

From consistency to flexibility: a database schema for the 1

management of CityJSON 3D City Models 2

Abstract: The use of 3D city models is now common practice; many large cities have their 3

own digital model. Resilient and sustainable management of these models is necessary in 4

many cases, where an application could evolve over its life cycle. The complexity of generic 5

modelling standardization is often a limitation for a light and user-friendly usage and further 6

developments. This paper aims to propose an alternative providing a simplified database 7

schema implemented in a document-oriented storage. Thanks to the use of the NoSQL store, 8

the focus is on flexibility of the data schemas and thus its clarification. In order to aim 9

attention at the compactness in web development, CityJSON has been chosen for the 10

encoding of the 3D city models. Finally, a full-stack application (persistent storage, 11

consistent edition and visualization of 3D city models) has been developed to handle the 12

simplified schema and illustrates its capabilities in two practical use cases. 13

Keywords: CityJSON, NoSQL, 3D City Models, Data Schema, Data Architecture 14

 15

1. Introduction 16

Nowadays, many large cities have usage of their own 3D digital model (Biljecki et al. 17

2015). These 3D city models are the integrating base for urban management tools such as 18

fluid flows simulations, cadastral operations, urbanism, etc. In the context of urban built 19

environment, the use of CityGML as the data model and encoding standard is now a common 20

practice (Gröger and Plümer 2012). CityGML provides a data exchange format for the 21

structuring of urban and landscape objects. It stores objects in multi levels-of-detail and 22

structures their attributes, their relationships and their features on a normalized basis. Its 23

support of an increasing number of extensions allows dealing with more and more issues: 24

energy, noise, land administration, etc. (Floros and Dimopoulou 2016; Biljecki, Kumar, and 25

Nagel 2018). From a conceptual viewpoint, these application domain extensions (ADE) 26

extend the supported features and properties of the CityGML core module. These added 27

elements are necessary to perform computations or to store their results in simulations and 28

analysis. 29

Recently, 3DCityDB, an open-source 3D geodatabase solution, has been proposed to 30

handle city models (Yao et al. 2018). The tool proposes a system for the management, 31

analysis, and visualization of large 3D city models according to the CityGML standard. It 32

relies on a relational database and provides well-known tools such as WFS services, the 33

support of 3D scenes (KML, COLLADA, etc), the streaming of these formats thanks to the 34

WFS capabilities, etc. The major drawback highlighted by the author states that the lack of 35

flexibility of the 3DCityDB relational solution could limit its usability; even if ADEs are 36

supported, maintaining them natively could be troublesome. Besides, the intrinsic 37

management of a relational solution might impose to make a large number of recursive joins 38

to represent the aggregation and inheritance hierarchies of the object-oriented data model. 39

Moreover, to support new features, it might be necessary to add tables, which always results 40

in an additional demand for resources and complexity of use. 41

This paper aims to provide an alternative to the relational database management of 3D 42

city model and traditional tools (SQL, CityGML, etc.). It relies on a simplified data schema 43

for the storage of city model in a document-oriented NoSQL store. A web three-tier 44

architecture (client, server and database), in which JavaScript articulates all the operations, 45

illustrates the use of the derived CityJSON schema, the JSON encoding of the CityGML data 46

model (Ledoux et al. 2019). 47

NoSQL databases offer the possibility to improve the storage flexibility by reforming 48

the tabular structure. Besides their reorganization of their intrinsic structure, this stores family 49

puts forward the plasticity of the schema model (Weglarz 2004). On the other hand, 50

CityJSON proposes a lightweight and compact alternative to the CityGML XML-encoding. 51

Following the same conceptual model as the XML-encoding, the JSON-encoding offers the 52

possibility to ease development of web applications. The conceptual similarities between 53

CityJSON and document-oriented management, which stores information as document in 54

BSON-encoding, could provide an answer to the lack of flexibility. 55

This paper is divided as follows: the section 2 contextualizes this research in related 56

works on Web Geographic Information Systems architecture (Web GIS) and the trend 57

towards an increasing use of the web (Mobasheri et al. 2020). It highlights the major 58

drawbacks of the current relational management and put it in parallel with the current state 59

of alternate developments. Then, the section 3 describes the simplified data schema and its 60

implementation in a document-oriented store. The illustrating application architecture is 61

decomposed in its three constituting parts: client, server and database. The section 4 develops 62

the new data management paradigm concerning the modifications provided by the NoSQL 63

database storage and several improvements on other tiers. A response is proposed and 64

documented in order to shed light on its new capabilities. From a network load viewpoint, 65

performances tests compare architecture capabilities in order to ensure exchanges 66

compactness. A benchmark with a relational solution is presented. Finally, two examples of 67

use cases illustrate these capabilities in practical situations in the section 5. Before 68

considering future works, we conclude on the principal benefits of the new generation 69

application and its advances. 70

2. Related works 71

A geographic information system (GIS) gathers and manages geospatial data (Tomlinson 72

