√
2mµ/~, kδ = 1, 500 realisations of a Gaussian

correlated disorder with disorder strength V0m/~
2k2 = 0.1 and correlation length

kσ = 1, length kLD = 40 and width kW = 120.

Fig. 7.10 indicates the presence of a certain dephasing far away from the mean–field limit.
For a higher nonlinear parameter, namely gρ∅/k2 ≃ 0.00931 for Fig. 7.11, dephasing is
already present in a regime of parameters lying in the mean–field regime, as panels (b) and
(c) show. Panel (d) shows that the prevalence of dephasing increases but also that the
inversion remains observable beyond the mean–field regime. Panels (e) and (f) reveal the
annihilation of coherent effects by dephasing far away from the mean–field limit: inelastic
scattering processes have strongly reduced the phase coherence length and nearly completely
destroyed the peak inversion. Panel (f) indeed shows a flat and structureless total profile
mostly resulting from the incoherent current. However, we can conduct the same reasoning as
for Fig. 7.10 regarding the experimental observability and conclude that with the nonlinear
parameter gρ∅/k2 = 0.00931 and the same experimental parameters, an injected density
ρ∅/k2 ≈ 0.44 is found, which situates somewhere between panels (d) and (e). This should
still be observable although dephasing destroys the inversion in some extent. Nevertheless,
other atomic species such as 39K whose s–wave scattering length can be easily tuned to
very low values by means of Feshbach resonances, owing to their large resonance width, may
represent a candidate for which the inversion is more easily experimentally realised.



Conclusion and perspectives

The present manuscript deals with the quantum simulation of transport phenomena in ran-
dom media with ultracold atoms and more specifically with Bose–Einstein condensates. As
we addressed in the manuscript, ultracold atoms actually offer a versatile and efficient tool-
box to emulate complex phenomena originating from condensed–matter physics. In particu-
lar, they supply a sensitive probe to explore coherent and many–body interaction effects in
well–controlled scenarios, both from the theoretical and experimental point–of–view. In this
manuscript, we leveraged this flexibility to study the intriguing competition between coherent
and interaction effects in various contexts with Bose–Einstein condensates. This reveals a
very rich physics where interference effects that naturally arise in the coherent transport of
waves are strongly affected by the presence of many–body interaction effects, highlighting
the crucial need of a fully–fledged understanding of this interplay in view, for instance, of
designing atomtronics components.

We have studied this competition both in one– and two–dimensional situations, in contexts
that are often encountered in solid–state physics. The traditional theoretical approach that is
routinely employed is to account for interaction effects in the mean–field approximation. The
principle of this approach is to cast the complicated many–body problem into a simpler one–
body problem by replacing quantum field operators arising in the modelling of the related
systems by their expectation values. This portrays the interaction experienced by a particle
amongst the N particles constituting the atomic gas as an effective potential created by the
remaining N − 1 particles, which results in a nonlinear Schrödinger equation. This approach
is restricted to very weak interaction strengths and suffers the lack of modelling of inelastic
scattering that may compromise coherent effects. We went one step further by employing the
truncated Wigner method that allows to model inelastic scattering and to address the related
dephasing issues that can eclipse coherent effects. In particular, we used this approach in
this manuscript to evaluate the experimental observability of coherent effects arising in the
scenarios we studied.

The first chapter introduced the transport of coherent waves in random media in a very gen-
eral context. It is written as a launching pad for the rest of the manuscript, as it paves the
way for various ubiquitous concepts, such as the crucial role of disorder, the corresponding
transport lengths or the mechanisms behind diverse interference–related effects. The dis-
cussion follows a path of ascending sophistication in the description of transport of waves,
ranging from the classical and incoherent modelling of transport to Anderson localisation.
Diffusive transport emerges from the classical approach, yielding famous successes, as for
instance Ohm’s law that results from the Drude model or heat conduction. This intuitive
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interpretation gets however compromised by interference effects, that give rise to weak local-
isation and coherent backscattering, which mitigate diffusive transport. The latter gets even
completely suppressed, as strong localisation scenarios indicate.

In the second chapter, we introduced Bose–Einstein condensation – and the related conden-
sates – that we recurrently used in this work. We followed a pedagogical approach and showed
how condensation naturally results from statistical considerations. In particular, we detailed
how it occurs in a trap and how to model it, including the atom–atom interaction amongst
its constituting particles. We showed how in the framework of low energy scattering in the
far–field limit, this atom–atom interaction can be reduced to a two–body interaction modelled
by a contact potential which is encoded by the s–wave scattering length. This quantity may
be tuned by means of Feshbach resonances which are used as a tool to adjust the interaction
parameter. Finally, we also introduced atom lasers that are used in this work as a source
producing coherent and monochromatic matter plane waves, the ideal candidate for studying
interference effects in a disordered landscape. We adapted this scenario to a generic scat-
tering configuration that we particularised in the following chapters to more specific contexts.

As we developed in Chapter 2, the drawbacks of the mean–field approximation restrict the
study to very weak interaction strengths and prevent us from evaluating the prevalence of
dephasing at stronger interaction, which is precisely one of the goals of this work. To this
end, we employed and described in the third chapter the truncated Wigner method, an ap-
proximation method that goes beyond the mean–field approximation by emulating quantum
fluctuations that are neglected in the mean–field approach. A pedagogical introduction of the
Wigner function is performed, laying on familiar concepts associated with the phase–space
formulation of classical mechanics. The extension to quantum mechanics is quite straightfor-
ward, but the price to pay is high: the Wigner function is not a genuine probability density.
Notwithstanding this technical difficulty, this phase–space formulation of quantum mechan-
ics delivers a framework where expectation values are obtained as phase–space averages with
functions, not quantum operators. The motion equation for the Wigner function is however
too complex to be solved as such: a truncation of high order terms is performed and gives its
name to the method. The resulting motion equation has finally been adapted to the generic
scattering configuration we study, so that it is more easily particularised to more specific
configurations.

The fourth chapter was dedicated to Aharonov–Bohm oscillations in the transmission of par-
ticles across the eponymous rings. The Aharonov–Bohm effect, routinely encountered in
solid–state physics, is widely discussed in the first part of the chapter. We then described
the system we study, made of an atom laser injecting matter plane waves towards the scat-
tering region consisting in two one–dimensional leads connected to an Aharonov–Bohm ring.
This system exhibits Aharonov–Bohm oscillations in the transmission of particles across the
ring, as a first demonstration of coherence effects. The interplay with many–body interac-
tion effects has then been investigated, both in the mean–field approximation and with the
truncated Wigner method, and already reveals a notable effect, as a transmission blockade
due to destructive interferences is suspended in the presence of interaction. This blockade
suspension is due to incoherent particles that are locally generated within the ring, owing to
the presence of interaction at this location.
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Adding disorder as a missing ingredient to the previous chapter brings a novel physics that
was discussed in the fifth chapter. Indeed, in the presence of a smooth and weak correlated
disorder in the ring, Aharonov–Bohm oscillations leave the room to half–period and double
frequency oscillations referred to as Al’tshuler–Aronov–Spivak oscillations. Those oscilla-
tions are revealed in the ensemble average of the transmission, required to produce reliable
predictions. A mean–field theory of those oscillations was first discussed, based on the semi-
classical Green’s function of the system that is expressed as a sum over all classical scattering
paths that join an arbitrary point to another one. Those paths are best understood with
the diagrammatic representation that is introduced, paving the way for the full resummation
performed in Chapter 6. This pictorial expression for the Green’s function brings to light
the common mechanism between those oscillations, weak localisation and coherent backscat-
tering. Then, the discretised field equations were numerically integrated in the presence of
interaction, which revealed the advent of a subtle interplay between disorder and interaction:
Al’tshuler–Aronov–Spivak oscillations are inverted. This inversion, and more specifically its
prevalence, was investigated thanks to the truncated Wigner method in a regime that goes
beyond mean–field. Those simulations indicated that the inversion is subject to dephasing
and could be observed for instance with 39K atoms whose s–wave scattering length may be
tuned to very low values.

The sixth chapter was devoted to the development of a diagrammatic theory of Al’tshuler–
Aronov–Spivak oscillations in the ensemble averaged transmission. Based on the diagram-
matic formulation of the noninteracting Green’s function in Chapter 5, we reported a full
resummation of the scattering paths appearing in the Green’s function, as was performed by
our collaborator, Dr. Josef Rammensee. The focus was brought on the diagrams describing
oscillatory motion within the ring. They indeed contain all the ingredients that are neces-
sary to obtain Al’tshuler–Aronov–Spivak oscillations. The full resummation was performed
by regrouping similar diagrams into families which are related through symmetry operations
and a self–consistent equation. A similar procedure was employed for deriving a perturbative
expansion in the nonlinear parameter. Owing to the large number of diagrams involved in
the computation, this expansion is limited to the first order in the nonlinearity. We have
finally compared our numerical findings with the predictions of the interacting diagrammatic
theory and they turned out to be in very good agreement in a regime of very weak interaction.
At stronger interaction, significant deviations occurred, indicating missing ingredients in the
theory, such as higher order terms in the perturbative expansion for example.

The seventh chapter focussed on the two–dimensional transport of ultracold bosonic atoms
in a disorder potential and in the presence of atom–atom interaction. We clarified the scat-
tering region we studied, which is very similar to the experimental configuration in Ref. [57].
Coherent backscattering was encountered both in the ensemble averaged momentum distri-
bution and in the backscattered current. The presence of interaction in the disordered region
yielded an inversion of coherent backscattering, in a fashion similar to what we encountered
with Al’tshuler–Aronov–Spivak oscillations. This inversion and its prevalence were also in-
vestigated beyond the mean–field approximation by means of the truncated Wigner method.
The prominence of dephasing resulting from inelastic scattering is indeed a crucial issue to
address in view of guiding experimentalists towards an implementation of a scheme that can
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reveal the above–mentioned inversion. We found that despite a partial dephasing, the in-
version prevails in a regime that extends beyond mean–field. We also found that 87Rb, an
atomic species routinely employed in ultracold experiments, would constitute a candidate for
the observation of the inversion.

In conclusion, the work reported in this manuscript was mainly devoted to the study of matter
waves transport in various configurations beyond the traditional mean–field approximation.
More generally, this work brings a contribution in the understanding of many–body effects
in transport processes in general. Besides a better understanding of mesoscopic physics
and more specifically of interaction effects in that context, it also has a remote impact on
the implementation of atomtronics devices [32–36]. In this context, the truncated Wigner
method has revealed to be a very useful and versatile tool, particularly in the presence of finite
interaction where significant deviations with the mean–field approximation were encountered.
Other possibilities are also readily offered by this truncated Wigner method, as for instance
the modelling of a finite temperature in the reservoir, as is discussed in the perspectives.
Finally, we would like to conclude by saying that we would be very keen if our work initiated
state–of–the–art transport experiments and stimulated continued research activities.

