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ABSTRACT 

Design of lattice towers from hot-rolled equal leg steel angles 

Angles profiles have been used since the very beginning of steel construction due to their easy 

transportation and on-site erection. However, they exhibit specific features that clearly 

distinguish them from other types of common sections, what inevitably leads to the need for 

the development of specific design provisions. In a first step, existing European specifications 

on hot-rolled equal angle sections were critically reviewed and then, in a second step, extensive 

experimental, analytical and numerical studies have been conducted to propose a complete and 

duly validated set of design rules covering all aspects of design for angles. These rules include 

cross section classification, cross section resistance for all types of loading as well as rules for 

member design to individual and combined internal normal forces and moments. All the 

proposed rules are written in Eurocode 3 format to allow a direct possible inclusion in 

forthcoming drafts.  

Furthermore, angle profiles are extensively used in lattice towers and masts for 

telecommunication purposes or electric power transmission. Such types of towers are mainly 

designed according to EN 1993-3-1 and EN 50341-1, based on a first-order linear elastic 

structural analysis of a truss structure. An assessment of the current design approach is 

performed, where the tower has been simulated with a full non-linear finite element software, 

considering relevant imperfections as well as geometrical and material non-linearities. The 

importance of the second order effects in the analysis is underlined while the existence of an 

instability mode not properly covered directly by the norms, and usually therefore not checked, 

is highlighted. Two analytical models for the prediction of the critical load of the new buckling 

mode are proposed and validated numerically. Both proposed models are rather easy to apply 

and may fill the gap in the existing design recommendations for lattice towers. 

 

RÉSUMÉ 

Conception de tours en treillis à partir de cornières en acier à semelles égales laminées à 

chaud 

Les profilés de type « cornière » sont utilisés depuis le début de la construction métallique en 

raison de leur facilité de transport et de montage sur site. Cependant, ils présentent des 

caractéristiques spécifiques qui les distinguent clairement des autres types de sections 

courantes, ce qui conduit inévitablement à la nécessité de développer des règles de 

dimensionnement spécifiques. Dans un premier temps, les spécifications européennes 

existantes pour le dimensionnement de cornières laminées à chaud à semelles égales ont fait 

l’objet d’une analyse critique. Ensuite, dans un second temps, des études expérimentales, 

analytiques et numériques approfondies ont été menées afin de proposer un ensemble complet 

et dûment validé de règles de dimensionnement pour la vérification de cornières. Ces règles 

comprennent la classification des sections transversales, le calcul de la résistance des sections 

transversales pour tous types de sollicitation ainsi que les règles de dimensionnement pour les 

membrures sous effort axial et/ou moment de flexion. Toutes les règles proposées sont écrites 

au format de l’Eurocode 3 afin de permettre, si souhaité, une insertion directe de celles-ci dans 

les versions à venir.  



 

 

  

 

De plus, les cornières sont largement utilisées dans les tours et les mâts en treillis destinés aux 

télécommunications ou au transport d'énergie électrique. Ces tours sont principalement 

dimensionnées selon les normes EN 1993-3-1 et EN 50341-1, sur la base d'une analyse 

structurale élastique linéaire du premier ordre d'une structure en treillis. Une évaluation de 

l'approche de dimensionnement actuelle est effectuée via la simulation d’une tour avec un 

logiciel aux éléments finis non linéaires complets, en tenant compte des imperfections ainsi que 

des non-linéarités géométriques et matérielles. L'importance des effets du second ordre dans 

l'analyse est soulignée, tandis que l'existence d'un mode d'instabilité qui n'est pas couvert 

directement par les normes, et qui n'est donc généralement pas vérifié, est mise en évidence. 

Deux modèles analytiques pour la prédiction de la charge critique du nouveau mode 

d’instabilité sont proposés et validés numériquement. Les deux modèles proposés sont assez 

faciles à appliquer et peuvent combler une lacune dans les recommandations de 

dimensionnement existantes pour les tours en treillis. 

 

ΠΕΡΙΛΗΨΗ 

Σχεδιασμός δικτυωτών πύργων από ελατά ισοσκελή χαλύβδινα γωνιακά 

Τα προφίλ γωνιακών διατομών χρησιμοποιούνται από τα πρώτα χρόνια των χαλύβδινων 

κατασκευών λόγω της εύκολης μεταφοράς τους και της επί τόπου συναρμολόγησής τους. 

Ωστόσο, παρουσιάζουν συγκεκριμένα χαρακτηριστικά που τα διαφοροποιούν από τους άλλους 

τύπους κοινών διατομών, γεγονός που οδηγεί αναπόφευκτα στην ανάγκη ανάπτυξης ειδικών 

κανόνων σχεδιασμού. Σε πρώτη φάση ελέγχθηκαν και αξιολογήθηκαν οι υφιστάμενες 

ευρωπαϊκές διατάξεις για τα ισοσκελή γωνιακά θερμής έλασης, και στη συνέχεια, διεξήχθησαν 

εκτεταμένες πειραματικές, αναλυτικές και αριθμητικές μελέτες ώστε να προταθεί ένα 

ολοκληρωμένο και πλήρως επικυρωμένο σύνολο κανόνων σχεδιασμού που να καλύπτει όλες 

τις πτυχές του σχεδιασμού των γωνιακών. Οι κανόνες αυτοί περιλαμβάνουν την ταξινόμηση 

της διατομής, την αντοχή της διατομής για όλους τους τύπους φόρτισης, καθώς και κανόνες 

για το σχεδιασμό μελών υπό μεμονωμένες ή και συνδυασμένες εσωτερικές αξονικές δυνάμεις 

και ροπές. Όλοι οι προτεινόμενοι κανόνες είναι γραμμένοι υπό την μορφή των διατάξεων του 

Ευρωκώδικα 3, ώστε να είναι δυνατή η άμεση ενσωμάτωσή τους στην επερχόμενη έκδοση.  

Επιπλέον, τα γωνιακά προφίλ χρησιμοποιούνται ευρέως σε δικτυωτούς πύργους και ιστούς για 

τηλεπικοινωνιακούς σκοπούς ή για τη μεταφορά ηλεκτρικής ενέργειας. Τέτοιοι τύποι πύργων 

σχεδιάζονται κυρίως σύμφωνα με τα πρότυπα EN 1993-3-1 και EN 50341-1, βάσει μιας 

γραμμικής ελαστικής ανάλυσης πρώτης τάξεως όπου η κατασκευή προσομοιώνεται ως ένα 

δικτύωμα. Στην παρούσα εργασία πραγματοποιείται αξιολόγηση της τρέχουσας προσέγγισης 

σχεδιασμού, όπου ο πύργος προσομοιώνεται με ένα λογισμικό μη γραμμικών πεπερασμένων 

στοιχείων, λαμβάνοντας υπόψη τις αρχικές ατέλειες στην κατασκευή καθώς και τις μη 

γραμμικότητες του υλικού και της γεωμετρίας. Υπογραμμίζεται η σημασία των φαινομένων 

δευτέρας τάξεως στην ανάλυση, ενώ επισημαίνεται η ύπαρξη μιας μορφής αστάθειας που δεν 

καλύπτεται άμεσα από τους κανονισμούς και ως εκ τούτου, συνήθως δεν ελέγχεται. Στην 

συνέχεια, δύο αναλυτικά μοντέλα για την πρόβλεψη του κρίσιμου φορτίου του νέου τρόπου 

λυγισμού προτείνονται και επικυρώνονται αριθμητικά. Και τα δύο προτεινόμενα μοντέλα είναι 

εύκολα στην εφαρμογή τους και μπορούν να καλύψουν το κενό στις υπάρχουσες συστάσεις 

σχεδιασμού για δικτυωτούς πύργους. 
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1. INTRODUCTION  

Lattice towers are extensively built in Europe and worldwide to serve telecommunication or power 

transmission purposes. Such towers are often installed in mountainous terrains with very limited 

access to heavy vehicles. Consequently, a lattice tower structural system, which may be transported 

and erected by light machinery and equipment, is almost the only possible solution. The in situ 

modular construction of the tower is simplified using bolted connections and gusset plates. On the 

other hand, lattice towers need more ground space compared to cylindrical, octagonal or similar 

shell-type systems. However, ground space is plentifully available in remote places outside the 

densely populated regions for most of the European countries. Therefore, lattice towers are rendered 

as the main structural system for telecommunication and power transmission. The main typologies 

of the transmission towers are reported in chapter 8. 

The members of such towers are frequently composed of equal leg angle sections; their easy 

production and transportation, together with an excellent connectivity discern them from other 

profiles. They are available as hot-rolled or cold-formed profiles, as equal or unequal sections 

depending on the relative length of their legs, in steel grades up to S460, in sizes ranging from small 

to large, 20 to 300 mm. They are employed either as single or as built-up sections in a back-to-back 

or star battened configuration. The preferred bolted connection of one leg to gusset plates leads to a 

most advantageous application as truss or diaphragm members in buildings, bridges or any other 

structural application and, as already said, steel towers and masts. Appropriate long life corrosion 

protection is additionally ensured since all angle sizes are fully amenable to hot dip galvanizing in 

contrast to several other types of open or closed sections. 

However, angles, and especially equal angle profiles considered here, exhibit some properties that 

clearly distinguish them from other common steel profiles: (i) they are open profiles with very small 

section constants in both torsion and warping, (ii) they are monosymmetrical sections, (iii) their 

bending capacity and radius of gyration around the weak axis are substantially lower than around 

strong axis, (iv) their legs are prone to local buckling as external plate elements, (v) their plastic 

resistances are substantially higher than their elastic ones and (vi) due to the eccentric connection in 

one leg, they are subjected to some bending in addition to axial force when used as single members. 

The particularities of the angle sections in comparison with the doubly symmetric well-known ones 

in terms of elastic instability are presented in chapter 3. 

These features explain that existing design rules for other types of sections, mostly doubly symmetric 

ones, cannot safely cover angles, what inevitably leads to the need for the development of specific 

design provisions for angle sections. Facing the lack of unified consistent rules for angles, European 

specifications have adopted a case-by-case approach, embedding individual rules and 

recommendations in various parts of Eurocode 3. More specifically, EN 1993-1-1 [1] provides rules 

for cross-section classification (classes 1 to 4) and general design recommendations for the 

verification of the stability in compression. EN 1993-3-1 [2] presents specific rules for the buckling 

resistance of angle members used in towers, when connected eccentrically with bolts in one leg. EN 

1993-1-8 [3] contains rules for resistance to tension for the above-mentioned connection 

configuration, while EN 1993-1-5 [4] gives rules for buckling resistance of class-4 angle sections 

prone to local buckling. Another European specification, the CENELEC standard EN 50341-1 [5] 

provides specific rules for lattice towers used in the field of overhead electrical lines, addressing 

specific problems linked to such applications; but it also provides specific rules for the verification 
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of the lattice tower and its constituting parts. But for some aspects, the EN 50341-1 design methods 

for angle sections may diverge from the rules provided in the Eurocodes. Moreover, EN 50341-1 

allows design of lattice towers by full scale testing. However, it draws design conclusions from a 

single test comparing the ultimate load achieved in the test with the corresponding one from 

calculations, neglecting the fact that the results of an individual test are influenced by potential 

material overstrength, strain hardening or other parameters, the values of which are associated with 

statistical uncertainties Consequently, it does not touch reliability issues as it is done in the structural 

Eurocodes, in accordance with EN 1990 [6]. In contrast to the European Codes, American Codes 

have written down in a single document, AISC 2000 [7], all rules concerning angle design. 

Extensive numerical and experimental research has been carried out to study the behaviour of angle 

sections. It covers hot-rolled and cold-formed profiles, equal and unequal sections, beams or columns 

subjected to various types of loading, as well as different connection conditions. Vayas et al. [8]  give 

the inelastic capacity of angle sections to combined axial forces and biaxial bending. Trahair [9] 

examines angle section beams to uniform eccentric transverse loading and gives the section capacity 

to combined shear, bending and torsion. Schillo et al. [10] examine the buckling resistance rules of 

rolled angles to European standards discussed before, compare them to test results and numerical 

investigations considering various types of initial imperfections. Kettler et al. [11] highlight the 

importance of the end support conditions in their numerical study of rolled angles loaded in 

compression through bolted connections in one leg and comparisons with experimental results and 

provisions of European standards. Hussain et al. [12] provide an interaction equation in the plastic 

range for the stability design of angles subjected to compression and biaxial bending. Compression 

tests on large angle sections ranging from L125x125x8 to L200x200x14 in high strength steel S420 

were conducted in Tsinghua University at Beijing [13]. The tests were carried out on axially loaded 

pin-ended columns in order to define global-local buckling interactions since cross-sections were 

class-4 ones. Tests on L70x70x7 profiles were performed at NTUA in Athens [14], where the effects 

of eccentric loading were studied. Compression tests on L80x80x8 and L120x120x12 profiles were 

carried out at TU Graz [11] in which the boundary conditions were varying from clamped supports 

to supports allowing in-plane or in- and out-of-plane rotation. Tests series on L50x50x5 profiles were 

carried out at the Technical University of Braunschweig [15] with various specimen lengths and end 

support conditions, while the load was introduced eccentrically through one bolt M12 in one leg.  

In the perspective of the thesis and in order to extend the knowledge for the stability behaviour of 

steel columns from high strength steel (S460M) angle cross-sections subjected to compression and 

bending, twelve buckling tests on such columns have been performed at Liège University and 

presented in chapter 6. Furthermore, existing European specifications on rolled equal angle sections 

were reviewed, extensive experimental, analytical and numerical studies have been conducted and a 

complete set of design rules covering all aspects of design has been developed and duly validated. 

They include cross section classification (chapter 4), cross section design for all ranges of response, 

plastic, elastic-plastic or elastic including local buckling (chapter 5), as well as corresponding rules 

for member design to individual and combined internal forces and moments (chapter 7). Details for 

the geometrical properties of angles are given in chapter 12 (Annex A), while the notations and 

symbols that are used in the whole document, are summarized in chapter 2. 

Concerning the structural analysis, in the above-mentioned normative documents, the tower is 

modelled as a simple truss structure where all the steel element connections are considered as hinged. 

Such models do not adequately reflect the actual structural behaviour of the tower, as loads and 
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especially wind ones are directly imposed on the entire member length and introduce bending 

moments in members. Furthermore, the design of lattice towers is usually carried out through a first 

order linear elastic analysis, neglecting the significant second order effects developing in these 

structures. It is therefore inconsistent, and sometimes not safe, to perform member design by 

neglecting moments due to both local and overall loading, as well as the second order effects, as it is 

usually done in practice. A critical assessment of the current design approach is performed in chapter 

9, where the tower is simulated with the full non-linear finite element software named FINELG using 

beam elements, considering relevant imperfections as well as geometrical and material non-

linearities. In these simulations, every single member has been properly modelled, in terms of 

orientation and eccentricities at its extremities. The importance of considering the second order 

effects in the analysis is underlined. The selected software has been firstly validated through  

comparisons to full-scale tests available in the literature, as presented in chapter 13 (Annex B). 

A lot of research has been performed through years on the modelling and the design of  lattice towers. 

Albermani et al. [16] have studied the structural behaviour of the transmission towers through full 

non-linear analysis and compared them with full scale tests. The influence of the selected element 

(truss or beam) in the final response of the tower have been reported also by Silva et al. [17]. Jiang 

et al. [18] investigated the modelling of the bolted connections and validate their response through 

available tests from the literature, while Kitiponchai et al. [19] examined the effect of bolt slippage 

on the ultimate behaviour of lattice structures. Finally, a collection and critical review of full-scale 

tests on lattice towers as well as practical advice for conducting future tests are reported in Ref. [20]. 

However, the existence of an instability mode not properly covered by the European normative 

documents is highlighted in the framework of the thesis. Therefore, two analytical models for the 

prediction of the critical load of the new buckling mode are proposed in chapter 10, followed by their 

numerical validation through FEM simulations. Comparisons with the existing normative predictions 

are presented too. 

Finally, chapter 11 presents the general conclusions as well as the perspectives of the thesis for future 

research. 
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2. NOTATIONS, SYMBOLS AND ABBREVIATIONS 

The notations, symbols and abbreviations that used hereafter in this document are defined below; 

they mainly follow those given in EN 1993-1-1. Figure 2.1 illustrates these notations for the 

geometrical properties, the geometrical axes as well as the principal axes. 

 

Figure 2.1: Notations for geometrical properties and axes  

2.1 Conventions for member axes 

For angle sections, the axes are defined as follows: 

• x-x – axis along the member 

• y-y – geometric axis of the cross-section parallel to the leg 

• z-z – geometric axis of the cross-section parallel to the leg 

• u-u – major/strong principal axis (associated to weak axis displacement) 

• v-v – minor/weak principal axis (associated to strong axis displacement) 

2.2 Symbols 

2.2.1 Latin upper-case symbols 

A  cross-sectional area  

Aeff  effective area of a cross-section 

AG  normal area of a cable of a lattice tower 

Aref  reference area normal to the face of a bar/beam 

C  shear centre of the cross-section 

CT  torsion constant  

Cu, Cv  equivalent uniform moment factors  

Cw  warping constant 

E  Young’s modulus of elasticity 

Fc(z)  mean wind load in wind’s direction on a cable of a lattice tower at height z 

Fm,W(z) mean wind load in wind’s direction on a segment of a lattice tower at height z 

G  centre of gravity of the cross-section and shear modulus 

Iu, Iv  moment of inertia about u-u axis and v-v axis, respectively 

Iv(z)  turbulence intensity at height z 
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Iy, Iz  moment of inertia about y-y geometrical axis and z-z geometrical axis, respectively 

L  length of the member 

Lcrit  buckling length of the member 

Mcr   elastic critical bending moment based on the gross cross-sectional properties 

Mel,u , Mel,v elastic resistance to bending of the gross cross-section about u-u and v-v axis, 

respectively 

Mpl,u , Mpl,v plastic resistance to bending of the gross cross-section about u-u and v-v axis, 

respectively 

MT  tortional moment 

Mu,Ed , Mv,Ed is the bending moment about u-u and v-v axis respectively 

Mult,u , Mult,v ultimate test resistance to bending of the cross-section about u-u and v-v axis, 

respectively 

Mu,Rd , Mv,Rd design value of the resistance to bending moment about u-u and v-v axis respectively 

Mu,Rk , Mv,Rk characteristic value of the resistance to bending moment about u-u and v-v axis 

respectively 

Nbu,Rd  design value of the buckling resistance of a member in compression about u-u axis 

Nbv,Rd  design value of the buckling resistance of a member in compression about v-v axis 

Ncr   elastic critical axial force for the relevant buckling mode based on the gross cross-

sectional properties 

Ncr,FT elastic critical axial force for flexural-torsional buckling 

Nc,Rd  design value of the resistance to uniform compression axial force of the cross-section 

Nc,Rk  characteristic value of the resistance to compression axial force 

Ncr,T elastic critical axial force for torsional buckling 

Ncr,u, Ncr,v elastic critical axial force for flexural buckling about u-u axis and v-v axis, 

respectively, based on the gross cross-section properties 

NEd  is the axial force 

Nt,Rd  design value of the resistance to uniform tension axial force of the cross-section 

Nt,Rk  characteristic value of the resistance to tension axial force 

Npl  design value of the plastic resistance to axial force of the gross cross-section 

Nult  ultimate test resistance to axial force of the cross-section 

Vc,i   self-weight of the i conductor or cable of a lattice tower 

Weff,u, Weff,v elastic section modulus of the effective area of a cross-section for bending about u-

u and v-v axis, respectively 

Wel,u, Wel,v elastic section modulus for bending about u-u axis and v-v axis, respectively 

Wpl,u, Wpl,v plastic section modulus for bending about u-u axis and v-v axis, respectively 
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2.2.2 Latin lower-case symbols 

b̅  appropriate width, that is equal to h for angle sections according to EN 1993-1-5 

c   outstand flange width (c=h-t-r) 

cf, cf,G  wind force coefficient 

d  diameter of a cable, index for diagonal 

fy  yield strength  

h  width of the cross-section 

iv  radius of gyration about v axis 

kσ  plate buckling coefficient 

ml  mass per unit length 

qp(z)  peak wind pressure at the effective height z; 

r  radius of root fillet 

t  thickness of the cross-section 

vm  mean wind velocity 

2.2.3 Greek upper-case symbols 

Δ  displacement 

Φ  value to determine the reduction factor χ for flexural buckling 

ΦLT  value to determine the reduction factor χLT for lateral torsional buckling 

2.2.4 Greek lower-case symbols 

α  imperfection factor  

αcr  critical load factor/amplifier 

αLT  imperfection factor for lateral torsional buckling  

γM0  partial factor for resistance of cross-sections that equals 1,0 as recommended by EN 

1993-1-1 

γM1   partial factor for resistance of members to instability assessed by member checks 

ε material parameter depending on fy 

λ̅  relative slenderness for flexural buckling 

𝜆LT  relative slenderness for lateral torsional buckling 

λop̅̅ ̅̅   relative slenderness for out-of-plane buckling 

λp̅̅ ̅  relative plate slenderness for plate buckling 

ξ   interaction factor depends on the cross-section class 

ρ, ρu, ρv  reduction factors for plate buckling 
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ρair  air density equal to 1,25 Kg/m3 

σ1, σ2  end stresses in a member 

σcr  elastic critical plate buckling stress 

χLT  reduction factor for lateral torsional buckling  

χu  reduction factor due to flexural buckling about u-u axis 

χv  reduction factor due to flexural buckling about v-v axis  

ψ   ratio of end moments in a segment of beam, stress ratio, angle 

 

Symbols that are used only in a specific case or example, are not defined in this chapter but they will 

be defined individually where it is necessary hereafter. 
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3. ELASTIC INSTABILITY OF SINGLE ANGLE MEMBERS 

Equal leg angles exhibit some properties that distinguish them from other common steel profiles. 

They are open profiles with very small constants in both torsion and warping, are monosymmetric 

sections, their legs are prone to local buckling as external elements and finally, due to the eccentric 

connection in one leg, they are also subjected to bending when used as single members. In contrast 

with the well-known doubly symmetric cross-sections, the critical loads of angle profile members 

are affected by the position and the type of the loading and the buckling modes are not fully 

decoupled, as explained below, in the most of the loading cases.  

The analytical derivation of the critical load of an axially – centric or eccentric – loaded member, 

based on Euler’s buckling theory, is presented in this chapter. The torsional effects and the 

corresponding buckling mode, which consists a specific case for angle profiles, are investigated, and 

the possibility of an instability due to a tensile load is reported. Furthermore, the influence of the 

loading type, the boundary conditions and the initial imperfections to the critical load are also 

addressed. Then, the analytical evaluations of the critical loads of a column are validated by 

numerical simulations performed with the finite element software named FINELG through elastic 

instability and 2nd order linear elastic analyses. This chapter consists a summary of the existing 

knowledge aims to highlight the specificities of angle profiles, before going further in new 

developments and analyse the classification, the cross-section resistance as well as the stability of 

members made of angle profiles. 

3.1 Analytical derivation of the critical load of a column by Euler’s theory 

The analytical derivation of the critical load of a single angle pin-end column that is loaded by a 

compression load P, can be found in literature [21]-[22] and is presented below. The axial load is 

applied with an eccentricity at both axes (uP, vP). The cross-section is placed in such a way that its 

local axes (u, v) coincide with the global ones (U, V) of the 3D Cartesian system and the static system 

is schematized in Figure 3.1. The boundary conditions are:  

• At node 1: 𝑥1 = 𝑢1 = 𝑣1 = 𝜃1 = 0; 

• At node 2: 𝑢2 = 𝑣2 = 𝜃2 = 0; 

• The warping restraint is free for both nodes. 

 

Figure 3.1: Static system (right) and horizontal cut at the mid-height (left) for the analytical derivation of the 

critical load 
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The internal axial force resulting from a first order linear elastic analysis is: 

𝑁𝐸𝑑 = −𝑃                                                        (Eq. 3.1) 

According to the elastic buckling theory of Euler, the three equations of equilibrium for an equal 

leg angle column, where (uc, up, vp ≠ 0 and vc=0), are the following: 

 𝐸𝐼𝑣
𝑑4𝑢(𝑥)

𝑑𝑥4
+ 𝑃

𝑑2𝑢(𝑥)

𝑑𝑥2
− 𝑃(𝑢𝐶 − 𝑢𝑃)

𝑑2𝜃(𝑥)

𝑑𝑥2
= 0   (Eq. 3.2) 

 𝐸𝐼𝑢
𝑑4𝑣(𝑥)

𝑑𝑥4
+ 𝑃

𝑑2𝑣(𝑥)

𝑑𝑥2
− 𝑃𝑣𝑃

𝑑2𝜃(𝑥)

𝑑𝑥2
= 0   (Eq. 3.3) 

𝐺𝐶𝑇
𝑑2𝜃(𝑥)

𝑑𝑥2
− 𝐸𝐶𝑤

𝑑4𝜃(𝑥)

𝑑𝑥4
− 𝑃 [

𝐼𝑢+𝐼𝑣

𝐴
+ 𝑢𝐶

2]
𝑑2𝜃(𝑥)

𝑑𝑥2
− 𝑃𝑢𝑃 (

𝐼𝑢𝑟2

𝐼𝑣
− 2𝑢𝐶)

𝑑2𝜃(𝑥)

𝑑𝑥2
−

𝑃(𝑢𝑃 − 𝑢𝐶)
𝑑2𝑢(𝑥)

𝑑𝑥2
+ 𝑃𝑣𝑃

𝑑2𝑣(𝑥)

𝑑𝑥2
= 0       (Eq. 3.4) 

where: 

 𝐼𝑢𝑟2 = ∫ 𝑢(𝑢2 + 𝑣2)𝑑𝐴 ≈
√2

2
(ℎ − 0,5𝑡) (

(ℎ−0,5𝑡)3𝑡

12
−
(ℎ−0,5𝑡)𝑡3

12
 )

𝐴
          (Eq. 3.5) 

3.1.1 Column loaded at the shear centre 

It can be seen that the full decoupling between flexural and torsional buckling modes can occur only 

in the case where the axial load is applied to the shear centre (𝑢𝐶 = 𝑢𝑃; 𝑣𝑃 = 0); then the three 

equations of equilibrium become: 

𝐸𝐼𝑣
𝑑4𝑢(𝑥)

𝑑𝑥4
+ 𝑃

𝑑2𝑢(𝑥)

𝑑𝑥2
= 0          (Eq. 3.6) 

 𝐸𝐼𝑢
𝑑4𝑣(𝑥)

𝑑𝑥4
+ 𝑃

𝑑2𝑣(𝑥)

𝑑𝑥2
= 0        (Eq. 3.7) 

𝐺𝐶𝑇
𝑑2𝜃(𝑥)

𝑑𝑥2
− 𝐸𝐶𝑤

𝑑4𝜃(𝑥)

𝑑𝑥4
− 𝑃 [

𝐼𝑢+𝐼𝑣

𝐴
+ 𝑢𝐶

2]
𝑑2𝜃(𝑥)

𝑑𝑥2
− 𝑃𝑢𝑃 (

𝐼𝑢𝑟2

𝐼𝑣
− 2𝑢𝐶)

𝑑2𝜃(𝑥)

𝑑𝑥2
= 0 (Eq. 3.8) 

It is assumed that the column buckles with a half-sine deformation shape. This being, the following 

deformations are adopted: 

𝑢(𝑥) = 𝐴1sin (
𝜋𝑥

𝐿
)  ;  𝑣(𝑥) = 𝐴2sin (

𝜋𝑥

𝐿
)  ;   𝜃(𝑥) = 𝐴3sin (

𝜋𝑥

𝐿
)       (Eq. 3.9) 

By solving the above system, one founds that the constants A1, A2 and A3 are not zero for the critical 

loads: 

𝑃 = 𝑁𝑐𝑟,𝑢 =
𝜋2𝐸𝐼𝑣

𝐿2
                (Eq. 3.10) 

𝑃 = 𝑁𝑐𝑟,𝑣 =
𝜋2𝐸𝐼𝑢

𝐿2
           (Eq. 3.11) 

𝑃 = 𝑁𝑐𝑟,𝑇 =
1

𝐴𝑟𝑐
( 𝐺𝐶𝑇 +

𝜋2𝐸𝐶𝑤

𝐿2
)        (Eq. 3.12) 

where, 

 𝐴𝑟𝑐 =
𝐼𝑢+𝐼𝑣

𝐴
+ 𝑢𝐶

2 + 𝑢𝐶 (
𝐼𝑢𝑟2

𝐼𝑣
− 2𝑢𝐶)             (Eq. 3.13) 

The first two loads indicate a flexural buckling along U and V axis respectively while the third one 

indicates a pure torsional buckling mode. Obviously, the critical load of the column is the smallest 

one among these loads.  



Design of lattice towers made of large hot-rolled high strength steel angles 

_______________________________________________________________________________ 

  

 10   Marios-Zois BEZAS 

 

3.1.2 Column loaded with a random eccentricity 

In the general case where the load is applied with an eccentricity at both axes (uP, vP), but not at the 

shear centre, the three equations of equilibrium transform into the following ones, by using eq. (3.9): 

𝐴1 (
𝜋2𝐸𝐼𝑣

𝐿2
− 𝑃) + 𝐴3𝑃𝑣𝑃 = 0                (Eq. 3.14) 

𝐴2 (
𝜋2𝐸𝐼𝑢

𝐿2
− 𝑃) − 𝐴3𝑃(𝑢𝐶 − 𝑢𝑃) = 0     (Eq. 3.15) 

𝐴1𝑃𝑣𝑃 + 𝐴2𝑃(𝑢𝐶 − 𝑢𝑃) + 𝐴3 (
𝜋2𝐸𝐶𝑤

𝐿2
+ 𝐺𝐶𝑇 − 𝑃𝐴𝑟𝑝) = 0   (Eq. 3.16) 

where 

𝐴𝑟𝑝 =
𝐼𝑢+𝐼𝑣

𝐴
+ 𝑢𝐶

2 + 𝑢𝑃 (
𝐼𝑢𝑟2

𝐼𝑣
− 2𝑢𝐶)          (Eq. 3.17) 

The column will buckle for the minimum load P that satisfies eq. (3.14) – (3.16) when the constants 

A1, A2 and A3 are not zero; this can be written in a matrix format as: 

[

𝑁𝑐𝑟,𝑢 − 𝑃 0 𝑃𝑣𝑃
0 𝑁𝑐𝑟,𝑣 − 𝑃 𝑃(𝑢𝐶 − 𝑢𝑃)

𝑃𝑣𝑃 𝑃(𝑢𝐶 − 𝑢𝑃) 𝐴𝑟𝑝(𝑁𝑐𝑟,𝑇 − 𝑃)
] = 0      (Eq. 3.18) 

Therefore, the critical load can be found by solving eq. (3.19).  

𝐴𝑟𝑝(𝑁𝑐𝑟,𝑢 − 𝑃)(𝑁𝑐𝑟,𝑣 − 𝑃)(𝑁𝑐𝑟,𝑇 − 𝑃) − 𝑃
2(𝑁𝑐𝑟,𝑣 − 𝑃)𝑣𝑃

2 − 𝑃2(𝑁𝑐𝑟,𝑢 − 𝑃)(𝑢𝐶 − 𝑢𝑃)
2 = 0

 (Eq. 3.19) 

It should be noted that the value of Ncr,T should be calculated according to the eccentricity of the 

applied load by using eq. (3.12) and replacing Arc with Arp. 

To simplify the solution of eq. (3.19), two fundamental cases may be distinguished in terms of the 

position of the applied load: 

1. the load is applied on the axis of symmetry (uc, up  ≠ 0, vp = 0);  

2. the load is not applied on the axis of symmetry (uc, up, vp ≠ 0); 

To find the roots of eq. (3.19) is equivalent to the determination of the intersection points between 

the abscissa P and the curves fi(P); this writes as follows for case 1 and case 2, respectively: 

𝑓1(𝑃) = (𝑁𝑐𝑟,𝑢 − 𝑃)[Arp(𝑁𝑐𝑟,𝑣 − 𝑃)(𝑁𝑐𝑟,𝑇 − 𝑃) − 𝑃
2(𝑢𝐶 − 𝑢𝑃)

2]      (Eq. 3.20) 

𝑓2(𝑃) = 𝐴𝑟𝑝(𝑁𝑐𝑟,𝑢 − 𝑃)(𝑁𝑐𝑟,𝑣 − 𝑃)(𝑁𝑐𝑟,𝑇 − 𝑃) − 𝑃
2(𝑁𝑐𝑟,𝑣 − 𝑃)𝑣𝑃

2 

−𝑃2(𝑁𝑐𝑟,𝑢 − 𝑃)(𝑢𝐶 − 𝑢𝑃)
2 = 0 (Eq. 3.21) 

For the values such that 𝐴𝑟𝑝 − (𝑢𝐶 − 𝑈𝑃)
2 ≥ 0, the form of the curve fi(P) and therefore the position 

of its roots, can be estimated by calculating the sign of the curve for the values 0, Ncr,u, Ncr,v, Ncr,T and 

∞. The roots of the curve can be noted as P1 = Ncr,1, P2 = Ncr,2 and P3 = Ncr,3 where 𝑁𝑐𝑟,1 ≤ 𝑁𝑐𝑟,2 ≤

𝑁𝑐𝑟,3. By the acceptance that 𝑁𝑐𝑟,𝑢 ≤ 𝑁𝑐𝑟,𝑣 , the two fundamental cases considered above can be 

additionally divided into three sub-groups: 

a) 𝑁𝑐𝑟,𝑢 ≤ 𝑁𝑐𝑟,𝑣 ≤ 𝑁𝑐𝑟,𝑇 

b) 𝑁𝑐𝑟,𝑇 ≤ 𝑁𝑐𝑟,𝑢 ≤ 𝑁𝑐𝑟,𝑣 

c) 𝑁𝑐𝑟,𝑢 ≤ 𝑁𝑐𝑟,𝑇 ≤ 𝑁𝑐𝑟,𝑣 
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Figure 3.2, Figure 3.3 and Figure 3.4 illustrate the curves fi(P) and their roots – as they are also 

reported in Ref. [22] – for the two fundamental cases for all the different sub-groups mentioned 

above. It should be noted that these figures are all illustrative and do not present explicit results of a 

calculation. It can be seen that the critical load P1 = Ncr,1, is: 

- the flexural buckling load Pcr,u for the case 1, subgroups a and c; 

- the flexural-torsional buckling load in all the other cases with a value lower than Pcr,u and Pcr,T. 

