
Supplementary Material to

“SolveSAPHE-r2 (v2.0.1): revisiting and extending
the Solver Suite for Alkalinity-PH Equations

for usage with CO2, HCO−3 or CO2−
3 input data”

Mathematical and Technical Details

Guy Munhoven
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Abstract
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1 Asymptotes for AlknW

The expression for the contribution of the dissociation products of an acid HnA to total alkalinity
writes (Munhoven, 2013, eq. (4))

AlkA([H+]) = [ΣA]


n
∑

j=0
jΠj[H+]n−j

n
∑

j=0
Πj[H+]n−j

−m

 = [ΣA] (
D1

D
−m)

where m is the zero-proton level of the acid, Πj = ∏
j
i=1 Ki, with K1, . . . , Kn being the successive

dissociation constants of HnA, and Π0 = 1 and where we have introduced the shorthands D1 and
D for the numerator and the denominator of the fraction, resp. Here we are going to show that

1. an([H+]) = D1
[H+ ]n

is an asymptote for D1
D as [H+]→ +∞, which means that

lim
[H+ ]→+∞

(
D1

D
− D1

[H+]n
) = 0.

2. the partial sums of the leading terms of an([H+]), a1([H+]) = K1
[H+ ]

are also a asymptotes

for D1
D as [H+]→ +∞ for common naturally occurring acids – here we consider a1([H+]) =

Π1
[H+ ]

and a2([H+]) = Π1
[H+ ]

+ 2 Π2
[H+ ]2

.

In addition,
AlkA([H+]) < AlkAinf + [ΣA]× a([H+])

where a stands for either one of a1, a2 or an.

1.1 The universal asymptote: an

In order to establish the quality of an as an asymptote for D1
D , we need to analyse the difference

∆n between the two as [H+]→ +∞:

∆n =
D1

[H+]n
− D1

D
=

D1

D

(
D

[H+]n
− 1
)

.

Since D is a sum of strictly positive terms (assuming that [H+] > 0), D is lower than any sub-sum
of its terms and thus also of any single term of the sum. Hence D

[H+ ]
> 1 and therefore ∆n > 0.

The factor in brackets is

D
[H+]n

− 1 =
1

[H+]n

n

∑
j=0

Πj[H+]n−j − 1 =
n

∑
j=0

Πj
1

[H+]j
− 1 =

n

∑
j=1

Πj
1

[H+]j

since Π0 = 1. With the index change i = j− 1, this latter sum can be rewritten and we find that

D
[H+]n

− 1 =
1

[H+]

n−1

∑
i=0

Πi+1
1

[H+]i
.

We furthermore have

D1 =
n

∑
j=0

jΠj[H+]n−j =
n

∑
j=1

jΠj[H+]n−j =
n−1

∑
j=0

(j + 1)Πj+1[H+]n−j−1

=
1

[H+]

n−1

∑
j=0

(j + 1)Πj+1[H+]n−j.
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The assembly of these two pieces leads to

∆n =
D1

D

(
D

[H+]n
− 1
)
=

1
[H+]2

(
n−1
∑

j=0
(j + 1)Πj+1[H+]n−j

)
×
(

n−1
∑

j=0
Πj+1

1
[H+ ]j

)
n
∑

j=0
Πj[H+]n−j

=
1

[H+]2

(
n−1
∑

j=0
(j + 1)Πj+1

1
[H+ ]j

)
×
(

n−1
∑

j=0
Πj+1

1
[H+ ]j

)
n
∑

j=0
Πj

1
[H+ ]j

.

This demonstrates that ∆n = O( 1
[H+ ]2

) as [H+]→ +∞, and thus lim[H+ ]→+∞ ∆n = 0. Accordingly,

AlkA([H+]) = [ΣA]

(
D1

D
−m

)
= AlkAinf + [ΣA]

D1

D
= AlkAinf + [ΣA](an([H+])− ∆n)

which allows us to conclude:

AlkA([H+]) < AlkAinf + [ΣA] an([H+]).

1.2 The practical asymptote: a1

The asymptote an is unconditionally valid. For a1 to be an asymptote, it will be shown below
that it is sufficient that the successive dissociation constants of HnA fulfil a condition on their
magnitude, which is nevertheless generally fulfilled. Similarly to above, we need to analyse the
distance between D1

D and a1. The general developments are only valid for n > 1 (as for an) and
we therefore address the case n = 1 separately:

∆1 =
K1

[H+]
− D1

D
=

K1

[H+]
− K1

[H+] + K1
=

K2
1

[H+] + K1

which is sufficient to conclude and furthermore shows that valid without conditions.
For n > 1, we proceed as above. To start,

∆1 =
K1

[H+]
− D1

D
=

K1
[H+ ]

D− D1

D

The expression at the numerator can be developed as follows:

K1

[H+]
D− D1 =

K1

[H+]

n

∑
j=0

Πj[H+]n−j −
n

∑
j=1

jΠj[H+]n−j

=
n

∑
j=0

K1Πj[H+]n−j−1 −
n

∑
j=1

jΠj[H+]n−j

In order to merge the two sums, we operate an index change i = j− 1 in the second one. For the
sake of clarity we also rename the index j to i in the first one. As a result, we get

K1

[H+]
D− D1 =

n

∑
i=0

K1Πi[H+]n−i−1 −
n−1

∑
i=0

(i + 1)Πi+1[H+]n−i−1

=
K1Πn

[H+]
+

n−1

∑
i=0

(K1Πi − (i + 1)Πi+1)[H+]n−i−1

=
1

[H+]

(
K1Πn +

n−1

∑
i=0

Πi(K1 − (i + 1)
Πi+1

Πi
)[H+]n−i

)

=
1

[H+]

(
K1Πn +

n−1

∑
i=1

Πi(K1 − (i + 1)Ki+1)[H+]n−i

)
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where we have taken into account that Πi+1 = Ki+1Πi and omitted the term for i = 0 from the
sum, as it is zero. We operate again an index change j = i− 1 on the sum and get

K1

[H+]
D− D1 =

1
[H+]

(
K1Πn +

n−2

∑
j=0

Πj+1(K1 − (j + 2)Kj+2)[H+]n−j−1

)

=
1

[H+]2

(
K1Πn[H+] +

n−2

∑
j=0

Πj+1(K1 − (j + 2)Kj+2)[H+]n−j

)

If K1 − (j + 2)Kj+2 ≥ 0, i.e., if Kj+2 < K1
j+2 for j = 0, . . . , n− 2, then K1

[H+ ]
D− D1 > 0 from which

we may conclude that ∆1 > 0. This is normally the case, as consecutive dissociation constants
are orders of magnitude and not only a factor of two to four apart as would be the case with the
common acid-base systems contributing to total alkalinity. Finally

∆1 =

K1
[H+ ]

D− D1

D

=
1

[H+]

K1Πn[H+] +
n−1
∑

j=0
Πj+1(K1 − (j + 2)Kj+2)[H+]n−j

n
∑

j=0
Πj[H+]n−j

=
1

[H+]2

K1Πn
[H+ ]n−1 +

n−1
∑

j=0
Πj+1(K1 − (j + 2)Kj+2)

1
[H+ ]j

n
∑

j=0
Πj

1
[H+ ]j

We may therefore conclude that if Kj <
K1
j , for j = 2, . . . , n,

1. ∆1 > 0 for any positive value of [H+];

2. ∆1 = O( 1
[H+ ]2

) as [H+]→ +∞, and thus lim[H+ ]→+∞ ∆1 = 0.