Perspectives

A lot of prospects and open questions remain at this point unexplored. The first and most
obvious perspective related to our work that is quite accessible in the foreseeable future
concerns the study of coherent forward scattering. As is detailed in the end of Chapter 1,
this interference effect and the related notable peak (whose structure is twin of the coherent
backscattering peak) around the forward direction in the scattered current can be, in some
contexts, understood as a signature of Anderson localisation in the momentum space [143].
As a matter of fact, the scattering region we studied in Chapter 7 is particularly well suited
for this study. The researched peak is however, as such, completely hidden behind the large
intensity peak related to the incident plane wave, as is for instance shown in Fig. 7.5. A
solution to circumvent this issue is to compute the current2 in Eq. (7.41) in a slab located
downstream of the disorder potential, which result is provided in Fig. 2.

2This can be done by extracting ψ̃
(+)
n ≡ α+ψ̃

(+) from Eq. (7.38) and plugging it into Eq. (7.41).
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Figure 2 – Angular resolved current as a function of the back (black curve) and the
forward scattered (blue curve) angles θn = arcsin[2πn/(kW)] in the absence of in-
teraction. A low intensity peak appears in the direction related to forward scatter-
ing. Numerical parameters: k =

√
2mµ/~, kδ = 1,

√
N |κ|2m/~2k2 = 1, 1500 re-

alisations of a gaussian correlated disorder with disorder strength V0m/~
2k2 = 0.1

and correlation length kσ = 1, length kLD = 40 and width kW = 120.

As Fig. 2 illustrates, a peak of amplitude smaller than the coherent backscattering peak
appears in the forward direction. This result is certainly encouraging, but more investigation
is still required to confirm that this peak is due to coherent forward scattering and not, for
instance, to a remnant of the incident wave. Either way, the subsequent investigation of
interaction effects on coherent forward scattering is an interesting and challenging task that
our setup would probably allow to perform.

Other perspectives are still left aside, as for instance the generalisation to three dimensions
and the related investigation of many–body effects. This does not pose any conceptual
difficulty, but this is however a very demanding numerical task to implement the truncated
Wigner method in three dimensions, in particular regarding the generation of quantum noise,
that would have a shape similar to that in Eqs. (7.51) and (7.52), but even more challenging
owing to the higher dimension of space. We could also refine the description of the source to
emancipate from the simplifying hypothesis of an incident plane wave, in a situation closer to
what is experimentally encountered. We however do not expect this extension of our study
to bring something very different from the message we delivered.

Another exciting perspective consists in the implementation of transport configurations in-
volving more than one reservoir and containing a finite number of atoms. In that context,
the most obvious configuration is probably a source–drain scenario. It was already theo-
retically studied in Refs. [323, 373], but also experimentally realised in the group of Tilman
Esslinger with fermionic atoms [47] to generate a particle current resulting from a tempera-
ture imbalance between the reservoirs. The configuration in Ref. [47] consequently requires
the treatment of a finite temperature reservoir, which can actually be quite straightforwardly
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handled in the framework of the truncated Wigner method, as the Wigner function related
to a thermal state is already derived in Eq. (3.34). It would be interesting to study such
a heat engine with bosonic atoms instead, and more particularly to investigate many–body
interaction effects in that context, which remains, to our best knowledge, an open issue.

In a much more advanced stage, the understanding of temperature effects, as well as source–
drain scenarios, could be leveraged to study a source–drain configuration in the presence of a
gate reservoir, (see Fig. 3), the truncated Wigner method providing the suitable framework
for that purpose.

Figure 3 – Schematic theoretical prototype of an atomic transistor where the
source consists in a reservoir at the temperature TL and the chemical potential
µL and the drain is a reservoir at the temperature TR and the chemical potential
µR. A third reservoir at the temperature TG and the chemical potential µG plays
the role of the gate in a transistor and controls the current between the source
and the drain.

The third reservoir, in a role totally analogous to the gate in an electronic transistor, would
control the particle current resulting from a temperature gradient between the reservoirs and
would therefore provide a configuration that mimics a transistor with ultracold atoms. This
long–sought goal of atomtronics remains however nowadays distant because the challenges
are considerable and numerous, but it would certainly be a tremendous progress in the route
towards the implementation of a quantum computer.



Appendix A

Numerical integration routine

In this appendix, we present the home made numerical integration package we developed,
inspired by Ref. [374], for integrating the ordinary differential equations that result from the
discretisation of the continuous scattering regions envisaged in this manuscript in terms of
regular grids. We first expose the general principle of our routine that relies on a Taylor’s
expansion of the solution that is propagated on a regular time grid from the initial to the
final time.

This method is then readily particularised to the 1D mean–field equations we encountered
in the manuscript, with a particular care brought to the nonlinear terms whose derivatives
appearing in the Taylor’s expansion can be very computation time–consuming if implemented
naively. We then generalise this integration routine to the truncated Wigner method. The
main challenge introduced by this implementation lies in an effective computation of the noise
terms, especially in two dimensions, whose discussion constitutes the end of the appendix.

A.1 Taylor’s method for numerical integration

A Cauchy problem, sometimes referred to as an initial value problem, is formulated in two
parts. The first part is an ordinary differential equation

dy

dt
= f [y(t), t], (A.1)

where y ≡ (y1, . . . , yn) is a vector containing the n ∈ N components of the function under
study f : Ω ⊆ (Cn×R) → C

n, [y(t), t] 7→ f [y(t), t], with Ω an open subset of Cn×R. The sec-
ond part is the initial condition y(t0) = y0 of the problem1 that Eq. (A.1) must initially verify.

1The formulation of an initial value problem expressed in Eq. (A.1) does not only reduce the treatment to
first order differential equations. Indeed, the ordinary differential equation of order n

dnx

dtn
= g

[
x(t), ẋ(t), . . . , x(n−1)(t), t

]
(A.2)

with g : Ω′ ⊆ (Cn × R) → C
n,
[
x(t), ẋ(t), . . . , x(n−1)(t), t

]
7→ g

[
x(t), ẋ(t), . . . , x(n−1)(t), t

]
, with Ω′ an open

subset of C
n × R, is perfectly equivalent to Eq. (A.1) provided the vector y is defined according to y ≡[

x(t), ẋ(t), . . . , x(n−1)(t)
]

and f according to f [y(t), t] ≡ g
[
x(t), ẋ(t), . . . , x(n−1)(t), t

]
. In this case, the nth

order ordinary differential equation is cast into a system of n coupled first order ordinary differential equations.
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A solution of the Cauchy problem is a function y(t) that is both solution of Eq. (A.1) and
also fulfils the initial condition y(t0) = y0. The function f appearing in Eq. (A.1) can be
nonlinear, or in general even form a system of nonlinear coupled equations, rendering an
analytical calculation hard, when feasible. Provided the function f is continuous and satisfies
the Lipschitz condition, the solution y is granted to exist and to be unique thanks to the
Picard–Lindelöf theorem.

A very general and systematic way to solve an ordinary differential equation consists in
assuming that the solution is sufficiently differentiable to expand it in Taylor series around
the initial condition t0, which yields

y(t) = y(t0) + (t − t0)
dy

dt

∣
∣
∣
∣
t0

+
(t− t0)2

2!
d2y

dt2

∣
∣
∣
∣
∣
t0

+ . . . . (A.3)

A systematic and iterative procedure for obtaining y(t) at final time tf is to propagate the
initial condition y(t0) = y0 from the initial time t0 step by step to the final time tf on a
regular grid of N + 1 points equally spaced by δt and labelled t0, t1, . . . , tN−1, tN ≡ tf . The
propagation is performed thanks to the Taylor expansion in Eq. (A.3) from one point to its
nearest neighbour on the grid, in the direction of increasing time. This approach actually
boils down to solving a succession of elementary initial value problems. More precisely, the
determination of yn+1, which is the solution at time t ≡ t0+(n+1)δt, amounts to propagating
yn from tn ≡ t0 + nδt to tn+1 ≡ t0 + (n + 1)δt. In other words, this amounts to solving the
Cauchy problem between tn and tn+1, consisting in the ordinary differential equation

dy

dt
= f [y(t), t] (A.4)

together with the initial condition y(tn) = yn. This is achieved via Eq. (A.3) which specifi-
cally reads in this case

yn+1 = yn + δt
dyn
dt

+
1
2

(δt)2 d
2yn
dt2

+ . . . (A.5)

and which is used repeatedly until reaching the final time tf , as is sketched below

The explicit evaluation of the derivatives up to the desired order at each grid point is required
to perform the propagation. The first order derivative is actually already provided by the
ordinary differential equation (A.1) itself and takes on, at time tn, the form ẏn = f [yn, tn].
The second derivative at time tn is obtained by using the chain rule

d2yn
dt2

=
(
∂f

∂t
+ (∇f)

∂y

∂t

)
∣
∣
∣
∣
∣
yn,tn

=
(
∂f

∂t
+ (f · ∇)f

)
∣
∣
∣
∣
∣
yn,tn

. (A.6)
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Higher order derivatives are computed similarly, so that the nth derivative is obtained itera-
tively from the (n− 1)th derivative. The propagation equation therefore reads

yn+1 = yn + δtf [yn, tn] +
1
2

(δt)2
(
∂f

∂t
+ (f · ∇)f

)
∣
∣
∣
∣
∣
yn,tn

+ . . . (A.7)

The quality of the approximation provided by successive propagations of Eq. (A.7) can be
quite good, particularly as the order of the derivative considered in the expansion is large and
the timestep δt small (compared to the convergence radius of the expansion). Practically, a
compromise between both is realised. One may for instance choose a rather large timestep
and obtain accurate results if the expansion includes derivatives of sufficiently high order,
which is particularly interesting when those derivatives are analytically known.

This is also one of the few limitations of Taylor’s method (which a priori applies to any
ordinary differential equation). It indeed requires the calculability of the derivatives up to
the desired order, which is not always granted. Additionally, crossed terms appearing in the
explicit computation of the derivatives may render the process tedious and inefficient. In
some cases however, the structure of the ordinary differential equation allows to derive those
derivatives analytically, as we show below. Automatic differentiation techniques [375–379]
may also be applied to avoid this disadvantage.

A.2 Numerical routine for integrating the one–dimensional

field equations

The finite difference scheme we use to discretise the one–dimensional space results in a lattice
of ordinary differential equations that we numerically integrate following the afore–explained
procedure. The discrete wavefunction at site α is expanded in Taylor series and is propagated
from time t to time t+ δt up to order Nmax according to

ψα(t+ δt) = ψα(t) + δt
dψα
dt

(t) +
1
2

(δt)2 d
2ψα
dt2

(t) + . . . (A.8)

=
Nmax∑

n=0

1
n!

