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Abstract

Survey and monitoring of wildlife populations are among the key elements in

nature conservation. The use of unmanned aerial vehicles and light aircrafts as

aerial image acquisition systems is growing, as they are cheaper alternatives to

traditional census methods. However, the manual localization and identification

of species within imagery can be time-consuming and complex. Object detec-

tion algorithms, based on convolutional neural networks (CNNs), have shown

a good capacity for animal detection. Nevertheless, most of the work has

focused on binary detection cases (animal vs. background). The main objective

of this study is to compare three recent detection algorithms to detect and

identify African mammal species based on high-resolution aerial images. We

evaluated the performance of three multi-class CNN algorithms: Faster-RCNN,

Libra-RCNN and RetinaNet. Six species were targeted: topis (Damaliscus luna-

tus jimela), buffalos (Syncerus caffer), elephants (Loxodonta africana), kobs

(Kobus kob), warthogs (Phacochoerus africanus) and waterbucks (Kobus ellip-

siprymnus). The best model was then applied to a case study using an indepen-

dent dataset. The best model was the Libra-RCNN, with the best mean average

precision (0.80 � 0.02), the lowest degree of interspecies confusion

(3.5 � 1.4%) and the lowest false positive per true positive ratio (1.7 � 0.2) on

the test set. This model was able to detect and correctly identify 73% of all

individuals (1115), find 43 individuals of species other than those targeted and

detect 84 missed individuals on our independent UAV dataset, with an average

processing speed of 12 s/image. This model showed better detection perfor-

mance than previous studies dealing with similar habitats. It was able to differ-

entiate six animal species in nadir aerial images. Although limitations were

observed with warthog identification and individual detection in herds, this

model can save time and can perform precise surveys in open savanna.

Introduction

Survey and monitoring of animal populations are key

management tools in nature conservation and are essen-

tial to help fight the pressures they suffer. Anthropogenic

pressures, such as poaching, are encountered mainly in

developing countries (including most in Africa) where the

pressure on biodiversity is very high (Linchant, Lisein,

et al., 2015). While large African mammals, such as

buffaloes (Syncerus caffer) or hippopotamuses (Hippopota-

mus amphibius), play an important role in the dispersion

and migration of macro-nutrients within landscapes

(Lacher et al., 2019), the average abundance of these pop-

ulations declined by 59% between 1970 and 2005 (Craigie

et al., 2010). Moreover, the latest estimated Living Planet

Index indicates a 65% decline in the overall African verte-

brate populations between 1970 and 2016 (Almond &

Petersen, 2020). Even though humans are dependent on
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biodiversity (Almond & Petersen, 2020; Isbell et al.,

2017), their impact on the environment is leading us into

a period of mass extinction (Ceballos et al., 2015). More-

over, in view of the disruption of future climate condi-

tions (IPCC, 2014), species not able to adapt rapidly

could see their populations decline even further (Hetem

et al., 2014; Thuiller et al., 2006).

Most of the time, the size of an animal population is

estimated through sample counts which consist of esti-

mating the animal density in sample units selected at ran-

dom or following a systematic scheme. The size of the

population corresponds to the product of the mean den-

sity inside sample units per surveyed area surface

(Norton-Griffiths, 1978). Unfortunately, counting cam-

paigns of this type can rapidly become expensive (Gaidet-

Drapier et al., 2006), particularly for large mammal sur-

veys for which the use of a light aircraft is almost indis-

pensable (Jachmann, 1991). Moreover, these aerial

campaigns can become dangerous, and their logistics are

very complex for operators (Watts et al., 2010; Witmer,

2005).

Although they cannot cover large areas, the use of

UAVs (unmanned aircraft vehicles) is presented as a

cheaper, more suitable and safer alternative (Chabot &

Bird, 2015; Linchant, Lisein, et al., 2015; Vermeulen et al.,

2013). In addition, there are sensors that can be embed-

ded and which offer the possibility of acquiring very

high-resolution images (Linchant, Lisein, et al., 2015).

Several species of large African mammals have already

been studied using UAVs, such as the African elephants

(Loxodonta africana) (Vermeulen et al., 2013), black

(Diceros bicornis) and white (Ceratotherium simum) rhi-

nos (Mulero-Pázmány et al., 2014), the hippopotamus

(Linchant et al., 2018) and many other species (Kellen-

berger et al., 2018; Rey et al., 2017).

