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Implementation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing in the daily
practice of pathology laboratories requires procedure adaptation to formalin-fixed, paraffin-embedded
(FFPE) samples. So far, one study reported the feasibility of SARS-CoV-2 genome sequencing on FFPE
tissues with only one contributory case of two. The present study aimed to optimize SARS-CoV-2
genome sequencing using the Ion AmpliSeq SARS-CoV-2 Panel on 22 FFPE lung tissues from 16 deceased
coronavirus disease 2019 (COVID-19) patients. SARS-CoV-2 was detected in all FFPE blocks using a real-
time RT-qPCR Qtargeting the E gene with crossing point (Cp) values ranging from 16.02 to 34.16.
Sequencing was considered as contributory (ie, with a uniformity >55%) for 17 FFPE blocks. Adapting
the number of target amplification PCR cycles according to the RT-qPCR Cp values allowed us to optimize
the sequencing quality for the contributory blocks (ie, 20 PCR cycles for blocks with a Cp value <28 and
25 PCR cycles for blocks with a Cp value between 28 and 30). Most blocks with a Cp value >30 were
noncontributory. Comparison of matched frozen and FFPE tissues revealed discordance for only three
FFPE blocks, all with a Cp value >28. Variant identification and clade classification was possible for 13
patients. The present study validates SARS-CoV-2 genome sequencing on FFPE blocks and opens the
possibility to explore correlation between virus genotype and histopathologic lesions. (J Mol Diagn
2021, -: 1e13; https://doi.org/10.1016/j.jmoldx.2021.05.016)
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The coronavirus disease 2019 (COVID-19) pandemic is
caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Coronaviruses are a family of enveloped
single-strand, positive-sense RNA viruses that cause a wide
spectrum of respiratory diseases. Since the initial report on
this novel coronavirus in Wuhan, China,1e3 mortality and
morbidity rapidly increased around the globe. Researchers
worldwide are contributing to sequencing initiatives to try to
understand how the virus is spreading. As of April 2021, up to
1,211,666 SARS-CoV-2 genomes were sequenced and
uploaded to the Global Initiative on Sharing All Influenza
Pathology and American Society for Investiga

O 5.6.0 DTD � JMDI1089_proof �
Data (GISAID; https://www.gisaid.org, last accessed April
2021 Q).4 SARS-CoV-2 genome sequencing allows the
tive Pathology. Published by Elsevier Inc. All rights reserved.
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detection of genetic modifications that could have occurred.
Most SARS-CoV-2 virus detection and genotyping methods
are based on fresh samples from upper or lower respiratory
tract, such as nasopharyngeal swab, oropharyngeal swab,
sputum, or bronchoalveolar lavage. In the current COVID-19
pandemic, pathology laboratories face the major challenge to
implement SARS-CoV-2 testing in their daily practice. In
pathology laboratories,most surgical and cytology specimens
are formalin fixed, paraffin embedded (FFPE). Post-mortem
studies indicated that SARS-CoV-2 could be detected by
RT-qPCR on FFPE blocks of lungs and other organs.5e9

Adapting the SARS-CoV-2 genome sequencing protocols
to FFPE blocks may provide valuable diagnostic tools for its
detection and genotyping.

Virus sequencing can be achieved by Sanger10,11 and/or
next-generation sequencing (NGS).10,12 NGS is now well
implemented in pathology laboratories for detection of
cancer-related molecular alterations, using FFPE tis-
sues.13,14 The use of targeted NGS panels allows the iden-
tification of tumor molecular profiles using small quantities
of nucleic acids from FFPE blocks. However, only a few
studies have reported the use of NGS to detect pathogens in
FFPE blocks.7,15e17 Sekulic et al7 showed the feasibility of
SARS-CoV-2 sequencing on FFPE blocks, but only one
case of two was contributory. The present study aimed to
optimize SARS-CoV-2 genome sequencing using NGS on
22 post-mortem FFPE tissues.

Materials and Methods

Clinical Series

Lung samples were collected from the 16 first confirmed
COVID-19 (positive RT-qPCR assay on nasopharyngeal
swab and/or bronchoalveolar lavage) patients who died in
Hôpital Erasme (Brussels, Belgium) since March 13, 2020,
and with a positive SARS-CoV-2 E gene RT-qPCR on lung
FFPE blocks (see below). The study protocol was approved
by the local ethics committee (P2020/218). The autopsy
procedure, clinical courses, and histopathologic findings
have been already described.5 Briefly, six samples per lung
lobe (ie, a total of 30 samples) were collected, formalin
fixed, and paraffin embedded (except for two patients who
had previously undergone lobectomy for cancer and for
whom only 18 samples were taken). One or two blocks were
randomly selected for molecular analysis among FFPE
blocks showing histopathologic lesions. When two blocks
were tested, they included one FFPE block from the left
lung and one FFPE block from the right lung, to evaluate
the heterogeneity of viral spread. Moreover, one sample was
snap frozen for each lung lobe. The material was biobanked
by the Biobanque Hôpital Erasme-ULB (BE_BERA1),
CUB Hôpital Erasme, BBMRI-ERIC.