 

Figure 3.2: Schematized form of the curves fi(P) when Ncr,u ≤ Ncr,v ≤ Ncr,T 

 

Figure 3.3: Schematized form of the curves fi(P) when Ncr,T ≤ Ncr,u ≤ Ncr,v 

 

Figure 3.4: Schematised form of the curves fi(P) when Ncr,u ≤ Ncr,T ≤ Ncr,v 
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3.1.3 Summary 

There are three ways in which an angle member can buckle, if local plate buckling does not occur: 

flexural buckling, torsional buckling, and flexural-torsional buckling.  

Flexural buckling (FB) can occur in any compression member that experiences a deflection caused 

by bending without any torsion or the cross section along the member. Flexural buckling occurs 

about the axis with the largest slenderness ratio and the smallest radius of gyration. Therefore, it can 

occur in direction of u or v axis as it shown if the Figure 3.5(a)-(b), but for pin-ended members it 

happens along weak axis u, as it has been also shown through the analytical calculation.  

Torsional buckling (TB), that it is caused by a rotation about the longitudinal axis (see Figure 3.5(c)), 

occurs almost never in hot rolled angle cross-sections, except the case where the section is loaded at 

the shear centre (see §3.3 for more details). In all the other cases, a flexural-torsional buckling occurs. 

Flexural-torsional buckling (FTB) is the simultaneous bending and twisting of a member (see Figure 

3.5(d)) and it is a very common buckling mode for angle sections. If this type of buckling occurs, 

two possible buckling modes can appear: one in which the flexural deflection is predominated, 

accompanied by a small torsion of the cross-section and another one in which the torsion is 

predominant is accompanied by a small deflection, depending on the member length.  

 

Figure 3.5: (a),(b) Deflections due to flexural buckling along u,v axis, (c) deflections due to torsional 

buckling, (d) deflections due to flexural-torsional buckling 

3.2 Higher buckling modes 

In the case where the critical load of a higher buckling mode needs to be calculated, eq. (3.20) or 

(3.21) may be accordingly used, where the following parameters are applied: 

𝑁𝑐𝑟,𝑢,𝑛 = 𝑛
2 𝜋

2𝐸𝐼𝑣

𝐿2
                     (Eq. 3.22) 

𝑁𝑐𝑟,𝑣,𝑛 = 𝑛
2 𝜋

2𝐸𝐼𝑢

𝐿2
              (Eq. 3.23) 

𝑁𝑐𝑟,𝑇,𝑛 =
1

𝐴𝑟𝑝
( 𝐺𝐶𝑇 + 𝑛

2 𝜋
2𝐸𝐶𝑤

𝐿2
)       (Eq. 3.24) 

where n=2,3,4,...,n,  for the second, third, fourth, .. nth buckling mode. 

It should be also noticed that as the shear centre is located at the intersection of the two legs, there is 

practically no warping rigidity and the warping constant Cw can be assumed to be zero. Therefore, it 

may be assumed that the torsional buckling mode is not affected by the member length. 

3.3 Instability due to tensile load 

Depending on the cross-section geometry and the load eccentricity, instability may be occurred even 

for a tensile load, as reported in [22]. Indeed, Vlassov [23] shows that a cross-section can be unstable 



Design of lattice towers made of large hot-rolled high strength steel angles 

_______________________________________________________________________________ 

  

 13   Marios-Zois BEZAS 

 

under a tensile force, if this one is applied outside of a circle defined by the coordinates of its centre 

(us, vs) and by its radius R (see Figure 3.6), that for an equal leg angle profile are: 

(𝑢𝑆, 𝑣𝑆) = (
𝐼𝑢𝑟2

2𝐼𝑣
, 0)      (Eq. 3.25) 

𝑅 = √
𝐼𝑢+𝐼𝑣

𝐴
+ 𝑢𝑆

2    (Eq. 3.26) 

 

Figure 3.6: Schematized illustration of the circle according to Vlassov 

Obviously if the load is applied inside the circle defined above, then it should be a compression one 

to cause instability. For the specific case where the load is applied at the boundary of the circle, 

independently if it is a compression or a tensile one, the critical load become significantly high (≈∞). 

Therefore, a pure torsional mode can be obtained when the load is applied at the shear centre C as it 

has been shown in §3.1, but depending on the cross-section geometry, this load could be either a 

compression or a tensile one. The flexural-torsional buckling mode where the torsion is predominated 

(usually Ncr,3) is accordingly affected. In the latter mode, the critical load should be calculated for a 

compression load Pc that is applied inside the above-mentioned circle or a tension one PT that is 

outside of the circle. If the load is applied at the boundary, then the critical load become significantly 

high. 

3.4 Influence of the boundary conditions 

Equation given in §3.1 have been developed and therefore can be applied only for pin-ended 

columns. Inevitably, some end restraints are usually present when an angle member is connected to 

other members in a structure. As the connection is often achieved on one leg only, the modelling of 

the end-restraint effect become complicated. A few analytical solutions are available as those 

proposed by Trahair et al. [24]. An acceptable design solution is to use effective-length factors Ki, 

(see Figure 3.7) so that eq. (3.20) or (3.21) may be applied by using the following parameters: 

𝑁𝑐𝑟,𝑢 =
𝜋2𝐸𝐼𝑣

(𝐾𝑢𝐿)
2                      (Eq. 3.27) 

𝑁𝑐𝑟,𝑣 =
𝜋2𝐸𝐼𝑢

(𝐾𝑣𝐿)
2                  (Eq. 3.28) 

𝑁𝑐𝑟,𝑇 =
1

𝐴𝑟𝑝
( 𝐺𝐶𝑇 +

𝜋2𝐸𝐶𝑤

(𝐾𝑇𝐿)
2) ≈

1

𝐴𝑟𝑝
𝐺𝐶𝑇              (Eq. 3.29) 

In fact, an effective length defines the portion of the deflected shape between points of zero curvature. 

In other words, KiL is the length of an equivalent pin-ended column buckling which would exhibit 

the same elastic buckling load than the end-restrained column. 
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The Ki factors reported in Figure 3.7 could be used to evaluate Ku and Kv factors so as to estimate the 

flexural critical loads, but not to evaluate the KT one. Nevertheless, as explained before, the warping 

constant Cw of angle sections can be assumed as zero and then, the torsional critical load can be 

estimated only by the first term of the eq. (3.29), without determining the KT factor. 

 

Figure 3.7:Effective-length factors Ku, Kv for axially loaded columns with various end condition [21] 

When there is a need to take into account the positive effect of the restraints in the design, then the 

formulas proposed in EN 1993-3-1 [2] where an angle is connected through different numbers of 

bolts at its extremities, may be applied. In those formulas, a modified slenderness is proposed per 

axis (u-u, v-v, z-z) depending on the boundary conditions (i.e. single/ doubled bolted at both ends 

member, etc). In the present thesis, this aspect is not addressed and only pin-ended angles are so 

considered. 

3.5 Influence of the loading type 

In contrast with other common profiles, the critical load of an angle section is affected from the 

position of the axial load. The analytical solution for a centrally or eccentrically axial loaded member 

is given in §3.1. If the member is loaded with an eccentric axial force (eN) and a bending moment, 

this can be translated to an axial force with a fictitious eccentricity (efic=eN+M/N), and therefore same 

equations may be used; at least as long as M and N vary proportionally. 

But angles that are used in pylons, towers and masts are also subjected to lateral loads (wind forces) 

additionally to their axial force. A few numerical simulations on single angle axially loaded members 

subjected to lateral loads have been performed, and it is clear that the critical load of the column is 

affected, especially when the lateral load increases. However, it can be seen (see §9.2.2) that the 

wind force acting on a bar is rather small compared with the axial one. Therefore, it will be assumed 

in the thesis that lateral loads remain quite modest and that M and N forces in the angle members 

vary proportionally.  

3.6 Second order elastic buckling analyses  

Besides the first order linear elastic theory that is presented in §3.1, the critical load of a member can 

be also evaluated by a second order elastic analysis using a non-linear software, as reported through 

an example in section §3.7. In this case, if the column is perfectly straight and the load is applied at 

the centre of gravity, the straight position becomes unstable when the load exceeds the critical value 
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and a slight increase of the load leads to large displacements of the member and, finally, to the 

collapse due to buckling. The critical point, after which the deflections of the member become very 

large, is defined as the “bifurcation point” Ncr,δο=0 of the system; this is illustrated in Figure 3.8, for 

δο = 0. On the contrary, if the column is not initially straight – as it happens often in practise – or it 

is eccentrically loaded, deflection starts from the beginning of the loading and there is no sudden 

buckling by bifurcation (Figure 3.8). If the bow imperfections or the eccentricities remain low, then 

the critical load tends to reach the critical one and a small plateau appears in the curve corresponding 

to the critical load multiplier. However, if the loading eccentricity is high, there is a continuous 

increase of the displacements since P-δ effects become significant. The initial imperfections cannot 

become rather high so as to affect the member’s response because they are limited due to fabrication 

standards. This phenomenon is called “divergence of the equilibrium” and sometimes there is no 

strict stability limit. For those cases (dotted line in Figure 3.8), the critical load factor can be 

determined by the point where the curvature changes. The intersection points of the small horizontal 

red lines and the 2nd order displacement curves shown in Figure 3.8, indicate the critical load 

multipliers for the two main cases described above. 

   

Figure 3.8: Load-displacement 2nd order elastic curves of a compressed column (in the case of a bow 

imperfection) [21]  

3.7 Numerical and analytical studies 

A pin-ended perfectly straight column with 2,0 m length is assumed. Its cross-section consists of an 

angle profile L70x70x7 made of S235 and the Young’s modulus equals 210000 N/mm2. The 

geometry properties of the profile are reported in Table 3.1. For the studied section, the parameters 

of the Vlassov’s circle described in §3.3 are also calculated; the coordinates of its centre are (22,87 ; 

0) and its radius is R=37,67 mm. 

Table 3.1: Geometry properties of the cross-section L70x70x7 

h 

[mm] 

t 

[mm] 

A 

[mm2] 

iu 

[mm] 

iv 

[mm] 

IT 

[mm4] 
Iw [mm6] 

uc 

[mm] 

vc 

[mm] 
Iur2 [mm5] 

70 7 939,691 26,665 13,605 14601,1 5603850,0 -22,842 0 7956200,0 

 

The column is loaded with an eccentric axial load of 100kN. Two main cases are distinguished and 

studied in terms of the load eccentricity: 

(a) the load is applied on the major axis U (up  ≠ 0, vp = 0);  

(b) the load is applied on the minor axis V (up = 0, vp  ≠ 0);  

N/Ncr,δο=0 
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Table 3.2: Analytical and numerical load factors for eccentrically loads on U axis 

uP [m] αcr,1 [-] αcr,2 [-] αcr,3 [-] αcr,anal [-] αcr,FINELG [-] αNL-el [-] 

-0,2 0,901 1,52 -0,556 -0,556 -0,5561 --- 

-0,15 0,901 1,85 -0,773 -0,773 -0,7738 --- 

-0,1 0,901 2,36 -1,26 0,901 0,9015 0,7621 

-0,07 0,901 2,79 -2,03 0,901 0,9015 0,7722 

-0,05 0,901 3,13 -3,35 0,901 0,9015 0,7992 

-0,04 0,901 3,30 -4,89 0,901 0,9015 0,8051 

-0,03 0,901 3,42 -8,66 0,901 0,9015 0,8452 

-0,02284 0,901 3,46 -17,59 0,901 0,9015 0,8654 

-0,01 0,901 3,29 36,68 0,901 0,9015 0,8892 

-0,005 0,901 3,11 20,42 0,901 0,9015 0,8970 

-0,001 0,901 2,94 16,38 0,901 0,9015 0,9010 

0 0,901 2,89 15,74 0,901 0,9015 0,9014 

0,001 0,901 2,85 15,24 0,901 0,9015 0,9010 

0,005 0,901 2,66 13,96 0,901 0,9015 0,8970 

0,01 0,901 2,43 13,42 0,901 0,9015 0,8892 

0,015 0,901 2,21 13,59 0,901 0,9015 0,8821 

0,02 0,901 2,02 14,30 0,901 0,9015 0,8782 

0,025 0,901 1,86 15,54 0,901 0,9015 0,8621 

0,03 0,901 1,71 17,43 0,901 0,9015 0,8452 

0,04 0,901 1,47 24,60 0,901 0,9015 0,8052 

0,05 0,901 1,29 46,31 0,901 0,9015 0,7992 

0,07 0,901 1,03 -49,48 0,901 0,9015 0,7831 

0,08 0,901 0,933 -23,72 0,901 0,9015 0,7722 

0,1 0,901 0,787 -11,46 0,787 0,7869 0,7621 

0,15 0,901 0,563 -4,92 0,563 0,5637 0,6411 

0,2 0,901 0,439 -3,11 0,439 0,4386 0,5372 

 

For each considered eccentricity, three load factors are calculated analytically (acr,1, acr,2, acr,3) by 

using eq. (3.19), and the smallest one among them, indicates the critical one (acr,anal). Then, and in 

order to evaluate numerically the critical load multiplier (acr,FINELG), an elastic instability analysis is 

performed with FINELG [25] finite element software. The column is meshed in 16 beam elements 

along its length and the boundary conditions are those described in Figure 3.1. Finally, a second order 

linear elastic analysis without initial imperfections, but with the relevant eccentricity, is performed 

with FINELG, and the acr,NL-el is evaluated according to §3.6. Only for the specific case where the 

column is loaded at the centre of gravity, a rather small imperfection has been implemented so as to 

the convergence of the FINELG calculations. The analytical and numerical load multipliers for 

different load eccentricities are illustrated graphically in Figure 3.9 and Figure 3.10 while their values 

are reported in Table 3.2 and Table 3.3 for eccentrically loads on U and V axis respectively.  
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Table 3.3: Analytical and numerical load factors for eccentrically loads on V axis 

vP [m] αcr,1 [-] αcr,2 [-] αcr,3 [-] αcr,anal [-] αcr,FINELG [-] αNL-el [-] 

-0,2 0,382 3,43 -0,718 0,382 0,3823 0,4061 

-0,15 0,464 3,41 -1,08 0,464 0,4648 0,4720 

-0,1 0,587 3,35 -2,06 0,587 0,5867 0,6048 

-0,07 0,687 3,27 -4,09 0,687 0,6867 0,7124 

-0,05 0,764 3,18 -9,45 0,764 0,7641 0,7633 

-0,04 0,803 3,11 -20,92 0,803 0,8036 0,8021 

-0,02284 0,864 2,99 38,08 0,864 0,8642 0,8499 

-0,01 0,894 2,91 17,76 0,894 0,8938 0,8785 

-0,005 0,899 2,90 16,20 0,90 0,8995 0,8909 

-0,001 0,901 2,89 15,76 0,901 0,9014 0,9013 

0 0,901 2,89 15,74 0,901 0,9015 0,9014  

0,001 0,901 2,89 15,76 0,901 0,9014 0,9013 

0,005 0,899 2,90 16,20 0,899 0,8995 0,8909 

0,01 0,894 2,91 17,76 0,894 0,8938 0,8785 

0,02284 0,864 2,99 38,08 0,864 0,8642 0,8499 

0,04 0,803 3,11 -20,92 0,803 0,8036 0,8021 

0,05 0,764 3,18 -9,45 0,764 0,7641 0,7633 

0,07 0,687 3,27 -4,09 0,687 0,6867 0,7124 

0,1 0,587 3,35 -2,06 0,587 0,5867 0,6048 

0,15 0,464 3,41 -1,08 0,464 0,4648 0,4720 

0,2 0,382 3,43 -0,718 0,382 0,3823 0,4061 

 

When the member is loaded on U axis, three load factors are calculated analytically. One (acr,1) which 

is related with flexural buckling of the member along U axis, one (acr,2) which is associated to 

flexural-torsional buckling along V axis when the flexural deflection predominates and finally one 

(acr,3), which corresponds to flexural-torsional buckling along V axis when the torsion predominates. 

Similarly, when the member is loaded on V axis, acr,2 and acr,3 are correlated again with the flexural-

torsional buckling along V axis as before, but acr,1 relates now to a flexural-torsional buckling 

towards U axis, that becomes a pure flexural one when the load approaches the centre of gravity. It 

can be seen through both graphs that out of the Vlassov’s circle – its boundaries are reported with 

dot lines in the figures – a tensile load is requested to reach the flexural-torsional buckling where the 

torsion prevails. Additionally, as the load is approaching the circle’s boundaries, the corresponding 

critical load tends to become rather high (infinity). The Vlassov theory is therefore validated through 

this study. Furthermore, from Figure 3.9 it can be easily observed that the curves are not symmetrical 

relatively to V axis because the critical load of an angle section increases when the point of 

application of the load approaches the shear centre. However, thanks to U axis of symmetry, the 

critical loads are identical (see Figure 3.10) whether the force is applied on (up, vp) or (up, -vp). 
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Figure 3.9: Analytical and numerical instability load factors for eccentrically loads on U axis 

 

Figure 3.10: Analytical and numerical instability load factors for eccentrically loads on V axis 

The results obtained analytically and numerically, through the elastic instability critical analysis, are 

in very close agreement, as seen from both graphs and tables. From the comparison between the 

analytical results and those estimated through the 2nd order elastic analysis (Table 3.2 and Table 3.3), 

one sees a very good agreement for small load eccentricities, but slight differences when the load 

eccentricity increases. This difference is explained by the “divergence of the equilibrium” 

phenomenon, as there is not always strict stability limit, and it seems to be more relevant for an 

eccentric load on U axis than V. 

Figure 3.11 shows the load factor vs displacement curves obtained through a 2nd order linear elastic 

analysis for eccentrically loads on U axis. All the curves compared with the load factor obtained for 

the centrally loaded column through the elastic instability analysis (Ncr,u /N = 0,9015) that is 

illustrated with the orange horizontal line. The curves that correspond to the eccentricities up equal 

to 0,1, 0,15 and 0,2 are not shown in this graph due to the fact that their relevant buckling mode is a 

flexural-torsional one along V axis. The values of all the load factors acr,NL-el are reported in Table 

3.2. For the cases where instability occurs due to a tensile load (i.e for up = -0,15 or -0,2) according 

to Vlassov’s theory (§3.3), even if the analytical solutions and the corresponding results from an 
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elastic first order instability analysis are identical, it is not possible to verify their load multipliers 

through a non-linear elastic analysis with a tensile load, because the member just elongates in these 

cases. 

 

Figure 3.11: Load factor – displacement curves obtained through a 2nd order linear elastic analysis for 

eccentrically loads on U axis 

Figure 3.12 shows the load factor vs displacement curves obtained through a 2nd order linear elastic 

analysis for eccentrically loads on V axis. In this case, the curves compared with the relevant load 

factor obtained through the elastic instability analysis, that is illustrated with a dot horizontal line 

with same colour with the displacement curve that should compared. As the section is symmetrical 

in this direction, the curves are identical for the same absolute value of the applied eccentricity. 

 

Figure 3.12: Load factor – displacement curves obtained through a 2nd order linear elastic analysis for 

eccentrically loads on V axis 

Complementary analyses have been finally performed in order to investigate the influence of the out-

of-straightness of the column to its critical load. Eight load eccentricities on U axis have been 

considered, three positive and four negatives (see Figure 2.1 for the definition of the sine), and for 

each eccentricity, an initial bow imperfection with shape similar to the first instability mode (a 

deflection along U axis) is implemented. In terms of the imperfection’s magnitude, four cases are 

also considered: ± L[mm]/1000 and ± L[mm]/200. Then, 2nd order linear elastic analyses were 
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performed and the load factor – displacement curves are shown in Figure 3.13 and Figure 3.14 for 

negative and positive eccentricities on U respectively. 

 

Figure 3.13: Load factor – displacement curves obtained through a 2nd order linear elastic analysis (with 

negative eccentricity on U axis and initial imperfections) 

 

Figure 3.14: Load factor – displacement curves obtained through a 2nd order linear elastic analysis (with 

positive eccentricity on U axis and initial imperfections) 

It can be seen that for the same loading eccentricity, the initial imperfections do not affect the critical 

load of the column so much, but they have an impact at its stiffness, that tends to be negligible as the 

load eccentricity increases. Roughly, if uP < 5eu,o then the influence of the initial out-of-straightness 

becomes relevant for the response of the member until it reaches its critical load. On the contrary, 

the critical load of the column is affected much more by the loading eccentricity and becomes smaller 

as far as the eccentricity increases.  

3.8 Conclusions 

Angle profiles, and more specifically the equal leg ones investigated in the present thesis, exhibit 

some properties that distinguish them from the well-known profiles. It is known that, for a double-
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symmetric cross-section, the critical load is not affected by the load eccentricity while the buckling 

modes are always decoupled and the critical one is a flexural one. This is different for angle sections; 

their particularities are summarized below: 

• They mostly buckle along their weak axis with a flexural or a flexural-torsional mode, 

depending on the load eccentricity. 

• The full decoupling of the buckling modes happens only for a very specific case, where the 

member is loaded at the shear centre; this is also the only case that a pure torsional buckling 

mode can be appeared. 

• The critical load is affected by the type of the loading (bending moments, lateral loads, etc). 

• Depending on the cross-section geometry, an instability may be occurred even for an 

eccentric tensile load. 

• The initial imperfections of the member, that in practise are rather small as they are limited 

by fabrication standards, do not significantly affect the critical load in comparison with an 

eccentricity of the applying load. However, they influence the stiffness of the member until 

it reaches its critical load, as results from a 2nd order linear elastic analysis. 
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4. CLASSIFICATION OF EQUAL LEG ANGLES PROFILES 

Cross-section classification is of importance for the selection of the analysis and design procedures 

to employ: plastic, elastic or elastic with due account for local buckling. General rules for cross-

section classification (classes 1 to 4) are given in EN 1993-1-1, in combination with EN 1993-1-5 

that gives rules for buckling resistance of class-4 angle sections prone to local buckling. Additional 

rules for classification to compression can be found in EN 1993-3-1 for angle members used in lattice 

towers, as well as in the CENELEC standard EN 50341-1 that provides specific rules for lattice 

towers used in the field of overhead electrical lines. Amongst these normative documents, specific 

provisions for classification to bending can be found only in EN 1993-1-1, while inconsistencies 

between them are highlighted and presented for classification to compression, where four different 

width-to-thickness ratios can be evaluated for a same class limit! 

According to EN 1993-1-1, clause 5.5.2 (4) classification should be done for the compression parts 

of the cross-section that are defined as follows: “Compression parts include every part of the cross-

section which is either totally or partially in compression under the load combination considered”. 

However, a strict application of this rule requires a separate classification of the cross-section for 

each combination of applied forces and moments. Since this rule is unpractical for design, a simpler 

approach is proposed here, where the cross-section is classified separately for compression, strong 

axis and weak axis bending. For the latter, the cross-section class may be different for positive or 

negative moments due to the mono-symmetric shape of the profile, that leads to different classes 

when the tip is in compression or in tension.  

In the following, the limiting width-to-thickness ratios for compression parts of equal leg angle 

sections are discussed and redefined through analytical considerations and numerical calculations, 

for the above-referred loading conditions. The analytical derivations always follow the main 

principles of Eurocodes, and especially EN 1993-1-1. As in the latest version of EN 1993-1-1, namely 

prEN 1993-1-1 [26], no modification is contemplated regarding the classification of the cross-

sections, the former is used hereafter when a reference is made. 

4.1 Description of the numerical model 

The numerical models for the parametrical numerical studies were created with ABAQUS non-linear 

finite element software [27] using volume elements. The samples have been modelled as pin-ended 

with at least three volume linear elements over the thickness (see Figure 4.1). The selection of the 

elements (linear instead of quadratic) does not influence the results. A denser mesh (i.e four volume 

elements per thickness) gives better results by 1-2%, but increases substantially the required time of 

the analysis, that is not desirable in combination with the high number of the numerical studies to be 

performed. At the extremities, fictitious end plates have been introduced through a specific 

constraint, so as to distribute uniformly the external applied loads but also to avoid any local failure 

at the point of application of the load.  

The finite element analyses were performed considering: 

• a local leg imperfection equal to h/100 (h is the width of the cross-section), based on the 

tolerances defined in EN 10056-2 [28], with imperfection shape affine to the lower relevant 

elastic instability mode obtained through an elastic instability analysis, that has been 

performed with an axial force or a bending moment for compression or bending cases 

respectively; 
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• a linear elastic – perfectly plastic material behaviour law without strain hardening in 

accordance with EN 1993-1-14,§4.3.2-(1a) [29], as it is shown in Figure 4.2. 

 

Figure 4.1: Sample of the 3-D model used for the numerical analyses 

 

Figure 4.2: Material law in accordance with [29] 

Subsequently, parametrical numerical investigations on short column subjected to compression, 

strong axis bending, and weak axis bending will be conducted in view of deriving appropriate 

classification criteria. In all the numerical simulations, the applied load increasing up to failure. All 

nominal dimensions of the cross-sections used in these studies are in mm.  

4.2 Classification to compression 

The resistance of sections subjected to compression is identical for classes 1, 2 or 3. Accordingly, 

there is a need to define only the limit between classes 3 and 4. The failure modes on each side of 

this limit are respectively the yielding of the cross section and the local buckling of the legs. Often, 

but erroneously, local buckling for class 4 sections is associated to torsional buckling while it is 

known from §0 that a pure torsional buckling mode can only be obtained when the load application 

point is the shear centre, which does not coincide with the centroid in case of angles sections. 

Accordingly, the relevant failure mode for class 1 to 3 angle sections is yielding, while, for class 4 

sections, local plate buckling occurs in the legs.  

Table 4.1: Samples for the analyses of the cross-section subjected to compression  

No Cross-Section Steel grades 

1 L45x45x3 S355 / S460 / S550 / S690 

2 L45x45x4 S355 / S460 / S550 / S690 

3 L70x70x5 S355 / S460 / S550 / S690 

4 L70x70x6 S355 / S460 / S550 / S690 

5 L250x250x17 S355 / S460 / S550 / S690 

6 L250x250x20 S355 / S460 / S550 / S690 

7 L250x250x22 S355 / S460 / S550 / S690 

8 L250x250x26 S355 / S460 / S550 / S690 
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Table 4.1 presents the cross-sections and the steel grades that have been used for the analyses in 

which the samples are subjected to compression. These samples have been selected in order to cover 

a wide range of cross-section leg slenderness. In particular, even if steel grade S690 is not available 

on the market, it has been selected so as to reach higher slenderness ratios.  

In order to prevent flexural buckling, the length of the samples was selected in such a way that �̅� ≤

0,2 , a slenderness below which the European buckling curves assume that no reduction associated 

to buckling is required. This limitation leads to a value of the length of the samples equal to 18,5·𝜀·iv:  

�̅� ≤ 0,2   ⇒   
𝐿𝑐𝑟

𝑖𝑣
·
1

𝜆1
≤ 0,2   ⇒   𝐿𝑐𝑟 ≤ 18,75 · 𝜀 · 𝑖𝑣    ⇒  𝑳𝒄𝒓 = 𝟏𝟖, 𝟓 · 𝜺 · 𝒊𝒗       (Eq. 4.1) 

Figure 4.3 and Figure 4.4 show the ratio between the numerically obtained cross-section (CS) 

resistance (Nult) and the plastic characteristic resistance (Npl =A·fy), versus the h/𝜀t and c/𝜀t ratio 

respectively. It can be easily observed that the scatter is bigger when the results are correlated with 

the h/𝜀t ratio than the c/𝜀t one, that makes the latter ratio more suitable for classification purposes.  

 

 

Figure 4.3: Compression. Ratio between numerical results and plastic resistance vs. h/𝜀t ratio  

 

Figure 4.4: Compression. Ratio between numerical results and plastic resistance vs. c/𝜀t ratio 

The samples that reach their plastic characteristic resistance even with a 3% deviation, that is 

assumed as acceptable due to the selected mesh density, can be categorized as class 1 to 3. Therefore, 

based on the numerical results, the class-3 limit for equal leg angles subjected to compression may 

be set as c/t ≤ 13,9𝜀. 

In EN 1993-1-1, table 5.2 (sheet 3), two conditions are provided to distinguish Class 3 from Class 4 

sections for equal leg angles:  

h/t ≤ 11,5𝜀     and     h/t ≤ 15𝜀       so     h/t ≤ 11,5𝜀                          (Eq. 4.2) 
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For the available hot-rolled equal leg angles, it can be seen that the mean value for parameter c is 

equal to 0,8h. So, in this case, eq. (4.2) may be rewritten and becomes c/t ≤ 9,2𝜀. This value is seen 

to be quite conservative when compared to the obtained numerical results. 

In the same table 5.2 (sheet 3) of EN 1993-1-1, a cross reference to sheet 2 is made for “outstand 

elements”, from which the class-3 limit is: 

c/t ≤ 14𝜀                                                           (Eq. 4.3) 

This limit may be also determined analytically by considering the risk of local plate buckling 

resistance of the leg. Indeed, the reduction factor for outstand plated elements due to local buckling 

is given in EN 1993-1-5 as below: 

𝜌 = {
1,0 for  λ̅p ≤ 0,748

λ̅p−0,188     

�̅�𝑝
2 for  λ̅p > 0,748

                                               (Eq. 4.4) 

where:        

 λ̅p = √
𝑓𝑦

𝜎𝑐𝑟
=

�̅�/𝑡

28,4𝜀√𝑘𝜎
                                                    (Eq. 4.5) 

In this case, the condition for class 3 to 4 limit is that the resistance should not be reduced due to 

local buckling, which may be expressed as  �̅�𝑝 ≤ 0,748, i.e. 𝜌 = 1. In table 4.2 of EN 1993-1-5, the 

buckling factor for outstand elements in compression (ψ = 1) is defined as kσ = 0,43. Additionally, 

for equal leg angles EN 1993-1-5 defines �̅� = h. Introducing the above values in the expression for 

the limit slenderness, the class-3 limit in respect to local buckling may be calculated as: 

h/t ≤ 13,9𝜀         corresponding approximatively to     c/t ≤ 11,1𝜀              (Eq. 4.6) 

But in fact, looking to the obtained numerical results, it appears clearly now that �̅� should be selected 

as equal to c, and not to h as suggested in EN 1993-1-5.  

As a conclusion, the class-3 to class-4 limit for equal leg angles subjected to compression may be 

preferably set equal to: 

c/t ≤ 13,9𝜀                                                                (Eq. 4.7) 

This condition is in line with: 

• the numerical studies; 

• the current provisions of Eurocode 3 and more specifically with EN 1993-1-1, table 5.2, 

sheet 2 for class-3 limit of outstand elements (c/t ≤ 14𝜀);    

• EN 1993-1-5, in which �̅� = c instead of h (c/t ≤ 13,9𝜀); 

• the standard EN 50341, mainly used in practice in central Europe for the design of lattice 

towers made of angles (c/t ≤ 13,9𝜀); 

• the recommendations of EN 1993-3-1 (c/t ≤ 13,9𝜀) in which the c/t ratio for angles defined 

in EN 1993-1-1, table 5.2, may be replaced by the ratio (h-2t)/t, in which the nominator is 

not so far from the exact value c=h-t-r. 