(δt)n
dnψα
dtn

(t) + O
[

(δt)Nmax+1
]

, (A.9)

which is repeatedly used to cross the time grid from initial time t0 to final time t step by
step. The derivatives of the on–site wavefunction ψα are found by successive differentiation
of the field equation at site α. This equation reads

i~
d

dt
ψα(t) =

(
Eδ
qα

− µqα + Vα

)

ψα(t) + gα|ψα(t)|2ψα(t) + κ(t)
√

N δααS

− Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

ψα+1(t) +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

ψα−1(t)

]

. (A.10)

Higher order derivatives are then obtained by differentiating Eq. (A.10) as many times as
requested. Omitting the explicit t dependence, this procedure gives, for instance for the
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second and third derivatives,

i~ψ̈α =
(
Eδ
qα

− µqα + Vα

)

ψ̇α − Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

ψ̇α+1 +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

ψ̇α−1

]

+ gα
(

ψ̇∗
αψαψα + ψ∗

αψ̇αψα + ψ∗
αψαψ̇α

)

(A.11)

i~
...
ψα =

(
Eδ
qα

− µqα + Vα

)

ψ̈α − Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

ψ̈α+1 +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

ψ̈α−1

]

+ gα
(

ψ̈∗
αψαψα + ψ∗

αψ̈αψα + ψ∗
αψαψ̈α

+2ψ̇∗
αψ̇αψα + 2ψ̇∗

αψαψ̇α + 2ψ∗
αψ̇αψ̇α

)

(A.12)

...

We then inject those expressions in the Taylor expansion (A.9). In the differentiation process,
since in the manuscript κ(t) is a function that is adiabatically and smoothly ramped to a
constant value, we treat the source term as a constant with respect to t. Whilst the com-
putation of the wavefunction derivatives is straightforward and iterative, terms appearing in
the derivatives of the nonlinear term in Eq. (A.10) generally require an important computa-
tion time. We may however leverage the specific pattern appearing as we can write the nth

derivative of the nonlinear term as

dn

dtn
[ψ∗
α(t)ψ2

α(t)] =
n∑

k=0

(

n

k

)

dk

dtk
ψ∗
α(t)

dn−k

dtn−kψ
2
α(t), (A.13)

where
(n
k

)
is the binomial coefficient and the derivative of order ν = (n− k) of ψ2

α(t) is found
to be

dν

dtν
ψ2
α(t) =

ν∑

λ=0

(

ν

λ

)

dλ

dtλ
ψα(t)

dν−λ

dtν−λψα(t), (A.14)

which allows one to cast the nth derivative of the nonlinear term into the compact expression

dn

dtn
[ψ∗
α(t)ψ2

α(t)] =
n∑

k=0

n−k∑

λ=0

(

n

k, λ, n − k − λ

)

dk

dtk
ψ∗
α(t)

dλ

dtλ
ψα(t)

dn−k−λ

dtn−k−λψα(t), (A.15)

where
( n
k,λ,n−k−λ

)
is the trinomial coefficient. An efficient computation of the latter is obtained

thanks to Pascal pyramid, where the following recursion relation is used
(

n

k, ν, n− k − ν

)

=

(

n− 1
k − 1, ν, n − k − ν

)

+

(

n− 1
k, ν − 1, n− k − ν

)

+

(

n− 1
k, ν, n− k − ν − 1

)

,

(A.16)
showing that the nth level of the pyramid is built from the n−1th one, as is shown in Fig. A.1.
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Figure A.1 – Pascal pyramid showing how trinomial coefficients of the nth layer
of the pyramid can be built recursively from those of the n− 1th layer.

The nth derivative of the on–site wavefunction ψα is then explicitly written and computed as

i~
dn

dtn
ψα(t) =

(
Eδ
qα

− µqα + Vα

)
dn−1

dtn−1
ψα(t)

− Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

dn−1

dtn−1
ψα+1(t) +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

dn−1

dtn−1
ψα−1(t)

]

+ gα

n∑

k=0

n−k∑

λ=0

(

n

k, λ, n − k − λ

)

dk

dtk
ψ∗
α(t)

dλ

dtλ
ψα(t)

dn−k−λ

dtn−k−λψα(t), (A.17)

where the Pascal pyramid and the related trinomial coefficients are computed and stored at
the beginning of the computation for the sake of efficiency.

A.3 Numerical routine for integrating the one–dimensional

field equations resulting from the truncated Wigner method

In this case, the field equations for the classical field ψα at site α, are very similar to Eq. (A.10)
and read

i~
d

dt
ψα(t) =

(
Eδ
qα

− µqα + Vα

)

ψα(t) + gα(|ψα(t)|2 − 1)ψα(t) + κ(t)
√

N δααS

− Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

ψα+1(t) +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

ψα−1(t)

]

+ χin,L(t)δα,αL
+ χin,R(t)δα,αR

, (A.18)
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where

χin,L(t) = Eδ

αL−1
∑

α′=0

Mα′−αL
(t− t0)ψα′(t0)

χin,R(t) = −Eδ
αout∑

α′=αR+1

Mα′−αR
(t − t0)ψα′(t0)

and with

Mα(τ) =
iα

2

[

Jα−1

(
Eδτ

~

)

+ Jα−1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~ ≡ Lα(τ)e−i(Eδ−µ)τ/~, (A.19)

with αL (resp. αR) the first (resp. last) site of the scattering region and αout = αR +NSECS

the last site downstream of the scattering region in the presence of a complex region. These
quantum noise terms consist in a summation over all sites required for complex scaling, both
in the left and right neighbour regions of the scattering region, of (up to less important
factors) products of Bessel functions and initial amplitudes of the classical fields ψα(t0).
Omitting once again the explicit t dependence, the derivatives of the propagation equation
remain essentially the same and read

i~ψ̈α =
(
Eδ
qα

− µqα + Vα

)

ψ̇α − Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

ψ̇α+1 +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

ψ̇α−1

]

+ gα
(

ψ̇∗
αψαψα + ψ∗

αψ̇αψα + ψ∗
αψαψ̇α

)

− gαψ̇α + χ̇in,L(t)δα,αL
+ χ̇in,R(t)δα,αR

(A.20)

i~
...
ψα =

(
Eδ
qα

− µqα + Vα

)

ψ̈α − Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

ψ̈α+1 +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

ψ̈α−1

]

+ gα
(

ψ̈∗
αψαψα + ψ∗

αψ̈αψα + ψ∗
αψαψ̈α

+2ψ̇∗
αψ̇αψα + 2ψ̇∗

αψαψ̇α + 2ψ∗
αψ̇αψ̇α

)

− gαψ̈α + χ̈in,L(t)δα,αL
+ χ̈in,R(t)δα,αR

... (A.21)

The derivatives of the noise terms coming from the left, χin, and the right, χout, of the system
are directly2 related to the derivatives of Mα(τ) which can be themselves related to those of

2Since ψ̇α(t0) and all higher order derivatives terms are equal to zero.
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the Bessel functions of the first kind

Ṁα(τ) =
iα

2

[

J̇α−1

(
Eδτ

~

)

+ J̇α+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~

+
iα

2
[−i(Eδ − µ)]

[

Jα−1

(
Eδτ

~

)

+ Jα+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~ (A.22)

M̈α(τ) =
iα

2

[

J̈α−1

(
Eδτ

~

)

+ J̈α+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~

+ 2
iα

2
[−i(Eδ − µ)]

[

J̇α−1

(
Eδτ

~

)

+ J̇α+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~

+
iα

2
[−i(Eδ − µ)]2

[

Jα−1

(
Eδτ

~

)

+ Jα+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~ (A.23)

...
Mα(τ) =

iα

2

[
...
J α−1

(
Eδτ

~

)

+
...
J α+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~

+ 3
iα

2
[−i(Eδ − µ)]

[

J̈α−1

(
Eδτ

~

)

+ J̈α+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~

+ 3
iα

2
[−i(Eδ − µ)]2

[

J̇α−1

(
Eδτ

~

)

+ J̇α+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~ (A.24)

+
iα

2
[−i(Eδ − µ)]3

[

Jα−1

(
Eδτ

~

)

+ Jα+1

(
Eδτ

~

)]

e−i(Eδ−µ)τ/~ (A.25)

...

We observe that the nth derivative of Mα(τ) depends upon the nth derivative (and all lower
order) derivatives of Bessel functions and that the derivatives of an order n′ ≤ n, can be
stored in a common factor with a prefactor given by the binomial coefficient

(n
n′

)
times

[i(Eδ − µ)](n−n′), which yields

dnMα(τ)
dτn

=
iα

2

n∑

n′=0

(

n

n′

)

[−i(Eδ − µ)](n−n′)




dn

′
Jα−1

(
Eδτ
~

)

dτn′ +
dn

′
Jα+1

(
Eδτ
~

)

dτn′



 e−i(Eδ−µ)τ/~.

(A.26)
The nth derivative of Mα(τ) can obviously be computed from all lower derivatives and from
the derivatives of Bessel functions of the first kind Jν(z) which can all be computed exploiting
the following property

dJν(z)
dz

=
1
2

[Jν−1(z) − Jν+1(z)] . (A.27)

Higher order derivatives of Jν(z) are then given by

d2Jν(z)
dz2

=
1
4

[Jν−2(z) − 2Jν(z) + Jν+2(z)] (A.28)

d3Jν(z)
dz3

=
1
8

[Jν−3(z) − 3Jν−1(z) + 3Jν+1(z) − Jν+3(z)] (A.29)

d4Jν(z)
dz4

=
1
16

[Jν−4(z) − 4Jν−2(z) + 6Jν(z) − 4Jν+2(z) + Jν+4(z)] (A.30)

...

dnJν(z)
dzn

=
1
2n

n∑

ν′=0

(−1)ν
′

(

n

ν ′

)

Jν+2ν′−n(z), (A.31)
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where
(n
ν′

)
is the binomial coefficient that can be efficiently computed through the building

of Pascal triangle. One can further take advantage of the symmetry of the Bessel functions
with respect to ν that reads

J−ν(z) = (−1)νJν(z) (A.32)

to derive the same symmetry property for the nth derivative

dnJ−ν(z)
dzn

=
1
2n

n∑

ν′=0

(−1)ν
′

(

n

ν ′

)

J−ν+2ν′−n(z) =
1
2n

n∑

ν′=0

(−1)ν
′

(

n

ν ′

)

J−(ν−2ν′+n)(z)

=
1
2n

n∑

ν′=0

(−1)ν
′
(−1)(ν−2ν′+n)

(

n

ν ′

)

Jν−2ν′+n(z)

=
1
2n

(−1)(ν+n)
n∑

ν′=0

(−1)−ν′

(

n

ν ′

)

Jν−2ν′+n(z)

=
1
2n

(−1)(ν+n)
0∑

ν′′=n

(−1)(ν′′−n)

(

n

n− ν ′′

)

Jν+2ν′′−n(z)

=
1
2n

(−1)ν
n∑

ν′′=0

(−1)ν
′′

(

n

ν ′′

)

Jν+2ν′′−n(z) = (−1)ν+n d
nJν(z)
dzn

, (A.33)

which is numerically exploited to spare the computation of derivatives related to a negative
order.