Semiquantitative evaluation of hemorrhage on hematox-
ylin and eosin slides was performed by two senior pathol-
ogists (N.D. and M.R.) as follows: negative or <10% (0);
2
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between 10% and 20% of lung parenchyma showing intra-
alveolar hemorrhage (þ); between 20% and 30% of lung
parenchyma showing intra-alveolar hemorrhage (þþ); and
>30% of lung parenchyma showing intra-alveolar hemor-
rhage (þþþ). Evaluation of necrosis was also performed as
follows: negative (0) or positive (þ).

Nucleic Acid Extraction and SARS-CoV-2 Detection by
RT-qPCR

For FFPE blocks, total nucleic acids were extracted from
two unstained slides (10 mm thick) using the Maxwell RDC
DNA FFPE kit and the Promega Maxwell extractor
following the protocol described by the manufacturer
(Promega Corp., Madison, WI) in an elution volume of 50
mL. For frozen tissues, RNAs were extracted using PureLink
RNA Mini Kit (ThermoFisher Scientific, Waltham, MA)
following manufacturer’s instructions. The RNA yield was
quantified using a Qubit 2.0 Fluorometer (ThermoFisher
Scientific). For FFPE blocks, RNA quality was analyzed
with the Agilent RNA 6000 Pico Kit on a Bioanalyzer 2100
(Agilent, Santa Clara, CA). The RNA from the FFPE blocks
showed a fragmented profile, with a mean peak height of
130 nucleotides. The mean percentage of RNA fragments
>200 nucleotides was of 60%, and no samples showed a
percentage of RNA fragments >200 nucleotides of <30%
(data not shown).
The detection of the SARS-CoV-2 virus in the nucleic

acid extracts was performed by RT-qPCR. One-step RT-
qPCR assay specific for the amplification of SARS-CoV-2 E
gene was adapted from the protocol described by Corman
et al18 and as previously described.5 Briefly, 100 ng of RNA
was amplified in 20-mL reaction mixture containing 5 mL of
4� TaqMan Fast Virus 1-step master mix (ThermoFisher
Scientific), 0.4 mmol/L of forward (50-ACAGGTACGT-
TAATAGTTAATAGCGT-30) and reverse (50-ATATTG-
CAGCAGTACGCACACA-30) primers, and 0.2 mmol/L of
probe (50-FAM-ACACTAGCCATCCTTACTGCGCTTCG-
BBQ-30). Amplification was performed on the LightCycler
480 type II (F. Hoffmann-La Roche SA, Basel, Switzerland)
following the manufacturer’s instructions. Amplification con-
dition was 50�C for 10 minutes for reverse transcription, fol-
lowed by 95�C for 20 seconds and then 45 cycles at 95�C for
3 seconds and 58�C for 30 seconds. Crossing point (Cp)
values were calculated using the second derivative maximum
method from the Roche LightCycler software Q. A clinical
sample highly positive for SARS-CoV-2 (with a low Cp),
diluted 1:1000, was used as positive control; and a clinical
sample obtained from a patient autopsied before the pandemic
was used as negative control in each analysis.

Library Preparation and Sequencing

For library construction, 10 ng of RNA (5 and 1 ng for
testing robustness) was retrotranscribed with the Super-
Script VILO (ThermoFisher Scientific) in accordance with
jmdjournal.org - The Journal of Molecular Diagnostics
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the manufacturer’s instructions. The Ion AmpliSeq SARS-
CoV-2 Research Panel (ThermoFisher Scientific) was used
to manually prepare the libraries. The panel consists of two
5� primer pair pools that target 237 amplicons specific to
the SARS-CoV-2 coronavirus and 5 human expression
controls. The amplicon lengths range from 125 to 275 bp
and are designed to provide >99% coverage of the SARS-
CoV-2 genome, covering from position 43 to position
29,842 (positions related to reference sequence3). Amplifi-
cation condition was 98�C for 2 minutes for initial dena-
turation, followed by 20, 25, or 30 cycles (Supplemental
Table S1) at 98�C for 15 seconds and 60�C for 4 minutes.
Then, the amplicons were digested, barcoded, and purified
using AMPure XP Beads (Beckman Coulter, Brea, CA).
The libraries were amplified by PCR, and size selection was
performed using AMPure XP Beads. The Ion 510, Ion 520,
and Ion 530 Kit, Chef and the Ion Chef (ThermoFisher
Scientific), were used for template preparation and chip
loading. Sequencing was performed using the S5 Gene
Studio instrument (ThermoFisher Scientific).