4.3 Classification to strong axis bending 

The stress distribution for strong axis bending Mu is such that only one leg is under compression and 

needs classification. It may be seen from EN 1993-1-1 that the design resistance for classes 1 and 2 
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is identical, the plastic one. The two classes differ in the possibility to apply plastic methods of 

analysis for class 1 sections, while for class 2 sections elastic methods shall be employed. However, 

plastic methods of analysis are rarely used in towers composed of angle sections according to the 

existing norms. Therefore, the two classes 1 and 2 are merged in the following and only limits 

between classes 2 and 3 and 3 and 4 have been derived. Table 4.2 presents the cross-sections and the 

steel grades that have been used for the numerical studies in which the samples are subjected to 

strong axis bending moment Mu. The selected parameters lead to c/𝜀t ratios below 25. However, in 

order to extend the results to higher ratios, additional analyses were carried out for two cross-sections 

(L 120x120x7 and L 130x130x8) with non-commercially available higher steel grades (S800, S900, 

S1000 and S1100). In order to prevent lateral torsional buckling, the length of all samples has been 

each time adapted so as the relative slenderness remains λLT  ≤ 0,4 which is the limit slenderness under 

which LTB does not reduce the bending strength according to EN 1993-1-1.  

Table 4.2: Samples for the analyses of the cross-section subjected to weak axis bending Mu 

No Cross-Section Steel grades 

1 L45x45x3 S355 / S460 / S550 / S690 

2 L45x45x4 S355 / S460 / S550 / S690 

3 L70x70x5 S355 / S460 / S550 / S690 

4 L70x70x6 S355 / S460 / S550 / S690 

5 L120x120x7 S355 / S460 / S550 / S690 

6 L120x120x8 S355 / S460 / S550 / S690 

7 L130x130x8 S355 / S460 / S550 / S690 

8 L130x130x9 S355 / S460 / S550 / S690 

9 L150x150x10 S355 / S460 / S550 / S690 

10 L150x150x12 S355 / S460 / S550 / S690 

11 L250x250x17 S355 / S460 / S550 / S690 

12 L250x250x20 S355 / S460 / S550 / S690 

13 L250x250x22 S355 / S460 / S550 / S690 

14 L250x250x26 S355 / S460 / S550 / S690 

 

Figure 4.5 shows the ratio between the numerical results for the cross-section resistance (Mult,u) and 

the plastic characteristic resistance (Mpl,u=Wpl,u·fy=1,5·Wel,u·fy), versus the c/𝜀t ratio. Details about the 

evaluation of the elastic/plastic modulus in respect to the strong u axis can be found in Annex A. 

 

 

Figure 4.5: Strong axis bending. Ratio between numerical results and plastic resistance vs. c/𝜀t ratio 
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The samples that reach their plastic characteristic resistance (Mpl,u=1,5·Mel,u), even with a 3% 

deviation, can be categorized as class 1-2, while the class-3 limit can be easily found when Mult,u is 

equal to Mel,u and then Mult,u / Mpl,u = 0,66. Subsequently, from the numerical results, the class-2 limit 

for equal leg angles subjected to strong axis bending may be adopted as c/t ≤ 16𝜀, while the class-3 

limit can be set to c/t ≤ 27𝜀. 

In the plastic domain, the leg is an outstand element subjected to uniform compression and then class-

2 limit may be obtained from EN 1993-1-1, Table 5.2, sheet 2 as c/t ≤ 10𝜀. The background of this 

value may be found in ESDEP [30] where it is indicated that a class-2 limit can be obtained by 

defining the value of the reduced plate slenderness 𝜆𝑝,𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅  by eq. (4.8) as equal to 0,6: 

𝜆𝑝̅̅ ̅ =
𝑐/𝑡

28,427𝜀√𝑘𝜎
= 𝜆𝑝,𝑚𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅   ⇒

𝑐

𝑡
= 17,06𝜀√𝑘𝜎                              (Eq. 4.8) 

The buckling factor kσ is equal to 0,43 for simply supported boundary conditions. So, a c/t value of 

11,2𝜀 is found (rounded to 10𝜀 in Table 5.2, sheet 2). If clamped boundary conditions are now 

assumed, kσ = 1,25 (see Ref.[31]-[32]) and this leads to c/t ≤ 19,1𝜀. By observing the numerical and 

analytical results, it can be concluded that the actual class-2 limit is between the above two extreme 

cases and finally the following limit may be adopted: 

𝑐

𝑡
≤ 16𝜀                                                   (Eq. 4.9) 

which defines the limit between classes 2 and 3. In fact, the leg in tension is seen to bring a torsional 

restraint to the leg in compression, with an intermediate efficiency between fully pinned and fully 

fixed boundary conditions. 

  

Figure 4.6: Elastic stress distribution for strong axis bending (Mu) 

For elastic behaviour (Figure 4.6), the compression leg is an outstand element subjected to a stress 

ratio 𝜓 =
𝜎2

𝜎1
=
ℎ2

ℎ1
=
ℎ−𝑐

ℎ
≈
ℎ−0,8ℎ

ℎ
≈ 0,20. Based on EN 1993-1-1, Table 5.2, sheet 2, the class-3 

limit is equal to c/t ≤ 15,3𝜀, which is smaller than the proposed class-2 limit. Again, it is based on an 

assumption of simply supported boundary condition (i.e kσ = 0,54). If, now, clamped boundary 

conditions are assumed, the corresponding buckling factor [31]-[32] may be taken as equal to kσ = 

1,57. Then, the class-3 limit may be obtained from the general formula of EN 1993-1-1, Table 5.2, 

sheet 2: 

𝑐

𝑡
≤ 21𝜀√1,57 = 26,3𝜀                                           (Eq. 4.10) 

This value is quite close to the numerically obtained one (27𝜀) and is selected here as the proposed 

class-3 limit.  
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4.4 Classification to weak axis bending 

When the cross-section is subjected to weak axis bending Mv, the stress conditions for the two legs 

are identical and then, classification refers to both legs. As before, only limits between classes 2 and 

3 and 3 and 4 have been derived. Two cases are defined and checked afterwards: the leg tip is under 

compression and under tension. 

4.4.1 Tip in compression 

Table 4.3 presents the cross-sections and the steel grades that have been used for the numerical 

studies in which the samples are subjected to weak axis bending moment Mv, with the tip in 

compression. As before, the last 8 analysis, i.e. 15* and 16* in Table 4.3, are theoretical so as to 

address slenderer cross-sections.  

Table 4.3: Samples for the analyses of the cross-section subjected to weak axis bending Mv 

No Cross-Section Steel grades 

1 L45x45x3 S355 / S460 / S550 / S690 

2 L45x45x4 S355 / S460 / S550 / S690 

3 L70x70x5 S355 / S460 / S550 / S690 

4 L70x70x6 S355 / S460 / S550 / S690 

5 L120x120x7 S355 / S460 / S550 / S690 

6 L120x120x8 S355 / S460 / S550 / S690 

7 L130x130x8 S355 / S460 / S550 / S690 

8 L130x130x9 S355 / S460 / S550 / S690 

9 L150x150x10 S355 / S460 / S550 / S690 

10 L150x150x12 S355 / S460 / S550 / S690 

11 L250x250x17 S355 / S460 / S550 / S690 

12 L250x250x20 S355 / S460 / S550 / S690 

13 L250x250x22 S355 / S460 / S550 / S690 

14 L250x250x26 S355 / S460 / S550 / S690 

15* L120x120x7 S700 / S800 / S900 / S950 

16* L130x130x8 S700 / S800 / S900 / S950 

 

 

Figure 4.7: Weak axis bending – tip in compression. Ratio between numerical results and plastic resistance 

vs. the length parameter k 
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independent of the length. It has been found that the value of the sample length L= 6·h [mm], is 

working quite well (see Figure 4.7): 

• for small c/𝜀t ratios which corresponds to class 1 or 2 profiles, the difference between L= 

4·h and L= 6·h is less than 0,5%, what is acceptable. 

• for large c/𝜀t ratios which corresponds to class 3 and 4 profiles, the difference between L= 

6·h and L= 8·h is less than 1,8%, what is also acceptable. 

The details and results of this specific parametric study are summarized in Table 4.4.  

Table 4.4: Samples of the numerical simulations about the optimal length value 

No 
h 

[mm] 

fy 

[N/mm2] 

t 

[mm] 
c/𝜀t k 

L=k·h 

[mm] 

Mult,v 

[kNm] 

Mpl,v 

[kNm] 

Mult,v/Mpl,v 

[-] 

1 250 355 26 9,7 

1,6 400 183,17 184,34 0,99 

3 750 181,43 184,34 0,98 

3,5 875 181,16 184,34 0,98 

4 1000 180,94 184,34 0,98 

6 1500 180,57 184,34 0,98 

2 250 550 26 11,7 

1,5 375 281,90 285,6 0,99 

3 750 277,57 285,6 0,97 

4 1000 276,54 285,6 0,97 

6 1500 275,98 285,6 0,97 

3 130 460 8 18,9 

0,77 100 21,42 20,94 1,02 

3 390 19,19 20,94 0,92 

4 520 18,86 20,94 0,90 

6 780 18,54 20,94 0,89 

8 1040 18,53 20,94 0,88 

4 130 690 8 24,6 

1,5 195 28,96 31,42 0,92 

3 390 25,92 31,42 0,82 

4 520 24,65 31,42 0,78 

6 780 23,32 31,42 0,74 

8 1040 22,88 31,42 0,73 
 

Figure 4.8 shows the ratio between the numerical results for the cross-section resistance (Mult,v) and 

the plastic characteristic resistance (Mpl,v=Wpl,v·fy), versus the c/𝜀t ratio. The analytical expressions 

for the evaluation of Wpl,v can be found in Annex A. From the numerical results, one can observe that 

the class-2 limit, where the samples reach their Mpl,v even with a 3% deviation, is c/t ≤ 14𝜀, while the 

class-3 limit (samples that reach their elastic resistance) is c/t ≤ 26,9𝜀. 

 

Figure 4.8: Weak axis bending – tip in compression. Ratio between numerical results and plastic resistance 

vs. c/𝜀t ratio 
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Figure 4.9: Stress distribution (compression taken as positive) for weak axis bending (Mv) – tip in 

compression 

 

Figure 4.10: Stress ratio ψ for elastic stress distribution – tip in compression (angles from 70 to 300) 

The stress ratio for elastic stress distribution (see Figure 4.9-a) is given by 𝜓 =
𝜎2

𝜎1
= −

𝑒−(ℎ−𝑐)

ℎ−𝑒
 . As 

is shown in Figure 4.10, the stress ratio ψ ≈ -0,1 for usual angle sections. Therefore, the buckling 

factor may be conservatively set equal to kσ = 0,57 (valid for ψ = 0) and according to EN 1993-1-1, 

Table 5.2, sheet 2, the class-3 limit is: 

 c/t ≤ 15,9𝜀                                                           (Eq. 4.11) 

If now clamped boundary conditions are considered, as done for strong axis bending, the buckling 

factor is equal to kσ =1,65 (for stress ratio ψ ≈ -0,1). Then, the class-3 limit may be obtained again 

from the general formula of EN 1993-1-1, Table 5.2, sheet 2 as follows: 

  
𝑐

𝑡
≤ 21𝜀√𝑘𝜎 = 21𝜀√1,65 = 26,9𝜀                                     (Eq. 4.12) 

The class-3 limit may so be defined accordingly as it is in agreement with the numerical results. 

For the plastic stress distribution, the proportion of the leg in compression is  𝑎 = 1 −
𝑒𝑝−𝑡−𝑟

ℎ−𝑡−𝑟
. By 

considering all the available angle sections, it can be seen that the value of α is ranging between 0,50 

to 0,62 with a mean value of approximately 0,58 and a standard deviation of 2%, and therefore, a 

value of 0,60 is adopted. The class 2 limit may be accordingly obtained from the general formula of 

EN 1993-1-1, Table 5.2, sheet 2, from: 

𝑐

𝑡
≤
10𝜀

𝑎
=
10𝜀

0,6
= 16,6𝜀                                             (Eq. 4.13) 

The classification limits proposed currently by Eurocode 3, i.e. eq. (4.11) and eq. (4.13), are not at 

all consistent as the c/t-ratio for class 3 (c/t ≤ 15,9𝜀) is lower than the one obtained for class 2 (c/t ≤ 

16,6𝜀). The reason is that the mechanical model for class 2 sections in Eurocode 3, when the tip is 

in compression, is not correct because the outstand elements partially in compression are treated as 
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elements fully in compression with a reduced width αc. This means that the hinge support is 

introduced exactly at the position where the compression starts. This is questionable since tension is 

beneficial to local buckling. For that reason, it is proposed here to keep the c/t limit for class 2 equal 

to: 

  
𝑐

𝑡
≤ 14𝜀                                                        (Eq. 4.14) 

which is in good agreement with the numerical results. 

4.4.2 Tip in tension 

Table 4.5 presents the cross-sections and the steel grades that have been used for the analyses in 

which the pin-ended samples are subjected to weak axis bending moment Mv-tip in tension. As 

already explained for the previous cases, the last 8 analysis, i.e. 3* and 4* in Table 4.5, are theoretical 

so as to investigate the behaviour of the cross-section and validate the limit between class 2 and class 

3. The value L = 6·h [mm] for the length has been adopted in this case too, as explained in section 

4.4.1.  

Table 4.5: Details for the analyses of the cross-section subjected to weak axis bending Mv-tip in tension 

No Cross-Section Steel grades 

1 L120x120x7 S355 / S460 / S550 / S690 

2 L120x120x8 S355 / S460 / S550 / S690 

3* L130x130x8 S720 / S850 / S1050 / S1250 

4* L130x130x9 S820 / S990 / S1200 / S2000 
 

Figure 4.11 shows the ratio between the numerically obtained values of the cross-section resistance 

(Mult,v) and the plastic resistance, according to the c/𝜀t ratio. 

 

Figure 4.11: Weak axis bending – tip in tension. Ratio between numerical results and plastic resistance vs. 

c/𝜀t ratio 

From the numerical results, one can observe that the class-2 limit for equal leg angles subjected to 

weak axis bending when the tip is in tension, equals c/t ≤ 27𝜀. 

In the plastic domain, the proportion of the leg subjected to compression is 𝛼 =
𝑒𝑝−𝑡−𝑟

ℎ−𝑡−𝑟
 and taking r 

= t as an approximation, it may be shown (Figure 4.12) that, for usual angle sections, it is α ≈ 0,4. 

Then, the class-2 limit may be obtained from the general formula of EN 1993-1-1, Table 5.2, sheet 

2: 

  
𝑐

𝑡
≤
10𝜀

𝛼√𝛼
=

10𝜀

0,4√0,4
= 39,52𝜀                                                (Eq. 4.15) 
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Figure 4.12: Ratios α for tip in tension (angles from 70 to 300) 

At the end, the class-2 limit may be kept as provided by the numerical results (c/t ≤ 27𝜀), which is 

on the safe side concerning the normative approach. In any case, both limits are far from the highest 

c/𝜀t ratios obtained for available angles and steel grades. Therefore, all angle sections may practically 

always develop their plastic moment for weak axis bending when the tip is in tension. 

4.5 Summary of classification for equal leg angle sections 

The complete set of the proposed duly validated classification criteria is summarized in Table 4.6. It 

may be seen that, unlike in the current Eurocodes, the same geometric parameters, c and t, are used 

for all cross-section loading situations. 

Table 4.6: Maximum width-to-thickness ratios for compression parts of equal leg angle sections 

 
Section in 

compression 

Section in 

strong axis 

bending Mu 

Section in weak 

axis bending Mv – 

tip in compression 

Section in weak 

axis bending Mv 

– tip in tension 

Class 

1 – 2 
--- 

𝑐

𝑡
≤ 16 𝜀 

𝑐

𝑡
≤ 14 𝜀 

𝑐

𝑡
≤ 27 𝜀 

Class 

3 

𝑐

𝑡
≤ 13,9 𝜀 

𝑐

𝑡
≤ 26,3 𝜀 

𝑐

𝑡
≤ 26,9 𝜀 --- 

where 𝜀 = √235/𝑓𝑦[
𝑁

𝑚𝑚2
] 

4.6 Conclusions 

From the present study, involving numerical and analytical approaches, the following conclusions 

may be drawn: 

• A proposal for the classification of equal leg angles, fully consistent with the Eurocode 

normative documents, is presented and validated numerically and analytically. 

• Angle cross-sections are classified separately for compression, strong and weak axis 

bending. 

• The numerical investigations have been performed with ABAQUS software using volume 

elements and are in very good agreement with the analytical developments. 

• The classification boundary from class 3 to 4 of an angle cross-section subjected to different 

loadings, is determined through the slenderness of the compression leg and not the torsional 

instability mode as usually considered for other common profiles. 

• The proposed classification rules are written in the format of the existing Eurocode 3, cover 

all cross-section classes and remove inconsistencies of existing specifications.  
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5. DESIGN RESISTANCES OF ANGLE CROSS-SECTIONS 

In the following paragraphs, formulae for the evaluation of the cross-section design resistance of 

equal leg angles are proposed and validated through the numerical results obtained in chapter 4 

concerning the classification. The formulae were based on those given in EN 1993-1-1 and were 

adjusted appropriately for angles sections when required. The notations for the material properties, 

safety factors and other properties follow those given in chapter 2, and therefore no further definitions 

are given here, unless it is necessary. Finally, based on the results obtained in the previous chapter 

of classification, a linear transition between plastic and elastic bending resistances is adopted. This 

smooth transition has been proposed and validated for double symmetric cross-sections in the SEMI-

COMP European funded project [33] and will be adopted for these sections in the forthcoming new 

version of Eurocode 3 Part 1-1 (pr EN 1993-1-1 [26]).  

5.1 Cross-section resistance to tension  

The cross-section design resistance for axial tension may be determined from:  

𝑁𝑡,𝑅𝑑 =
𝐴𝑓𝑦

𝛾𝑀0
                                          (Eq. 5.1) 

The corresponding characteristic resistance Nt,Rk is given by eq. (5.1), removing γΜ0 from the 

equation. No modification is recorded here from the existing Eurocode 3, but is reported just for sake 

of completeness. 

5.2 Cross-section resistance to compression  

The proposed cross-section design resistance for axial compression may be determined from:  

𝑁𝑐,𝑅𝑑 = {

𝐴𝑓𝑦

𝛾𝑀0
for class 1,2 and 3 profiles

𝛢𝑒𝑓𝑓𝑓𝑦

𝛾𝑀0
for class 4 profiles

                                       (Eq. 5.2) 

where, 

Aeff is the area of the effective cross-section defined as: 

 𝐴𝑒𝑓𝑓 = 𝐴 − 2𝑐𝑡(1 − 𝜌)                                                    (Eq. 5.3) 

ρ  is the reduction factor accounting for plate buckling, equal to:  

𝜌 = {
1,0 for  λ̅p ≤ 0,748

λ̅p−0,188     

�̅�𝑝
2 for  λ̅p > 0,748

                                           (Eq. 5.4) 

considering a reduced plate slenderness of the legs equal to:    

λ̅p = √
fy

𝜎cr
=

𝑐/𝑡

28,4𝜀√0,43
=

𝑐/𝑡

18,6𝜀
                                          (Eq. 5.5) 

The corresponding characteristic resistance Nc,Rk is given by eq. (5.2), removing γΜ0 from the 

equation.  

In order to be in line with the classification limits as derived in section 4.2, the geometric property �̅� 

must be defined differently than in the current Eurocode provisions. Consequently, the statement of 

EN 1993-1-5, §4.4(2) that �̅� = ℎ for equal leg angles should be replaced for this type of section by 
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�̅� = 𝑐. This constitutes the only difference between the current proposal and the existing Eurocode 

3 provisions. 

Figure 5.1 shows the ratio between the numerically determined cross-section resistance (Nult), and 

the characteristic resistance (Nc,Rk), versus the c/𝜀t ratio. It may be seen that the response is not 

influenced by the cross-section size. Furthermore, it may be seen that, for stocky class 1 to 3 legs, 

there is a small overestimation of resistance by the proposed formulae. However, this is largely 

counterbalanced by strain hardening effect that is not considered in the numerical analysis. For class-

4 sections the proposed rules are largely on the safe side. 

 

Figure 5.1: Cross-section resistance to compression. Ratio between numerical results and characteristic 

compression resistance vs. c/εt ratio 

Figure 5.2 illustrates the ratio between the numerically determined cross-section resistance (Nult), and 

the design resistance (Nc,Rd), versus the c/𝜀t ratio. The design resistances have been evaluated firstly 

with the current proposal and then based on the existing provisions of EN 1993-1-1 in combination 

with EN 1993-1-5 for class-4 sections. The vertical dot lines represent the class-3 limit as suggested 

in chapter 4 (c/t ≤ 13,9𝜀) and the one calculated using Eurocode 3 provisions (c/t ≤ 11,1𝜀 – eq. (4.6)). 

It can be easily seen that the proposed model is less conservative for class-4 profiles while still 

remaining on the safe side.  

 

Figure 5.2: Cross-section resistance to compression. Ratio between numerical results and design compression 

resistance obtained from the current proposal and Eurocode 3 vs. c/εt ratio 

5.3 Cross-section resistance to strong axis bending 

The proposed cross-section design resistance to strong axis bending Mu may be determined from: 

𝑀𝑢,𝑅𝑑 = 𝑊𝑢
𝑓𝑦

𝛾𝑀0
                                                        (Eq. 5.6) 
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where, 

Wu is the section modulus about u axis that equals: 

𝑊𝑢 = 𝛼𝑖,𝑢𝑊𝑒𝑙,𝑢 with  i = 2, 3, 4                                                  (Eq. 5.7) 

where, 

α2,u = 1,5                                              for class 1 or 2                       (Eq. 5.8) 

 α3,u = [1 + (
26,3ε−c/t

26,3ε−16ε
) ∙ (1,5 − 1)]     for class 3                              (Eq. 5.9) 

    α4,u = Weff,u /Wel,u =ρu
2                          for class 4                            (Eq. 5.10) 

ρu  is the reduction factor for plate buckling, determined from eq. (5.4) 

considering a plate slenderness of legs expressed by: 

λ̅p = √
𝑓𝑦

𝜎cr
=

𝑐/𝑡

28,4𝜀√1,57
=

𝑐/𝑡

35,6𝜀
                                        (Eq. 5.11) 

For strong axis bending of class-4 sections, the effective cross-section becomes non-symmetric due 

to the fact that only one leg is in compression (see Figure 5.3(b)). This changes the position of the 

centroid, the directions of the principal axes and all cross-section properties. In order to avoid such 

laborious calculation, an approximate solution for the effective section modulus is envisaged. This 

may be achieved by reducing equally the other leg too, an approach that is on the safe side (see Figure 

5.3(c)). The comparison of the ratio between the initial and the approximate effective cross-section, 

is shown in Figure 5.4. It may be seen that the proposed approach, applied to a large number of cross-

sections, is on the safe side.  

 

Figure 5.3: (a) Initial cross-section, (b) actual effective cross-section and (c) Approximate effective cross-

section  

 

Figure 5.4: Ratio of the strong axis moduli between the initial and the effective cross-section 

Figure 5.5 shows the ratio between the numerically determined cross-section resistance (Mult,u), and 

the characteristic resistance (Mu,Rk), versus the c/𝜀t ratio. It may be seen that the response is not 
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influenced by the cross-section size. For stocky class 1 and 2 legs, the proposed formulae predict 

almost exactly the resistance. For class-3 sections there is a small overestimation of resistance in a 

very limited range of c/𝜀t-ratios, while for class-4 sections the proposed rules are always on the safe 

side. 

 

Figure 5.5: Cross-section resistance to strong axis bending. Ratio between numerical results and 

characteristic moment resistance vs. c/εt ratio  

Figure 5.6 illustrates the ratio between the numerically determined cross-section resistance (Mult,u), 

and the design resistance (Mu,Rd), versus the c/𝜀t ratio. The design resistances have been evaluated 

both with the current proposal and the existing provisions of EN 1993-1-1. The vertical green and 

blue dot lines represent respectively the class limits as suggested in chapter 4 (i.e c/t ≤ 16𝜀  for class 

2 to 3 and c/t ≤ 26,3𝜀  for class 3 to 4) and as calculated using EN 1993-1-1 provisions (i.e c/t ≤ 10𝜀 

for class 2 to 3 and c/t ≤ 15,3𝜀 for class 3 to 4). The benefits and the improvements coming from the 

proposals in terms of classification and cross-section resistance on the design of the cross-sections 

under strong axis bending may be clearly observed. 

 

Figure 5.6: Cross-section resistance to strong axis bending. Ratio between numerical results and design 

resistance obtained from the current proposal and Eurocode 3 vs. c/εt ratio 

5.4 Cross-section resistance to weak axis bending 

5.4.1 Tip in compression 

The design characteristic resistance of angle cross-sections to weak axis bending Mv –when the tip is 

in compression – may be determined from: 
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𝑀𝑣,𝑅𝑑 = 𝑊𝑣

𝑓𝑦

𝛾𝑀0
                                                          (Eq. 5.12) 

where, 

Wv is the section modulus about v axis that equals: 

𝑊𝑣 =  𝛼𝑖,v𝑊𝑒𝑙,v with  i = 2, 3, 4                                                 (Eq. 5.13) 

where, 

α2,v = Wpl,v /Wel,v                                          for class 1 or 2             (Eq. 5.14) 

 α3,v = [1 + (
26,9ε−c/t

26,9ε−14ε
) ∙ (α2,v  − 1)]          for class 3                    (Eq. 5.15) 

       α4,v = Weff,v /Wel,v =0,94·ρv
2                          for class 4                    (Eq. 5.16) 

ρv  is the reduction factor for plate buckling, determined from eq. (5.4) 

considering a plate slenderness of legs expressed by: 

λ̅p = √
𝑓𝑦

𝜎cr
=

𝑐/𝑡

28,4𝜀√1,65
=

𝑐/𝑡

36,5𝜀
                                           (Eq. 5.17) 

It should be noted that, for weak axis, Wpl,v ≠1,50·min(Wel,v
tip, Wel,v

toe), in contrast with the case of 

strong axis bending. However, based on the numerically tested samples, it appears that Wpl,v = (1,65 

~ 1,95)·min(Wel,v
tip, Wel,v

toe) and so, a value α2,v = 1,75 could be possibly adopted as a rough estimation 

for a preliminary design.  

For class 4 cross-sections, a similar procedure than for strong axis bending is followed. Figure 5.7 

shows that the modulus of the effective cross section is approximately equal to the modulus of the 

initial cross-section multiplied with the factor 0,94·ρv
2. Therefore, α4,v is fixed accordingly. 

 

  Figure 5.7: Ratio of the weak axis section moduli between the full and the effective cross-section 

Figure 5.8 shows the ratio between the numerically determined cross-section resistance (Mult,v), and 

the characteristic resistance (Mv,Rk using the exact value of Wpl,v), versus the c/𝜀t-ratio. It may be seen 

that the response is not influenced by the cross-section size. For stocky legs of class 1 and 2, entering 

even in class-3, there is a small overestimation of resistance. This may be counterbalanced by strain 

hardening effect not considered here. This is also observed for large c/𝜀t-ratios in the border between 

class 3 and 4. However, such ratios are not corresponding to existing hot-rolled angle profiles. 

Figure 5.9 illustrates the ratio between the numerically determined cross-section resistance (Mult,v), 

and the design resistance (Mv,Rd), versus the c/𝜀t ratio. The design resistances have been evaluated 
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both with the current proposal and the existing provisions of EN 1993-1-1. The vertical green and 

blue dot lines represent respectively the class limits as suggested in chapter 4 (i.e c/t ≤ 14𝜀 for class 

2 to 3 and c/t ≤ 26,9𝜀 for class 3 to 4) and as calculated using EN 1993-1-1 provisions (i.e c/t ≤ 16,6𝜀 

for class 2 to 3 and c/t ≤ 16𝜀 for class 3 to 4 as explained in section 4.4.1, the profiles in between 26 

and 16,6 are treated as class 4 sections for the calculations). The benefits and the improvements 

brought from the current proposals (classification and cross-section resistance) on the design of the 

sections is again clearly observed. 

 

Figure 5.8: Cross-section resistance to weak axis bending – tip in compression. Ratio between numerical 

results and characteristic moment resistance vs. c/εt ratio Tip in tension 

 

Figure 5.9: Cross-section resistance to weak axis bending– tip in compression. Ratio between numerical 

results and design resistance obtained from the current proposal and Eurocode 3 vs. c/εt ratio 

5.4.2 Tip in tension 

The design resistance of angle cross-sections to weak axis bending Mv – tip in tension – may be 

determined from: 

𝑀𝑣,𝑅𝑑 = 𝑊𝑝𝑙,𝑣
𝑓𝑦

𝛾𝑀0
                                                       (Eq. 5.18) 

As it is shown in Figure 4.11 for c/𝜀t ratio less than 27, the analytical approach for the cross-section 

resistance subjected to weak axis bending, when the tip is in tension, is in good agreement with the 

numerical results.     
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5.5 Conclusions 

The main features of the proposed design rules are summarized below: 

• The proposed design rules are based on theoretical-analytical considerations and are duly 

validated through extensive numerical investigations. 

• They are written respecting the format of the existing Eurocode 3 specifications. 

• They are simple to apply. 

• They include all important loading conditions such as compression, weak and strong axis 

bending. 

• They allow a smooth transition between cross-section classes, removing any artificial 

stepwise prediction of resistance.  

• They are less conservative than the current design rules proposed by Eurocode 3. 
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6. COMPRESSION TESTS ON HIGH STRENGTH STEEL COLUMNS 

To extend the knowledge for the stability behaviour of steel columns from high strength steel 

(S460M) angle cross-sections subjected to compression and bending, twelve buckling tests on such 

columns have been performed at Liège University. The experiments have been limited to high 

strength steel only, given the fact that several compression tests on angles with lower steel grades 

were already available in the literature [11]-[13]-[14]-[15]. The selection of the specimens, the details 

about the experimental campaign such as measurements before and during the tests, as well as the 

test results, are presented in this chapter. The tests have been accompanied by numerical simulations, 

performed considering relevant imperfections as well as geometrical and material non-linearities. 

The numerical results have been then compared and validated with the experimental ones. 

6.1 Details of the tested specimens 

For the experimental program, two profiles from large angle cross-sections (L150x150x18 and 

200x200x16) made of S460M steel grade have been selected. For each profile, six column tests have 

been performed with three different lengths per profile and two positions of load application for each 

length. The selected points are (see Figure 6.1) the centre of gravity (G), which corresponds to pure 

compression in the angle cross-section and the intersection point of minor principal axis v-v with the 

middle line of the leg thickness (P2), which represents the position of the connecting bolt for angles 

in structures.  

 

Figure 6.1: Definition of the axes and position of the load application points (G and P2) 

Table 6.1: Details about the specimens 

ID of 

Specimen 
Profile 

Steel 

grade 

Length of angle 

member L [mm] 

Eccentricity 

[mm] 

Sp11 L 150x150x18 S460M 2500 0,00 

Sp12 L 150x150x18 S460M 2500 ev = 48,74 

Sp13 L 150x150x18 S460M 3000 0,00 

Sp14 L 150x150x18 S460M 3000 ev = 48,74 

Sp15 L 150x150x18 S460M 3500 0,00 

Sp16 L 150x150x18 S460M 3500 ev = 48,74 

Sp21 L 200x200x16 S460M 3000 0,00 

Sp22 L 200x200x16 S460M 3000 ev = 66,64 

Sp23 L 200x200x16 S460M 3500 0,00 

Sp24 L 200x200x16 S460M 3500 ev = 66,64 

Sp25 L 200x200x16 S460M 4000 0,00 

Sp26 L 200x200x16 S460M 4000 ev = 66,64 
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Table 6.1 summarizes all the details about the specimens. The reported length is the one of the angle 

member, without considering the end plates. The system length is defined in §6.4. The name of each 

specimen consists of two numbers Sp## (e.g. Sp12): 

• the first number indicates the profile: 1 for L150x150x18 and 2 for 200x200x16; 

• the second one is the serial number of the specimen (1 to 6 per profile). 

For all tests, constant dimensions have been selected for the end plates welded at the extremities of 

the angle members, in order to simplify the placement procedure of the specimen in the test rig. 

Therefore, the position of the applied load is always the same for the machine and the eccentricity is 

introduced by moving the profile on the end plates. The steel grade of all end plates is S355. The 

welds have been designed according to EN 1993-1-8 [3]. For all specimens, the minimum required 

weld thickness is 6 mm, except for specimens Sp11 and Sp21 which require a minimum thickness of 

8 mm. Figure 6.2 shows the details of such end plates on which the specimens have been welded. 

    

Figure 6.2: Detail of end plates in case of centrally (left) and eccentrally (right) loaded specimens. 

6.2 Test measurements 

6.2.1 Actual dimensions of the cross-sections 

The actual geometrical dimensions of each angle section – the width (hi) and the thickness (ti) of each 

leg – have been measured at 3 points along the member: at 1/4, 1/2 and 3/4 of the angle member 

length (L). The mean values of the measurements are reported in Table 6.2; the notations can be 

found in chapter 2, while indexes A and B are determined in Figure 6.3. The length of the angle 

member and the load eccentricity of each specimen has been also measured and reported in Table 

6.2. 