Using the same reasoning as above, we finally find that

AlkA([H+]) = AlkAinf + [ΣA]
D1

D
= AlkAinf + [ΣA](a1([H+])− ∆1)

which allows us to conclude:

AlkA([H+]) < AlkAinf + [ΣA] a1([H+]).

which establishes the asymptotic role of [ΣA] K1
[H+ ]

for AlkA([H+]) as [H+]→ +∞.
The summation over all the non-water related acid-base system contributions then leads to

AlknW([H+]) < AlknWinf +
∑i[ΣA[i]]K1,[i]

[H+]
, (1)

providing a stronger upper limit on AlknW([H+]) than AlknWsup when [H+] is sufficiently large,
i. e., when

[H+] >
∑i[ΣA[i]]K1,[i]

AlknWsup −AlknWinf
.

This could also possibly be used to determine a tighter upper bound for the root of the origi-
nal SOLVESAPHE, but it is not clear whether the calculation of that tighter upper bound would
actually be compensated by a reduced number of iterations.
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1.3 Another (slightly less) practical asymptote: a2

For a2 to be an asymptote, it will be shown below that it is sufficient that the successive disso-
ciation constants of HnA fulfil a condition on their magnitude, which is nevertheless generally
fulfilled. Similarly to above, we need to analyse the distance between D1

D and a2

∆2 =
Π1

[H+]
+

2Π2

[H+]2
− D1

D
=

(
Π1
[H+ ]

+ 2Π2
[H+ ]2

)
D− D1

D

Developments are analogue to the previous case, and we therefore only report the final result here(
Π1

[H+]
+

2Π2

[H+]2

)
D− D1

=
Π1

[H+]

n

∑
j=0

Πj[H+]n−j +
2Π2

[H+]2

n

∑
j=0

Πj[H+]n−j −
n

∑
j=1

jΠj[H+]n−j

=
2Π2Πn−1

[H+]
+

2Π2Πn

[H+]2
+

Π1Πn

[H+]
+

1
[H+]2

n−2

∑
j=0

Πj+1(K1 +
2Π2

Kj+1
− (j + 2)Kj+2)[H+]n−j

Again, the condition that Kj < K1
j for j = 2, . . . , n is sufficient to guarantee that ∆2 > 0 for all

[H+] > 0. Finally,

∆2 =

(
Π1
[H+ ]

+ 2Π2
[H+ ]2

)
D− D1

D

=
1

[H+]2

2Π2Πn−1+Π1Πn
[H+ ]n−1 + 2Π2Πn

[H+ ]n
+

n−2
∑

j=0
Πj+1(K1 +

2Π2
Kj+1
− (j + 2)Kj+2)

1
[H+ ]j

n
∑

j=0
Πj

1
[H+ ]j

.

In conclusion, if Kj <
K1
j , for j = 2, . . . , n,

1. ∆2 > 0 for any positive value of [H+];

2. ∆2 = O( 1
[H+ ]2

) as [H+]→ +∞, and thus lim[H+ ]→+∞ ∆2 = 0.

and
AlkA([H+]) < AlkAinf + [ΣA] a2([H+]).

[ΣA]( K1
[H+ ]

+ 2K1K2
[H+ ]2

) is thus an asymptote for AlkA([H+]) as [H+]→ +∞.

2 Second derivative of the alkalinity fraction

From Munhoven (2013), we know that

AlkA = [ΣA]

(
D1

D
−m

)
,

with

D =
n

∑
j=0

ΠjHn−j and D1 =
n

∑
j=0

jΠjHn−j.

More generally, we define

Dk =
n

∑
j=0

jkΠj Hn−j.
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It is straightforward to show that

dD
dH

=
1
H
(nD− D1) and

dDk
dH

=
1
H
(nDk − Dk+1), for k ≥ 1.

Munhoven (2013) has shown that

d
dH

(
D1

D

)
= − 1

H
DD2 − D2

1
D2

and that this derivative is strictly negative for H > 0. Here, we analyse the second derivative of
D1
D . To start, we notice that

d2

dH2

(
D1

D

)
=

1
H2D2 (DD2 − D2

1)−
1

HD2
d

dH
(DD2 − D2

1) +
2

HD3 (DD2 − D2
1)

dD
dH

.

The first term at the right-hand side will in a first stage be left as is. The second one is developed
as

− 1
HD2

d
dH

(DD2 − D2
1) = −

1
HD2

(
dD
dH

D2 + D
dD2

dH
− 2D1

dD1

dH

)
= − 1

H2D2

(
2n(DD2 − D2

1) + D1D2 − DD3

)
Similarly, the third term becomes

2
HD3 (DD2 − D2

1)
dD
dH

=
2

H2D3 (DD2 − D2
1)(nD− D1)

=
1

H2D3 (2nD(DD2 − D2
1)− 2D1(DD2 − D2

1)

Hence

d2

dH2

(
D1

D

)
=

1
H2D3

(
D(DD2 − D2

1)− D(D1D2 − DD3)− 2D1(DD2 − D2
1)
)

=
1

H2D3

(
(D− 2D1)(DD2 − D2

1)− D(D1D2 − DD3)
)

. (2)

We know that (Munhoven, 2013)

DD2 − D2
1 =

(
n

∑
i=0

Πi Hn−i

)(
n

∑
j=0

j2Πj Hn−j

)
−
(

n

∑
k=0

kΠk Hn−k

)2

= 1
2

n

∑
i=0

n

∑
j=0

(i− j)2ΠiΠjH2n−i−j.

according to Lagrange’s identity, which helped to establish that DD2−D2
1 > 0. A similar formula

can be developed for D1D2 − DD3. We have

D1D2 − DD3 =

(
n

∑
i=0

iΠi Hn−i

)(
n

∑
j=0

j2Πj Hn−j

)
−
(

n

∑
i=0

Πi Hn−i

)(
n

∑
i=0

j3Πj Hn−j

)

=
n

∑
i=0

n

∑
j=0

(ij2 − j3)ΠiΠj H2n−i−j

=
n

∑
i=0

n

∑
j=0

j2(i− j)ΠiΠj H2n−i−j.
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By respective permutations of i and j in the two terms, we get the following four expressions for
D1D2 − DD3:

D1D2 − DD3 =
n

∑
i=0

n

∑
j=0

j2(i− j)ΠiΠj H2n−i−j

D1D2 − DD3 =
n

∑
i=0

n

∑
j=0

j(i2 − j2)ΠiΠj H2n−i−j

D1D2 − DD3 =
n

∑
i=0

n

∑
j=0

i2(j− i)ΠiΠj H2n−i−j

D1D2 − DD3 =
n

∑
i=0

n

∑
j=0

i(j2 − i2)ΠiΠj H2n−i−j

By taking the average of the four expressions, one gets an expression for D1D2 − DD3 that is
symmetric in i and j. The resulting multiplier of ΠiΠj H2n−i−j then becomes

1
4 (j2(i− j) + j(i2 − j2) + i2(j− i) + i(j2 − i2))

= − 1
2 (i− j)2(i + j).

so that

D1D2 − DD3 = −1
2

n

∑
i=0

n

∑
j=0

(i− j)2(i + j)ΠiΠj H2n−i−j.

Accordingly,

(D− 2D1)(DD2 − D2
1)− D(D1D2 − DD3)

=
1
2

(
n

∑
k=0

(1− 2k)Πk Hn−k

)(
n

∑
i=0

n

∑
j=0

(i− j)2ΠiΠj H2n−i−j

)

+
1
2

(
n

∑
k=0

Πk Hn−k

)(
n

∑
i=0

n

∑
j=0

(i− j)2(i + j)ΠiΠjH2n−i−j

)

=
1
2

(
n

∑
i=0

n

∑
j=0

n

∑
k=0

(i− j)2(i + j− 2k + 1)ΠiΠjΠk H3n−i−j−k

)
.

