

CYCLE OF CONFERENCES EOHUB

Horizons in Essential Oils.

Prof. Marie-Laure FAUCONNIER Laboratory of Chemistry of Natural Molecules Gembloux Agro-Bio Tech University of Liège (Belgium)

EOHUB

Co-funded by the Erasmus+ Programme of the European Union

Conventional uses of EOs :

- Food
- Beverage
- Cosmetics/perfume
- Aromatherapy

- More recently numerous applications in agronomy (biocide)
 - Insecticide (GS 106 000)
 - Herbicide (GS 56 600)
 - Bactericide-fungicide (GS 68 200)
 - Acaricide-nematicide (GS 25 000)

But also anti-sprouting agent, virucide, soil microbiote quality improvement, post-harvest desease, self-life increase ...

Eos as insecticide:

- Eos used alone or mixture of it (synergy, additive effect)
- Deterrent, antifeedant, repellent, acute toxicity (ingestion, inhalation, topical application)

➔ Pest of stored food, pest of crops, pest of forests, household pest

Article

Insecticidal Activity of 25 Essential Oils on the Stored Product Pest, Sitophilus granarius

Sébastien Demeter ^{1,*}, Olivier Lebbe ¹, Florence Hecq ¹, Stamatios C. Nicolis ², Tierry Kenne Kemene ³, Henri Martin ³, Marie-Laure Fauconnier ³ and Thierry Hance ¹

Eos as herbicide: weed control in the context of glyphosate replacement - Many Eos have herbicidal activity (total or selective and/or antigerminative)

TABLE 24.6 Essential Oils that can be Used in Wood Co

Name

Essential Oils that can be Used in Weed Control

Family	Constituents	Notes	Source	
Achillea sp. Asteraceae	Camphor, 1,8-cineole, piperitone, borneol,	Inhibitory effect on germination and seedling growth of <i>A. retroflexus, C. arvense</i> , and <i>L. serriola</i>	Kordali et al. (2009)	
Ageratum conyzoides L. Asteraceae	Precocene I and II, β -caryophyllene, γ -bisabolene, fenchyl acetate	Causes phytotoxic effects on radish, mungbean, and tomatoes	Kong et al. (1999); Plant Encyclopedia (2012)	
Anisomeles indica L. Lamiaceae	Isobornyl-acetate, isothujone, nerolidol, camphene, eugenol	Herbicide against <i>P. minor</i> , positive effects on growth of wheat	Batish et al. (2007b); Ushir et al. (2010)	
Artemisia scoparia Waldst et Kit. Asteraceae	<i>p</i> -Cymene, β -myrcene, (+)-limonene		Kaur et al. (2010)	
Callicarpa japonica Thunb. Verbenaceae	Spathulenol, germacrene B, viridiflorol, globulol	Toxic to A. stolonifera, but had no such effect on lettuce	Kobaisy et al. (2002)	
Carum carvi L. Apiaceae	D-Carvone, limonene	Inhibits germination of A. retroflexus, C. salsotitialis, S. arvensis, S. oleraceus, R. raphanistrum and R. nepalensis and A. pallida	Teuscher et al. (2004); Azirek et al. (2008); de Almeida et al. (2010)	
Coriandrum sativum L. Apiaceae	Linalol, α -terpinylacetate, 1,8-cineole, linalyacetate	Effective against C. salsotitialis, S. arvensis, S. oleraceus, R. raphanistrum, and R. nepalensis		
Cymbopogon sp. Poaceae	Citronellal, geraniol, citronellol, citral, limonene	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		
<i>Eucalyptus</i> sp. Myrtaceae	 4.8-Cincole, limonene, α-pinene citronellal, citronellol, linalool, α-terpinene 			т
Foeniculum vulgare L. Apiaceae	Anethol, fenchone, estragol	Reduces germination rate (under 25%) of <i>C. salsotitia-</i> <i>lis, S. arvensis</i> and <i>R. raphanistrum</i>		andbo
Hibiscus cannabinus L. Malvaceae	α -Terpineol, myrtenol, limonene, trans-carveol and γ -eudesmol	Controls various weeds e.g., A. retroflexus and L. multiflorum, at higher concentration effective against		ook c

4

94

Eos as herbicide: weed control in the context of glyphosate replacement Low persistance, multiple action modes (less resistance)

Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. A Review

Eos as bactericide/fungicide

- Bactericide: activity against Gram + and Gram -, various mode of action
- Fungicide but also fungistatic

Article

Screening of Antifungal and Antibacterial Activity of 90 Commercial Essential Oils against 10 Pathogens of Agronomical Importance

Caroline De Clerck ^{1,*,†}, Simon Dal Maso ^{1,†}, Olivier Parisi ¹, Frédéric Dresen ¹, Abdesselam Zhiri ²¹/₀ and M. Haissam Jijakli ^{1,*}

European Hub on New Challenges in the Field of Essential Oils – EOHUB WEBINAR

Essential oils for applications in agronomy, what's new?

Acaricide: Good results of Deverra scoparia EO on Tetranychus urticae (red spider mite). Repellent, direct mortality, reduced fecundity

Nematicide : effect of limonene containg Eos and many others on nematodes

Virucide: tobacco Mosaic virus (lemongrass EO)

Anti-sprouting agent (potatoes, carvone rich EOs)

Soil microbiote improvement: biodegradation but nutriment source for soil µoorganisms

Post-harvest desease: bacteria, fungi

Self-life increase: innovative packging (edible thyme film)

Advantages and constraints

- Advantages:
 - reduced side effects (human, not target organisms, environment)
 - low persistance
 - multiple action mode (less ressistance)
 - Good acceptability by consumers
- Constraints:
 - Flavour
 - variability (composition) \rightarrow standardization
 - phytotoxicity
 - volatility (encapsulation + new mode of injection)
 - Cost (only for high value crops?)
 - Sustainability of resource
 - Regulatory aspects (US versus EU)

🐉 frontiers

Phytotoxicity of Essential Oils: Opportunities and Constraints for the Development of Biopesticides. **A Review**

Pierre-Yves Werrie ^{1,*0}, Bastien Durenne², Pierre Delaplace ³ and Marie-Laure Fauconnier ¹

MDPI

8

Essential oils for applications in agronomy, what's new? International Journal of

Challenges: what's next

- Test in vitro \rightarrow in vivo
- Controlled conditions versus field conditions
- Comprehesion of mode of action -(structure-activity relationship)
- Innovative formulation
- Exploring new EOs

Molecular Sciences

Article

Insights into the Relationships Between Herbicide Activities, Molecular Structure and Membrane Interaction of Cinnamon and Citronella Essential **Oils Components**

Laurence Lins ^{1,*}⁽⁰⁾, Simon Dal Maso ², Berenice Foncoux ¹, Anouar Kamili ¹, Yoann Laurin ¹⁽⁰⁾, Manon Genva ³, M. Haissam Jijakli ², Caroline De Clerck ², Marie Laure Fauconnier ^{3,†} and Magali Deleu 1,†

Journal of Pest Science https://doi.org/10.1007/s10340-021-01381-4

ORIGINAL PAPER

The modes of action of Mentha arvensis essential oil on the granary weevil Sitophilus granarius revealed by a label-free quantitative proteomic analysis

François Renoz¹ Sébastien Demeter¹ · Hervé Degand² · Stamatios C. Nicolis³ · Olivier Lebbe¹ · Henri Martin⁴ · Jean-Louis Deneubourg³ · Marie-Laure Fauconnier⁴ · Pierre Morsomme² · Thierry Hance¹

Use of New Glycerol-Based Dendrimers for Essential Oils **Encapsulation: Optimization of Stirring Time and Rate** Using a Plackett-Burman Design and a Surface Response Methodology

Chloë Maes 12*, Yves Brostaux 3, Sandrine Bouquillon 14 and Marie-Laure Fauconnier 24

9

MDPI

Seasonal Effect on the Chemical Composition, **Insecticidal Properties and Other Biological Activities** of Zanthoxylum leprieurii Guill. & Perr. Essential Oils

Evelyne Amenan Tanoh 1,2,*, Guy Blanchard Boué 1, Fatimata Nea 1,2, Manon Genva 20, Esse Leon Wognin³, Allison Ledoux⁴, Henri Martin², Zanahi Felix Tonzibo¹, Michel Frederich 400 and Marie-Laure Fauconnier 200

Co-funded by the Erasmus+ Programme of the European Union

More information www.eohubbio.eu