1968). In the urban built environment, besides the management of 3D models and geometries, 73

the specific attributes and semantic information impose their own definitions; Urban GIS 74

(Blaschke et al. 2011). From a technical viewpoint, a web-based GIS application is divided 75

into three interdependent constituting parts at least: a client, which is a consumer of spatial 76

information; a server, which is a GIS processing system; and a database, which is a storage 77

solution that deals with spatial formats, spatial indexing and/or data processing functions. In 78

short, a Web GIS is a type of distributed information system in which components manage 79

spatial information on the web. 80

Nowadays, leveraging client capabilities and thus using its resources, the browser is no 81

longer simply a static window on a set of data: it can also perform a set of processes (Toschi et 82

al. 2017). Given that, the browser-based applications should outstrip standalone software 83

thanks to their multi-user characteristics and dynamic elements. It will result in cost savings 84

from the server without negative impact on the user experience (Kulawiak, Dawidowicz, and 85

Pacholczyk 2019). Indeed, the number of clients can also increase without limiting the server 86

performances, as it is used as a simple gateway and no longer as a computation centre. 87

Due to their mature support of spatial functions, indexes and storage capabilities, the 88

relational databases often represent the core base of web applications (Zlatanova and Stoter 89

2006; Mobasheri et al. 2020). Besides the data-modelling functions, the transactional 90

databases can handle data processing in an efficient way (Obe and Hsu 2015). Several 91

integrated solutions have been proposed for the management of digital city models. The 92

majority of these solutions are based on a relational database: (a) DB4GeO is a web service-93

based geo-database architecture for geo-objects (Breunig et al. 2016). It relies on an object-94

oriented database. Nevertheless, its development is no longer maintained. (b) 3DCityDB 95

provides a spatial relational database schema for semantic 3D city models (Yao et al. 2018). 96

It proposes an important number of key features and functionalities for CityGML models 97

management (Pispidikis and Dimopoulou 2016). It is interesting to note that, among other 98

functionalities, 3DCityDB allows the streaming of CityJSON features thanks to the OGC 99

WFS 2.0. (c) A NoSQL solution relies on a document-oriented storage and provides a 3D 100

web-rendering tool (Doboš and Steed 2012). However, these tools used in this architecture 101

were not as efficient as nowadays: many current libraries were unavailable (HTML5, 102

ThreeJS, etc.), the browsers capabilities were not as efficient as today; the focus was made 103

on the dataset and did not consider the architecture as a whole; etc. Moreover, the solution 104

developers criticized the lack of validation on elements import in the document-oriented 105

solutions. (d) Another NoSQL-solution development states that the document-oriented stores 106

lacks on consistency (Višnjevac et al. 2019). The problem here is that the database cannot itself 107

provide a sufficient guarantee of consistency. (e) The storage and manipulation of 108

heterogeneous data sources arises problems due to the differences in data structure: sensors 109

data, 3D city models, BIM models, etc. have a different update rate, a different representation 110

scale, etc. Even then, in GIS applications where sensors data, 3D city models and BIM 111

models coexist, the relational databases are preferred (Aleksandrov et al. 2019). 112

It is here worth mentioning that the dichotomy in which relational databases do not 113

support JSON insertion and document does is no longer true (Chasseur, Li, and Patel 2013). 114

Relational databases have been refactored to handle JSON (Liu, Hammerschmidt, and 115

McMahon 2014). However, it still imposes the use of an additional mapping layer and thus 116

does not provide a solution to the lack of flexibility. For instance, it is the case for 3DCityDB, 117

which translates the CityJSON in CityGML encoding before storing it into the relational 118

database thanks to the citygml4j software. 119

Developments on features visualisation have recently made progress on the client side 120

(Lim, Janssen, and Biljecki 2020). They provide a comparison on web-based viewers and 121

their specific capabilities at the building scale. However, the conclusions still draw the 122

disadvantages of ADE modelling and the complexity raised by relational database 123

management. Working on the storage tier, a composition of SQL/NoSQL allows enjoying 124

advantages of both solution (Holemans, Kasprzyk, and Donnay 2018; Poux et al. 2020). 125

While the relational database is still mandatory for its data-processing capabilities, the 126

document-oriented is useful thanks to its storage flexibility. It can be done without replication 127

or complex mapping between the two stores since the metadata and geo-registration are 128

handled on server side. The geospatial capabilities of the document-oriented stores bring 129

more and more solutions to spatial-related problematics (Zhang, Song, and Liu 2014; Lopez, 130

Couturier, and Lopez 2016; da Costa Rainho and Bernardino 2018). However, it shows that 131

even if performances are overall improved with document-oriented store, it is not yet always 132

true (Makris, Tserpes, and Anagnostopoulos 2019). Sometimes, relational database ranks 133

ahead of document-oriented stores (Bartoszewski, Piorkowski, and Lupa 2019), sometimes it 134

is the inverse in terms of loading (Laksono 2018) or heterogeneous sources handling (Sveen 135