The previous expression is symmetric in i and j: the summands are identical for i and j permuted.
It is therefore sufficient to consider the terms for i < j and drop the 1

2 . Since the terms for i = j are
furthermore equal to 0, we may write that

(D− 2D1)(DD2 − D2
1)− D(D1D2 − DD3)

=
n−1

∑
i=0

n

∑
j=i+1

n

∑
k=0

(i− j)2(i + j− 2k + 1)ΠiΠjΠk H3n−i−j−k. (3)

Whereas d
dH (D1

D ) > 0 for any set of positive Πi (i = 1, . . . , n) — see Munhoven (2013, Appendix A)

— it is not possible to draw a similarly clear conclusion for d2

dH2 (
D1
D ). However, it is possible to

derive sufficient conditions, which are fulfilled for naturally occurring acid-base base systems,
such that

d2

dH2 (
D1

D
) > 0.

The program sdt iconstraints.f90 can be used to characterise the individual terms of the series
above for a given n, and for all i, j and k.
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2.1 Signs of the aggregated terms of the sum

The actual coefficients for a given Hm in the sum in eq. (3) generally result from several terms,
obtained by sets of (i, j, k) triplets, such that i + j + k = 3n− m. There are subsets in these sets
that are obtained by permutations of the three indices. We first deal with these latter.

We consider a ΠaΠbΠc product, where a, b and c are ordered such that a ≤ b ≤ c. There are
actually only three cases to consider since i, j and k are such that

• 0 ≤ i ≤ n− 1

• i + 1 ≤ j ≤ n

• 0 ≤ k ≤ n

We therefore know that it is not possible to have a = b = c and the only cases to distinguish are

1. a = b < c

2. a < b = c

3. a < b < c

The coefficient hm of a Hm in the sum is obtained from

hm = ∑
a+b+c=3n−m

fabcΠaΠbΠc

where a ≤ b ≤ c and a < c.

2.1.1 Case a = b < c

Since i < j, there is only one (i, j, k) triplet that is compatible with this case: i = a, j = c and
k = b = a. The corresponding term in the sum is thus

(i− j)2(i + j− 2k + 1)ΠiΠjΠk H3n−i−j−k

and it is the coefficient of ΠiΠjΠk that sets the sign of the term. In this given case, the coefficient
of ΠaΠbΠc simplifies to

(c− b)2(b + c− 2b + 1) = (c− b)2(c− b + 1)

or, by introducing δb = c− b,
fabc = δ2

b(δb + 1) (4)

which is always strictly positive.

2.1.2 Case a < b = c

Similarly to the first case, there is only one (i, j, k) triplet that is compatible with this case: i = a,
j = b = c and k = c = b. The coefficient of ΠaΠbΠc simplifies to

(b− a)2(a + b− 2b + 1) = −(b− a)2(b− a− 1)

which can be rewritten as
fabc = −δ2

a(δa − 1) (5)

by introducing δa = b− a. fabc is

• equal to 0 if δa = 1;

• strictly negative if δa > 1.

9



2.1.3 Case a < b < c

Since i < j, there are three (i, j, k) triplets that contribute to the term in ΠaΠbΠcH3n−a−b−c:

• (i, j, k) = (a, b, c)

• (i, j, k) = (b, c, a)

• (i, j, k) = (a, c, b)

The sum of factors in these three terms is

fabc = (a− b)2(a + b− 2c + 1) + (b− c)2(b + c− 2a + 1) + (a− c)2(a + c− 2b + 1)

= (b− a)2(a + b− 2c + 1) + (c− b)2(b + c− 2a + 1)

+
(
(c− b) + (b− a)

)2
(a + c− 2b + 1)

Using the same δa = b− a and δb = c− b as already introduced above and furthermore noticing
that c− a = δa + δb, we get

fabc = (a− b)2(a + b− 2c + 1) + (b− c)2(b + c− 2a + 1) + (a− c)2(a + c− 2b + 1)

= −2δ3
a − (3δb − 2)δ2

a + δb(3δb + 2)δa + 2δ2
b(δb + 1).

The sign of fabc as a function of δa and δb is difficult to predict from this expression. That infor-
mation can nevertheless be derived by expressing it in terms of δb and x = δa/δb instead. With
δa = xδb, the previous expression becomes

fabc(x) = −2δ3
a − (3δb − 2)δ2

a + δb(3δb + 2)δa + 2δ2
b(δb + 1)

= −2δ3
b x3 − (3δb − 2)δ2

b x2 + δ2
b(3δb + 2)x + 2δ2

b(δb + 1)

= −δ2
b
(
2δbx3 + (3δb − 2)x2 − (3δb + 2)x− 2(δb + 1)

)
.

Since and δb ≥ 1 (and δa ≥ 1 as well), we may conclude that

fabc(0) = 2δ2
b(δb + 1) > 0

fabc(1) = 6δ2
b > 0

fabc(2) = −δ2
b(20δb − 14) < 0

The derivative of f is

f ′abc(x) = −δ2
b
(
6δbx2 + 2(3δb − 2)x− (3δb + 2)

)
f ′abc(0) = δ2

b(3δb + 2) > 0

f ′abc(1) = −δ2
b(9δb − 6) < 0

The equation f ′abc(x) = 0 always has one strictly positive and one strictly negative solution, since
the constant term is strictly negative. The reduced discriminant of this equation is

∆′ = (3δb − 2)2 + 6δb(3δb + 2)

= 9δ2
b − 12δb + 4 + 18δ2

b + 12δb

= 27δ2
b + 4 > 0.

The positive root, where f has a local maximum, is at

x′0 =
−3δb + 2 +

√
∆′

6δb
=

3δb + 2

(3δb − 2) +
√

∆′
> 0

It is straightforward to show that 0 < x′0 < 1, for any δb ≥ 1. Hence
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• f ′abc(x) < 0 for x > x′0 and f ′(x) > 0 for 0 < x < x′0;

• fabc(x) is strictly decreasing for x > x′0;

• fabc(x) is strictly increasing for 0 < x < x′0

• fabc(x) = 0 has exactly one root x0 that is greater then x′0;

• x0 is bracketed by 1 < x0 < 2.

Accordingly

• fabc(x) > 0 for 0 < x < x0

• fabc(x) < 0 for x > x0

and thus for any given a < b < c, we may calculate x0 = x0(δb) and depending on x = δa/δb
decide whether the corresponding term fabcΠaΠbΠc H3n−a−b−c which includes the contribution
of all possible permutations of a, b and c represents a net positive or a net negative contribution
to the sum.

