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15 Abstract

16 Assignments of individual cattle to a specific breed can often not rely on pedigree 

17 information. This is especially the case for local breeds for which the development of 

18 genomic assignment tools is required to allow more individuals of unknown origin to be 

19 included to their herdbooks. A breed assignment model can be based on two specific stages 1) 

20 the selection of breed-informative markers and 2) the assignment of individuals to a breed 

21 with a classification method. However, the performance of combination of methods used in 

22 these two stages have been rarely studied until now. In this study, the combination of 16 

23 different SNP panels with four classification methods was developed on 562 reference 

24 genotypes from 12 cattle breeds. Based on their performances, best models were validated on 

25 three local breeds of interest. In cross-validation, 14 models had a global cross-validation 
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26 accuracy higher than 90%, with a maximum of 98.22%. In validation, best models used 7,153 

27 or 2,005 SNPs, based on a partial least squares-discriminant analysis (PLS-DA), and assigned 

28 individuals to breeds based on nearest shrunken centroids. The average validation sensitivity 

29 of the first two best models for the three local breeds of interest were, respectively, 98.83% 

30 and 97.5%. Moreover, results reported in this study suggest that further studies should 

31 consider the PLS-DA method when selecting breed-informative SNPs. 

32

33 KEYWORDS

34 Breed assignment; classification; informative SNPs; local breeds; partial least squares; SNP 

35 panel

36
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37 1. INTRODUCTION

38 Interest in local breeds is increasing because they represent a reservoir of unique 

39 phenotypes and genetic material, potentially increasing the resilience of animal production 

40 systems to economic and ecological challenges. Because of the hyper-specialization of 

41 agriculture, local breeds were often left behind for several decades leading to very incomplete 

42 (or even completely missing) pedigree information. However, it has been shown that in situ 

43 conservation is a powerful tool to keep local breeds in their natural environment by 

44 supporting their social setting and their traditional use (Henson, 1992). According to the 

45 article 19 of the EU Regulation 2016/1012 on Animal breeding, a special derogation can be 

46 allocated to include animals without pedigree to enter the main section of the herdbook of an 

47 endangered breed. From this, the question of how locally subsisting populations can be 

48 recognized as members of a given endangered breed arises. The development of a tool based 

49 on genomic data that is able to correctly assign animals from the endangered breed and to 

50 exclude animals from other similar looking breeds can be the solution. Several studies have 

51 already focused on this specific topic (e.g. Baumung, Cubric-Curik, Schwend, Achmann, & 

52 Sölkner, 2006; Bertolini et al., 2018; I. Hulsegge et al., 2019; Padilla, Sansinforiano, Parejo, 

53 Rabasco, & Martínez-Trancón, 2009). Padilla, Sansinforiano, Parejo, Rabasco & Martinez-

54 Trancón (2009) particularly highlighted the need to find a balance between including more 

55 individuals with unknown pedigree but appearing to be members of an endangered cattle 

56 breed to the herdbook, while excluding animals that could have a similar phenotype. 

57 However, there is no consensus in studies about breed assignment concerning the 

58 methodology of selection of SNP markers or the assignment method to use, which are the 

59 main stages to follow to develop a model of this kind, stages that are also not always clearly 

60 distinguished. Concerning the methods to choose the best markers, the use of FST (Weir & 

61 Cockerham, 1984; Wright, 1951) is particularly common in studies (e.g. Dalvit et al., 2008; 
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62 Ding et al., 2011; Frkonja, Gredler, Schnyder, Curik, & Sölkner, 2012; He et al., 2018; B. 

63 Hulsegge et al., 2013; Judge, Kelleher, Kearney, Sleator, & Berry, 2017; Wilkinson et al., 

64 2011). Most likely this is due to the fact that this statistic can be easily adapted (e.g. global vs. 

65 pairwise) to make them suitable for the selection of markers for breed assignment. Allelic 

66 frequencies are another common methodology for selection of markers for breed assignment 

67 (e.g. He et al., 2018; Kuehn et al., 2011; Wilkinson et al., 2011). Several studies also used 

68 principal component analysis (PCA), based on different types of data input, to select the best 

69 SNP markers for discriminating breeds (e.g. Wilkinson et al., 2011). Recently, random forests 

70 (RF) were combined with PCA or FST for this purpose (Bertolini et al., 2015, 2018; I. 

71 Hulsegge et al., 2019). However, the use of PCA for selecting breed-informative SNPs could 

72 potentially be optimized because even if the PCA allows to reduce the number of dimensions 

73 by linear combination of variables in components that are independent to each other, these 

74 components do not necessarily explain the answer i.e., the breed (Jolliffe, 2002).  

75 Moreover, breed assignment methods reported in literature are also diverse. They are 

76 often used in a second stage, after selecting SNPs, and can be based on the same statistical 

77 methods used for selecting SNPs. Besides the use of RF that has already been used for 

78 selecting SNPs and as a breed assignment method (Bertolini et al., 2015; I. Hulsegge et al., 

79 2019; Schiavo et al., 2019), other assignment methods were reported in the literature. Among 

80 the used methods, one can cite very different approaches as five-nearest-neighbors 

81 classification (Lewis et al., 2011), artificial neural network approach (Iquebal et al., 2014), 

82 regression including the partial least squares method (PLS) (e.g. Funkhouser, Bates, Ernst, 

83 Newcom, & Steibel, 2017) or clustering with Bayesian models (e.g. Frkonja et al., 2012; 

84 Gobena, Elzo, & Mateescu, 2018; He et al., 2018; B. Hulsegge et al., 2013; Judge et al., 

85 2017). However, until now, there has been little investigation on the impact of the 
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86 combination of 1) different selection methods of SNPs, leading to different SNP panels, and 

87 2) different assignment methods.

88 For all these reasons, there is still a need to organize and compare methods to select 

89 different SNP panels interacting with different assignment methods. In this study, five 

90 methods for the selection of breed-informative SNPs were tested: pairwise FST combined with 

91 RF; three PCAs, based on different input data, combined with RF (these methods are 

92 commonly used as aforementioned); and the partial least squares-discriminant analysis (PLS-

93 DA). The resulting SNP panels were then used as inputs for four classification methods: the 

94 PLS-DA, nearest shrunken centroids (NSC), RF and linear support vector machine (SVM). 

95 The main objective of this study was therefore to develop a genomic tool for breed 

96 assignment by comparison of these different approaches. The specific activities to fulfill this 

97 objective were: 1) based on their performances, to compare different methods for selection of 

98 breed-informative SNPs and for classification of cattle breeds and the interactions between 

99 both; and 2) to validate the best model in the context of three local breeds of interest.

100 2. MATERIAL AND METHODS

101 Figure 1 summarizes Material and Methods in a flowchart. The combination of the SNP 

102 selection stage (1.1 to 6.0) and assignment stage (A. to D.) are coded to ease the following of 

103 the study. Quality control (QC), selection of breed-informative SNPs, classification methods 

104 and validation were performed with PLINK v.1.9 (Chang et al., 2015; Purcell & Chang, 2019; 

105 Purcell et al., 2007), R v. 3.6.3 (R Core Team, 2013) and visualized through Rstudio (Rstudio 

106 Team, 2020). All the methodology developed below was also applied on a dataset with no 

107 deviation of Hardy-Weinberg equilibrium per breed (P-value > 10-6).
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108 2.1. Dataset

109 This study focused on three endangered local breeds of interest: Dual-Purpose Belgian 

110 Blue (DPBB), East Belgian Red and White (EBRW) and Red-Pied of Ösling (RPO), this 

111 latter being from Grand Duchy of Luxembourg. These three breeds were lacking breeding 

112 structures for a few decades even if this is less marked in DPBB that has a relatively complete 

113 pedigree following efforts in the last years to stabilize the breed. Following the European 

114 Common Agricultural Policy, DPBB, EBRW and RPO can benefit from subsidies through 

115 agri-environment measures that provide direct payments to breeders. Currently, entries to the 

116 herdbooks of EBRW and RPO are based on phenotypes of all individuals but also, except for 

117 EBRW females, on the visual appraisal of the position of individuals’ genotypes to seven 

118 principal components (PCs). As this visual appraisal is made by a specific person, it can be 

119 subjective and induce some bias in the decision to include the animal to the respective 

120 herdbook.

121 Moreover, the EBRW and RPO are geographically (i.e., the regions border each-other) 

122 and genomically close as can be seen in Figure 2. These two breeds overlap and are included 

123 in the continuum of Red-Pied breeds composed of several breeds as Dutch Improved Red 

124 Pied (DIRP), Belgian Campine (CAM), EBRW, RPO, Rotbunte DN (RDN) and Meuse-

125 Rhine-Yssel (MRY). As usual in Red-Pied breeds a continuous, more or less strong gene flow 

126 originating from (Red-)Holstein (HOL) is expected. It is also known that Simmental-type 

127 cattle were used in mating of EBRW and RPO. Similarly, DIRP bulls were used in the EBRW 

128 population.

129 From the same Figure 2, the overlap between the DPBB and the Beef Belgian Blue (BBB), 

130 two breeds that diverged during the seventies in Belgium and that originated from the 

131 Shorthorn (SHO) breed can also be seen. Another DPBB-genomically close breed currently 

132 potentially used in Belgium is the Rouge des Prés (RDP) breed.
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133 The overlaps (Fig. 2), hypotheses of previous and recent use, and the continuum of breeds 

134 explain why 9 other breeds were also added to the reference population for the development 

135 of the assignment model; it is of main importance to distinguish DPBB, EBRW and RPO 

136 individuals from these breeds. Therefore, genotypes of 562 individuals belonging to one of 

137 the following 12 breeds: DPBB, EBRW, RPO, BBB, CAM, DIRP, HOL, MRY, RDP, RDN, 

138 SHO and SIM, were used. Table 1 shows the number of reference individuals used per breed 

139 as well as abbreviations used for each breed in this article. All of these 562 individuals were 

140 used as reference animals for tests already implemented in Wallonia, which were based on 

141 visual appraisal of the genotype of each individual based on different PCs, similarly to those 

142 reported in Figure 2. This should allow a certain global continuity of breed assignment in our 

143 system.