SARS-CoV-2 whole-genome sequencing using Oxford
Nanopore technology was performed as previously
described.19

Data Analysis

The raw sequencing data were analyzed using the torrent
suite software version 5.12 (ThermoFisher Scientific). The
sequencing metric analysis was performed using the
<24
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coverage analysis plug-in. For fresh samples, the manufac-
turer (ThermoFisher Scientific) recommends obtaining 1
mol/L reads per sample and reports that the uniformity is
>85%. The following sequencing quality classification was
used: optimal if the mapped reads were >1,000,000 and
uniformity >90%; suboptimal if the mapped reads were
between 1,000,000 and 500,000 and/or uniformity between
80% and 90%. If the mapped reads were <500,000 and/or
uniformity between 55% and 80%, the sequencing quality
was considered as poor. If the uniformity was <55%, the
sequencing was considered as noncontributory.

The sequencing fragments were assembled using Iterative
Refinement Meta-Assembler.20 Alignment to the SARS-
CoV-2 genome reference and variant detection were per-
formed using the Variant Caller plug-in COVID19Annota-
teSnpEff version 1.0.0.1 (ThermoFisher Scientific). The
variants were defined as sequence variations from the
reference sequence of the severe acute respiratory syndrome
coronavirus 2 isolate Wuhan-Hu-1 NC_045512.2. Each
variant with an allelic frequency (AF) >90% and recurrent
variants (Supplemental Table S2) reported in the liter-
ature21e24 were verified in the Integrative Genome Viewer
(IGV) from the Broad Institute (http://www.broadinstitute.
org/igv, last accessed November 9, 2020).25 Sequences
were aligned using the MUSCLE algorithm.26 Clades were
allowed according to GISAID definitions (ie, clade G for
patients with C241T, C3037T, and A23403G variants; clade
GR for patients with C241T, C3037T, A23403G, and
GGG28881AAAC variants; and clade GH for patients with
24-30 >30

CR Cp value PCR Cp value

oint (Cp) values and number of PCR cycles. Data are displayed as medians
5% quartiles (box plots), and nonoutliers (bars).
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C241T, C3037T, A23403G, and G25563T variants). The
occurrence of variants was checked on the GISAID (using
CoVsurver) and Nextstrain websites to detect new variants.
Viral sequences from eight patients with <25 variants in the
variant list were deposited in GISAID (https://www.gisaid.
org, last accessed April 4, 2021).4 For all contributive se-
quences, clades were attributed using Nextstrain (https://
www.gisaid.org/references/statements-clarifications/clade-
and-lineage-nomenclature-aids-in-genomic-epidemiology-
of-active-hcov-19-viruses, last accessed April 4, 2021;
https://github.com/nextstrain/ncov/blob/master/defaults/clades.
tsv, last accessed April 4, 2021)27,28 and Pangolin29

classification tools and Pangolin COVID-19 classification
according to Rambaut et al29 (Pangolin, https://pangolin.
cog-uk.io, last accessed April 4, 2021).

Statistical Analysis

To select the optimal library preparation protocol, unifor-
mities, numbers of mapped reads, and coverages were
analyzed for each block and considered as independent. For
evaluation of the sequencing performance for the selected
PCR condition, the number of variants (total and with an AF
>90%) was also analyzed for each block and considered as
independent. The U-test was applied for the comparison of
two independent groups of ranked data. The Friedman test
was applied for the comparison of multiple dependent
groups. Spearman correlation analysis was used to analyze
4
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the relationship between the RT-qPCR Cp values and uni-
formities. Statistical analyses were performed using Statis-
tica 7.1 (Statsoft, Tulsa, OK).

Results

Sequencing Protocol Optimization

This study included 16 confirmed COVID-19 deceased
patients with a positive SARS-CoV-2 E gene RT-qPCR on
lung FFPE blocks. For six patients, two different lung lobes
were tested, leading to 22 FFPE blocks. RT-qPCR Cp
values for the different FFPE blocks ranged from 16.02 to
34.16 (Supplemental Table S1). For SARS-CoV-2 genome
sequencing, the Ion AmpliSeq SARS-CoV-2 Research
Panel was used, which is an amplicon-based library prepa-
ration method. Because the 22 FFPE blocks were relatively
heterogeneous in terms of RT-qPCR Cp values, three
different numbers of target amplification cycles were tested:
20, 25, and 30 PCR cycles for all the blocks. Libraries
suitable for sequencing were obtained for all blocks, except
for one (block 2-2) for which the library concentration at 20
PCR cycles was too low for sequencing (Supplemental
Table S1).
Globally, no significant differences were observed in

terms of sequencing metrics (number of mapped reads and
coverage) with increased numbers of PCR cycles. Only the
uniformity appears higher at 20 PCR cycles (median,
jmdjournal.org - The Journal of Molecular Diagnostics
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Table 1 Sequencing Metrics for Matched FFPE and Frozen Tissues

Patient
no.

