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Abstract

We provide additional theoretical and technical developments.
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1 Asymptotes for Alk,w

The expression for the contribution of the dissociation products of an acid Hn A to total alkalinity
writes (Munhoven, 2013} eq. (4))

¥ I [H ]

Al (H) =(2a] |20 | = ma (2w
Y IL[H]" P
j=0

where m is the zero-proton level of the acid, I; = H{Zl K;, with Ky, ..., K, being the successive
dissociation constants of Hy A, and Iy = 1 and where we have introduced the shorthands D7 and
D for the numerator and the denominator of the fraction, resp. Here we are going to show that

1. ay([H']) = [}ﬁl]" is an asymptote for % as [HT] — +o0, which means that

: Dy Dy
1 =
[H+1§1+oo( D [Hﬂ”)
2. the partial sums of the leading terms of a,([H]), a1([H]) = [Iﬁ'] are also a asymptotes
for 7 as [HT] — +co for common naturally occurring acids — here we consider a1 ([H']) =
[H+] and ay([H']) = [}FII%] [F?f}z-

In addition,
Alka ([H']) < Alkping + [ZA] x a([H™])

where a stands for either one of a4, a, or a,,.

1.1 The universal asymptote: a,

In order to establish the quality of 4, as an asymptote for %, we need to analyse the difference
A, between the two as [H'] — +o0:

A= P Di_Dif D
n [H*]“ D D [HJr]n :

Since D is a sum of strictly positive terms (assuming that [H"] > 0), D is lower than any sub-sum
of its terms and thus also of any single term of the sum. Hence % > 1 and therefore A, > 0.

The factor in brackets is

RO e B 1= R 1=

since Iy = 1. With the index change i = j — 1, this latter sum can be rewritten and we find that

D 1 -l 1
L E &

We furthermore have

n . n . n—1 .
= Y AGHT = 3 G = )+ D [T
j=0 j=1 j=0

n—1
- [Hi] L+ DML (1
=



The assembly of these two pieces leads to

n—1 ' n—1
A DD N_ 1 (jgo(]“mm[ﬂﬂ”]) x <]§0 H]'Jrl[Hlﬂ])
n_D([H-‘r}n_ )_[HJr]z

n )
3 TL{H)
j=0

n—1 n—-1
. (jgo(jJrl)HjH H1+]j> X (;0 Hj+1[fll+];>

j

[H*]2 s A
jgo HJ [H*)
This demonstrates that A, = O( [H%r]Z) as [H"] — 4o, and thus limg+]_, .0 An = 0. Accordingly,
+ Dy Dy +
Alka(HT]) = [EA] | I —m | = Alkaing + [ZA] 5 = Alkaine + [EA] (@, ((H]) — An)

which allows us to conclude:

Alka ([H']) < Alkping + [ZA] 2y ([HT]).

1.2 The practical asymptote: a;

The asymptote a, is unconditionally valid. For a; to be an asymptote, it will be shown below
that it is sufficient that the successive dissociation constants of H, A fulfil a condition on their
magnitude, which is nevertheless generally fulfilled. Similarly to above, we need to analyse the
distance between % and a;1. The general developments are only valid for n > 1 (as for a,) and
we therefore address the case n = 1 separately:
a_ kK DK KK
Hf] D [HY] [Hf+K [HY+K
which is sufficient to conclude and furthermore shows that valid without conditions.
For n > 1, we proceed as above. To start,

K
Ky Dl_ﬁD_Dl

M= D D

The expression at the numerator can be developed as follows:

Ky _ K3y < +1n—j oy +1n—j
j=0 j=1
=Y KILHT] =y I H ]
j=0 j=1
In order to merge the two sums, we operate an index change i = j — 1 in the second one. For the
sake of clarity we also rename the index j to i in the first one. As a result, we get

K n L n—1 ) e
m7P D1 = L KILE T = Y+ DI [
i=0 i=0
K+ I1 n—1 ‘ e
= [Ilfr]l + Y (K4TT; = (i 4+ DI ) [HY )
i=0
= o (Kt ke ey
- n
[H+] i=0 l L;

n—1

= [Hlﬂ <K1Hn + i IT;(Ky — (i + 1)Ki+1)[Hﬂ"i>
i=1



where we have taken into account that I1; ;1 = K;;111; and omitted the term for i = 0 from the
sum, as it is zero. We operate again an index change j = i — 1 on the sum and get

Kl 1 n—2 _iq
mD - Dl [H+] (Klnn + 2 H]—i—l (] +2) ]+2)[H+]n /
1 - By
= W <K1Hn[H+] + Z Hj+1 -(+2) ]+2)[H+]n ]>
j=0
If Ky — (j+2)Kjy2 = 0, ke, if Kjyp < £ for j = 0,...,n =2, then pzirD — Dy > 0 from which

we may conclude that A; > 0. This i 1s normally the case, as consecutive dissociation constants
are orders of magnitude and not only a factor of two to four apart as would be the case with the
common acid-base systems contributing to total alkalinity. Finally

o [HﬂD D,
1= D

KqTT,[H ] + E 11 (Ky — (j+2)Kjg2) [H]"
=0

[HT] £ 11,
j=0

n—1
% + ]EO 111 (K = (j +2)Kjy2) [H1+]j

T H?

We may therefore conclude that if Kj < %, forj=2,...,n,

1. Ay > 0 for any positive value of [H*];
2. A = O(ﬁ) as [H*] = +co, and thus lim+]_, o Ay = 0.
Using the same reasoning as above, we finally find that
ATk ([H¥]) = Alkging + [ZA] 2 = Alkgiog + [ZA] (01 ([H]) — A1)
which allows us to conclude:
Alka ([H']) < Alkpins + [ZA] aq ([HT]).

which establishes the asymptotic role of [ZA] i for Alk A([H]) as [H'] — H-co0.
The summation over all the non-water related acid-base system contributions then leads to

LilZA[]Ky
Alkw ([H']) < Alkying + W (1)
providing a stronger upper limit on Alkny ([H']) than Alknwsup when [H*] is sufficiently large,
i. e., when
Li[ZA]Ky g

H*] > .
[ } AlknWsup - AlknWinf

This could also possibly be used to determine a tighter upper bound for the root of the origi-
nal SOLVESAPHE, but it is not clear whether the calculation of that tighter upper bound would
actually be compensated by a reduced number of iterations.



