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Abstract. This paper aims at evaluating the potential of the Discontinuous Galerkin (DG)
methodology for Large-Eddy Simulation (LES) of wind turbine airfoils. The DG method has
shown high accuracy, excellent scalability and capacity to handle unstructured meshes. It is
however not used in the wind energy sector yet. The present study aims at evaluating this
methodology on an application which is relevant for that sector and focuses on blade section
aerodynamics characterization. To be pertinent for large wind turbines, the simulations would
need to be at low Mach numbers (M ≤ 0.3) where compressible approaches are often limited and
at large Reynolds numbers (Re ≥ 106) where wall-resolved LES is still unaffordable. At these
high Re, a wall-modeled LES (WMLES) approach is thus required. In order to first validate
the LES methodology, before the WMLES approach, this study presents airfoil flow simulations
at low and high Reynolds numbers and compares the results to state-of-the-art models used
in industry, namely the panel method (XFOIL with boundary layer modeling) and Reynolds
Averaged Navier-Stokes (RANS). At low Reynolds number (Re = 6 × 104), involving laminar
boundary layer separation and transition in the detached shear layer, the Eppler 387 airfoil is
studied at two angles of attack. The LES results agree slightly better with the experimental
chordwise pressure distribution than both XFOIL and RANS results. At high Reynolds number
(Re = 1.64 × 106), the NACA4412 airfoil is studied close to stall condition. In this case,
although the wall model approach used for the WMLES is very basic and not supposed to
handle separation nor adverse pressure gradients, all three methods provide equivalent accuracy
on averaged quantities. The present work is hence considered as a strong step forward in the
use of LES at high Reynolds numbers.

1. Introduction
Wind turbine aeroelastic and wake tools use simplified aerodynamic models requiring airfoil
performance data. However, these data are difficult to obtain. When reliable wind tunnel
data are not available, the polar curves are obtained using codes based on panel method (e.g.
XFOIL) or Computational Fluid Dynamics (CFD). CFD tools use several turbulence modeling
approaches, ranging from Reynolds-Averaged Navier-Stokes (RANS) to Large-Eddy Simulation
(LES), passing through hybrid approaches such as Detached-Eddy Simulation (DES) or Wall-
Modeled LES (WMLES). The choice of the approach depends on the required accuracy weighted
with respect to computational cost, on the flow conditions or on the information needed (average
or unsteady fields). The panel (with boundary layer modeling) and RANS approaches, being
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computationally much cheaper, will remain the main design tools. DES/WMLES and LES
might however provide complementary results and provide more physical insights.

The Discontinuous Galerkin (DG) method has been shown to provide high order accuracy,
low dissipation and low dispersion on structured and unstructured meshes, by validation on
academic cases at coarse resolutions [1]. The method is highly scalable1 and is thus a good
candidate for performing LES of industrial applications [2].

As low Reynolds numbers (Re ≤ 105) are only relevant for small or test scale turbines,
simulations at Re ≥ 106 need to be performed. These high Reynolds numbers make wall-resolved
LES unaffordable and therefore impose the use of WMLES (or DES). Before validating the
WMLES approach, it is crucial to validate the LES approach on airfoil flows. The DG code used
in this paper has already been used to perform LES of the S826 airfoil at low Reynolds number
[3]. DG LES results were very close to LES perform with a Finite Volume code (EllipSys3D) but
had large discrepancies with the experiment. The discrepancies could be explained through the
formation of stall cells leading to important spanwise effects and interactions with the tunnel
walls, but they also motivated an evaluation of the DG LES on a low Reynolds airfoil which had
more documented and consolidated experimental data. The present study is hence presenting
LES of the E387 airfoil at Re = 6×104 and WMLES of the NACA4412 airfoil at Re = 1.64×106.

2. Methodologies
2.1. LES using Argo code
Argo, the DGM code used in this study, solves the compressible Navier-Stokes equations, using
an Implicit LES (ILES) approach, in which the subgrid scale dissipation is ensured by the
numerical scheme. Argo has already been successfully validated and assessed on DNS and ILES
of academic benchmarks such as the DNS of transition of the Taylor-Green vortex [1] and ILES
of homogeneous isotropic turbulence and channel flow [4, 5], thereby demonstrating an accuracy
similar to that of dedicated academic codes. The code has already been applied to DNS of
industrial benchmarks featuring transitional flow [6, 7].

At high Reynolds numbers, LES require too large computational resources due to the high
resolution needed for resolving the inner part of the boundary layer, which scales as Re1.9 [8].
At Re = 1 × 106 for example, 99% of the mesh points are required for the inner layer, a layer
which represents only ' 10− 15% of the boundary layer thickness [9]. To make LES affordable
at high Reynolds numbers, the inner layer needs to be modeled.