The nth derivative of the noise terms finally reads (where, without loss of generality, we have
set t0 = 0 for the sake of clarity and brevity)

dnχin,L(t)
dtn

= Eδ

αL−1
∑

α′=0

{

iα

2

n∑

n′=0

(

n

n′

)

[i(Eδ − µ)](n−n′)

[

1
2n′

n′
∑

ν′=0

(−1)ν
′

(

n′

ν ′

)

Jα−1+2ν′−n′

(
Eδt

~

)

+
1

2n′

n′
∑

ν′=0

(−1)ν
′

(

n′

ν ′

)

Jα+1+2ν′−n′

(
Eδt

~

)]

ei(Eδ−µ)t/~

}

ψα′(0)

(A.34)

dkχin,R(t)
dtn

= −Eδ
αout∑

α′=αR+1

{

iα

2

n∑

n′=0

(

n

n′

)

[i(Eδ − µ)](n−n′)

[

1
2n′

n′
∑

ν′=0

(−1)ν
′

(

n′

ν ′

)

Jα−1+2ν′−n′

(
Eδt

~

)

+
1

2k′

n′
∑

ν′=0

(−1)ν
′

(

n′

ν ′

)

Jα+1+2ν′−n′

(
Eδt

~

)]

ei(Eδ−µ)t/~

}

ψα′(0).

(A.35)
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The nth derivative of the field amplitudes ψα is then explicitly written and computed as

i~
dn

dtn
ψα(t) =

(
Eδ
qα

− µqα + Vα

)
dn−1

dtn−1
ψα(t)

− Eδ
2

[(

1
qα+1

+
δ

2
q′
α+1

q2
α+1

)

dn−1

dtn−1
ψα+1(t) +

(

1
qα−1

− δ

2
q′
α−1

q2
α−1

)

dn−1

dtn−1
ψα−1(t)

]

+ gα

n∑

k=0

n−k∑

λ=0

(

n

k, λ, n− k − λ

)

dk

dtk
ψ∗
α(t)

dλ

dtλ
ψα(t)

dn−k−λ

dtn−k−λψα(t) − gα
dn−1

dtn−1
ψα(t)

+
dn−1

dtn−1
χin,L(t)δα,αL

+
dn−1

dtn−1
χin,R(t)δα,αR

, (A.36)

where, once again, Pascal pyramid and the related trinomial coefficients that appear both in
the derivatives on the nonlinear term as well as in the derivatives of the quantum noise terms
entering the scattering region, are computed and stored at the beginning of the computation.

A.4 Numerical routine for integrating the two–dimensional

field equations

Two–dimensional field equations possess essentially the same structure as the one–dimensional
field equations. They are given by

i~
d

dt
ψl,w(t) =

(
2Eδ
ql

− µql + Vl,w

)

ψl,w(t)

− Eδ
2

[(

1
ql+1

+
δ

2
q′
l+1

q2
l+1

)

ψl+1,w(t) +

(

1
ql−1

− δ

2
q′
l−1

q2
l−1

)

ψl−1,w(t)

]

− Eδ
2

[ψl,w+1(t) + ψl,w−1(t)] + gl|ψl,w(t)|2ψl,w(t) + κ(t)
√

N δl,αS
, (A.37)

The derivatives are obtained similarly as for the one–dimensional field equations and can be
written

i~
dn

dtn
ψl,w(t) =

(
2Eδ
ql

− µql + Vl,w

)
dn−1

dtn−1
ψl,w(t)

− Eδ
2

[(

1
ql+1

+
δ

2
q′
l+1

q2
l+1

)

dn−1

dtn−1
ψl+1,w(t) +

(

1
ql−1

− δ

2
q′
l−1

q2
l−1

)

dn−1

dtn−1
ψl−1,w(t)

]

− Eδ
2

[

dn−1

dtn−1
ψl,w+1(t) +

dn−1

dtn−1
ψl,w−1(t)

]

+ gl

n∑

k=0

n−k∑

λ=0

(

n

k, λ, n − k − λ

)

dk

dtk
ψ∗
l,w(t)

dλ

dtλ
ψl,w(t)

dn−k−λ

dtn−k−λψl,w(t), (A.38)

where Pascal pyramid and the related trinomial coefficients are computed and stored at the
beginning of the computation.
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A.5 Numerical routine for integrating the two–dimensional

field equations resulting from the truncated Wigner method

In this case, the field equations for the classical field ψl,w at site (l, w), are very similar to
Eq. (A.37) and read

i~
d

dt
ψl,w(t) =

(
2Eδ
ql

− µql + Vl,w

)

ψl,w(t) + gl(|ψl,w(t)|2 − 1)ψl,w(t) + κ(t)
√

N δl,αS

− Eδ
2

[(

1
ql+1

+
δ

2
q′
l+1

q2
l+1

)

ψl+1,w(t) +

(

1
ql−1

− δ

2
q′
l−1

q2
l−1

)

ψl−1,w(t)

]

− Eδ
2

[ψl,w+1(t) + ψl,w−1(t)]

+ χlL,w(t)δlL,w + χlR,w(t)δlR,w, (A.39)

where the quantum noise terms entering the scattering region are given by

χlL,w(t) = Eδ

W−1∑

w′=0

lL−1
∑

l′=−∞
Ll′−lL(t − t0)Tw−w′(t− t0)e−i(2Eδ−µ)(t−t0)/~ψl′,w′(t0)

χlR,w(t) = −Eδ
W−1∑

w′=0

∞∑

l′=lR+1

Ll′−lR(t− t0)Tw−w′(t − t0)e−i(2Eδ−µ)(t−t0)/~ψl′,w′(t0) (A.40)

and with

Lλ(τ) =
iλ

2

[

Jλ−1

(
Eδτ

~

)

+ Jλ−1

(
Eδτ

~

)]

, (A.41)

and

Tω(z) =
1
W

W−1∑

ω′=0

eiz cos( 2πω′

W
)e

2πiωω′

W ≃ iωJω(z), (A.42)

which are, respectively, convolution kernels in the longitudinal and transverse directions.
Eqs. (A.40) can be further simplified performing the substitutions l′′ = l′−lR and l′′′ = l′−lL,
as well as using the periodicity of the classical fields ψl′′+lL,w′ = ψl′′,w′ and ψl′′′+lR,w′ = ψl′′′,w′

yielding, after renaming l′′ → l′ and l′′′ → l′,

χlL,w(t) = Eδ

W−1∑

w′=0

−1∑

l′=−∞
Ll′(t− t0)Tw−w′(t− t0)e−i(2Eδ−µ)(t−t0)/~ψl′,w′(t0)

χlR,w(t) = −Eδ
W−1∑

w′=0

∞∑

l′=1

Ll′(t − t0)Tw−w′(t − t0)e−i(2Eδ−µ)(t−t0)/~ψl′,w′(t0). (A.43)

Further simplifications occur if we take the discrete Fourier transform of the classical fields
at initial time, which leaves the noise terms in Eq. (A.43) totally unchanged. As a matter
of fact, the discrete Fourier transform of the zero mean and unit variance gaussian random
classical fields ψl,w(t0) yields Fourier coefficients ηl,k which are random gaussian variables
with the same mean and variance. Taking the discrete Fourier transform of ψl,j(t0) allows us
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to rewrite Eq. (A.43), for instance for χlR,w(t), as

χlR,w(t) = −Eδ
W−1∑

w′=0

∞∑

l′=1

Ll′(t − t0)Tw−w′(t − t0)e−i(2Eδ−µ)(t−t0)/~ψl′,w′(t0)

= −Eδ
W−1∑

w′=0

∞∑

l′=1

Ll′(t − t0)Tw−w′(t − t0)e−i(2Eδ−µ)(t−t0)/~

(

1√
W

W−1∑

k=0

ηl′,k(t0)e2πikw′/W

)

= −Eδ
∞∑

l′=1

W−1∑

k=0

Ll′(t − t0)

(

1√
W

W−1∑

w′=0

Tw−w′(t − t0)e2πik(w′−w)/W

)

︸ ︷︷ ︸

Tk(t−t0)

× e2πikw/W e−i(2Eδ−µ)(t−t0)/~ηl′,k(t0).
(A.44)

This new kernel in the transverse direction is indeed much more convenient to deal with than
the previous one since

Tk(t− t0) =
1√
W

W−1∑

j′=0

Tw−w′(t− t0)e2πik(w′−w)/W =
1√
W

W−1∑

λ=0

Tλ(t− t0)e2πikλ/W

=
1

W
√
W

W−1∑

k′=0

W−1∑

λ=0

e2πi λ
W

(k′−k)

︸ ︷︷ ︸

Wδkk′

ei(t−t0) cos(2πk′/W ) =
1√
W
ei(t−t0) cos(2πk/W ), (A.45)

where we have performed the variable substitution λ = w −w′ and once again exploited the
periodicity of the terms appearing in the kernel. We finally recognise in the form of the noise
term

χlR,w(t) = −Eδe− i
~

(2Eδ−µ)(t−t0)
∞∑

l′=1

Ll′(t − t0)
W−1∑

k=0

Tk(t− t0)ηl′,k(t0)e2πikw/W (A.46)

a discrete Fourier transform performed in the transverse direction, allowing us to write the
Fourier coefficients associated with the noise term as

χ̂lR,k(t) = −Eδe− i
~

(2Eδ−µ)(t−t0)Tk(t − t0)
∞∑

l′=1

Ll′(t− t0)ηl′,k(t0), (A.47)

which is much lighter to compute than the expression of the noise term in the direct space,
even considering that the inverse Fourier transform of this latter expression should finally be
computed, as can be expedited by the use of fast Fourier transform algorithms. It finally
allows us to write the Fourier coefficients associated with both noise terms as

χ̂lL,k(t) = Eδe
− i

~
(2Eδ−µ)(t−t0)Tk(t − t0)

−1∑

l′=−∞
Ll′(t − t0)ηl′,k(t0)

χ̂lR,k(t) = −Eδe− i
~

(2Eδ−µ)(t−t0)Tk(t − t0)
∞∑

l′=1

Ll′(t− t0)ηl′,k(t0). (A.48)
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We are now in a position to derive the derivative of order n of the classical field ψl,w. The
derivatives of the longitudinal convolution kernel have already been calculated and read

dnLl(τ)
dτn

=
il

2




dnJl−1

(
Eδτ
~

)

dτn
+
dnJl+1

(
Eδτ
~

)

dτn



 , (A.49)

where the nth derivative of the Bessel function of the first kind has already been evaluated in
Eq. (A.31). The derivatives of the transverse convolution kernel can be repeatedly computed
using that property

