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Abstract—The increase of photovoltaic panels and electric
vehicles in low-voltage distribution systems leads to over-voltage,
under-voltage, and congestion issues. These issues, related to
new installations, add a considerable cost to distribution sys-
tem operators, and therefore to customers. Distribution system
operators want to limit these costs by determining the impact
of photovoltaic panel production and electrical vehicle charging.
This paper presents a probabilistic method enabling operators
to evaluate the network capacity, defined as the number of
new installations that can be added to the network without
adapting it to overcome under- and over-voltage. The method
provides multiple probabilistic performance indicators reflecting
a large number of possible configurations resulting from new
installations added to the low-voltage network. The evaluation
of this method is done using a case study based on an existing
European network. The method provides tangible results as the
maximum number of photovoltaic installations or electric vehicle
chargers within a defined confidence level. Results, in the test
case, show that the capacity of the network is evaluated as a 45%
penetration rate for photovoltaic installations, or 4% for electric
vehicle chargers, with a 5% violation of operational indicators.

Index Terms—network capacity, EV, PV, capacity assessment,
low-voltage distribution network

NOTATION
Sets
T Set of observation period
N Set of nodes
E Set of edges
P Set of phases
An Set of new possible installations type for node n
Mk,n Set of installed types for node n in configuration k

Variables
Ze Impedance of edge e ∈ E
Sbn,p Initial base power injection of n ∈ N in p ∈ P
Sn Power injection of n ∈ N
Sk,n,m Power injection of installations of type m ∈M

at n ∈ N for configuration k
Vn Voltage of n ∈ N
V Over-voltage threshold
V Under-voltage threshold
Ie Edge current of e ∈ E
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I. INTRODUCTION

The European Union directives [1] - [2] encourage increas-
ing penetration rates for both Electric Vehicles (EVs) and
Photovoltaic (PV) installations. However, this has become a
concern for Distribution System Operators (DSOs). Indeed,
adding new installations of these types to the Low-Voltage
(LV) network leads to several issues such as over-voltages
or under-voltages. To prevent these issues, and to plan future
corrective actions, DSOs need to quantify the impact of such
installations on their LV networks by evaluating the potential
network capacity given likely future new installations in the
network. The problem that complicates this quantification is
that the decision to install these new devices is not made
by DSOs but by the customers themselves according to their
financial means and needs. For DSOs, this translates into
uncertainty in the type of added installations, their capacity,
and the order in which they will be connected to its network.
These uncertainties turn the network capacity assessment into
a complicated, but equally important problem.

One common method to evaluate this capacity is to check
if there exists a possibility of under- or over-voltage, with
a power flow for a given set of fixed installations. If it is
the case, DSOs consider this set of PV and EV installations
as unacceptable when trying to prevent network issues and
avoid customers complaints. This conclusion is, however, too
conservative with respect to what happens in practice. For
instance, when a PV installation produces and the PV inverter
detects an over-voltage, it temporarily disconnects the instal-
lation from the network. This action of the inverter prevents
any significant over-voltage from occurring in the network.
Therefore, checking the possibility of over-voltage for a fixed
set of installations is not an appropriate method to quantify the
network capacity. The real impact for customers and DSOs is
that energy not produced due to inverter curtailment resulting
from network issues. The same reasoning is applied to EVs
as when an under-voltage is detected, charging of EVs is
interrupted.

This paper extends the network capacity assessment by (i)
determining the number of new PV or EV installations that
can be added to the network; (ii) considering the uncertainty
related to the position of new installations; (iii) considering
time variance by using time-series and (iv) quantifying the978-1-7281-8071-7/21/$31.00 ©2021 IEEE



capacity in terms of energy. The energy quantifications are
stochastic functions of the set of installations obtained using
Probability Density Functions (PDF).