There are mainly two approaches to model the inner layer: hybrid RANS-LES, also frequently
referred to as DES, and the wall-stress method or WMLES. The hybrid method (DES),
introduced by Spalart et al [10], solves RANS equations in the inner layer and LES further
away from the boundary. While this method has been applied with considerable success, for
detached flows at high Reynolds numbers in particular, it is not well suited for DGM as the
RANS equations are relatively challenging to solve in a DGM configuration.

The wall-stress method solves LES equations on the entire domain. At the wall, the mesh is
too coarse to resolve the flow and a wall model is needed to provide the wall shear stress based
on data taken at a certain distance from the wall. Considered as the most simple and robust
approach from a practical point of view, the wall-stress approach was chosen for this study.
Different wall models exist, with different complexities and accuracy. The simplest models are
analytical relations based on the law-of-the-wall. For out of equilibrium flows, the most widely
used approach is the Two-Layer Model (TLM), proposed by Balaras et al [11]. TLM couples
LES in the free field to (a simplified versions of) the Turbulent Boundary Layer (TBL) equations
near the wall.

1 The code used in this paper provided good weak (mesh size grows with the number of processors) and strong
(same mesh partitioned on ever more processors) scaling up to 1.3 × 104 cores.
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In this study, a simple analytical relation is used, the Reichardt law of the wall

u+ = 1
κ ln (1 + κy+) +

(
C − 1

κ ln (κ)
)(

1− e−
y+

11 − y+

11 e
− y+

3

)
which provides the wall shear stress τw = ρu2τ based on the wall distance y+ = y uτ

ν and the flow
velocity u+ = u

uτ
(κ = 0.38 and C = 4.1).

Figure 1. Wall normalized velocity profiles for channel flow at Reτ = 5200 and 5× 105 (results
translated vertically for the sake of clarity). Comparison of the WMLES results (circles) to the
reference data: DNS (solid line) from [12] at Reτ = 5200 and logarithmic law of the wall (dashed
line) at Reτ = 5× 105 with κ = 0.38 and C = 4.1.

The developed WMLES approach has been tested on a turbulent channel flow. Figure 1
shows the time-averaged velocity profiles obtained with this method on the plane channel test
case for two different Reynolds numbers, Reτ = 5200 and Reτ = 5×104. Note that the Reynolds
numbers are here given in terms of the wall shear stress Reτ = h uτ/ν; based on the bulk velocity,
those would be around 2 × 105 and 3 × 106, respectively . The same mesh was used for both
cases, giving a first point located at y+ = 250 and y+ = 1800 respectively . At both Reynolds
numbers, the velocity profiles are well captured by the WMLES and they match well the DNS
results [12] and the theoretical logarithmic law.

2.2. State-of-the-art methods
Both ILES and WMLES results are compared to state-of-the-art methods, namely a panel
method and (U)RANS. The panel method computations are performed with XFOIL version 6.97
(with added boundary layer modeling) whereby the default settings are used except for the
parameter N of the eN transition model, parameter mimicking the environment turbulence
impact on the transition and which is taken as close as possible to the wind tunnel turbulence
level (Ncrit = 7 for the E387 airfoil and Ncrit = 6 for the NACA4412 airfoil). The RANS
computations are realized using the DTU in-house incompressible finite volume RANS flow
solver EllipSys2D [13, 14, 15]. In EllipSys2D, the convective terms are discretized using the
QUICK scheme, as given by [16]. The simulations are carried out using Menter’s k − ω SST
model described in [17], while the transitional simulations are, as for XFOIL, based on the eN

model as described in [18].
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2.3. Mesh configuration
The (WM)LES and (U)RANS codes have very different grid requirements. The DG code uses
unstructured coarse meshes with third order polynomial interpolation within each cell, while
EllipSys2D uses structured meshes and second order accurate reconstruction. Both approaches
used an O-type mesh for the boundary layer and with quadrangles in the boundary layer but
the (WM)LES meshes is unstructured in the far-field. The (WM)LES 3D meshes were obtained
by the extrusion in the spanwise direction of the unstructured mesh. To simulate averaged
spanwise homogeneity of the flow, the (WM)LES simulations impose spanwise periodicity on a
span corresponding to ≈ 10% of the chord.