Table 6.2: Measurements of the actual geometry and dimensions of the cross-sections 

ID of 

specimen 
L [mm] 

Eccentricity 

[mm] 
hA [mm] hB [mm] tA [mm] tB [mm] 

Sp11 2500 0,00 149,97 150,09 18,16 18,14 

Sp12 2500 ev = 48,71 150,07 150,12 18,18 18,04 

Sp13 3000 0,00 150,11 149,92 18,04 18,16 

Sp14 3000 ev = 48,72 150,09 150,10 18,04 18,17 

Sp15 3500 0,00 150,07 150,11 18,17 18,07 

Sp16 3500 ev = 48,70 150,11 149,95 18,16 18,19 
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ID of 

specimen 
L [mm] 

Eccentricity 

[mm] 
hA [mm] hB [mm] tA [mm] tB [mm] 

Sp21 3000 0,00 200,31 200,41 16,32 16,34 

Sp22 3000 ev = 66,60 200,36 200,39 16,39 16,29 

Sp23 3500 0,00 200,25 199,92 16,32 16,28 

Sp24 3500 ev = 66,65 200,05 200,01 16,42 16,10 

Sp25 4000 0,00 199,96 200,27 16,33 16,35 

Sp26 4000 ev = 66,63 200,06 200,39 16,32 16,31 

 hi = 1/3(hiL1/4+hiL1/2+hiL3/4) (i = A, B)   ;   ti = 1/3(tiL1/4+tiL1/2+tiL3/4) (i = A, B) 

6.2.2 Measurement of initial geometrical imperfections along the member length 

Two displacement measurements (M1 & M2) on each external face (Face A & Face B) and along 

the column length have been performed to evaluate the initial imperfections of the specimens. Figure 

6.3 shows the details of the set-up. Due to the end plates and the measurement system itself, it was 

not possible to take measurements quite close to the ends of the specimens. As a result, all the 

measurements start at 140 mm from the top end plate and finish at 140 mm from the bottom one. A 

measurement has been taken every 50 mm along the column. It has been reasonably assumed that 

the columns are straight close to the end plates (140 mm).  

 

Figure 6.3: Measurement system for geometrical imperfections (left), detail and position of the displacement 

transducers (right) 

Different corrections had to be made on the so-obtained raw measurements: 

• As the chariot supporting the displacement transducers was moving onto a horizontal guiding 

bar (see Figure 6.3), a small rotation of the metric system was occurring; this one has been 

measured with an inclinometer, so allowing correcting the measurements accordingly.  

• In addition, the specimen was not perfectly parallel to the set-up. To account for this effect, 

the relative position of the specimen from a prestressed reference cable (see Figure 6.3) was 

measured. 
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• Finally, a last correction has been done in order to assume a zero imperfection at the 

extremities of the column to account for the fact that the first and last measurements are 

realised at 140 mm from the end plate.  

This procedure has been followed for face A and face B. All the results from the measured 

geometrical imperfections can be found in the relevant technical report [34]. An example of the initial 

measurements and of the corrected geometrical imperfections for Sp15 are presented in Figure 6.4 

and Figure 6.5 respectively. 

 

Figure 6.4: Initial measurements of geometrical imperfections for Sp15-face B 

 

Figure 6.5: Initial geometrical imperfections of both faces along specimen Sp15 

An accurate comparison between the actual measured imperfections of the specimens and those 

assumed in the Eurocode is difficult to perform as explained here after. The European norm EN 

1090-2 [35] prescribes that the deviation from straightness should be Δ ≤ L[mm]/750 while, in prEN 

1993-1-14 [29], it is stated that 80% of the geometric fabrication tolerances given in [35] should be 

applied. This leads to an initial bow imperfection of magnitude approximately equal to L[mm]/1000 

and, usually, a deformation shape similar to the first member instability mode is assumed. However, 

in reality, the shape is more complex. For this reason, only a rough comparison can be done at this 

level (see Table 6.3) through the evaluation of an experimental estimated value |𝑀𝑎𝑥|𝑖𝑚𝑝𝑒𝑟𝑓 

obtained by taking into account the maximum value [M1CA, M1CB , M2CA , M2CB] and by assuming that 

it is the same in both faces: 

|𝑀𝑎𝑥|𝑖𝑚𝑝𝑒𝑟𝑓 = max{M1CA, M2CA, M1CB, M2CB} · √2                         (Eq. 6.1) 

where: 

M1CA is the M1 maximum final corrected measurement on face A for specimen i; 

M2CA is the M2 maximum final corrected measurement on face A for specimen i; 

M1CB is the M1 maximum final corrected measurement on face B for specimen i; 

M2CB is the M2 maximum final corrected measurement on face B for specimen i. 
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Table 6.3: Maximum values of the actual initial imperfections of the specimens compared with those 

prescribed by the European regulations [29]-[35]  

ID of specimen L/1000 [mm] 
|Max|imperf 

[mm] 

Sp11 2,5 0,4 

Sp12 2,5 1,2 

Sp13 3,0 1,3 

Sp14 3,0 0,8 

Sp15 3,5 2,4 

Sp16 3,5 3,0 

Sp21 3,0 1,6 

Sp22 3,0 2,7 

Sp23 3,5 1,7 

Sp24 3,5 2,8 

Sp25 4,0 1,5 

Sp26 4,0 1,8 

 

From this table, it can be observed that the measured imperfections are smaller than the geometrical 

tolerances prescribed in European regulations for all specimens. 

6.2.3 Coupon tests for the material properties 

Coupon tests have been performed in accordance with ISO 6892-1 [36]. The samples for the tensile 

tests have been extracted from one of the extremities of the angle member (see Figure 6.6) after the 

buckling tests, based on ISO 377 [37]. 

 

Figure 6.6: Location of tensile samples for coupon tests based on [37] 

 

Figure 6.7: Stain-stress curves from the coupon tests 

Figure 6.7 shows the strain-stress curves obtained from few tensile tests and Table 6.4 provides the 

characteristic values for all. The yield stress fy (engineering stress) is determined by the value of the 

yield plateau in the curves and defers from the upper value yield stress ReH.  It may be observed that 
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while the actual ultimate stress was above the nominal values for all specimens, this was not the case 

for the yield stress. 

Table 6.4: Coupon test’s results 

ID of 

material 

E 

[MPa] 

Measured 

yield 

stress fy 

[MPa] 

Measured 

ultimate 

stress fult 

[MPa] 

Measured 

strain at 

failure 

[%] 

Nominal 

yield 

stress 

fy,nom 

[MPa] 

fy/fy,nom 

[-] 

Characterized 

specimens 

S 460/1 203155 425,8 572,50 14,3 460,0 0,93 
Sp12, Sp13, Sp14, 

Sp15, Sp16 

S 460/2 208947 487,6 604,64 13,7 460,0 1,06 
Sp21, Sp22, Sp23, 

Sp25, Sp26 

S 460/3 197317 417,2 560,87 14,3 460,0 0,91 Sp11 

S 460/4 203797 472,6 587,21 13,8 460,0 1,03 Sp24 

6.2.4 Measurements during the test 

The tests have been carried out in an Amsler 500 testing machine, with a compression capacity of 

5000 kN. The specimens are pin ended in the testing rig, since the rotations about the minor and 

major axes can develop freely, but no twist or warping is able to occur at the extremities. During the 

tests, the following displacements illustrated in Figure 6.8 were measured: 

• the vertical displacement C1 (using two transducers: one at the front and one at the back side 

of the specimen); 

• four horizontal displacements C2, C3, C4 and C5 at the mid cross-section (1st position); 

• four horizontal displacements C6, C7, C8 and C9 at the cross-section located at ¼L from the 

bottom (2nd position).  

 

Figure 6.8: Schemes of the Amsler 500 test machine and of the measurements during a test 

All the displacement transducers have been placed 30 mm from the edges/corner of all cross-sections 

and profiles. The set-up allowing the record of those displacements is illustrated in Figure 6.9. In 

addition, four strain gauges (I1 to I4) have been placed at the mid-height cross-section of each column 
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in order to check local yielding. The strain gauges have been positioned as close as possible to the 

leg extremities, accounting for the curvature of the latter. 

 

Figure 6.9: (a) General view of test rig with the measurement devices, (b) connection points of displacement 

transducers on the cross-section, (c) vertical displacement transducer, (d) detail of the top bearing plate and 

(e) detail of the bottom bearing plate 

6.2.5 Mathematical interpretation of the measurements 

The displacements of the corner of the angle (O point) as well as the twist of the cross-section, that 

are reported in the graphs of section §6.3, have been evaluated using the following formulae (for the 

definition of the axes and symbols, see Figure 6.10 left): 

𝑦𝑂 = 𝐶3 + 30 ·
𝐶3−𝐶2

𝑑
 [𝑚𝑚]                                                    (Eq. 6.2) 

𝑧𝑂 = 𝐶4 − 30 ·
𝐶5−𝐶4

𝑑
 [𝑚𝑚]                                                   (Eq. 6.3) 

θ =
1

2
(𝑎𝑡𝑎𝑛 (

𝐶3−𝐶2

𝑑
) + 𝑎𝑡𝑎𝑛 (

𝐶5−𝐶4

𝑑
)) · 1000 [𝑚𝑟𝑎𝑑]                  (Eq. 6.4) 

where d = 90 or 140 [mm] for L150x150x18 or L200x200x16 respectively. 

The formulae are given for the middle cross-section, but they may also be used for the lower one, by 

replacing C2, C3, C4 and C5 by C6, C7, C8 and C9 respectively.  

To transform the displacements from the geometrical axes to the principal ones (see Figure 6.10 

right), the following equations have been used: 

𝑢𝑖 = 𝑦𝑖𝑐𝑜𝑠𝜃 + 𝑧𝑖𝑠𝑖𝑛𝜃 = (𝑦𝑖 + 𝑧𝑖) ·
√2

2
                                          (Eq. 6.5) 

𝑣i = zi𝑐𝑜𝑠𝜃 − yi𝑠𝑖𝑛𝜃 = (zi − yi) ·
√2

2
                                          (Eq. 6.6) 
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Figure 6.10: Definition of axis and symbols for the mathematical interpretation 

The axial deformation of the specimen has been evaluated as the mean value of both vertical 

transducers.  

6.3 Results of the experimental tests 

The results of the experimental tests are presented below through graphs and tables. Figure 6.11 and 

Figure 6.12 show the load-axial displacement (shortening) curves for the profiles L150x150x18 and 

L200x200x16 respectively. All the measurements (initial geometrical imperfections, rotations, 

strains and deflections) for each specimen are available in the relevant technical report [34].  

 

Figure 6.11: Load vs axial deformation of tested profiles L 150x150x18 

 

Figure 6.12: Load vs axial deformation of tested profiles L 200x200x16 

Both figures indicate that the results obtained by experimentation are in line with the expectations 

when the test campaign was defined, in particular in terms of influence of the member length and of 

the eccentricity on the member stiffness and resistance. 
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Amongst the specimens without nominal load eccentricity, three (Sp11, Sp15, Sp25) showed nearly 

zero deflections transverse to the weak axis and three (Sp13, Sp21, Sp23) showed very small ones 

(see Figure 6.13). For the latter, it may indicate that some limited unintentional eccentricity resulting 

from installation tolerances were introduced as explained later. Nevertheless, for all these tests, the 

deflections according to the weak axis increased significantly with the load until failure was reached 

by weak axis buckling; towards the heel of the cross section for Specimens Sp13, Sp15, Sp25 

(negative value of u – see Figure 6.10) and in the opposite direction for Sp11, Sp21 and Sp23 

(positive value of u – see Figure 6.10). It can be concluded that specimens Sp11, Sp13 and Sp15 

failed in a pure flexural buckling mode (see Figure 6.15(a)), while for specimens Sp21, Sp23 and 

Sp25, twist rotations were recorded (see Figure 6.14) in addition to weak axis deflections, indicating 

a flexural torsional buckling mode. 

  

  

  
*U/VO,midH     is the displacement of the corner point O of the mid – height cross-section along u/v principal axis 

*U/VO,lowH     is the displacement of the corner point O of the low – height cross-section along u/v principal axis 

Figure 6.13: Load-deflection curves for centrally loaded specimens 

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

-2,00 2,00 6,00 10,00 14,00 18,00 22,00

Lo
ad

 [
kN

]

Displacements u,v [mm]

Specimen 11

UO,midH

VO,midH

UO,lowH

VO,lowH
0,00

300,00

600,00

900,00

1200,00

1500,00

1800,00

-2,00 4,00 10,00 16,00 22,00 28,00 34,00

Lo
ad

 [
kN

]

Displacements u,v [mm]

Specimen 21

UO,midH

VO,midH

UO,lowH

VO,lowH

0,00

150,00

300,00

450,00

600,00

750,00

-45,00 -35,00 -25,00 -15,00 -5,00 5,00

Lo
ad

 [
kN

]

Displacements u,v [mm]

Specimen 13

UO,midH

VO,midH

UO,lowH

VO,lowH
0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

-5,00 5,00 15,00 25,00 35,00 45,00

Lo
ad

 [
kN

]

Displacements u,v [mm]

Specimen 23

UO,midH

VO,midH

UO,lowH

VO,lowH

0,00

100,00

200,00

300,00

400,00

500,00

600,00

-58,00 -48,00 -38,00 -28,00 -18,00 -8,00 2,00

Lo
ad

 [
kN

]

Displacements u,v [mm]

Specimen 15

UO,midH
VO,midH
UO,lowH
VO,lowH

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

-70,00 -55,00 -40,00 -25,00 -10,00 5,00

Lo
ad

 [
kN

]

Displacements u,v [mm]

Specimen 25

UO,midH
VO,midH
UO,lowH
VO,lowH



Design of lattice towers made of large hot-rolled high strength steel angles 

_______________________________________________________________________________ 

  

 49   Marios-Zois BEZAS 

 

  

Figure 6.14: Load-twist curves at mid-height cross-section for centrally loaded (left) and eccentrically loaded 

(right) specimens 

 

Figure 6.15: Final deformed shape of (a) Sp15 with a pure flexural buckling mode, (b) Sp26 with a flexural-

torsional failure buckling mode and (c) Sp14 with a mixed mode between flexural and flexural torsional 

buckling 

The eccentrically loaded specimens were initially subjected to compression and strong axis bending.  

At low load levels, the deflections transverse to the strong axis were high while they were very small 

in the other principal direction (see Figure 6.16 and green cross-sections in Figure 6.17); this was 

opposite to the tendency of the angles to fail by weak axis buckling. At higher load levels, deflections 

transverse to the weak axis grew quickly and prevailed at failure (in Figure 6.17, the red cross-section 

corresponds to the ultimate load and the blue cross-section is after buckling). In specimens Sp22, 

Sp24 and Sp26, these deflections were accompanied by significant twist rotations indicating clearly 
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a failure with a flexural-torsional buckling mode (see Figure 6.15(b)). On the contrary, twist rotations 

were small for specimens Sp12, Sp14 and Sp16 indicating a mixed mode between flexural and 

flexural torsional buckling (see Figure 6.15(c)). The most stressed mid-height cross section was 

subjected to compression and bi-axial bending. In fact, strong axis bending was primarily due to the 

eccentric loading and weak axis bending due to second order effects.  

The absence of visible local buckling in all specimens should be also mentioned, although all Sp2# 

specimens are categorized as class 4 according to the existing provisions of EN 1993-1-1; with the 

proposed classification system they are also classified in class-4 for compression but in class-2 for 

bending (c/εt = 14,6). 

  

  

  
*U/VO,midH     is the displacement of the corner point O of the mid – height cross-section along u/v principal axis 

*U/VO,lowH     is the displacement of the corner point O of the low – height cross-section along u/v principal axis 

Figure 6.16: Load-deflection curves for eccentrically loaded specimens 
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section, all at the failure load. The sign of the deflections and the twist is in accordance with Figure 

6.10.  

 

Figure 6.17: Schematic movement of the mid-height cross-section along the loading for specimens Sp24 and 

Sp26 

Table 6.5: Deflections and twist at the mid-height cross-section at the failure load 

ID of 

Specimen 
Profile Nexp [kN] uO [mm] vO [mm] θ [mrad] 

Sp11 

1
5

0
x
1

5
0
x

1
8

 

1010,6 8,88 -0,01 -0,82 

Sp12 767,3 -15,28 -16,39 -3,94 

Sp13 723,2 -28,22 0,53 1,71 

Sp14 628,3 -16,35 -17,05 2,05 

Sp15 563,9 -31,53 -0,95 0,39 

Sp16 519,8 -17,78 -17,03 -1,81 

Sp21 

2
0

0
x
2

0
0
x

1
6

 

1661,5 10,89 1,52 3,96 

Sp22 1341,4 2,48 -17,07 -44,92 

Sp23 1228,0 20,49 1,53 3,51 

Sp24 1092,3 16,87 -18,09 -59,51 

Sp25 1048,1 -38,43 0,62 7,77 

Sp26 953,6 16,31 -22,11 -62,95 

6.4 Comparison with FEM analyses 

Subsequently, numerical simulations considering relevant imperfections as well as geometrical and 

material non-linearities were performed and compared with the results of the experimental tests. The 

numerical analyses were performed with the FINELG non-linear finite element software using beam 

elements. The choice of beam elements is acceptable and justified from the fact that no local buckling 

took place during the tests. Only the column has been modelled while the end plates at the extremities 

have been considered indirectly: the length (L) of each column has been increased by 107 mm, what 

corresponds to the thickness of the end plates of the specimens as well as the connection plate, so as 

to simulate the actual buckling length (Lcrit) of the column (length between the zero moment levels 

in Figure 6.8). Each column has been meshed in twenty beam finite elements along the member 

length. This is an optimal mesh as the difference of member’s response (ultimate load and 

deflections) is less than 1% ether the member is meshed in fifteen elements or thirty. The columns 

were assumed as pin-end members with free rotations at their extremities, except the rotation that 

leads to torsion along the length axis, which was blocked. All the other DOF at the extremities were 

blocked, except ux at the node of the applied load. Therefore, the experimental boundary conditions 

were rather well represented by the model. 

The FINELG finite element analyses adopting the GMNIA method were performed considering: 
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• An initial member imperfection (shape and magnitude in accordance with the measured 

ones). 

• Residual stresses resulting from the hot-rolling procedure; the selected pattern (Figure 6.18) 

is chosen from previous studies [38]-[39] in which appropriate measurements had been 

realized. It was shown that the residual stresses in hot rolled steel angle sections are 

independent of the steel grade and therefore a magnitude of 70 MPa (corresponding to 0,3 ·

𝑓𝑦, for steel grade S235) is used. The selected pattern is applied automatically by the software 

to each beam element along the member length. 

• A material law in accordance with the measured one (see Table 6.4). 

 

Figure 6.18: Assumed distribution pattern of residual stresses based on [38]-[39] with fy fixed to 235 

MPa whatever is the actual steel grade 

 

Figure 6.19: Influence of eccentricity at the ultimate resistance of member (excerpt of the full graph) 

A tolerance on the position of the applied load from up to 2,0 mm has been adopted for the numerical 

simulations in order to calibrate the results. It has been found that even a small eccentricity could 

affect significantly the ultimate resistance and the stiffness of the member in comparison to the 

perfectly “no loading eccentricity” case. Figure 6.19 shows that an eccentricity equal to 1,5 mm (for 

the angle section L200x200x16) changes the ultimate resistance by approximately 6%. The influence 

of this small eccentricity of the applied load on the stiffness and the ultimate resistance has been also 

observed in [40]. The eccentricity has been applied in u direction as it has been found, through the 

numerical simulations, that the influence on the response of an eccentricity in the v direction is 

negligible (see Figure 6.1 for the definition of the axes). The adoption of such a tolerance can be 

justified as by the two following reasons: 

• the nominal position of the load has been designed to coincide with the centre of the end 

plates and, accordingly, with the centre of gravity of the cross section. In reality, due to small 

differences in the cross-section geometry, the real centre of gravity does not coincide exactly 

with the loading point; 
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• the positioning of the specimen in the testing rig may also induce a small and unexpected 

eccentricity. 

Figure 6.20 and Figure 6.21 show the axial deformations (shortening) of the specimens versus the 

load for both experimental tests (solid lines) and numerical simulations (dotted lines). Table 6.6 

summarizes and compares the ultimate experimental and numerical resistances. One can see from 

the graphs and the table that there is a very good agreement between numerical simulations and 

experimental tests in terms of axial stiffness and load carrying capacity. The mean value of the ratio 

Nexp / NFEM is equal to 0,98 with a COV of 1%. 

 

Figure 6.20: Comparison between test and FEM results for Sp1# 

 

Figure 6.21: Comparison between test and FEM results for Sp2# 

Figure 6.22 and Figure 6.23 show some characteristic load-deflections curves of the specimens for 

both experimental tests and numerical simulations.  

The numerical results provide similar responses for most of the specimens without nominal loading 

eccentricity (same as Specimen Sp15 in Figure 6.22), as well as a good correspondence with the 

tests. However, for two specimens (Sp21, Sp23), the numerical response appears to be more flexible 

than the test one, at least in the initial phase of the test; but close to the failure, a rather good 

agreement with the experiment is contemplated.    
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Table 6.6: Ultimate resistances obtained by experimental tests and numerical models 

ID of 

Specimen 
Profile 

Buckling 

length in 

GMNIA 

[mm] 

Actual load 

eccentricities 

[mm] 

Additional 

assumed 

eccentricities in 

GMNIA [mm] 

Nexp 

[kN] 

NFEM 

[kN] 
Nexp/NFEM 

Sp11 

1
5

0
x
1

5
0
x

1
8

 

2607 0,00 eu = 1,50 1010,6 1028,6 0,98 

Sp12 2607 ev = 48,71 eu = 0,50 767,3 774,1 0,99 

Sp13 3107 0,00 eu = -2,00 723,2 739,3 0,98 

Sp14 3107 ev = 48,72 eu = -1,10 628,3 645,9 0,97 

Sp15 3607 0,00 eu = -2,00 563,9 575,8 0,98 

Sp16 3607 ev = 48,70 eu = -1,00 519,8 536,0 0,97 

Sp21 

2
0

0
x
2

0
0
x

1
6

 

3107 0,00 eu = -1,50 1661,5 1690,6 0,98 

Sp22 3107 ev = 66,60 eu = -0,80 1341,4 1361,0 0,99 

Sp23 3607 0,00 eu = -2,00 1228,0 1267,4 0,97 

Sp24 3607 ev = 66,65 eu = -0,50 1092,3 1107,6 0,99 

Sp25 4107 0,00 eu = -1,70 1048,1 1082,2 0,97 

Sp26 4107 ev = 66,63 eu = 0,00 953,6 959,1 0,99 
 

  

Figure 6.22: Characteristic load-deflection curves at mid-height cross-section for centrally loaded specimens 

  

Figure 6.23: Characteristic load-deflection curves at mid-height cross-section for eccentrically loaded 

specimens 

Similar results, in terms of lateral flexibility of the columns, have been observed for eccentrically 

loaded specimens (see Figure 6.23). This additional flexibility could be explained by the fact that the 

end plates at the extremities of the angle members have been modelled indirectly (additional length 
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and restraints at the extremities of the member), as well as by the consideration of the unintentional 

eccentricities. The prevailing of weak axis buckling near the failure load has been observed also 

through the numerical simulations for the eccentrically loaded specimens. 

6.5 Conclusions 

The stability of columns made of large angle profiles in high strength steel and subjected to centric 

and eccentric compression loads is investigated through experimental tests and numerical 

simulations. The experimental campaign consists of twelve tests on columns with large angle cross-

sections (L150x150x18 and 200x200x16) made of S460 or S420 steel grade. Accompanying 

numerical studies have been carried out, considering relevant geometrical imperfections as well as 

geometrical and material non-linearities. From the present study, the following conclusions may be 

drawn. 

• The centrically loaded specimens (Sp11, Sp13, Sp15) and the eccentrically loaded specimens 

(Sp22, Sp24, Sp26) failed very clearly in a pure weak axis flexural buckling mode and 

correspondingly flexural torsional buckling mode. 

• The centrically loaded specimens (Sp21, Sp23, Sp25) and the eccentrically loaded specimens 

(Sp12, Sp14, Sp16) failed mostly in a flexural torsional buckling mode, which was more 

pronounced.  

• For the eccentrically loaded specimens that subjected to compression and strong axis 

bending, it has been seen that at low levels of loading the deflections transverse to the strong 

axis were high while they were very small in the other principal direction, but at higher load 

levels, deflections transverse to the weak axis grew quickly and prevailed at failure, this is 

in line with the tendency of angles to buckle along weak axis. 

• Local buckling was not visibly observed in any specimen, although all Sp2# specimens are 

categorised as class 4 according to the existing provisions of EN 1993-1-1; with the proposed 

classification system they are also classified in class-4 for compression but in class-2 for 

bending. 

• A very good agreement between the numerical GMNIA simulations performed with 

FINELG and the experimental results in terms of axial stiffness and ultimate resistances has 

been achieved, through the consideration of an unintentional small eccentricity. Indeed, a 

small eccentricity of the position of the applying load can affect the ultimate resistance of 

the member in comparison with the perfect “no loading eccentricity” case. For the current 

study, an eccentricity equals to 1,5 mm may reduce the ultimate resistance by about 6%. At 

the end of this comparative study, it may be concluded that the FINELG is appropriate 

numerical tool to predict the response of angle profiles subjected to combined axial load and 

bending moments.  
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7. DESIGN RULES FOR MEMBERS MADE OF ANGLES 

The particularities of angles explain that existing design rules for other types of sections, mostly 

doubly symmetric ones, cannot safely cover angles, what inevitably leads to the need for the 

development of specific design provisions for angle sections. Such specific design rules and 

recommendations can be found in various parts of Eurocode 3. More specifically, EN 1993-1-1 [1] 

as well as its forthcoming new version named prEN 1993-1-1 [26] provides general rules for angles, 

while EN 1993-3-1[2] provides rules for the buckling resistance of angles as members in towers 

when connected eccentrically with bolts on one leg. Another European specification, the CENELEC 

standard EN 50341-1 [5] provides specific rules for lattice towers used in the field of overhead 

electrical lines, addressing specific problems linked to such application but it also provides specific 

rules for the verification of lattice towers and their constituting parts, including members made of 

angles. However, all these rules are not necessarily compatible and so their validity is questionable. 

In the following, formulae about the design resistance and stability of equal leg angle members are 

proposed, highlighting the differences with the existing provisions of Eurocode 3. The proposed rules 

were fully validated through numerical investigations and experimental tests. The extensive 

numerical parametrical studies were performed by the full non-linear software ABAQUS. 

Experimental results are coming from tests carried out in the framework of the thesis, as well as from 

previous experimental investigations found in literature. Experimental results were also compared to 

existing Eurocode 3 provisions for sake of comparison.  

7.1 Design rules and recommendations 

7.1.1 Buckling resistance to compression 

The buckling design resistance for axial compression may be determined from:  

𝑁𝑏,𝑅𝑑 = {
𝜒𝑚𝑖𝑛

𝐴𝑓𝑦

𝛾𝑀1
    for class 1,2 and 3 profiles

𝜒𝑚𝑖𝑛
𝛢𝑒𝑓𝑓𝑓𝑦

𝛾𝑀1
for class 4 profiles

                       (Eq. 7.1) 

where Aeff is the area of the effective cross-section that equals: 

 𝐴𝑒𝑓𝑓 = 𝐴 − 2𝑐𝑡(1 − 𝜌)                                           (Eq. 7.2) 

The reduction factor ρ for outstand plated elements due to local buckling is given in EN 1993-1-5 as 

below: 

𝜌 = {
1,0 for  λ̅p ≤ 0,748

λ̅p−0,188     

�̅�𝑝
2 for  λ̅p > 0,748

                                         (Eq. 7.3) 

considering the relative plate slenderness of legs equal to: 

�̅�𝑝 = √𝜒𝑚𝑖𝑛

𝑐

𝑡

18,6𝜀
                                               (Eq. 7.4) 

The buckling reduction factor χmin is determined as a function of the relative slenderness 𝜆 ̅of the 

compression member for the flexural buckling modes only: 

𝜒𝑚𝑖𝑛 = 𝑚𝑖𝑛{𝜒𝑢; 𝜒𝑣}                                                  (Eq. 7.5) 
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The value of the buckling reduction factors 𝜒𝑢, 𝜒𝑣  are computed for the appropriate relative 

slenderness 𝜆𝑢̅̅ ̅, 𝜆𝑣̅̅ ̅ and considering buckling curve b for steel grades S235-S420, or buckling curve 

a for higher steel grades (≥ S460). 

The relative slenderness 𝜆𝑢̅̅ ̅ and 𝜆𝑣̅̅ ̅ should be taken as: 

𝜆𝑢 ̅̅ ̅̅ = √
𝐴𝑓𝑦

𝑁𝑐𝑟,𝑢
     and        𝜆𝑣  ̅̅ ̅̅ = √

𝐴𝑓𝑦

𝑁𝑐𝑟,𝑣
                                     (Eq. 7.6) 

where, 

Ncr,u  is the elastic critical force for the flexural buckling mode about u-u axis, based on 

the gross cross-sectional properties; 

Ncr,v  is the elastic critical force for the flexural buckling mode about v-v axis, based on 

the gross cross-sectional properties. 

> Comparison with EN 1993-1-1 and prEN 1993-1-1 provisions 

EN 1993-1-1 recommends the use of buckling curve b whatever is the steel grade while, in the 

forthcoming new version of this normative document, prEN 1993-1-1, curve b is still used for steel 

grades S235-S420 but curve a is proposed for higher steel grades (≥S460). For the purposed of the 

thesis, the selection of the buckling curves follows the provisions of prEN 1993-1-1. However, both 

versions recommend the use the “elastic critical load for the relevant buckling mode” for the 

evaluation of the non-dimensional slenderness, i.e. the minimum eigenvalue amongst all flexural and 

flexural-torsional buckling modes. As explained in §3.1, a pure torsional mode cannot be obtained 

for a centrally loaded angle column. Through numerical studies on angles in compression (see §7.2.2) 

considering various profiles, lengths and steel grades, it is seen that weak axis flexural buckling 

always prevail at failure even for angles exhibiting a flexural-torsional elastic critical instability mode 

as minimum eigenvalue. Therefore, it seems reasonable to calculate the member resistance of rolled 

angles by using the slenderness for flexural buckling only and not by referring to the “relevant 

buckling mode” which may include torsional effects, as EN 1993-1-1 and prEN 1993-1-1 prescribe. 

Additionally, the interaction between local and global buckling are considered in the definition of 

the relative plate slenderness �̅�𝑝 via the term √𝜒𝑚𝑖𝑛, unlike in EN 1993-1-1.  

7.1.2 Lateral torsional buckling resistance to strong axis bending 

The bending resistance of laterally unrestrained beams is determined by application of a reduction 

factor, accounting for effects of lateral torsional buckling, to the relevant resistance of the same 

beams assumed to be laterally restrained. It is reminded here that the bending resistance of laterally 

restrained beams was derived in chapter 4, considering a linear transition between plastic and elastic 

bending resistances, adopting thus the procedure for double symmetric cross-sections that was 

proposed by SEMI-COMP [33].  

The design buckling resistance moment Mu,Rd of a laterally unrestrained beam may accordingly be 

determined from: 

𝑀𝑢,𝑅𝑑 = 𝜒𝐿𝑇𝑊𝑢
𝑓𝑦

𝛾𝑀1
                                                    (Eq. 7.7) 

where Wu is the section modulus about the u axis equals to: 

𝑊𝑢 = 𝛼𝑖,𝑢𝑊𝑒𝑙,𝑢 ,  i = 2, 3, 4                                              (Eq. 7.8) 
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where, 

α2,u = 1,5                                              for class 1 or 2                          (Eq. 7.9) 

 α3,u = [1 + (
26,3𝜀−𝑐/𝑡

26,3𝜀−16𝜀
) ∙ (1,5 − 1)]     for class 3                               (Eq. 7.10) 

    α4,u = Weff,u /Wel,u =ρu
2                         for class 4                               (Eq. 7.11) 

ρu is the reduction factor for plate buckling, evaluated through eq. (7.3), considering a reduced plate 

slenderness of the legs equal to:    

λ̅p = √𝜒𝐿𝑇

𝑐

𝑡

35,58𝜀
                                                  (Eq. 7.12) 

The reduction factor for lateral torsional buckling χLT should be determined as a function of the 

relative slenderness 𝜆𝐿𝑇 ̅̅ ̅̅ ̅of the member:  

𝜆𝐿𝑇 ̅̅ ̅̅ ̅ = √
𝑊𝑢𝑓𝑦

𝑀𝑐𝑟
                                                       (Eq. 7.13) 

where the elastic critical moment for lateral-torsional buckling Mcr is given by the following equation 

[7], in combination with Table 7.1:  

𝛭𝑐𝑟 = 𝐶𝑏
0,46∙𝐸∙ℎ2∙𝑡2

𝑙
                                                      (Eq. 7.14) 

The value of the buckling reduction factor χLT for the relative slenderness 𝜆𝐿𝑇 ̅̅ ̅̅ ̅ should be derived from 

buckling curve a, which can be determined using eq. (6.57) of  EN 1993-1-1:§6.3.2.3(1) for lateral-

torsional buckling, using λ̅LT,0 = 0,4 and β = 1,00 (see equations below). 