However, counting and identification are not carried

out simultaneously and must be deferred when using

UAVs. Due to the large amount of data to be analyzed,

the size of the study area and the static nature of the ani-

mals on the images, counting can become very complex

and time-consuming. This problem can be alleviated by

utilizing object detection, which finds, locates and classi-

fies objects in images (Zhao et al., 2019). convolutional

neural networks (CNNs) have become the basic elements

of most computer vision processes and have also proven

to be extremely effective in the field of remote sensing

(Zhu et al., 2017). These networks have been applied to

animal detection in aerial and UAV images and have

shown encouraging results (Barbedo et al., 2019; Eikel-

boom et al., 2019; Kellenberger et al., 2018; Moreni et al.,

2021; Naudé & Joubert, 2019a, 2019b; Peng et al., 2020).

However, almost all of these studies did not distinguish

between species nor were they focused on the case of a

single species. It would therefore be interesting to develop

a multi-species approach in order to further minimize

human resources required for the processing of survey

data. To our knowledge, only one study of multispecies

animal detection on aerial images using object detection

has been conducted to date, Eikelboom et al. (2019), who

worked on detecting and identifying three African animal

species using aerial oblique images and CNN.

The objective of this study is to compare the perfor-

mances of three object detection algorithms, based on

CNNs, to automatically detect and identify six African

mammal species in nadir aerial images: African buffalo,

kob (Kobus kob), topi (Damaliscus lunatus jimela), African

warthog (Phacochoerus africanus), waterbuck (Kobus ellip-

siprymnus) and African elephant. The best model is then

put into a practical perspective on an independent set of

UAV images acquired in a different study area.

Materials and Methods

Dataset

Data collection

We used three different aerial datasets to conduct our

study (see details in Table 1). The ’Virunga’ and ’Gar-

amba’ are two UAV datasets that were taken from a data-

base maintained by the University of Liège, Gembloux

Agro-Bio Tech (Belgium). The Aerial Elephant Dataset

(AED) is a free dataset provided by Naudé and Joubert

(2019a, 2019b).

The Virunga and AED datasets were merged and used

as the ’general dataset’ to develop the models (training,

validation and test), while the Garamba dataset was used

as a ’case study’ to test the performance of the best model

on a complete independent dataset. This was done in

order to evaluate the model on a practical use case that

did not include all the targeted species and which con-

tained other species.

The species selection was based on the availability of at

least 100 individuals in the general dataset to ensure min-

imal model configurations. In addition, to optimize the

speed of model development, images that did not contain

animals were not used.

General dataset data splitting

The distribution of individuals of each species according

to training, validation and test sets is given in Table 2.

The approximate targets of distribution were 70% of the

individuals in the training, 10% in the validation and

20% in the test datasets.

The distribution of the number of individuals by spe-

cies and by flight was considered in performing the split.
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This step was required in order to avoid the splitting of

some consecutive images containing the same individuals

and to thereby maintain the independence of the three

sets.

Ground truth

For the Virunga and Garamba datasets, the annotations

(points and labels) were provided with the images. The

individuals were previously located and identified manu-

ally by two operators on the UAV images using the soft-

ware WIMUAS (Linchant, Lhoest, et al., 2015; http://

www.gembloux.ulg.ac.be/gf/outilslogiciels/VolDrone2016.

7z). The AED dataset also provided annotations (points)

with the images (Naudé & Joubert, 2019a, 2019b). We

assumed that all pre-identifications were correct. Bound-

ing boxes were manually defined by a co-author of this

study using the Colabeler AI annotation tool (http://

www.colabeler.com/).

Methodology

Detection algorithms and implementation on the
general dataset

Three object detection algorithms were tested: Faster-

RCNN (Ren et al., 2017), Libra-RCNN (Pang et al., 2019)

and RetinaNet (Lin, Goyal, et al., 2017). These algorithms

were selected based on their performance on the

benchmark datasets and on the availability of the code at

the time of the study.

Faster-RCNN

This object detection algorithm (Ren et al., 2017) takes

images as input and constructs feature maps using a

CNN (also called backbone). Based on these features

maps, a region proposal network generates region propos-

als and assigns a probability of containing an object to

each region. The predicted region proposals are then

reshaped and eventually, classification and bounding box

regression is performed to predict the presence and

Table 1. Dataset specifications and details.