2.1.4 Lemma

For a < b < c, we have

fabc = −2δ3
a − (3δb − 2)δ2

a + δb(3δb + 2)δa + 2δ2
b(δb + 1)

If b + 1 6= c

fa−1,b+1,c = −2(δα)
3 − (3δβ − 2)(δα)

2 + δβ(3δβ + 2)δα + 2(δβ)
2(δβ + 1)

with δα = (b + 1)− (a− 1) = δa + 2 and δβ = c− (b + 1) = δb − 1. Hence, if b 6= c we get

fa−1,b+1,c = −2(δa + 2)3 − (3(δb − 1)− 2)(δa + 2)2

+ (δb − 1)(3(δb − 1) + 2)(δa + 2) + 2(δb − 1)2δb

= fabc − 3(δa + 1)(6δb + 3δa − 2)

Hence, fa−1,b+1,c < fabc and if δa and δb are sufficiently large, fa−1,b+1,c becomes negative.
If b + 1 = c, then

fa−1,b+1,c = (δa + 2)2(1− (δa + 2)) = −(δa + 1)(δa + 2)2

This means, however, that δb = 1, and so

fabc = −2δ3
a − δ2

a + 5δa + 4 = −(δa + 1)(2δ2
a − δa − 4)

Hence,

fa−1,b+1,c − fabc = fa−1,c,c − fa,c−1,c

= (δa + 1)(δa −
5−
√

57
2

)(δa −
5 +
√

57
2

)

' (δa + 1)(δa + 1.2749)(δa − 6.2749)

For a given exponent m, we may fix c such that c > 0, c ≤ n and c < 3n − m − 1. As a
result, a + b = 3n− m− c. The maximum and minimum values of a and b respectively depend
on whether 3n−m− c is even or odd:

• if 3n− m− c is even, the maximum of a is (3n− m− c)/2 and the minimum value of b is
the same. Accordingly, we have a = b < c in this case and fabc > 0.
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• if 3n − m − c is odd, the maximum of a is (3n − m − c − 1)/2 and the minimum of b is
(3n− m− c + 1)/2. Hence, δa = 1. If b = c, then fabc = 0; if b < c, then fabc = δb(2δb +
5δb − 1) > 0 because δb ≥ 1 in this case.

If we order the terms of the subseries ∑a+b=3n−m−c fabcΠaΠbΠc by decreasing a values, the lead-
ing term is thus always strictly positive, which allows us to derive sufficient conditions to ensure
that fabcΠaΠbΠc + fa−1,b+1,cΠa−1Πb+1Πc > 0, even if fa−1,b+1,c < 0. We may indeed write that

fabcΠaΠbΠc + fa−1,b+1,cΠa−1Πb+1Πc = Πa−1ΠbΠc( fabcΠa/Πa−1 + fa−1,b+1,cΠb+1/Πb)

= Πa−1ΠbΠc( fabcKa + fa−1,b+1,cKb+1)

Hence, if Ka > (− fa−1,b+1,c/ fabc)Kb+1 the sum of these two terms, which contribute to the same
Hm is positive.

2.1.5 Sufficient conditions

For a = 1, . . . , n− 1, the coefficient for H3n−3a−1 includes a subset for c = a− 1 that reads

fa,a,a+1ΠaΠaΠa+1 + fa−1,a+1,a+1Πa−1Πa+1Πa+1

Both f factors are special cases:

• fa,a,a+1 has δb = 1 and fa,a,a+1 = 2

• fa−1,a+1,a+1 has δa = 2 and fa−1,a+1,a+1 = −4Πa+1

Hence

fa,a,a+1ΠaΠaΠa+1 + fa−1,a+1,a+1Πa−1Πa+1Πa+1

= 2ΠaΠaΠa+1 − 4Πa−1Πa+1Πa+1

= 2Πa−1ΠaΠa+1(
Πa

Πa−1
− 2

Πa+1

Πa
)

= 2Πa−1ΠaΠa+1(Ka − 2Ka+1)

A first condition to check would thus be

Ka+1 <
Ka

2
, for a = 1, . . . , n− 1

2.2 Chain structure

As mentioned before, the coefficient of the Hm in the sum at the numerator of d2

dH2
D1
D is obtained

by ∑a,b,c fabcΠaΠbΠc, where a + b + c = 3n−m, 0 ≤ a ≤ b ≤ c, but a 6= c.

To show that the test condition mentioned above is sufficient to guarantee that d2

dH2
D1
D > 0, we

analyse the Hm terms individually, and in the calculation of the coefficient dm of Hm, the various
sub-sums for each possible c:

hm = ∑
c

hm,c

and
hm,c = ∑

a,b
fabcΠaΠbΠc

with a + b = 3n−m− c, and, as above 0 ≤ a ≤ b ≤ c but a 6= c. The (a, b, c) triplets of this sum
can be ordered by increasing b (and thus decreasing a, since a + b = 3n− m− c is constant for
given m and c. There are thus several types of chains of (a, b, c) triplets terms contributing to dm,c
that may arise. There are two types of starting values for these chains:

• (b, b, c), with 0 ≤ b < c

12



• (b− 1, b, c), with 0 < b ≤ c.

As before, we denote δb = c− b. However, we consider in this section that δb is a characteristic of
the chain. The corresponding chains then respectively start as follows

(b, b, c), (b− 1, b + 1, c), . . . , (b− j, b + j, c), . . . (6)

(b− 1, b, c), (b− 2, b + 1, c), . . . , (b− 1− j, b + j, c), . . . (7)

We consider the two cases separately. It has been shown before that

fα,β,c = −2δ3
α − (3δβ − 2)δ2

α + δβ(3δβ + 2)δα + 2δ2
β(δβ + 1) (8)

for 0 ≤ α < β < c and where δα = β− α and δβ = c− β. In addition, if 0 ≤ α− 1 < β + 1 < c
then

fα−1,β+1,c = fα,β,c − 3(δα + 1)(6δβ + 3δα − 2). (9)

2.2.1 (b,b,c) chains

This triplet always leads to the initial term fbbcΠ2
bΠc with fbbc = δ2

b(δb + 1), independent of the
actual values of b and c. There are a few trivial cases that can be considered.

1. If b = 0, i. e., δb = c, the chain reduces to the single element (0, 0, c). This element can
only be part of hm,c for which c = 3n − m and this dm,c reduces to a single term: dm,c =
f00cΠ2

0Πc = δ2
b(δb + 1), which is always strictly positive.

2. If δb = 1, the chain has two elements (c− 1, c− 1, c) and (c− 2, c, c) and

hm,c = fc−1,c−1,cΠ2
c−1Πc + fc−2,c,cΠc−2Π2

c = 2Π2
c−1Πc − 4Πc−2Π2

c

In the following, we thus suppose that b > 0 and δb > 1
We already have

fbbc = δ2
b(δb + 1)

For stage j > 0, where we need to calculate fb−j,b+j,c, we may use eq. (8) with δβ = c− (b + j) =
δb − j and δα = 2j:

fb−j,b+j,c = −2(2j)3 − (3(δb − j)− 2)(2j)2

+ (δb − j)(3(δb − j) + 2)2j

+ 2(δb − j)2((δb − j) + 1)

= −16j3 − (12δb − 12j− 8)j2 + (δb − j)(6δb − 6j + 4)j

+ (δ2
b − 2jδb + j2)(2δb − 2j + 2)

= −16j3 − 12j2δb + 12j3 + 8j2 + 6jδ2
b − 6j2δb + 4jδb − 6j2δb + 6j3 − 4j2

+ 2δ3
b − 2jδ2

b + 2δ2
b − 4jδ2

b + 4j2δb − 4jδb + 2j2δb − 2j3 + 2j2

= (−18δb + 6)j2 + 2δ3
b + 2δ2

b

= −6j2(3δb − 1) + 2δ2
b(δb + 1)

= 2 fbbc − 6j2(3δb − 1)

The difference between the two first elements is

fb−1,b+1,c − fbbc = fbbc − 6(3δb − 1)

= δ3
b + δ2

b − 18δb + 6
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This difference is negative for δb < 4 and positive for δb ≥ 4. The difference between successive
elements j− 1 and j (j > 1) can be calculated from eq. (9) with δα = 2(j− 1) and δβ = c− (b +
(j− 1)) = δb − j + 1:

fb−j,b+j,c − fb−(j−1),b+(j−1),c = −3(2(j− 1) + 1)(6(δb − j + 1) + 3 · 2(j− 1)− 2)

= −6(2j− 1)(3δb − 1)

The difference between consecutive members is thus always negative, and increasing in absolute
value with j.

This recursion on j is valid as long as j ≤ b and j < δb. The end of the chain thus depends on
how b and δb compare.