144 2.2. Quality control

145 Genotypes of the reference population were coded 0 for homozygosity of A allele, 1 for 

146 heterozygosity and 2 for homozygosity of B allele. Seven different SNP chips were used in 

147 this study: BovineSNP50 Beadchip v1 to 3, BovineHD Beadchip v12, EuroG 10k (imputed to 

148 BovineSNP50 Beadchip) and EuroG MD (SI) v9. The EuroG MD (SI) v9 chip was not used 

149 for genotyping reference individuals but were added when defining the overlap of the 

150 different chips because this chip is currently used for genotyping most new DPBB, EBRW 

151 and RPO individuals. This strategy was used because it allowed projecting the use of the 

152 developed tool into the next years as most likely future chip designs should include a large 

153 majority of these common SNPs. The number of genotyped individuals per chip and version 

154 of chip can be found in Appendix 1. A total of 17,667 SNPs, common between all the seven 

155 chips, passed the following filters on: no non-mapped SNPs, no SNPs located on sexual 

156 chromosomes, no triallelic SNPs, minimum GenCall Score of 0.15, minimum GenTrain Score 

157 of 0.55, individual Call-Rate higher than 0.98, minimum genotype Call-Rate per chip of 0.95 

Page 7 of 52

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

158 and minor allele frequency (MAF) higher than 0.01. Minimum genotype Call-Rate per chip 

159 was applied to avoid SNPs that were less well genotyped by certain chips and, thus, less 

160 accurate for discriminating breeds. An MAF filter of 0.01 was applied on the whole dataset as 

161 several studies (Bertolini et al., 2015; I. Hulsegge et al., 2019) suggested that SNPs with high 

162 MAF were beneficial for discriminating breeds. However, private alleles can sometimes help 

163 differentiating breeds as explained by several authors (Bertolini et al., 2015; Dalvit, De 

164 Marchi, et al., 2008; Ding et al., 2011); that is why the MAF filter was not applied per breed. 

165 Moreover, several methods used in this study for selection of SNPs or classification do not 

166 allow any missing values. Therefore, we replaced missing values per SNP by their mean and 

167 finally, iteratively, we performed a PCA for the available 17,667 SNPs and imputed missing 

168 values until convergence, as implemented in the imputePCA function from the missMDA 

169 v1.14 R package (Josse & Husson, 2012). Imputed values were kept as real numbers (i.e., not 

170 only integers 0, 1 or 2) which provided a continuous estimate of allele (also called gene) 

171 content instead of deciding on one genotype. The number of PCs to perform the imputation 

172 was evaluated by cross-validation, using the estim_ncpPCA function from the missMDA 

173 v1.14 R package (Josse & Husson, 2012). Twenty-two PCs were chosen to parameterize the 

174 imputePCA function as it minimizes the mean squared error of prediction (MSEP=0.3482). 

175 The objective was not to have a completely accurate value but a more plausible value than the 

176 mean. Indeed, it is difficult to have an accurate imputation for limited-sized/local breeds, in 

177 part because of their intrinsic feature of being fewer than main breeds. Moreover, local breeds 

178 (especially the red-pied breeds like EBRW and RPO) were lacking structured breeding 

179 schemes for a few decades and were admixed with similar other local (or even mainstream) 

180 breeds which makes them less genetically differentiated from each other. This could also 

181 explain the value of MSEP obtained. In addition, it was expected that the selection of breed-
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182 informative SNPs would eliminate SNPs that were less accurate as they would not allow to 

183 make a clear discrimination of breeds.

184 2.3. Methods for selection of breed-informative SNPs

185 Different methods were tested for the selection of best SNPs (called breed-informative 

186 SNPs). Following the idea of Bertolini et al. (2015, 2018) and I. Hulsegge et al. (2019), three 

187 different PCAs (i.e., PCA performed on genotypes (classical-PCA), on the mean values of 

188 genotypes by breed (mean-PCA) and on genotypes of each autosome separately (chrom-

189 PCA)) were combined with a RF for the selection of breed-informative SNPs. The mean-PCA 

190 was equivalent to the use of allelic frequencies found in several studies (He et al., 2018; 

191 Kuehn et al., 2011; Wilkinson et al., 2011) because means of genotypes by breed were equal 

192 to twice the allelic frequencies as genotypes were coded as 0, 1, or 2. As SNPs used in this 

193 study were for practical reasons based on the overlap of seven chips, it was expected that, by 

194 chance, several SNPs could be in linkage disequilibrium (LD) whereas other regions of the 

195 genome would unfortunately not be represented. Therefore, the chrom-PCA would break LD 

196 by the selection of best SNPs at each of the autosomes. Similarly as Bertolini et al. (2018), we 

197 also combined the selection of breed-informative SNPs by pairwise Weir & Cockerham’s FST 

198 values (Weir & Cockerham, 1984) with RF. 

199 A last method of selection was based on PLS-DA, the adapted form of PLS to 

200 classification problems. The PLS is based on a PCA while maximizing the covariance with 

201 the response (Despagne, Massart, & Chabot, 2000). It thus ensures that components will be 

202 correlated with the answer, which is especially desired for selecting breed-informative SNPs. 

203 Moreover, the PLS is particularly fitted for situations where the number of variables highly 

204 exceeds the number of samples and when there is a high level of collinearity between 

205 variables (Kuhn & Johnson, 2013), which could happen because of LD. The PLS-DA-based 
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206 selection method has the advantage to be performed in one step whereas the other described 

207 methods are decomposed into two steps. 

208 Even if several studies have already used PLS-based models for breed 

209 assignment/composition (e.g. Frkonja, Gredler, Schnyder, Curik, & Sölkner, 2012), it is 

210 however the first time, to our knowledge, that the PLS-DA is used as a tool for selecting 

211 breed-informative SNPs in the context of breed assignment. In another context, Soyeurt et al. 

212 (2020) used PLS for selection of best wavelengths in mid-infrared spectrum-based prediction 

213 of milk lactoferrin content, which inspired the methodology of the current study.

214 Finally, some classification methods were also tested on the entire SNP panel at the 

215 overlap of the seven chips i.e., on 17,667 SNPs. A total of six different SNP methods for 

216 selecting breed-informative SNPs were therefore explored in this study. Figure 1 illustrates 

217 these six different methods of selection of breed-informative SNPs in a flowchart.

218 2.4. Computation of thresholds for selection of breed-informative SNPs

219 The different thresholds, their code and the ranking measure used for each panel of breed-

220 informative SNPs can be found in Table 2.

221 2.4.1.PCA

222 The PCA scores were computed as followed: for each SNP, loadings corresponding 

223 respectively to the first seven, five and a range of the first three to nine PCs were squared and 

224 summed, as proposed initially by Paschou et al. (2007) and used e.g. by Bertolini et al. (2015, 

225 2018) and Wilkinson et al., (2011). The number of PCs to take into account was evaluated 

226 considering the PC after which there is a stabilization of eigenvalue and percentage of total 

227 variance explained. As highlighted by Bertolini et al. (2015), it is important to recover the 

228 variance due to breed differentiation to fulfill our objective and not to know which percentage 

229 of the total variance is explained by the PCs considered. 
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230 Thresholds were then defined as the mean of these scores plus one, two or three times the 

231 standard deviation (SD) of scores. The SNPs corresponding to scores’ values that were higher 

232 than these thresholds were kept for the second step of selection of breed-informative markers 

233 i.e., for RF. The three PCA variants were performed using the FactomineR v.2.3 R package 

234 (Lê, Josse, & Husson, 2008) on the matrix of covariances (option “scale.unit=FALSE” of the 

235 PCA function) (Bertolini et al., 2015; Paschou et al., 2007; Wilkinson et al., 2011). The use of 

236 the matrix of covariances, and therefore the choice to not scale SNP values, would allow to 

237 determine directions of maximal variability in the PCA, as explained by Price et al. (2006).

238 2.4.2.FST

239 The FST values were computed using the formula by Weir & Cockerham (1984) as 

240 implemented in Plink v.1.9 (Purcell & Chang, 2019):

241 FST =
𝑠²

 𝑝(1 ― 𝑝)

242 where s² and  are the variance and the mean of allelic frequencies, respectively. 𝑝

243 Thresholds were defined, for each pair of breeds, as the mean of their pairwise FST values 

244 plus one, two or three times their SD. Therefore, for each pair of breeds, SNPs corresponding 

245 to FST values that were higher than these thresholds were kept for the second step of selection 

246 of breed-informative markers i.e., for RF.

247 2.4.3.RF

248 It should be highlighted that the selection of breed-informative SNPs through RF was 

249 combined with each of the aforementioned selection methods i.e., selection of SNPs based on 

250 the three PCAs and FST values.

251 For the selection of breed-informative SNPs based on RF, values of each SNP were 

252 standardized (i.e., each SNP column mean centered and divided by the SD). This 

253 standardization was applied to avoid the effect of discriminating SNPs with low MAF to be 
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254 hidden by the effect of SNPs with higher MAF. The predictive performance of RF is based on 

255 the prediction of the out-of-bag (OOB) sample which is not used for the elaboration of the 

256 tree (Hastie, Tibshirani, & Friedman, 2009). Internal validation of RF is therefore based on 

257 the average error of OOB samples of all trees, called the OOB error rate. For each panel of 

258 SNPs (based on one of the three PCAs or on FST values), RF was optimized for the number of 

259 trees (maximum of 5,000 trees tested) and the minimum node size (values of 1 to 50 tested) as 

260 implemented by the randomForest function of the randomForest v.4.6-14 R package 

261 (Breiman, 2001). The number of tested predictors at each tree node (mtry) was optimized by, 

262 first using the default value, and then, inflating or deflating this value by steps of one to verify 

263 if the OOB error estimate was improved or not. This was implemented by the tuneRF function 

264 of the same R package.  