Dataset Virunga

AED (Naudé & Joubert,

2019a, 2019b) Garamba

Location DRC (Virunga national park) Parks, games and reserves in

Botswana, Namibia and

South Africa

DRC (Garamba National Park)

Land cover (Mayaux et al., 2004) Savanna Deciduous woodland, open

deciduous shrubland, closed grasslands

Savanna

Dates April–June 2016 2014–2018 May 2015

Time of day Early morning Full day Early morning

System Falcon (UAV) SkyReach BushCar (A/C) Falcon (UAV)

Camera(s) Sony-A6000, Sony-Nex7 Canon 6D Sony-Nex7

Flight altitude 100 m 220–2270 m 90 m

Number of flights 9 8 6

Image dimension 6000 × 4000 pixels Various (5472 × 3648 pixels,

5496 × 3670 pixels, 5521 × 3687

pixels, 5525 × 3690 pixels)

6000 × 4000 pixels

GSD 2.4 cm 2.4–13.0 cm 2.0 cm

Species Hippopotamus, buffalo,

kob, topi, warthog,

waterbuck

Elephant Hartebeest (Alcelaphus buselaphus),

hippopotamus, buffalo, kob,

warthog, waterbuck, giraffe

(Giraffa camelopardalis)

Images selected 897 400 All (7034)

GSD, ground sampling distance; AED, aerial elephant dataset; DRC, Democratic Republic of Congo; UAV, unmanned aerial vehicle; A/C, aircraft.

Table 2. Number of individuals according to species, training, valida-

tion and test sets.

Species Training Validation Test Total

Buffalo 1058 (70%) 102 (7%) 349 (23%) 1509

Elephant 2012 (68%) 264 (9%) 688 (23%) 2964

Kob 1732 (73%) 161 (7%) 477 (20%) 2370

Topi 1678 (62%) 369 (13%) 675 (25%) 2722

Warthog 316 (73%) 43 (10%) 74 (17%) 433

Waterbuck 166 (69%) 39 (16%) 36 (15%) 241

Total 6962 (68%) 978 (10%) 2299 (22%) 10 239

The different rows show the distribution of individuals in each set and

the relative percentage (in parentheses).
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location of objects in the input images. These types of

networks are commonly called ’two-stage detectors’ due

to their two-step process (Soviany & Ionescu, 2018).

Faster-RCNN was chosen because it is used in many stud-

ies as a baseline.

Libra-RCNN

This algorithm, developed by Pang et al. (2019), is also a

two-stage detector that does basically the same thing as

Faster-RCNN. Its particularity is that it balances the

training process at three levels which initially limit the

detection performance:

1 the sample level, by balancing the distribution of train-

ing samples close to that of challenging samples (called

hard negatives). This addresses the problem of the ran-

dom sampling scheme that often results in selected

samples dominated by the easy ones (Pang et al.,

2019);

2 the feature level, by balancing the low-level and high-

level features of each layer in the backbone, which are

complementary for object detection;

3 the objective level, by balancing the tasks of localization

and classification, thus avoiding one of the two tasks

being overwhelmed by the other.

Thanks to its multi-level balanced approach to training,

Libra-RCNN allows for greater precision and recall than

Faster-RCNN, which is why it has been selected for com-

parison.

RetinaNet

This third algorithm is a ’single-stage detector’, unlike the

first two algorithms presented above. Algorithms of this

type treat object detection as a simple regression problem

by taking an input image and learning the class probabili-

ties and bounding box coordinates directly (Soviany &

Ionescu, 2018). Its architecture is composed of a backbone

that takes input images, builds feature maps at different

scales and generates region proposals for each scale in the

form of anchors (Lin, Goyal, et al., 2017). These anchors

are then used as inputs for two sub-networks, the first one

classifies the object and the second one simultaneously per-

forms the regression of the bounding boxes. RetinaNet was

used by Eikelboom et al. (2019) for the detection and iden-

tification of three African mammal species based on obli-

que aerial images. This algorithm was therefore chosen to

evaluate its performance on nadir UAV images.

