Neural Ratio Estimation For Simulation-based Inference

Nordstat 2021 June 23

Gilles Louppe g.louppe@uliege.be

Simulation-based inference

Start with

- a simulator that lets you generate N samples $x_i \sim p(x_i | heta_i)$ (for parameters $heta_i$ of our choice),
- observed data $x_{
 m obs} \sim p(x_{
 m obs}| heta_{
 m true})$,
- a prior $p(\theta)$.

Then, estimate the posterior $p(heta|x_{
m obs})$.

Amortizing Bayes

The Bayes rule can be rewritten as

$$p(heta|x) = rac{p(x| heta)p(heta)}{p(x)} = r(x| heta)p(heta) pprox \hat{r}(x| heta)p(heta),$$

where $r(x| heta) = rac{p(x| heta)}{p(x)}$ is the likelihood-to-evidence ratio.

The ratio can be learned with machine learning, even when neither the likelihood nor the evidence can be evaluated!

The solution d found after training approximates the optimal classifier

$$d(x, heta)pprox d^*(x, heta)=rac{p(x, heta)}{p(x, heta)+p(x)p(heta)}.$$

Therefore,

$$r(x| heta) = rac{p(x| heta)}{p(x)} = rac{p(x, heta)}{p(x)p(heta)} pprox rac{d(x, heta)}{1-d(x, heta)} = \hat{r}(x| heta).$$

Diagnostics

How to assess that the approximate posterior is not wrong?

Coverage

- For every $x, \theta \sim p(x, \theta)$ in a validation set, compute the 1α credible interval based on $\hat{p}(\theta|x) = \hat{r}(x|\theta)p(\theta)$.
- The fraction of samples for which θ is contained within the interval corresponds to the empirical coverage probability.
- If the empirical coverage is larger that the nominal coverage probability 1α , then the ratio estimator \hat{r} passes the diagnostic.

Convergence towards the nominal value $heta^*$

If the approximation \hat{r} is correct, then the posterior

$$\hat{p}(heta|\mathcal{X}) = rac{p(heta)p(\mathcal{X}| heta)}{p(\mathcal{X})} = p(heta) \left[\int p(heta') \prod_{x\in\mathcal{X}} rac{p(x| heta')}{p(x| heta)} d heta'
ight]^{-1} \ pprox p(heta) \left[\int p(heta') \prod_{x\in\mathcal{X}} rac{\hat{r}(x| heta')}{\hat{r}(x| heta)} d heta'
ight]^{-1}$$

should concentrate around $heta^*$ as the number of observations

$$\mathcal{X}=\{x_1,...,x_n\},$$

for $x_i \sim p(x| heta^*)$, increases.

ROC AUC score

The ratio estimator $\hat{r}(x|\theta)$ is only exact when samples x from the reweighted marginal model $p(x)\hat{r}(x|\theta)$ cannot be distinguished from samples x from a specific likelihood $p(x|\theta)$.

Therefore, the predictive ROC AUC performance of a classifier should be close to 0.5 if the ratio is correct.

Constraining dark matter with stellar streams Palomar 5 (Pal5) stream

Globular clusters These hives typically hold 100,000 stars or fewer and give rise to long, thin streams. Pal5 was discovered in 2001 as the first thin stream formed from a globular cluster. Its current orbit takes it far over the galactic center.

GD1 stream -

Discovered in 2006, GD1 is the longest known thin stream, stretching across more than half the northern sky. It contains a gap that could Image chaitse spark of a dark matter collision 500 million years ago.

Gap

Architecture	68% CR	95% CR
$\hat{r}(x \vartheta)$ with $\vartheta \triangleq (m_{\scriptscriptstyle \mathrm{WDM}})$		
MLP	0.685 ±0.004	$0.954_{\pm 0.002}$
MLP-BN	$0.687_{\pm 0.006}$	$0.951_{\pm 0.002}$
RESNET-18	$0.667_{\pm 0.004}$	$0.943_{\pm 0.002}$
resnet-18-bn	$0.672_{\pm 0.004}$	$0.945_{\pm 0.001}$
resnet-50	$0.671_{\pm 0.005}$	0.947 ±0.003
resnet-50-bn	0.678 ± 0.004	0.949 ± 0.004
$\hat{r}(x \vartheta)$ with $\vartheta \triangleq (m_{\text{WDM}}, t_{\text{age}})$		
MLP	0.685 ±0.005	0.953 ±0.002
MLP-BN	$0.685_{\pm 0.004}$	$0.952_{\pm 0.003}$
resnet-18	0.666 ± 0.005	$0.945_{\pm 0.002}$
resnet-18-bn	$0.671_{\pm 0.003}$	$0.945_{\pm 0.003}$
resnet-50	$0.674_{\pm 0.006}$	$0.944_{\pm 0.002}$
resnet-50-bn	$0.677_{\pm 0.004}$	$0.947_{\pm 0.003}$

ROC AUC score

Coverage

Convergence to θ^*

Preliminary results for GD-1 suggest a preference for CDM over WDM.

In summary

- Much of modern science is based on simulators making precise predictions, but in which inference is challenging.
- Machine learning enables powerful inference methods.
- They work in problems from the smallest to the largest scales.
- Further advances in machine learning will translate into scientific progress.

References

- Hermans, J., Banik, N., Weniger, C., Bertone, G., & Louppe, G. (2020). Towards constraining warm dark matter with stellar streams through neural simulation-based inference. arXiv preprint arXiv:2011.14923.
- Cranmer, K., Brehmer, J., & Louppe, G. (2020). The frontier of simulation-based inference. Proceedings of the National Academy of Sciences, 117(48), 30055-30062.
- Hermans, J., Begy, V., & Louppe, G. (2019). Likelihood-free MCMC with Approximate Likelihood Ratios. arXiv preprint arXiv:1903.04057.
- Cranmer, K., Pavez, J., & Louppe, G. (2015). Approximating likelihood ratios with calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169.

The end.