265 Thresholds were defined the same way as for PCA and FST values but were based on the 

266 mean decrease of the Gini Index (MDGI), a measure of the importance of variables (Hastie et 

267 al., 2009; Kuhn & Johnson, 2013):

268 𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 = 1 ―
𝐶

∑
𝑖 = 1

(𝑃𝑖)2

269 with C is the number of classes and P the observed class probabilities induced by the split. 

270 The Gini Index can therefore be seen as an indication of the purity of the nodes. It is 

271 minimized when the probability to belong to one class is maximized. If a SNP allows an 

272 important decrease of the Gini Index, it means that it increases the purity of each node.

273 Moreover, the MDGI was demonstrated to be efficient for the selection of breed-informative 

274 SNPs (Bertolini et al., 2015, 2018; Boulesteix, Bender, Bermejo, & Strobl, 2012; I. Hulsegge 

275 et al., 2019).
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276 2.4.4.PLS-DA

277 The last method of selection of breed-informative SNPs is the PLS-DA, as implemented 

278 by the caret v.6.0-85 R package (Kuhn, 2008). As for RF, SNPs were centered and scaled. 

279 Again, this standardization was applied to avoid the effect of discriminating SNPs with low 

280 MAF to be hidden by the effect of SNPs with higher MAF. A number of 50 components were 

281 tested to optimize the accuracy using a 10-folds cross-validation. It means that the sample was 

282 divided in 10 parts, nine being used for the elaboration of the classification model and the last 

283 part for internal validation, and this is done 10 times, one for each tenth of the sample. In our 

284 case, 15 components provided the best accuracy. The maximum number of iterations allowed 

285 for convergence of the model was 20,000. Thresholds were then defined as for PCA, FST and 

286 RF, but were based on the importance of each variable for each of the twelve models (one per 

287 breed) i.e., based on the absolute value of coefficients computed for each SNP for each model. 

288 As selection of SNPs by the twelve models can partially overlap, we also determined the 

289 number of SNPs that passed the threshold for one to 12 models.

290 2.5. Classification methods

291 Four methods were trained on the standardized genotypes of the reference set (n=562) for 

292 assignment models: RF, PLS-DA, NSC and linear SVM. The RF was not tested on the non-

293 selected panel of SNPs. For the other 15 panels of SNPs, the four aforementioned methods 

294 were tested. As for selection of breed-informative SNPs, RF was optimized for the number of 

295 trees, the mtry and the minimum node size as implemented in the randomForest v.4.6-14 R 

296 package (Breiman, 2001). The same parameter values as for selection of breed-informative 

297 SNPs were tested for their optimization. Other classification methods were implemented by 

298 the caret v.6.0-85 R package (Kuhn, 2008). For the PLS-DA, a maximum number of 30 

299 components were tested to optimize the accuracy and the maximum number of iterations 

300 allowed for convergence of models was 20,000.
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301 The NSC method is based on distance of the sample to overall and class centroids and is 

302 therefore a linear classification method. Some advantages of NSC are its suitability for a large 

303 number of variables and low number of samples, which is the case in this study (i.e., 17,667 

304 SNPs and 562 individuals). The particularity of NSC compared to the classical nearest 

305 centroid method is to shrink class centroids toward the overall centroid. Before the shrinkage, 

306 the within-class SD of each variable is used for standardization as it gives more weight to 

307 variables that are stable within class. Therefore, it should give more weight to private alleles 

308 if they exist. Class variables that confounded with the overall centroid are not used by the 

309 model because they do not allow differentiation. It highlights another benefit from NSC: 

310 selection of variables, which are not necessarily the same for each class. Moreover, NSC 

311 targets misclassification errors (Kuhn & Johnson, 2013). One parameter has to be optimized 

312 for NSC: the level of shrinkage called Δ. The higher it is, the higher the shrinkage to the 

313 overall centroid is and so less variables are used by the model. In this study, a maximum 20 

314 different levels of shrinkage were tested by the caret v.6.0-85 R package (Kuhn, 2008). More 

315 information about the NSC method and computation can be reached through Tibshirani, 

316 Hastie, Narasimhan, & Chu (2002).

317 The linear SVM is a method that builds linear hyperplanes as boundaries between classes. 

318 In this method, boundaries are defined to maximize their margins i.e., their distance with the 

319 closest training set points called support vectors. The particularity of the SVM method is that 

320 the prediction equation is only a function of these support vectors i.e., on samples that are 

321 predicted with the least accuracy and that are the most extreme. For the linear SVM, the cost 

322 (C) is the only parameter to tune; the higher it is, the more complex is the model and closer to 

323 overfitting. In this study, several values of C have been tested: 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 

324 1, 1.25, 1.5, 1.75, 2 and 5, and implemented by the caret v.6.0-85 R package (Kuhn, 2008).
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325 2.6. Performance of classification models in cross-validation

326 As explained previously, the internal validation of RF is based on the OOB error rate. For 

327 all other models, the 10-folds CV was used. However, Kuhn & Johnson (2013) reported that 

328 cross-validation and OOB error rate give a similar insight of the predictive performance. 

329 Ranking of the classification models was thus based on 1) the values of global cross-

330 validation accuracy which is the proportion of right assignments or 2) for RF, on 100 minus 

331 the OOB error rate. To avoid possible overfitting, the tuning parameters of the simplest model 

332 within one standard deviation (SD) of the best model (based on global cross-validation 

333 accuracy) were chosen (“oneSE” function of caret v.6.0-85 R package; Kuhn, 2008). This was 

334 applied for PLS-DA, NSC and linear SVM as it is accepted that RF avoids overfitting (Kuhn 

335 & Johnson, 2013). Models with a cross-validation accuracy higher than 90% were further 

336 validated on the validation set.

337 2.7. Validation set

338 A balanced independent validation set made of 200 animals of which 40 BBB, 40 DPBB, 

339 40 EBRW, 40 HOL and 40 RPO was used. The validation set comprised animals that were 

340 included in the breed herdbook and for which genotypes were available. For EBRW males 

341 and RPO animals, this inclusion is based on visual appraisal of phenotypes, and of genotypes 

342 on seven PCs. For BBB, DPBB and HOL, the animals corresponding to the breed standards 

343 are included in the herdbook based on their pedigree. The concordance of phenotypes with 

344 breed standards is checked on farm for BBB, DPBB, EBRW and RPO.

345 Assigning EBRW, DPBB and RPO individuals to the right breed being the main 

346 objective, other breeds in cross-validation were used to control if animals from these breeds 

347 could be identified as DPBB, EBRW and RPO. Moreover, HOL and BBB are common breeds 

348 in Belgium and it should be expected from the models to correctly assign animals from these 
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349 breeds. These two breeds were therefore used as a “control” of the validation test. We would 

350 also ensure that BBB were not classified as DPBB, as both breeds genetically overlap (Fig. 

351 2). Imputation of missing values was performed iteratively on each of the validation animal 

352 by adding it to the imputed reference population and following the same algorithm described 

353 above. Then, the mean and variance per SNP of the reference population were used to 

354 standardize SNP values of validation animals.

355 To determine the best model in validation, different performance measures were looked 

356 at: the global validation accuracy, the average validation sensitivity of DPBB, EBRW and 

357 RPO, the average validation specificity of BBB and HOL and probabilities of an animal to 

358 belong to its predicted breed. The sensitivity of a model is defined as the proportion of 

359 animals of a specific breed correctly assigned to this breed by the assignment model. If the 

360 average validation sensitivity of DPBB, EBRW and RPO is high, it means that animals 

361 effectively belonging to one of these three breeds are correctly assigned to their breed. On the 

362 opposite, the specificity of a model is the proportion of animals not belonging to a specific 

363 breed that are not assigned to this specific breed. If the average validation specificity of BBB 

364 and HOL is high, it means that DPBB, EBRW and RPO are not assigned to these breeds. This 

365 is of interest as DPBB are genetically close to BBB (same history for both breeds until the 

366 seventies) and as EBRW and RPO were sometimes crossed with red-pied Holsteins. 

367 Therefore, if these breeds are not confused by the model, it will ensure a better definition of 

368 the three local breeds of interest.

369 3. RESULTS

370 In this study, the importance of using a HW filter was tested. However, the performances 

371 only slightly differed between both datasets. Therefore, more information on the results 

372 obtained for the dataset with no HW equilibrium deviation can be found in Appendixes 2B 

373 and 3B.

Page 16 of 52

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

374 3.1. Selection of breed-informative SNPs

375 Five different methods of selection of breed-informative SNPs, each associated to three 

376 thresholds for selecting SNPs, and a panel with all the SNPs that passed QC were used, 

377 leading to 16 different SNP panels in total (Figure 1; Table 2). In Table 3, the number of 

378 SNPs for each panel is shown. When the less stringent threshold is applied (mean + SD), the 

379 number of selected SNPs ranged from 205, for classical-PCA combined with RF (3.1.), to 

380 15,102 for PLS-DA (1.1.). When the most stringent threshold is applied (mean + three SD), 

381 the number of selected SNPs ranged from three, for classical-PCA combined with RF (3.3.), 

382 to 2,005 for PLS-DA (1.3). Three panels included only three, five and six SNPs 

383 (3.3./5.3./4.3.). These numbers of SNPs were smaller than the number of breeds to 

384 discriminate. Therefore, it was expected that these panels could not be able to perform 

385 correctly and they were discarded from further use in this study. 

386 Table 4 shows the total number of SNPs selected by each threshold of the PLS-DA 

387 (1.1./1.2./1.3.) and, inside each threshold, by how many of the 12 models these SNPs were 

388 selected. It can be observed that the number of SNPs selected by several models decreased 

389 with the stringency of the thresholds. Moreover, with the lowest level of stringency of the 

390 threshold (1.1.), the maximum number of models that selected the same SNP was nine. With 

391 the intermediary and higher levels of stringency (1.2./1.3.), the maximum number of models 

392 that selected the same SNPs dropped to five and three models, respectively. It was expected 

393 that PLS-DA would give a higher number of selected SNPs than other methods of selection of 

394 SNPs because this is a one-step method that selects best SNPs for each of the 12 models (each 

395 model predicting one specific breed).