The rest of the paper is presented as follows. Related work
is presented in Section II. Section III formalises the network
capacity assessment problem. Section IV explains a stochastic
approach to solve this problem. Section V presents the results
obtained on a case study. Finally, Section VI concludes the
paper and presents some discussions

II. LITERATURE REVIEW

The hosting capacity assessment problem is a stochastic
problem as it involves uncertain parameters. These uncertain-
ties are categorized into aleatory and epistemic [3]. The former
refers to power consumption and injection that are unknown
variables. The epistemic uncertainties relate to the location or
size of future installations in the network.

Several researches, reviewed in [3] and [4], study the low-
voltage network capacity assessment problem. All reviewed
methods rely on power-flow analyses and can be divided
into three categories [3]: (i) time-invariant deterministic, (ii)
time-invariant stochastic, (iii) time-variant deterministic. Time-
invariant deterministic methods use one typical value for each
node as its injection or consumption representing the worst-
case scenario. Such consideration leads to a pessimistic assess-
ment that does not represent the real network operation un-
der time-variant production and consumption patterns. Time-
invariant deterministic methods discard aleatory uncertainties.
Time-invariant stochastic methods capture the stochastic na-
ture of the hosting capacity assessment problem by considering
both types of uncertainties. Epistemic uncertainties are only
included in some of the stochastic techniques. Deterministic
time-series capacity assessment methods ensure the correlation
between injections and consumptions are satisfied and entail
modelling aleatory uncertainties.

Paper [5] presents a method that addresses epistemic un-
certainties for the capacity assessment of EV and PV instal-
lations. Epistemic uncertainties are handled with Monte-Carlo
simulations, randomly selecting installation sites. To assess the
capacity of PV installation, the lowest consumption of the year
is taken as a reference consumption and the maximum total PV
production is selected for the installations. For EV assessment,
the highest consumption values and various nominal charging
powers are considered.

The difference in results between [5], [6] and [7] highlights
the importance of considering correlated injection/withdrawal
time-series. The authors of [7] conclude on the importance
of considering high-resolution time-series, but this can only
be done at the cost of a shorter study time window that
does not truly enable capturing and quantifying the impacts
of uncontrolled EV charging.

Most of the papers reviewed in [3] - [4] conclude that the
voltage issues are the most important to consider as they occur
before any other network issues. Indicators based on these
are privileged to quantify the hosting capacity limit. Several

papers reviewed in [4] consider certain technical enhancements
to increase this limit.

In the scientific papers reviewed, the capacity assessment
problem was not addressed with both time-variant and stochas-
tic methodology. This paper presents a methodology that uses
time-series to model the aleatory uncertainty and stochastic
capacity assessment to consider epistemic uncertainty.

III. PROBLEM STATEMENT

This study considers an unbalanced three-phase LV network.
The network topology is represented by a tree graph G =
(N , E) where N is the set of nodes in the network and E is
the set of edges linking these nodes. The line impedance of an
edge e ∈ E is denoted by Ze ∈ C3. The observation period T
of the network is the set of all consecutive time steps denoted t
and of length δt in hours. A variable x followed by a subscript
t, that is xt, refers to the value of x at time t while boldface
x refers to the entire time-series. The set P denotes the set of
phases. The initial base power injection time-series of phase
p ∈ P of node n ∈ N is denoted by Sbn,p ∈ C|T |.

A node n of the network can have a set An of new possible
installation types, e.g. photovoltaic panels (PV) or electric
vehicles (EV). A configuration k is generated by selecting,
for each node n, a set of installed types Mk,n ⊂ An and
their corresponding power injections Sk,n,m. The set of power
injections in node n is:

Sk,n = {Sk,n,m|m ∈Mk,n}. (1)

These power injections Sk,n,m ∈ C3|T | modify the power
injections of the nodes, such that:

Sk,n = Sbn +
∑

s∈Sk,n

s. (2)

For each configuration k, the power injections of new instal-
lations change the edge currents and the node voltages. The
updated voltages and currents can be obtained solving the
power flow equations G:

GG({Sk,n|n ∈ N}) = {Vk,n|n ∈ N}, {Ik,e|e ∈ E}. (3)

Each configuration of installations is evaluated using a set I
of indicators, such as the maximum power flowing through
the main substation transformer. These indicators are defined
in Section IV. Each indicator i ∈ I is calculated as a function
hi(V, I) : C|N ||T | × C|E||T | → R. The inputs of hi are the
voltages for each node in N over each time step in T and
currents over the same time period of each edge of E . DSO
can define a threshold rate hi over which the configuration is
not acceptable.

Defining these rates {hi|i ∈ I} enables one to determine
the number of installations the network can support. For a
fixed number of installations r to distribute on #N nodes,

#N !
(#N−r)!·r! combinations exists. The set of configurations Cr
contains all possible combinations with r installations. The
probability distribution over the configurations within Cr is
assumed to be uniform. Values of indicator i, obtained for this
set, are used as the support of a probability density function



fi,r : R → R+ defined from {hi(Vk, Ik)|k ∈ Cr}. The
network capacity, i.e. the number of installations r that can be
accommodated, depends on the risk that the DSO can tolerate.
Denoting this risk tolerance F i ∈ [0, 1], the tolerated number
of installations ri for an indicator i is such that:∫ +∞

hi

fi,ri(hi)dhi ≤ F i (4)

where the integral of the PDF of indicator i, from the maxi-
mum threshold rate hi to +∞, gives the probability of having
a configuration with hi over this threshold. The total capacity
of the network is defined as the minimum of ri values obtained
for a set I of indicators:

R = min{ri|i ∈ I}. (5)

R presents the number of installations that can be accom-
modated, for which none of the indicators exceeds the defined
thresholds hi, with a probability equal to or less than the DSO
risk tolerance F i.

IV. METHODOLOGY

This section presents the methodology used to assess the
network capacity as the number of new installations the
network can sustain. The methodology takes as inputs a graph
G and its impedances Ze ∀e ∈ E , initial base power injection
time-series Sbn,p ∀(n, p) ∈ N × P and sets An ∀n ∈ N
of new possible installation types that can be added to node
n. In addition to these inputs, the number of configurations
evaluated was limited to a number K ∈ R.

The algorithm, whose pseudo code can be found in Alg. 1,
iterates on the number of new installations r that is limited
by the total number of possible new installations. For each r,
K configurations are generated with r new installations and
for each of these installations the currents and voltages are
determined using a power flow. These currents and voltages
are used to compute indicators for each configuration. Line
6 computes the ratio of generated configurations that have
values for indicators higher than their accepted limit. These
ratios are the probabilities defined in Eq. (4) for a configuration
to have indicators exceeding their limit. The probabilities are
compared to the corresponding risk tolerance of their indicator
F i, the first indicator ratio to exceed its limit has the smallest
r and is set as the total capacity of the network R.

The Key Performance Indicators (KPI) are computed to
evaluate the impact of installations on the network. To a
given configuration k corresponds a set of indicators Hk =
{hi,k(Vk, Ik)|i ∈ I}. This study considers three indicators
{α, β, γ ∈ I}.

The power flowing through the transformer, α, is used as
an indicator to assess the total impact of installations on the
network.

hα,k = max
(p,t)∈P×T

|Sk,0,p,t| (6)

where 0 designates the main substation node of the network.
The remaining two indicators quantify the impact of curtail-

ing installations. Indeed, installations such as PV panels are

Require: K, GG(S), {An|n ∈ N}
1: r ← 0
2: while r <

∑
n∈N |An| do

3: K ← sample K configurations with r installations
4: {Vk, Ik|k ∈ K} ← {GG(Sk)|k ∈ K}
5: for each i ∈ I do
6: Fi,r ←