For all three algorithms, the backbone consists of a

ResNet-101 (He et al., 2016) connected to a feature

pyramid network (Lin, Dollár, et al., 2017). These algo-

rithms were used through their implementation in the

adapted mmdetection toolbox version 1.0.0 (Chen

et al., 2019) with PyTorch 1.4.0, TorchVision 0.5.0,

OpenCV 4.4.0, MMCV 0.6.0, CuDNN 7.6.3 and Magma

2.5.1 libraries. All the codes and libraries were imple-

mented and transcribed into Jupyter notebooks to run

on Google Colaboratory. Training and detection runs

were then performed with an NVIDIA Tesla P100-PCIE

16GB GPU running on an Ubuntu 18.04 LTS Colab

Linux platform, with CUDA 10.1.243. These were fol-

lowed by statistical tests conducted using Python’s SciPy

1.5.4 library.

Image subdivision and stitching algorithm on the
general dataset

All the images were cut into sub-frames of 2000 × 2000

pixels, the maximum size that can be supported by the

GPU memory. During the subdivision process, some indi-

viduals were cut into several parts and some of them no

longer appeared in their entirety. Only individuals whose

partial bounding box represented more than 25% of the

original surface area were kept. This limit was chosen

because below this threshold, individuals are difficult to

identify manually.

Only sub-frames containing animals were kept for

training (Fig. 1). For the validation and the test sets, the

cutting was done with an overlap of 50% on each edge of

the sub-frames, and all sub-frames were kept. These steps

were taken in order to avoid missing any individuals and

to ensure that each individual would appear in its entirety

in at least one sub-frame. Moreover, this approach

allowed the predictions to be stitched into the initial

image frame.

To both eliminate unnecessary partial bounding boxes

and to reassemble the sub-frames, a stitching algorithm

was constructed. Each image first undergoes a subdivi-

sion into overlapped sub-frames of 2000 × 2000 pixels.

These sub-frames are then passed through the trained

algorithm (i.e. model) to obtain predictions that con-

tain bounding boxes, species names and confidence

scores. The coordinates of the predicted bounding

boxes of each sub-frame are then modified to be placed

in the initial image plan. Next, the NMS (non-

maximum suppression) algorithm is applied to a filter

the predicted bounding boxes based on the IoU criteria

(Everingham et al., 2010):

IoU¼ area box A∩box Bð Þ
area box A∪box Bð Þ : (1)

Here, a threshold of 0.5 was chosen. This high thresh-

old was deliberately chosen in order to avoid missing

some individuals in herds or some juveniles that are very

close to their mothers (Appendix S2).

4 ª 2021 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London

African Wildlife Detection and Identification A. Delplanque et al.



Figure 1. Flowchart of the methodology used to train, validate and test each of the three object detection algorithms, using the general dataset.

The results after evaluation were then used for comparison.
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Training on the general dataset

Because of the imbalance of the different classes, it is pos-

sible that during training, the majority species in terms of

numbers dominate the others, leading to a decrease in the

performance for minority species. Moreover, since the

size of the training dataset is relatively small, training the

different algorithms from scratch could lead to serious

overfitting problems. To overcome these problems, four

techniques were used: fine-tuning, data augmentation,

class weighting and the hard negative class.

Fine-tuning

Each algorithm’s backbone was initialized by pre-trained

parameters (Fig. 1) on the ImageNet training dataset

(Russakovsky et al., 2015). Next, all the parameters,

except the first layer of the backbone, were trained on

our dataset, with an adjustment of the number of classes

at the head of the network.

Data augmentation

In addition to common strategies (i.e. rotation, mirroring

and flipping, horizontal and vertical views), we used other

strategies to detect animals in the various situations that

can be encountered in aerial images: random blur, ran-

dom contrast and random brightness.

Class weighting

Used by Kellenberger et al. (2018), this technique led to

an improvement in animal detection performance. In our

study, satisfactory results were obtained by weighting the

species-related terms in the class loss function according

to

wi ¼ min n1, . . ., ni, . . ., nkf gð Þ
ni

, (2)

where ni is the number of annotations within a class i in

the sub-frames training set, and k is the number of

classes.

Hard negative class

The hard negative class (Peng et al., 2020) was used to

limit the number of false positives (FP) (Fig. 1). This

method treats hard negatives (high-scoring FPs) as fore-

ground objects to make the model more sensitive to

them. The score threshold was chosen to have a class size

of between 2000 and 2200 to avoid a too-high class

imbalance. Note that for the validation and test sets, the

hard negative class-predicted bounding boxes were dis-

carded and only species classes were maintained. Prelimi-

nary analysis showed that the inclusion of the hard

negative class increased the models’ performance

(Appendix S3).