3. LES of low Reynolds number airfoil
The Eppler 387 is a well documented airfoil which is representative of the low Reynolds flow
complexity as it presents a lift hysteresis at low angles of attack and a laminar separation
bubble (LSB) featuring laminar/turbulent transition in the detached shear layer. LES have
been performed at Re = 6 × 104 for two angles of attack, α = 4◦ and 8◦. Although RANS
were first considered for the code comparison, URANS with t∗ = tU̇/c = 5e−3 have been used
here as the RANS computations could not converge without increasing unreasonably the inflow
Turbulence Intensity (TI). The unsteady mode was likely needed in this case due to the burst
of the laminar separation bubble.

The ILES mesh leads to computations of 2.7M dof with ∆y+ ≤ 1.5 and ∆x+ = ∆z+ ≤ 20.
The RANS mesh has 384 cells in the chordwise direction and 192 cells in the normal direction
placing the outer boundary 45 chords away from the airfoil, generated by the HypGrid2D code
[19]. The cell spacing in the normal direction has ∆y/c ≈ 1.5× 10−6 ensuring y+ ≤ 1.

The computational results (XFOIL, URANS and ILES) are compared to each other and to
the extensive experimental data performed by McGhee et al [20] in the NASA Low Turbulence
Pressure Tunnel. Their work provides force coefficient, chordwise pressure distribution and oil
flow visualization for varying angles of attack (α), Re and inflow turbulence intensities. For the
lift and drag curves, shown in Figure 2, the computations are also compared to experiments from
Delft ([21]), Princeton ([22]) and Stuttgart ([23]). Please note that, as the Stuttgart original
data were not available, summarized data in McGhee et al [20] were used.

Figure 2. E387 comparison of computational lift and drag (XFOIL: green (solid for Ncrit =
7,dashed for Ncrit = 9), URANS: blue (solid for Ncrit = 7,dashed for Ncrit = 9) and ILES: red)
to experiment from different wind tunnels: LTPT (black circles), Delft (up triangles), Princeton
(stars), and Stuttgart (down triangles).
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As XFOIL and URANS are much cheaper than LES, the full range of angles of attack
are provided. The spread in the results from the different tunnels illustrate the difficulty to
obtain reliable data for low Reynolds airfoils and especially for angles of attack close to the
hysteresis. This is mainly due to the high sensitivity of the laminar separation bubble to the
wind tunnel turbulence level. McGhee et al [20] observed a strong effect with respect to
the TI for α ≤ 7◦ leading to two very different performances and flow regimes: the laminar
separation with and without (turbulent/transitional) reattachment. This high sensitivity is
seen in the lift curve where three different performances are observed at α = 4◦. To evaluate
the impact of the turbulence intensity XFOIL and URANS have been run at two different
turbulence levels, with Ncrit = 7 corresponding to TI = 0.16% as observed experimentally and
with Ncrit = 9 corresponding to TI = 0.07%, i.e. almost no inflow turbulence as considered
for the LES simulations. The TI effect could not be evaluated with the LES approach as its
resolution would have increased drastically the computational cost. Both XFOIL and URANS
show clearly the impact of the TI for α = 4◦, case for which the comparison of the codes will
therefore be complex. The three computational approaches provide lift coefficients very similar
to those of McGhee et al [20] but XFOIL and LES seem to be better capturing the drag,
URANS overestimating it.

The experiment showed in both cases a laminar separation followed by a laminar/turbulent
transition in the shear layer and a reattachment, and that an increase in angle of attack moves
the reattachment point upstream, while displacing only slightly the separation point, thereby
reducing the extent of the LSB [20]. Figure 3 presents instantaneous friction and velocity fields
obtained with LES; the computations can be seen to reproduce this behavior. Note that the
flow remains laminar for a long distance along the airfoil and that the DG approach is hence
actually performing DNS.

Figure 3. E387 LES separation: instantaneous x-aligned negative component of the friction
(left, from black, fully detached to white, attached flow) and instantaneous velocity norm ‖u‖
in one plane (right, dark corresponds to high values) at α = 4◦ (top) and α = 8◦ (bottom).

To determine the LSB and reattachment locations precisely, averaged chordwise pressure
and skin friction distributions are presented on Figures 4 and 5. The LES results have been
averaged over three flow passage times as well as along the span. At α = 4◦, the two different flow
configurations observed in the experiment are presented with a lower performance at TI = 0.20%
than at TI = 0.16%. The URANS results are close to the lower performance case (TI = 0.20%)
and this even when changing the Ncrit of the transition model. The LES results are very well
matching the higher performance case as expected as it is the case with the lower TI. XFOIL
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Figure 4. Comparison of the chordwise pressure coefficient (left) and friction coefficient (right)
obtained at α = 4◦ and Re = 6 × 104 with XFOIL (solid Ncrit = 7 and dotted Ncrit = 9 green
curves), URANS (solid Ncrit = 7 and dotted Ncrit = 9 blue curves) and LES (red curves) to the
experimental results (black TI = 0.16% and white TI = 0.20% circles) from [24]. Vertical solid
and dashed lines present respectively the separation and reattachment locations.