∑
k∈K:hi(Vk,Ik)>hi

1 / |K|
7: if Fi,r > F i then
8: R← r − 1
9: return R

10: end if
11: end for
12: end while
13: R←

∑
n∈N |An|

14: return R

Algorithm 1: Network capacity assessment algorithm.

temporarily disconnected from the network by the converter,
thus, not producing energy when an over-voltage occurs.
Simulating this behaviour and generalising it to all production
installations leads to an indicator of the energy that was not
produced by the installations when the node voltage exceeds
V. This indicator, referred to as energy spilled and denoted
as β, is defined as, for a configuration k:

hβ,k =
∑

(n,p,t)∈N×P×T :Vk,n,p,t>V

|Sk,n,p,t| · δt (7)

In other words, this indicator calculates the sum of the energy
spilled over the study interval, because of PVs disconnected
due to the over-voltage limit.

To avoid under-voltage on the network, EV could also be
disconnected using power electronic control. Therefore, an
indicator on the energy not served to be consumed is defined
as the corollary to the energy spilled for consumption. The
energy unserved, γ, quantifies the energy not consumed when
under-voltage occurs and is defined as:

hγ,c =
∑

n,p,t∈N×P×T :Vc,n,p,t<V

|Sc,n,p,t| · δt (8)

This indicator calculates the sum of the energy not served to
EVs over the study interval, due to the under-voltage limit.

V. CASE STUDY AND RESULTS

This section presents the results of the proposed method
applied to a case study based on an existing European LV
network. The network has 128 customers and 256 nodes. For
each penetration rate, the number of studied configurations, K,
is limited to 500. This parameter reduces the factorial growth
of the number of configurations depending on the number
of possible installation nodes available. The value of K is
set considering a trade-off between having a large number
to depict as many configurations as possible, and a small
enough value to be computationally feasible. The number of
new installations depends on the penetration rate and their
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Fig. 1: Reference PV production over a week for the network
case study.
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Fig. 2: Energy spilled by day over 500 configurations and 336
time steps with 85 installations.

positions are defined randomly for each configuration. For
each configuration, the power flow is performed over one week
with 30-minute time steps to enable KPI computation.

A. Capacity assessment for photovoltaic panels

The power time-series for PV panel production were ex-
tracted from ELIA [8]. The number of panels added when
adding an installation to a customer is set to 13. This number
corresponds to the number of panels needed to fulfil the av-
erage household energy consumption in Belgium as described
in [9]. The watt peak of the panels is the common watt peak
of Belgium panel production and is set at 290W [9]. The
reference power production over the studied week is shown
in Fig. 1. Figure 2 shows the energy spilled computed using
Eq. (7) and time aggregated by taking the mean over the
500 configurations considered for each time step. The peak
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(a) Potential energy production
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Fig. 3: Distributions, over 500 configurations of energy spilled
and potential energy consumption.

of energy spilled occurs around 11am and 1:30pm which
coincides with both the PV production peak resulting from
the sun cycle and lower consumption habits of households
during these hours.

Figures 3a and 3b show PDFs by penetration rates. The
maximum and minimum values of these are represented by
the lower and higher arrows respectively, the thick line in the
middle is the median, and in-between values are the different
percentiles. Figure 3a shows the potential energy production
by penetration rate. The potential energy production is the
sum of all added PV installations’ energy production. The
same reference PV panel and the same number of panels by
installation was used for each new installation, resulting in a
one-value PDF by penetration rate for potential energy produc-
tion. Figure 3b depicts the energy spilled PDFs approximations
by penetration rate. These approximations are based on the
randomly sampled configurations. The missing values between
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Fig. 4: Medium voltage substation maximum power distribu-
tion by PV penetration rate.
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Fig. 5: Daily probability distribution of EV charging for the
network case study.

the minimum and maximum of the distribution which comes
from the lack of configurations. For the maximum penetration
rate, where all customers add a PV installation, the energy
spilled represents 30% of the potential energy produced. If
the threshold of energy spilled hβ is set to 5%, a strict
pessimistic risk tolerance F β of 0 enables a 15% penetration
rate while a 0.5 value, represented by the median, enables a
45% penetration rate, as shown by the vertical line in Fig. 3b.