• If b < δb, b− j reduces to 0 before b + j increases to c. The recursion thus remains valid for
all 1 ≤ j ≤ b.

• If b >= δb, the last term in the chain is fb−δb ,c,c for which (8) is not applicable and eq. (5)
must be used instead

fb−δb ,c,c = −(c− (b− δb))
2(c− (b− δb)− 1) = −4δ2

b(2δb − 1).

The second but last member of the chain is obtained for j = δb − 1. Accordingly,

fb−δb ,c,c − fb−δb+1,c−1,c

= −4δ2
b(2δb − 1)− 2δ2

b(δb + 1) + 6(δb − 1)2(3δb − 1)

= −6(2δb − 1)(3δb − 1) + 4δ2
b(2δb − 1)

The difference between the last two elements in the chain is thus greater than the regular
difference, which would be −6(2δb − 1)(3δb − 1) for j = δb. The nominal difference is
augmented by the absolute value of the last element in the chain.

2.2.2 (b-1,b,c) chains

There are three trivial cases to consider for (b− 1, b, c) chains.

1. If b = c, the chain reduces to the single element (c− 1, c, c), with fc−1,c,c = 0.

2. if b = 1, the chain reduces to the single element (0, 1, c). For this element, δa = 1 and
δb = c− 1.

f0,1,c = δb(2δ2
b + 5δb − 1).

If furthermore c = 1, this becomes a special case of the previous one. Since c > 1 we know
that f0,1,c > 0.

3. With b = 2 and c = 3, the chain has only two elements: (1, 2, 3) and (0, 3, 3), with f1,2,3 = 6
and f0,3,3 = −18.

In the following we assume that 1 < b < c. As before, we have

fb−1,b,c = δb(2δ2
b + 5δb − 1).

The recurrence (8) is applicable right from the beginning. To calculate element j, i. e., fb−1−j,b+j,c
we use (8) with δα = 2j + 1 and δβ = δb − j:

fb−1−j,b+j,c = −2(2j + 1)3 − (3(δb − j)− 2)(2j + 1)2

+ (δb − j)(3(δb − j) + 2)(2j + 1) + 2(δb − j)2((δb − j) + 1)

= δb(2δ2
b + 5δb − 1)− 3j(j + 1)(6δb + 1)
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The difference between successive elements j− 1 and j (j > 0) can be calculated from eq. (9) with
δα = 2j− 1 and δβ = δb − j + 1:

fb−1−j,b+j,c − fb−1−(j−1),b+(j−1),c = −3 · 2j · (6(δb − j + 1) + 3(2j− 1)− 2)

= −3 · 2j · (6δb + 1)

The difference between consecutive members is thus always negative, and increasing with j in
absolute value.

The previous recursions are valid for j as long as j ≤ b− 1 and j < δb. The end of the chain
thus depends again on how b and δb compare.

• If b− 1 < δb, b− 1− j reduces to 0 before b + j increases to c. The recursion thus remains
valid for all 1 ≤ j ≤ b− 1.

• If b ≥ δb + 1, the last term in the chain is fb−1−δb ,c,c for which (8) is not applicable and eq. (5)
must be used instead:

fb−1−δb ,c,c = −(c− (b− 1− δb))
2(c− (b− 1− δb)− 1)

= −2δb(2δb + 1)2

The second but last member of the chain is fb−δb ,c−1,c, obtained for j = δb − 1. Accordingly,

fb−δb ,c−1,c − fb−1−δb ,c,c

= −2δb(2δb + 1)2 − δb(2δ2
b + 5δb − 1) + 3(δb − 1)δb(6δb + 1)

= −6δb · (6δb + 1) + 2δb(2δb + 1)2

The difference between the last two elements in the chain is again greater than the regular
difference, which would be −6δb · (6δb + 1) for j = δb. As for the (b, b, c) chain, the last
difference is augmented by the absolute value of the last element.

2.2.3 Successive terms and how their sums compare

We analyse the comparative magnitudes of successive terms of the series that define the coeffi-
cients of the different coefficients of the polynomial at the numerator of d2

dH2 (
D1
D ) under the as-

sumption that Kj+1 < 1
2 Kj (and equivalently, Kj > 2Kj+1), for j = 1, . . . , n− 1. This c

In (b,b,c) chains, successive elements j and j + 1 write

fb−j,b+j,cΠb−jΠb+jΠc and fb−j−1,b+j+1,cΠb−j−1Πb+j+1Πc.

To analyse how the sum of two such element compares with one of the two terms under the
assumption of Kj+1 < 1

2 Kj, we first determine q such that

Πb−jΠb+j − qΠb−j−1Πb+j+1 > 0

We successively have

Πb−jΠb+j − qΠb−j−1Πb+j+1

= Πb−j−1Πb+j(
Πb−j

Πb−j−1
− q

Πb+j+1

Πb+j
)

= Πb−j−1Πb+j(Kb−j − qKb+j+1)

> Πb−j−1Πb+j(2
jKb − q2−(j−1)Kb)

= Πb−j−1Πb+j2
−(j−1)Kb(2

2j+1 − q)
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and is thus sufficient to chose q = 22j+1, which leads to

Πb−jΠb+j − 22j+1Πb−j−1Πb+j+1 > 0. (10)

As a consequence, assuming that fb−j,b+j,c > 0, we find that

fb−j,b+j,cΠb−jΠb+jΠc + fb−j−1,b+j+1,cΠb−j−1Πb+j+1Πc

= fb−j,b+j,cΠb−jΠb+jΠc − 22j+1 fb−j,b+j,cΠb−j−1Πb+j+1Πc

+ 22j+1 fb−j,b+j,cΠb−j−1Πb+j+1Πc + fb−j−1,b+j+1,cΠb−j−1Πb+j+1Πc

>
(

22j+1 fb−j,b+j,c + fb−j−1,b+j+1,c

)
Πb−j−1Πb+j+1Πc

=

(
22j+1 +

fb−j−1,b+j+1,c

fb−j,b+j,c

)
fb−j,b+j,cΠb−j−1Πb+j+1Πc

With the index translation j→ j− 1, the inequality (10) translates to Πb−j+1Πb+j−1− 22j−1Πb−jΠb+j >
0, or, equivalently,

Πb−jΠb+j −
1

22j−1 Πb−j+1Πb+j−1 < 0. (11)

Assuming that fb−j,b+j,c < 0 we then find that

fb−j+1,b+j−1,cΠb−j+1Πb+j−1Πc + fb−j,b+j,cΠb−jΠb+jΠc

= fb−j+1,b+j−1,cΠb−j+1Πb+j−1Πc +
1

22j−1 fb−j,b+j,cΠb−j+1Πb+j−1Πc

− 1
22j−1 fb−j,b+j,cΠb−j+1Πb+j−1Πc + fb−j,b+j,cΠb−jΠb+jΠc

>

(
fb−j+1,b+j−1,c +

1
22j−1 fb−j,b+j,c

)
Πb−j+1Πb+j−1Πc

=

(
fb−j+1,b+j−1,c

fb−j,b+j,c
+

1
22j−1

)
fb−j,b+j,cΠb−j+1Πb+j−1Πc

In (b-1,b,c) chains, successive elements j and j + 1 write

fb−j−1,b+j,cΠb−j−1Πb+jΠc and fb−j−2,b+j+1,cΠb−j−2Πb+j+1Πc

Similarly to before, we first determine q such that

Πb−j−1Πb+j − qΠb−j−2Πb+j+1 > 0.