396 On the opposite, other methods were two-step, which allows to limit the number of 

397 selected SNPs a second time. The FST combined with RF gave higher numbers of selected 

398 SNPs, compared to PCA-based methods, as FST is based on selection of the best SNPs for 

Page 17 of 52

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

399 discriminating each pair of breeds, leading to 66 combinations of breeds. The PCA-based 

400 methods used only a small number of PCs (from three to nine PCs out of 17,667 PCs in total) 

401 to compute the loadings, which explains the lower number of selected SNPs with PCA-based 

402 methods.

403 3.2. Cross-validation 

404 Each of the 16 different SNP panels developed before was tested on several classification 

405 methods which are PLS-DA (A), NSC (B), RF (C)(this latter was not tested on the panel 

406 without selection of SNPs) and linear SVM (D). This led to a total of 63 different models. For 

407 simplification, only models with a cross-validation accuracy greater than 90% are shown in 

408 Table 5. All the 63 different models and their performances can be found in Appendixes 2A 

409 and 3A. Among them, results obtained with panels of less than 12 SNPs (i.e., less than the 

410 number of breeds to discriminate) are only available for an informative purpose as it was 

411 obvious that they could not perform correctly.

412 From Table 5, it can be observed that 14 models had a cross-validation accuracy greater 

413 than 90%. The maximum global cross-validation accuracy of 98.22% was obtained with the 

414 panel of 2,005 SNPs and the PLS-DA classification method (1.3.A). The minimum global 

415 cross-validation accuracy of 90.39% was obtained with the panel of 228 SNPs and the NSC 

416 classification method (5.1.B). Moreover, only the NSC (B) and PLS-DA (A) classification 

417 methods allowed global cross-validation accuracy greater than 90%. These classifications 

418 methods seemed therefore more appropriate than RF (C) and linear SVM (D) for 

419 discriminating the twelve breeds under study.

420 It should also be highlighted that the most performant methods of selection of breed-

421 informative SNPs seemed to be PLS-DA (1.1./1.2./1.3.) and FST combined with RF (2.1./2.2.). 

422 No selection of SNPs (6.0.) also allowed good assignment even if it is probably related to the 

423 high number of breeds to discriminate. If there are more breeds to discriminate, it means that 
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424 more SNPs would be selected to discriminate each breed from other breeds. Thus, it can be 

425 thought that the total panel of 17,667 SNPs is carrier of less noise for discriminating twelve 

426 breeds than it would be for discriminating a lower number of breeds. 

427 The PCA-based methods for selecting SNPs seemed less relevant in the context of this 

428 study. However, the smallest SNP panel that allowed global cross-validation accuracy greater 

429 than 90% was composed of 221 SNPs and was based on mean-PCA combined with RF (4.1.). 

430 Therefore, it can be suggested not to use too stringent thresholds when selection of breed-

431 informative SNPs is based on a PCA combined with the RF method.

432 3.3. Validation tests

433 Validation tests were performed on a set based on the three breeds of interest (DPBB, 

434 EBRW and RPO) as well as on “control breeds” (BBB and HOL). Table 6 shows the results 

435 of global validation accuracy, average validation sensitivity of DPBB, EBRW and RPO and 

436 average validation specificity of BBB and HOL. It should be noticed that changes in ranking 

437 and in global accuracies of models from cross-validation to validation could not be strictly 

438 compared because the reference set used for establishing models and the validation set 

439 differed. The objective of this study was to assign properly three breeds of interest (DPBB, 

440 EBRW and RPO) and to distinguish them from nine other “close” or sister breeds. To fulfill 

441 this objective, it was necessary to use the other nine breeds in the reference for developing 

442 models. However, it seemed relevant to focus on DPBB, EBRW and RPO in validation. 

443 The 7,153 panel of SNPs followed by the NSC (1.2.B) classification method was the 

444 model that provided the best global validation accuracy (99%), average validation sensitivity 

445 of DPBB, EBRW and RPO (98.33%) and average validation specificity of BBB and HOL 

446 (100%). This model was in fourth position in cross-validation. However, this model is less 

447 parsimonious than the best model found in cross-validation (1.3.A.). It should also be noticed 

448 that the second best model obtained in validation (1.3.B.) performed very similarly than the 
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449 best model with much less SNPs i.e., with 2,005 SNPs (98.5% vs. 99%). The model based on 

450 the less stringent threshold of FST followed by RF for selection of SNPs and then by NSC for 

451 classification (2.1.B.) performed remarkably well (global validation accuracy of 97.5%) with 

452 only 1,014 SNPs. The panels with 2,005 (1.3.) and 1,014 SNPs (2.1.) could therefore be a 

453 compromise between using less SNPs and having a correct assignment.

454 A confusion matrix of the best validation model (1.2.B.) is shown in Table 7. In this 

455 confusion matrix, it can be seen that the mainstream breeds (“control”) as well as DPBB and 

456 EBRW seemed to be perfectly predicted. There were two RPO animals that were predicted as 

457 EBRW. This was expected since exchanges of animals between both breeds have been 

458 existing for many years and as they are geographically close, considered as sister breeds. It is 

459 also known from tests already implemented in Wallonia (Southern region of Belgium) that 

460 they could genomically overlap (Fig. 2). These elements should be considered when 

461 interpreting results.

462 4. DISCUSSION

463 A lot of studies have already targeted the topic of breed assignment/composition in animal 

464 productions, based on SNPs or other markers. Generally, they focused only on comparison of 

465 methods of selection of breed-informative markers and then applied the resulting selected 

466 markers on one or two assignment methods (among other examples Bertolini et al., 2015, 

467 2018; Dalvit, De Marchi, et al., 2008; Ding et al., 2011; He et al., 2018; B. Hulsegge et al., 

468 2013; I. Hulsegge et al., 2019; Judge et al., 2017; Wilkinson et al., 2011). Some other studies 

469 focused more on comparison of classification methods themselves (e.g. Iquebal et al., 2014; 

470 Nikolic, Park, Sancristobal, Lek, & Chevalet, 2009). However, studies focusing on 

471 comparisons of the combination of different SNP panels and classification methods seemed 

472 not common. 
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473 Even if their objective was slightly different i.e., determining breed composition, Frkonja 

474 et al. (2012) compared 23 panels of SNPs (all one-step, whereas some were two-step in this 

475 study) combined with four clustering/regression methods and they computed the correlations 

476 between these models and ADMIXTURE (Alexander, Novembre, & Lange, 2009) breed 

477 composition. In our study moreover, SNPs were all selected based on a measure of 

478 informativeness (Table 2) whereas Frkonja et al. (2012), aside the panels based on FST, 

479 selected equally spaced panels, panels of one/a few chromosome(s) or full panels. The models 

480 chosen by Frkonja et al. (2012) were all based on clustering or regression methods because 

481 their objective was slightly different. In our study, classification methods (RF, linear SVM, 

482 NSC and PLS-DA) were then preferred.

483 Moreover, our study has the specificity to combine data from 1) 12 breeds (of which at 

484 least eight are local) with several of them being relatively, or even tightly, historically and 

485 genetically connected (“sister breeds”) and 2) seven chips. In most studies (e.g. Bertolini et 

486 al., 2015; Dalvit et al., 2008; Funkhouser et al., 2017; I. Hulsegge et al., 2019; Judge et al., 

487 2017; Padilla et al., 2009), the number of breeds to discriminate ranged from two to six and 

488 they generally distinctly cluster from one to each other even if they can also be admixed (e.g. 

489 Frkonja et al., 2012; Gobena et al., 2018). Similarly to our study, He et al. (2018) 

490 discriminated against ten cattle breeds using the overlap of five SNP chips. However, they 

491 used completely different methods to assign animals i.e., selection of breed-informative 

492 markers was based on mean Euclidean distances of allelic frequencies and assignment of 

493 animals on the ADMIXTURE and linear regression models. Results from their study and ours 

494 could therefore hardly be compared. Iquebal et al. (2014) used different artificial neural 

495 networks to discriminate between 22 goat breeds. However, their study was based on 

496 microsatellites. Kuehn et al. (2011) also discriminate against a high number of cattle breeds 

497 (16 low related/unrelated breeds) but they only used one chip for this purpose. Wilkinson et 
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498 al. (2011) also used only one chip when assigning animals to one of the 17 breeds under 

499 study. To achieve 98% of correct assignment, they estimated that around 242 SNPs were 

500 necessary with a pairwise Weir & Cockerham’s FST based panel and a log-likelihood ratio of 

501 three. For a similar level of correct assignment, our study demonstrated that 2,005 SNPs 

502 (1.3.B.) were necessary. However, the breeds to discriminate in the study of Wilkinson et al. 

503 (2011) were generally weakly genetically related. They also had the choice for selecting SNPs 

504 from the entirety of the BovineSNP50 Beadchip while we considered the overlap of 7 chips. 

505 The effect of the number of chips, the number of breeds, their level of differentiation, the 

506 number of individuals from each breed in the reference population, the genomic 

507 representativeness of these reference individuals to their breed and the combination of these 

508 elements should therefore be investigated.

509 Because it is known, among other advantages, to eliminate SNPs that were less well 

510 genotyped (Pongpanich, Sullivan, & Tzeng, 2010), a dataset with SNPs that do not deviate 

511 from HW equilibrium per breed (P-value > 10-6) was also evaluated in this study. Compared 

512 to the dataset with no HW equilibrium filter, this dataset did not demonstrate any major 

513 differences in performances. To our knowledge, nobody has studied the impact of HW filter 

514 on performances of breed assignment models before. However, there were some studies that 

515 highlighted the impact of MAF and LD on the selection of breed-informative markers, mostly 

516 in a retrospective manner (e.g. Dalvit et al., 2008; Ding et al., 2011; I. Hulsegge et al., 2019). 