∂Kλ(z)
∂z

=
i

2
[Kλ−1(z) +Kλ+1(z)] , (A.50)

because this relationship allows for the easy calculation of higher order derivatives that follows

d2Kλ(z)
dz2

=
−1
4

(Kλ−2(z) +Kλ(z) +Kλ+2(z)) , (A.51)

d3Kλ(z)
dz3

=
−i
8

(Kλ−3(z) + 3Kλ−1(z) + 3Kλ+1(z) +Kλ+3(z)) , (A.52)

d4Kλ(z)
dz4

=
1
16

(Kλ−4(z) + 4Kλ−2(z) + 6Kλ(z) + 4Kλ+2(z) +Kλ+4(z)) , (A.53)

...

dnKλ(z)
dzn

=
(
i

2

)n n∑

λ′=0

(

n

λ′

)

Kλ+2λ′−n(z). (A.54)

Furthermore exploiting the property

dn

dtn
A(t)B(t)C(t) =

n∑

k=0

n−k∑

λ=0

(

n

k, λ, n− k − λ

)

dk

dtk
A(t)

dλ

dtλ
B(t)

dn−k−λ

dtn−k−λC(t), (A.55)

the form of the convolution kernels derivatives and the derivative of the exponential appearing
in the noise terms, one can write

dn

dtn
χ̂lL,k(t) = Eδ





−1∑

l′=−∞

(
n∑

k=0

n−k∑

λ=0

(

n

k, λ, n − k − λ

)

dk

dtk
Ll′(t− t0)

dλ

dtλ
Tk(t− t0)

dn−k−λ

dtn−k−λ e
− i

~
(2Eδ−µ)t

)

ηl′,k(t0)

]

(A.56)

dn

dtn
χ̂lR,k(t) = −Eδ

[ ∞∑

l′=1

(
n∑

k=0

n−k∑

λ=0

(

n

k, λ, n − k − λ

)

dk

dtk
Ll′(t− t0)

dλ

dtλ
Tk(t− t0)

dn−k−λ

dtn−k−λ e
− i

~
(2Eδ−µ)t

)

ηl′,k(t0)

]

.

(A.57)
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Finally, the derivatives of the classical fields which are used in the propagation prescribed in
Eq. (A.7) are written

i~
dn

dtn
ψl,w(t) =

(
2Eδ
ql

− µql + Vl,w

)
dn−1

dtn−1
ψl,w(t)

− Eδ
2

[(

1
ql+1

+
δ

2
q′
l+1

q2
l+1

)

dn−1

dtn−1
ψl+1,w(t) +

(

1
ql−1

− δ

2
q′
l−1

q2
l−1

)

dn−1

dtn−1
ψl−1,w(t)

]

− Eδ
2

[

dn−1

dtn−1
ψl,w+1(t) +

dn−1

dtn−1
ψl,w−1(t)

]

+ gl

n∑

k=0

n−k∑

λ=0

(

n

k, λ, n − k − λ

)

dk

dtk
ψ∗
l,w(t)

dλ

dtλ
ψl,w(t)

dn−k−λ

dtn−k−λψl,w(t)

+ δlL,w
dn−1

dtn−1
χlL,w(t) + δlR,w

dn−1

dtn−1
χlR,w(t), (A.58)

where the nth derivatives of χlL,w(t) and χlL,w(t) are given in Eqs. (A.56) and (A.57), and
where we have renamed k → w.





Appendix B

Introduction to Green’s functions

Green’s functions are a convenient mathematical tool that is used to solve initial (or bound-
ary) value problems. It is used to transform the related linear ordinary (or partial) inho-
mogeneous differential equation into an integral equation. Despite this kind of equation is
not necessarily easier to solve analytically – when it is possible to do so – than the original
one, it usually suggests to apply a perturbation theory. In this appendix, we briefly present
how Green’s functions can be used to solve inhomogeneous ordinary differential equations
and how this technique readily generalises to partial differential equations. Specifically, we
apply this formalism to the Schrödinger equation and develop the underlying Hamiltonian in
a perturbative series which most naturally leads to the Dyson equation for the total Green’s
function.

B.1 Green’s function of an ordinary differential equation

In this section, we follow the discussion in the following (excellent) reference [380]. An initial
value (or Cauchy) problem is determined by a linear differential equation of the form

N∑

n=0

an(t)
dn

dtn
f(t) = φ(t) (B.1)

for a function f(t) and a source term φ(t), which can also be written in terms of the differential
operator

L̂(t) =
N∑

n=0

an(t)
dn

dtn
(B.2)

as L̂(t)f(t) = φ(t). The Cauchy problem is completely determined by Eq. (B.1) along with
the related initial conditions f (n)(t0) = fn, with n = 0, . . . , N − 1, on the function of in-
terest. They provide the state of the system at initial time and allow one to determine the
integration constants appearing in the general solution. Such problems frequently appear
in physics, especially when N = 2. The most prominent example of which is Newton’s law
of motion, where the unknown function f(t) plays the role of the position of the centre of
mass of the studied system and the source term corresponds to the net force applied to that
centre–of–mass.
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The Green’s function G(t, t′) of the system described by Eq. (B.1) is the function (or more
generally and rigorously, the distribution) that satisfies the same differential equation as the
initial one, but where the source term φ(t) in the right hand side of Eq. (B.1) is replaced by
a Dirac impulse δ(t − t′). It is formally yielded as the solution of

N∑

n=0

an(t)
dn

dtn
G(t, t′) = δ(t − t′) (B.3)

or equivalently L̂(t)G(t, t′) = δ(t− t′) and satisfies to the same initial conditions as Eq. (B.1)
do. This formal definition for the Green’s function provides an interpretation in terms of the
impulse response of the system described by Eq. (B.1). It contains all the internal dynamics
of the system whilst the source term appearing in the right hand side of Eq. (B.1) corresponds
to an external excitation of the system.

The original equation (B.1) can be tedious (or even impossible) to solve analytically, whereas
Eq. (B.3) is easier to solve. It permits to obtain the solution of Eq. (B.1) systematically by
exploiting the linearity of the differential operator L̂. Indeed, multiplying (B.3) in operator
form by φ(t′) and integrating over t′ yields

∫ ∞

−∞
L̂(t)G(t, t′)φ(t′)dt′ =

∫ ∞

−∞
δ(t − t′)φ(t′)dt′ = φ(t), (B.4)

which highlights a decomposition of the source term as a linear superposition of time–shifted
impulses applied at time t′ and weighted by φ(t′). Owing to the linearity of the differential
operator, it can be taken outside the integral, which motivates to write the (particular)
solution of Eq. (B.1) as the same linear superposition of time–shifted impulse responses at
time t′, also weighted by φ(t′). This is formally written as the integral form1

fp(t) =
∫ ∞

−∞
G(t, t′)φ(t′)dt′, (B.5)

because fp(t) solves L̂fp(t) = φ(t), that is, fp(t) is a solution of Eq. (B.1) whose general
solution is given by

f(t) = fh(t) +
∫ ∞

−∞
G(t, t′)φ(t′)dt′, (B.6)

where fh(t) is the solution of the associated homogeneous equation L̂(t)fh(t) = 0. This
highlights that once the Green’s function of L̂(t) is computed, any particular solution due
to another external excitation φ′(t) is obtained by performing the integral in Eq. (B.5). The
task amounts thus to determining the proper Green’s function, not only determining the
solutions of Eq. (B.3), but also choosing amongst those solutions the one which satisfies the
initial (or boundary, in case of a partial differential equation) conditions which are imposed
by the problem under study. Finding the Green’s function that solves Eq. (B.3) is quite easy
when the coefficients are constant but becomes more tedious when they are not. To shed
more light on this process, we treat the classical spring–mass system as an example.

1In case the Green’s function depends only on the difference between its arguments G(t, t′) ≡ G(t− t′), as
is the case in systems which are invariant under translation, then Eq. (B.5) becomes a convolution product.
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B.1.1 Green’s function of the classical harmonic oscillator

The motion of a mass m attached to a spring of stiffness k obeys a second order ordinary
differential equation resulting from Newton’s law of motion that reads

(

d2

dt2
+ ω2

0

)

x(t) =
F (t)
m

, (B.7)

where ω0 =
√

k/m is the eigenfrequency of the system. The Green’s function of the system
obeys

(

d2

dt2
+ ω2

0

)

G(t, t′) = δ(t − t′), (B.8)

which gives, in the Fourier space, the following algebraic equation
(

−ω2 + ω2
0

)

G(ω) = 1, (B.9)

whose solution is given by G(ω) = −1/(ω2 − ω2
0). This function possesses two simple poles

on the real axis at ω = ±ω0 which renders it, as such, not integrable over the real axis. The
inverse Fourier transform gives the solution of Eq. (B.8) in the direct space as

G(t, t′) = − 1
2π

∫ ∞

−∞

eiω(t−t′)

ω2 − ω2
0

dω. (B.10)

We evaluate this integral by standard residue calculus, namely by closing the real axis with
a semi–circle of radius R → ∞ in the lower or upper semi–half plane, depending on the sign
of (t − t′), and applying the residue theorem to evaluate

− 1
2π

lim
R→∞

∮

Γ±

eiω(t−t′)

ω2 − ω2
0

dω (B.11)

along the closed contour contour Γ± = γ1 ◦ γ±
2 parametrised by

γ1 : [−R,R] → C, ω 7→ ω

γ±
2 : [0, π] → C, ϕ 7→ Re±iϕ

in the limit R → ∞. In this limit, the integration along γ1 renders the inverse Fourier trans-
form whilst the integration along γ±

2 vanishes, provided the good path is followed to close
the contour. The residue theorem is finally applied to expedite the evaluation of (B.11).

However, owing to the presence of the poles lying on the real axis, a more sophisticated con-
tour that circumvents the two poles must be prescribed, for instance by slightly deforming γ1

to add two circles of radius ǫ (in the limit ǫ → 0) centred on the two poles. Following Feyn-
man’s prescription [381], we may equivalently keep the contour γ± unchanged, provided that
we instead add a small imaginary part ±iǫ (still in the limit ǫ → 0) to the poles, amounting to
displacing them away from the real axis, either in the upper or in the lower half–circle. Apply-
ing this prescription, the poles are then slightly modified as ω = ±(ω0 ±iǫ) in the limit ǫ → 0.
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Depending on the causal or anticausal feature of the system, we have to introduce the re-
tarded (or causal) Green’s function G(ret)(t, t′) that is nonzero only when t > t′ and the
advanced (or anticausal) Green’s function G(ad)(t, t′) that is nonzero when t < t′.