2019). 136

From a technical viewpoint and in a more precisely way, MongoDB, a cross-platform 137

document-oriented database, has already been used in several “geo” architecture. Constituting 138

part of what is called a MERN stack (MongoDB - Express - React - NodeJS), MongoDB is 139

acknowledged for powerful way to store and retrieve data that allows developers to move 140

fast: MongoDB's horizontal, scale-out architecture can support huge volumes of both data 141

and traffic. Thanks to the flexibility of its database schema, this distribution has proved its 142

usefulness in spatial 2D (Đurić 2018; Voutos et al. 2017) and 3D visualization applications 143

(Trubka et al. 2016). The management of multiple representation structure can be visualized 144

using such a storage in the backend (Mao and Harrie 2016). However, its limited capabilities 145

to strict visualization could not set apart the document-oriented storages and its features. 146

About the stored data and the city modelling, CityJSON proposes to renew the CityGML 147

schema and provides a lightweight alternative to the XML encoding (Ledoux et al. 2019). Its 148

improved support of levels-of-detail and metadata make it a good substitute to CityGML 149

(Nys, Poux, and Billen 2020). However, its usage is still limited to specific applications and 150

data encoding (Kumar, Ledoux, and Stoter 2018; Nys, Billen, and Poux 2020; Virtanen et al. 151

2021). Besides it, the new support of 3D models in QGIS should improve its usability thanks 152

to the development of a CityJSON plugin (Stelios Vitalis, Arroyo Ohori, and Stoter 2020). 153

Extensions of the core module are also promising way to improve the CityJSON usability 154

and its update to the 3.0 CityGML version (Nys et al. 2021). In summary, nowadays, the 155

storage of the CityJSON models are limited to files. There is currently no solution for storing 156

and making models available in a collaborative and open manner. 157

3. Solution description 158

This section is divided in two subsections, respectively; a description of the simplified 159

data schema for a document-oriented store and a description of the proposed architecture to 160

demonstrate the usefulness of the proposed schema. While the first justify our choices on an 161

efficient data accessibility and document nesting, the second is a short technical description 162

of all the improvements made by an up-to-date WebGIS architecture. 163

3.1. Schema model 164

In the document-oriented database, the records are stored as documents that follow non-165

mandatory and semi-structured schemas (Olivera et al. 2015). All the documents respecting 166

the same pre-established and semi-opened schema are gathered in a collection. These sets of 167

documents allow the access and the indexing on the records or on a group of them. It is the 168

primitive of the database query engine: everything revolves around this notion of collection. 169

Note that, some efforts have been put to handle geospatial functions already but remain 170

limited (Boaventura Filho et al. 2016). This section develops the various steps that led to 171

enhance and modify the CityJSON encoding into a simplified database schema. 172

The bulk storage of a CityJSON city model in a single document without decomposing 173

it in different collections is possible but limits the possibilities afterwards. A single collection 174

storing all city models should therefore be queried as the document store works aroung this 175

notion of set. Queries and indexing need to be complex to travel the embedded objects 176

structure (an attribute is part of an object, which is itself part of the model). Even if compound 177

indexing is possible (i.e. successive levels of indexing on several attributes), this is not 178

recommended for efficient queries (Reis et al. 2018). Moreover, updating a sub-object in the 179

model without mobilizing the whole database become complex as it imposes to go deep in 180

the nondependent objects embedding, get the object and then insert the modified version in 181

the model. 182

Next to secondary elements such as metadata and appearances, a city model is made of 183

CityObjects. Those objects are natively embedded in the city model in a CityJSON file as 184

JSON objects. However, this data structure is not efficient enough for a dynamic use (Olivera 185

et al. 2015). According to the benchmark (Olivera et al. 2015), the referred models are more 186

efficient but impose to build dedicated queries. Consequently, once elements are created and 187

stored in collections, the link to referenced city objects need to be accessible from the city 188

model in a smart way. 189

We propose to create different collections in order to handle elements and ease their 190

access. Hence, we decompose the city model in five independent parts: CityModel, Texture, 191

Material, AbstractCityObject and Geometry. All imported records inherit their characteristics 192

from these five collections as their models are derived from these five top-schemas from the 193

CityJSON specifications (e.g. of a Building which is a specific AbstractCityObject with a n 194

address, a measuredHeight, a roofType, a specific set of allowed geometries, etc.). These 195

alternate schemas are the second-order schemas or discriminated schemas. In the core 196

application, the five first-order collections are defined dynamically by the database and the 197

server at startup (see Figure 1Error! Reference source not found. for inheritance 198

relationships with second-order objects). Note that the CityModel collection represents the 199

models metadata only. A CityJSON model, as a file, is thus made of the gathering of its sub-200

collections. Different models can be concurrently stored in the same database and the same 201

collections. Thanks to the database smart allocation of space, if a collection is empty, no 202

record is stored (i.e. collection does not exist at all, which implies that none space is used). 203

If a modification is made afterward, a new collection is created on the fly if necessary. 204