1.3 Another (slightly less) practical asymptote: a,

For a; to be an asymptote, it will be shown below that it is sufficient that the successive disso-
ciation constants of H,A fulfil a condition on their magnitude, which is nevertheless generally
fulfilled. Similarly to above, we need to analyse the distance between % and a;

Ah oy 2L Ny
A :&_._ ARD) _&: ([H+]+[H+]2)D Dy
P THETP D D

Developments are analogue to the previous case, and we therefore only report the final result here

IT 211
(e + o) P -
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j=0 1

]

2A0LI1, 1  2ILIL, ILIL, 1 =2 201, . i
= T, (K; + —= — 2)K; HT|"/
[H+] + [H+]2 + [H+] + [H+]2 Z ]-‘rl( 1+K‘+1 <]+ ) ]+2)[ }
j=0 ]
Again, the condition that K]- < % for j = 2,...,n is sufficient to guarantee that A, > 0 for all
[H*] > 0. Finally,

II 21T
(4 + %) DD

Ay = D
AL, | +ILTL, | 20LI0, | "2 211 : 1
. 2 [Hﬁn,ll + T T j§0 T4 (Ky + ﬁf] — (j+2)Kjs2) [H]
~ [HTP2

n I_I 1
/EO ] [H+]/

In conclusion, if Kj < %, forj=2,...,n,
1. Ay > 0 for any positive value of [H'];

2. Ay = o(ﬁ) as [H"] — 00, and thus limg+), o A2 = 0.

and
Alka ([H']) < Alkpins + [ZA] a2 ([H']).

[ZA] ([5—1] + Z[Ilflf](%) is thus an asymptote for Alka ([H"]) as [HT] — +oo0.

2 Second derivative of the alkalinity fraction

From Munhoven|(2013), we know that
Alky = [TA] (%1 _ m) ,

with
D=Y TLH"/ and D;=
j=0 j=0

n n )
JILH .

More generally, we define
n

Dy =Y fTLH".
j=0



It is straightforward to show that

D 1 Dy 1
i H(nD D;) and — =

— _ > 1.
JH - H (nDyg — Dyyq), fork > 1
Munhoven|(2013) has shown that

4 (Di\__1DD, D}
dH ~ H D?
and that this derivative is strictly negative for H > 0. Here, we analyse the second derivative of

%. To start, we notice that

2
HD3

dD

2
(DD, - D}) 7.

d> (D 1 ) 1 d )
— | = DD, - D DD, - D
dH? ( D > 72Dz (PP2 = D) — fpa g (PD2 = D) +
The first term at the right-hand side will in a first stage be left as is. The second one is developed
as

1 d

2\
~mpzap PP~ P = -

1 (dD dD, dD;
HD? (dHD2+DdH 2Dy dH)

1
= - (2n(DD2 — D3+ DD, — DD3)

Similarly, the third term becomes

2 b _ 2
1
=t (2D (DD; — D?) —2D;(DD, — D?)

Hence
d> (D 1 9 ’
s (D) = 253 (D(DD2 — D?) — D(D1D; — DD3) — 2D (DD — Dl))
1
- H2D3
We know that (Munhoven, [2013)

((D —2D;)(DD; — D}) — D(D1D; — DDs)) : @

2
n ) n ) n
DD, — D} = (Z HiH’H) (Zﬁgﬂ”‘f) —~ (Z kaH”—k>

j=0 k=0

1
_2

I Mx

n
Zz—] 2 ILITH .

according to Lagrange’s identity, which helped to establish that DD, — D > 0. A similar formula
can be developed for D;D; — DD3. We have

n i n . n X n X
DD, — DD3 = (Zinﬂ“) (ZjZHjH”f> — (2 Hl-H”1> <2j3HjH”7>
i=0

i=0 j=0 i=0
n n
=Y. Y (i = PILIGH
i=0j=0
n o n o
=YY G = HILIGH> .

=0

Il

=
fy

Il



By respective permutations of i and j in the two terms, we get the following four expressions for
D1 Dz - DD3:

n n Lo
DDy —DD3 =Y Y j(i — j)ILIH?"

i=0j=0
n n L
DD, —DD3 =Y Y j(i* — A)ILI;H>"
i=0j=0
n n Lo
DD, — DDz =Y Y i*(j — i)ILIL;H> "

I\
1
o

0j
n

D1D2—DD3—ZZz] — A ILILH>
i=0j=0

By taking the average of the four expressions, one gets an expression for D1D, — DDj3 that is
symmetric in i and j. The resulting multiplier of HiHsz””’] then becomes

TPE=D+j@ =)+ PG - +i( - )
= =3 =i+ ))-

so that 0
DD, — DD3 = 122 (i —j)*(i + HILILH? .
2 i=0;=0
Accordingly,
(D —2D;)(DD; — D7) — D(D;D; — DD3)
1 n K n n ) 2 ) L
=5 Y (1= 2k)ILH" Y ) (i — ) ILILE
k=0 i=0j=0
1 n
- H H}’l*k _ HH HZn i =]
+3 (B ) (R0 omae)

n n n -
- % ( YN ()i +j—2k+ l)HiH].HkHan]k> '
i=0j=0k=0

The previous expression is symmetric in 7 and j: the summands are identical for i and j permuted.
It is therefore sufficient to consider the terms for i < j and drop the % Since the terms for i = j are
furthermore equal to 0, we may write that

(D —2Dy)(DD; — D7) — D(D1D; — DD3)

n

-,

n n L
(i—j)%(i+j— 2k + DILILITH 7K, @)
= + k=0

Whereas £ (21) > 0 for any set of positive IT; (i = 1,..., 1) — seeMunhoven| (2013, Appendix A)

— it is not possible to draw a similarly clear conclusion for déz ( 1). However, it is possible to
derive sufficient conditions, which are fulfilled for naturally occurring acid-base base systems,
such that )
d= Dy
az(p) >0
The program sdt_iconstraints.f90 can be used to characterise the individual terms of the series
above for a given 1, and for all i, j and k.



2.1 Signs of the aggregated terms of the sum

The actual coefficients for a given H" in the sum in eq. (3) generally result from several terms,
obtained by sets of (i, j, k) triplets, such that i 4+ j 4+ k = 3n — m. There are subsets in these sets
that are obtained by permutations of the three indices. We first deal with these latter.