The maximum power flowing through the substation KPI
is computed using Eq. (6) and is shown in Figure 4. For
penetration rates above 40%, the maximum power passing
through the substation, hα, does not drastically change for
the same penetration rate. This leads to a nearly monotonous
tolerance risk. The maximum power capacity of the substation
is 250kVA, represented by the red line, the value with a zero
penetration rate represents 30% of it. Using the maximum va-
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Fig. 6: Energy unserved by day over 500 configurations and
336 time steps with 79 installations.
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(a) Potential energy consumption
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Fig. 7: Distributions, over 500 configurations, of energy un-
served and potential energy consumption.



lue as the KPI limit, the penetration rate is 64%. Following
(5), the total PV penetration rate for this case study network
is determined by the energy spilled.

B. Capacity assessment for electric vehicles

The EV charging time-series’ profiles were generated as-
suming a 40kWh battery capacity that is a common value
for available EVs, and the charging power was limited to
3.6kW; both values were derived from [10]. The EV charging
consumption time series are randomly generated using a
probability distribution shown in Fig. 5. This distribution was
modelled on drivers commuting regularly to work during peak
hours. Figure 6 depicts the energy unserved computed using
Eq. 8 for all the sampled configurations, and aggregated by
taking the mean of all configuration for each time step. The
energy unserved follows the EV charging probability.

The energy unserved distribution aggregated by the pene-
tration rate is shown in Figure 7b, while the potential energy
consumption distribution is shown in Fig. 7a. Figure 7b
shows that using distributions enables one to avoid worst-
case scenarios. For the maximum penetration rate, the energy
unserved represents more than 50%. If the threshold hγ is set
to 5% of energy unserved allowed, the worst-case scenario
F γ set to 0 would not even allow a 1% penetration rate. A
more optimist approach, with a risk tolerance of 0.5 as shown
by the median in the figure, allows a 4% penetration rate. As
the same conclusions can be drawn for the maximum power
flowing through the substation KPI for EV as for PV, i.e. the
energy unserved is more restrictive, the obtained PDFs for this
KPI are not presented for lack of space.

VI. CONCLUSION

This paper presents a new method to assess the network
capacity considering uncertainty on installation positions and
production/consumption time-series. Two types of installa-
tions are considered: PV and EV. The impact of adding
PV installations to a network is quantified by the energy
not produced due to the curtailment by the inverter when
detecting an over-voltage. For EVs, a symmetric reasoning
is applied; the capacity is defined as the unserved energy
due to under-voltage limit curtailment. The proposed method
is able to consider the uncertainties in installation location
and production/consumption time series, providing stochastic
results as a set of KPIs. Results obtained with a full-size
European-based test case show a 45% penetration rate for
photovoltaic installations or 4% for electric vehicle chargers,
with 5% tolerance for energy spilled and energy unserved
respectively and 0.5 risk tolerance. The method is applicable
on any distribution system, it has low data requirements, and
it provides tangible results which can be of help for DSOs in
their real-world practical cases.

This work can be extended along several lines. Improve-
ments should first be focused on optimizing the computation
time to enable considering both EV and PV installations
simultaneously and computing more granular network capac-
ity. Two options are possible to minimise this computation

time: decreasing the number of evaluated configurations or
the number of time steps simulated. The current number of
configurations could be reduced using more-complex scenario-
selection methods such as sampling techniques. Selecting a
subset of days representing most days of a year would sig-
nificantly decrease the number of time steps evaluated by the
method while providing an overview of the network capacity
on the entire year. Finally, another extension of this work
could be simultaneous capacity assessment for different types
of installations. However, this will increase the connection
possibilities, and hence the computation time.
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