We successively have

Πb−j−1Πb+j − qΠb−j−2Πb+j+1

= Πb−j−2Πb+j(
Πb−j−1

Πb−j−2
− q

Πb+j+1

Πb+j
)

= Πb−j−2Πb+j(Kb−j−1 − qKb+j+1)

> Πb−j−2Πb+j(2
j+1Kb − q2−(j+1)Kb)

= Πb−j−2Πb+j2
−(j+1)Kb(2

2j+2 − q)

and it is sufficient to chose q = 22j+2. We thus have

Πb−j−1Πb+j − 22j+2Πb−j−2Πb+j+1 > 0. (12)
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As a consequence, assuming that fb−j−1,b+j,c > 0, we find that

fb−j−1,b+j,cΠb−j−1Πb+jΠc + fb−j−2,b+j+1,cΠb−j−2Πb+j+1Πc

= fb−j−1,b+j+1,cΠb−j−1Πb+jΠc − 22j+2 fb−j−1,b+j+1,cΠb−j−2Πb+j+1Πc

+ 22j+2 fb−j−1,b+j,cΠb−j−2Πb+j+1Πc + fb−j−2,b+j+1,cΠb−j−2Πb+j+1Πc

> (22j+2 fb−j−2,b+j,c + fb−j−1,b+j+1,c)Πb−j−1Πb+j+1Πc

With the index translation j→ j− 1, the inequality (12) translates to Πb−jΠb+j−1− 22jΠb−j−1Πb+j >
0, or, equivalently,

Πb−j−1Πb+j −
1

22j Πb−jΠb+j−1 < 0. (13)

Assuming that fb−j−1,b+j,c < 0 we then find that

fb−j,b−1+j,cΠb−jΠb−1+jΠc + fb−1−j,b+j,cΠb−1−jΠb+jΠc

= fb−j,b−1+j,cΠb−jΠb−1+jΠc +
1

22j fb−1−j,b+j,cΠb−jΠb−1+jΠc

− 1
22j fb−j−1,b+j,cΠb−jΠb+jΠc + fb−j−1,b+j,cΠb−j−1Πb−1+jΠc

>

(
fb−j,b−1+j,c +

1
22j fb−1−j,b+j,c

)
Πb−jΠb−1+jΠc

=

(
fb−j,b−1+j,c

fb−j−1,b+j,c
+

1
22j

)
fb−1−j,b+j,cΠb−1+jΠc

2.3 Heuristic determination of sufficient conditions

For the evaluation in this section, the relevant fabc for the different values of n were generated
with secondderivterms.f90

2.3.1 n = 1

e. g., B(OH3): unconditionally positive

2.3.2 n = 2

e. g., H2CO3:

• term in H2, for c = 2

2Π2
1Π2 − 4Π2

2 = 2Π1Π2(Π1 − 2Π2/Π1)

= 2Π1Π2(K1 − 2K2)

Sufficient condition for positivity:

◦ K2 < 1
2 K1

2.3.3 n = 3

e. g., H3(PO)4:

1. term in H5, for c = 2

2Π2
1Π2 − 4Π2

2 = 2Π2Π1(K1 − 2K2)

Sufficient condition for positivity:
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• K2 < 1
2 K1

2. term in H2, for c = 3

2Π2
2Π3 − 4Π1Π2

3 = 2Π1Π2Π3(Π2/Π1 − 2Π3/Π2)

= 2Π1Π2Π3(K2 − 2K3)

Sufficient condition for positivity:

• K3 < 1
2 K2

These two conditions are actually already strong enough for all the remaining negative terms to
be compensated by other positives:

• term in H4, for c = 3

12Π2
1Π2 − 6Π2

2 = 6Π1Π2(2Π1 −Π2/Π1)

= 6Π2Π1(2K1 − K2)

Sufficient condition for positivity:

◦ K2 < 2K1, already met by 1. above: K2 < 1
2 K1 < 2K1

• term in H3, for c = 3

6Π1Π2Π3 − 18Π2
3 = 6Π2Π3(Π1 − 3Π3/Π2)

= 6Π2Π3(K1 − 3K3)

Sufficient condition for positivity:

◦ K3 < 1
3 K1, already met following 1. and 2. above: K3 < 1

2 K2 < 1
4 K1 < 1

3 K1.

2.3.4 n = 4

e. g., H4(SiO)4:

1. term in H8, for c = 2

2Π2
1Π2 − 4Π2

2 = 2Π2Π1(K1 − 2K2)

Sufficient condition for positivity:

• K2 < 1
2 K1

2. term in H5, for c = 3

2Π2
2Π3 − 4Π1Π2

3 = 2Π1Π2Π3(K2 − 2K3)

Sufficient condition for positivity:

• K3 < 1
2 K2

3. term in H2, for c = 4

2Π2
3Π4 − 4Π2Π2

4 = 2Π2Π3Π4(Π3/Π2 − 2Π4/Π3)

= 2Π2Π3Π4(K3 − 2K4)

Sufficient condition for positivity:

• K4 < 1
2 K3
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These three conditions are again strong enough for all the remaining negative terms to be com-
pensated by other positives:

• term in H7, for c = 3

12Π2
1Π3 − 6Π2Π3 = 6Π1Π3(2Π1 −Π2/Π1)

= 6Π1Π3(2K1 − K2)

Sufficient condition for positivity:

◦ K2 < 2K1, already met following 1. above: K2 < 1
2 K1 < 2K1

• term in H6, for c = 3

6Π1Π2Π3 − 18Π2
3 = 6Π2Π3(Π1 − 3Π3/Π2)

= 6Π2Π3(K1 − 3K3)

Sufficient condition for positivity:

◦ K3 < 1
3 K1, already met following 1. and 2. above: K3 < 1

2 K2 < 1
4 K1 < 1

3 K1

• term in H5, for c = 4

34Π1Π2Π4 − 44Π3Π4 = 2Π2Π4(17Π1 − 22Π3/Π2)

= 2Π2Π4(17K1 − 22K3)

Sufficient condition for positivity:

◦ K3 < 17
22 K1, already met following 1. and 2. above: K3 < 1

2 K2 < 1
4 K1 < 17

22 K1

• term in H4, for c = 4

12Π2
2Π4 − 6Π1Π3Π4 − 48Π2

4

= 12Π2
2Π4 − 12Π1Π3Π4 + 6Π1Π3Π4 − 48Π2

4

= 12Π1Π2Π4(Π2/Π1 −Π3/Π2) + 6Π3Π4(Π1 − 8Π4/Π3)

= 12Π1Π2Π4(K2 − K3) + 6Π3Π4(K1 − 8K4)

Sufficient conditions for positivity:

◦ K3 < K2, already met following 2. above: K3 < 1
2 K2 < K2

◦ K4 < 1
8 K1, already met following 1., 2. and 3. above: K4 < 1

2 K3 < 1
4 K2 < 1

8 K1

• term in H3, for c = 4

6Π2Π3Π4 − 18Π1Π4Π4 = 6Π1Π3Π4(Π2/Π1 − 3Π4/Π3)

= 6Π3Π4(K2 − 3K4)

Sufficient condition for positivity:

◦ K4 < 1
3 K2, already met by 2. and 3. above: K4 < 1

2 K3 < 1
4 K2 < 1

3 K2

2.3.5 n > 4

The program sdt iconstraints.f90 calculates for a given n, the coefficients of the polynomial
at the numerator of d2

dH2 (
D1
D ), and the coefficients of the minoring polynomial based upon the

hypothesis that Kj+1 < 1
2 Kj (j = 1, . . . , n− 1), using the inequalities (10) and (12). For up to n = 12,

we have checked that all the coefficients of the so defined minoring polynomial are positive.1 We
may thus reasonably assume that d2

dH2 (
D1
D ) > 0 for naturally occurring acid systems. Accordingly,

we can be sure that the minimization problem from section 2.3 (part γ > 0) has exactly one
solution at least for n ≤ 12.