We consider a I'I,IT,11. product, where a, b and c are ordered such that a < b < c. There are
actually only three cases to consider since i, j and k are such that

e 0<i<n—-1
e i+1<j<n
e 0<k<n
We therefore know that it is not possible to have a = b = c and the only cases to distinguish are
l.a=b<c
2.a<b=c
.a<b<c

The coefficient h,,, of a H™ in the sum is obtained from

hy = Z fabcHaHbHc
a+b+c=3n—m

wherea < b <canda < c.

211 Casea=b<c

Since i < j, there is only one (i, ], k) triplet that is compatible with this case: i = 4, j = ¢ and
k = b = a. The corresponding term in the sum is thus

(i—j)%(i+j— 2k + ILILILH> 7k

and it is the coefficient of Hl-Hij that sets the sign of the term. In this given case, the coefficient
of I1,IT,11. simplifies to

(c—b)2(b+c—2b+1) = (c—b)*(c—b+1)
or, by introducing 6, = ¢ — b,
fabe = 5[%(‘5}3 +1) 4)

which is always strictly positive.

212 Casea<b=c

Similarly to the first case, there is only one (i, j, k) triplet that is compatible with this case: i = a,
j = b =cand k = c = b. The coefficient of I1,I1;I1. simplifies to

(b—a)*(a+b—2b+1)=—(b—a)*(b—a—1)

which can be rewritten as
fuhc = _55@11 - 1) (5)
by introducing 6, = b — a. fy. is

* equalto0ifé, = 1;

e strictly negative if J; > 1.



213 Casea<b<c
Since i < j, there are three (i, j, k) triplets that contribute to the term in HaHbHCH3"_“_b ¢
« (i,j,k) = (a,b,)
e (i,j,k) = (b,c,a)
* (i,j,k) = (a,c,b)
The sum of factors in these three terms is
fae=(@—=b)*(a+b—2c+1)+ (b—c)?(b+c—2a+1)+(a—c)*(a+c—2b+1)
=0b—a)?@a+b—2c+1)+(c—b)2(b+c—2a+1)
+((c=b)+(b—a))(a+c—2b+1)
Using the same §, = b — a and 6, = ¢ — b as already introduced above and furthermore noticing
thatc —a = 9§, +6,, we get
fave = (a=b)*a+b—2c4+1)+(b—c)*(b+c—2a+1)+ (a—c)?(a+c—2b+1)
= —262 — (30, — 2)82 4 6,,(35), +2)3, + 267 (5, + 1).
The sign of f,;. as a function of J; and J; is difficult to predict from this expression. That infor-

mation can nevertheless be derived by expressing it in terms of J, and x = J,/6}, instead. With
d, = xJp, the previous expression becomes

fape(X) = =265 — (38), — 2)0% + 6, (38, + 2)d + 262(8, + 1)
= —207x% — (38, — 2)07x* + 62(38, +2)x + 267 (6, + 1)
= —62(20,%> + (38, — 2)x* — (38, +2)x — 2(6, + 1)).
Since and 6, > 1 (and 6, > 1 as well), we may conclude that
fape(0) = 262(5, +1) >0
fape(1) = 652 > 0
fape(2) = —62(208, — 14) < 0

The derivative of f is

fape(x) = =63 (68,%* +2(35, — 2)x — (36, +2))

fipe(0) = 02(36, +2) >0
fhe(1) = —82(98, —6) < 0

The equation f}, (x) = 0 always has one strictly positive and one strictly negative solution, since
the constant term is strictly negative. The reduced discriminant of this equation is

N = (35, —2)* + 66, (35, +2)
= 907 — 126, + 4 + 1807 + 124,
= 2767 +4> 0.

The positive root, where f has a local maximum, is at

, =36, +2+ VA 35, +2
xO = = >0
65, (36, —2) + VA

It is straightforward to show that 0 < x6 < 1, for any 5b > 1. Hence

10



o fl,.(x) <0forx > xjand f'(x) > 0for0 < x < xp;
* fabc(x) is strictly decreasing for x > x;
* fape(x)

(

* fabc(x) = 0 has exactly one root x that is greater then x{;

x) is strictly increasing for 0 < x < x|,

* X is bracketed by 1 < xp < 2.
Accordingly

* fape(x) >0for0 < x < xg

* fape(x) < 0forx > xg

and thus for any given a < b < ¢, we may calculate xo = x(Jp) and depending on x = 9,/
decide whether the corresponding term fabcHHHbHCH?’”’”’b’C which includes the contribution
of all possible permutations of a, b and ¢ represents a net positive or a net negative contribution
to the sum.

214 Lemma

Fora < b < ¢, we have
fabe = =263 — (30, — 2)82 + 65(30p + 2)8a + 207 (5 + 1)
fb+1+#c
factipire = —2(6a)® — (305 — 2)(6u)? + 5p(385 +2)6n +2(6p)* (05 + 1)
withéy = (b+1) —(a—1) =6, +2and ég = ¢ — (b+1) = §, — 1. Hence, if b # c we get
fatprre = =200 +2)° = (3(8 — 1) —2)(8 +2)*

+ (8, —1)(3(8p — 1) +2) (2 +2) +2(3, — 1)%6,,
= fabc - 3(551 + 1)(6517 + 30, — 2)

Hence, f;_1 511, < farc and if 5, and 6, are sufficiently large, f,_1 511, becomes negative.
Ifb+1=¢c, then

fotpite = (6a+2)2(1 = (64 42)) = — (80 + 1) (64 +2)2
This means, however, that §, = 1, and so
Fape = —263 — 02+ 56, +4 = — (6, +1)(262 — 5, — 4)
Hence,

fa—l,b+1,c - fubc = fu—l,c,c - fa,c—l,c

= G 10— 20, - SV

~ (8,4 1)(8, + 1.2749) (8, — 6.2749)

For a given exponent m, we may fix c such thatc > 0,c < nandc < 3n—m—1. Asa
result, a + b = 3n — m — c. The maximum and minimum values of a and b respectively depend
on whether 3n — m — c is even or odd:

e if 3n — m — c is even, the maximum of a is (3n — m — ¢) /2 and the minimum value of b is
the same. Accordingly, we have 2 = b < c in this case and f,;,. > 0.

11



e if 3n —m — c is odd, the maximum of a is (3n —m — ¢ — 1)/2 and the minimum of b is
(B3n—m—c+1)/2. Hence, §; = 1. If b = ¢, then f,, = 0;if b < ¢, then fy, = 6,(20, +
50, — 1) > 0 because J§;, > 1 in this case.