RT-qPCR
Cp value

Selected PCR
cycles for
target
amplification

Sequencing quality
for FFPE tissue

Sequencing
quality
for frozen
tissue

Variants for
FFPE tissue, n

Variants for
frozen tissue, n

Variants with
AF >90%
for FFPE
tissue, n

Variants with
AF >90% for
frozen tissue, n

1 18.69 20 Optimal Optimal 6 7 5 5
2-1 28.76 25 Optimal Optimal 865 238 5 5
2-2 31.62 / NC Optimal / 189 / 5
3 23.13 20 Optimal Optimal 12 11 9 9
4 19.32 20 Optimal Optimal 13 10 6 6
5-1 29.16 25 Suboptimal Suboptimal 774 184 6 5
5-2 31.41 / NC Suboptimal / 231 / 5
6 34.16 / NC NC / / / /
7 31.14 20 Optimal Optimal 19 15 9 9
8-1 16.02 20 Suboptimal Poor 8 10 7 7
8-2 21.57 20 Optimal Suboptimal 9 7 7 7
9-1 27.96 20 Poor Suboptimal 896 284 4 4
9-2 30.55 30 Suboptimal Optimal 340 160 22 4
10 33.03 / NC Suboptimal / 69 / 9
11-1 21.98 20 Optimal Optimal 18 15 10 10
11-2 23.05 20 Optimal Optimal 26 15 10 10
12-1 28.46 25 Suboptimal Suboptimal 1025 293 6 7
12-2 29.69 25 Suboptimal Optimal 589 210 9 7
13 20.59 20 Optimal Suboptimal 15 9 7 7
14 30.88 / NC Poor / 162 / 7
15 20.56 20 Optimal Optimal 18 21 6 6
16 28.87 25 Suboptimal Poor 707 314 8 5

AF, allelic frequency; Cp, crossing point; FFPE, formalin fixed, paraffin embedded; NC, noncontributory Q16.
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619
95.72%) than at 25 and 30 PCR cycles (medians, 92% and
88%, respectively; Friedman test: P Z 0.04) (Supplemental
Table S1). Next, the analyses were refined according to the
RT-qPCR Cp values (Figure 1). For blocks with low
RT-qPCR Cp values (<24), the average number of mapped
reads is higher with 20 PCR cycles (Friedman test:
P Z 0.002). In contrast, for blocks with an RT-qPCR Cp
value between 24 and 30, the average number of mapped
reads is higher with 25 or 30 cycles of PCR (Friedman test:
P Z 0.009). For RT-qPCR Cp values >30, a similar but
slighter variation appeared in the number of mapped reads
but was not significant (Friedman test: P Z 0.135). Uni-
formity clearly decreased with the increase of the RT-qPCR
Cp value for the three tested conditions (20, 25, and 30
cycles), as confirmed by the negative Spearman correlations
(Figure 2). In particular, for the seven blocks with an RT-
qPCR Cp value >30, five showed a uniformity of <55%
for all the tested conditions. These five blocks were
considered as noncontributory; 17 blocks were thus
considered as contributory. These 17 contributory blocks
were coming from 13 patients (including four patients with
two blocks tested).

For the 17 contributory blocks, the aim was to establish
the best PCR condition for sequencing performance and
variant analyses. As sequencing quality criteria, the uni-
formity was selected as the most important factor because it
is related to the homogeneity of the coverage distribution.
The Journal of Molecular Diagnostics - jmdjournal.org
SCO 5.6.0 DTD � JMDI1089_proof �
The PCR condition with the highest uniformity was thus
selected. If there were conditions with similar uniformities
(�3%), the condition with the highest number of mapped
reads was selected. If there were conditions with similar
uniformities (�3%) and number of mapped reads (�20%),
the condition with the fewest PCR cycles was preferred
(Supplemental Table S1). This allowed us to select 20 PCR
cycles for blocks with an RT-qPCR Cp value <28 and 25
PCR cycles for blocks with an RT-qPCR Cp value between
28 and 30. It was not possible to establish rules for blocks
with an RT-qPCR Cp value >30, with most of them being
noncontributory (Supplemental Table S1).

Sequencing Performances Obtained after Optimization

After adapting the number of target amplification PCR cy-
cles according to the RT-qPCR Cp values for the 17
contributory blocks, the median number of mapped reads
and uniformity were 1,642,150 (minimum-maximum:
305,249 to 2,094,563) and 95.9% (minimum-maximum:
81% to 98%), respectively.