1Please notice though that all the arithmetic in sdt iconstraints.f90 is done in INTEGER type. For n > 9, the calcu-
lations suffer from overflows. For calculations exceeding n > 9, the program must be compiled with adequate options to
use a 64-bit wide INTEGER type by default (for GFORTRAN, the required option is -fdefault-integer-8).
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3 Initialisation of the iterative solvers

3.1 Fundamental rationale

Since we have bracketing intervals for each root and, in case there are two roots, these are non-
overlapping, we may always use the fall-back initial value H0 =

√
Hinf Hsup. This value is,

however, often far from optimal. The efficient initialisation strategy of Munhoven (2013) can be
generalized and adapted to each of the three pairs. For each case, we chose the most complex
AlkT approximation that leads to a cubic equation. If the cubic polynomial behind that equation
has does not have a local minimum and a local maximum, we use the fall-back value. If such
local minimum and maximum exist, we use the quadratic Taylor expansion around the relevant
extremum — this will normally be the maximum if the coefficient of the cubic term is negative,
and the minimum if that coefficient is positive. If that quadratic does not have any positive roots,
the fall-back initial value is used. The roots for that quadratic are then determined. For problems
that have only one positive [H+] solution (AlkT & CO2, AlkT & HCO−3 and the AlkT & CO2−

3
with γ < 0), we consider that root of the quadratic expansion that is greater than the greatest
location of the two extrema: if that root is lower than Hinf, we use H0 = Hinf; if it is greater than
Hsup, we set H0 = Hinf. For problems that have two positive [H+] solutions (AlkT & CO2−

3 with
γ > 0 and sufficiently great AlkT), the initial value for determining the greater of the two [H+]
solutions can be chosen exactly the same way; the initial value required to calculate the lower of
the two [H+] solutions may be more tricky. If the location of the right-hand side extremum is too
close to 0, the estimated root of the cubic may be negative. In this case, the quadratic fitted to
left-hand extremum should be considered as well and the greater of its roots tested. Because of
the symmetries of a cubic, that root can be calculated with a few extra additions only.

3.2 AlkT & CO2

We call upon the AlkCB approximation, which in terms of [CO2] instead of CT reads

AlkCB = [HCO−3 ] + 2[CO2−
3 ] + [B(OH)−4 ]

=

(
K1

[H+]
+

2K1K2

[H+]2

)
[CO2] +

KB

KB + [H+]
BT. (14)

As the right-hand side is a monotonously decreasing function of [H+], we conclude that AlkCB >
0 for a given [CO2]. For a given AlkCB, the definition (14) leads to a cubic equation in [H+], namely

PCB([H+]) ≡ c3[H+]3 + c2[H+]2 + c1[H+] + c0 = 0,

where

c3 =
AlkCB

[CO2]

c2 = −K1 + KB

(
AlkCB

[CO2]
− BT

[CO2]

)
c1 = −(K1KB + 2K1K2)

c0 = −2K1K2KB.

Since c3 > 0, PCB(0) = c0 < 0 and P′CB(0) = c1 < 0, PCB([H+]) has a local minimum with a
negative value for [H+] > 0 and a single positive root. The minimum is located at

Hmin =

√
c2

2 − 3c1c3 − c2

3c3

As proposed above, we use the quadratic Taylor expansion of the cubic around (Hmin) and we
chose the greater of its two roots as the initial value H0 for the iterative solution of the AlkT-[CO2]
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problem:

H0 = Hmin +

√√√√− PCB(Hmin)√
c2

2 − 3c1c3

.

The calculated H0 has nevertheless to fulfil an additional constraint. AlkCB actually has the
upper limit 2CT + BT (see Munhoven (2013)). Although CT is unknown at this stage, as it will
have to be calculated from the given [CO2] and the [H+] solution of the AlkT-[CO2] problem, we
can use the relationship between CT and [CO2]

[CO2] =
[H+]2

[H+]2 + K1[H+] + K1K2
CT

to restrain the range of possible values for [H+]. In order to have AlkCB < 2CT + BT, it is necessary
that

AlkCB < 2
[H+]2 + K1[H+] + K1K2

[H+]2
[CO2] + BT

or (
2− AlkCB

[CO2]
+

BT

[CO2]

)
[H+]2 + 2K1[H+] + 2K1K2 > 0.

Let us denote the reduced discriminant of this quadratic by ∆′ = 1− 2K2
K1

(
2− AlkCB

[CO2]
+ BT

[CO2]

)
. We

need to distinguish two cases.

• If 2− AlkCB
[CO2]

+ BT
[CO2]

< 0 this quadratic has one positive and one negative root. The positive

root is H2 = K2√
∆′−1

and the inequality is only fulfilled for [H+] < H2.

• If 2− AlkCB
[CO2]

+ BT
[CO2]

≥ 0 then, the right-hand expression of the inequality does not have real

positive roots: the inequality is fulfilled for all [H+] > 0

In practice, we will set AlkCB = AlkT. If AlkT > 0 and the calculated H0 falls within the ranges
just derived that guarantee that AlkCB < 2CT + BT, we use it; in all other cases we set H0 =√

Hinf Hsup.

3.3 AlkT & HCO−3
This time, we may call upon the AlkCBW approximation, which in terms of [HCO−3 ] instead of CT
reads

AlkCBW =

(
1 +

2K2

[H+]

)
[HCO−3 ] +

KB

KB + [H+]
BT +

KW

[H+]
− [H+]

s
(15)

For a given [HCO−3 ] > 0, AlkCBW([H+]) decreases monotonously from +∞ in [H+] = 0+ to −∞
as [H+] → ∞. For a given [HCO−3 ] and AlkCBW, the definition (15) defines an equation in [H+],
that has exactly one positive root. Eq. (15) can be converted into a cubic equation

PCBW([H+]) ≡ c3[H+]3 + c2[H+]2 + c1[H+] + c0 = 0

where

c3 =
1

s[HCO−3 ]

c2 =
AlkCBW

[HCO−3 ]
+

KB

s[HCO−3 ]
− 1

c1 = KB

(
AlkCBW

[HCO−3 ]
− BT

[HCO−3 ]
− 1

)
− KW

[HCO−3 ]
− 2K2

c0 = −KB

(
KW

[HCO−3 ]
+ 2K2

)
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Since PCBW differs from eq. (15) by multiplication with the strictly positive factor [H+]([H+] +
KB), both equations have exactly the same positive roots. As outlined above, we are first checking
whether PCBW has local extrema. The derivative of PCBW([H+]) writes

P′CBW([H+]) = 3c3[H+]2 + 2c2[H+] + c1.

P′CBW does not have any roots and thus no local extrema if ∆ = c2
2 − 3c1c3 < 0. In this case,

we use the fall-back initial value H0 =
√

Hinf Hsup. If ∆ ≥ 0, PCBW has a local minimum for

Hmin =
√

∆−c2
3c3

and a local maximum for Hmax = −
√

∆+c2
3c3

. Since c3 > 0, we have Hmax < Hmin.
We now have to distinguish two cases:

1. If PCBW(Hmin) < 0, we use the quadratic Taylor expansion of PCBW in Hmin:

Qmin(H) = PCBW(Hmin) +
√

∆(H − Hmin)
2.

The greater of the two roots of Qmin is then chosen as H0:

H0 = Hmin +

√
−PCBW(Hmin)√

∆
.