If we order the terms of the subseries Y, p—3,, ¢ farcI1al1pI1c by decreasing a values, the lead-
ing term is thus always strictly positive, which allows us to derive sufficient conditions to ensure
that £, T ITT1 + fo_q pi1,cJ1a— 1101 I > 0, evenif f;_q 11, < 0. We may indeed write that

faveITallpTle + fo 111, o111y 1 Te = T a I Ie(fapella /Tl + fa—1p4 1,1 o1 /11p)
= HaflanC (fucha + fa—l,b+1,ch+1 )
Hence, if K; > (= fa—1,p+1,c/ fabe)Kp+1 the sum of these two terms, which contribute to the same
H™ is positive.
2.1.5 Sufficient conditions

Fora=1,...,n— 1, the coefficient for H3"—32~1 includes a subset for ¢ = a — 1 that reads

fa,a,a+1HaHuHa+1 + fafl,a+l,a+1H471Ha+1Ha+1
Both f factors are special cases:
* fogar1haséy =1land fr441 =2
* fa-tat1a+1hasdy =2and fo1 011041 = —41aq

Hence

fa,a,a+1HuHﬂHa+1 + fufl,a+l,a+lnuflna+1na+1
= ZHaHaHu—l-l - 4Ha—1na+1na+1
Hﬂ _ 2Ha+1 )
I, I,
=2l 111,11, 14 (Ka - 2Ka+1)

= 2Haflnanu+l(

A first condition to check would thus be

K
Kaiq <7“, fora=1,...,n—1

2.2 Chain structure

. - . 2 . .
As mentioned before, the coefficient of the H" in the sum at the numerator of ddﬁ % is obtained
by Y b e favcI1alTpIle, wherea +b+c=3n—m,0<a <b <c,buta # c.
.. . . .. 2
To show that the test condition mentioned above is sufficient to guarantee that ddﬁ % >0, we
analyse the H" terms individually, and in the calculation of the coefficient d,, of Hy,, the various

sub-sums for each possible c:
hm = th,c
c

and

hm,c = qubcHaHbHc
a,b

witha+b =3n—m —c,and, as above 0 < a < b < cbuta # c. The (a,b, c) triplets of this sum
can be ordered by increasing b (and thus decreasing a, since a + b = 3n — m — c is constant for
given m and c. There are thus several types of chains of (a, b, ¢) triplets terms contributing to dy, ¢
that may arise. There are two types of starting values for these chains:

e (b,b,c),with0<b<c

12



e (b—1,b,c),with0<b<ec.

As before, we denote J;, = ¢ — b. However, we consider in this section that ¢, is a characteristic of
the chain. The corresponding chains then respectively start as follows

(b,b,c), b—1,b+1,¢),..., (b—jb+jc),... (6)
(b—1,b,c), (b—2,b+1,¢),..., (b—1—j,b+]jc),... %)

We consider the two cases separately. It has been shown before that
fupe = =203 = (385 — 2)0% + 65(30p +2)8a + 265(6 + 1) 8)

for 0 < a < B < c and where d, =p—waandop =c—pB. In addition, if 0 <a -1 < B+1<c
then
facipete = fape — 3(0u +1) (655 + 36, — 2). )

2.2.1 (b,b,c) chains

This triplet always leads to the initial term fy, JI2I1. with fy = 62(6, + 1), independent of the
actual values of b and c. There are a few trivial cases that can be considered.

1. If b = 0, i. e, 8, = ¢, the chain reduces to the single element (0,0,c). This element can
only be part of hy, . for which ¢ = 3n — m and this d;, . reduces to a single term: d;, =
foocIT3T1e = 62(8), + 1), which is always strictly positive.

2. If 6, = 1, the chain has two elements (¢ — 1,¢ — 1,¢) and (¢ — 2,¢,c) and

Bne = fo1e 1,012 T+ foog Il oT12 = 2012 {11, — 411, oI T2

In the following, we thus suppose that b > 0 and 6, > 1
We already have

fove = 056 +1)
For stage j > 0, where we need to calculate f, ., we may use eq. (8) with 65 = ¢ — (b +j) =
Op —jand 6y = 2j:
foojprje = —2(2)° = (3(8 — j) = 2)(2))°
+ (0 — ) (3(dp — ) +2)2j
+2(8 = )2 (8 — ) + 1)
= —16)° — (126, — 12j = 8) + (6 — /)(68, — 6] + 4)]
+ (8 — 276y + ) (26 — 2j +2)
= 16 — 1220), + 12/° + 82 4 6j62 — 625, + 4o, — 625} + 6]° — 47
+20] — 2707 + 26, — 4j5; + 40, — 47y + 270, — 27° + 2
= (—188p + 6)> + 253 + 267
—67%(30, — 1) +252(d + 1)
2 fope — 652(30, — 1)

The difference between the two first elements is

fo-1p+1,c = fobe = fove —6(30, — 1)
=05+ 67 — 185, +6
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This difference is negative for J, < 4 and positive for J, > 4. The difference between successive
elements j — 1 and j (j > 1) can be calculated from eq. @) with , = 2(j — 1) and dg = c — (b +
G=1)=b—j+1

fojprjc = fom(j—1) p+(j-1)c = —3Q2G—=1) +1)(6(0 —j+1)+3-2(j —1) —2)
= 6(2j —1)(36, — 1)

The difference between consecutive members is thus always negative, and increasing in absolute
value with j.

This recursion on j is valid as long as j < b and j < ;. The end of the chain thus depends on
how b and J;, compare.

* If b < Jy, b — j reduces to 0 before b + j increases to c. The recursion thus remains valid for
alll1 <j<b.

o If b >= 4y, the last term in the chain is f,_, .. for which (8) is not applicable and eq.
must be used instead

fotyee = —(c=(b=8))(c— (b—8) —1) = —455(20, — 1).
The second but last member of the chain is obtained for j = J;, — 1. Accordingly,
fbféb,c,c - fb*(SbJrl,C*l,C
= —402(26, — 1) — 267(3, +1) +6(5, —1)*(38, — 1)
= —6(20, —1)(30, — 1) + 467 (25, — 1)

The difference between the last two elements in the chain is thus greater than the regular
difference, which would be —6(25, — 1)(35, — 1) for j = ¢,. The nominal difference is
augmented by the absolute value of the last element in the chain.

2.2.2 (b-1,b,c) chains

There are three trivial cases to consider for (b — 1, b, ¢) chains.