The training for the first training phase was done dur-

ing 30 epochs with the Stochastic Gradient Descent as an

optimizer (a momentum of 0.9 and a weight decay of

10−3), and with a learning rate decreasing from 10−3 to

10−5 by steps of 10 epochs. The hard negative class was

included from the 31st epoch (second training phase,

Fig. 1, Appendix S4) and training continued for 10 more

epochs with a learning rate of 10−4 for the first five

epochs and 10−5 for the last five epochs.

Evaluation of CNN models

For each complete image, a comparison between ground

truth and predictions was performed in order to deter-

mine the true positives (TP), FP and false negatives (FN).

A detection was then considered as a TP if the labels

between the predicted bounding box and the ground-

truth bounding box correspond and if the IoU between

these boxes exceed 0.30. When several detections over-

lapped the same ground truth, the one with the maxi-

mum IoU was selected and the others were then

considered as FP. Finally, if the labels did not match or if

the ground truth was not detected by the model, the

ground truth was considered as FN.

Precision/recall curves for each species were constructed

to evaluate the performance of each model. These curves

were calculated by varying the confidence score threshold

associated with each predicted bounding box, between 0

and 1:

p kð Þ¼ nTP kð Þ
nTP kð ÞþnFP kð Þ , (3)

r kð Þ¼ nTP kð Þ
nTP kð ÞþnFN kð Þ , (4)

where p is the precision and r the recall, k is the confi-

dence score threshold, and nTP, nFP and nFN are the num-

bers of the TP, FP and FN, respectively.

F1 scores are usually used to define the combination of

precision and recall that produces an optimal compro-

mise between the number of FP and FN. An F1 score

essentially represents the harmonic mean of precision and

recall:

F1 score¼ 2�p� r

pþ r
, (5)

where p and r are the precision and recall, respectively.
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In this study, we used a mean F1 score (mF1): F1

scores were calculated for each species and then the whole

was averaged. This metric was used because it gives an

overall idea of the compromise between the FP and the

FN.

The average precision (AP) (Everingham et al., 2010),

representing the area under the precision/recall curve, was

then calculated for each animal species in order to evaluate

the performance of the detection algorithm in detecting a

particular species. Finally, the mean average precision

(mAP) was calculated to quantify the overall performance

of each detection algorithm and thus allow their compari-

son. The mAP represents the average AP of all the species.

Each algorithm was trained for five runs with different

fixed seeds. This step allowed us to control the stochastic

aspect related to the training of an object detection algo-

rithm. From these five runs, paired sample t-Student tests

and confidence intervals were computed to compare the

models and determine if the differences in performance

were significantly different.

After each epoch, each trained algorithm (i.e. each

model) was saved and tested on the stitched validation

image set to verify that it was not falling into overfitting. In

addition, for the last five epochs of each three algorithms of

interest, the model with the best performance on the vali-

dation set was selected for testing (Fig. 1). To determine

the best performance, the epoch with the maximum mF1

score was first selected. Next, the mAP corresponding to

the epochs that presented an equivalent mF1 value (i.e.

with two significant digits retained) was analyzed. From

among these, the epoch with the highest mAP was finally

selected for testing. This method enabled the selection of a

globally efficient model (i.e. a high mAP) with a good com-

promise between FP and FN (i.e. a high mF1 value).

Processing of the case study dataset

To choose the model to apply to the case study (the Gar-

amba dataset), we first selected the algorithm that showed

the best performances on the test set. Then, we selected

the best model based on the five tested runs, using the

same selection method as in the validation set. The Gar-

amba dataset’s images were previously cut into sub-

frames according to the same methodology as the valida-

tion and test sets (see Section 2.2.2). Detections were then

stitched together according to an inference approach

using the same stitching algorithm and evaluated using

the same evaluation methodology as for the general data-

set (see Section 2.2.3). Note that due to the high similar-

ity between the two species (see Appendix S1) and the

impossibility to distinguish them on UAV images, harte-

beests and topis were merged into the same class during

the inference step.