 205

Figure 1. CityJSON objects schemas and inheritance 206

While importing the city model in the database, the city objects are stored as independent 207

objects in the AbstractCityObjects collection with a permanent link to their relative 208

CityModel document. Looping iteratively on the CityObjects array from the CityJSON file, 209

we create a new document for each new element and validate it depending on the city object 210

type (i.e. the validators are built on discriminated schemas independently according to the 211

CityJSON specifications and thus the CityGML data model). All elements are then stored in 212

the CityObjects collection whether it is a Building, one of its constituting BuildingParts, a 213

SolitaryVegetationObject, etc. In short, the schema imposes the necessary basis for files to 214

be correctly managed by the database and to follow the CityJSON core specification. 215

However, the management of this schema in a NoSQL solution does not limit the insertion 216

of extended attributes. Note that these extended attributes must still be coherent from a format 217

perspective: no special characters, no insertion functions, etc. Once a document is saved, its 218

corresponding document is afterwards referenced in the CityModel as a simplest object 219

stating on the type and the unique ID of the document in the AbstractCityObject collection 220

(see Figure 2Error! Reference source not found.). 221

As stated above, every object is referred with a unique identifier specific to its lifecycle 222

in the database (thanks to the special data type ObjectID). It is automatically generated and 223

indexed by the database. This integrated management allows concurrent users to create 224

objects at the same time but without any inconsistency insertion (i.e. users need to be aware 225

that two modifications can be made concurrently without any guarantee of consistency in a 226

NoSQL store). Note that the differences between the CityJSON discriminated schemas are 227

sometimes very subtle but this substructure allow further development in a convenient 228

manner: modification to the schema are easily made so that everything is decomposed, 229

normalized and structured. The addition of extensions takes direct advantage of this 230

flexibility as it might concern only a subschema or a part of it. 231

Concerning the insertion validation, during the model lifecycle, the CityObjects field can 232

therefore either be an entire object as in a file, either a reference or unique identifier to the 233

specific CityObject document. In order to prevent users to alter the consistency of the 234

database, it is thus important to provide a pivot element which can take one or the other value 235

without allowing too much deficiency (Diogo, Cabral, and Bernardino 2019). It imposes the 236

use of the Mixed datatype to validate the imported models. This pivot type is reused one more 237

time for the CityObjects to geometries relation (1-N relation). The Figure 2Error! Reference 238

source not found. illustrates the referenced structure of the first-order schemas in the 239

production phase; once documents have been created and referenced (i.e. value is fixed to 240

ObjectID and a string specifying the type of the object). In order to handle spatial indexing 241

and thus filtering queries responses spatially, a geographicalExtent attribute in computed 242

based on the geometry of every document. It corresponds to the smallest rectangular bouding 243

box enveloping the object geometries. This impacts performances on model import. 244

 245

Figure 2. Referred documents structure in production 246

All geometries, and thus the fine and complex representation of the objects, are stored in 247

the same collection regardless of their type as has been the case with the city objects. Here, 248

it is not about a spatial management of elements (i.e. spatial functions and indexes are not 249

being used in the geometries collections) but about a management of elements of a spatial 250

nature (i.e. documents are actually real 3D objects following the standardized geometry 251

types). The geometries are complied with the ISO19107 standard according to the CityJSON 252

specifications. One more time, several discriminated schemas derive from the first-order 253

Geometry schema: Solid, MultiSolid, MultiSurface, MultiLine and MultiPoint (see Figure 254

1Error! Reference source not found.). Note that the “composite” geometries being 255

structurally similar to the “multi” ones, no new schema is created. They are managed as their 256

“multi” equivalent with the difference that their type is composite and not multiple. As a 257

reminder, the difference between the two is whether the constituent elements are contiguous 258

or not. 259

As in the CityJSON files (i.e. the Wavefront .obj file structure), the object boundaries 260

are stored as a list of vertices and arrays of pointers to vertices coordinate triplets in this list. 261

However, the referenced vertices triplets for every object are stored in bulk within the 262

CityObject document not in the whole CityModel one. This point set apart the database 263

schema with the common CityJSON files since the vertices should be stored in the CityModel 264

according to the specifications. In the direction of a wider support of spatial functions within 265

the application and the streaming of features, this storage method improves an independent 266

objects management: the spatial indexes and the consecutive references are suited for an 267

optimized spatial function support. Note that this discrete handling of vertices affect the 268

CityModel upload performances also. The support of spatial functions and tools represent an 269

important future work. Without tackling the database, it would also be interesting to consider 270

both server-side and client-side for spatial analysis. 271

Concerning the support of schema extensions, an important benefit of the application 272

relates to the semi-openness of CityJSON specifications. While our motivation is to increase 273

flexibility, we would not limit the possibilities offered by the semi-open schemas. Hence, the 274

schemas structure is not locked. It allows the addition of attributes and/or properties and new 275

CityObjects type. We believe that CityJSON approach allow people to think about many 276

solutions in this way and ease their development. This point on total openness goes against 277

the 1.0.1 CityJSON specifications in which additional properties are not allowed in some 278