The sequencing quality was considered as optimal for 10
blocks (Materials and Methods), with a median number of
mapped reads of 1,748,009, a median coverage of 10,644,
and a median uniformity of 96.4% (Table 1). The RT-qPCR
Cp value of these 10 FFPE blocks varied from 18.69 to
31.14. The sequencing quality was considered as suboptimal
5
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Figure 3 Variation of sequencing performances [number of mapped reads (A), uniformity (B), number of variants (C), and number of variants with an
allelic frequency (AF) >0.9 (D)] obtained with the selected PCR condition, according to RT-qPCR crossing point (Cp) values for contributory blocks. Data are
displayed as medians, 25% to 75% quartiles (box plots), and nonoutliers (bars). The U-test was applied. *P < 0.05, **P < 0.01 Q15.
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for six blocks, with a median number of mapped reads of
1,128,420, a median coverage of 5385, and a median uni-
formity of 89%. The RT-qPCR Cp values ranged from
16.02 to 30.55. The sequencing quality of one block was
considered as poor (Table 1). According to the RT-qPCR
Cp values, significant differences were observed between
contributory blocks with an RT-qPCR Cp value <24 and
those with an RT-qPCR Cp value between 24 and 30 in
terms of number of mapped reads, uniformity, and the
number of variants (Figure 3). As it would be easier in daily
practice to use the same protocol for each block, a com-
parison between the sequencing metrics and the data ob-
tained by the Variant Caller plug-in was performed for each
block for the three different conditions (20, 25, and 30 cy-
cles) and the selected condition, as proposed above. The
adaptation of the number of PCR cycles to the RT-qPCR Cp
value (selected condition) allowed obtaining more blocks
with an optimal or suboptimal result (Supplemental Table
S3). Moreover, increasing the number of PCR cycles lead
to a higher number of variants with an AF <0.9, which can
reflect sequencing artifacts.
6
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Factors Influencing Sequencing Performances

The presence of hemorrhage and/or necrosis on the 22 FFPE
blocks was evaluated to identify if histologic features can
affect the sequencing performance and quality
(Supplemental Table S4). Hemorrhage was observed for
eight blocks, and necrosis was observed for four blocks. The
sequencing quality was more often optimal when neither
hemorrhage nor necrosis was present (7/11 blocks with
optimal sequencing when neither hemorrhage nor lysis was
present versus 3/11 blocks with optimal sequencing when
hemorrhage and/or lysis was present).
To examine the impact of formalin fixation (a well-

known cause of RNA damage-induced changes and
sequencing artifacts), the same library preparation (with the
adaptation of the PCR amplification cycles to the RT-qPCR
Cp values) and sequencing protocols were used on matched
frozen tissues. Using this method on the 22 frozen tissues,
sequencing quality was considered as optimal for 11 (me-
dian number of mapped reads of 1,549,686, median
coverage of 9971, and median uniformity of 97%).
jmdjournal.org - The Journal of Molecular Diagnostics
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Figure 4 Partial sequence alignments of 21 formalin-fixed, paraffin-embedded blocks with three different numbers of target amplification cycles against
the reference sequence NC_0455512.2. Key residue nucleotides for Global Initiative on Sharing All Influenza Data clade classification are indicated. Sequences
for block 6 are not included in the alignment as they are much shorter than the others and do not align sufficiently well to the other sequences to give useful
information.
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Sequencing quality was considered as suboptimal for seven
frozen tissues (median number of mapped reads of
1,256,654, median coverage of 5375, and median unifor-
mity of 90%). Finally, for three frozen tissues, the
sequencing qualities were considered as poor; and for one
frozen tissue, they were considered as noncontributory
(Table 1). When considering the six suboptimal FFPE
blocks and the matched frozen tissues, optimal quality on
frozen tissues was observed for two of them, whereas
sequencing remained suboptimal for two and poor for the
remaining two. The 9-1 poor sequencing quality from FFPE
was suboptimal from frozen tissue. The five FPPE blocks
categorized as noncontributory showed various results when
frozen tissue was sequenced: one optimal, two suboptimal,
one poor, and one noncontributory.

Variant Analysis

Among the 17 contributory FFPE blocks, between 6 and 1025
variants were detected, with an AF varying between 2% and
The Journal of Molecular Diagnostics - jmdjournal.org
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100%. Between 4 and 22 variants with an AF >90% were
detected, with a mean of 8 variants per FFPE block. Each
variant with anAF>90% and recurrent variants reported in the
literature were verified in the IGV (Materials and Methods).
Verification using IGVvalidated all variantswith anAF>90%,
except for twodeletions thatwere detectedby theVariantCaller
plug-in but not confirmed (Patients 5 and 12). Moreover, for
Patient 2, the variant G11083T was detected by the Variant
Caller plug-inwith anAFof 63% in theFFPEblock andwith an
AF of 73% in the matched frozen tissue, but IGV verification
revealed an AF of almost 100% for the two conditions. For
Patient 12, the variant GGG28881AAC was detected by the
Variant Caller plug-in with an AF of 74% and with an AF of
95% in the matched frozen tissue; verification using IGV
revealed anAF of almost 100% for the FFPE block. For Patient
16, IGVverification showed the presence of the variantsC241T
and GGG28881AAC in both FFPE block and matched frozen
tissue. However, the C27476T variant identified in the FFPE
block with an AF of 95% was not observed in the matched
frozen tissue.
7
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Table 2 Variant Frequencies