Results

Species detection

Topi, buffalo and kob were very well detected by all the

trained algorithms (i.e. the three models) studied, with

only slightly poorer results for elephants (Fig. 2). Given

the results, warthogs and waterbucks appear to be more

difficult to detect. Nevertheless, waterbucks were very well

detected by Libra-RCNN (AP = 0.89) but very poorly

detected by RetinaNet (AP = 0.01). RetinaNet was the

model that had the most difficulty in detecting minority

species (warthogs and waterbucks).

False positives were particularly high for elephants and

warthogs, for all the models, as indicated by the poor pre-

cision at the highest recall value of these species (Fig. 2).

Libra-RCNN was the model that presented the highest

AP for each of the species, except for elephants, where it

equalled the AP of the Faster-RCNN model.

Model comparison

The results of the independent t-Student tests showed a

significant difference in performance on the test set

between the three models for mAP, mF1 and mean inter-

species confusion, but not for recall. There was a signifi-

cant difference in the FP/TP ratio for Faster-RCNN and

Libra-RCNN with RetinaNet but not between Faster-

RCNN and Libra-RCNN (see Appendix S5 for details).

The Libra-RCNN model produced the best mAP, the

best mF1 score and the lowest average level of interspecies

confusion in the test set (Fig. 3). In contrast, the Retina-

Net model had the lowest mAP and mF1 values, along

with the highest average interspecies confusion score.

Finally, Faster-RCNN’s performance ranks it between the

other two.

Regarding the percentage of animals detected, all three

models detected on average the same percentage of ani-

mals (true detection rate), with 94.5% (�0.5%) for

Faster-RCNN, 94.3% (�0.5%) for Libra-RCNN and

94.6% (�0.3%) for RetinaNet, where the confidence

intervals represent the 95% t-Student confidence interval

(4 d.f.), computed from the results of the five seeds.

Finally, in terms of the FP/TP ratio (binary case),

Libra-RCNN presented the lowest value (1.7 � 0.2), clo-

sely followed by Faster-RCNN (1.8 � 0.1). RetinaNet had

the highest ratio with an average of nearly nine FN per

TP (9.0 � 0.7), a very high number of false alarms.

These results suggest that the Libra-RCNN model is

more suitable for multi-species animal detection than the

other two, with superior detection performance compared

to Faster-RCNN and RetinaNet. Therefore, Libra-RCNN

was selected and applied to the case study dataset.
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Figure 2. Precision/Recall curves of the three detection algorithms for the six targeted species on the test set. Axis legend represents the average

precision (AP) of the corresponding curve. These curves were calculated for each of the algorithms using the model with the best mean average

precision (mAP) among the five seeds.

Figure 3. Bar plots of mAP (A), mF1 (B) and average interspecies confusion (C) calculated from the detection results of the test set. The error

bars represent the 95% t-Student confidence interval (4 d.f.), computed from the results of the five seeds. mAP, mean average precision.
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Case study (Garamba dataset)

To evaluate the performance of the best-developed model,

the Libra-RCNN model was applied to the Garamba data-

set. The total processing time (with a single GPU) was

23h26 for all the flight images, with an average of 12 s/im-

age. Detections were present in 9% of the images

( 6077034≅0:09), and among the 180 images containing ground

truths, 9% were missed by the model ( 16180≅0:09). However,

no or almost no images were missed for some species

(Table 3). For all six targeted species, 73% were correctly

identified, with a relatively wide variation between the spe-

cies. Furthermore, 64 individuals were correctly detected

but misidentified. The same trend in species detection as

observed on the test set results can be observed here as well:

the majority species are better detected and identified than

the minority species (Table 3).

Among the 305 individuals of other species initially

identified during the annotation step, 43 were found by

the model: 29 hippopotamuses out of 196, 13 giraffes out

of 43 and 1 undetermined species out of 7. In addition,

all FP with an IoU of 0 with the ground truths were

reviewed; among these 945 FP detections, 133 were in fact

individuals of our six targeted species that were missed

during the annotation phase. Of these, 55 were correctly

identified by the model (Table 3).