For the retarded Green’s function G(ret)(t, t′) related the case t − t′ > 0, we choose the
contour as Γ+ = γ1 ◦ γ+

2 , with the poles slightly shifted in the upper plane yielding the
following integral

G(ret)(t, t′) = − 1
2π

lim
R→∞,ǫ→0

∮

Γ+

eiω(t−t′)

(ω + ω0 + iǫ)(ω − ω0 + iǫ)
dω (B.12)

which may be computed by means of the residue theorem which states in this case that

G(ret)(t, t′) = −i lim
ǫ→0




eiω(t−t′)

ω + ω0

∣
∣
∣
∣
∣
ω=ω0+iǫ

+
eiω(t−t′)

ω − ω0

∣
∣
∣
∣
∣
ω=−ω0+iǫ



 =
sin [ω0(t− t′)]

ω0
, (B.13)

because the two simple poles are the only singularities within the path and the integral along
the path γ+

2 goes to zero in the limit R → ∞. If t− t′ < 0, the integration is performed along
Γ− = γ1 ◦ γ−

2 and G(ret)(t, t′) = 0, because of the Cauchy theorem. This reflects the causal
feature of the system.

For the advanced Green’s function G(ad)(t, t′) related to the case t − t′ < 0, we choose the
contour as Γ− = γ1 ◦ γ−

2 , with the poles slightly shifted in the lower plane, yielding the
following integral

G(ad)(t, t′) = − 1
2π

lim
R→∞,ǫ→0

∮

Γ−

eiω(t−t′)

(ω + ω0 − iǫ)(ω − ω0 − iǫ)
dω (B.14)

which may be computed by means of the residue theorem which states in this case that

G(ret)(t, t′) = i lim
ǫ→0




eiω(t−t′)

ω + ω0

∣
∣
∣
∣
∣
ω=ω0−iǫ

+
eiω(t−t′)

ω − ω0

∣
∣
∣
∣
∣
ω=−ω0−iǫ



 = −sin [ω0(t− t′)]
ω0

, (B.15)

because the two simple poles are the only singularities within the path and the integral along
path Γ−

2 goes to zero in the limit R → ∞. If t − t′ > 0, the integration is performed along
Γ+ = γ1 ◦γ+

2 and G(ad)(t, t′) = 0, because of the Cauchy theorem. This reflects the anticausal
feature of the system.

To sum up, we obtained two Green’s functions that both satisfy Eq. (B.8) and which are
referred to as retarded (or causal) and advanced (or anticausal) Green’s function. They can
be written in the compact form

G(ret)(t, t′) =
1
ω0
θ(t− t′) sin

[
ω0(t − t′)

]
= G(ad)(t′, t) (B.16)

G(ad)(t, t′) = − 1
ω0
θ(t′ − t) sin

[
ω0(t− t′)

]
= G(ret)(t′, t), (B.17)

where the Heaviside step function θ(·) ensures that the retarded (resp. advanced) Green’s
function G(ret)(t, t′) (resp. G(ad)(t, t′)) is zero if t < t′ (resp. t > t′), in agreement with the
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causality (resp. anticausality). The choice of the appropriate Green’s function is dictated by
the problem under study. Since we are here interested in a causal solution, we choose the
retarded Green’s function G(ret)(t, t′) and the general solution of Eq. (B.7) is then obtained
thanks to the integral form provided in Eq. (B.6) which reads

x(t) = A cos(ω0t) +B sin(ω0t) +
1
ω0

∫ t

−∞
sin
[
ω0(t − t′)

] F (t′)
m

dt′, (B.18)

where xh(t) = A cos(ω0t) + B sin(ω0t) is the solution of the homogeneous Eq. (B.7), with A
and B being constants that are determined by the initial conditions.

B.2 Green’s function of a partial differential equation

We now generalise the Green’s function technique developed in the familiar world of ordinary
differential equations to the much more hostile world of partial differential equations. Whilst
those equations turn out to be far more complicated than ordinary differential equations, the
conversion from the partial differential equation to an integral equation remains essentially
the same. The price to pay for the additional complexity related to the spatial part in
those equations materialises when it comes to determining the Green’s function related to
the problem. To illustrate it, we treat the Schrödinger equation as an example.

B.2.1 Green’s function of the Schrödinger equation

We start from the time–dependent Schrödinger equation

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 , (B.19)

with Ĥ the Hamiltonian describing the problem under study. A formal solution of Eq. (B.19)
is given by

|ψ(t)〉 = Û |ψ(t′)〉 , (B.20)

where Û = Û † is the unitary time evolution operator that describes the time evolution of
the system initially in the state |ψ(t′)〉 at time t = t′ to the state |ψ(t)〉. Inserting the
solution (B.20) into the Schrödinger equation (B.19) yields

[

i~
∂

∂t
Û − ĤÛ

]

|ψ(t′)〉 = 0, (B.21)

which is valid for any |ψ(t′)〉 and consequently yields the following differential equation

i~
∂

∂t
Û − ĤÛ = 0 (B.22)

which is formally solved by direct integration [380] as

Û = 1 − i

~

∫ t

t′
Ĥ(τ)Û (τ, t′)dτ. (B.23)

In the very common case of a static Hamiltonian, which does depend upon time, one recovers
Û = exp[−i(t − t′)Ĥ/~] and Eq. (B.20) takes on the form

|ψ(t)〉 = e−i(t−t′)Ĥ/~ |ψ(t′)〉 . (B.24)
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In position representation, this equation reads

ψ(r, t) =
∫

〈r|e−i(t−t′)Ĥ/~|r′〉ψt′(r′)d3r′, (B.25)

which is an integral equation very similar to Eq. (B.5). This analogy stimulates to define the
Green’s function as the matrix element [382]

G(r, t; r′, t′) = 〈r|e−i(t−t′)Ĥ/~|r′〉 =
∑

n

φ∗
n(r′)φn(r)e−iEn(t−t′)/~, (B.26)

with En and φn the eigenvalues and eigenvectors of the Hamiltonian Ĥ. We observe that
G(r, t; r′, t′) provides a lot of information about the differential operator since it requires
the full diagonalisation of Ĥ. Written under this form, the Green’s function describes the
propagation from position r′ at time t′ to position r at time t, with no restriction on the
sign of t − t′. To distinguish between those two possibilities, we introduce the retarded and
advanced Green’s functions

G(ret)(r, t; r′, t′) =
1
i~
θ(t− t′)

∑

n

φ∗
n(r′)φn(r)e−iEn(t−t′)/~ (B.27)

G(ad)(r, t; r′, t′) = − 1
i~
θ(t′ − t)

∑

n

φ∗
n(r′)φn(r)e−iEn(t−t′)/~, (B.28)

following the same approach as for ordinary differential equations. The prefactor ±1/i~ has
been introduced in order to comply with

(

i~
∂

∂t
−H(r)

)

G(ret/ad)(r, t; r′, t′) = δ(r − r′)δ(t − t′), (B.29)

which is the equation that defines a Green’s function for the differential operator of the
Schrödinger equation, in formal analogy with Eq. (B.3). The retarded and advanced Green’s
functions can also be described as operators in the Hilbert space

Ĝ(ret/ad) = ± 1
i~
θ
[±(t− t′)

]
e−i(t−t′)Ĥ/~ (B.30)

whose (inverse) Fourier transform defines the propagator, which, in the retarded case, read

Ĝ(ret)(E) =
∫ ∞

−∞
Ĝ(ret)eiEτ/~dτ =

∫ ∞

0
ei(E−Ĥ)τ/~dτ, (B.31)

where τ = t − t′. In order to guarantee the convergence of the integral, we introduce, in
formal analogy with ordinary differential equations, the convergence factor ±iǫ in the limit
ǫ → 0+. Exploiting the following identity

lim
ǫ→0+

∫ ∞

0
eik(x±iǫ)dk = i lim

ǫ→0+

1
x± iǫ

(B.32)

as well as the introduction of the convergence factor ±iǫ in the limit ǫ → 0+ in Eq. (B.31),
we formulate the Green’s function as

Ĝ(ret/ad)(E) = lim
ǫ→0+

1

E − Ĥ ± iǫ
. (B.33)
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Determining the propagator (or the Green’s function in a given representation) for Ĥ is
generally a complicated, when possible, task. However, if the Hamiltonian Ĥ describing the
system can be written as a sum of an unperturbed Hamiltonian Ĥ0 whose eigenvalues and
eigenvectors are known, or easy to calculate, and a small perturbation Hamiltonian Ĥ1, it
is possible to write a pertubative series for the total Green’s function (B.33) in terms of
the Green’s function Ĝ

(ret/ad)
0 (E) of the unperturbed Hamiltonian and the perturbation Ĥ1.

This perturbative series, which is referred to as a Dyson series [383,384], provides information
about the eigenenergies and eigenstates of the total Hamiltonian Ĥ of the problem.

B.3 Perturbative series for the full Green’s function

We assume that the Hamiltonian describing the problem under consideration can be written
Ĥ = Ĥ0+Ĥ1, where the Hamiltonian Ĥ1 is treated as a small perturbation of the unperturbed
Hamiltonian Ĥ0. The eigenvalues and eigenvectors of Ĥ0 are either known or easy to obtain,
as well as the related Green’s function

Ĝ
(ret/ad)
0 (E) = lim

ǫ→0+

1

E − Ĥ0 ± iǫ
. (B.34)

The total Green’s function Ĝ(ret/ad)(E) related to the total Hamiltonian Ĥ reads, omitting for
the moment the term ±iǫ and the (ret/ad) upper index for the sake of clarity [382,385,386],

Ĝ(E) =
1

E − Ĥ
=

1

E − Ĥ0 − Ĥ1

=
1

E − Ĥ0

(

1 − (E − Ĥ0)−1Ĥ1

)

=
1

1 − (E − Ĥ0)−1Ĥ1

1

E − Ĥ0

=
1

1 − Ĝ0(E)Ĥ1

Ĝ0(E)

=
(

1 + Ĝ0(E)Ĥ1 + Ĝ0(E)Ĥ1Ĝ0(E)Ĥ1 + . . .
)

Ĝ0(E),

which can be written in the more compact form

Ĝ(E) = Ĝ0(E) + Ĝ0(E)Ĥ1Ĝ(E) (B.35)

or equivalently
Ĝ(E) = Ĝ0(E) + Ĝ(E)Ĥ1Ĝ0(E). (B.36)

Those self–consistent equations are referred to as Dyson equations and relate the total Green’s
function associated with the Hamiltonian Ĥ to the Green’s function Ĝ0(E) of the unperturbed
Hamiltonian Ĥ0.