Nucleotide variation Gene Mutation type Amino acid change Frequency

C241T Upstream (50UTR)
ORF1ab

13/13

C710T ORF1ab/NSP1 Missense L149F 1/13
C1059T ORF1ab/NSP2 Missense T265I/T85I 1/12
C2113T ORF1ab Synonymous - 1/13
C3037T ORF1ab Synonymous - 13/13
C4002T ORF1ab/NSP3 Missense T1246I/T428I 3/13
C7765T ORF1ab Synonymous - 1/13
C8782T ORF1ab Synonymous - 0/13
G10097A ORF1ab/NSP5 Missense G3278S/G15S 3/13
G11083T ORF1ab/NSP6 Missense L3606F/L37F 1/13
C13536T ORF1ab Synonymous - 2/12
C14408T ORF1ab/NSP12 Missense P4715L/P323L 13/13
C15324T ORF1ab Synonymous - 6/12
T15978C ORF1ab Synonymous - 1/13
A16166G ORF1ab/NSP12 Missense N5301S/N909S 1/13
C17690T ORF1ab/NSP13 Missense S5809L/S485L 1/13
C18060T ORF1ab Synonymous - 0/13
C18877T ORF1ab Synonymous - 1/13
C21805T S Synonymous - 1/13
A23403G S Missense D614G 13/13
C23731T S Synonymous - 2/12
G24794T S Missense A1078S 1/13
G25563T ORF3a Missense Q57H 2/12
G26144T ORF3a Missense G251V 0/13
T28144C ORF8 Missense L84S 0/13
G28690T N Missense L139F 1/13
A28765G N Synonymous - 1/13
GGG28881AAC N Missense RG203KR 4/13
G29291A N Missense D340N 1/12

UTR, untranslated region Q17.
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For all optimal (10 of 10) FFPE blocks, the same variants
with an AF >90% were detected in the matched frozen
tissues. For the six suboptimal FFPE blocks, comparison of
the variant caller plug-in results between FFPE and matched
frozen tissue revealed additional variants for four FFPE
blocks (5-1, 9-2, 12-2, and 16), a missing variant for one
FFPE block (12-1), and the same profile for one FFPE block
(8-1) (Table 1). However, IGV verification showed that the
profile was concordant between FFPE and matched frozen
tissue for blocks 5-1 and 12-1. In summary, the comparison
of matched frozen and FFPE tissues identified three blocks
presenting discordance (9-2, 12-2, and 16), with additional
variants in the FFPE blocks that were absent in the matched
frozen tissue. All of the three FFPE blocks were charac-
terized by a suboptimal sequencing and by an RT-qPCR Cp
value >28.

Regarding the four patients with two different lung lobes
tested, two presented the same variant profile (Patients 8 and
11). Discordances were observed between lobes for Patients
9 and 12, but comparison with matched frozen tissues
revealed that additional variants observed in one lobe were
related to sequencing artifacts.
8
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Regarding recurrent variants reported in the literature, all
patients harbored the C241T, C3037T, C14408T, and
A23403G nucleotide variants (Figure 4 and Supplemental
Appendix S1). Distinct variant profiles have been identi-
fied across the patients (Tables 2 and 3). According to the
GISAID definitions (Materials and Methods), clade G was
assigned for seven patients, clade GR was assigned for four
patients, and clade GH was assigned for two patients. For
four patients (Patients 9, 11, 12, and 16), some genomic
positions cannot be assessed because of an AF of around
40% to 60%. Using Nextstrain classification, eight patients
were classified as clade 20A (because of the C14408T and
A23403G variants), one patient was classified as clade 20B
(because of the GGG28881AAC variant), one patient was
classified as clade 20C (because of the C1059T and
G25563T variants), and three patients were classified as
clade 20D (because of the C4002T, G10097A, C13536T,
and C23731T variants) (Figure 5). According to Pangolin
COVID-19 classification from Rambaut et al,29 11 patients
were classified as B.1 and two patients were classified as
C.11 (alias of B.1.1.1.11). Variants were checked on the
GISAID (using CoVsurver) and Nextstrain websites, and
jmdjournal.org - The Journal of Molecular Diagnostics
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Table 3 Variant Profile per Patient