1. If b = ¢, the chain reduces to the single element (¢ — 1, ¢, c), with f._1 .. = 0.

2. if b = 1, the chain reduces to the single element (0,1,c). For this element, §, = 1 and
5!7 =c—1.
fore = 0p(20% +58, — 1).

If furthermore c = 1, this becomes a special case of the previous one. Since ¢ > 1 we know
that fO,l,c > 0.

3. With b = 2 and ¢ = 3, the chain has only two elements: (1,2,3) and (0,3,3), with fi,3 =6
and f0,3,3 = —18.

In the following we assume that 1 < b < c. As before, we have
fo-1pe = 0p(267 + 58, — 1).

The recurrence (8) is applicable right from the beginning. To calculate element j, i. e., fp 1 jp1jc
we use (8) with 0y = 2j+ 1and o = &, — j:

fo-1-jbrje = =2(21+1)° = (3(8 —j) = 2)(2j +1)?
+ (8 = 1)(3(8 — ) +2)(2j +1) +2(6 — )*((8 — j) + 1)

= 0y(202 + 58, — 1) — 3j(j + 1) (65, + 1)
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The difference between successive elements j — 1 and j (j > 0) can be calculated from eq. (9) with
On :2]—1and5ﬁ :(Sb—j—f—li

fo-1-jbrje = fo1—(j—1)pt(j—-1),c = —3-2j - (6(0p —j+1) +3(2j — 1) — 2)
=-3-2j-(60, +1)
The difference between consecutive members is thus always negative, and increasing with j in
absolute value.

The previous recursions are valid for j as long as j < b — 1 and j < §. The end of the chain
thus depends again on how b and 6, compare.

* If b—1 < 6y, b—1— jreduces to 0 before b + j increases to c. The recursion thus remains
valid forall1 <j <b—1.

* Ifb > §, + 1, the last term in the chain is f;_1_;, ¢ for which (8) is not applicable and eq.
must be used instead:

footsyee=—(c—(b=1—=6))*(c— (b—1—6,) — 1)
= —26,(26, +1)?

The second but last member of the chainis fj,_s, .1, obtained for j = &, — 1. Accordingly,

fb—&b,c—l,c - fb—l—&b,c,c
= —26,(20, +1)* — 6,(262 + 56, — 1) +3(8, — 1), (66, + 1)
= —60) - (60, +1) +25,(26, +1)2

The difference between the last two elements in the chain is again greater than the regular
difference, which would be —66, - (60, + 1) for j = 8. As for the (b,b,c) chain, the last
difference is augmented by the absolute value of the last element.

2.2.3 Successive terms and how their sums compare

We analyse the comparative magnitudes of successive terms of the series that define the coeffi-

2
#(%) under the as-

sumption that Kj 1 < %Kj (and equivalently, K; > 2Kj 1), forj=1,...,n — 1. Thisc

cients of the different coefficients of the polynomial at the numerator of

In (b,b,c) chains, successive elements j and j 4 1 write

fo—jptj, o Ty e and fy i1 by i1, 1Ty jo 11Ty T
To analyse how the sum of two such element compares with one of the two terms under the
assumption of Kj 1 < %Kj, we first determine g such that
Iy jITpyj — gl j 1Ty p g >0

We successively have

My Iy — gy j 4Ty
Iy pyji
=y j 11Ty L -
/ +](Hbfj71 1 I,y
=11y j 411y j(Kpj — qKpyji1)
> My j 11T (2K, — 27U VK,

=TT, _j_11T, 27 UK, (2774 — g)
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and is thus sufficient to chose g = 22 +1 which leads to
Iy My — 227D 4T > 0. (10)

As a consequence, assuming that f, ;. > 0, we find that

fo—jptje oMo Il + foj1prjrn,ellp—j—11 Ty 11T
2i+1
= fojprje o Ty Tle — 277 fy iy T 4T jyq T
2j+1
+ 29 fo b o 1My le + fooj1prjrnel o j1lTpyjp1]le

2j+1
> (2 T foj bt +fb—j—1,b+j+1,c> My j My a1l

; fo—j-1p+j+1e
= (27 + = e T T T
fb—],b+],c
With the index translation j — j — 1, the inequality (10) translates to IT,_ 11T, ;1 — 2% 1T1,_jIT,,; >
0, or, equivalently,
1

92j—1
Assuming that f; ;4 < 0 we then find that

Il — Hy—j1llpyj1 <O0. (11)

fo—jrtprj-re ol j1lle + foojprjelTo—jTTpy 1L
1
= fo-jriprj-1elo—jrllpj11le + thfj,bﬂ,cnbf]ﬁrlHb+j71Hc

1
— sgrtfo-ibriello— el jaTle + foojpojclTp—TTp T

1
> (fb—j+1,b+j—1,c + zzj_lfb—j,b+j,c) Hp—jq Iy jq11e

fo—jr1p4j-1c 1
= + o | foojprjc o jrallpyj 11l
( Fribtic 2251 jb+ j j

In (b-1,b,¢) chains, successive elements j and j + 1 write

fo—j-1p+j,cp—j—11p e and foj 2 pyji1,cl o j—ollpyja11e

Similarly to before, we first determine g such that
Hp—j11lpyj — gl j oITp g > 0.

We successively have

My jqTpyj — gl j ol Tpy g

M, , Il
_ ) ) ] . +j+1
- Hb*]*ZHbﬁ*] ( Hb7j72 Hb+]

=11, oIl j(Kp—j 1 — qKpyjt1)
> My j ol (27K, — g27UTVKy)
= Iy j_oIT,, 27 UFDK, (22572 — g)

and it is sufficient to chose g = 2%+2. We thus have

Iy 1Tl — 27200y Tl g > 0. (12)
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As a consequence, assuming that f, ;140 > 0, we find that

fo—ji—tprj e o j 1Mo Ile + foj2ptjrr,clo—j2llpyjialle
2j42
= fb—j—l,b+j+1,cnb—j—1Hh+ch — 297 fbfj—l,h+j+1,cHb—j—znhﬂ‘ﬂHc
2j42
+ 292 fy iy jo Ty e + forjo it el lp—j—aTTpqjpaTle
2j42
> (22 fy i a e + fo—jm1b4i1,0) Tp—jm1 g Te
With the index translation j — j — 1, the inequality translates toIT, ;11,1 — 2211, j—11Ipyj >

0, or, equivalently,
1

2%
Assuming that f;_j 144 < 0 we then find that

Hp—jaIlpyj — 511 1Ty j1 <O. (13)