517 The influence of QC on the performance of breed assignment models should be targeted by 

518 following studies as this could strengthen the power of discrimination of models developed. 

519 In this study, it was also chosen to standardize data to be handled by the different models (i.e., 

520 mean centering and standard deviation division for each SNP value). It might be interesting to 

521 study to which level and how standardization is beneficial to develop models to assign breeds.
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522 Some studies (e.g. Frkonja et al., 2012; Kuehn et al., 2011) computed the correlation 

523 between pedigree breed composition and estimated breed composition. As already explained, 

524 it could not be excluded that other red-pied breeds have been used to ensure the viability of 

525 EBRW and RPO. Moreover, local breeds on which this study focused have been pedigree 

526 recorded for only a few years and genotype recorded for even less years. Therefore, it was not 

527 possible to precisely correlate our results with the available pedigree breed composition. The 

528 fact that these limited-sized breeds were only recently registered also explain why it was not 

529 possible to select animals to be in the reference population based on their relationship as other 

530 studies did (e.g. Funkhouser et al., 2017; Gobena et al., 2018). For the same reason, it was not 

531 relevant to eliminate possible outliers (He et al., 2018) as it was desired to consider the 

532 maximum diversity of these limited-sized breeds. When pedigree and genotypes are available 

533 for a certain time, it can therefore be advised for following studies to compare different 

534 methods for defining reference populations (e.g. methods for eliminating outliers or animals 

535 from the same family) and the suitability of this reference population for developing a model 

536 that can handle genetically diverse animals from the same breed while excluding animals 

537 from other breeds.

538 Most of the studies used Delta, i.e., absolute allele frequency differences (e.g., Dalvit, De 

539 Marchi, et al., 2008; Ding et al., 2011; Frkonja et al., 2012; Gebrehiwot, Strucken, Marshall, 

540 Aliloo, & Gibson, 2021; B. Hulsegge et al., 2013; Wilkinson et al., 2011), FST based methods 

541 (e.g., Dalvit et al., 2008; Ding et al., 2011; Frkonja et al., 2012; B. Hulsegge et al., 2013; 

542 Wilkinson et al., 2011) or PCA based methods (e.g., Bertolini et al., 2015, 2018; I. Hulsegge 

543 et al., 2019; Wilkinson et al., 2011) as a measure of breed informativeness to select markers, 

544 even if other methods of selection of markers can be used (e.g., Ding et al., 2011; He et al., 

545 2018).
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546 The power of FST values for selecting efficient markers for discriminating breeds is 

547 obviously related to their intrinsic ability to provide an index of differentiation between 

548 breeds. Moreover, the use of FST can also be declined in several forms: global vs. pairwise, 

549 Wright vs. Weir & Cockerham, alone vs. combined with one method, etc. Several studies 

550 pointed out that pairwise FST were more appropriate than global FST when discriminating 

551 more than two breeds (or populations) (e.g., Ding et al., 2011; Kersbergen et al., 2009; 

552 Wilkinson et al., 2011) which explains why it was decided to test only pairwise FST in this 

553 study. Bertolini et al. (2018) combined selection of SNPs based on FST values with RF and 

554 compared this method with PCA-based methods combined with RF. As it was already noticed 

555 in our study, models based on PCA-based panels (3.1./3.2./3.3./4.1./4.2./4.3./5.1./5.2./5.3.) 

556 performed relatively poorly compared to models based on other panels. This was expected 

557 since PCA-based methods do not only select SNPs that explain breed differentiation but also 

558 other sources of variation observed in the reference set. On the contrary, the PLS-DA method 

559 for selection of SNPs considers the correlation of SNPs with the different breeds to 

560 discriminate. To our knowledge, this study is the first one to use PLS-DA for selection of 

561 SNPs in a breed assignment context. This was inspired by the article of Soyeurt et al. (2020) 

562 who used PLS for selecting mid-infrared spectral points of interest for predicting milk 

563 lactoferrin content.

564 The models based on PLS-DA used for selection of SNPs (1.1./1.2./1.3.) performed very 

565 well on the reference and validation sets. One of the advantages of using the PLS-DA for 

566 selecting breed-informative SNPs is that this method was one-step whereas other methods 

567 used in this study were two-step.  Consequently, they tended to use more SNPs than FST based 

568 panels (2.1./2.2./2.3.), which performed well with only 1,014 SNPs (2.1.), instead of 7,153 

569 and 2,005 SNPs (1.2./1.3.) for the two best models obtained in validation. Therefore, the 

570 power of discrimination of panels based on the PLS-DA method with adapted thresholds 
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571 should be investigated. It can be asked why it may be necessary to use the PLS-DA to select 

572 most informative SNPs and then apply it again on the resulting panel for assignment purposes 

573 (1.1./1.2./1.3.A). This preselection stage strengthens the signal of most informative SNPs by 

574 removing the “noise” and the collinearity. This explanation is also applicable when RF is used 

575 for selection of breed-informative SNPs and then to assign animals 

576 (2.1./2.2./2.3./3.1./3.2./3.3./4.1./4.2./4.3./5.1./5.2./5.3.C.). Indeed, when applied on the 

577 reduced panel, the classification method estimates new weights (or importance) for each of 

578 the SNP. Consequently, the importance of SNPs outside the selected panel is forced to 0. This 

579 iterative way of working can be seen as pseudo-bayesian and is similar to the heuristic 

580 approaches applied for selection of SNPs and estimation of their weights in genomic selection 

581 (e.g., VanRaden, 2008).

582 Besides their power of discrimination of breeds, another key point about SNPs selected by 

583 the best model is that they should be expected to appear in new chips, as highlighted in He et 

584 al. (2018). In our study, the overlap of seven chips was used to select the most informative 

585 SNPs. It could therefore be expected that new chips will also contain the selected SNPs and 

586 there is a higher chance of this if assignment models need less SNPs to perform properly. This 

587 fact also explains why the second best model (1.3.B.) could be preferred to the best model 

588 (1.2.B.) obtained in validation (2,005 vs. 7,153 SNPs). As already mentioned, the use of 2,005 

589 SNPs would be a good compromise between limiting the number of SNPs used and 

590 discriminating correctly.

591 Another issue, that was not targeted in this study, is the correlation between the different 

592 SNP panels by determining their overlap (Bertolini et al., 2015; Ding et al., 2011; B. 

593 Hulsegge et al., 2013; Paschou et al., 2007). This could also be of interest when determining 

594 the best model to use for breed assignment. For example, some panels could lead to similar 

595 performances but not using the same SNPs at all to fulfill this objective. There could maybe 
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596 also have SNP panels with a different number of SNPs, one being almost entirely contained in 

597 the other, with similar or highly different global accuracies. Some panels may be also more 

598 appropriate to specific methods of assignment, meaning that some methods are more able to 

599 handle specific measures of informativeness.

600 The definition of thresholds for selecting SNPs that should allow the differentiation 

601 amongst breeds is also a burning question. However, in several studies, the number of best 

602 selected SNPs seemed arbitrary (e.g., Bertolini et al., 2018; He et al., 2018; I. Hulsegge et al., 

603 2019; Judge et al., 2017) while others focused on regularly spaced SNPs or full sets (Frkonja 

604 et al., 2012; Funkhouser et al., 2017; Kuehn et al., 2011). A more accurate manner to 

605 determine the number of best SNPs to be chosen is to have a look at the log-likelihood ratio 

606 (B. Hulsegge et al., 2013) or to define a threshold either of the global accuracy needed (as in 

607 Wilkinson et al., 2011) either of the measure of informativeness (as in our study or e.g., in 

608 Frkonja et al., 2012). It seems less accurate to compare models that did not contain the same 

609 level of informativeness (in case of same number of SNPs for different methods) than 

610 different models with different number of SNPs that are supposed to share similar levels of 

611 informativeness even if this informativeness could be expressed with different measures.

612 The fact that some studies used a log-likelihood ratio for determining the number of 

613 necessary SNPs highlighted the need for accounting for probabilities when assigning animals 

614 to a breed. I. Hulsegge et al. (2019) defined thresholds of probabilities for defining if the 

615 animal is pure or crossbred. Even though this topic is also of importance, it was not the 

616 objective of this study. For two breeds under study (EBRW and RPO), the herdbook, 

617 following the EU Animal Breeding regulation for endangered breeds, only allows animals 

618 that fit with the genomic (and phenotypic) breed standards, which means that animals 

619 included should be considered as “pure” or excluded. 
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620 Moreover, probabilities of animals to belong to a certain breed were higher in NSC (B) 

621 than in PLS-DA models (A) (data not shown), which probably ties to the intrinsic way those 

622 methods handle data. In general, NSC models (B) performed better than PLS-DA models (A) 

623 in validation. It therefore seems that NSC models (B) are less susceptible to overfitting than 

624 PLS-DA models (A) in the specific case of this study. The PLS-DA models (A) may be more 

625 appropriate to discriminate amongst a smaller number of breeds, that are less genomically 

626 related, than the twelve breeds of this study. On the contrary, hyperplanes dedicated to each 

627 breed can overlap with the NSC method because it is based on the distance of the animal to 

628 assign to each of the class shrunken centroids. Another advantage of the NSC model (B) is 

629 that it should easily adapt to dynamic reference populations by modifications of the position 

630 of the centroids. A breed should not be considered as static and the reference population 

631 should change accordingly.