Discussion

The Libra-RCNN model showed better detection perfor-

mance on the test set than other published models deal-

ing with the detection of mammals in similar habitats

and landscapes (Eikelboom et al., 2019; Kellenberger

et al., 2018; Rey et al., 2017). Moreover, the models pre-

sented here were able to differentiate six animal species

on nadir aerial images, which to the best of our knowl-

edge has never been tried before in the literature. The

performance of our best model (Libra-RCNN) on the test

set surpasses that of the latest multi-species model pub-

lished (Eikelboom et al., 2019) in terms of global recall,

global FP/TP ratios, mAP and F1 scores. Finally, it

showed good performance on a complete independent

raw dataset from another park (i.e. Garamba) and was

able to detect additional individuals, some belonging to

other species.

Species detection

Our best model, the Libra RCNN, showed very good

detection, identification and generalization results for the

majority species (topi, buffalo and kob) and was even

surprisingly good at detecting one minority species, the

waterbuck. For topi, buffalo and elephant detection, we

observed that all three models were less precise for

herds. The lower precision was mainly due to the over-

lap of the bounding boxes within the herds (Fig. 4).

Indeed, this box overlap probably made it more difficult

for the algorithms to converge during training. In images

containing herds, a large number of boxes were therefore

created during the inference step, but despite the appli-

cation of the NMS, some detections persisted and were

therefore qualified as FP, as several boxes defined the

same individual. After revision, herding represented

about 40% of the FPs for the Libra-RCNN model on

the test set, and about 41% for that model on the Gar-

amba dataset.

Table 3. Results of the Libra-RCNN model applied on the case study dataset (Garamba) for the six targeted species: hartebeest (considered as

topi due to high similarity), buffalo, kob, warthog, waterbuck and elephant.

Species

Number of images Individuals Number of false positives

With GT With detections1 Missed GT Recall Precision F1 score Misclassified Total Human missed2 Other species3

Hartebeest 29 102 0 151 0.59 0.34 0.43 45 174 4 1

Buffalo 55 148 5 547 0.87 0.44 0.58 7 620 19 10

Kob 62 95 1 321 0.67 0.62 0.64 5 133 26 6

Warthog 24 158 9 82 0.40 0.09 0.14 0 349 6 18

Waterbuck 10 122 1 14 0.14 0.01 0.03 7 144 0 6

Elephant 0 54 0 0 n/a n/a n/a 0 171 0 2

All 180 607 16 1115 0.73 0.34 0.46 64 1591 55 43

The last row corresponds to the results of the whole set of six species. Note that the number of images with detections considering all six species

(last row) is not equal to the sum of the images with detections by species. This difference is due to the fact that the model sometimes detected

several species within the same image, and so these images appear in the detected images of multiple species. GT, ground truth; n/a, not applica-

ble (since this species is absent from the dataset).
1

Number of images with detections (i.e. that contain predictions).
2

Number of false positives that were in fact animals missed by humans during annotation, but correctly detected and identified by the model.
3

Number of other species not belonging to the set of six targeted species (i.e. hippopotamus, giraffe and unknown), but detected by the model.
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In addition, for elephants, the images were taken at any

time of the day, unlike the other datasets. This led to

greater variability of shadows, colours and brightness

within the images, and thus to poorer detection results,

as observed in Rey et al. (2017). Moreover, this dataset

(AED) comes from parks and reserves with varying land-

scapes and terrain features that differ from those of Vir-

unga, such as denser tree cover in some images. However,

training the models on these field variations normally

made them more robust to heterogeneous terrain features

(Kellenberger et al., 2018).

This difference in the landscape also explains the lower

percentage of animals detected by Libra-RCNN on the

Garamba dataset. In addition, we observed that these dif-

ferences in terrain features were also the cause of many

FPs within the Garamba images. For example, the model

detected a large number of termite mounds as animals.

This terrain characteristic was indeed much less present

in the training set.

Despite the class weighting during training, the models

struggled to correctly identify warthogs, most probably

due to a lack of training samples. Furthermore, this ani-

mal was the smallest mammal in this study. Its small size

generated a large number of FP due to insufficient pixel

resolution and because some acquisition drawbacks (blur,

contrast) did not allow the model to distinguish some of

this small mammal’s attributes. It could therefore easily

be mistaken for small rocks, common in the African land-

scapes where this species is found.