So—ip—1+j,c o Tly—14 1T + fo1—jppjclTp—1—TTp Tl
1
= fomjo-rtj Mo Tp1 e + S5 fo1—jp4j,cH o To—14T1e

1

= o fo-i-14j, eI lo- o Tle + fojo1pj T lp—j 11Ty 1411

1
> <fbj,bl+j,c + 22jfb1j,h+j,c) IRV SRS O B

_ (fbj,bl+j,c L1

o iipee 22]) fo-1-jprjecl o141

2.3 Heuristic determination of sufficient conditions

For the evaluation in this section, the relevant f,;. for the different values of n were generated
with secondderivterms.f90

231 n=1
e. g., B(OH3): unconditionally positive
232 n=2
e. g, H2C03:
e termin H?, forc =2

201211, — 4113 = 2T [T, (11 — 211, /1)
= 2111 (Ky — 2K3)

Sufficient condition for positivity:
o Ky < 3Ky
233 n=3
e. g., H3(PO)4:
1. term in H®, forc =2
201311, — 4115 = 211,11 (K; — 2K;)

Sufficient condition for positivity:
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o Ky < 3Ky
2. term in H?, forc =3
20T311T, — 4T 113 = 2114 TT,115(TT, /11 — 2115/115)
= 2ILTLIT3 (K, — 2K3)
Sulfficient condition for positivity:
* K3 < 3K>

These two conditions are actually already strong enough for all the remaining negative terms to
be compensated by other positives:

e term in H?, forc = 3
1211211, — 6115 = 611,11, (211; — I1,/IT;)
= 61,11 (2K; — K3)
Sufficient condition for positivity:
o Kp < 2Kj, already met by 1. above: Kp < %Kl < 2Ky
e termin H?, forc =3
61T ITpI15 — 18113 = 611, 1T3(IT; — 3I13/115)
= 6IIT3(K; — 3K3)
Sufficient condition for positivity:
o K3z < %Kl, already met following 1. and 2. above: K3 < %Kz < %Kl < %Kl.
234 n=4
e. g., Ha(SiO)4:
1. term in H8, forc = 2
201211, — 4113 = 2T,1T; (K; — 2K>)
Sufficient condition for positivity:
e Ky < 1Ky
2. term in H°, forc = 3
20IT311, — 4111115 = 21 TTpI15(K;, — 2K3)
Sufficient condition for positivity:
e K3 < 1K,
3. term in H?, forc = 4
21311, — 41,115 = 21,1151, (T13 /11, — 211, /113)
= 211115114 (K3 — 2Ky)
Sufficient condition for positivity:

e Ky < 1K;
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These three conditions are again strong enough for all the remaining negative terms to be com-
pensated by other positives:

e termin H’, forc = 3
1211211, — 611,11, = 6114 115(21T; — I, /T1;)
= 6I11115(2K; — K»)
Sufficient condition for positivity:
o K < 2Kj, already met following 1. above: K, < %Kl < 2Ky
e term in H®, forc =3
6T T1,115 — 18115 = 61,1 T3(IT; — 3115/11,)
= 6II13(K; — 3K3)
Sufficient condition for positivity:
o K3z < %Kl, already met following 1. and 2. above: K3 < %Kz < %Kl < %Kl
e termin H®, forc = 4
34T 11,11, — 4411311, = 2T1,114(1711; — 22113/11;)
= 2I,114(17K; — 22K3)
Sufficient condition for positivity:
o Kz < %Kl, already met following 1. and 2. above: K3 < %Kz < %Kl < %K1
e termin H% forc =4
1211311 — 61141311, — 48115
= 1211311y — 1211, 11511, + 611, T1511, — 48115
= 12T TIpT1y (T /TT; — T13/T1p) + 6113114 (T — 8114/T13)
= 12T 11,114 (Ky — K3) 4 6113114 (Ky — 8Ky)
Sufficient conditions for positivity:
o Kz < Kj, already met following 2. above: K3 < %Kz < Kp
o Ky < %Kl, already met following 1., 2. and 3. above: K4 < %K?, < %Kz < %Kl
e termin H?, forc = 4
6I 111511, — 1811111411y = 6111 I 151 14(1T, /1Ty — 3114/113)
= 6113114 (K, — 3Ky)
Sufficient condition for positivity:

o Ky < %Kz, already met by 2. and 3. above: K4 < %Kg, < %Kz < %Kz

235 n>4

The program sdt_iconstraints.f90 calculates for a given n, the coefficients of the polynomial
at the numerator of %(%), and the coefficients of the minoring polynomial based upon the
hypothesis that K]‘+1 < %K]- (j =1,...,n—1), using the inequalities and . Forupton =12,
we have checked that all the coefficients of the so defined minoring polynomial are positive We
may thus reasonably assume that % ( %) > 0 for naturally occurring acid systems. Accordingly,
we can be sure that the minimization problem from section 2.3 (part v > 0) has exactly one

solution at least for n < 12.

IPlease notice though that all the arithmetic in sdt_iconstraints.£90 is done in INTEGER type. For n > 9, the calcu-
lations suffer from overflows. For calculations exceeding n > 9, the program must be compiled with adequate options to
use a 64-bit wide INTEGER type by default (for GFORTRAN, the required option is ~fdefault-integer-8).
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3 Initialisation of the iterative solvers

3.1 Fundamental rationale

Since we have bracketing intervals for each root and, in case there are two roots, these are non-
overlapping, we may always use the fall-back initial value Hy = \/Hinf Hsup. This value is,
however, often far from optimal. The efficient initialisation strategy of Munhoven|(2013) can be
generalized and adapted to each of the three pairs. For each case, we chose the most complex
AlkT approximation that leads to a cubic equation. If the cubic polynomial behind that equation
has does not have a local minimum and a local maximum, we use the fall-back value. If such
local minimum and maximum exist, we use the quadratic Taylor expansion around the relevant
extremum — this will normally be the maximum if the coefficient of the cubic term is negative,
and the minimum if that coefficient is positive. If that quadratic does not have any positive roots,
the fall-back initial value is used. The roots for that quadratic are then determined. For problems
that have only one positive [H*] solution (Alkr & CO,, Alky & HCO; and the Alky & CO3~
with ¢ < 0), we consider that root of the quadratic expansion that is greater than the greatest
location of the two extrema: if that root is lower than Hj,¢, we use Hy = Hjyy; if it is greater than
Hsup, we set Hy = Hj,¢. For problems that have two positive [H"] solutions (Alkr & CO%f with
v > 0 and sufficiently great Alky), the initial value for determining the greater of the two [H]
solutions can be chosen exactly the same way; the initial value required to calculate the lower of
the two [H ] solutions may be more tricky. If the location of the right-hand side extremum is too
close to 0, the estimated root of the cubic may be negative. In this case, the quadratic fitted to
left-hand extremum should be considered as well and the greater of its roots tested. Because of
the symmetries of a cubic, that root can be calculated with a few extra additions only.