𝜒𝐿𝑇 =
1

𝛷𝐿𝑇+√𝛷𝐿𝑇
2 −�̅�𝐿𝑇

2
     but  {

 𝜒𝐿𝑇 ≤ 1,0

 𝜒𝐿𝑇 ≤ 1 �̅�𝐿𝑇
2⁄

                                (Eq. 7.15) 

𝛷𝐿𝑇 = 0,5[1 + 𝑎𝐿𝑇(�̅�𝐿𝑇 − 0,4) + �̅�𝐿𝑇
2 ]                                      (Eq. 7.16) 

However, following the recommendations of EN 1993-1-1, lateral torsional buckling may be ignored 

(χLT  = 1,0) when one of the following conditions apply: 

λ̅LT ≤ λ̅LT,0  (where λ̅LT,0 = 0,4)     or     
𝑀𝐸𝑑

𝑀𝑐𝑟
≤ λ̅LT,0

2
  

Table 7.1: Determination of the Cb-factor for LTB [7] 

General case: 

𝐶𝑏 =
12,5𝑀𝑚𝑎𝑥

2,5𝑀𝑚𝑎𝑥 + 3𝑀𝐴 + 4𝑀𝐵 + 3𝑀𝐶
≤ 1,5 

 

For linear moment distribution: 

𝐶𝑏 =
12,5

7,5+5𝜓
    with   −1 ≤ 𝜓 =

𝑀2

𝑀1
 ≤ 1 

 

 

 

> Comparison with EN 1993-1-1 and prEN 1993-1-1 

The lateral torsional buckling resistance is in line with EN 1993-1-1 eq. (6.55) or prEN 1993-1-1, eq. 

(8.79). However, like in flexural buckling, the interaction between local and global buckling are 
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considered through the relative plate slenderness �̅�𝑝 and not through the global slenderness �̅�𝐿𝑇 . 

Buckling curve d is recommended by both normative documents while, a is adopted in the thesis as 

a result of the validation procedure based on numerical studies (see §7.2.3). 

The transition between elastic and plastic bending resistances adopts the proposals of SEMICOMP 

in contrast with the existing version of Eurocode 3, but in line with the forthcoming one, at least for 

doubly symmetric sections.  

7.1.3 Resistance to weak axis bending 

As already shown, the cross-section resistance of angles subjected to weak axis bending depend on 

whether the tip is in tension or in compression, but not on the member length. Therefore, the member 

resistance coincides with the cross-section resistance as provided in §5.4. 

7.1.4 Buckling resistance to bending and axial compression 

Following the procedures of EN 1993-1-1 and prEN 1993-1-1, two conditions for buckling around 

one or the other principal axis should be satisfied for angle members subjected to compression and 

biaxial bending. Torsional buckling is not checked separately but is included in the local buckling 

check. 

➢ strong axis check 

(
𝑁𝐸𝑑

𝑁𝑏𝑢,𝑅𝑑
+ 𝑘𝑢𝑢

𝑀𝑢,𝐸𝑑

𝑀𝑢,𝑅𝑑
)
𝜉

+ 𝑘𝑢𝑣
𝑀𝑣,𝐸𝑑

𝑀𝑣,𝑅𝑑
≤ 1                                      (Eq. 7.17) 

➢ weak axis check 

(
𝑁𝐸𝑑

𝑁𝑏𝑣,𝑅𝑑
+ 𝑘𝑣𝑢

𝑀𝑢,𝐸𝑑

𝑀𝑢,𝑅𝑑
)
𝜉

+ 𝑘𝑣𝑣
𝑀𝑣,𝐸𝑑

𝑀𝑣,𝑅𝑑
≤ 1                                      (Eq. 7.18) 

where kij are the interaction factors provided in Table 7.2; 

Table 7.2: Determination of kij factors 

kij factors 

𝑘𝑢𝑢 =
𝐶𝑢

1 −
𝑁𝐸𝑑

𝑁𝑐𝑟,𝑢

 𝑘𝑢𝑣 = 𝐶𝑣 

𝑘𝑣𝑢 = 𝐶𝑢 𝑘𝑣𝑣 =
𝐶𝑣

1 −
𝑁𝐸𝑑

𝑁𝑐𝑟,𝑣

 

Cu= 0,6+0,4ψu Cv= 0,6+0,4ψv 

-1 ≤ψu=
𝑀2𝑢

𝑀1𝑢
≤1 -1 ≤ψv=

𝑀2𝑣

𝑀1𝑣
≤1 

 

The ξ-factor that depends on the cross-section class, is expressing a plastic, intermediate or elastic 

design and may be determined accordingly as follows: 
  c/t ≤ 16ε:                     ξ = 2                                                                  (Eq. 7.19) 

16ε < c/t < 26,3ε:         ξ = [1 + (
26,3𝜀−

𝑐

𝑡

26,3𝜀−16𝜀
) ∙ (2 − 1)]                        (Eq. 7.20) 
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c/t > 26,3ε:                 ξ = 1                                                                  (Eq. 7.21) 

 

> Comparison with EN 1993-1-1 and prEN 1993-1-1 

The procedure exhibits similarities, but also differences with EN 1993-1-1,6.3.3 (4) and prEN 1993-

1-1, 8.3.3 (5). In both procedures there are two equations, respectively for buckling around one and 

the other principal axis, the equations have three terms (one for compression, two for bending around 

the principal axes), lateral torsional buckling is included in the strong axis bending term while local 

buckling is included through the properties of the effective section. 

In contrast, in the proposed check, the factor ξ is introduced that makes the interaction between the 

three terms non-linear (as in Eurocode 3, despite they appear as linear). The quadratic term with ξ=2 

tries to cover the cross-section resistance check of class-2 cross-sections as derived in Vayas et al. in 

[8]. Furthermore, simpler expressions for the terms Ci and ki,j, straightforwardly derived from the 

stability theory, are proposed.  

7.1.5 General method for angles 

The general method proposed in EN 1993-1-1 and prEN 1993-1-1 for the evaluation of the stability 

of structural members or parts of structures applies to lateral and lateral torsional buckling for 

structural components with mono symmetric cross-sections, built-up or not, uniform or not, with 

complex support conditions or not, which are subjected to compression and/or uni-axial bending in 

the plane, but which do not contain rotated plastic hinges.  

The general method can be interpreted as follows, for members with equal leg angles. The out-of-

plane buckling resistance of the member is checked if the following equation satisfied: 

𝜒𝑜𝑝 ·
𝑎𝑢𝑙𝑡,𝑘

𝛾𝛭1
≥ 1,0                                                        (Eq. 7.22) 

where, 

𝜒𝑜𝑝 is the reduction factor corresponding to the non-dimensional slenderness 𝜆𝑜𝑝̅̅ ̅̅̅ and aimed at 

accounting for weak axis buckling only, as it is the predominant failure mode for angles. The 

selection of the buckling curve is based on prEN 1993-1-1. 

𝑎𝑢𝑙𝑡,𝑘  is the minimum load factor to be applied to the design loads to reach the characteristic 

resistance of the most critical cross-section of the structural component considering its in 

plane behaviour without accounting for lateral or lateral torsional buckling, but accounting 

for all effects due to in plane geometrical deformation and imperfections, global and local, 

where relevant. It can be derived from the following equation: 

1

𝛼𝑢𝑙𝑡,𝑘
=
𝜎𝑚𝑎𝑥 

𝑓𝑦
=
𝜎𝑁 

𝑓𝑦
+
𝜎𝑒0  

𝑓𝑦
+
𝜎𝑀u 

𝑓𝑦
+
𝜎𝑀v 

𝑓𝑦
                   (Eq. 7.23) 

in which: 

➢ the first term relates to the stress under pure compression; 

➢ the second, to the second order maximum stress resulting from the amplification of 

the first order moment NEd·e0,EC3 (e0,EC3 is the in-plane equivalent imperfection as 

defined in prEN 1993-1-1), i.e. the moment NEd·e0,EC3[1/(1-NEd/Ncr,u)]; 
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➢ the third one relates to the second order maximum stress resulting from the 

amplification of the first order moment NEd·ev (ev is the in-plane load eccentricity), 

which can be estimated as NEd·ev[1/(1-NEd/Ncr,u)]; 

➢ the fourth term relates to the first order bending moment NEd·eu (eu is the out-of-plane 

load eccentricity). 

The global relative slenderness 𝜆𝑜𝑝̅̅ ̅̅̅ for the structural component should be determined from the 

equation below, in which the term 𝛼𝑐𝑟,𝑜𝑝 is the minimum load factor for the design loads to reach 

the elastic critical load of the structural component associated to weak axis buckling (𝛼𝑐𝑟,𝑜𝑝 = 𝛼𝑐𝑟,v). 

𝜆𝑜𝑝̅̅ ̅̅̅ = √
𝛼𝑢𝑙𝑡,𝑘

𝛼𝑐𝑟,𝑜𝑝
                          (Eq. 7.24) 

In case that the angle is connected by the leg, the "in-plane" instability effects may be considered as 

negligible, 2nd order effects may be disregarded (1/(1-NEd/Ncr,u) = 1) and e0 may be taken equal to 

zero (in recognition of the rather limited impact of this parameter in regard to the load eccentricity).  

The cross-section resistance in bending may be evaluated by using eq. (7.8). Conservatively, the 

elastic cross-section resistance (Wel) may be also used. 

> Comparison with EN 1993-1-1 and prEN 1993-1-1 

The difference with the present and forthcoming code versions lies in the definition of the reduction 

factor which aims to take into account only the weak axis buckling (instead of lateral and lateral 

torsional buckling. The term 𝛼𝑐𝑟,𝑜𝑝 is therefore adapted accordingly. 

7.2 Numerical validation  

The validation of the proposed formulae for the prediction of the carrying capacity of members with 

equal leg angle sections is based on comparisons with the results of numerical simulations conduced 

considering a wide range of parameters. The profile sizes, the member lengths and the steel grades 

have been selected in order to obtain a large number of samples with properties that are commonly 

used in steel towers (see Table 7.3). It has to be mentioned that the classification system used 

hereafter follows the proposals of chapter 4. 

Table 7.3: Cross-sections commonly used in steel lattice towers 

Chords Braces 

Cross-

section 
Use 

Length 

[m] 

Steel 

grade 

Cross-

section 
Use 

Length 

[m] 
Steel grade 

L70x70xt 

Smallest cross-

section for 

upper levels 

1,0-2,0 
S355 

S460 
L80x80xt 

For low 

levels 
1,0-2,0 

S355 

S460 

L150x150xt 
Standard cross-

section 
2,0-3,0 

S355 

S460 
L70x70xt 

For 

middle 

levels 

1,0-2,0 
S355 

S460 

L250x250xt 
For high pylons 

at low levels 
2,0-3,0 

S355 

S460 
L45x45xt 

For upper 

levels 
1,0-2,0 

S355 

S460 

 

7.2.1 Description of the numerical models 

The numerical models have also been performed with the finite element software ABAQUS. The 

angle members were considered as pin-ended and have been modelled using at least three (3) volume 
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elements over the leg thickness, while fictitious end plates have been introduced through a specific 

constraint at the extremities. In all the numerical simulations, all the applied loads increasing 

simultaneously up to failure (or at least until reaching a maximum-ultimate load). In the cases where 

second order effects are significantly affecting the response, the ultimate load is defined as in §3.6. 

The model is similar to the one used in the numerical studies for classification, presented in §4.1. 

The finite element analyses were performed considering: 

• An initial bow imperfection of magnitude approximately equal to L[mm]/1000 with a 

deformation shape similar to the first member instability mode.  

This value combines (i) the recommendation from the European norm EN 1090-2 [35], 

which prescribes that the deviation from straightness should be Δ ≤ L[mm]/750, with (ii) the 

provisions of prEN 1993-1-14 [29], which states that 80% of the geometric fabrication 

tolerances given in Ref. [35] should be applied.  

• Residual stresses resulting from the hot-rolling procedure as shown in Figure 6.18 . 

Due to some technical difficulties to introduce residual stresses in the ABAQUS model, it has been 

decided to use an equivalent imperfection e0 that will represent the effect of the combined action of 

both residual stresses and initial imperfections. To calibrate the value of the equivalent imperfection 

e0, some analyses have been performed with FINELG finite element software, using beam elements. 

The angle members were considered as pin-ended with fictitious end plates at the extremities. The 

selection of the FINELG software has been done due to its easy and automatic way of introducing 

accurately residual stresses in the model. The profiles and the material and geometrical properties of 

the studied samples are shown in Table 7.3.  

Table 7.4: Details and results concerning the analyses to determine the equivalent imperfection e0 

No Cross-Section 
Length 

L [mm] 

Steel 

grade 

e0 [mm] 

from eq. 

(7.25) 

e0=L/700 

[mm] 
Nult [kN] 

Nult* 

[kN] 

Nult/Nult* 

[-] 

1 L70x70x5 1000 S355 1,34 1,42 182,41 188,45 0,97 

2 L70x70x5 1000 S460 1,26 1,42 217,71 216,77 1,00 

3 L70x70x5 2000 S355 2,69 2,86 64,04 64,77 0,99 

4 L70x70x5 2000 S460 2,52 2,86 64,61 65,62 0,98 

5 L80x80x8 2000 S355 2,74 2,86 144,31 142,03 1,02 

6 L80x80x8 2000 S460 2,58 2,86 148,54 146,35 1,01 

7 L150x150x13 2000 S355 2,89 2,86 1029,72 1077,83 0,96 

8 L150x150x13 2000 S460 2,73 2,86 1259,42 1267,67 0,99 

9 L250x250x20 2000 S355 2,87 2,86 3156,6 3236,49 0,98 

10 L250x250x20 2000 S460 2,67 2,86 4005,27 3939,71 1,02 

 

First, a full-non-linear analysis has been performed using FINELG software considering an initial 

imperfection (L/1000), an elastic perfectly plastic material behaviour law, as well as residual stresses 

(using the pattern shown in Figure 6.18) for each of the 10 different samples provided in Table 7.3. 

Through these analyses, the ultimate resistance Nult has been predicted. By introducing this value 

(Nult) in equation (7.25), a rough estimation of the equivalent imperfection e0 to be introduced in 

ABAQUS can be found; a value of e0 = L/700 is fixed. 

𝜎𝑚𝑎𝑥 =
𝑁𝑢𝑙𝑡

𝐴
+

𝑁𝑢𝑙𝑡𝑒0

(1−
𝑁𝑢𝑙𝑡
𝑁𝑐𝑟,𝑣

)𝑊𝑣
= 𝑓𝑦                                                (Eq. 7.25) 
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Then, a second full-non-linear analysis has been performed using again FINELG software, 

considering this time the equivalent imperfection (L/700) and an elastic perfectly plastic material law 

for each of the 10 samples; the ultimate resistance Nult* has been recorded and reported in Table 7.4. 

The mean value of the ratio Nult/Nult*  is equal to 0,99 with a COV of 2,0% which seems to demonstrate 

the adequacy of the adopted alternative modelling approach. 

Finally, a third full-non-linear analysis, considering the equivalent imperfection (L/700), has been 

performed with ABAQUS using solid elements. The mean value of the ratio Nult,abaqus/Nult  is equal to 

0,96 with a COV of 3,3%, which can be acceptable considering the different types of finite elements 

used in the two models (beam elements in FINELG vs. solid element in ABAQUS). Therefore, the 

equivalent imperfection e0 = L[mm]/700 accounting for both geometric imperfections and residual 

stresses is finally used in the analyses performed with ABAQUS to validate the member resistance 

formulae. 

7.2.2 Members in axial compression 

The profiles, lengths and steel grades have been selected from Table 7.3, but the thicknesses have 

been chosen so as to have samples of different classes (class 1 and 4) but also different elastic 

buckling modes as flexural or flexural-torsional. The details are summarized in Table 7.5, including 

also the ratio between the elastic critical load for flexural-torsional buckling and the minimum one 

obtained for flexural buckling.  

Table 7.5: Details of the samples subjected to a uniform compression load 

No Cross-Section  L [mm] 
fy 

[N/mm2] 
Class 

Eigenmode 

deformed shape 
Ncr,FT/minNcr,F [-] 

1 L70x70x5 1000 355 1 Flexural 1,05 

2 L70x70x5 1000 460 4 Flexural 1,05 

3 L70x70x5 2000 355 1 Flexural 2,64 

4 L70x70x5 2000 460 4 Flexural 2,64 

5 L70x70x6 1000 355 1 Flexural 1,43 

6 L70x70x6 1000 460 1 Flexural 1,43 

7 L70x70x6 2000 355 1 Flexural 3,01 

8 L70x70x6 2000 460 1 Flexural 3,01 

9 L70x70x7 1000 355 1 Flexural 1,82 

10 L70x70x7 1000 460 1 Flexural 1,82 

11 L70x70x7 2000 355 1 Flexural 3,25 

12 L70x70x7 2000 460 1 Flexural 3,25 

13 L70x70x10 1000 355 1 Flexural 2,71 

14 L70x70x10 1000 460 1 Flexural 2,71 

15 L70x70x10 2000 355 1 Flexural 3,53 

16 L70x70x10 2000 460 1 Flexural 3,53 

17 L150x150x13 2000 355 1 Flexural 1,29 

18 L150x150x13 2000 460 1 Flexural 1,29 

19 L150x150x13 3000 355 1 Flexural 2,25 
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20 L150x150x13 3000 460 1 Flexural 2,25 

21 L150x150x14 2000 355 1 Flexural 1,46 

22 L150x150x14 2000 460 1 Flexural 1,46 

23 L150x150x14 3000 355 1 Flexural 2,44 

24 L150x150x14 3000 460 1 Flexural 2,44 

25 L150x150x15 2000 355 1 Flexural 1,63 

26 L150x150x15 2000 460 1 Flexural 1,63 

27 L150x150x15 3000 355 1 Flexural 2,61 

28 L150x150x15 3000 460 1 Flexural 2,61 

29 L150x150x18 2000 355 1 Flexural 2,11 

30 L150x150x18 2000 460 1 Flexural 2,11 

31 L150x150x18 3000 355 1 Flexural 2,98 

32 L150x150x18 3000 460 1 Flexural 2,98 

33 L250x250x17 2000 355 4 Flexural-torsional 0,32 

34 L250x250x17 2000 460 4 Flexural-torsional 0,32 

35 L250x250x17 3000 355 4 Flexural-torsional 0,69 

36 L250x250x17 3000 460 4 Flexural-torsional 0,69 

37 L250x250x20 2000 355 1 Flexural-torsional 0,45 

38 L250x250x20 2000 460 4 Flexural-torsional 0,45 

39 L250x250x20 3000 355 1 Flexural-torsional 0,99 

40 L250x250x20 3000 460 4 Flexural-torsional 0,99 

41 L250x250x22 2000 355 1 Flexural-torsional 0,54 

42 L250x250x22 2000 460 1 Flexural-torsional 0,54 

43 L250x250x22 3000 355 1 Flexural 1,11 

44 L250x250x22 3000 460 1 Flexural 1,11 

45 L250x250x26 2000 355 1 Flexural-torsional 0,75 

46 L250x250x26 2000 460 1 Flexural-torsional 0,75 

47 L250x250x26 3000 355 1 Flexural 1,48 

48 L250x250x26 3000 460 1 Flexural 1,48 

 

The samples have been modelled as explained in §7.2.1. However, for those where the first elastic 

eigenmode is a flexural-torsional one, three cases were considered in terms of initial imperfections: 

a. equivalent imperfection e0,FT = L/700 with a deformation shape similar to the first member 

instability mode, i.e. the flexural-torsional one (which correspond to Nult(a)); 

b. equivalent imperfection e0,F = L/700 with a deformation shape similar to the first flexural 

instability mode (which correspond to Nult(b)); 

c. equivalent imperfection e0 = e0,FT + e0,F (which correspond to Nult(c)): e0,FT = L/700 with a 

deformation shape similar to the first member instability mode (flexural-torsional) and e0,F 

= L/700  with a deformation shape similar to the first flexural instability to counterbalance 

the fact that, in most of these cases, the torsional component predominates in the flexural-

torsional mode. The combination of both modes is done automatically through the software.  
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Even though, in case c, there is (i) a twist of the cross-section and (ii) an initial flexural deflection a 

bit higher than in case b, the difference between the values Nult(b) and Nult(c) is negligible (less than 

0,5%).  

Figure 7.1 illustrates the numerical results compared with the reference buckling curves a and b as 

reported in prEN 1993-1-1. The buckling reduction factor χnum of the numerically tested samples has 

been evaluated as χnum = Nult /Npl and the slenderness using eq. (7.6) For the samples with a flexural-

torsional eigenmode, two cases are distinguished in Figure 7.1: the numerical results reported with 

blue/orange points have been evaluated using Nult = min{Nult(a), Nult(b), Nult(c)}, while the results 

presented with green points using Nult = Nult(a). 

 

Figure 7.1: Comparison of numerical results with buckling curves of prEN 1993-1-1 

According to prEN 1993-1-1, the obtained numerical results for the S355 steel grade should be 

compared with curve b while with curve a for S460. It can be easily observed that all the results 

referred to curve b are above the curve, while the results referred to curve a are in line, above or just 

a bit lower, which is acceptable given the 2% deviation that is considered. Regarding the results 

obtained using only an equivalent imperfection based on the 1st eigenmode (i.e. the flexural-torsional 

one), it is obvious that they are much higher even when compared with curve a. Through this 

comparison, it can be easily observed that the slenderness should be calculated using only the 

minimum elastic critical force for the flexural buckling mode as reported in §7.1.1. 

7.2.3 Members in strong axis bending 

For this load case, the profiles, lengths and steel grades have been again selected from Table 7.3, 

while the thicknesses have been chosen to have samples of different classes (1 and 3). The details 

are summarized in Table 7.6. As there are no hot-rolled angle profiles with S355 or S460 steel grades 

that are categorized as class 4, a few analyses have been additionally considered (marked with * in 

the mentioned table) with higher steel grades and member lengths so as to study some more slender 

members. For each non-linear analysis, an initial imperfection of magnitude L/700 has been applied 

with a deformation shape proportional to the first member instability mode to introduce a twist 

imperfection at the middle cross-section (see Figure 7.2). It should also be noted that the application 

of eq. (7.14) was checked numerically with satisfactory results. Indeed, the mean value of the ratio 

Mcr,num /Mcr,anal is equal to 0,989 with a COV of 4%. 

Figure 7.3 illustrates the numerical results compared with the buckling curves a and a0 for LTB as 

they are defined in §7.1.2, eq. (7.15) and eq. (7.16). The reduction factor for lateral torsional buckling 

χLT,num of the numerical samples has been evaluated by the equation χLT,num = Mult,u /Wufy and the 

slenderness using eq. (7.13).  
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Table 7.6: Details for the samples subjected to a major axis bending moment 

No Cross-Section 
L 

[mm] 

fy 

[N/mm2] 
Class  No Cross-Section 

L 

[mm] 

fy 

[N/mm2] 
Class 

1 L 45x45x3 1000 355 1  29 L 250x250x17 2000 355 1 

2 L 45x45x3 1000 460 3  30 L 250x250x17 2000 460 3 

3 L 45x45x3 2000 355 1  31 L 250x250x17 3000 355 1 

4 L 45x45x3 2000 460 3  32 L 250x250x17 3000 460 3 

5 L70x70x5 1000 355 1  33 L 250x250x20 2000 355 1 

6 L70x70x5 1000 460 1  34 L 250x250x20 2000 460 1 

7 L70x70x5 2000 355 1  35 L 250x250x20 3000 355 1 

8 L70x70x5 2000 460 1  36 L 250x250x20 3000 460 1 

9 L70x70x6 1000 355 1  37 L 250x250x22 2000 355 1 

10 L70x70x6 1000 460 1  38 L 250x250x22 2000 460 1 

11 L70x70x6 2000 355 1  39 L 250x250x22 3000 355 1 

12 L70x70x6 2000 460 1  40 L 250x250x22 3000 460 1 

13 L 80x80x5 2000 355 1  41 L 250x250x22* 4000 355 1 

14 L 80x80x5 2000 460 3  42 L 250x250x22* 4000 460 1 

15 L 80x80x5 3000 355 1  43 L 250x250x22* 5000 355 1 

16 L 80x80x5 3000 460 3  44 L 250x250x22* 5000 460 1 

17 L150x150x13 2000 355 1  45 L 250x250x22* 4000 550 1 

18 L150x150x13 2000 460 1  46 L 250x250x22* 4000 690 3 

19 L150x150x13 3000 355 1  47 L 250x250x22* 5000 55 1 

20 L150x150x13 3000 460 1  48 L 250x250x22* 5000 690 3 

21 L150x150x14 2000 355 1  49 L 250x250x26 2000 355 1 

22 L150x150x14 2000 460 1  50 L 250x250x26 2000 460 1 

23 L150x150x14 3000 355 1  51 L 250x250x26 3000 355 1 

24 L150x150x14 3000 460 1  52 L 250x250x26 3000 460 1 

25 L150x150x15 2000 355 1       

26 L150x150x15 2000 460 1       

27 L150x150x15 3000 355 1       

28 L150x150x15 3000 460 1       

 

 

Figure 7.2: Typical shape of initial imperfection for a member subjected to strong axis bending 

Figure 7.4 shows the ratio between the numerical member resistance (Mult,u) and the analytical 

resistance (Mu,Rd), versus the non-dimensional slenderness. The analytical resistance has been 

evaluated by using the formulas proposed in §7.1.2 and validated through the numerical results. 



Design of lattice towers made of large hot-rolled high strength steel angles 

_______________________________________________________________________________ 

  

 67   Marios-Zois BEZAS 

 

It is seen in Figure 7.3 that all the results are above curve a and below curve a0, and this validates the 

proposed in §7.1.2 buckling curve for LTB of angle sections. However, it seems that the resistance 

of some class-3 profiles is above curve a0. This could be explained by the fact that these cross-

sections are classified as class 3 but with a c/εt ratio quite close to the class-2 limit. So, they are 

treated as class 3 sections while, in reality, they reach their plastic resistance. On the contrary, due to 

the integration of the SEMICOMP concept, a profile classified as Class 3, but very close to Class 2, 

should be characterized by a section resistance close to Mpl. To set this clear, one should have in 

mind that a profile with a c/εt approximately equal to 16, could have a ratio Mult,u /Mpl from 0,95 to 

1,0 (see Figure 4.5). This justifies the small increased value of the numerical results. It should be also 

noticed that for higher c/εt ratios, the results conform to curve a. 

 

Figure 7.3: Comparison of numerical results with buckling curves for LTB of EN 1993-1-1 

 

Figure 7.4: Comparison between numerical and analytical results for the resistance of members subjected to 

strong axis bending, related with the non-dimensional slenderness 

7.2.4 Members in weak axis bending 

The design resistance of angle cross-sections to weak axis bending Mv, either with the tip is in tension 

or in compression, is independent of the member’s length. Therefore, just a few analyses have been 

performed to validate the proposed formulas additionally with the analyses presented in §5.4. Again, 

the profiles, lengths and steel grades have been chosen from Table 7.3, and the details are 

summarized in Table 7.7.   

Figure 7.5 and Figure 7.6 shows the ratio between the numerical results for the member resistance 

(Mult,v) and the analytical resistance (Mv,Rd) when the tip is in compression and in tension respectively. 

It can be seen that the analytical approach for the resistance of a member subjected to weak axis 
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bending is successfully validated when compared to the numerical results, by accepting a 2% 

deviation. 

Table 7.7: Details for the samples subjected to a weak axis bending moment 

Tip in compression  Tip in tension 

No Cross-Section  
L 

[mm] 

fy 

[N/mm2] 
Class 

 
No Cross-Section  

L 

[mm] 

fy 

[N/mm2] 
Class 

1 L70x70x5 1000 355 1  1 L45x45x3 1000 355 1 

2 L70x70x5 1000 460 3  2 L45x45x3 1000 460 1 

3 L70x70x5 2000 355 1  3 L45x45x3 2000 355 1 

4 L70x70x5 2000 460 3  4 L45x45x3 2000 460 1 

5 L150x150x14 2000 355 1  5 L70x70x6 1000 355 1 

6 L150x150x14 2000 460 1  6 L70x70x6 1000 460 1 

7 L150x150x14 3000 355 1  7 L70x70x6 2000 355 1 

8 L150x150x14 3000 460 1  8 L70x70x6 2000 460 1 

9 L250x250x17 2000 355 3  9 L250x250x20 2000 355 1 

10 L250x250x17 2000 460 3  10 L250x250x20 2000 460 1 

11 L250x250x17 3000 355 3  11 L250x250x20 3000 355 1 

12 L250x250x17 3000 460 3  12 L250x250x20 3000 460 1 

 

 

Figure 7.5: Comparison between numerical and analytical results for the resistance of members subjected to 

weak axis bending with the tip in compression 

 

Figure 7.6: Comparison between numerical and analytical results for the resistance of members subjected to 

weak axis bending with the tip in tension 
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7.2.5 Members in bending and axial compression 

For the numerical studies, three cases have been considered in terms of bending moments: weak axis 

bending, strong axis bending and bi-axial bending, always in combination with an axial compression 

force. The results are presented in the following sub-sections. 

7.2.5.1 Axial force and weak axis bending 

The numerical investigations have been performed considering a constant weak axis moment along 

the member length caused by an eccentric axial force. The eccentricity is in u-u axis (point P1 in 

Figure 7.7(a)), and ranges between 5 and 35 mm; the value have been chosen randomly for each 

sample. The details of the numerical samples are presented in Table 7.8. All the analyses are for the 

tip in compression, which is more critical than the tip in tension. 

Table 7.8: Details for the samples subjected to an eccentric axial force causing a weak axis moment 

No 
Cross-

Section 

L 

[mm] 

fy 

[N/mm2] 

eu 

[mm] 
 No Cross-Section 

L 

[mm] 

fy 

[N/mm2] 

eu 

[mm] 

1 L 45x45x3 1000 355 10  17 L150x150x14 2000 355 12 

2 L 45x45x3 1000 460 10  18 L150x150x14 2000 460 12 

3 L 45x45x3 2000 355 10  19 L150x150x14 3000 355 20 

4 L 45x45x3 2000 460 10  20 L150x150x14 3000 460 20 

5 L70x70x5 1000 355 5  21 L150x150x18 2000 355 10 

6 L70x70x5 1000 460 5  22 L150x150x18 2000 460 10 

7 L70x70x5 2000 355 20  23 L150x150x18 3000 355 32 

8 L70x70x5 2000 460 20  24 L150x150x18 3000 460 32 

9 L70x70x6 1000 355 35  25 L 250x250x17 2000 355 8 

10 L70x70x6 1000 460 35  26 L 250x250x17 2000 460 8 

11 L70x70x6 2000 355 35  27 L 250x250x17 3000 355 12 

12 L70x70x6 2000 460 35  28 L 250x250x17 3000 460 12 

13 L 80x80x5 2000 355 25  29 L 250x250x22 2000 355 5 

14 L 80x80x5 2000 460 25  30 L 250x250x22 2000 460 5 

15 L 80x80x5 3000 355 25  31 L 250x250x22 3000 355 5 

16 L 80x80x5 3000 460 25  32 L 250x250x22 3000 460 5 

 

 

Figure 7.7: Position of the load application point for the samples subjected to N+Mv (b) N+Mu (c) N+Mu+Mv 

Figure 7.8 presents the ratio between numerical and analytical (§7.1.4) resistance loads according to 

the weak axis non-dimensional slenderness 𝜆𝑣̅̅ ̅. The analytical load is determined by the maximum 
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load that satisfies both eq. (7.17) and eq. (7.18), without safety factors. For all the samples, the weak 

axis check was the critical one. 

 

Figure 7.8: Ratio between numerical and analytical loads for N+Mv 

The mean value (m) of the ratio Nnum /Nanal is equal to 1,03 with a standard deviation of 3,18%. The 

analytical approach is validated by accepting a 2% deviation from the numerical results. 

7.2.5.2 Axial force and strong axis bending 

The details (profiles/lengths/steel grades) of the numerical samples that have been used are the same 

than those presented in Table 7.8. The axial force is applied at the intersection point of the minor 

principal axis v-v with the middle line of the leg thickness (point P2 in Figure 7.7(b)) and ranges 

between 14,57 and 84,00 mm, depending on the profile geometry.  

 

Figure 7.9: Movement of a profile subjected to an axial force and strong axis bending: (a) during initial 

loading steps and (b) at the failure load 

Figure 7.10 presents the ratio between numerical load resistances and the analytical ones derived 

through the current proposal using the weak axis slenderness 𝜆𝑣̅̅ ̅. For all samples, weak axis check 

was again the critical one, as the member finally buckles along weak axis. Analytically, lateral 

torsional buckling was ignored (χLT  = 1,0) due to one of the four conditions described in §7.1.2, and 

therefore the member buckles due to the axial load. Numerically, it can be shown from Figure 7.9 

that the member starts to move laterally (along strong axis) but finally buckles towards weak axis. 