Appendix C

Analytical expression for the

quantum noise

C.1 Propagation on a semi–infinite lattice

Let us consider a semi–infinite lattice described by the following Hamiltonian

Ĥ =
∞∑

l=1

E0 |l〉 〈l| − 1
2

∞∑

l=1

E1 (|l + 1〉 〈l| + |l〉 〈l + 1|) , (C.1)

where E0 stands for the on–site energy, E1 for a nearest–neighbour hopping term and |l〉 for
the local basis sites. Normalised eigenstates |θ〉 of the lattice, satisfying Ĥ |θ〉 = E(θ) |θ〉, are
found to be (with 0 < θ < π)

|θ〉 =

√

2
π

∞∑

l=1

sin (lθ) |l〉 , (C.2)

where the associated eigenvalues read E(θ) = E0 − E1 cos θ. It allows us to express the |l〉
states on the continuous eigenbasis as

|l〉 =

√

2
π

∫ π

0
sin (lθ) |θ〉 dθ, (C.3)

where both discrete |l〉 and continuous |θ〉 states form orthonormal bases. The time evolution
of the total wavefunction is provided by

|ψ(t)〉 =
∞∑

l=1

ψl(t) |l〉 =
∫ θ

0
ψ(θ)(t) |θ〉 dθ, (C.4)

where

ψ(θ)(t) =

√

2
π

∞∑

l=1

ψl(t) sin (lθ) . (C.5)

The wavefunction ψ(θ)(t) at time t expressed in the |θ〉 basis can be related to its value at
time t0 through the time evolution operator, which yields

ψ(θ)(t) = ψ(θ)(t0) exp
[

− i

~
E(θ)(t− t0)

]

, (C.6)
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and which, given that

ψl(t) =

√

2
π

∫ π

0
ψ(θ)(t) sin (lθ) dθ (C.7)

allows one to compute ψl(t) knowing the initial condition ψl(t0). One has

ψl(t) =

√

2
π

∫ π

0
sin (lθ) exp

[

− i

~
(t− t0)(E0 − E1 cos θ)

]√

2
π

∞∑

l′=1

ψl′(t0) sin(l′θ)dθ

=
2
π

∞∑

l′=1

ψl′(t0)
∫ π

0
sin(lθ) sin(l′θ) exp

(
i

~
(t− t0)E1 cos θ

)

dθ exp
(

− i

~
(t− t0)E0

)

(C.8)

By making the substitution x = E1(t − t0)/~, the integral appearing above reads

2
π

∫ π

0
sin(lθ) sin(l′θ)eix cos θdθ =

1
π

∫ π

−π

1
(2i)2

(

eilθ − e−ilθ
) (

eil
′θ − e−il′θ

)

eix cos θdθ

=
1

4π

∫ π

−π

(

ile−ilϕ − (−i)leilϕ
)(

il
′
e−il′ϕ − (−i)l′eil′ϕ

)

eix sinϕdϕ

= −1
2

(

il+l
′
Jl+l′(x) − il

′−lJl−l′(x) − il−l
′
Jl−l′(x) + i−l−l

′
J−l−l′(x)

)

= il−l
′
Jl−l′(x) − il+l

′
Jl+l′(x),

where we have performed the variable substitution ϕ = π
2 − θ and introduced

Jl(x) =
1

2π

∫ π

−π
eix sinϕe−ilϕdϕ, (C.9)

the Bessel function of the first kind and order l and finally used the parity of those functions
around l = 0. The wavefunction at time t then reads

ψl(t) =
∞∑

l′=1

ψl′(t0)
[

il−l
′
Jl−l′

(
E1(t− t0)

~

)

− il+l
′
Jl+l′

(
E1(t− t0)

~

)]

exp
(

− i

~
E0(t − t0)

)

(C.10)
This equation indicates how the local wavefunction at site l evolves from the initial wave-
function ψl′(t0) at time t0 to time t. In the mean–field approximation, an empty waveguide
is modelled by ψl′(t0) = 0 for all l, which results in ψl(t) = 0 according to Eq. (C.10). The
transport is of course induced by the injection of particles from the source. However, the
sampling of the initial state by random classical fields in the truncated Wigner method in-
volves an initial wavefunction such that ψl = 0 but also |ψl|2 = 1/2, where · denotes the
average over the initial conditions. As a result of the truncation of the infinite space into
a finite scattering region, this equation indicates that a quantum noise is injected into the
scattering region due to the initial sampling of the empty waveguide.

C.2 Quantum noise in two dimensions

In this section, we generalise the expression (C.10) of quantum noise penetrating the scatter-
ing region in two dimensions. The Hamiltonian of a 2D discrete system of infinite longitudinal
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extension and W transverse sites, with on–site energy Eδ and energy E0, reads

Ĥ =
∞∑

l=1

W−1∑

w=0

[

(E0 + 2Eδ) |l, w〉 〈l, w| − 1
2

(

|l + 1, w〉 〈l, w| + |l, w〉 〈l + 1, w|
)

−1
2

(

|l, w + 1〉 〈l, w| + |l, w〉 〈l, w + 1|
)]

(C.11)

In the partial Fourier space along the y–direction, this Hamiltonian becomes diagonal in the
y–direction and reads

Ĥ =
∞∑

l=1

W−1∑

k=0

[

(E0 + Ek +Eδ) |l, k〉 〈l, k| − 1
2

(

|l + 1, k〉 〈l, k| + |l, k〉 〈l + 1, k|
)]

, (C.12)

where the energy Ek is given by

Ek = 〈k|
(

|l, w〉 〈l, w + 1| + |l, w + 1〉 〈l, w|
)

|k′〉

=
1
W

W−1∑

w′=0

W−1∑

w′′=0

exp
(

2πi
w′k
W

)

〈l, w′|
(

|l, w〉 〈l, w + 1|

+ |l, w + 1〉 〈l, w|
)

|l, w′′〉 exp
(

−2πi
w′′k′

W

)

=
1
W

W−1∑

w′=0

W−1∑

w′′=0

exp
(

2πi
w′k − w′′k′

W

)
(
δw,w′δw+1,w′′ + δw+1,w′δw,w′′

)

=
1
W

exp
(

2πi
w

W
(k − k′)

) [

exp
(

2πi
k

W

)

+ exp
(

−2πi
k′

W

)]

. (C.13)

In Fourier representation and using the result (C.10) we have derived in one dimension, the
wavefunction ψ̃n,k(t) at time t reads

ψ̃l,k(t) =
∞∑

l′=1

ψ̃l′,k(t0)
[

il−l
′
Jl−l′

(
(t− t0)

~
Eδ

)

+ il+l
′
Jl+l′

(
(t− t0)

~
Eδ

)]

× exp
[

− i

~
(t − t0)(E0 + Eδ + Ek)

]

,

where the wavefunction ψ̃l,k(t0) at initial time is obtained by taking the 1D Fourier transform
of the wavefunction at initial time in the direct space

ψ̃l,k(t0) =
1√
W

W−1∑

w′=0

ψl,w′(t0) exp
(

−2πi
w′k
W

)

. (C.14)
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Finally, the wavefunction in the direct space at time t is obtained by taking the inverse
Fourier transform. It yields

ψl,w(t) =
1√
W

W−1∑

k=0

e2πikw/W
∞∑

l′=1

[

il−l
′
Jl−l′

(
(t− t0)

~
Eδ

)

+ il+l
′
Jl+l′

(
(t− t0)

~
Eδ

)]

× exp
(

− i

~
(t− t0)(E0 + 2Eδ − Eδ cos(2πk/W )

)

× 1√
W

W−1∑

w′=0

ψl′,w′(t0)e−2πiw′k/W

=
W−1∑

w′=0

∞∑

l′=1

ψl′,w′(t0)
[

il−l
′
Jl−l′

(
(t− t0)

~
Eδ

)

+ il+l
′
Jl+l′

(
(t − t0)

~
Eδ

)]

× exp
(

− i

~
(t− t0)(E0 + 2Eδ)

)

× 1
W

W−1∑

k=0

exp
(
i

~
(t − t0)(Eδ cos(2πk/W )

)

e2πi(w−w′)k/W . (C.15)

In this latter context, it appears that ψl,w(t) has the same form as in one dimension, multiplied
by the following kernel in the transverse direction

Kλ(z) =
1
W

W−1∑

k=0

eiz cos(2πk/W )e2πiλk/W , (C.16)

where λ = l − l′ and z = (t−t0)Eδ

~
. In the limit W → ∞, Kλ(z) is yielded as

Kλ(z) ≃ 1
2π

∫ π

−π
eiz cos θeiλθdθ =

1
2π

∫ π

−π
eiz sin( π

2
−θ)eiλθdθ

=
1

2π

∫ 3π
2

− π
2

eiz sin θ′
eiλ( π

2
−θ′)dθ′ =

1
2π

∫ π

−π
eiz sin θ′

e−iλθ′
dθ′eiλ

π
2

= iλJλ(z), (C.17)

where Jλ(z) is the Bessel function of the first kind and order λ. The kernel in Eq. (C.16)
presents a nice symmetry with respect to λ. This symmetry property reads

Kλ(z) =
1
W

W−1∑

k=0

eiz cos(2πk/W )e2πiλk/W k′=−k=
1
W

0∑

k′=W−1

eiz cos(2π(−k′)/W )e2πiλ(−k′)/W

=
1
W

0∑

k′=W−1

eiz cos(2πk′/W )e−2πiλk′/W

k′′=k′+W=
1
W

W∑

k′′=1

eiz cos(2π(k′′−W )/W )e−2πiλ(k′′−W )/W

=
1
W

W∑

k′′=1

eiz cos(2πk′′/W )e−2πiλk′′/W = K−λ(z). (C.18)
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This symmetry also reflects in the limit W → ∞ since

K−λ(z) ≃ i−λJ−λ(z) = (−i)λ(−1)λJλ(z) = iλJλ(z) ≃ Kλ(z). (C.19)

Besides this nice symmetry property, the first order derivative of that kernel also fulfils

∂Kλ(z)
∂z

=
1
W

W−1∑

k=0

i cos
(

2πk
W

)

eiz cos(2πk/W )e2πiλk/W

=
i

2W

W−1∑

k=0

(

e2πik/W + e−2πik/W
)

eiz cos(2πk/W )e2πiλk/W

=
i

2W

W−1∑

k=0

eiz cos(2πk/W )
(

e2πi(λ+1)k/W + e2πi(λ−1)k/W
)

=
i

2
(Kλ−1(z) +Kλ+1(z))

=
∂K−λ(z)

∂z
, (C.20)

thereby allowing an iterative evaluation of the derivative of order k from those of order k− 1,
which is very useful in view of numerically integrating the quantum noise with the procedure
detailed in the appendix A.





Appendix D

Derivation of the motion equation

for the truncated Wigner method

With the aim of deriving an evolution equation for the Wigner function W (ρ̂)(α,α∗), we must
compute

i~
∂

∂t
W (ρ̂)(α,α∗) =

1
π2N

N∏

α=0

∫∫

e−ξνα∗
ν+ξ∗

ναν i~
∂

∂t
χW(ξ, ξ∗)d2ξα, (D.1)

where the evolution equation for the characteristic function reads

i~
∂

∂t
χW(ξ, ξ∗) = Tr

{

ρ̂

[
∏

ν

eξν â
†
ν−ξ∗

ν âν , Ĥ

]}

, (D.2)

with the two–body Hamiltonian

Ĥ =
N∑

ν=0

(Eν + Vν)â†
ν âν +

N∑

ν=0

N∑

ϑ=0

tνϑ
(

â†
ν âν+1 + â†

ν+1âν
)

+
1
2

N∑

ν=0

Uν â
†
ν â

†
ν âν âν , (D.3)

where Eν is the on–site energy, Vν is the on–site potential, the matrix element tνϑ encodes
the hopping from site ν to ϑ and Uν is the on–site two–body interaction term. The Baker–
Haussdorff lemma [267]

eξν â
†
ν−ξ∗

ν âν = eξν â
†
νe−ξ∗

ν âνe−|ξ|2/2 (D.4)

can be used to simplify the exponentials appearing in the commutator (D.2). This leads to
the computation of

[eξν â
†
ν , âν ] =

∞∑

k=0

ξkν
k!