3.2 Alkt & CO;
We call upon the Alkcp approximation, which in terms of [CO,] instead of Cr reads
Alkcp = [HCO; | +2[CO37] + [B(OH), |

K 2K K K
- <[Hl+1 e ) O+ o [

Br. (14)

As the right-hand side is a monotonously decreasing function of [H*], we conclude that Alkcp >
0 for a given [CO,]. For a given Alkcg, the definition (14) leads to a cubic equation in [H'], namely

Pep([H']) = c3[H' P + co[H P + 1 [H ] +¢9 =0,

where
c AlkCB
3 pr—
[CO,]
Alkcg BT)
2 ! [CO,]  [CO,]

c1 = —(K1Kp + 2K1K>)
Cco) — —2K1K2KB.

Since c3 > 0, Pcp(0) = co < 0 and P.5(0) = ¢; < 0, Pcg([HT]) has a local minimum with a
negative value for [H"] > 0 and a single positive root. The minimum is located at

\/ 65 —3c103 — 2
Hmin

- 3C3

As proposed above, we use the quadratic Taylor expansion of the cubic around (Hpin) and we
chose the greater of its two roots as the initial value Hy for the iterative solution of the Alkr-[CO,]
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problem:
_ Pc(Hmin)

: .
/€5 —3c1c3

The calculated Hy has nevertheless to fulfil an additional constraint. Alkcp actually has the
upper limit 2Ct + Bt (see Munhoven| (2013)). Although Cr is unknown at this stage, as it will
have to be calculated from the given [CO,] and the [H'] solution of the Alkr-[CO,] problem, we
can use the relationship between Cr and [CO,|

HO = Hmin +

[HT]?
[Ht]2 + K [HT] + K1 Ko

[CO,| = Cr

to restrain the range of possible values for [H"]. In order to have Alkcg < 2Ct + Br, it is necessary

that

[H*]? + Ky [H'] + K1 K
[H+]?

AlkCB <2 [CO2] + Bt

or

(2 [COZ] + [CO2]> [H ] +2K1[H ]—|—2K1K2 > 0.

Let us denote the reduced discriminant of this quadraticby A’ =1 — % (2 - I[ACH((D(;? + [CBSZ] ) We

need to distinguish two cases.

o 1f2— Aken | B this quadratic has one positive and one negative root. The positive

[CO,] T [CO,
rootis Hy = \/AE/ZJ and the inequality is only fulfilled for [H"] < H,.

e If2— [[%CHS;? + [CBOTZ] > 0 then, the right-hand expression of the inequality does not have real

positive roots: the inequality is fulfilled for all [H] > 0

In practice, we will set Alkcg = Alkt. If Alkt > 0 and the calculated Hj falls within the ranges
just derived that guarantee that Alkcg < 2Ct + Br, we use it; in all other cases we set Hy =

vV Hinf Hsup'

3.3 Alkr & HCO;

This time, we may call upon the Alkcpw approximation, which in terms of [HCO; | instead of Cr

reads 1]
2K, _ Kg Kw H
Al =1+——= ) H —
ke = (1 (7 ) O3+ iy oo iy~
For a given [HCO; | > 0, Alkcpw ([H']) decreases monotonously from +oco in [H*] = 0% to —co
as [H"] — oo. For a given [HCO; ] and Alkcpw, the definition defines an equation in [H*],

that has exactly one positive root. Eq. can be converted into a cubic equation

Bt + (15)

Pepw([H']) = c3[H' P + oo[H 2 + o [H] +¢o =0

where
L1
7~ s[HCO; ]
Cr = — — — 1
[HCO; | ' s[HCO;]
c1 = Kg AlkCBXV - BT, -1 —Kiw,—ZKz
HiCO;]  [HCO3] [FCO;]

Kw
= Kg [ N 4ok
€0 B <[HCO3] - 2)
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Since Pcpw differs from eq. by multiplication with the strictly positive factor [H*]([H"] +
Kg), both equations have exactly the same positive roots. As outlined above, we are first checking
whether Pcpw has local extrema. The derivative of Pcgw ([H™]) writes

Plgw ([H']) = 3e3[H']? + 20, [H' | + ¢

PéBW does not have any roots and thus no local extrema if A = C% —3c1c3 < 0. In this case,
we use the fall-back initial value Hy = /Hjnf Hsup- If A > 0, Pcgw has a local minimum for

Hpin = ‘/§C_3 2 and a local maximum for Hpyax = — @:g 22 Since c3 > 0, we have Hmax < Hmin-

We now have to distinguish two cases:

1. If Pcpw (Hmin) < 0, we use the quadratic Taylor expansion of Pcpw in Hpin:
Qmin(H) = Pcpw (Hmin) + VA(H — Hpin)*.

The greater of the two roots of Qn;n is then chosen as Hy:

_ Pcpw (Hmin)
VA

2. If Pcgw(Hmin) > 0, then the positive root of Pcpw is necessarily lower than Hmax. In
this case, we use the quadratic Taylor expansion of Pcpw in Hmax, which would write
Qmax(H) = Pcpw(Hmax) — VA(H — Hmax)?. The lower of the two roots of this quadratic
may, however, be negative, making its useless for deriving a Hy. We therefore modify the
parabola Qmax such that it still has its maximum in (Hmax, Pcew (Hmax) ), but that it passes
through (0, ¢p), remembering that ¢y < 0:

HO = Hpin +

Pepw (Hmax) —
H2

max

Qmax(H) = PCBW(Hmax) - € (H - Hmax)2~

The lower of the two roots of this Omax can then be used as Hy:

PCBW(Hmax)
PCBW<Hmax> —Co

HO - Hmax - Hmax\/

Please notice that Pcpw (Hmin) can never be equal to zero, as this would imply that Pcgw has a
double root at Hyin, which is not possible. In practice, we will set Alkcgw = Alkt and use the
above as is.