CityObjects definitions. Hence, some drawbacks might be encountered: an exported model 279

from the application might not be compliant with other tools in which specifications limit the 280

model to the strict conditions of the specifications. Efforts from the developers need to be 281

made in order to guarantee this interoperability. 282

3.2. WebGIS architecture 283

In the context of web development, when compactness and lightness are concerns, the 284

creation of a full-stack MERN (MongoDB - Express - React - NodeJS) app facilitates a smart 285

deployment. MERN web apps ensure convenience for web applications that have a large 286

amount of interactivity built into the front-end (i.e. the JavaScript clients). The following 287

paragraphs describe the constituting components of a MERN application and decomposes its 288

architecture in order to develop its benefits. Those benefits are mainly discussed concerning 289

their answer to the lack of flexibility of previous architecture and the availability of a database 290

support for CityJSON models. 291

Such kind of application is made up of a minimum of four technological stacks (ReactJS, 292

NodeJS, ExpressJS and MongoDB) as shown in Figure 3. The increase of flexibility and 293

resilience is demonstrated and put in parallel with the architecture components. 294

 295

Figure 3. Architecture schema of a full stack MERN application 296

The four open-source constituting stacks of the core application are the following: 297

 MongoDB – the document-oriented NoSQL database. 298

 ExpressJS – a minimalist web framework for NodeJS. 299

 ReactJS – the Facebook MVC library (Model–View–Controller). 300

 NodeJS – a JavaScript runtime environment. 301

The client tier is built based on the ReactJS library (see Figure 4 for illustration). ReactJS 302

gave us the modularity necessary for the development of a new research tool as it does not 303

dictate a pattern. We thus focused on the data architecture and the application consistency. It 304

allows the construction of specific components and their reusability on a normalized basis. 305

Note that the rendering scene is an extension of the NINJA viewer (S. Vitalis et al. 2020). It 306

is itself based on the ThreeJS library (the WebGL cross-browser JavaScript library for 3D 307

manipulation and display). Nevertheless, the inserted value during updates and objects 308

modifications are tested in conformance with the CityObject schema and common insertion 309

rules (i.e. no special characters, no injections, etc.). The client tier allows all the common 310

CRUD operations (Create, Read, Update and Delete) on both CityModels and CityObjects. 311

The components communication is built on an event-driven paradigm: the components 312

subscribe to particular messages on an events bus. They then react to their subscription 313

whenever an update is published. The messages could carry information and/or simple 314

messages. It allows decoupling components in order to increase performance, reliability and 315

scalability (Allah Bukhsh, van Sinderen, and Singh 2015). Following this, all components 316

can be dismounted just as new components can be added modularly to open the application 317

possibilities. Hence, two panels are left open to integrate new modules for dedicated 318

functions: secondary view, tables, embedded objects, etc. Use cases of these panels are 319

presented in the end of this paper according to schema modifications during the production 320

phase. 321

 322

Figure 4. Client view of the application – the rendered model is the dummy Railway.json 323

file provided by the 3D GeoInformation research group from TUDelft 324

The server is a NodeJS JavaScript runtime environment that allows performing 325

JavaScript code on server side (following the ECMAScript2015 specifications (Ecma 326

International 2015)). It follows an asynchronous, event-driven, non-blocking input/output 327

(I/O) model. These two last properties make it a very fast and resilient web server (Westerholt 328

and Resch 2015). 329

Along with that, ExpressJS is a JavaScript library that simplify the task of writing web 330

server code for NodeJS. Relying on HTTP requests (i.e. a RESTful application), it allows 331

server to set up middleware function calls: Cross-Origin Resource Sharing, rate limiter, 332

cache, compression, authentication, etc. Currently, the REST API performs basic functions 333

for CityJSON models and its features management such as CRUD functions. The 334

communication layer follows the HTTP/1.1 requests specifications. Please point out that the 335

non-successful responses are possible but non-response are avoided in conformity with the 336

BASE properties of the database. This property have been generalized to the server 337

application. Moreover, the server tier and thus the API ensure the application consistency as 338

the database itself does not provide any guarantee of it (Diogo et al. 2019). 339

The database tier is a document-oriented NoSQL store: MongoDB. Overall, the 340

document-oriented solutions tend to improve the performances and the storage volume for 341

dynamic data management. Despite many advantages, it is good remembering that the 342

responsibility to maintain the data sanity is no role of the NoSQL database (Diogo et al. 343

2019). The indexing method takes advantage of the metadata of each record. The choice of a 344

document-oriented solution has been made because of the schema flexibility and its native 345

JSON support (database object are BSON document of Binary-JSON object). 346

Unlike the English-like SQL, the dedicated MongoDB query language performs CRUD 347

functions but also aggregation, text search and a small number of geospatial queries. The 348

functions take JSON objects as parameters. Besides referenced relationships, the collections 349

are independent from one another. To make the comparison with relational databases, “joins” 350

are not allowed between collections. This point will be discussed in section 4.3. 351