This again justifies the tendency of angles to buckle along weak axis. The mean value of the ratio 
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Nnum /Nanal is equal to 1,05 with a standard deviation of 5,90%, and the validation of the analytical 

approach is effective if one accepts a 2% deviation from the numerical results. 

 

Figure 7.10: Ratio between numerical and analytical loads for N+Mu 

7.2.5.3 Axial force and bi-axial bending 

In this case, the axial force is applied at the mid-height of the leg at the middle line of the leg thickness 

(point P3 in Figure 7.7(c)). This point could represent rather well the position of the connecting bolt 

for angles in structures. The details of the numerical samples that have been used, are the same as in 

the previous cases. Figure 7.11 illustrates the ratio between numerical and analytical (§7.1.4) 

resistance loads according to the weak axis slenderness 𝜆𝑣̅̅ ̅. The weak axis check was the critical one 

for this loading case too, and the member buckles towards weak axis.  

 

Figure 7.11: Ratio between numerical and analytical loads for N+Mu+Mv 

The mean value of the ratio Nnum /Nanal is equal to 1,15 with a standard deviation of 8,77%; these 

values are higher than for the previous studied cases, but it can be observed on Figure 7.11 that all 

the analytical predictions are on the safe side. Accordingly, the analytical approach for the combined 

resistance can be assumed as validated.  

7.2.6 General method for angle sections 

The validation of the proposed method has been done through comparison with numerical results 

obtained using the same analyses than those performed in §7.2.5.3. Therefore, the axial force is 

applied at the mid-height of the leg at the middle line of the leg thickness.  
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Three cases were considered for the validation: 

A. Case 1: 

- "In-plane" 2nd order effects and bow imperfections are accounted for, in αult,k; 

- e0 is taken from prEN 1993-1-1:2019-§7.3.3.1 for relevant buckling curve (elastic 

verification); 

- elastic cross-section resistance is used (Wel). 

B. Case 2: 

- "In-plane" instability effects are considered as negligible; 

- 2nd order effects are disregarded (ku=1/(1-NEd/Ncr,u)=1) and e0 is taken equal to zero (in 

recognition of the rather limited impact of this parameter) - such an assumption should be 

limited to angles connected by one leg as, in this case, the strong axis moment and its 

influence remains limited; 

- elastic cross-section resistance is used (Wel). 

C. Case 3: 

- Same assumptions as in Case 2, but taking into account the actual cross-section resistance 

using Wu=αWel,u, as defined in §7.1.2. 

Figure 7.12 presents the ratio between numerical and analytical resistances obtained for the three 

different cases as a function of the weak axis slenderness 𝜆𝑣̅̅ ̅. The analytical resistance corresponds 

to the maximum load that satisfies eq. (7.22). Each case is represented by a colour and the relative 

horizontal line illustrates the mean value minus the standard deviation for each case. 

It may be seen that the analytical approach for all the three cases is on the safe side, with Case 1 to 

be the safest. Therefore, each one may be used but the 3rd is closer to the numerically determined 

actual behaviour. 

 

Figure 7.12: Ratio between numerical loads and the analytical ones, obtained through the general method, for 

N+Mu+Mv 

7.3 Experimental validation 

In the following, the design formulas given in §7.1 are checked against tests that have been performed 

by various universities and are available in the literature, as well as with the tests performed in the 

framework of the present thesis. For all the tests, the analytical load was determined using the actual 

geometrical and material properties without safety factors. A comparison with Eurocode 3 provisions 

is also reported. 
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7.3.1 Centric compression tests at Tsinghua University 

At Tsinghua University, 66 tests were carried out on axially loaded pin-ended columns from equal 

angle sections and reported in Ref. [13]. The cross-sections ranged from L125x125x8 to 

L200x200x14 and the material was high strength steel (HSS) S420. All the profiles were categorized 

as class 4. For each section, the nominal slenderness of the angle columns, defined as the ratio of the 

column length to the gyration radius of cross-section around the principal minor axis, were selected 

as approximately 30, 40, 50, 60 and 80.  

 

Figure 7.13: Ratio between experimental and analytical load for the Tsinghua University tests 

Figure 7.13 presents the ratio between the experimental resistances and the analytical ones obtained 

using current proposal (see §7.1.1) according to the weak axis nominal slenderness λv. Figure 7.14 

presents the mean value of the ratio between the experimental load resistances and the ones predicted 

by prEN 1993-1-1 and by the current proposal, as well as the mean minus one standard deviation 

value. For the evaluation of both analytical resistances, curve b has been used for all specimens 

except for one group of samples (L160x160x10) that exhibited a yield strength of 460,7 MPa; so 

curve a has been selected for the latter. It may be seen that the current proposal gives a better 

prediction of the resistance compared to the Eurocode 3. The conservative character of prEN 1993-

1-1 may be explained by the fact that, in this case, the non-dimensional slenderness is determined 

from the weakest buckling mode (which is a flexural-torsional one in most of the cases according to 

the experimental tests), while, in the proposed model, the non-dimensional slenderness is always 

determined from the flexural mode.    

 

Figure 7.14: Ratio between experimental and analytical loads for the Tsinghua University tests, mean values 

0,90

1,00

1,10

1,20

1,30

1,40

1,50

1,60

1,70

20 30 40 50 60 70 80 90

N
e

xp
/N

p
ro

p
[-

]

Nominal slederness λv [-]

Tests Tsinghua University

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

2,20

30,00 40,00 50,00 60,00 70,00 80,00

N
ex

p
/N

b
,R

d
[-

]

Nominal slederness λv [-]

Tests Tsinghua University

meanEC3 mprop
(m-s)EC3 (m-s)prop



Design of lattice towers made of large hot-rolled high strength steel angles 

_______________________________________________________________________________ 

  

 74   Marios-Zois BEZAS 

 

7.3.2 Centric and eccentric compression tests at ULiège 

At the University of Liege, 12 tests were carried out on axially loaded pin-ended columns with or 

without eccentricity in the framework of the present thesis; they are reported in detail in chapter 7. 

The cross-sections were L150x150x18 and L200x200x16 with three different lengths. The material 

was high strength steel (HSS) S420 and S460. The load was introduced through supports that 

correspond to fully hinged boundary conditions, allowing free rotation in- and out-of-plane. 

The ratio between the experimental load and the buckling resistance from prEN 1993-1-1 (noted as 

EC3 in the graph) as well as the resistance of the current proposal (see §7.1.1) for the tests without 

eccentricity are reported in Figure 7.15. As for all centrally loaded specimens, the first instability 

mode was a flexural one, the value for the computed non-dimensional slenderness is the same for 

both procedures. Therefore, the difference of the ratios reported in Figure 7.15 which are only 

observed for class 4 cross-sections are due to the evaluation of the plate slenderness for class 4 

profiles, which differs in both procedures.   

 

Figure 7.15: Ratio between experimental and analytical loads for the Liege University tests 

 

Figure 7.16: Ratio between numerical loads and the analytical ones, obtained through the general method, for 

Liege University tests 
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Figure 7.16; two cases (Case 1 and Case 3 as defined in §7.2.6) were considered for the determination 

of the analytical load, based on the current proposal. It may be seen that the analytical method 

provides less conservative and safe side predictions for all test subjected to compression and bending. 

It should be noted that the specimens Sp22, Sp24 and Sp26 are categorized in class 4 according to 

prEN 1993-1-1 and therefore the Weff value is used for the determination of the maximum stress. In 
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contrast, according to the current proposal, all the profiles reach their elastic resistance in bending 

and so the Wel value is used.  

7.3.3 Eccentric compression tests at NTUA 

At the National Technical University of Athens, 33 tests were carried out on axially loaded pin-ended 

columns with or without eccentricity and reported in Ref. [14]. The cross-sections were equal angle 

profiles L70x70x7 in S275 steel. The profile was categorized in class 1. The load was introduced 

through supports that correspond to fully hinged boundary conditions, allowing free rotation in- and 

out-of-plane. The experimental results are compared with the resistance formulae of the current 

proposal as outlined in section 7.1.4, as well as with the resistance formulae for members as described 

in prEN 1993-1-1, eq. (8.88)-(8.89), in combinations with Annex C where interaction factors for 

mono-symmetric sections are given.          

 

Figure 7.17: Ratio between experimental and analytical loads for the NTUA tests 

Figure 7.17 presents, for all tests (except one for which the achieved experimental load was higher 

than its critical load) the ratio between the experimental resistances and the analytical ones obtained 

using current proposal (see §7.1.4) according to the weak axis non-dimensional slenderness. 

 

Figure 7.18: Ratio between experimental and analytical loads for the NTUA tests, mean values 

Figure 7.18 presents the mean value of the ratio between the experimental loads and the analytical 

loads as determined by the above methods, and the mean minus one standard deviation value. It can 

be seen that the current proposal gives a better prediction for the column capacity compared to the 

existing version of prEN 1993-1-1 and is always on the safe side.  
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7.3.4 Eccentric compression tests at TU Graz 

At the Technical University of Graz, 27 compression tests were carried out and reported in Ref. [11] 

on equal angle sections: 24 on L80x80x8 and 3 on L120x120x12 profiles. The material was S275. 

The boundary conditions varied from clamped supports (series BC1), to knife supports allowing 

rotation in the loading plane (series BC2) and fully hinged support allowing free rotation in- and out-

of-plane (series BC3). The load was introduced to the profile through one leg by a bolted connection; 

the introduction point is the centre of the hole for connection with one bolt, or the centre between the 

two holes for connection with two bolts. 

For this experimental campaign, the member capacity was calculated firstly by the proposed method, 

checking the angle profile to compression and biaxial bending that results from the loading 

eccentricity. The buckling length was set equal to the system length Lsys, for all cases except for 

support conditions BC1 with connection by two bolts, where the buckling length was set equal to 

Lsys/2.  

The results of the current proposal are compared with the provisions of EN 1993-3-1 and not the 

ones of prEN 1993-1-1 as before, so as to account for the effect of the bolted connection. In this case, 

the member is checked to compression through an effective slenderness that takes into account both 

the eccentric loading and the end restraints brought by the bolted connection. Buckling is checked in 

respect to the weak (v) and geometric (y) axes. The relevant effective slenderness is determined from 

the following equations: 

 �̅�𝑒𝑓𝑓,𝑣 = 0,35 + 0,7 ∙ �̅�𝑣                                                 (Eq. 7.26) 

 �̅�𝑒𝑓𝑓,𝑦 = {
0,40 + 0,7 ∙  �̅�𝑦 for connection with 2 bolts

0,58 + 0,7 ∙  �̅�𝑦 for connection with 1 bolt
                   (Eq. 7.27) 

The design resistance, where χ = min{χv, χy}, may be obtained as follows: 

𝑁𝑏,𝑅𝑑 = {

𝜒𝐴𝑓𝑦

𝛾𝑀1
for connection with 2 bolts

0,8 ·
𝜒𝐴𝑓𝑦

𝛾𝑀1
for connection with 1 bolt

                    (Eq. 7.28) 

The member resistance is the lowest between the resistances according to the v- and y-axes. 

 

Figure 7.19: Ratio between experimental and analytical loads for the TU Graz tests with two bolts 
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Figure 7.20: Ratio between experimental and analytical loads for the TU Graz tests with one bolt 

Figure 7.19 and Figure 7.20 illustrate the ratio between the experimental and the analytical loads for 

connection with two bolts and one bolt respectively and provide the mean minus one standard 

deviation value for all tests. It may be seen that the EN 1993-3-1 method largely overestimates the 

angle capacities and is on the unsafe side. The conclusion of the authors in Ref. [11] is therefore 

confirmed who recommends, in absence of appropriate design formulae, to design through a 2nd order 

system analysis accounting for member imperfections. In contrast, the proposed method provides 

safe predictions for all tests with two bolts, and all but 3 tests with one bolt. Consequently, further 

investigations are still required to better account for the effect of the connections at the extremities 

of the angle; this could be a perspective for future research. 

7.3.5 Eccentric compression tests at TUBraunschweig 

At the Technical University of Braunschweig, 40 compression tests were carried out and reported in 

Ref. [15] on equal leg angle L50x50x5 profiles. The specimen lengths were 300, 600, 900, 1200 and 

1500 mm, while the material was S355. The end support conditions were defined as clamped and 

hinged, and the load was introduced through one bolt M12. 

Figure 7.21 presents, for all tests, the ratio between the experimental resistances and the analytical 

ones obtained using current proposal (see §7.1.4) according to the weak axis non-dimensional 

slenderness 𝜆𝑣̅̅ ̅. 

 

Figure 7.21: Ratio between experimental and analytical loads for the TU Braunschweig tests 
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Figure 7.22: Ratio of experimental to analytical loads as determined by the proposed method and the 

provisions of EN 1993-3-1, mean minus one standard deviation values  

Figure 7.22 presents the ratio (mean minus one standard deviation) of the experimental to analytical 

loads as a function of the relative weak axis slenderness. Similarly to the previous section, the 

analytical load was determined by the proposed method, under consideration of the moments that 

result from the loading eccentricity, and by the provisions of EN 1993-3-1. The buckling length was 

set in all cases equal to the system length as for the TU Graz tests, since all the specimens are 

connected through one bolt at their extremities. It may be seen that the proposed method gives best 

results for the hinged support conditions while, for the clamped support, the buckling capacity at 

larger slenderness is underestimated. In contrast, the provisions of EN 1993-3-1 appear to 

overestimate the capacity, especially for hinged support conditions. The conclusion of the authors in 

Ref. [15] is therefore confirmed that: “….the simplified method of EN 1993-3-1 for the one screw 

joint in the existing form is not wise to be used in practice”. 

7.4 Conclusions 

This chapter presents design rules to predict the stability and resistance of members made of rolled 

equal leg angle profiles subjected to combined forces and moments. The main features of the 

proposed design rules are as follows: 

• Existing Eurocode provisions are adapted for angle profiles. 

• Appropriate European buckling curves for flexural and lateral torsional buckling of angles 

are detected.    

• The proposed rules account directly for the presence of applied moments resulting from the 

connection eccentricities.  

• The rules are generic for the referred profiles and do not apply only for lattice towers.  

• They are written respecting the format of the existing Eurocode 3 specifications. 

• They are simple to apply and are derived from basic rules of the stability theory. 

• The proposed design rules were validated through comparisons to extensive numerical 

analyses and numerous experimental tests. Experimental results were also compared to 

existing Code provisions. It was shown that the proposed method allows a safe prediction of 

the member capacity with an accuracy which is much better than the one obtained with the 

present Code provisions. Accordingly, the current proposal may be used as an alternative to 

existing Code provisions. 
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8. STRUCTURAL TYPOLOGIES OF TRANSMISSION TOWERS 

Transmission towers have been being built since the very beginning of the 20th century with the 

upcoming need to transport electrical energy from the production location to the consumers. The first 

regular transmission tower in Europe was erected in 1905 between Moosburg and Munich in 

Germany. A transmission tower consists in a tall self-supporting structure, which carries electrical 

overhead lines. These lines are part of high-voltage CD or AC systems. The function of the 

supporting structures consists on one hand in the safe transfer of the conductor loads to the ground 

and on the other hand in ensuring a safety distance between the conductors and the ground as well 

as between the conductors. The height of the towers or pylons depends on the voltage of the power 

lines and generally varies in a range between 15 m for low voltage (≤ 1 kV) and 70 m for extra-high 

voltage lines (> 110 kV). However, for special purposes as to span obstacles in the axis of the power 

line such as forests or rivers, supporting structures exceeding a height of 100 m are realized. The 

tallest transmission towers in Europe, with a height of 227 m, are a group of four lattice transmission 

towers in Schleswig-Holstein (Germany), known as the Elbe Crossing 2.  

The typologies and the functions of transmission towers, and the typologies of lattice towers and the 

relevant terminology are briefly presented in this chapter. 

8.1 Typologies of transmission towers 

The supporting structures of overhead lines can be made of different materials, and they can have 

several typologies: tubular steel towers, lattice steel towers, wooden and concrete pylons (Figure 

8.1). The selection of the type of the transmission tower is mainly based on the voltage circuit (low, 

medium, high or extra-high voltage) that it should support. Lattice towers are used for all ranges of 

voltages and therefore they are the most common types of towers for high-voltage transmission lines.  

    
(a) (b) (c) (d) 

Figure 8.1:  Typical structure for a (a) wooden pylon, (b) concrete pylon, (c) tubular steel pylon and (d) 

lattice tower 

8.2 Functions of transmission towers 

The transmission towers can be categorized by the way they support the line conductors as 

suspension or dead-end towers. In reality, the line grid is composed of transmission towers with 

different functions to ensure a safe support of the line conductors. 
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A suspension tower has vertical hanging isolators that carry the conductors (Figure 8.2 left). The 

tower is subjected to gravity loads coming from the conductors and the tower itself as well as 

transverse forces caused by wind loading. As the tower does not get any tension forces from the 

conductors, its design results in lighter structures than for dead-end towers.  

  

Figure 8.2: Suspension tower (left) and dead-end tower (right) 

Dead-end towers are located at the extremities of the power line, for long spans, at the places where 

the line changes its direction and in regular distance of a straight line to reduce the cascading tower 

failures after an unexpected conductor failure. A dead-end tower uses horizontal strain insulators at 

the end of the conductors (Figure 8.2 right). As dead-end towers are subjected to tension loads 

obtained from the conductors additionally to the self-weight and wind loads, their structures are 

heavier and more expensive than those required for suspension towers. 

8.3 Steel lattice towers 

8.3.1 The tower’s structure  

Steel lattice towers for transmission lines are mainly made of hot-dip galvanized steel angle profiles 

that are used as single members and/or as parts of built-up members. The galvanization of the angle 

profiles ensures a corrosion protection over the whole lifetime of the tower, generally from 80 to 100 

years.  

 

Figure 8.3: Modular construction with bolted connections. 

The bolted connections and gusset plates allow a modular construction (Figure 8.3) of the tower and 

simplify its erection at the construction site. First, the different modules are preassembled in lying 
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position, then lifted with a crane and finally bolted by assembly operators. Alternatively, the whole 

tower can be mounted in lying position and then be raised by cable pull. This operation requires a 

big assembling area, and it is therefore only rarely applied. In mountains area, the different modules 

are often placed by helicopter since the mounting area is too confined for cranes. Welded connections 

are not used in lattice towers, as they would complicate its erection.  

In general, the tower structure can be subdivided into four main parts which are described in detail 

below. 

(α) The tower body 

The body is the main structure of the tower. It is consisted, in general, of 4 leg members connected 

together through a primary and a secondary bracing system in the vertical and horizontal plane 

(Figure 8.4).  

 

Figure 8.4: Tower body with description of the different elements 

The legs, made of single equal leg angle profiles or built-up ones in star-battened configuration, run 

from the foundations to the top of the tower. They mainly transfer the self-weight of the structure 

and therefore the profile size continuously decreases from the lower to the upper modules. Over the 

height, the tower body is subdivided into several modules/segments, which are connected between 

their leg profiles by bolted splices. This allows a reduction of the delivery length of the leg profiles 

and a modular mounting of the tower.  

The primary bracing system is constituted of diagonals often made of single equal or unequal angle 

profiles and built-up angle profiles in a back-to-back configuration. It reduces the buckling length of 

the legs and helps stabilizing the framework structure (e.g. triangulation) of the tower. It also transfers 

the horizontal forces coming from the wind forces acting on the tower body. The secondary bracing 

members are also redundant members; they are used to reduce the unsupported length of the main 

legs and of primary bracing members, so increasing their buckling stability. In addition, they increase 

the stiffness of the tower structure. They are commonly made of small equal or unequal angle 

profiles. The type of primary and secondary vertical bracing systems depends on the loads and on 

the tower’s height, and commonly varies over the height of the tower. Different layouts are given in 

Figure 8.5. For standard tower geometries as used in Europe, the K-bracing and X-bracing are usually 

applied for the bottom and the second section of the tower respectively. The upper modules are often 
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braced by a crossing diagonal system. The advantage of the crossing diagonal system is that the 

compression diagonal is stabilized by the tension one, as the lateral displacement of the latter is 

avoided. 

 

Figure 8.5: Different primary and secondary vertical bracing systems as illustrated in EN 1993-3-1 

Between two modules the tower is usually stiffened by a horizontal bracing system (Figure 8.6), also 

called diaphragm bracing. This system takes the horizontal forces from wind loading on the tower 

and transfers it to the legs. In addition, the horizontal bracing system absorbs the torsional moments 

generated by an accidental unbalanced loading on the structure (e.g. rupture of one conductor). 

 

Figure 8.6: Common horizontal bracing systems as illustrated in EN 1993-3-1 

 

Figure 8.7: Cross arms of a lattice tower 

(β) The cross arms 

The cross arms (Figure 8.7) support the insulators and the conductors of the power line and transfer 

their loads to the tower body. Depending on the type of tower, one, two or even more than three cross 

arms on the left and right sides of the tower are necessary. The length of the cross arms depends on 
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the type of tower and operating voltage. For high voltage circuits, the clearance between the 

conductors must be increased and the cross arms become longer. For instance, if the three phases of 

a 380-kV circuit are installed on one single cross arm, the length of the cross arm is about 22 m. This 

leads to a total width of the transmission tower of approximately 45 m. 

The cross arm is constituted of a top and bottom angle member, each being connected by bolts to the 

tower legs. These members are braced by a vertical and horizontal system of angle profiles. The size 

of the angle profiles strongly depends on the tower type and the conductor loads.  

(γ) The earth wire support 

The earth wire support is the top module of a transmission tower which carries the earth wire. The 

main role of the earth wire is the protection against lightning, and in some cases when it is made of 

an optical fibre, is also used as an information transmitter.  

The usual heights of the support, where the legs taper, vary between 5,0 m and 8,0 m in function of 

the tower height and operating voltage of the line. The legs are commonly braced by a single lattice 

staggered systems of small single angle profiles.  

(δ) The foundations 

The foundation of the tower depends on the form of the tower, the loading, the type of the soil and 

the available space. The types which are mainly used in practice are strip or step foundations, pile or 

driven pipe pile foundations (Figure 8.8). The legs are anchored by friction or by separate elements 

into the concrete. The elements are usually sticking angles made of common angle profiles. 

8.3.2 Typologies of lattice towers 

Depending on the terrain typology, different lattice tower structures are used to overcome the several 

obstacles (e.g. forests, rivers, railways, etc) encountered along the grid. Different typologies of lattice 

towers are currently used all over the world. The typology differs between the continents and the 

corresponding operating voltage of the power lines. In this section, on overview of the different types 

of lattice towers used on the European market is given. The different configurations are illustrated in 

Figure 8.9 and described below: 

(a) Anchor portal tower 

Anchor portal towers are gantry structures supporting the conductor in a switchyard. The internal 

cross arms are supported by at least two tower bodies. The structure of anchor portal towers is adapted 

to the high tensions forces in the conductors that need to be anchored in the switchyard. Anchor 

  

Figure 8.8: Step foundation of a lattice tower 
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portal towers are also used to span over railways as they are less sensitive to vibrations than cross 

span structures. 

(b) Delta tower 

In a Delta tower, the cross arm is supported by a V-shaped fork, which offers space for a conductor 

in the centre line of the tower. They are commonly used to support one single circuit (i.e. 3 phases). 

The delta tower is widely spread in the US, Canada, France, Spain and Italy. The name originates 

from the fact that the fork with the cross arm resembles the shape of an inverted Delta.  

(c) Fir tree tower 

A fir tree tower belongs to the three plane tower typologies. It has three cross arms arranged in three 

planes on two sides of the tower body. The lower cross arm is longer than the one in the middle, 

which is again longer than the upper cross arm. This form is reminiscent of a fir tree. The tower 

generally carries two circuits whereupon the conductors of each circuit are supported on each side of 

the cross arms. Fir tree towers are tall and the span of the cross arms is reduced. For a 380-kV circuit 

for instance, the standard height is about 60 m and the span of the cross arm is approximately 20 m. 

The required width of the protection strip (i.e. the strip of land set aside for a safety corridor distance 

between the power line and nearby structures and vegetation and which is used to construct, maintain 

or repair the power line) is only 50 m compared to 70 m or 120 m of other tower typologies. 

Therefore, fire tree towers are mainly erected in areas where the distance of the conductors to the 

soil is increased and where the width of the protection strip needs to be small (e.g. forests).  

(d) Single plane tower 

Single plane towers only have one single cross arm and carry one or two circuits. The phases are 

supported by the cross arm on the two sides of the tower body. The Single Plane tower is used in 

areas with reduced height prescription like airports. The disadvantage of the tower typology is the 

wide span of the cross arm (e.g. 40 m) which results in a wide protection strip (e.g. 120 m) and 

therefore in a huge environmental intervention. 

(e) Danube tower 

The Danube tower is the most widely spread tower typology in Europe for 220-kV and 380-kV 

circuits. The tower has two cross arms arranged in two planes. The lower cross arm is usually longer 

then the upper one. In general, they support two circuits whose phases are ordered in a triangular 

shape. The upper cross arm carries one phase while the lower one carries two phases.  

(f) Barrel tower 

Barrel towers have a similar typology than Fir Tree towers. They have three cross arms in three 

planes and they commonly carry two circuits. The median cross arm is longer than the lower and 

upper cross arms and each cross arm supports 2 phases on each side of the tower body. As for Fir 

Tree towers, Barrel towers are tall with a reduced span of the cross arms, and they are applied in 

areas where big heights and reduced protection strips widths are required (e.g. forests). It is the 

standard tower typology in the UK National Grid.  
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(a) Anchor portal tower 

 

(b) Delta tower with one circuit 

 

 (c) Fir tree tower 

 

(d) Single plane towers at the airport of Karlsruhe, 

Germany 

 

(e) Danube tower 

 

 (f) Barrel tower 

Figure 8.9: Different typologies of transmission towers 
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9. ASSESSMENT OF THE DESIGN OF A TRANSMISSION TOWER 

In Europe, the design of transmission towers for overhead electrical lines is carried out according to 

EN 1993-3-1, in combination with EN 1993-1-1 which providing general rules, and for electrical 

lines exceeding 1 kV, according to the CENELEC standard EN 50341. Based on these normative 

documents, the tower is modelled as a simple truss structure where all the steel element connections 

are considered as hinged and the forces are only applied to the truss nodes. Such models do not 

adequately reflect the actual tower behaviour of the structure, as loads and especially wind ones are 

directly imposed on the entire member length and introduce bending moments in members. 

Furthermore, the design of lattice towers is classically carried out through a first order linear elastic 

analysis, neglecting the significant second order effects developing in these structures. 

In this chapter, a typical electric transmission steel lattice tower made of angle section members has 

been selected. The tower has been initially designed by means of the commercial software TOWER 

[41], in accordance with the current normative requirements, based on a first-order linear elastic 

structural analysis of a truss structure. For the assessment of the design, the tower is then simulated 

with FINELG non-linear finite element software using beam elements, considering relevant 

imperfections as well as geometrical and material non-linearities. In this model, every single member 

has been properly simulated, in terms of orientation and eccentricities at its extremities.  

Both software were firstly compared by the results of the frame analysis in the elastic range. Then, 

and to have a global overview of the actual tower’s response, an elastic instability analysis has been 

performed and was complemented-validated by a second order linear elastic one. The importance of 

considering second order effects in the analysis is underlined. However, as material and geometrical 

non-linearities combined with imperfections (member out-of-straightness and structural out-of-

plane) are affecting the response of the tower, a full non-linear analysis has been performed to check 

the validity, in terms of resistance and stability, of the initial design made with the TOWER software. 

The results of all the analyses are presented and discussed in the following.  

9.1 Details of the studied tower 

The Danube tower is the most spread tower typology for transmission lines in Europe. Moreover, 

many transmission lines are currently in planning throughout Europe, in the framework of the 

conversion from 220 kV to 380 kV lines, where this typology of tower is the preferable one of both 

designers and owners. As a result, the Danube tower (Figure 9.1) is the typical typology for current 

and future transmission lines and is therefore selected for the case study presented in this chapter.  

 

Figure 9.1: Danube tower for a transmission line of 380 kV 
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9.1.1 Geometry of the tower and the line 

The considered tower is a suspension one (i.e. hanging insulators), with a height of 50 m, made of 

steel equal-leg angle profiles; its geometry is shown in Figure 9.2. The structure is supposed to be 

erected in Erzgebirge in Saxony (Germany) and is part of a straight transmission line.  

 
Figure 9.2: Geometry and annotation of the different segments of the studied Danube tower  

 

Figure 9.3: Definition of wind span and weight span 

Even if only one lattice tower is considered, the design requires some basic information of the line, 

in order to quantify the conductor loads acting on the pylon. Thus, the studied tower is part of a 380-

kV straight transmission line with a distance between the towers of 350 m. The segment of the line 
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is in a mountain area with significant height differences, what leads to the following line spans 

(Figure 9.3):  

• Wind span:  Lw = 350 m 

• Weight span:  Lg = 1,5∙350 m = 525 m (according to [42]) 

The wind span is equal to the mean value of the two neighbouring spans of the tower while the weight 

span is equal to the distance between the two lowest points of the conductors in the two neighbouring 

spans of the tower.  

9.1.2 Conductors and insulators 

The tower carries two 380 kV circuits, each one consisting in 3 phases. Each phase is made of a 

bundle of 4 conductors which is supported by a suspension insulator. On its top, the tower carries 

one single earth wire for lightening protection. The conductors and the earth wire are made of steel 

fibres enveloped by several fibres of aluminium (Figure 9.4-a). The steel fibres reinforce the 

conductors and allow a safe transfer of the conductor loads while the aluminium fibres increase the 

conductivity of the conductor. Based on EN 50182 [43], the following conductors have been selected: 

• 4*264-AL1/34-ST1A for the conductors; 

• 1*94-AL1/15-ST1A for the earth wire. 

Important mechanical data of the conductors and the earth wire can be found in Table 9.1. 

(a)                (b) 

Figure 9.4: (a) Aluminium-steel conductor, (b) Quadri*Sil insulator 

Table 9.1: Mechanical data for the conductors 

Code 

Areas 
No. of 

wires 

Wire 

diameter 
Mass per 

unit 

[kg/gm] 

Final 

modulus 

[N/mm2] 

Coefficient 

of linear 

1/K 
Al 

[mm2] 

Total 

[mm2] 

Al   

[-] 

Steel  

[-] 

Al 

[mm] 

Steel 

[mm] 

94-AL1/15-

ST1A 
94,4 109,7 26 7 2,15 1,67 380,6 77000 1,89E-05 

264-AL1/34-

ST1A 
263,7 297,7 24 7 3,74 2,49 994,4 74000 1,96E-05 

 

Each conductor is connected to a suspension insulator, which transfers the conductor loads to the 

cross arms of the lattice tower. The insulators (Figure 9.4-b) are made of silicone rubber (Quadri*Sil 

Insulator from the company Hubbell); their length is about 5 m to ensure a safe distance between the 

conductors and the tower structure.  
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9.1.3 Initial design of the studied tower 

The initial design of the tower has been done by TOWER finite element software, which is dedicated 

to the design of transmission and telecommunication steel lattice towers, according to different 

international standards. The tower has been designed under gravity and wind loads following mainly 

the recommendations and requirements of EN 50341-1 and EN 50341-2-4 [44]. The design is carried 

out through a first order linear elastic analysis of a truss structure. 

The angle profiles are made of steel grade S355J2; the steel material law is linear elastic without any 

plastic yield plateau (nominal values). The eccentricities of the connections are not modelled, but 

their influence is considered via an effective non-dimensional slenderness λeff in the member 

buckling checks. More details about the design of the tower can be found in [45] and [46].  

The cross-sections resulting from the design checks based on a linear elastic global analysis 

performed by TOWER are presented in Table 9.2. For the annotations of the different segments of 

the tower, see Figure 9.5. The total weight of the structure is 166,73 kN. 