Patient no. Profile GISAID clade GISAID ID*
Nextstrain
clade

Pangolin COVID-19
classification29

1 C241T-C3037T-C14408T-C15324T-
A23403G

G SARS-CoV-2/human/
Brussels/1/
2020_EPI_ISL_451935

20A B.1

2 C241T-C3037T-G11083T-C14408T-
C15324T-A23403G

G - 20A B.1

3 C241T-C2113T-C3037T-C7765T-C14408T-
C17690T-C18877T-A23403G-G25563T

GH SARS-CoV-2/human/
Brussels/3/
2020_EPI_ISL_452142

20A B.1.9

4 C241T-C3037T-C14408T-C15324T-
A23403G-A28765G

G SARS-CoV-2/human/
Brussels/4/
2020_EPI_ISL_452148

20A B.1.83

5 C241T-C3037T-C14408T-C15324T-
A23403G

G - 20A B.1

7 C241T-C3037T-C4002T-G10097A-
C13536T-C14408T-A23403G-C23731T-
GGG28881AAC

GR SARS-CoV-2/human/
Brussels/7/
2020_EPI_ISL_452140

20D C11

8 C241T-C1059T-C3037T-C14408T-
A23403G-G25563T-G29291A

GH SARS-CoV-2/human/
Brussels/8/
2020_EPI_ISL_452149

20C B.1.321

9 C241T-C3037T-C14408T-A23403G G - 20A B.1.6
11 C241T-C3037T-C4002T-G10097A-

C13536T-C14408T-A16166G-A23403G-
C23731T-GGG28881AAC

GR SARS-CoV-2/human/
Brussels/11/
2020_EPI_ISL_452150

20D B.1.1.1

12 C241T-C3037T-C14408T-T15978C-
A23403G-G24794T-GGG28881AAC

GR - 20B B.1.1

13 C241T-C710T-C3037T-C14408T-C15324T-
A23403G-G28690T

G SARS-CoV-2/human/
Brussels/13/
2020_EPI_ISL_452151

20A B.1

15 C241T-C3037T-C14408T-C15324T-
C21805T-A23403G

G SARS-CoV-2/human/
Brussels/15/
2020_EPI_ISL_452152

20A B.1

16 C241T-C3037T-C4002T-G10097A-
C14408T-A23403G-GGG28881AAC

GR - 20D C.11

*GISAID (https://www.gisaid.org, last accessed May 7, 2021).
COVID-19, coronavirus disease 2019; GISAID, Global Initiative on Sharing All Influenza Data; ID, identifier Q18.
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three variants that have never been described before were
detected [ie, A16166G (AF of 99.8% for both tested lobes)
for Patient 11, C710T (AF of 100%) for Patient 13, and
C21805T (AF of 99.7%) for Patient 15]. Interestingly, those
three variants were also detected in the matched frozen
tissues.

To confirm the variants identified using the Ion Torrent
sequencing platform, the SARS-CoV-2 genome from the
frozen tissues matching the 17 contributory FFPE blocks
was also sequenced using Oxford Nanopore technology.
Sequences were obtained for all tissues, except one (block
2). Variants reported in Supplemental Table S2 could be
confirmed using this third-generation sequencing platform.

Robustness Analysis

To evaluate the robustness of the SARS-CoV-2 genotyping
on FFPE blocks, the technique was challenged by lowering
The Journal of Molecular Diagnostics - jmdjournal.org
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the amount of RNA used in the reverse transcription reac-
tion. Instead of 10 ng, 5 or 1 ng was used as input to prepare
the libraries for five different FFPE blocks: two blocks with
an RT-qPCR Cp value <24 (1 and 4), two blocks with an
RT-qPCR Cp value between 24 and 30 (2-1 and 16), and
one block with an RT-qPCR Cp value >30 (7). For three of
the five blocks, genotyping results (variants with an AF
>90%) remained identical regardless of the amount of input
RNA. For two blocks (both with an RT-qPCR Cp value
>24), the decrease of viral input was associated with
discordant results in the number of identified variants (data
not shown).
Discussion

Currently, many questions remain about the origin, evolu-
tion, and spreading of the SARS-CoV-2. The SARS in
9
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Figure 5 Nextstrain classification for 13 patients.
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2003,30 Middle East respiratory syndrome in 2014,31 and
the current COVID-19 pandemic highlight the need for
coronavirus genome characterization. Laboratories world-
wide are using their sequencing infrastructure and expertise
to deliver and characterize SARS-CoV-2 genome
sequences. Most of these sequences are generated from
fresh samples; therefore, library preparation and sequencing
protocols are not adapted to FFPE blocks.

The present study aimed to optimize SARS-CoV-2
genotyping on post-mortem FFPE lung tissues using the
Ion AmpliSeq SARS-CoV-2 Research Panel. According to
the manufacturer, the number of target amplification cycles
should be adapted to the viral load. Even if the RT-qPCR
Cp value can be affected by batch effect32 and cannot be
used as a precise quantitative measure of viral load, the
RT-qPCR Cp value can indirectly reflect the viral load.
Because the RT-qPCR Cp values were heterogeneous
across the FFPE blocks, different numbers of target
amplification cycles were tested to optimize the
sequencing. The different numbers of amplification cycles
were selected to avoid overamplification of smaller frag-
ments, leading to lower uniformity. Low template input
and biased amplification of biological material by PCR are
also a source of distortion and can potentially affect the
accuracy of variant detection.33e35 The present data
highlight the importance of the RT-qPCR Cp value in the
sequencing optimization. Indeed, an increase of the num-
ber of target amplification PCR cycles is required for
10
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blocks with a higher RT-qPCR Cp value (>28). Never-
theless, most FFPE blocks with an RT-qPCR Cp value
>30 were noncontributory, even if the number target
amplification PCR cycles was increased.
SARS-CoV-2 sequences available from databases