632 This study did not demonstrate high cross-validation accuracy of assignment when using 

633 the linear SVM method, maybe because it designs margins based on most extreme animals 

634 from each breed. Therefore, the lack of performance can be due to the genomic relatedness of 

635 the 12 breeds involved i.e., the 12 breeds did not clearly discriminate from each other and 

636 formed a continuum as shown in Figure 2. With a model based on a SVM, Pasupa, 

637 Rathasamuth, & Tongsima (2020) obtained an accuracy of 95.12% with only 164 SNPs to 

638 discriminate 21 pig breeds that seemed less genomically related than the 12 cattle breeds 

639 under study. Moreover, they used an iterative combination of algorithms to select breed-

640 informative SNPs and they tuned the SVM to be radial, which may take time to parameterize 

641 as they highlighted. This can explain the differences of performances between their study and 

642 ours. Therefore, it can be suggested to further studies to use the radial SVM method instead of 

643 the linear SVM.
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644 The RF method gave intermediary cross-validation accuracies even if it was previously 

645 shown to be efficient.  For example, I. Hulsegge et al. (2019) obtained a global accuracy of 

646 86.13% with 976 SNPs to discriminate seven breeds. This result is similar to the best cross-

647 validation accuracy found with the RF classification method (1.3.C.) i.e., to 88.79%. Another 

648 example is provided by Bertolini et al. (2018) that obtained high global accuracies of 

649 minimum 98.62% with only 48 SNPs when comparing different methods of selection of 

650 breed-informative SNP,. However, again, the number of breeds they studied was lower (n=5) 

651 and they were more genomically differentiated than the 12 breeds under study.

652 It should be highlighted that the SNPs selected, their number, the best models and their 

653 parameters were specific to the number of breeds under study, their genomic diversity and 

654 relatedness and the SNPs available. The best model (1.2.B.) found in this study may not be 

655 the best in other cases. However, methods for selection of SNPs and/or assignment of breeds 

656 that were proven to perform well should be expected to perform well also in other cases (e.g., 

657 selection of SNPs based on FST combined with RF (2) /PLS-DA (1) and classification 

658 methods based on NSC (B) /PLS-DA (A)). The results obtained in this study (99% and 98.5% 

659 of global accuracy in validation, with 7,153 (1.2.B.) and 2,005 SNPs (1.3.B.) respectively) are 

660 encouraging and should pave the way for other studies concerned about this topic. 

661 The results obtained can also potentially be used in the process of certification of labelled 

662 breed-products. One usual strategy that can be relatively easily implemented for preserving 

663 endangered breeds is the development of labelled products, for example based on meat or 

664 cheese. In Belgium and France, for example, the transboundary BlueSter (2020) project was 

665 launched to preserve and enhance the DPBB breed. Among other outcomes, a cheese of 

666 DPBB was created and will be followed by other certified products like meat. One of the 

667 objectives of the BlueSter (2020) project is to develop a certification tool to ensure to 

668 consumers that these local products are actually derived from the DPBB breed and not, for 
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669 example, from the BBB breed, which only diverged from DPBB a few decades ago (BlueSter, 

670 2020). This situation highlights the need for a breed assignment model that can be applied on 

671 breed-derived products themselves. Several studies have already developed models for meat 

672 breed certification purposes (e.g., Dimauro et al., 2013; Judge et al., 2017). Moreover, 

673 genomic DNA can now be extracted from small samples of milk (Pokorska, Kułaj, Dusza, 

674 Żychlińska-Buczek, & Makulska, 2016). This technological advance will possibly ensure a 

675 non-invasive manner of determining the breed of origin of labelled dairy products.

676 5. CONCLUSIONS

677 This study demonstrated that PLS-DA and NSC are effective for selection of breed-

678 informative SNPs and breed assignment, respectively. The results obtained are promising, 

679 especially as models were 1) developed on a high number of breeds (n=12); 2) based on the 

680 overlap of seven chips; and 3) validated on three local endangered cattle breeds of interest. 

681 The best model (1.2.B.) found in this study used 7,153 SNPs, had a global validation accuracy 

682 of 99% and an average validation sensitivity for the three local breeds (DPBB, EBRW and 

683 RPO) of interest of 98.83%. However, the second best model (1.3.B.) performed almost 

684 equally with only 2,005 SNPs, a global validation accuracy of 98.5% and an average 

685 validation sensitivity for DPBB, EBRW and RPO of 97.5%. This second model (1.3.B.) may 

686 be preferred in application to limit the number of SNPs to be used and then ensure the 

687 continued use of the model for next years. Future breed assignments for EBRW and RPO will 

688 be based on these results. Also, these results indicate, that at least for the studied breeds (e.g.,  

689 DPBB), certification of breed-derived products can be considered a feasible option. Finally, to 

690 our knowledge, this is the first time that the PLS-DA is used in the context of breed 

691 assignment for selection of breed-informative markers. This method of selection of SNPs 

692 should further be investigated and potentially be compared with other strategies, especially 

693 those not tested in this study. 
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Table 1. Breeds used for assignment models and the number (n) of reference individuals used 

per breed. In bold, breeds on which this study specifically focuses.

Breed Abbreviation n

Beef Belgian Blue BBB 60

Belgian Campine CAM 33

Dutch Improved Red Pied DIRP 25

Dual-Purpose Belgian Blue DPBB 60

East Belgian Red and White EBRW 50

(Red-)Holstein HOL 120

Meuse-Rhine-Yssel MRY 63

Rotbunte DN RDN 17

Rouge des Prés RDP 20

Red-Pied of Ösling RPO 51

Shorthorn SHO 30

Simmental SIM 33
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Table 2. Methods used for stage 1: selection of breed-informative informative SNPs, ranking measures and definition of thresholds for each ranking 

measure. Cases relative to stage 1 are coded following Figure 1.

Abbreviations: classical-PCA: principal component analysis on genotypes; mean-PCA: principal component analysis on mean of genotypes by breed; chrom-PCA: principal 

component analysis per autosome; W&C FST: pairwise Weir & Cockerham’s FST; PC: principal component; NA: not applicable; MDGI: mean decrease in the Gini Index.

a: thresholds were applied to the twelve models (one per breed) to determine breed-informative markers specific to each of these twelve breeds.

Method of selection of breed-

informative markers
Ranking measure Thresholds

Used in case

scores + σscores𝛍 First step of 3.1./4.1./5.1.

scores + 2*σscores𝛍 First step of 3.2./4.2./5.2.
Classical-PCA/Mean-

PCA/Chrom-PCA

Scores defined as:
𝚺𝐤

𝐢 = 𝟏(𝐒𝐍𝐏 𝐥𝐨𝐚𝐝𝐢𝐧𝐠 𝐭𝐨 𝐭𝐡𝐞 𝐢 𝐭𝐡𝐏𝐂)𝟐

k = number of PCs considered scores + 3*σscores𝛍 First step of 3.3./4.3./5.3.

W&C Fst + σW&C Fst𝛍 First step of 2.1.

W&C Fst + 2*σW&C Fst𝛍 First step of 2.2.W&C FST NA

W&C Fst + 3*σW&C Fst𝛍 First step of 2.3.

MDGI + σMDGI𝛍 Second step of 2.1./3.1./4.1./5.1

MDGI + 2*σMDGI𝛍 Second step of 2.2./3.2./4.2./5.2.Random forest MDGI

MDGI + 3*σMDGI𝛍 Second step of 2.2./3.3./4.3./5.3.

coefficient + σcoefficienta𝛍 1.1.

coefficient + 2*σcoefficienta𝛍 1.2.
Partial least square-discriminant 

analysis
Absolute value of coefficients

coefficient + 3*σcoefficienta𝛍 1.3.

No selection NA NAe 6.0.
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Table 3. Number of SNPs selected by each method of selection of breed-informative SNPs. 

Cases are coded following Figure 1. In italic, panels with less SNPs than the number of breeds 

to discriminate.

Case Number of SNPs

1.1. 15,102

1.2. 7,153

1.3. 2,005

2.1. 1,014

2.2. 396

2.3. 154

3.1. 205

3.2. 30

3.3. 3

4.1. 221

4.2. 35

4.3. 6

5.1. 228

5.2. 33

5.3. 5

6.0. 17,667
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Table 4. Total number of SNPs selected by each threshold of the partial least squares-

discriminant analysis (PLS-DA) and, within each threshold, number of SNPs detected as 

informative by one to nine models of the PLS-DA. Cases are coded following figure 1.

Case Number of models of the PLS-DAa Total number of SNPs

1 2 3 4 5 6 7 8 9

1.1. 5,074 4,887 3,035 1,429 520 134 22 0 1 15,102

1.2. 5,387 1,456 277 29 4 0 0 0 0 7,153

1.3. 1,857 138 10 0 0 0 0 0 0 2,005

a: the PLS-DA creates a model for each breed. There are therefore 12 models inside each threshold. 
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Table 5. Number of selected SNPs, classification methods and ranked global accuracy obtained 

in 10-folds cross-validation. Cases are coded following Figure 1.

Case Number of selected 

SNPs

Classification 

method

Global accuracy 

(%)

1.3.A. 2,005 PLS-DA 98.22

1.3.B. 2,005 NSC 97.33

1.2.A. 7,153 PLS-DA 96.62

1.2.B. 7,153 NSC 96.26

1.1.B. 15,102 NSC 94.66

2.1.A. 95.54

1.1.A. 95.19

6.0.A.

1,014

15,102

17,667

PLS-DA

PLS-DA

PLS-DA 94.48

6.0.B. 17,667 NSC 93.77

2.1.A. 1,014 NSC 93.41

2.2.A. 396 PLS-DA 92.88

2.2.B. 396 NSC 92.7

4.1.B. 221 NSC 91.46

5.1.B. 228 NSC 90.39

Abbreviations PLS-DA: partial least squares-discriminant analysis; NSC: nearest shrunken centroids.
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Table 6. Number of selected SNPs, classification methods, ranked global accuracy, ranked 

average sensitivity of Dual-Purpose Belgian Blue (DPBB), East Belgian Red and White 

(EBRW) and Red Pied of Ösling (RPO), average specificity of Beef Belgian Blue (BBB) and 

Holstein (HOL), obtained in validation. Cases are coded following Figure 1.