4. Discussion on paradigm shift 352

Apart from the schema model and the proposed architecture, which have been discussed 353

on a technical aspect, several conceptual points need an explanation: the use of NoSQL was 354

not done without reason and some modifications to the CityGML/CityJSON conceptual 355

schema had to be made. The decomposition of the CityJSON files in documents and 356

collections schemas make up the structure of the database to perform normalized API calls. 357

This section comments the contribution of the simplified schema in order to open its reuse in 358

future works. 359

4.1.Structured and unstructured data 360

In this paper, we propose to shift the database archetype from relational solutions to a 361

NoSQL document-oriented store. This conversion should make it possible to open up 362

possibilities and ease schema modifications. While structured data (i.e. relational solutions) 363

promote a consistent data storage, unstructured data stores (i.e. NoSQL stores) intend to 364

enhance flexibility and availability. 365

The relational databases represent the more rigid storage structure. It imposes a static 366

tabular representation of the data (i.e. the data are imposed to follow a structure formatted as 367

rows and columns). The consistency of relational databases is especially ensured by the 368

respect of the ACID properties: Atomicity, Consistency, Isolation and Durability. The regard 369

of these properties results in the guarantee of avoiding insertion of inconsistencies in the 370

database. Conversely, the principal drawback of the relational family comes from the same 371

reason: the data querying and thus its availability can be slowed and inflexible because of all 372

the conditions imposed by ACID properties. Moreover, the table joins imposed by most 373

queries can make them cumbersome and result in complicated processes. 374

For instance, in the context of urban modelling, DB4GeO provides a solution relying on 375

an object-oriented database (OODB). Focusing on the data integrity, an OODB follows the 376

ACID properties. Even if the data structure established on objects is similar to NoSQL stores, 377

we find here the disadvantages of the relational model mentioned above. In addition, it is 378

difficult to make changes to an application that has been in production for some time. It 379

imposes to rework the database structure upstream, before any use. The section 5 illustrates 380

examples of how relational solutions need to be updated in order to handle new attributes 381

and/or new features using new associations. 382

Oppositely, in contrast with the rigid tabular models of relational databases, a document-383

oriented store proposes to modify the data structure and open it. The NoSQL solutions do not 384

follow the ACID properties but the BASE properties (Basically Available, Soft state and 385

Eventual consistency). It results in a system in which denormalization is encouraged. The 386

horizontal scalability is improved (i.e. the replication of the system across n-database): 387

 Basically Available: the data are guaranteed as always available in terms of CAP 388

theorem. Whether it is successful or not, there is always a response to any request: “non-389

response” are not possible from the store. 390

 Soft state: the state of the system could change over time. This can be possible even 391

without input. This is due of the eventually consistent property. 392

 Eventual consistency: the system will eventually become consistent once it stops 393

receiving input. 394

The document-oriented stores are composed of key-value pairs in which values can be 395

records such as XML, JSON objects or even other documents. For instance, sets of semi-396

structured data might be deeply embedded and even recursive (i.e. chain references are 397

possible). Nevertheless, the management of records and lack of standardized schemas 398

improve their flexibility. It assumes a loss of records consistency to improve the database 399

flexibility because of the BASE properties. The consistency insurance is thus carried over to 400

server and client tiers and above all by the simplified schema. Here, the purpose is not on 401

the database consistency. A document-oriented store supports hierarchical documentation of 402

data, which is akin to CityJSON models and objects management. Every single records is 403

described by its own metadata. It uses agile and dynamic schemas without previously defined 404

structure. 405

In summary, the alternative provided by the simplified database schema and its 406

implementation in document-oriented store allow users to ensure data availability and the 407

flexibility of their application in a simplified manner. It is not a solution that would go beyond 408

relational solutions but offers an opportunity to develop new functionalities. OGC API – 409

Features should indeed be an important improvement. It would take advantage of the 410

CityObjects collection, which corresponds to the notion of the standard: a set of features from 411

a dataset. Besides, the CityObjects are themselves abstractions of real world phenomena and 412

thus can be served as feature following the standard [ISO 19101-1:2014]. A discussion should 413

take place around these considerations and state on how CityJSON and the proposed 414

application can demonstrate it. 415

4.2. Stacks communication 416

During the development of the application, while the client was hosted on a remote 417

machine, the application server and the database were hosted on the same machine. This 418

design allowed us to test server load, response time and response mode from a client/server 419

perspective. In order to assess on the best communication mode, we conducted tests on a city 420

model loading. The web GIS client capabilities becoming greater and greater (Agrawal and 421