Table 9.2: Angle profiles for the different sections of the tower 

Group name Cross-Section Steel grade 

Bottom-legs L 150x150x13 S355J2 

Segment 2 L 140x140x15 S355J2 

Segment 3 L 120x120x16 S355J2 

Segment 4 L 80x80x10 S355J2 

Segment 5 L 80x80x6 S355J2 

Segment 6 L 75x75x4 S355J2 

Segment 7 L 45x45x3 S355J2 

Diagonal 1 L 75x75x4 S355J2 

Diagonal 2 L 75x75x4 S355J2 

Diagonal 3 L 90x90x5 S355J2 

Diagonal 4 L 90x90x6 S355J2 

Diagonal 5 L 60x60x4 S355J2 

Diagonal 6 L 45x45x4 S355J2 

Cross 1 – bottom L 150x150x12 S355J2 

Cross 1 – top L 120x120x7 S355J2 

Cross 1 – base L 130x130x8 S355J2 

Horizontal 1 L 80x80x5 S355J2 

Horizontal 2 L 90x90x5 S355J2 

Horizontal 3 L 100x100x7 S355J2 

Horizontal 4 L 76x76x4,8 S355J2 

Horizontal 5 L 75x75x6 S355J2 

Horizontal 6 L 65x65x4 S355J2 

Horizontal 1 base L 80x80x5 S355J2 

Horizontal 2 base L 80x80x5 S355J2 

Horizontal 3 base L 76x76x4,8 S355J2 

Horizontal 4 base L 60x60x4 S355J2 

Cross – Horizontal L 45x45x3 S355J2 

Cross 2 – bottom  L 120x120x7 S355J2 

Cross 2 – top L 75x75x5 S355J2 

Cross 2 – base L 90x90x5 S355J2 

Redundant 1 L 90x90x5 S355J2 

Redundant 2 L 60x60x4 S355J2 

Redundant 3 L 90x90x5 S355J2 
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Figure 9.5: Annotations of the different segments of the tower 

9.2 Numerical simulation of the tower with FINELG 

9.2.1 Description of the finite element model 

For the validation and the assessment of the initial design, the tower has been simulated with FINELG 

finite element software, using beam elements with 7 degrees of freedom, as plate buckling 

phenomena in the angle legs are not to be contemplated. The model of the tower is represented in 

Figure 9.6. It is worth noting that FINELG has been already successfully used in the past to simulate 

a lattice tower [22]; and it has also been used on the framework of the present thesis to predict 

successfully the failure load of full-scale experimental tests, as they reported in Annex B.  

Every element/bar is modelled with its appropriate eccentricity, rotation and orientation in order to 

simulate the reality as closely as possible. As a result, the elements are not only subjected to axial 

forces but also to bending moments. At the level of a global analysis, the bolted connections between 

the diagonals and tower legs as well as the splices in the tower legs are not considered directly in the 

model, but their global response has been simulated through appropriate hinges/constraints at the 

ends of the elements. Moreover, their self-weight has been considered as referred in §9.2.2(A1). 

The tower structure is modelled using the following assumptions: 

• the main legs are modelled considering continuity over their total length; 

• the bracing members and horizontal members are considered as pinned at their ends 

connected to the main legs and to the horizontal members; 

• the secondary bracing elements are also considered as pinned at their ends. 
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For the members that are assumed as continuous over their total length (main tower legs), the 7 DOF 

are blocked at the extremities of the finite beam elements. For the pin-end members (i.e horizontals, 

primary and secondary bracings), all the rotations are free, except the torsion about the beam axis 

which is blocked; all the other DOF are blocked too. The foundations are assumed as pinned.  

 

Figure 9.6: 3-D model from FINELG software 

All the members of the tower are made of steel grade S355J2. Two cases have been considered in 

terms of material law: a linear elastic one and a non-linear perfectly plastic one. Nominal values for 

the material properties have been used (E=210.000 MPa, v=0,3 and ρ=7850 kg/m3), while the yield 

stress is taken equal to 345 MPa, as for the initial design checks. For each element, residual stresses 

originating from hot-rolling are considered in material non-linear analyses; the pattern is in 

accordance with Ref. [39], as it shown in Figure 6.18 too. Furthermore, for the analyses where initial 

imperfections have been applied, those are in accordance with the 1st instability mode, calibrated so 

as to reach an amplitude of L/1000 (L is the length of the member/segment where instability occurs). 

The conductors and the insulators have not been modelled. However, the wind loads acting on them, 

as well as their self-weight have been calculated apart and introduced in the model as point loads 

acting at the top of the insulators. 

9.2.2 Applied loads  

The gravity (self-weight) and wind loads acting on the tower, the conductors, the earth wire and the 

insulators are presented in the following. Tension loads in the conductors are not considered since it 

is a suspension tower in a straight line. 

A.1 Self-weight of tower 

The self-weight of the tower itself is calculated automatically from the analysis program according 

to the geometry, considering the specific weight of steel γ = 7850 kN/m3. Bolts  and gusset plates are 

not modelled in FINELG, but their self-weight is taken into account by an adjustment factor equal to 

1,20 which artificially increases the dead loads of the tower; this approach has been used also for the 

initial design of the tower. This leads to a total weight of the tower of 172,60 kN. 



Design of lattice towers made of large hot-rolled high strength steel angles 

_______________________________________________________________________________ 

  

 92   Marios-Zois BEZAS 

 

A.2 Self-weight of conductors, earth wire and insulators 

The self-weight Vc,i of the conductors and the earth wire cable are evaluated according to EN 50182 

[43] and summarized in Table 9.3.  

Table 9.3: Self-weight of conductors and earth wire 

Type / Code 
ml 

[kg/km] 
Lg [m] 

gc 

=ml·g 

[N/m] 

No of 

bundles 

nb 

Vc,i 

=nb·gc·Lg 

[kN] 

No of 

conductors 

nc 

Vc,tot 

=nc·Vc,i 

[kN] 

1 Conductor  

264-AL1/34-ST1A 
994,4 525 9,755 4 20,49 6 122,91 

 Earth wire  

94-AL1/15-ST1A 
380,6 525 3,734 1 1,96 1 1,96 

 

The weight of one insulator is about 0,087 kN. Consequently, for the six insulators which have been 

used, the total weight equals 0,522 kN. 

B.1 Wind loads at the tower’s body 

The calculation of the wind loads on the tower is based on EN 1993-3-1/Annex B and EN 1991-1-4 

[47]. The tower is subdivided into several segments, as illustrated in Figure 9.2, and for each segment 

a mean wind load is evaluated. The mean wind load in the direction of the wind on the tower, for a 

segment, should be taken as: 

𝐹𝑚,𝑊(𝑧) =
𝑞𝑝(𝑧)

1+7𝐼𝑣(𝑧)
∑𝑐𝑓𝐴𝑟𝑒𝑓                                            (Eq. 9.1) 

where z is the height above the base at which the load is calculated. All the notations not explained 

here are provided in chapter 2. The above equation may be transformed to the following one:  

𝐹𝑚,𝑊(𝑧) =
1

2
𝜌𝑎𝑖𝑟𝑣𝑚

2 ∑𝑐𝑓𝐴𝑟𝑒𝑓 = 𝑞𝑚(𝑧) ∑ 𝑐𝑓𝐴𝑟𝑒𝑓                           (Eq. 9.2) 

The mean wind velocity at the height z is: 

𝑉𝑚(𝑧) = 𝑐𝑟(𝑧)𝑐𝑜(𝑧)[𝑐𝑑𝑖𝑟𝑐𝑠𝑒𝑎𝑠𝑜𝑛𝑉𝑏,0]                                     (Eq. 9.3) 

where:  

𝑐𝑟(𝑧) is the roughness coefficient; 

𝑐𝑜(𝑧) is the orography coefficient, equal to 1,0 according to EN 1991-1-4/§4.3.3; 

𝑐𝑑𝑖𝑟 is the directional factor, equal to 1,0 according to EN 1991-1-4/§4.2; 

𝑐𝑠𝑒𝑎𝑠𝑜𝑛 is the season factor, equal to 1,0 according to EN 1991-1-4/§4.2; 

𝑣𝑏,0 is the fundamental value of the basic wind velocity, taken as 25,0 m/sec according 

to the German national annex of EN 1991-1-4 & EN 50341-2-4. 

It is assumed that the tower is located in a category II terrain, according to EN 50341-2-4 (in line 

with the German National Annex); this leads to some characteristic values for the mean wind velocity 

to considerer in the calculations.     

The mean wind loads have been calculated at the mid-height of each segment and for two different 

wind directions (see Figure 9.7 for the direction): 
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• wind loads perpendicular to the cross arms 𝑊𝑥 (+X direction); 

• wind loads in the direction of the cross arms 𝑊𝑦 (+Y direction).                                           

 

Figure 9.7: Definition of wind direction 

Table 9.4: Mean wind loads on the tower body for wind perpendicular to the arms (θ=0ο) 

Part zm [m] qm(z) [N/m2] 
Aref 

[m2] 
cf,s [-] 

Fm,wx,front 

[kN] 

Fm,wx,back 

[kN] 

Segment 1 2,44 213,137 3,21 2,77 1,080 0,815 

Segment 2 7,79 359,422 4,07 2,71 2,261 1,706 

Segment 3.down-mid 15,20 460,901 6,09 2,97 4,756 3,588 

Segment 3.mid-up 24,20 538,936 5,29 2,93 4,769 3,597 

Segment 4 30,30 578,843 1,99 2,76 1,810 1,366 

Segment 5 35,80 609,375 3,23 2,99 3,358 2,533 

Segment 6 40,95 634,548 0,92 2,95 0,983 0,742 

Segment 7 46,20 657,574 1,59 2,85 1,694 1,278 

Arm 1 (lower arm) 29,77 575,638 6,09 2,74 5,480 4,134 

Arm 2 (upper arm) 40,53 632,614 3,51 2,70 3,424 2,583 
 

Table 9.5: Mean wind loads on the tower body for wind parallel to the arms (θ=90ο) 

Part zm [m] qm(z) [N/m2] 
Aref 

[m2] 
cf,s [-] 

Fm,wy,front 

[kN] 

Fm,wy,back 

[kN] 

Segment 1 2,44 213,137 3,21 2,77 1,080 0,815 

Segment 2 7,79 359,422 4,07 2,71 2,261 1,706 

Segment 3.down-mid 15,20 460,901 6,09 2,97 4,756 3,588 

Segment 3.mid-up 24,20 538,936 5,29 2,93 4,769 3,597 

Segment 4 30,30 578,843 0,51 3,61 0,610 0,460 

Segment 5 35,80 609,375 3,23 2,99 3,358 2,533 

Segment 6 40,95 634,548 0,38 3,51 0,477 0,360 

Segment 7 46,20 657,574 1,59 2,85 1,694 1,278 

Arm 1 (lower arm) 29,77 575,638 5,74 2,80 5,274 3,978 

Arm 2 (upper arm) 40,53 632,614 3,33 2,76 3,310 2,497 

 

Given that the tower being symmetrical, the directions –X and –Y and +X and +Y are respectively 

the same (geometry and loads) and they are not considered as different load cases. Then, the mean 

wind load in each direction is distributed on the front and back face of the tower – which vary 

obviously according to the wind direction. It is assumed that the front face of each segment is 

supporting 57% of the total wind load, and the back face 43% (see Figure 9.7). At the end, the wind 

Back  Face (43%W) 

Front Face (57%W) 

Wind load (Wx) 



Design of lattice towers made of large hot-rolled high strength steel angles 

_______________________________________________________________________________ 

  

 94   Marios-Zois BEZAS 

 

load acting on a face is distributed to each bar according to its normal area, as a constant linear load 

along each bar, in order to achieve a realistic simulation of the action.  

Table 9.4 and Table 9.5 summarise the mean wind loads acting on the tower body and the cross arms, 

for both wind directions (𝑊𝑥 and 𝑊𝑦) and for the two faces of the tower (front and back faces). 

B.2 Wind loads on the conductors and the insulators 

The calculation of the wind loads on the conductors is based on EN 1993-3-1/Annex B. The 

maximum wind loading on the cables in the direction of wind Fc(z) should be taken as: 

𝐹𝑐(𝑧) =
𝑞𝑝(𝑧)

1+7𝐼𝑣(𝑧)
∑𝑐𝑓,𝐺𝐴𝐺 [1 +

[1+7𝐼𝑣(𝑧)]𝑐𝑠𝐶𝑑−1

𝑐𝑜(𝑧)
]                                (Eq. 9.4) 

where z is the height above the base of the support of the conductor/cable and 𝑐𝑠𝑐𝑑 is the structural 

factor that equals 1,0 according to EN 1991-1-4/§6. Table 9.6 shows the calculation of the wind load 

on the conductors/earth wire for both different wind directions.  

Table 9.6: Wind loads on the conductors 

Wind 

direction  
ψ [ο] z [m] 

qm(z) 

[N/m2] 

Cf,G,0 

[-] 

Iv(z) 

[-] 

d 

[mm] 

In direction Perpendicular 

Fcy(z) [kN] Fcx(z) [kN] 

Parallel to the 

cross-arm axis 
0 

28,70 569,081 

1,10 

0,157 
22,4 

20,631 0 

39,70 628,696 0,150 22,212 0 

50,20 673,663 0,145 13,6 7,100 0 

Perpendicular 

to the cross-

arm axis 

90 

28,70 569,081 

1,10 

0,157 
22,4 

0 0 

39,70 628,696 0,150 0 0 

50,20 673,663 0,145 13,6 0 0 

 

According to EN 1993-3-1/Annex B, the wind loads on the insulators are these reported in Table 9.7. 

Table 9.7: Calculation of wind loads on the insulators 

Position of 

insulator 
z [m] 

qm(z) 

[N/m2] 

Cf,G,0 

[-] 
Cc Ains [m2] 

Each direction 

Fins(z) [kN] 

Insulator at the 

lower arm 
28,70 569,081 1,20 1,0 0,150782 0,216 

Insulator at the 

upper arm 
39,70 628,696 1,20 1,0 0,150782 0,233 

 

One could argue here that, as the wind loads have been evaluated with different standards in TOWER 

and FINELG, no comparison is possible. Indeed, there are some differences between both standards 

but the total acting wind force per direction does not differ so much; according to EN 50341-2-4 

wind loads are bigger for the tower’s body but are smaller for the conductors. However, the way that 

the loads are applied on the pylon (i.e linear loads along the bars in FINELG in comparison with the 

concentrate forces at the nodes used in TOWER) influences more the response of the tower; and for 

sure the assumption made in FINELG simulation is much closer to the reality. 
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9.2.3 Load combinations 

Twelve different load combinations regarding the wind direction and the definition of the actions 

(favourable/unfavourable) have been considered for the initial design of the tower. Amongst them, 

the two most critical ones have been here selected for the assessment, which correspond to 

unfavourable actions: 

• X direction: gravity loads (G) and wind forces perpendicular to the cross arms (Wx).  

• Y direction: gravity loads (G) and wind forces parallel to the cross arms (Wy). 

The design action is therefore the following one: 

𝐸𝑑 = 𝛾𝐺𝐺𝐾 + 𝛾𝑊𝑄𝑊                                                       (Eq. 9.5) 

where: 

𝐸𝑑 total loads; 

𝐺𝐾 dead loads of conductors, insulators and body of the structure; 

𝑄𝑊 wind forces. 

Same safety load factors have been used for the applied loads as the ones used in the initial design 

of the pylon, i.e γG = γW = 1,35 for unfavourable actions according to EN 50341-2-4. For all the 

analysis, gravity loads are applied first, and then in the deformed due to gravity loads tower, wind 

loads are increased [1,35G+α(1,35W)] until failure occurs. This load sequence simulation is closer 

to the reality.  

9.3 Comparison of FINELG and TOWER models in the elastic range 

Before validating and drawing conclusions about the initial design of the tower, it is important to 

compare the model created by FINELG with the initial model created through the TOWER software. 

First of all, the self-weight of the structure has been compared to the one provided by TOWER. Then, 

the maximum displacements for three different load cases have been evaluated, again in view of this 

comparison. 

As already referred in section 9.1.3, the total weight of the structure reported from TOWER is 166,73 

kN. It should be noted that the total weight includes the weight of the angle profiles, the weight of 

the insulators and the weight of the bolts and gussets which is estimated through a load adjustment 

factor of 1,2. The corresponding value for total weight load from FINELG software is 172,60 kN. 

The difference between two models is 3,40%, while both self-weights should be a priori the same. 

This can be justified by the eccentricity of each bar and its actual position in FINELG, which changes 

slightly the length of the bar, while in TOWER all the members are connected centrally. This small 

length difference can explain the difference of both self-weight evaluations.  

Table 9.8: Maximum displacements for linear elastic analysis 

Load case 

Node with 

maximum 

displacement 

Direction of 

displacement 

Maximum 

displacement 

from TOWER 

software [m] 

Maximum 

displacement 

from FINELG 

software [m] 

1,35G Edge of lower arm Z (vertical) -8,14·10-3 -9,61·10-3 

1,35G+1,35Wx Top of the tower X (horizontal) 0,301 0,164 

1,35G+1,35Wy Top of the tower Y (horizontal) 0,514 0,596 
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The maximum displacements are summarized in Table 9.8. It should be noted that: 

• load case 1,35G includes only the self-weight of the tower without the conductors and 

insulators; 

• the wind load calculations in TOWER and FINELG being based on different norms (EN 

1993-3-1 for FINELG and EN 50341-1 for TOWER), it is normal to see a difference 

between those displacements; 

• the wind loads in FINELG are introduced as linear loads along the bars while in TOWER 

they are introduced as loads at the nodes;  

• the wind loads on the body of the tower are bigger according to EN 50341-1 than EN 1993-

3-1, what justifies the difference in load case 1,35𝐺 + 1,35𝑊𝑥; 

• the wind loads on the conductors are smaller according to EN 50341-1 than EN 1993-3-1, 

what explains why the difference in load case 1,35𝐺 + 1,35𝑊𝑦 is smaller than in load case 

1,35𝐺 + 1,35𝑊𝑥. 

Regarding those values, one notices that they are high. However, the displacements are appearing at 

the failure limit state (applying loads with 1,35 load factors) and not at the service limit state 

(applying loads without load factors). Additionally, there is no special indication or limitation 

specified in both main norms (EN 1993-3-1 or EN 50341-1) in terms of maximum displacement at 

service limit state. The only reason to provide displacements here is to compare the order of 

magnitude – not even the exact value – between TOWER and FINELG software. However, due to 

the big difference of the maximum displacements of both software, complementary analyses have 

been performed to investigate the stiffness of the two models. The comparison has been achieved 

through a first order linear elastic analysis, where a horizontal load of 1 kN has been applied (i.e. the 

same loading in TOWER and FINELG) at the top of the tower in the two following situations: 

• the load is applied perpendicularly to the cross-arm axis (X direction); 

• the load is applied parallelly to the cross-arm axis (Y direction). 

The results are summarized in Table 9.9. The difference between the displacements is less than 5%, 

what means that both models have almost the same stiffness. This seems to indicate that a simplified 

modelling of the members at their extremities (as in TOWER) could be accurately contemplated for 

a first order analysis. 

Table 9.9: Displacements on the top of the tower from linear elastic analyses 

Load case 

Direction of 

load and  

displacement 

Displacement 

from TOWER 

software [m] 

Displacement 

from FINELG 

software [m] 

Difference 

[%] 

Stiffness of 

FINELG 

model [kN/m] 

Fx=1 kN X 9,019·10-3 9,455·10-3 4,61 105,76 

Fy=1 kN Y 9,021·10-3 9,438·10-3 4,42 105,95 

9.4 Numerical results  

In order to investigate the tower response and validate the initial design method, different types of 

complementary analyses have been performed by means of FINELG and the results are presented in 

the next paragraphs. 
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9.4.1 Elastic instability analysis 

The critical load multipliers αcr are summarised in Table 9.10, while the deformation shape of the 

first instability mode is shown in Figure 9.8 and Figure 9.9 for wind loads acting on X and Y direction 

respectively. 

 

Figure 9.8: First buckling mode for load combination 1,35G+ αcr1,35Wx   

 

Figure 9.9: First buckling mode for load combination 1,35G+ αcr1,35Wy   

Table 9.10: Results from elastic instability analysis 

Load 

combination 
1,35G+ αcr1,35Wx 1,35G+ αcr1,35Wy 

No of mode 
Load 

factor αcr 

Type of 

instability 

Load 

factor αcr 

Type of 

instability 

1st  3,056 Member 1,015 Segment 

2nd  5,853 Member 1,179 Member 

3rd  6,764 Member 1,205 Member 

 

The instability mode observed in Figure 9.9 has been baptized as “segment instability” and is further 

investigated in chapter 10, where two analytical prediction models are proposed. 

9.4.2 Second order elastic analyses 

A geometrically non-linear elastic analysis with elastic material law but without considering initial 

imperfections has been performed, to complement-validate the elastic buckling analysis. The results 

are summarized, for each direction, below. 

For the load combination 1,35G+ αcr,nl1,35Wx, the load-displacement curve is reported in Figure 9.10. 

The first branch of the curve represents the loading with the gravity loads while the second one, with 
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the wind loads. The abscissa represents the global vertical displacement (see Figure 9.6 for the 

definition of the axis), while the horizontal dot line corresponds to the critical load multiplier acr 

resulting from the elastic buckling analysis. For both analyses, instability occurs in the same bar (see 

Figure 9.8).  

 

Figure 9.10: Displacement uz versus load factor for different types of analyses - wind perpendicular to the 

arms (X direction) 

Table 9.11: Internal forces at node 1648, for the two analyses 

Internal forces/Type of 

analysis 

Elastic instability 

analysis 

2nd order linear elastic analysis 

without initial imperfection 

Axial N [kN] -266,92 -177,10 

Torsion MT [kNm] 0,05 0,413 

Bending Mu [kNm] 3,56 10,19 

Bending Mv [kNm] -0,24 -5,08 

Load factor αcr or αcr,nl 3,06 1,71 

 

It is a priori surprising to see that the critical load obtained by the instability analysis (αcr = 3,056) is 

significantly higher than the maximum load factor obtained by the geometrically non-linear elastic 

analysis (αcr,nl ≈ 1,71). When checking the internal forces at the middle node of the bar (node 1648) 

in both cases (see Table 9.11), one realises that the failure occurs for two different triplets of relative 

axial force and bending moments. Indeed, in the second order linear elastic analyses, the second order 

effects are significantly influencing the internal forces in the members. This has been also observed 

for isolated angle members in §3.6, but now the complexity and the scale of the structure are really 

amplifying the P-δ phenomena. This explains why the buckling load multiplier is so much smaller 

than the one obtained through the elastic instability analysis.  

 

Figure 9.11: Displacement ux versus load factor for different types of analyses - wind parallel to the arms (Y 

direction) 
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When the wind forces acting on Y direction, a segment instability again appears, as shown in Figure 

9.9. The graph in Figure 9.11 shows the horizontal displacement ux (direction of global X axis - 

Figure 9.6) at the middle of diagonal 2 versus the load factor. The horizontal dot line represents the 

critical load multiplier obtained from the elastic instability analysis. The difference between the 

critical instability load factor and the maximum one reached through a 2nd order linear elastic 

analysis, that is about αcr,nl ≈ 0,68, could again be explained by the different loading situations 

(relative axial force and bending moments) in the critical bars.  

9.4.3 Full non-linear analyses 

The validation of the initial design requires a full non-linear analysis, considering an elastic-perfectly 

plastic material, distributions of residual stresses and an initial imperfection of the structure in 

accordance with the 1st instability mode. The details are presented in §9.2.1. 

Figure 9.12 represents the vertical displacement uz (direction of global Z axis) at the node 1648 versus 

the load factor for the load combination 1,35G+ αu1,35Wx. The failure occurs in the same bar as in 

the previous analyses due to combined plasticity (see Figure 9.13) and instability. The load factor (αu 

= 1,17) for this load combination is bigger than 1,0 with comparison to the design factored loads. As 

a result, the initial design appears to be safe. Furthermore, it is observed that the tower remains elastic 

for load factors αu ≤ 1,0, so confirming the TOWER design assumptions. 

 

Figure 9.12: Displacement versus ultimate load factor – 1,35G+1,35Wx (X direction) 

 

Figure 9.13: Results (plasticisation) from the 2nd order non-linear plastic analysis (X direction) 

Figure 9.14 shows the horizontal displacement ux (direction of global X axis) at the middle of 

diagonal 2 (see Figure 9.9) versus the load factor, for the load combination 1,35G+ αu1,35Wy. It can 

be seen that the load factor is about αu ≈ 0,66. Contrary to what is seen before, the maximum load 
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factor remains here far lower than 1,0. The initial design of the tower by TOWER software for this 

direction is therefore seen as insufficient and unconservative. This may be explained by the 

development, in reality, of an instability mode in one of the main tower legs, called “segment 

instability” and which is not covered by TOWER; but more importantly, it is also not addressed 

properly by the reference European normative documents EN 1993-3-1 and EN 50341 (more 

information are provided in chapter 10). 

 

Figure 9.14: Displacement versus ultimate load factor – 1,35G+1,35Wy (Y direction) 

9.5 Conclusions 

An assessment of the current design approach used for lattice transmission towers has been achieved 

through numerical studies, and from the results, the following conclusions may be drawn: 

• There are different norms for the design of transmission towers, mainly EN 1993-3-1 & EN 

50341-1. For some aspects, for instance the amplitude of the wind loads, both norms provide 

slightly different recommendations. In the present chapter, EN 1993-3-1 has been used for 

evaluation of the wind loads. 

• There is no special indication or limitation in the norms (EN 1993-3-1 & EN 50341-1) about 

the maximum displacements of the tower at the serviceability limit state. 

• A reasonable agreement is seen between FINELG and TOWER elastic analyses. The 

differences may be explained by modelling aspects. 

• The buckling load obtained by a 2nd order elastic analysis is smaller than the critical one 

obtained by an elastic instability analysis. The reason is that the forces acting on the members 

in both cases differ, so affecting the member buckling load in the case of non-symmetrical 

cross-sections. Moreover, these effects are amplified by consideration of actual member 

support conditions (eccentricities for instance). 

• The second order effects should be considered in the analysis as they affect the global 

response of the tower and its ultimate limit state.  

• The initial design of the tower appears to be rather good in the case of application of the 

wind loads in one direction, but it is quite unconservative for the application of wind loads 

in the other direction. The reason is due to the development in the second case of an 

instability mode that is not properly recommended to be checked by the present norms. 
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10. THE SEGMENT INSTABILITY MODE 

In chapter 9, an instability mode for lattice towers not properly covered by the norms, that has been 

named “segment instability”, was observed through numerical simulations. In the following, two 

analytical models for the prediction of the critical load of the new buckling mode are proposed, 

accompanying by their numerical validation. Comparisons with the existing norms are also provided. 

10.1 Definition of segment instability 

A “segment instability” is defined as a global instability mode associated to the buckling of more 

than one member forming a segment. As shown in Figure 10.1, the instability is associated to the 

buckling of the two diagonals of the leg in the present case, and therefore could also be named “leg-

segment instability”. More precisely, the leg is made of three vertically orientated members: the main 

or “exterior” leg and the two diagonals that are connected with a number of horizontal bars and 

bracing members forming “triangles”. In fact, each of the two diagonals and the exterior leg 

constituting the segment are stable individually and can resist to the applied maximum forces, as they 

have been initially designed for that. However, the simultaneous buckling of the diagonals over the 

whole leg height, involving a longitudinal rotation of the main leg member, represents a “new mode” 

which has been seen to be relevant in various usual design situations. 

 

Figure 10.1: Segment elastic instability mode   

 

Figure 10.2: Deformation of the members through a horizontal cut in the leg 

Figure 10.2 shows a horizontal cut in the leg and indicates how the constitutive elements deform in 

the instability mode. It is seen that: 

• The diagonals move laterally and bend about an axis parallel to one of their angle legs. 

• The main leg rotates about its longitudinal axis. 

• The elements which form the “horizontal leg triangles” (not represented on the picture in 

Figure 10.2) do not undergo any deformation; they are just translated. 
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10.2 Proposed analytical models 

Two models, a simplified one and a refined one, to predict the critical loads of the segment instability 

mode are first presented. Then, a model to predict the buckling resistance of the leg is described.  

10.2.1 Simplified model 

The equivalent model illustrated in Figure 10.3 has been built, in order to represent physically what 

is observed in the leg. The two parallel vertical members represent the two diagonals and the 

horizontal pinned members, the elements forming the horizontal leg triangle. Both diagonals are 

assumed to be made of the same profile, as it happens in practice in most of the cases. The extremities 

of the vertical members are assumed to be pinned; this is what is expected at the foundation level, 

while the very small restraining effect resulting from the actual continuity of the diagonals at the top 

is neglected. The modal deformed shape of the system is illustrated on the right side of Figure 10.3. 

 

Figure 10.3: Equivalent model of the leg (left) and modal deformed shape (right)                    

For the simplified model, the critical load may be given by the following equation:  

𝑁𝑐𝑟 =
2𝜋2𝐸𝐼𝑦,𝑑

𝐿2
                                              (Eq. 10.1) 

where, 

Iy,d is the moment of inertia about y-y geometrical axis of the diagonal’s cross-section; 

L is the buckling length of the diagonal. 

Thus, the critical load multiplier may be determined as follows: 

𝑎𝑐𝑟 =
𝑁𝑐𝑟

𝑃1+𝑃2
                                             (Eq. 10.2) 

where, 

Ncr is the critical load given by eq. (10.1); 

P1, P2 are the axial compression forces at the diagonals (see Figure 10.3). 

This model is independent of the number of horizontal “rigid triangles”, and therefore may be 

generally used for segments with pyramidal configuration. 

10.2.2 Refined model 

In the proposed refined model, the beneficial effect of the torsional stiffness of the exterior leg, which 

has been disregarded in the simplified one, is considered. When the segment instability occurs, the 

exterior member is assumed to be locally stable. If it would not be the case, then the buckling of the 
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exterior leg determines the failure and limits the pylon resistance. Therefore, considering the fact that 

the buckling resistance of an individual member in compression follows a flexural mode and not a 

torsional one, it can be reasonably assumed that the axial force in the exterior leg is not influencing 

its torsional stiffness.  

When the leg instability develops, the exterior member is activated in torsion at the 1/3 and the 2/3 

of the exterior leg length (Lext) where the “triangles” are here assumed to be located. The first step 

consists in the evaluation of the torsional restraint offered by the rigidity of the exterior leg member 

in torsion. 

 
Figure 10.4: Schemes for the calculation for the torsional restraint brought by the exterior member 

The torsional moments (see Figure 10.4) can be evaluated as follows, considering that MT1 and MT2 

are equal to MT: 

𝜑 = ∫
𝑀𝑇

𝐶
𝑑𝑥

𝐿𝑒𝑥𝑡
3

0
   ⇒   𝑀𝑇 =

3𝐶

𝐿𝑒𝑥𝑡
𝜑                                     (Eq. 10.3) 

The torsional rigidity C of the cross-section is given in Annex A. Then: 

𝑀𝑇 =
3𝐶

𝐿𝑒𝑥𝑡
𝜑

𝑀𝑇 = 2𝐹𝑑
}   ⇒   

3𝐶

𝐿𝑒𝑥𝑡
𝜑 = 2𝐹𝑑   

𝐹=𝑅𝛥
⇒      

3𝐶

𝐿𝑒𝑥𝑡
𝜑 = 2𝑅𝛥𝑑   

𝛥=𝑑𝜑
⇒      

3𝐶

𝐿𝑒𝑥𝑡
𝜑 = 2𝑅𝑑2𝜑      (Eq. 10.4) 

where F is a force applied at each diagonal in direction of Δ and which causes torsional moment at 

the exterior member of the leg (MT=2Fd where d is defined in Figure 10.4), while R is the lateral 

restraint of the diagonal (R=F/Δ). By solving eq. (10.4), the lateral restraint of the diagonal is 

obtained: 

𝑅 =
3𝐶

2𝐿𝑒𝑥𝑡
·
1

𝑑2
                                                        (Eq. 10.5) 

The torsional restraints evaluated at 1/3 or at 2/3 of the member length (where the rigid triangles act) 

are different as different values of d are met at these locations, what implies different values for MT1 

and MT2 in Figure 10.4 and invalidates de facto the use of eq. (10.3). But, for sake of simplicity, the 

actual values of R at L/3 and at 2L/3 are substituted by a mean value of Rmean defined as follows: 

𝑅𝑚𝑒𝑎𝑛 =
3𝐶

2𝐿𝑒𝑥𝑡
·
1

𝑛
∑

1

𝑑𝑖
2

𝑛
𝑖=1                                               (Eq. 10.6) 

This is illustrated in Figure 10.5. To simplify it further, both restraints are merged into a single one 

called KT, as illustrated in the right sketch of Figure 10.5. For this case, Gardner proposes in Ref. 

[48] an analytical expression of the critical load for a column of flexural inertia I: 

𝑁𝑐𝑟 =
𝜋2𝛦𝛪

𝐿2
+
3

16
𝐾𝑇𝐿        with   𝐾𝑇 <

16𝜋2𝛦𝛪

𝐿3
                                (Eq. 10.7) 

Lext/3 

Lext/3 
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If KT reaches a value of  
16𝜋2𝛦𝛪

𝐿3
, the column will buckle in the second eigenmode (two half sine 

waves); further increases of the KT values will not produce a corresponding increase in the critical 

load. The column therefore effectively becomes restrained at its mid-height, and 𝑁𝑐𝑟,2 =
4𝜋2𝛦𝛪

𝐿2
 (see 

Figure 10.6). In the specific case of pylons, the restraints remain quite low, and for sure much lower 

than 
16𝜋2𝛦𝛪

𝐿3
. 