2. If PCBW(Hmin) > 0, then the positive root of PCBW is necessarily lower than Hmax. In
this case, we use the quadratic Taylor expansion of PCBW in Hmax, which would write
Qmax(H) = PCBW(Hmax)−

√
∆(H − Hmax)2. The lower of the two roots of this quadratic

may, however, be negative, making its useless for deriving a H0. We therefore modify the
parabola Qmax such that it still has its maximum in (Hmax, PCBW(Hmax)), but that it passes
through (0, c0), remembering that c0 < 0:

Q̃max(H) = PCBW(Hmax)−
PCBW(Hmax)− c0

H2
max

(H − Hmax)
2.

The lower of the two roots of this Q̃max can then be used as H0:

H0 = Hmax − Hmax

√
PCBW(Hmax)

PCBW(Hmax)− c0

Please notice that PCBW(Hmin) can never be equal to zero, as this would imply that PCBW has a
double root at Hmin, which is not possible. In practice, we will set AlkCBW = AlkT and use the
above as is.

3.4 AlkT & CO2
3−

We use again the AlkCBW approximation. In terms of [CO2−
3 ] instead of CT it reads

AlkCBW = γ[H+] +
KW

[H+]
+ 2[CO2−

3 ] +
KB

KB + [H+]
BT. (16)

Eq. (16) can be converted into a cubic equation

PCBW([H+]) ≡ c3[H+]3 + c2[H+]2 + c1[H+] + c0 = 0 (17)

where

c3 =
γ

[CO2−
3 ]

c2 = −
(

KB
γ

[CO2−
3 ]

+
AlkCBW

[CO2−
3 ]
− 2

)

c1 = −KB

(
AlkCBW

[CO2−
3 ]
− BT

[CO2−
3 ]
− 2

)
+

KW

[CO2−
3 ]

c0 = KB
KW

[CO2−
3 ]
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The complete analysis from section 2.3 in the main paper remains valid for this approximation:
AlkncW reduces to borate alkalinity, i. e., AlkncW([H+]) = KB

KB+[H+ ]
BT and thus AlknWCinf = 0 and

AlknWCsup = BT.
There is not much that can be said a priori about the overall shape of this cubic function. as

the signs of the coefficients c2 and c1 are difficult to predict. It is only clear that PCBW(0) = c0 > 0.

Case γ = 0

The cubic equation degenerates to the quadratic

−
(

AlkCBW

[CO2−
3 ]
− 2

)
[H+]2 + c1[H+] + c0 (18)

The analysis in section 2.3 revealed that eq. (18) does not have any roots if AlkCBW −AlknWCinf ≤
2[CO2−

3 ], i. e., if AlkCBW
[CO2−

3 ]
≤ 2. We therefore assume that AlkCBW

[CO2−
3 ]

> 2. Eq. (18) then has a negative

and a positive root (their product is equal to c0/c2, which is negative). The positive root can be
used as a starting value for the iterative solvers.

For γ 6= 0, our initial value selection scheme revolves around the characteristics of the deriva-
tive of PCBW([H+]). If c2

2 − 3c1c3 ≤ 0, the cubic does hence not present any local minimum and
maximum. We use the default H0.

Case γ < 0

For γ 6= 0, our initial value selection scheme revolves around the characteristics of the derivative
of PCBW([H+]). If c2

2 − 3c1c3 ≤ 0, the cubic does hence not present any local minimum and
maximum. We use the default H0.

The case γ < 0 is analogous to the AlkT & HCO−3 pair, except that the cubic is decreasing,

and that PCBW(0) > 0. PCBW has a local minimum for Hmin =
√

∆−c2
3c3

and a local maximum for

Hmax = −
√

∆+c2
3c3

. Since c3 < 0, we have Hmin < Hmax. We have again to distinguish two cases:

1. If PCBW(Hmax) > 0, we use the quadratic Taylor expansion of PCBW in Hmax:

Qmax(H) = PCBW(Hmax)−
√

∆(H − Hmax)
2.

The greater of the two roots of Qmax is then chosen as H0:

H0 = Hmax +

√
PCBW(Hmax)√

∆
.

2. If PCBW(Hmax) < 0, then the positive root of PCBW is necessarily lower than Hmin. In
this case, we use the quadratic Taylor expansion of PCBW in Hmin, which would be writ-
ten Qmin(H) = PCBW(Hmin) +

√
∆(H − Hmin)

2. In order to avoid that the lower of the
two roots of this quadratic is negative, we modify it such that it still has its minimum in
(Hmin, PCBW(Hmin)), but that Qmin(0) = c0 > 0:

Q̃min(H) = PCBW(Hmin)−
PCBW(Hmin)− c0

H2
min

(H − Hmin)
2.

The lower of the two roots of Q̃min can then be used as H0:

H0 = Hmin − Hmin

√
PCBW(Hmin)

PCBW(Hmin)− c0
.
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Case γ > 0

The case γ > 0 is slightly more tedious to treat than the previous cases. Here, we only have to
handle the case where two [H+] solutions are required. The case where there are no roots is of
course trivial; the where there is one root has been solved as the tangent point at [H+] = Htan is
the solution.

Since c3 > 0, Hmax < Hmin this time. The only geometrical setting of the cubic that crosses
the vertical axis at c0 > 0 and that allows for exactly two positive roots is the one where the local
minimum is located at a positive Hmin and where PCBW(Hmin) < 0. Accordingly, if Hmin ≤ 0 or
PCBW(Hmin) ≥ 0, we adopt the respective default initial values for the two roots.

For the greater of the two roots, the quadratic expansion around the local minimum is used
and the greater of its two roots adopted:

H0 = Hmin +

√
−PCBW(Hmin)√

∆
.

The lower of the two roots needs extra attention. There are in general two estimates possible:
the lower root of the quadratic expansion around the minimum or the greater of the roots of the
quadratic expansion at the local maximum. It should be noticed that the latter is greater than the
former and that the actual root of the cubic lies between the two. The inflection point located at
Hifl = − c2

3c3
provides a criterion to decide which one of the two to retain. Since Hmax < Hmin for

this case, we also have Hmax < Hifl < Hmin. As we are interested in having H0 > 0, we have to
consider different cases depending on the sign of Hifl.

Let us start with the case where Hifl ≥ 0.

1. If PCBW(Hifl) > 0, the root searched for lies between Hifl and Hmin. To make sure the es-
timated H0 remains within this interval, we modify — similarly to what has been already
done twice before — the quadratic expansion at the minimum so that it passes through the
inflection point:

Q̃min(H) = PCBW(Hmin) +
PCBW(Hifl)− PCBW(Hmin)

(Hifl − Hmin)2 (H − Hmin)
2.

We then adopt the lower root of this Q̃min as H0:

H0 = Hmin − (Hmin − Hifl)

√
PCBW(Hmin)

PCBW(Hmin)− PCBW(Hifl)
.

2. If PCBW(Hifl) < 0, the root searched for lies between Hmax and Hifl. To make sure the esti-
mated H0 remains within this interval, we modify the quadratic expansion at the maximum
so that it passes through the inflection point:

Q̃max(H) = PCBW(Hmax)−
PCBW(Hmax)− PCBW(Hifl)

(Hifl − Hmax)2 (H − Hmax)
2.

We then adopt the greater root of this Q̃max as H0:

H0 = Hmax + (Hifl − Hmax)

√
PCBW(Hmax)

PCBW(Hmax)− PCBW(Hifl)
.

If Hifl < 0, we use the quadratic expansion at the minimum and adapt it to make it go through
(0, c0),

Q̃min(H) = PCBW(Hmin)−
PCBW(Hmin)− c0

H2
min

(H − Hmin)
2,

and use the lower root of that Q̃min:

H0 = Hmin − Hmin

√
PCBW(Hmin)

PCBW(Hmin)− c0
.
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