Gupta 2017), we wanted to provide a benchmark of current objects managements possibilities 422

for a unique client (i.e. Chrome's V8 JavaScript engine in both server and client sides). Tests 423

in which n-clients queries the same API has also been made (see section 4.4). Downloading 424

the objects from the backend layer can be made in several ways: 425

 (a) Continuous requests: the server get all objects one by one from the database and send 426

them to the client as soon as something is loaded. The city model reconstruction is carried 427

by the client. It is characterised by a “flickering” apparition of elements in the rendering 428

scene. It is a common asynchronous loading method. 429

 (b) Bulk requests: get all objects from the database then send them to the client in one 430

aggregated object. The city model reconstruction is carried by the server. The model 431

appears at once, in its entirety. It may take some time before seeing a result as all queries 432

need to be resolved in order to response to the client. 433

Note that all exchanges are simplified thanks to the isomorphism of the application: all data 434

are formatted as JSON objects in both back-end and front-end stacks. There is no need of 435

translation or restructuration for the exchanges and the object management given that 436

CityObjects are stored as they stand. In short, “what you store is what you access”. The Figure 437

5Error! Reference source not found. and Figure 6Error! Reference source not found. 438

represent the sequence diagrams for both solution: continuous and bulk requests. They depict 439

the succession of queries between the three-tier (client, server and database) and their 440

responses. 441

 442

Figure 5. (a) Continuous loading (sequence diagram) - client-side reconstruction. 443

 444

Figure 6. (b) Bulk loading (sequence diagram) - server-side reconstruction. 445

The clients open a connection whenever they initialise themselves. The server and the 446

database keep the connection open for future calls thanks to the NodeJS middleware. Hence, 447

the client/server connection is made only once. Even if a client closes its connection, the 448

database and the server keep a connection open for a limited amount of time in order to 449

facilitate new connections. It is done given that opening a new connection takes a bit of time. 450

While the continuous loading allows diminishing the size of the bandwidth, the bulk 451

loading allows making a single request on the network and reducing the global data transfer 452

(i.e. fewer queries also means less redundancy in the formalization of query headers.). 453

Moreover, caching the response of the bulk loading will improve performances as the model 454

reconstruction is only made once. The tests were conducted on a small dataset, which 455

numbers 120 Building objects and a TINRelief object. Note that, thanks to asynchrony from 456

the NodeJS stack, the requests in the continuous loading were not stalled (i.e. no time were 457

spent waiting because of proxy or ports negotiation before responses could be sent - the Time 458

To First Byte (TTFB) was much nil). On the other hand, TTFB represented 99,6% of the bulk 459

request time. It corresponds to the time for the server to process the database requests and 460

reconstruct the whole city model before sending it. It is also important to note that time has 461

been saved as CityModels are stored as they stand and thus the database does not need to 462

formalize its responses. The whole process took twice as long for the continuous loading for 463

a total amount of data exchanged four times greater (each request have a header and thus 464

multiply the size). Note that this consideration is only valid as long as the database structure 465

does not change. 466

4.3. No joins 467

Within a relational database, the objects are often split in several tables. Many 468

associations, which may be 1-1 but also 1-N and N-N cardinalities, link these tables together, 469

making it difficult to access the data. Modifying the stored objects, the number of relations 470

results in the modification of a potentially important number of tables. Moreover, this should 471

be done cascading in a specific order: first tables referred by foreign keys are modified, and 472

then tables linked with these specific keys. Hence, it is important to have a strong knowledge 473

of the database structure and provide guidelines and documentation to simplify developers 474

work. 475

On the other side, MongoDB retains the JSON objects structure and does not limit 476

insertions. For the reminder, this is not possible with a relational database that imposed the 477

use of conversion tools for native JSON file management. These tools often imply the 478

creation of many tables, many joins and thus the formalisation of complex queries. Such 479

queries and updates increase the time-consummation of processes due to the important 480

number of joins needed. Hence, if the conceptual model is complicated, it ends up with a lot 481

of complexity. A version attribute is modified on-the-fly allowing users to track elements. 482

The CityGML encoding is a perfect example of a high complexity structure (Yao et al. 2018). 483

For instance, in the 3DCityDB schema, sixty-six tables are used to handle CityGML models 484

in a relational database (against three collections in our simplified mapping and the use of 485

the Mixed datatype). The addition of modules increases this complexity but also might imply 486

to rework the database structure upstream. For instance, 3DCityDB and its import/export 487

tools allow creating new tables and associations in a convenient manner during the database 488

setup. Besides the addition of tables, it is worth specifying that these tables might be empty 489

or not use in practice: given that ADE are generic, all information might not exist or not be 490

relevant for the users’ needs. This might be an additional source of bad resources 491

consummation. This is not the case in document-oriented solutions: empty fields simply does 492

not exist and documents structure evolves in accordance with the database lifecycle. In 493

summary, the repetitive joins, which are the main drawbacks of relational databases, are 494

avoided. This occurs in a more effective way to query, insert and store information whose 495

structure is assumed to change frequently. To compute results on several collections at the 496

same time, all collections need to be queried independently. The results are then gathered by 497

the client (e.g. of MapReduce processing techniques). As a reminder, the denormalization is 498

encouraged so reference and links can be done cleverly depending on the use of the product. 499