(National Center for Biotechnology Information and
GISAID) are generated with different sequencing plat-
forms and methods, and quality criteria are not well
defined. In the present study, sequencing quality was
categorized as optimal, suboptimal, or poor based on the
number of mapped reads and the uniformity. Using this
classification, all the variants identified in the optimal
FFPE blocks were confirmed on matched frozen tissue.
Discordances were observed only for blocks with sub-
optimal or poor sequencing. These data suggest that the
proposed sequencing quality evaluation allows the iden-
tification of FFPE blocks with reliable results when the
sequencing quality is optimal. If the sequencing quality is
suboptimal or poor, new variants should be analyzed with
caution, especially if a high number of variants was
identified.
The present study aimed also to identify factors that can

impact the sequencing quality. SARS-CoV-2 genotyping
results are influenced by several factors, such as the pres-
ence of hemorrhage and/or necrosis in the tissues, RT-qPCR
Cp values, and formalin fixation. The sequencing quality
was more often optimal when neither hemorrhage nor ne-
crosis was present. Among the five noncontributory blocks,
jmdjournal.org - The Journal of Molecular Diagnostics

1240

� 17 July 2021 � 1:35 pm � EO: JMDI-D-20-00277

http://jmdjournal.org


13

SARS-CoV-2 Sequencing from FFPE Tissues

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302

1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
three presented hemorrhage and/or necrosis. Regarding RT-
qPCR Cp values, after optimization, a significant difference
in terms of sequencing metrics was still observed between
FFPE blocks with low or high RT-qPCR Cp values.
Because formalin fixation leads to cross-linking and frag-
mentation of nucleic acids, extractions from FFPE are
typically fragmented into pieces <300 bp long.16 The Ion
AmpliSeq SARS-CoV-2 Research Panel amplicon lengths
range from 125 to 275 bp, with an average length of 202 bp.
This relatively short amplicon length can explain the suc-
cess of sequencing on FFPE blocks. Indeed, the comparison
of matched frozen and FFPE tissues revealed discordance
only for three blocks, all with a suboptimal sequencing
result and with an RT-qPCR Cp value >28. Moreover, three
variants never described before have been detected using
FFPE blocks and confirmed on the matched frozen tissue.
These data confirmed that FFPE material is suitable for
SARS-CoV-2 genotyping.

The present study has some limitations: i) The sample
size was relatively small. ii) The autopsies were performed
from 72 to 96 hours after death. This delay can alter the
quality of the nucleic acids. iii) Total nucleic acids were
used as starting input. The impact of viral enrichment stra-
tegies should be investigated. iv) RT-qPCR Cp value was
used to determine the number of PCR cycles. However, RT-
qPCR Cp values can vary and should be validated in each
laboratory. v) The amount of available material was rela-
tively large as it was autopsy tissue. However, in the daily
practice of the pathology laboratories, molecular testing
should be adapted to small biopsies and low quantities of
nucleic acids. To investigate the robustness of the test, the
amount of starting RNA was decreased, with concordant
results for FFPE blocks with low RT-qPCR Cp values.
These data have to be confirmed in a larger study using
biopsies. vi) This study is limited to lung tissues, and other
organs were not investigated. vii) No comparison was
possible with the premortem sample.

Several publications have shown that third-generation
sequencing methods (Oxford Nanopore sequencing and
PacBio Sequel) can be used to genotype viral pathogens,
such as SARS-CoV-2.19,36e38 Direct RNA sequencing
using nanopores allows virus identification without the
amplification biases linked to other sequencing technolo-
gies. The third-generation sequencing also offers near to
real-time genome sequencing and consequently short turn-
around time (hours compared with days with Ion Torrent
and Illumina). In the context of a new emerging infectious
disease, these methods provide a powerful tool to rapidly
identify pathogens. Nevertheless, third-generation NGS
platforms are less compatible with FFPE than second-
generation platforms.39 For this reason, the most
commonly used NGS platforms in pathology laboratories
still belong to the second generation.40

The data obtained in the present study allowed us to
classify SARS-CoV-2 genomes using the clade nomencla-
ture from GISAID for all contributory sequences as well as
The Journal of Molecular Diagnostics - jmdjournal.org
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Nextstrain and Pangolin COVID-19 classification
tools.27e29 The variant profile was used only for the purpose
of classification, as the functional and clinical impacts of
these mutations remain unknown. According to the clade
classification, most of the 13 patients (8/13) are classified as
clade 20A, 1 is classified as clade 20B, 1 is classified as
clade 20C, and 3 are classified as clade 20D (Nextstrain Q,
https://nextstrain.org/blog/2021-01-06-updated-sars-cov-2-
clade-naming, last accessed April 23, 2021).

In conclusion, the present study proposes to adapt the
number of target amplification PCR cycles according to RT-
qPCR Cp value to optimize and to obtain reliable SARS-
CoV-2 genome sequencing on FFPE samples. This opens
the possibility to explore correlation between virus genotype
and histopathologic lesions.
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