The surprisingly high number of the Garamba dataset’s

FPs (133) that were in fact real animals can be explained

by the overlap of the images and the initial methodology

of annotating the individuals. Indeed, only 84 individuals

were actually real human-missed animals. The other ani-

mals had already been tagged during the manual annota-

tion phase in the previous frame or would be in the next

frame within a succession of overlapping images. Anno-

tating everything was not required, although recom-

mended for the purpose of that specific survey, as double

counting was not desired at the time of the census,

despite the possibilities to differentiate between first

observation and double counting in the software.

Topi Buffalo Elephant

Figure 4. Detections examples of the Libra-RCNN model, on partial test images showing the major cause of the high number of false positives.

Note that ground truths are in green (first row) and detections are in red (second row).
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Consequently, attention was focused on the individuals

that had not yet been tagged, and so sometimes the indi-

viduals present in the periphery were not tagged again.

From these 84 new individuals, 55 were correctly identi-

fied by the model.

Model comparison

Two-stage detection models (Faster-RCNN and Libra-

RCNN) seemed to detect animal species more precisely

than a single-stage model (RetinaNet). This difference

in performance was as expected (Soviany & Ionescu,

2018).

The Faster-RCNN and Libra-RCNN models were very

similar in terms of their detection performance. The dif-

ferences that we observed between these two models on

the test set (Fig. 3) were probably due to the Libra-

RCNN L1-balanced loss and its rebalancing at the train-

ing sample distribution level. These components caused

the algorithm to focus on difficult cases during training,

which leads to better detection and classification perfor-

mances (Pang et al., 2019).

Operational implications

The Libra-RCNN model presents interesting perspectives

as a good semi-automatic detection and identification

tool for African mammal species. It could be used in

practice to save human time, create new training data

and establish initial, rapid population counts, with human

verification of detected individuals as post-processing.

However, our experience in reviewing the FPs shows that

this screening must necessarily be performed with the ani-

mals’ surrounding context, which is crucial for decision

making by the human eye.

The model developed here can mainly be applied in

open savanna or sparsely wooded areas and for the detec-

tion of our six studied species. Indeed, our results show

that in order to develop a model that can be used in vari-

ous ecosystems, it would be necessary to have a training

DSC06582.JPG DSC06583.JPG DSC06584.JPG

Figure 5. Kob detections of the Libra-RCNN model on consecutive Garamba’s partial images, showing that the images overlap made it possible

to detect a maximum of individuals thanks to the slight viewing angle changes. Note that ground truths are in green (first row) and detections

are in red (second row).
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set with a large variability of landscapes and terrain fea-

tures.

Generally, detection performance improves when more

training data are used. Unfortunately, the acquisition and

pre-processing of aerial animal training data are costly.

Developing a semi-automatic animal detection tool, such

as those presented here, requires significant upstream

work. From the manual identification and location of ani-

mals to the dataset training, the workload is quite large

and requires significant human resources with highly

technical skills. Moreover, as with any deep-learning

application, training an algorithm requires a large com-

puting capacity and a huge amount of data. Luckily, more

and more open-source data (images and annotations) are

being made available (Eikelboom et al., 2019; Kellenberger

et al., 2018; Naudé & Joubert, 2019a, 2019b).

Finally, in an attempt to automate the counting of

individuals, the thorny problem of images overlap

remains an obstacle. Our results from Garamba were pre-

sented here without accounting for multiple detections.

We observed that this overlap is crucial to detect all pos-

sible individuals. Indeed, in Garamba, some individuals

were only detected in a few images thanks to a slight

change in the viewing angle (Fig. 5). This need for over-

lap leads the model to slightly overestimate the number

of real FN.

Research perspectives

In surveying animal species, the problem of class imbal-

ance will always be present due to the natural distribution

of species within ecosystems. Nevertheless, more and

more studies are looking into this recurrent problem in

multi-class object detection (Oksuz et al., 2020). There is

also the challenging problem of the large number of FP.

Newer methods, such as synthetic data generation, could

help to address this problem by generating images with

heterogenous backgrounds (Beery et al., 2020). In addi-

tion, it could be beneficial to consider switching from

boxes to points (Ribera et al., 2019) or masks (Xu et al.,

2020) to avoid the problems of overlapping boxes in

herds and in an attempt to automate the counting. These

solutions should be investigated in future works.
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Naudé, J. & Joubert, D. (2019a) The aerial elephant dataset: a

new public benchmark for aerial object detection. In:

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. pp. 48–55.
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