Application of a viscous through-flow model to modern axial compressors

Arnaud Budo⁽¹⁾

Vincent E. Terrapon⁽¹⁾, Maarten Arnst⁽¹⁾, Koen Hillewaert⁽¹⁾ Sophie Mouriaux⁽²⁾, Benoit Rodriguez⁽²⁾, Jules Bartholet⁽²⁾

ASME Turbo Expo 2021

Context

Geometrical variability of aerodynamic parts of low-pressure compressors

[SAB]

Technical and economic performances

Manufacturing tolerances?

- Rigorous/robust methodology
- Choice of manufacturing process
- Simplify the treatment of poorly made parts

Decrease the overall cost

Methodology

Outline

Outline

Through-flow model

- Navier-stokes based
- Closure implementation
- Validation

Adamczyck's cascade

Mathematical formulation of source terms

Robust and exhaustive definition of closures

Unclosed!
Blade forces + stresses

3D **URANS** $\mathcal{O}(\text{weeks})$ High 3D **RANS** $\mathcal{O}(days)$ 3D steady cost 0.23 0.18 0.13 0.08 0.03 -0.02 periodic RANS **2D** axisymmetric $\mathcal{O}(hours)$ **Through-flow** $\mathcal{O}(\text{minutes})$ [Cenaero] [Schauberger] Ensemble Low average [Schauberger] Time cost average [SAB] Passage-to-passage $\rightarrow X$ average [Simon 2007] **Circumferential** average

3D **DNS** $\mathcal{O}(\text{months})$

Closure definition

 $D_t \bar{U}(r, x) = \bar{G}(U, r, x)$

Unclosed! Blade forces + stresses

ASME Turbo Expo - 06/2021 - A. Budo

Outline

Viscous through-flow model: ASTEC

Consistent formulation for elsA:

$$\frac{\partial U}{\partial t} + \frac{\partial (F - F_v)}{\partial x} + \frac{\partial (G - G_v)}{\partial r} = S + \frac{(F_v - F)}{b} \frac{\partial b}{\partial x} + \frac{(F_v - G)}{b} \frac{\partial b}{\partial r}$$

Blockage factor terms

Viscous through-flow model: ASTEC

Methodology:

ASTEC: Reynolds stress

- Turbulence model: k l Smith
- Endwall boundary layers
- Handled by elsA

ASTEC: Inviscid blade force

- Streamtube contraction
- Known (averaged pressure p + geometry)
- Added to blockage factor terms

$$\boldsymbol{S}_{bi1} = \begin{bmatrix} \boldsymbol{0} \\ \frac{p}{b} \frac{\partial b}{\partial x} \\ \frac{p}{b} \frac{\partial b}{\partial r} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}} - \frac{F}{b} \frac{\partial b}{\partial x} - \frac{G}{b} \frac{\partial b}{\partial r}$$

$$b = 1 - \frac{\varepsilon(x)}{s}$$

ASTEC: inviscid blade force

W: velocity in the relative frame

 Ω : shaft angular velocity

ASTEC: viscous blade force

• Distributed force $\overrightarrow{f_v}$

• Entropy *s* generated:

- ✓ Euler equations
- ~ N-S equations

ASTEC: correlations for δ and ω

Deviation angle δ

Outline

CME2: Overview

[Moreau 2019]

- Research compressor designed by Safran Aircraft Engines
- Low speed flow
- NACA65A012 blades
- Correlations calibrated at these conditions

CME2: results

- Globally good agreement
- ASTEC maximum peak efficiency close to LES prediction
- Relative difference lower than LES-URANS discrepancy
- Slight shift of mass-flow rate

Isentropic efficiency

CME2: results

- Global good agreement
- Relative difference lower than LES-URANS discrepancy
- Discrepancies near stall

Viscous through-flow model: ASTEC

Total pressure ratio

Assumptions of loss correlations not valid beyond diffusion limit at large incidence *i*

Outline

Modern high-loaded axial LP compressor

Modern Compressor: deflection force

- Low margin at nominal conditions
- More than 400 times faster (not yet optimized for speed)
- Increasing discrepancies near peak efficiency

Isentropic efficiency

Correlations not calibrated for

- Optimized 3D blade geometries
- High subsonic Mach number

Measurements of C4-series cascade

Impact of Mach number

- Minimum-loss incidence angle shifted
- Narrow range of validity
- Increase of ω_{\min}
- Inconsistency between loss validity range and deviation linear range

Correlations not calibrated for these flow conditions

ASME Turbo Expo - 06/2021 - A. Budo

Incidence angle i [deg]

26

@ nominal conditions

Conclusion

ASTEC

- Navier-stokes based through-flow model
- Closures: blade forces + turbulence model
- Correlations:
 - deviation angle
 - loss coefficient (profile loss)

Application to compressors

- Global good agreement for CME2 compressor stage
- Improvement required for **modern axial-flow** compressor at high subsonic Mach
- Promising approach to drastically reduce CPU cost compared to 3D RANS

Future work

- Extend validity range of loss correlations (beyond diffusion limit)
- Include Mach number correction
- **Tune correlations** for optimized blade geometries through cascade simulations
- Include other sources of loss (tip gap model, leakage flow, ...)

Acknowledgement

Funding for this research is provided by the Walloon region, under grant no. 7900, and Safran Aero Boosters in the frame of the project MARIETTA