34 Alkt & CO3—

We use again the Alkcpw approximation. In terms of [CO3 ] instead of Cr it reads

K K
Alkcpyw = y[H'] + 9 +2[CO3 | + 2 Br. 1
kCBW r)/[ }_'_ [H+] + [CO3 ]+ Kg + [H+] T ( 6)
Eq. can be converted into a cubic equation
Pepw ([H]) = ea[HP + 6[HT? + 1 [H] +co = 0 (17)
where
i
3= —>—
oy
Alk
C) = — (KB 72_ + CZB_W —2>
[CO57]  [CO57]
Alk B K
=t (R B o) 1 K
[CO57]  [CO57] [CO37]
Kw
co =K
0 B[CO%’]
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The complete analysis from section 2.3 in the main paper remains valid for this approximation:
Alkpcw reduces to borate alkalinity, i. e., Alk,ow ([HT]) = KBfiFHﬂBT and thus Alk,wcine = 0 and
AlknWCsup = Br.

There is not much that can be said a priori about the overall shape of this cubic function. as
the signs of the coefficients ¢, and ¢ are difficult to predict. It is only clear that Pcgw (0) = ¢o > 0.

Casey =10

The cubic equation degenerates to the quadratic

Alkcpw 2
— =2 | [HT]" +c[H"] +¢ 18
( [CC)%_} [ ] 1 [ } 0 (18)
The analysis in section 2.3 revealed that eq. (18) does not have any roots if Alkcpw — Alkpweing <

2—1 :¢ Alkcpw Alkcpw :
Z[CO3 ], i. e, if cot | < 2. We therefore assume that cot | > 2. Eq. 1; then has a negative

and a positive root (their product is equal to cy/cy, which is negative). The positive root can be
used as a starting value for the iterative solvers.

For v # 0, our initial value selection scheme revolves around the characteristics of the deriva-
tive of Pegw ([H]). If C% —3c1c3 < 0, the cubic does hence not present any local minimum and
maximum. We use the default H.

Case vy <0

For 7 # 0, our initial value selection scheme revolves around the characteristics of the derivative
of Pepw([H]). If ¢3 — 3cic3 < 0, the cubic does hence not present any local minimum and
maximum. We use the default H.

The case v < 0 is analogous to the Alkt & HCOj pair, except that the cubic is decreasing,
Vi—c

35 and a local maximum for

and that Pcgw(0) > 0. Pcgw has a local minimum for Hpyn, =

Hpax = — \/gc-;q‘ Since c3 < 0, we have Hpyin < Hmax. We have again to distinguish two cases:

1. If Pcpw (Hmax) > 0, we use the quadratic Taylor expansion of Pcpw in Hmax:
Qmax(H) = PCBW(HmaX) - \/Z(H - Hmax)z-

The greater of the two roots of Qmax is then chosen as Hy:

Pcpw (Hmax)

Hy Hmax + \/K .

2. If Pcpw(Hmax) < 0, then the positive root of Pcpw is necessarily lower than Hpn. In
this case, we use the quadratic Taylor expansion of Pcpw in Hpin, which would be writ-
ten Qumin(H) = Pepw (Hmin) + VA(H — Hpin)?. In order to avoid that the lower of the
two roots of this quadratic is negative, we modify it such that it still has its minimum in
(Hmin/ PCBW(Hmin))r but that Qmin (O) =c¢p > 0:

Pcgw (Hmin) —
HZ

min

Omin(H) = Pcpw (Hmin) — €0 (H — Hpin)*

The lower of the two roots of Qmin can then be used as Hy:

Pcpw (Hmin)
Pcpw (Hmin) — co

Hy = Hmin — Hmin\/
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Casey >0

The case v > 0 is slightly more tedious to treat than the previous cases. Here, we only have to
handle the case where two [H] solutions are required. The case where there are no roots is of
course trivial; the where there is one root has been solved as the tangent point at [H'] = Han is
the solution.

Since ¢3 > 0, Hmax < Hmin this time. The only geometrical setting of the cubic that crosses
the vertical axis at cyp > 0 and that allows for exactly two positive roots is the one where the local
minimum is located at a positive Hpin and where Pcpw (Hmin) < 0. Accordingly, if Hpin < 0 or
Pepw (Hmin) > 0, we adopt the respective default initial values for the two roots.

For the greater of the two roots, the quadratic expansion around the local minimum is used
and the greater of its two roots adopted:

_ Pcpw (Hmin)
VA

The lower of the two roots needs extra attention. There are in general two estimates possible:
the lower root of the quadratic expansion around the minimum or the greater of the roots of the
quadratic expansion at the local maximum. It should be noticed that the latter is greater than the
former and that the actual root of the cubic lies between the two. The inflection point located at
Hyg = - 3% provides a criterion to decide which one of the two to retain. Since Hmax < Hmin for
this case, we also have Hmax < Hig < Hmin. As we are interested in having Hy > 0, we have to
consider different cases depending on the sign of Hg.

HO = Hpin +

Let us start with the case where H;q > 0.

1. If Pcgw(Hin) > 0, the root searched for lies between Hijg and Hpin. To make sure the es-
timated Hp remains within this interval, we modify — similarly to what has been already
done twice before — the quadratic expansion at the minimum so that it passes through the
inflection point:

(Hin) — Pcaw (Hmin)
(Hi - I_Imin)2

~ P,
Qmin(H) = PCBW(Hm'm) + cBW (H - Hmin)z'

We then adopt the lower root of this Omin as Ho:

Pew (Hmin)

2. If Pcgw(Hig) < 0, the root searched for lies between Hpyax and H;g. To make sure the esti-
mated Hj remains within this interval, we modify the quadratic expansion at the maximum
so that it passes through the inflection point:

Pcpw (Hmax) — Pepw (Hifr)
(Hiﬂ - HmaX)2

Qmax(H) = PCBW(Hmax) - (H — Hmax)z.

We then adopt the greater root of this Qmax as Ho:

Pcpw (Hmax)
Pepw (Hmax) — Pepw (Hig)

If Hiy < 0, we use the quadratic expansion at the minimum and adapt it to make it go through
(O/ CO)/

HO = Hmax + (Hiﬂ - Hmax)\/

P CBW (Hmin) -
H2

min

~ C
Qmin(H) = PCBW(Hmin) - 0 (H - Hmin)zz

and use the lower root of that Qpmin:

Pcpw (Hmin)
Pcgw (Hmin) — €0

HO = Hmin - Hmin\/
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