Case Number of 

selected 

SNPs

Classification 

method

Global 

accuracy 

(%)

Average 

sensitivity of 

BBM, 

EBRW and 

RPO (%)

Average 

specificity of 

BBB and 

HOL (%)

1.2.B. 7,153 NSC 99 98.83 100

1.3.B. 2,005 NSC 98.5 97.5 100

1.1.B. 15,102 NSC 98 96.67 100

6.0.B. 17,667 NSC 98 96.67 100

1.1.A. 15,102 PLS-DA 97.5 95.83 100

6.0.A. 17,667 PLS-DA 97.5 95.83 100

2.1.B. 1,014 NSC 97.5 95.83 100

1.2.A. 7,153 PLS-DA 97 95 99.69

2.1.A. 1,014 PLS-DA 97 95 99.69

1.3.A. 2,005 PLS-DA 96 93.33 99.38

2.2.B. 396 NSC 93 88.33 100

4.1.B. 221 NSC 90.5 84.17 99.69

2.2.A. 396 PLS-DA 89.5 82.5 99.38

5.1.B. 228 NSC 51 49.17 100

Abbreviations NSC: nearest shrunken centroids; PLS-DA: partial least squares-discriminant analysis.
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Table 7. Confusion matrix of the best model found in validation (7,153 SNPs selected and the 

nearest shrunken centroids classification method; case 1.2.B.).

Predicted breed Breed of origin

BBB DPBB EBRW HOL RPO

BBB 40 0 0 0 0

DPBB 0 40 0 0 0

EBRW 0 0 40 0 2

HOL 0 0 0 40 0

RPO 0 0 0 0 38

Abbreviations BBB: Beef Belgian Blue; DPBB: Dual Purpose Belgian Blue; EBRW: East Belgian Red and 

White; HOL: Holstein; RPO: Red Pied of Ösling.
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Figure 1. Schematic representation of the Material & Methods followed in this study. 

Abbreviations MAF: minor allele frequency; PLS-DA: partial least square-discriminant 

analysis; RF: random forest; Classical-PCA: principal component analysis on genotypes; 

Mean-PCA: principal component analysis on mean of genotypes by breed; Chrom-PC: 

principal component analysis per autosome; NSC: nearest shrunken centroids; SVM: support 

vector machine. a: for each method of selection of breed-informative SNPs, case “1” represents 

the less stringent threshold, case “2” represents the intermediary threshold and case “3” 

represents the most stringent threshold. Case “0” is used when there is no threshold because of 

no selection.

Figure 2. Distribution of animals from the reference population on the first two components of 

a principal component analysis. Animals from each breed are represented with a different 

colour. In bold, breeds on which this study specifically focuses. Abbreviations BBB: Beef 

Belgian Blue; CAM: Belgian Campine; DIRP: Dutch Improved Red Pied; DPBB: Dual-

Purpose Belgian Blue; EBRW: East Belgian Red and White; HOL: Holstein; MRY: Meuse-

Rhine-Yssel; RDN: Rotbunte DN; RDP: Rouge des Prés; RPO: Red Pied of Ösling; SHO: 

Shorthorn; SIM: Simmental.

Page 46 of 52

JABG Manuscript Proof

JABG Manuscript Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Appendix 1.

Chips used and number (n) of genotyped reference individuals per chip.

Chip n

BovineSNP50 Beadchip v1 97

BovineSNP50 Beadchip v2 274

BovineSNP50 Beadchip v3 76

BovineHD Beachip v12 110

EuroG 10k

EuroG MD v9a

EuroG MD SI v9a

5

0

0

a: this chip was not used for genotyping reference individuals but for genotyping new individuals.
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Appendix 2.

Ranked results of cross-validation obtained on a) the dataset without any Hardy-Weinberg 

filter and b) the dataset filtered out for Hardy-Weinberg equilibrium P-value smaller than 10-6. 

In green, results with more than 90% of global accuracy. In red, results from panels with less 

than 12 SNPs. Cases are coded following Figure 1.

a) 
Case Number of SNPs Optimized parameters Global accuracy (%)
1.3.A. 2,005 17 components 98.22
1.3.B. 2,005 Delta=0.3273 97.33
1.2.A. 7,153 11 components 96.62
1.2.B. 7,153 Delta=0.3248 96.26
2.1.A. 1,014 11 components 95.54
1.1.A. 15,102 11 components 95.19
1.1.B. 15,102 Delta=0.3230 94.66
6.0.A. 17,667 11 components 94.48
6.0.B. 17,667 Delta=0.3224 93.77
2.1.B. 1,014 Delta=0.3403 93.41
2.2.A. 396 11 components 92.88
2.2.B. 396 Delta=0.3445 92.7
4.1.B. 221 Delta=0.3251 91.46
5.1.B. 228 Delta=0.3242 90.39
3.1.B. 205 Delta=0.3259 89.15
4.1.A. 221 11 components 88.79
1.3.C. 2,005 2,000 trees/Minimum node size=1 88.79
2.3.B. 154 Delta=0.3475 88.24
3.1.A. 205 10 components 87.36
5.1.A. 228 10 components 86.84
1.2.C. 7,153 2,000 trees/Minimum node size=6 86.3
1.1.C. 15,102 2,000 trees/Minimum node size=3 85.77
2.1.C. 1,014 500 trees/Minimum node size=4 85.59
2.3.A. 154 11 components 85.4
2.2.C. 396 500 trees/Minimum node size=1 84.88
3.1.C 205 500 trees/ Minimum node size=3 83.63
2.3.C. 154 3,000 trees/Minimum node size=1 83.27
4.1.C. 221 500 trees/Minimum node size=1 83.27
5.1.C. 228 500 trees/Minimum node size=4 82.56
4.1.D. 221 C=0.01 75.08
4.2.B. 35 Delta=0.3309 74.78
5.2.C. 33 2,000 trees/ Minimim node size=1 72.95
5.2.B. 33 Delta=0.3323 71.89
4.2.C. 35 500 trees/Minimum node size=2 71.35
3.1.D. 205 C=0.01 70.8
2.3.D. 154 C=0.01 70.65
3.2.B. 30 Delta=0.3318 70.62
5.1.D. 228 C=0.01 70.49
4.2.A. 35 8 components 70.29
5.2.A. 33 15 components 70.12
3.2.C. 30 500 trees/Minimum node size=1 68.86
2.2.A. 30 7 components 66.72
2.1.C. 1,014 C=0.01 66.02
1.2.D. 7,153 C=0.01 66.02
1.1.D. 15,102 C=0.05 65.13
6.0.D. 17,667 C=0.01 64.78
4.2.D. 35 C=0.01 64.6
2.2.D. 396 C=0.1 64.23
1.3.D. 2,005 C=0.01 61.03
3.2.D. 30 C=0.01 59.45
5.2.D. 33 C=0.01 58.71
5.3.B. 5 Delta=0.3085 46.28
5.3.C. 5 2,000 trees/ Minimum node size=26 45.73
4.3.C. 6 500 trees/ Minimum node size=18 43.5
5.3.A. 5 4 components 43.25
3.3.C. 3 2000 trees/ Minimum node size=3 42.7
4.3.A. 6 4 components 42.51
4.3.B. 6 Delta=0.2805 42.35
5.3.D. 5 C=0.05 38.44
3.3.B. 3 Delta=0.3106 38.43
4.3.D. 6 C=0.05 38.42
3.3.A. 3 2 components 37.72
3.3.D. 3 C=0.25 33.99
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b)  Case Number of SNPs Optimized parameters Global accuracy (%)
1.3.A. 1,843 14 components 98.05
1.3.B. 1,843 Delta=0.3272 97.51
1.2.A. 6,687 11 components 96.79
1.2.B. 6,687 Delta=0.3248 96.26
2.1.A. 959 11 components 95.18
1.1.A. 14,067 11 components 95.01
1.1.B. 14,067 Delta=0.3230 94.48
6.0.A. 16,449 11 components 94.48
2.1.B. 959 Delta=0.3399 93.77
6.0.B. 16,449 Delta=0.3223 93.59
2.2.A. 342 11 components 92.33
2.2.B. 342 Delta=0.3439 92.33
4.1.B. 203 Delta=0.3243 91.11
5.1.B. 220 Delta=0.3244 89.85
4.1.B. 202 Delta=0.3254 89.33
1.3.C. 1,843 3,000 trees/Minimum node size=3 88.79
4.1.A. 203 11 components 88.25
3.1.A. 202 10 components 86.83
2.3.B. 146 Delta=0.3484 86.67
1.2.C. 6,687 3,000 trees/Minimum node size=3 86.3
5.1.A. 220 10 components 86.3
2.3.A. 146 11 components 85.75
2.1.C. 959 500 trees/Minimum node size=1 85.23
1.1.C. 14,067 2,000 trees/Minimum node size=5 84.88
1.2.C. 342 500 trees/Minimum node size=4 84.7
3.1.C. 202 500 trees/Minimum node size=1 84.52
1.3.C. 146 1,000 trees/Minimum node size=1 83.81
4.1.C. 203 2,000 trees/Minimum node size=1 82.92
5.1.C. 220 500 trees/Minimum node size=4 82.56
4.2.B. 37 Delta=0.3309 74.04
5.2.B. 32 Delta=0.3324 73.66
4.2.C. 37 2,000 trees/Minimum node size=4 72.95
5.2.C. 32 3,000 trees/Minimum node size=1 72.78
4.1.D. 203 C=0.01 72.25
3.2.C. 31 3,000 trees/Minimum node size=1 70.8
3.1.D. 202 C=0.01 70.47
3.2.B. 31 Delta=0.3329 70.25
5.2.A. 32 12 components 69.73
4.2.A. 37 11 components 69.22
5.1.D. 220 C=0.05 68.35
3.2.A. 31 9 components 67.25
1.2.D. 6,687 C=0.01 66.2
2.3.D. 146 C=0.05 66.02
1.1.D. 14,067 C=0.05 65.49
6.0.D. 16,449 C=0.01 64.95
2.1.D. 959 C=0.01 64.24
2.2.D. 342 C=0.01 64.14
4.2.D. 37 C=0.01 63.17
1.3.D. 1,843 C=0.01 60.85
5.2.D. 32 C=0.01 59.79
3.2.D. 31 C=0.1/0.01 57.3
5.3.C. 4 2,000 trees/Minimum node size=16 44.31
5.3.B. 4 Delta=0.2938 43.61
5.3.A. 4 3 components 42.89
3.3.A. 4 3 components 41.27
3.3.B. 4 Delta=0.2718 40.92
4.3.A. 4 3 components 40.48
3.3.C. 4 500 trees/ Minimum node size=21 40.31
4.3.B. 4 Delta=0.7697 40.22
4.3.C. 4 500 trees/Minimum node size=48 39.15
3.3.D. 4 C=0.01 38.8
4.3.D. 4 C=0.01 38.06
5.3.D. 4 C=0.1 37.74
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Appendix 3. 