[(â†
ν)k, âν ] = −

∞∑

k=0

k

k!
ξkν (â†

ν)
k−1 = −ξνeξν â

†
ν (D.5)

[e−ξ∗
ν âν , âν ] =

∞∑

k=0

(−ξ∗
ν)
k

k!
[âkν , âν ] =

∞∑

k=0

k

k!
(−ξ∗

ν)
k(â†

ν)k−1 = −ξ∗
νe
ξ∗

ν âν (D.6)

which implies that one can write

[

eξν â
†
νe−ξ∗

ν âν , â†
ν âν

]

= eξν â
†
ν

(

−ξ∗
ν âν − ξν â

†
ν

)

e−ξ∗
ν âν =

(

ξ∗
ν

∂

∂ξ∗
ν

− ξν
∂

∂ξν

)

eξν â
†
νe−ξ∗

ν âν , (D.7)
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that is the commutator related to the first term in Eq. (D.3). The commutator related to
the second term of Eq. (D.3) is given by
[

eξν â
†
νe−ξ∗

ν âνeξϑâ
†
ϑe−ξ∗

ϑ
âϑ , â†

ν âϑ + â†
ϑâν

]

= eξν â
†
ν e−ξϑâ

†
ϑ

(

−ξ∗
ν âν − ξ∗

ϑâϑ − ξν â
†
ν − ξϑâ

†
ϑ

)

e−ξ∗
ν âνe−ξ∗

ϑ
âϑ

=

(

ξ∗
ν

∂

∂ξ∗
ν

+ ξ∗
ϑ

∂

∂ξ∗
ϑ

− ξν
∂

∂ξν
− ξϑ

∂

∂ξϑ

)

× eξν â
†
νe−ξ∗

ν âν eξϑâ
†
ϑe−ξ∗

ϑ
âϑ . (D.8)

Finally, the last term in Eq. (D.3) can be rewritten under the form

N∑

ν=0

Uν â
†
ν â

†
ν âν âν =

1
2

N∑

ν=0

Uν
(

â†
ν âν âν â

†
ν − â†

ν âν
)

(D.9)

and we compute the related commutator as

[

eξν â
†
ν−ξ†

ν âν , â†
ν âν âν â

†
ν − â†

ν âν
]

=
(

ξ∗
ν

∂

∂ξ∗
ν

− ξν
∂

∂ξν

)(

ξνξ
∗
ν

2
− 2

∂2

∂ξν∂ξ∗
ν

− 2

)

eξν â
†
ν−ξ†

ν âν .

(D.10)

All together, commutators (D.7), (D.8) and (D.10) allow us to formulate the evolution equa-
tion for the characteristic function as

i~
∂

∂t
χW(ξ, ξ∗, t) =

N∑

ν=0

(Eν + Vν)
(

ξ∗
ν

∂

∂ξ∗
ν

− ξν
∂

∂ξν

)

χW(ξ, ξ∗, t)

+
N∑

ν=0

N∑

ϑ=0

tνϑ

(

ξ∗
ν

∂

∂ξ∗
ν

+ ξ∗
ϑ

∂

∂ξ∗
ϑ

− ξν
∂

∂ξν
− ξϑ

∂

∂ξϑ

)

χW(ξ, ξ∗, t)

+
N∑

ν=0

Uν

(

ξ∗
ν

∂

∂ξ∗
ν

− ξν
∂

∂ξν

)(

ξνξ
∗
ν

4
− ∂2

∂ξν∂ξ∗
ν

− 1

)

χW(ξ, ξ∗, t) (D.11)

which in turn allows us to write the evolution equation for the Wigner function as

i~
∂

∂t
W (ρ̂)(ψ,ψ∗, t) =

N∑

ν=0

(Eν + Vν)
(

ψ∗
ν

∂

∂ψ∗
ν

− ψν
∂

∂ψν

)

W (ρ̂)(ψ,ψ∗, t)

+
N∑

ν=0

N∑

ϑ=0

tνϑ

(

ψ∗
ν

∂

∂ψ∗
ν

+ ψ∗
ϑ

∂

∂ξ∗
ϑ

− ψν
∂

∂ψν
− ψϑ

∂

∂ψϑ

)

W (ρ̂)(ψ,ψ∗, t)

+
N∑

ν

Uν

[(

|ψν |2 − 1
)(

ψ∗
ν

∂

∂ψ∗
ν

− ψν
∂

∂ψν

)

−1
4

(

ψ∗
ν

∂3

∂ψν∂ψ∗2

ν

− ψν
∂3

∂ψν∂ψ2
ν

)]

W (ρ̂)(ψ,ψ∗, t). (D.12)

The last line of this equation includes third order derivatives terms that are neglected in the
framework of the truncated Wigner method. This is actually a good approximation provided
the on–site density |ψν |2 ≫ 1 and the interaction parameter Uν remains small enough, as is
formally shown in [254].



Appendix E

Overview of the numerical

integration package

In this appendix, we give a brief insight of the structure of the numerical integration package
we developed and used for this work. This package is organised following a traditional data
pipeline. Data are first created according to the physical scenarios we model, following the
discussions in this manuscript. Once put into the suitable format, they feed the propaga-
tion algorithm described in Appendix A. The results produced by this algorithm are finally
postprocessed to yield the observables of interest, as described in this manuscript. This data
pipeline is best explained with the scheme in Fig. E.1. We note that this structure was
suggested by the work of Dr. Julien Dujardin [51] who worked on similar topics.
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Propagation

Checkpoint

IDCard

MFPropag tWPropag

2. Propagation

1. Data preparation

Mesh

IC

BCSourceInteraction Disorder

IntAndDis

System

tWICMFIC

3. Postprocessing

Observables

MFObs tWObs

Must be specialised by

Is exploited by

Figure E.1 – Scheme of the data pipeline we implemented to solve the partial
differential equations related to the physical scenarios we studied in this work.
This pipeline consists in a vertical stack of three layers: a preprocessing layer that
puts data in the suitable format, followed by a propagation layer whose output
feeds the last layer that postprocesses the results into an exploitable format.
Structure inspired from [51].

In the following, we give a brief description of the various classes we implemented in this
work.

E.1 Data preparation layer

The purpose of this layer is to prepare data and to properly setup the system for the propa-
gation. The related classes are written in C++, mainly to facilitate the communication with
the following layer, and are devoted to modelling a specific part of the physical system under
study.

• IntAndDis: this abstract class specifies a number of methods that must be implemented
by its subclasses.

– Interaction: this class is inherited from IntAndDis and implements the spatial
interaction profile.

– Disorder: this class is inherited from IntAndDis and implements the spatial
disorder profile.
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• Mesh: this class represents the numerical mesh that results from the finite difference
scheme we used to discretise the field equations.

• IC: this abstract class is responsible for the implementation of the initial conditions. It
must be inherited by subclasses that particularise the initial conditions to the mean–
field approximation or to the truncated Wigner method, respectively.

– MFIC: this class is inherited from IC and particularises the initial conditions to the
mean–field approximation.

– tWIC: this class is inherited from IC and particularises the initial conditions to the
truncated Wigner method.

• Source: this class is responsible for handling the time profile of the source.

• BC: this class is responsible for implementing the boundary conditions, including smooth
exterior complex scaling.

Most of those classes implement methods that run quite straightforwardly in terms of time
and resources. However, the generation of the quantum noise related to the truncated Wigner
method in the tWIC class can be demanding, especially in two dimensions.

E.2 Propagation layer

The classes composing this layer are also written in C++ because numerical efficiency is the
determinant factor here. As the name indicates, the propagation layer is devoted to propa-
gating the field equations in time. To that end, an abstract class that must be specialised
to the mean–field approximation or to the truncated Wigner method regroups the main part
of the work. This layer is also responsible for checkpointing the simulations whose state can
consequently be saved and relaunched at certain times. It is particularly useful in exploration
phase, when one wants to investigate the state of the system at intermediate times without
relaunching the simulation from the beginning. Finally, it also includes a class whose job is
to communicate the simulation parameters to whomever it may concern, be it other classes
or the user.

• Propagation: this abstract class is the skeleton of the propagation and designs how it
is achieved. It must be specialised by subclasses dedicated to the propagation of the
field equations in the mean–field approximation or in the truncated Wigner method.

– MFPropag: this class is inherited from Propagation and particularises it to the
mean–field approximation.

– tWPropag: this class is inherited from Propagation and particularises it to the
truncated Wigner method.

• IDCard: this class saves the simulation parameters, either for user purposes or to re-
launch an interrupted simulation from a saved state.

• Checkpoint: this class saves the state of the system at user–specified times and is also
responsible for relaunching the simulation from those times if it has been interrupted
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for some reason1. This is essentially achieved by querying the simulation parameters
from the IDCard class and loading the saved system state.

The propagation performed by this layer is numerically demanding, especially for the trun-
cated Wigner method in two dimensions. For that reason, simulations were realised in parallel
on the clusters of the Consortium des Équipements de Calcul Intensif (CÉCI) that provides
powerful numerical resources, including a large number of CPUs/GPUs and a very large
amount of RAM. The most demanding simulations performed in this manuscript typically
involved hundreds to thousands of CPUs, with several Gb of RAM per CPU during several
hours (∼10 hours per job). Those simulations are therefore not conceivable on a classical
laptop.

E.3 Postprocessing layer

This last layer is dedicated to postprocessing the outcome of the propagation and to compute
the observables of interest. It involves manipulating thousands to tens of thousands of files
containing many complex numbers and to perform various transformations and combinations
of them, ranging from basic averaging to computing Fast Fourier Transforms (FFT). The
Python language, and more precisely the SciPy ecosystem, is completely appropriate for that
purpose owing to its simplicity of use and great versatility.

• Observables: this abstract class is used to design how observables should be computed.
It must be specialised by subclasses particularising this implementation to mean–field
or truncated Wigner observables.

– MFObs: this class inherits from the Observables class and specialises it to compute
observables related to the mean–field approximation.

– tWObs: this class inherits from the Observables class and specialises it to compute
observables related to the truncated Wigner method.

1Typically, a simulation can be stopped by the user to check its integrity or for any other desired rea-
son. . . But also untimely by SLURM, the resource manager of the clusters, because the user–specified resources
required by the job are a bit too optimistic (often not enough required memory or computation time).

http://www.ceci-hpc.be/clusters.html
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