Figure 5. Comparison of the chordwise pressure coefficient (left) and friction coefficient (right)
obtained at α = 8◦ and Re = 6 × 104 with XFOIL (solid Ncrit = 7 and dotted Ncrit = 9 green
curves), URANS (solid Ncrit = 7 and dotted Ncrit = 9 blue curves) and LES (red curves) to the
experimental results (black TI = 0.16% and white TI = 0.20% circles) from [24]. Vertical solid
and dashed lines present respectively the separation and reattachment locations.

results are overestimating the performance, even compared to the experiment with the highest
performance (TI = 0.16%). Contrarily to the URANS results, an effect of the Ncrit parameter
is observed on the XFOIL results with an increase in performance for reduced TI, as observed
experimentally. At α = 8◦, no turbulence effect is observed anymore and the LES results are
the closest to the experiment.

On the pressure curve the laminar part of the LSB is identified by the pressure plateau. The
sign changes of the skin friction are used to locate the flow separation and reattachment points
listed in Table 1. The experimental data, obtained at a slightly higher Reynolds number, are also
given for comparison as there were almost no Reynolds number effect observed experimentally
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Re TI α = 4◦ α = 8◦

Separation Reattachment Separation Reattachment
XFOIL 6× 104 0.16% 0.40 0.78 0.27 0.42

0.07% 0.36 0.95 0.16 0.48
URANS 6× 104 0.07%− 0.16% 0.34 0.66 0.11 0.36

LES 6× 104 0.00% 0.37 0.69 0.21 0.43
exp. 1× 105 0.16% 0.35 0.73 0.29 0.47

Table 1. Comparison of the computational and experimental separation and reattachment
locations at α = 4 and 8◦ for different inflow turbulence intensities.

regarding separation and reattachment locations [24].
From these results, it seems that the difference between the computational results could

be due to a better capture of the LSB by LES. However, due to the high sensitivity of the
experiments and reference models to the TI, no strong conclusion should be taken regarding the
small mismatch on the pressure distribution of the state-of-the-art tools. This evaluation on a
low Reynolds number airfoil is however very positive for the DG methodology .

4. WMLES of high Reynolds number airfoil
The NACA4412 airfoil has been chosen as it is a well documented test case frequently used in code
comparisons and as it has been recently used for testing WMLES approaches [25, 26]. Even if the
main benchmark on this airfoil (NASA 2DN44 benchmark) is at Re = 1.52×106 and α = 13.87◦,
based on the Coles and Wadcock experiment from 1979 [27], the current simulations are using
a later experiment performed by Wadcock in 1987 [28], which is considered as less impacted by
the strong tunnel effects observed in the 1979 experiment. This experiment provides results at
Re = 1.64× 106 and α = 12.0◦.

At this condition, the flow presents a small laminar region, a laminar/turbulent transition
and separates close to the trailing-edge, at ' 85% of the chord [28]. As the wall model used here
is based on the Reichardt law which assumes a turbulent flow in equilibrium, the laminar region,
the transition and the separation will a priori not be captured adequately by the model. It is
interesting however to evaluate the performance of the cheapest computational model before
testing more complex models.

Figure 6. Instantaneous velocity field obtained at α = 12◦ and Re = 1.64× 106 with WMLES.

Figure 6 presents an instantaneous velocity field in one plane together with the mesh for the
WMLES computation. The mesh methodology is equivalent to the one used for the E387 but
whereas the RANS mesh has been refined to keep y+ ' 2, the WMLES mesh has been kept
almost identical to the one at Re = 6 × 104, leading to 8.4M dof with ∆y+ ' 100, ∆x+ and
∆z+ ' 200 and third order accurate resolution (p = 2) in the wall-adjacent cell and fourth
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order accurate resolution (p = 3) in the rest of the domain as suggested by previous WMLES
experience [29]. This mesh is too coarse to represent the inner layer and needs a wall model.
According to the requirements detailed in a recent review on WMLES [30], this mesh is even
too coarse for correctly resolving the outer layer and performing WMLES at some locations.
This is due to the fact that the boundary layer grows by a factor of 1000 along the chord,
leading to too coarse mesh close to the leading-edge (laminar region) and too fine mesh close to
the trailing-edge compared to the WMLES guidelines. The result obtained with this mesh and
basic model have thus to be considered as a first step in understanding wall model potential for
performing high Reynolds number LES of airfoil flows.