Ranked results of validation obtained on a) the dataset without any Hardy-Weinberg filter and b) the dataset filtered out for Hardy-Weinberg 

equilibrium P-value smaller than 10-6. Only models with global accuracy greater than 90% in cross-validation were tested on validation.

a) 

b) 

Abbreviations NSC: Nearest Shrunken Centroids; PLS-DA: Partial Least Squares-Discriminant Analysis; BBB: Beef Belgian Blue; DPBB: Dual-Purpose Belgian Blue; EBRW: East Belgian Red and White; HOL: 

Holstein; RPO: Red-Pied of Ösling; CAM: Belgian Campine; DIRP: Dutch improved Red Pied; MRY: Meuse-Rhine-Yssel; RDN: Rotbunte DN; RDP: Rouge des Prés; SHO: Shorthorn; SIM: Simmental.

Case Number of SNPs Global accuracy (%) Sensitivity (%) Specificity (%)
1.2.B. 7,153 99 BBB 100/DPBB 100/EBRW 100/HOL 100/RPO 95 BBB 100/CAM 100/DIRP 100/DPBB 100/EBRW 98.75/HOL 100/MRY 100/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
1.3.B. 2,005 98.5 BBB 100/DPBB 100/EBRW 100/HOL 100/RPO 92.5 BBB 100/CAM 100/DIRP 100/DPBB 100/EBRW 98.12/HOL 100/MRY 100/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
1.1.B. 15,102 98 BBB 100/DPBB 100/EBRW 100/HOL 100/RPO 90 BBB 100/CAM 100/DIRP 100/DPBB 100/EBRW 99.38/HOL 100/MRY 100/RDN 98.5/RDP 100/RPO 100/SHO 100/SIM 100
6.0.B. 17,667 98 BBB 100/DPBB 100/EBRW 100/HOL 100/RPO 90 BBB 100/CAM 100/DIRP 100/DPBB 100/EBRW 99.38/HOL 100/CAM 100/MRY 100/RDN 98.5/RDP 100/RPO 100/SHO 100/SIM 100
1.1.A. 15,102 97.5 BBB 100/DPBB 100/EBRW 95/HOL 100/RPO 92.5 BBB 99.38/CAM 100/DIRP 100/DPBB 100/EBRW 100/HOL 96.88/MRY 98.5/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
6.0.A. 17,667 97.5 BBB 100/DPBB 100/EBRW 95/HOL 100/RPO 92.5 BBB 100/CAM 99.38/DIRP 100/DPBB 99.38/EBRW 100/HOL 100/MRY 98.5/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
2.1.B. 1,014 97.5 BBB 100/DPBB 100/EBRW 92.5/HOL 100/RPO 95 BBB 100/CAM 99.5/DIRP 99.5/DPBB 100/EBRW 98.75/HOL 100/MRY 100/RDN 100/RDP 100/RPO 99.38/SHO 100/SIM 100
1.2.A. 7,153 97 BBB 100/DPBB 100/EBRW 92.5/HOL 100/RPO 92.5 BBB 99.38/CAM 100/DIRP 100/DPBB 100/EBRW 100/HOL 100/MRY 97.5/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
2.1.A. 1,014 97 BBB 100/DPBB 100/EBRW 90/HOL 100/RPO 95 BBB 100/CAM 99.5/DIRP 100/DPBB 100/EBRW 100/HOL 99.38/MRY 98.50/RDN 100/RDP 100/RPO 99.38/SHO 100/SIM 100
1.3.A. 2,005 96 BBB 100/DPBB 100/EBRW 85/HOL 100/RPO 95 BBB 99.38/CAM 99.5/DPBB 100/EBRW 100/HOL 99.38/MRY 98.5/RDN 100/RDP 99.5/RPO 99.38/SHO 100/SIM 100
2.2.B. 396 93 BBB 100/DPBB 100/EBRW 72.5/HOL 100/RPO 92.5 BBB 100/CAM 97.5/DIRP 99/DPBB 100/EBRW 98.12/HOL 100/MRY 100/RDN 100/RDP 100/RPO 97.5/SHO 100/SIM 100
4.1.B. 221 90.5 BBB 100/DPBB 97.5/EBRW 65/HOL 100/RPO 90 BBB 99.38/CAM 95.5/DIRP 99.5/DPBB 100/EBRW 97.5/HOL 100/MRY 100/RDN 100/RDP 100/RPO 97.5/SHO 100/SIM 100
2.2.A. 396 89.5 BBB 100/DPBB 97.5/EBRW 70/HOL 100/RPO 80 BBB 98.75/CAM 99.5/DIRP 99.5/DPBB 99.38/EBRW 100/HOL 100/MRY 95/RDN 99.5/RDP 100/RPO 96.88/SHO 100/SIM 100
5.1.B. 228 51 BBB 60/DPBB 40/EBRW 60/HOL 47.5/RPO 47.5 BBB 100/CAM 84/DIRP 85/DPBB 96.88/EBRW 81.25/HOL 100/MRY 100/RDN 99.5/RDP 100/RPO 100/SHO 100/SIM 100

Case Number of SNPs Global accuracy (%) Sensitivity (%) Specificity (%)
1.2.B. 6,687 99 BBB 100/DPBB 100/EBRW 100/HOL 100/RPO 95 BBB 100/CAM 100/DIRP 100/DPBB 100/EBRW 99.38/HOL 100/MRY 100/RDN 99.5/RDP 100/RPO 100/SHO 100/SIM 100
1.1.B. 14,067 98 BBB 100/DPBB 100/EBRW 100/HOL 100/RPO 90 BBB 100/CAM 100/DIRP 100/DPBB 100/EBRW 99.38/HOL 100/MRY 100/RDN 98.5/RDP 100/RPO 100/SHO 100/SIM 100
6.0.B. 16,449 98 BBB 100/DPBB 100/EBRW 100/HOL 100/RPO 90 BBB 100/CAM 100/DIRP 100/DPBB 100/EBRW 99.38/HOL 100/MRY 100/RDN 98.5/RDP 100/RPO 100/SHO 100/SIM 100
1.3.B. 1,843 97.5 BBB 100/DPBB 100/EBRW 95/HOL 100/RPO 92.5 BBB 100/CAM 99/DIRP 100/DPBB 100/EBRW 98.12/HOL 100/MRY 100/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
1.1.A. 14,067 97.5 BBB 100/DPBB 100/EBRW 95/HOL 100/RPO 92.5 BBB 99.38/CAM 100/DIRP 100/DPBB 100/EBRW 100/HOL 100/MRY 98/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
1.2.A. 6,687 97 BBB 100/DPBB 100/EBRW 92.5/HOL 100/RPO 92.5 BBB 99.38/CAM 100/DIRP 100/DPBB 100/EBRW 100/HOL 100/MRY 97.5/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
6.0.A. 16,449 97 BBB 100/DPBB 100/EBRW 95/HOL 100/RPO 90 BBB 99.38/CAM 100/DIRP 100/DPBB 100/EBRW 99.38/HOL 100/MRY 98/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
1.3.A. 1,843 96.5 BBB 100/DPBB 100/EBRW 87.5/HOL 100/RPO 95 BBB 99.38/CAM 99.5/DIRP 100/DPBB 100/EBRW 100/HOL 99.38/MRY 98.5/RDN 100/RDP 100/RPO 99.38/SHO 100/SIM 100
2.1.B. 959 96.5 BBB 100/DPBB 100/EBRW 92.5/HOL 100/RPO 90 BBB 100/CAM 99/DIRP 99.5/DPBB 100/EBRW 97.5/HOL 100/MRY 100/RDN 100/RDP 100/RPO 100/SHO 100/SIM 100
2.1.A. 959 95 BBB 100/DPBB 95/EBRW 85/HOL 100/RPO 95 BBB 98.75/CAM 99.5/DIRP 99.5/DPBB 100/EBRW 100/HOL 100/MRY 98/RDN 100/RDP 100/RPO 98.75/SHO 100/SIM 100
2.2.B. 342 93.5 BBB 100/DPBB 100/EBRW 75/HOL 100/RPO 92.5 BBB 100/CAM 97/DIRP 99/DPBB 100/EBRW 98.75/HOL 100/MRY 99.5/RDN 100/RDP 100/RPO 98.75/SHO 100/SIM 100
4.1.B. 203 93 BBB 100/DPBB 97.5/EBRW 77.5/HOL 100/RPO 90 BBB 99.38/CAM 96.50/DIRP 99.5/DPBB 100/EBRW 97.5/HOL 100/MRY 100/RDN 100/RDP 100/RPO 99.38/SHO 100/SIM 100
2.2.B. 342 89.5 BBB 100/DPBB 100/EBRW 65/HOL 100/RPO 82.25 BBB 99.38/CAM 97/DIRP 99/DPBB 99.38/EBRW 99.38/HOL 100/MRY 96/RDN 100/RDP 100/RPO 98.75/SHO 100/SIM 100
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