                                                         

Figure 10.5: Initial (left), intermediate (middle) and final (right) proposed design model 

 

Figure 10.6: Column with a single discrete restrain [48] 

The determination of the spring stiffness KT may be contemplated referring to the literature (p.474-

475 of Ref.[31]), from which it may be deduced that, for few discrete supports, the term 𝑚
𝐶

𝐸𝐼
𝑙3 is 

constant. In this expression, m is the number of zones of length l = L/m separated by rigid triangles 

in the leg, C = 2Rmean and EI = 2EIy where Iy is the value of the flexural rigidity of one diagonal.  

𝑚
𝐶

𝐸𝐼
𝑙3 = 𝑐𝑜𝑛𝑠𝑡    ⇒    𝑚 · 2𝑅𝑚𝑒𝑎𝑛 · (

𝐿

𝑚
)
3
= 2 · 𝐾𝑇 · (

𝐿

2
)
3
                   (Eq. 10.8) 

This being, the equivalent spring stiffness KT may be evaluated as follows: 

𝐾𝑇 =
4

𝑚2
(2𝑅𝑚𝑒𝑎𝑛)                                              (Eq. 10.9) 

The critical load of the equivalent column is finally given by: 

2RL/3=2R 

KT 
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𝑁𝑐𝑟 =
𝜋2𝐸𝐼𝑦,𝑡𝑜𝑡

𝐿2
+
3

16
𝐾𝑇𝐿                                     (Eq. 10.10) 

where, 

Iy,tot is the total moment of inertia about y-y geometrical axis of both diagonals (i.e 

Iy,tot=2Iy,d); 

L is the buckling length of the diagonal; 

KT is the stiffness of the unique spring restraint, equal to 
4

m2
(2Rmean);  

Rmean  can be evaluated using eq. (10.6); 

m  is the number of zones of length l in the leg (l = L/m separated by rigid horizontal 

triangles in the leg); the accuracy of the formulae for KT is sufficient for a value of 

m ≤ 6 (i.e for maximum 5 horizontal rigid triangles in the leg); 

di is the horizontal distance of the longitudinal axis of one diagonal from the 

longitudinal axis of the main leg, where i is the index for the horizontal level (see 

Figure 10.4). 

Finally, the critical load multiplier can be evaluated using eq. (10.2). 

10.2.3 Ultimate resistance of the leg 

The ultimate buckling resistance of the leg may be determined by the current provisions of EN 1993-

1-1, as follows: 

𝑁𝑏,𝑅𝑑 = {
𝜒
𝐴𝑑𝑓𝑦

𝛾𝑀1
    for class 1,2 and 3 profiles

𝜒
𝛢𝑑,𝑒𝑓𝑓𝑓𝑦

𝛾𝑀1
for class 4 profiles

            (Eq. 10.11) 

where the effective area of the diagonal is given using eq. (7.2). The buckling reduction factor χ is 

determined as a function of the relative slenderness: 

𝜆𝑠𝑒𝑔̅̅ ̅̅ ̅̅ = √
2𝑁𝑝𝑙

𝑁𝑐𝑟
                          (Eq. 10.12) 

where, 

Ncr is the critical load of the segment determined by one of the proposed models 

(simplified or refined); 

Npl      is the plastic design resistance of one diagonal (Npl=Ad·fy). 

The value of the buckling reduction factor χ can be determined from the European buckling curve d 

for any steel grade. It is suggested to safely use the lowest buckling curve due to the lack of studies 

showing that a higher one could be safely used. The selection of the buckling curve could be further 

investigated in the future. 

10.3 Validation of the proposed models 

The validation of the proposed formulae (simplified and refined) has first been achieved through 

comparisons to results obtained through 2D numerical simulations of the proposed models 

(illustrated in Figure 10.3 and Figure 10.5-right) by means of the OSSA2D software [49], and then 

through the use of the whole tower model described in chapter 9, using FINELG software. The 
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reference codes for the constitutive elements of the tower leg simulated in FINELG are illustrated in 

Figure 10.7, while details about the members are reported in Table 10.1.  

For the refined model, the mean value of the lateral restraint R of the diagonals and the stiffness 

𝐾𝑇 of the spring are: 

𝑅𝑚𝑒𝑎𝑛 =
3𝐶

2𝐿𝑒𝑥𝑡
·
1

𝑛
∑

1

𝑑𝑖
2

𝑛

𝑖=1

=
3 · 1,69761 · 1010

2 · 5000
·
1

2
(
1

9132
+

1

18272
) = 3,82 𝑁/𝑚𝑚 

𝐾𝑇 =
4

𝑚2
(2𝑅𝑚𝑒𝑎𝑛) =

4

32
(7,64) = 3,39 𝑁/𝑚𝑚 

Table 10.1: Details of the leg members  

Member CS code Cross-section Length [m] 

Diagonal 1 (left) 13 75x75x4 6,00 

Diagonal 2 (right) 13 75x75x4 6,00 

Main leg 12 150x150x13 5,00 

Horizontal level 2 14 60x60x4 1,827 

Horizontal level 3 14 60x60x4 0,913 

 

 

Figure 10.7: Notations of the constitutive elements of the tower leg 

By using the OSSA2D software and performing an elastic buckling analysis, the values of the critical 

load multipliers (αcr,OSSA2D) for both models are obtained and reported in Table 10.2. The 

corresponding analytical values αcr,anal = Ncr/(P1+P2) are also reported (αcr,anal,s and αcr,anal,r for the 

simplified and refined models respectively) and fit quite well with the numerical ones. Obviously, 

the lower values obtained with the simplified model when compared to the refined one, results from 

the fact that the rotational restraint of the main leg, as well as the continuity of the diagonals above 

the leg level, are disregarded.  

Further numerical estimations of αcr have been achieved for the transmission tower through an elastic 

instability analysis performed on the whole tower model, subjected to different actual external load 

combinations so as to vary the loading on the leg (in the exterior member and in the two diagonals). 

In Table 10.3, the obtained numerical results (αcr,FIN) are compared with the analytical ones for both 

proposed models.  
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Table 10.2: Results obtained through the OSSA2D software and the analytical prediction models 

P1 

[kN] 

P2 

[kN] 

Simplified model Refined model 

αcr,OSSA2D [-] αcr,anal,s [-] αcr,OSSA2D [-] αcr,anal,r [-] 

30 0 1,19 1,21 1,33 1,33 

30 15 0,80 0,80 0,90 0,89 

30 20 0,72 0,72 0,81 0,80 

30 30 0,59 0,60 0,67 0,67 
 

Table 10.3: Results obtained for the whole tower model through FINELG and the analytical models 

Load 

combination 

P1+P2 

[kN] 

αcr,FIN 

[-] 

No of 

eigenmode 
αcr,s [-] αcr,r [-] αcr,s/αcr,FIN [-] αcr,r/αcr,FIN [-] 

G+Wy 30,00 1,37 1 1,21 1,33 0,881 0,973 

G+Wx 9,77 4,28 4 3,70 4,10 0,866 0,957 

Gtower 1,83 23,99 12 19,75 21,84 0,823 0,910 

Wx 7,15 6,42 1 5,06 5,60 0,788 0,872 

Wy 33,05 1,48 1 1,10 1,21 0,740 0,818 

Mean value --- --- --- --- --- 0,820 0,906 

 

The safe character of the simplified approach may be seen. The refined design model in which the 

rotational restraint of the main leg member is taken into account gives better results than the 

simplified one as expected, but is still on the safe side. Obviously, one should compare the ultimate 

resistances and not only the critical ones in order to put a definitive judgement on the level of safety 

of the approach. By using the simplified model for the evaluation of the critical load, the leg 

slenderness is �̅� = √
2·204,585

𝑁𝑐𝑟
= 3,363, while, with the refined one, the slenderness slightly changes 

�̅� = 3,198, but remains significantly high. With so high slenderness values, the ultimate resistance 

of the leg is almost equal to its critical one. So, in this specific situation, even if the comparisons 

between both models and FINELG would be done based on the ultimate resistances, the safe 

character would remain.  

10.4 Existing recommendations of the normative documents 

As referred in the introduction, two main documents are used to design steel lattice transmission 

towers: EN 1993-3-1 and the CENELEC document EN 50341-1. In the latter, it is said that 

compression members shall be designed using the provisions of Annex G and Annex H of EN 1993-

3-1, or in accordance with the provisions of Annex J.4 of EN 50341, only if full-scale tests are 

performed. In practise, full scale tests on towers are rarely performed and so the use of Annex J.4 of 

EN 50341 is rarely met. Accordingly, the remaining question is to see if the above-mentioned 

annexes of EN 1993-3-1 cover segment instability design check. 

In fact, EN 1993-3-1, Annex H, clause H.3.7 recommends a buckling check of two members (one in 

each of two adjacent faces) against the algebraic sum of the loads in the two members connected by 

the diagonal brace over length Ld4 (see Figure 10.8) on the transverse axis, for cross bracing systems. 

For this case, the total resistance should be calculated as the sum of the buckling resistances of both 

members in compression. 

This design check looks to correspond to the simplified model proposed here. However, even if it 

seems clear for X bracings, it is not sufficiently clearly addressed for K bracings and therefore it is 

not sure that it is properly applied in practice. Besides that, in figure H.2, the member could also 
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buckle along Ld, what means that the two extremity points of the bar with length equal to Ld4 are not 

laterally fixed, which leads to a more complex situation. Subsequently, the proposed models fill a 

gap in the provisions of the existing norms, clearly indicate the required check and recommend easy-

to-apply design models. 

 

Figure 10.8: Figure H.2(b) from EN 1993-3-1 

10.5 Application of the design models 

In the following, an example illustrating the application of the design rules to the segment instability 

of the studied transmission tower is presented. The load sequence has been defined in §9.2.3, where 

1,35G is applied first and then the wind load parallel to the cross arms is progressively increased 

1,35αWy (α being the load factor).  

Table 10.4 summarizes the load multipliers and the critical loads that have been evaluated by an 

elastic first order critical instability analysis or analytical calculations. The segment instability mode 

that is illustrated in Figure 10.1 appears far before the instability mode that would be detected 

according to EN 1993-3-1, i.e. the member instability of a single individual element (this instability 

takes place in diagonal 2 for αcr = 1,66 and in the main leg for αcr = 4,30), and therefore is tends to 

be rather relevant.  

Table 10.4: Load factors and critical loads for elastic critical instability 

Elastic critical instability 
Buckling 

mode 

Load 

factor 

 αcr [-] 

Corresponding 

compression 

load [kN] 

Level of accuracy 

FINELG (αcr,FIN) Segment 1,02 41,88 EN 1993-3-1: 

αcr,EC3 / αcr,FIN = 1,66 

 

Proposed simplified model: 

αcr,anal,s / αcr,FIN = 0,86 

Proposed refined model: 

αcr,anal,r / αcr,FIN = 0,96 

 

FINELG (αcr,FIN,diag) 
Diagonal in 

between 

restraints – 

weak axis 

1,66 66,30 

EN 1993-3-1 (αcr,ΕC3) 1,69 67,41 

Segment inst. models: 

Simpl. model (αcr,anal,s) 

Refined model (αcr,anal,r) 

 

Segment 

Segment 

 

0,87 

0,97 

 

36,19 

40,01 

 

Table 10.5 presents the ultimate load factors and the corresponding ultimate resistances that have 

been obtained from a full second-order elastoplastic GMNIA analysis (by progressively increasing 
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the value of α). The ultimate resistance of the segment has been evaluated analytically with the two 

proposed models using the European buckling curve d for the determination of the buckling reduction 

factors. Then, the load factor has been derived numerically from a second order elastic analysis 

without initial imperfections to correspond to a force in the diagonals just equal to the ultimate one. 

Table 10.5: Load factors and ultimate loads at the ultimate state 

Ultimate state 

 

Buckling 

mode 

Load 

factor αu 

Corresponding 

compression load 

[kN] 

Level of accuracy 

FINELG (αu,FIN) Segment 0,66 (4,49+31,55)=36,04 
EN 1993-3-1: 

αu,EC3/αu,FIN = unknown 

 

Proposed simplified model: 

αu,,anal,s / αu,FIN = 0,86 

Proposed refined model: 

αu,anal,r / αu,FIN = 0,92 

EN 1993-3-1 (αu,ΕC3) 

Diagonal 

in between 

restraints – 

weak axis 

See comment below.1 

Segment inst. models: 

Simpl. model (αu,anal,s) 

Refined model (αu,anal,r) 

 

Segment 

Segment 

 

0,57 

0,61 

 

0,072·409,17=29,46  

0,079·409,17=32,32  
1This value cannot be evaluated through a second order elastic analysis, as the segment instability occurs 

before the diagonal buckles. But it may be seen that, when segment instability occurs (αu = 0,66), the force 

in diagonal 2 is equal to 31,50 kN while the ultimate buckling resistance between intermediate restraints 

according to EN 1993-3-1 (using buckling curve b for a slenderness 1,742) is equal to 

NRd=χΝpl=0,27·204,59=55,24 kN. Subsequently, the unconservative character of the present EN 1993-3 

is seen to be rather significant. 

 

By performing a first order linear elastic analysis (α = 1,0), the compression force in the main leg of 

the segment equals 535,3 kN, while in diagonals 1 and 2 are 0,80kN and 40,50kN respectively. It is 

seen that those internal forces are much higher than the real ones obtained at the ultimate state, 

highlighting once again the influence of the second order effects on the response of the pylon and 

clearly indicating the need for their consideration in the structural analysis. Furthermore, it can be 

seen that both prediction models for the segment instability working well and on the safe side, with 

the simplified one to be more conservative as expected.  

10.6 Conclusions 

A new buckling instability mode named “segment instability” and involving more than one member 

has been detected, defined and characterised. It has been demonstrated that this instability mode is 

not properly covered by the present norms.  

In particular, two analytical models (a simplified and a refined one) for the prediction of the critical 

load of the new buckling mode have been proposed and validated numerically. The proposed design 

models are easy to apply, and fill the gap in the existing provisions of the European normative 

documents. The latter could be contemplated for a direct implementation of the future draft of the 

Eurocodes.  
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11. GENERAL CONCLUSIONS AND PERSPECTIVES 

11.1 Conclusions 

Angle profiles, and more specifically equal leg ones investigated in the present thesis, exhibit some 

properties that clearly distinguish them from the well-known profiles. It is known that, for a double-

symmetric cross-section, the critical load is not affected by the load eccentricity while the buckling 

modes are always decoupled and the critical one is flexural. However, this is not the case for angle 

sections, as they mostly buckle along their weak axis with a flexural or a flexural-torsional mode, 

depending on the load eccentricity. The full decoupling of the buckling modes happens only for a 

very specific case, where the member is loaded at the shear centre; this is also the only case for which 

a pure torsional buckling mode can appear. Furthermore, the critical load is affected by the type of 

loading; an instability can even occur for an eccentric tensile load, depending on the cross-section 

geometry.  

These particularities shows that existing design rules for other types of sections, mostly doubly 

symmetric ones, cannot straightforwardly and safely cover angles, what inevitably leads to the need 

for the development of specific design provisions for angle sections. A need that is clearly enhanced 

by the lack of unified consistent rules for angles in the existing European normative documents; 

design rules for angles can be currently found in EN 1993-1-1, EN 1993-3-1, EN 1993-1-5 and EN 

50341-1 as explained in the introduction, but all these documents are sometimes in contradiction. In 

the thesis, the existing European specifications on rolled equal angle sections were reviewed and a 

complete and consistent set of design rules covering all aspects of design have been developed and 

fully validated scientifically, clearing the design process for angles in contrast to the existing code 

approaches. 

A proposal for the classification of equal leg angle profiles, fully consistent with the Eurocode 

normative documents, have been developed and validated through extensive numerical 

investigations and analytical methods. The numerical investigations have been performed with the 

full non-linear software ABAQUS using volume elements and are in very good agreement with the 

analytical developments. Angle cross-sections have been classified separately for compression, 

strong and weak axis bending, while the classification boundaries from class 3 to 4 have been 

determined through the slenderness of the compression leg and not the torsional instability mode as 

usually considered for other common profiles. Additionally, rules for cross-sections design 

resistances including all important loading conditions (compression, weak and strong axis bending), 

have been developed and validated numerically. These rules allow a smooth transition between cross-

section classes, removing any artificial stepwise prediction of resistance, as already proposed in the 

new draft of Eurocode 3 for doubly symmetric sections which is presently under finalisation; they 

are also less conservative than the current design rules proposed by Eurocode 3. 

Design rules to predict the stability and resistance of members made of rolled equal leg angle profiles 

subjected to combined normal forces and moments have also been proposed and validated through 

numerical investigations and experimental tests. The extensive numerical parametrical studies were 

again performed with ABAQUS software using volume elements. Experimental results are coming 

from tests carried out in the framework of the thesis on large angle profiles made of S460 high 

strength steel, as well as from previous experimental investigations found in literature. Appropriate 

European buckling curves for flexural and lateral torsional buckling of angles have been detected 

and proposed. From the experimental results, it has been shown that the proposed method allows a 
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safe prediction of the member capacity with an accuracy which is much better than the one obtained 

with the present Code provisions.  

An assessment of the current design approach used for lattice transmission towers has also been 

achieved through numerical studies. From the numerical results, it can be seen that the buckling load 

obtained by a 2nd order elastic analysis is smaller than the critical one obtained by an elastic instability 

analysis. The reason is that the forces acting on the members in both cases differ, so affecting the 

member buckling load in the case of non-symmetrical cross-sections. Moreover, these effects are 

amplified when considering the actual member support conditions. Consequently, the second order 

effects should be considered in the analysis as they affect the global response of the tower but also 

its ultimate limit state. In addition, an instability mode for lattice towers not properly covered by the 

norms has been detected and defined. Two analytical models (a simplified and a refined one) for the 

prediction of the critical load of the new buckling mode have been proposed and validated 

numerically. Both proposed design models are easy to apply, clearly indicate the required check to 

perform and fill the gap in the existing provisions of the European normative documents. The current 

provisions of Eurocode 3 have been used for the prediction of the resistance of the member associated 

with this instability mode.  

Concluding, all the proposed design rules and methods are simple to apply and have been written in 

the format of the existing Eurocode 3 specifications. Nevertheless, they are referring only to equal 

leg angle profiles mainly used in pylons; they are generic for the referred profiles. 

11.2 Research contribution and innovation 

The innovations and contributions of the present dissertation to the advancement of engineering 

science and design practice can be summarized as following: 

− Results of experimental tests on large angle high strength steel columns were presented, providing 

qualitative understanding and quantitative evaluation of the member response. 

− Detailed numerical simulations of the experimental tests were performed, demonstrating useful 

modelling features that can prove beneficial for researchers. 

− Existing European specifications on hot-rolled equal angle sections were critically reviewed, 

highlighting the inconsistencies and the lack in the design approaches in these normative documents.  

− A complete and full consistent set of design rules covering all aspects of design for angles was 

developed, clearing thus the design process. They include cross section classification, cross section 

resistance for all types of loading as well as rules for member design to individual and combined 

internal normal forces and bending moments. 

− Extensive experimental, analytical and numerical studies were conducted to validate the proposed 

set of design rules. The validated rules can be directly applied in structural engineering design 

practice involving angle profile members. 

− Appropriate buckling formulas and corresponding buckling curves were proposed for flexural and 

lateral-torsional buckling of angles. The buckling formulas and curves can be reliably implemented 

in the structural design practice according to modern structural design standards. 

− An assessment of the current design approach used for lattice transmission towers was achieved 

through numerical studies. Results can be useful for designing appropriate lattice towers. 
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− An instability mode for lattice towers not properly covered by the norms was detected and defined. 

Two analytical models for the prediction of the critical load of the new buckling mode were 

developed and validated numerically. Both design models are easy to apply, clearly indicate the 

required check to perform and fill the gap in the existing provisions of the European normative 

documents. 

− All the developed rules of the present dissertation were written in Eurocode 3 format to allow a 

direct possible inclusion in forthcoming drafts.  

11.3 Perspectives for future research 

Based on the present dissertation, some suggestions for future research are summarized next: 

− Numerical parametrical studies to find out if the application of the proposed design rules developed 

for equal-leg angles, could be extended to unequal leg angles too.  

− Investigations are still required to better account for the beneficial effect of the restrains due to 

bolted connections at the extremities of the angle members, that is currently covered by the provisions 

of EN 1993-3 through the definition of an equivalent bucking length.  

− The segment instability mode detected here need further examination. First, the selection of the 

buckling curve could be improved, as now it is suggested to use the lowest one (curve d) due to the 

lack of studies showing that a higher one could be safely used.  

− The segment instability mode detected in the framework of the thesis, was associated with a certain 

tower configuration and has been observed in the tower’s leg. Consequently, further numerical and 

experimental investigations are needed to check if a similar instability mode could occur in other 

parts of the tower (for instance in the arms), and how this could be affected by the configuration of 

the tower. Finally, the accuracy of the proposed models for other possible segment instabilities may 

be checked. 
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12. ANNEX A: GEOMETRICAL PROPERTIES OF ANGLE PROFILES 

Annex A includes formulae for the geometrical properties of angle cross-sections that are not 

reported at the commercial cross-section catalogues, such as the elastic and plastic modulus about 

strong and weak axis and the torsional and warping constants.  

12.1 Elastic and plastic modulus about strong axis 

The elastic modulus about u axis, Wel,u, can be derived from the following formula: 

𝑊𝑒𝑙,𝑢 =
𝐼𝑢

0,5ℎ√2
                                                         (Eq. 12.1) 

The plastic modulus about u-u axis can be evaluated equal to Wpl,u =1,5·Wel,u. The factor of 1,5 is on 

the safe side as the mean value for all available angle profiles is 1,58 with a standard deviation of 

2%. The exact analytical expression for the plastic modulus about u-u axis can be found in Ref. [50]. 

12.2 Elastic and plastic modulus about weak axis 

For the angle cross-section, due to its asymmetry, the Wel,v is different for a top fibre (at the tip) or a 

bottom fibre (at the toe). For the design of the cross-section, the most distant fibre from centroid is 

considered when calculating the elastic modulus (i.e at the toe of the leg), which results in higher 

stress calculations. Therefore, the elastic modulus about v axis can be derived from the following 

formula: 

𝑊𝑒𝑙,𝑣 =
𝐼𝑣

𝑥𝐺√2
                                                       (Eq. 12.2) 

The plastic modulus about v axis can be estimated through the following equation by assuming that 

the radius at the toe of the cross-section is equal to zero (r=0). The notation of the following formulas 

are supplemented by Figure 12.1 below. 

𝑊𝑝𝑙,𝑣 =
𝐴

2
· (𝑐 + 𝑑)                                                 (Eq. 12.3) 

where, 

c is the distance between the centre of gravity of the sub-cross-section 2 and the plastic 

neutral axis (pna), and it can be calculated by the equation: 

𝑐 = √2 · (
ℎ2

2
− 𝑦𝐺2)                                             (Eq. 12.4) 

d is the distance between the centre of gravity of the sub-cross-section 1 and the pna, 

and it equals: 

d= √2 · (𝑦𝐺1 −
ℎ2

2
)                                              (Eq. 12.5) 

h2=h-h1  is the width of the sub-cross-section 2    (Eq. 12.6) 

h1=A/4t  is the width of the sub-cross-section 1    (Eq. 12.7) 

𝑦𝐺1 is the distance between the centre of gravity of the sub-cross-section 1 and the point 

O(0,0) along y’ axis and it can be estimated by the equation: 

𝑦𝐺1 =
ℎ1

4
+
ℎ2

2
+
𝑡

4
                                             (Eq. 12.8) 
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𝑦𝐺2 is the distance between the centre of gravity of the sub-cross-section 2 and the point 

O(0,0) along y’ axis and it given by the equation: 

𝑦𝐺2 =
ℎ2
2+ℎ2𝑡−𝑡

2

4ℎ2−2𝑡
                                                          (Eq. 12.9) 

 

Figure 12.1: Notation for the calculation of the plastic modulus about v axis 

Formulae, in which the radius at the toe of the cross-sections is taken into account, can be found in 

Ref. [50]. 

12.3 Torsional and warping constant 

The torsional constant CT of the cross-section is approximately equal to:  

𝐶𝑇 =
𝐺

3
∑ℎ𝑡3 =

𝐺

3
· 2 · (ℎ − 0,5𝑡)𝑡3                                       (Eq. 12.10) 

The warping constant Cw of the cross-section is approximately equals:  

𝐶𝑤 =
(ℎ−0,5𝑡)3𝑡3

18
                                                       (Eq. 12.11) 
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13. ANNEX B: NUMERICAL SIMULATION OF FULL-SCALE TESTS 

In this annex, FINELG finite element software is used to predict the ultimate resistance and the 

failure mode of full-scale tests performed on lattice towers at the National Technical University of 

Athens and reported in Ref. [51] and [52]. 

13.1 Details of the tests 

The experimental program consists of six full-scale tests on cell network telecommunication lattice 

towers subjected to horizontal forces at their tops, increased gradually until failure occurs. Three 

specimens have been subjected to orthogonal loading and three to diagonal loading as shown in 

Figure 13.1. In order to transfer the horizontal force evenly to the top level, a 6 mm thick steel plate 

of 100 kg weight acting as diaphragm was placed and bolted to all the beams of the top level (Figure 

13.2). Amongst the tested towers, two have been strengthened with FRP strips; they are not 

considered here. 

 

Figure 13.1: Reaction frame and towers of type O (orthogonal) left and type D (diagonal) right [51] 

 

Figure 13.2: Tested tower with diagonal loading [51] 

The geometry of the specimen-tower is illustrated in Figure 13.3. The overall external dimensions 

were 1,44x1,44x6,82 [m], while the axial distance between centroids of the tower legs was 1,40 [m]. 

The tower is subdivided in 4 levels, each with a height of 1,70 [m]. All the members of the tower are 

made of single angle profiles and are detailed in Table 13.1; their actual material properties are 
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summarized in Table 13.2, while, for those that no tensile test has been performed, the nominal values 

of steel grade S275 are used.  

 

Figure 13.3: Tower dimensions in plan and side view 

The columns run continuously over the height of the towers, while the bracing members were bolted 

at their extremities with one bolt. The horizontal external members were bolted directly to the column 

legs, the braces directly to the columns at the lower end and to a gusset plate 150x120x5 mm at its 

top, while the horizontal internal members to gusset plates 210x140x5 mm at both extremities. The 

experimental failure load and the corresponding mode are reported in Table 13.1. 

Table 13.1 Results of the tested towers 

Test 

code 

Loading 

direction 

Profiles for 

legs 

Profiles for 

braces/horizontals 

Experimental 

failure load [kN] 

Experimental 

failure mode 

O-1 Orthogonal L 70x70x7 L 45x45x5 39,00 
Buckling of 

diagonals 

O-2 Orthogonal L 70x70x7 L 65x65x7 106,5 
Buckling of 

lower legs 

D-1 Diagonal L 70x70x7 L 40x40x4 38,50 
Buckling of 

diagonals 

D-2 Diagonal L 70x70x7 L 60x60x6 78,50 
Buckling of 

lower legs 
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Table 13.2 Measured material properties of the tested angle profiles 

No Profile 
Yield strength 

fy [Mpa] 

Ultimate 

strength fu [Mpa] 

1 L 70x70x7 308,3 435,7 

2 L 45x45x5 286,7 416,7 

3 L 40x40x4 325,7 435,4 

4 L 60x60x6 280,0 403,9 

13.2 Description of the numerical model of the tower 

The ultimate resistance and the failure mode of the tested towers are predicted through full non-linear 

analyses. The tower is modelled with FINELG finite element software [25] using beam elements 

with 7 degrees of freedom. The members have been considered in their exact position in terms of 

orientation and eccentricities (Figure 13.4). The main legs have been simulated as continuous 

elements along their length. The tower is assumed to be clamped at the ground, so as to reflect the 

actual support conditions of the laboratory tests. 

The bracing members were connected through bolts and gusset plates. At the level of the connections, 

the bolts have been represented by fictitious elements possessing a very low torsional stiffness, as 

recommended in Ref. [53]. In Figure 13.4(b), one may observe that the gusset plate have been 

modelled through a beam finite element. Consequently, the eccentricity between the horizontal 

member and the diagonals is also accounted for. The gusset plates, welded to the horizontal members 

in the specimens, have been simulated as clamped to the horizontal members. The diagonals have 

been connected to the gusset plate using fictitious elements with a low torsional stiffness reproducing 

a pinned “one bolt” connection.  

(a) 

(b) 

                 (c) 

Figure 13.4 (a) 3-D tower model, (b) Detail of the connection between horizontal and vertical bracings, (c) 

Detail of the connection between vertical bracings and leg 

The self-weight of the structure (W) has been calculated automatically by the software, while the 

horizontal loads (H) were introduced at the extremities of the legs at the top level. The steel plate on 
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the top level has been modelled with plate elements and its weigh introduced as a uniform surface 

load. The FINELG finite element analysis adopting the GMNIA method is performed considering: 

• an initial imperfection with a shape in accordance with the first buckling mode and an 

amplitude determined using eq. (7.17) of prEN 1993-1-1-§7.3.6.(1); 

• a linear elastic - perfectly plastic material law without strain hardening, based on the 

measured yield stresses (see Table 13.2). 

• residual stresses as shown in Figure 6.18. 

13.3 Numerical results 

For each specimen, an elastic buckling analysis has been performed so as to determine the buckling 

mode. Then, a full non-linear analysis is realised, in which the gravity loads (W) are first applied and 

then the horizontal load is increased up to failure (W + ultH) in full agreement with the experimental 

loading sequence. The results for all towers are provided in the following figures and tables. 

Tower O-1: Table 13.3 provides the results for the Tower O-1. The first buckling mode (shape and 

critical load) of Tower O-1, associated to a minor-axis flexural buckling of the lower compressed 

diagonals, is presented in the first column of the table. The following columns represent the deformed 

shape of the tower at the ultimate limit state, the failure load and the distribution of yielding in the 

members of the tower. The numerical failure load equals 40,7 kN and is a bit higher (4,17 %) than 

the one obtained experimentally (see Table 13.1) but is acceptable due to the complexity of the 

structure as it is remains less than 5%. Finally, failure occurs at the lower compressed diagonals as 

for the experiment. 

Table 13.3 Tower O-1 – numerical results  

Elastic instability analysis Full non-linear analysis 

Shape of 1st Buckling mode Deformation shape at ULS Level of yielding 

  

 

Critical load = 62,01 kN 

(αcr=1,590) 
Failure load= 40,70 kN 

 

 

Tower O-2: Table 13.4 represents the results obtained for Tower O-2 failing through a leg buckling. 

It should be noticed that the tower fails by inward leg buckling during the laboratory test in contrast 
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with the numerical prediction that shows an outward leg buckling. The failure load is equal to 101,6 

kN and is close to the experimental one (106,5 kN). 

Table 13.4 Tower O-2 – numerical results 

Elastic instability analysis Full non-linear analysis 

Shape of 1st Buckling mode Deformation shape at ULS Level of yielding 

   

Critical load = 162,41 kN 

(αcr=1,525) 
Failure load= 101,62 kN 

 

 

Tower D-1: For the Tower D-1, the results are summarized in Table 13.5. The failure occurs due to 

a diagonal buckling. The numerical failure load is 38,6 kN and is almost equal to the experimental 

one. 

Table 13.5 Tower D-1 – numerical results 

Elastic instability analysis Full non-linear analysis 

Shape of 1st Buckling mode Deformation shape at ULS Level of yielding 

  
 

Critical load = 58,83 kN 

(αcr=1,528) 
Failure load= 38,50 kN 
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Tower D-2: The results for the Tower D-2 are reported in Table 13.6. The tower fails due to a 

buckling of the most compressed diagonal for a design load equal to 74,7 kN to be compared to the 

experimental one equal to 78,5 kN. The buckling is developing to the inside of the tower as observed 

during the experimental test. It can be observed that analyses predicting a diagonal buckling failure 

give results rather close to the tests. 

Table 13.6 Tower D-2 – numerical results  

Elastic instability analysis Full non-linear analysis 

Shape of 1st Buckling mode Deformation shape at ULS Level of yielding 

   

Critical load = 119,16 kN 

(αcr=1,518) 
Failure load= 74,68 kN 

 

 

Table 13.7 summarises both experimental and numerical results. It can be seen that the numerical 

simulation gives very satisfying results that are quite close to the tested ones.   

Table 13.7 Results of different design approaches 

Tower 

Experimental 

ultimate load 

[kN] 

Experimental 

failure mode 

Numerical 

ultimate load 

[kN] 

Numerical 

failure mode 
Difference [%] 

O-1 39,00 
Buckling of 

diagonals 
40,7 

Buckling of 

diagonals 
-4,17 

O-2 106,5 
Buckling of lower 

legs 
101,6 

Buckling of 

lower legs 
4,58 

D-1 38,50 
Buckling of 

diagonals 
38,6 

Buckling of 

diagonals 
-0,34 

D-2 78,50 
Buckling of lower 

legs 
74,7 

Buckling of 

lower legs 
4,86 
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