Figure 7. NACA4412: comparison of computational lift and drag (XFOIL: green, RANS: blue
and WMLES: red circle) to Wadcock [28] experiment (black circles).

As for the E387, the WMLES results presented here have been averaged in span and in
time over three flow passage times. Figure 7 compares the lift and drag coefficients obtained
numerically to the experiment by Wadcock [28]. As the panel and RANS computations, also the
WMLES results overestimate the lift. The three modeling tools provide similar lift and WMLES
provide a slightly better prediction of the drag. To be able to quantify the quality of this result,
LES with the same mesh but with no-slip wall conditions on the airfoil surface, hence coarse
LES, have been performed. The case with no-slip condition did not converge, likely due to the
too coarse mesh, not able to capture the gradients. This shows that, although not perfect, the
wall model indeed helps in improving the lift and drag estimate.

Figure 8 provides the chordwise pressure distribution obtained with XFOIL, RANS and
WMLES compared to the experimental results. The main behavior is captured by XFOIL,
RANS and WMLES but they underestimate the suction in the last 20% of the chord; this is
likely due to the fact that they do not capture the trailing-edge separation observed in the
experiment. To evaluate the capture of the trailing-edge separation, Figure 8 provides as well
the chordwise friction distribution obtained with XFOIL, RANS and WMLES. It appears that
XFOIL and RANS predict well the separation location observed by Wadcock [28] at 85% but
not WMLES, for which the flow stays fully attached.

To compare the way the codes predict separation, Figure 9 compares the obtained
experimental and computational velocity profiles. The extensive database from Wadcock [28]
contains the velocity and fluctuations profiles in the three directions on three locations on the
airfoil suction side and two locations in the wake. In this paper, as a first evaluation, only the
main average velocity component will be compared. For the three locations on the airfoil, this
is the tangential velocity, whereas for the two wake cases, it is the velocity parallel to the wind
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Figure 8. NACA4412: comparison of the chordwise pressure coefficient (left) and friction
coefficient (right) obtained at α = 12◦ and Re = 1.64× 106 with XFOIL (green), RANS (blue)
and WMLES (red) to the experimental results (black circles) from Wadcock [28]. The vertical
black dashed line represents the separation observed in the experiment [28].

tunnel wall surface as presented on Figure 9.

1
2 3

4
5

Figure 9. Left: schematic of the measurement slices with from left to right, slices perpendicular
to the airfoil suction surface at x/c = 0.529, 0.815, 0.952 and to the wind tunnel bottom wall
at xt/c = 0.007, 0.282. Right: comparison of the mean tangential velocity profiles obtained on
these slices with RANS (blue), WMLES (red) and Wadcock [28] experiment (black circles).

It would seem from this comparison that RANS is better capturing the trailing-edge
separation than WMLES, which slightly underestimates the deceleration of the flow due to
the adverse pressure gradient. This was however expected as the wall model used here does not
take the pressure gradient into account. Therefore it is believed that the use of a more elaborate
wall model would significantly improve the results.
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5. Conclusions and perspectives
Although the DG methodology has shown high accuracy and scalability, it is not used yet
in the wind energy sector. In this study, the DG methodology is used to characterize airfoil
aerodynamics. At low Reynolds number (Re = 6 × 104), LES of the Eppler 387 airfoil at
α = 4o and α = 8o are in very good agreement with the experiment, slightly better capturing
the pressure distribution than the state-of-the-art tools (RANS and XFOIL). At high Reynolds
number (Re = 1.64 × 106), the WMLES approach is tested on the NACA4412 airfoil. At
this high Reynolds number, the three methods provide equivalent results. In view of the high
computational difference between the methods (few seconds (XFOIL), ≈ 10 minutes on 10 CPU
((U)RANS), ≈ 2 days on 500 CPU (WMLES)), the WMLES approach presented here has no
added-value yet compared to the state-of-the-art tools. But, although the wall stress model
is so far very basic, i.e. not supposed to handle separation nor adverse pressure gradient, the
present WMLES already provides quite acceptable results. The present study hence constitutes
a confidence-inspiring step in our effort towards the use of LES at high Reynolds number.

It is expected that more advanced wall model will be required to improve the results. The
Two-Layer Model [11] has provided good results on multiple test cases including a backward
facing step [31], a trailing-edge [32] and an airfoil near stall [33]. Adding this approach to the
presented WMLES would likely permit to improve strongly the results. This feature is currently
being implemented and tested.
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