4.4. Comparison reference with relational solution 500

To illustrate the disadvantage of the relational joints, we conducted a benchmark on 501

several queries to 3DCityDB and our schema model. In order to perform these tests, we 502

simulated two remote JavaScript clients conducting queries on one side on a PostgreSQL 503

with the 3DCityDB model and on the other side on a MongoDB structured following our 504

schema. Both databases included the same three city datasets that counts 3471 objects in total 505

(3353 among them are Buildings). The query intends to get a random Building object with 506

its attributes (roofType, function, etc.), its unique ID and one of its Solid geometries. 507

Some elements need to be discussed before any statement. Before the instantiation, both 508

databases have a far different usage of memory. While 3DCityDB imposes the storage of 66 509

tables in 23Mb, our schema and its basic structure only takes 12Kb to create the three empty 510

collections. For the reminder, the collection schemas and the validation of an insertion are 511

handled by the server and not the database itself. It allows storage to be reduced and thus 512

improves performances. Once instanced, the relational solution is 149 Mb wide against 87Mb 513

for our schema (58%). 514

We have tested different interrogation methods by varying independently both the 515

number of requests and the number of requested items. Note that the connection pool size of 516

the database have an important impact on performances (a hundred was used). It is important 517

to prepare it and to provide the same number of potential connections on both databases (by 518

default, MongoDB allows only five concurrent connections. PostgreSQL allows hundred 519

connections by default). It allows also to measure load under n-clients querying 520

asynchronously the databases. About the architecture scalability, there is still room for 521

improvement by multiplying the number of replicated databases (Schultz, Avitabile, and 522

Cabral 2019). The balance should be determinate between the number of replications (n-523

databases), performance and the required consistency (Haughian, Osman, and Knottenbelt 524

2016). Nevertheless, MongoDB offers already the possibility to create replications in a native 525

way, which should facilitate future work. 526

As stated before, the relational schema imposes to inner join three tables. Our schema 527

simply queries an object from the CityObjects collection specifying that the type of the 528

queried object is "Building". Then it queries the related unique ID of the geometry in the 529

Geometries collection. Since a document-oriented store is built and indexed on such relations 530

and nested elements, this two steps retrieval seems to be more efficient. This hypothesis is 531

directly reflected in the Table 1, which shows the databases response time. 532

Table 1. Response time for the Buildings queries – repetition x objects (in milliseconds) 533

 1 x 1 1 x 10 10 x 1 1 x 100 100 x 1 1 x 3353 (1 x all)

Simplified schema 48 53 76 125 297 6678

3DCityDB 83 86 191 163 379 38089

 534

These tests were conducted independently of the MERN application developments. In 535

the application, a server cache avoids processing every query as some might be retained in 536

the cache memory. In summary, this section offers an illustration of what is possible in the 537

matter of response time thanks to the new schema, the document-oriented storage and the 538

resilience of the MERN components. For the reminder, its contribution is a first answer to 539

the lack of flexibility of relational databases used in traditional architecture and the support 540

of CityJSON in a database. Hence, a convenient management of CityJSON models is thus 541

facilitated by the simplified schema, its three collections and the “what you store is what you 542

access” paradigm. A common base is given without limiting the usefulness of the schema to 543

a particular domain or specific end. These overall improvements of the schema and its 544

dedicated architecture can be summarized in three points (see Figure 7): 545

 546

Figure 7. Summary of new capabilities 547

5. Usage scenarios 548

Now that the schema has been presented and the database solution has been compared 549

with a relational solution on a quantitative benchmark, we will state on the schema flexibility 550

through qualitative use cases. We have developed two simple extended schemas and two 551

modules to demonstrate the usefulness and the flexibility of the schema. It is illustrated in 552

situation of dynamic changes in the storage model during the production phase. The first one 553

is interested in the visualization of flat roofs and their potential for the installation of green 554

roofs. The second module concerns the management of the energy performance of buildings 555

certification and the updating of its calculation method. As a reminder, the structure of the 556

Flexible schemas
which opens
possibilities

Evolving storage
which better

manages space

No joins
which improves
performances

database is not modulated as the city objects are themselves not modified (collections are not 557

altered). However, the objects schemas allow the addition; the deletion and modification of 558

attributes in the stored records in a consistent way (see section 3.1). 559

5.1.Urban green infrastructure 560

Urban green infrastructures (UGIs) are part of the nature-based solutions for sustainable 561

urban development. In a previous research, we took part in the development of a simplistic 562

method for identifying the potential of green roofs along with identification of priority 563

regions in city centers (Joshi et al. 2020). In order to estimate the potential roof surfaces of 564

buildings, we interpolate planes based on a LiDAR point cloud and create building 565

geometries (Nys, Poux, et al. 2020). Once planes have been interpolated, we extract their 566

metrics such as the average heights of planes, their slope, their area, the number of planes per 567

buildings, etc. 568

During the method development, some limitations were noticed in a 2D framework 569

(Joshi et al. 2020): for instance, the obstructions are not considered (chimneys, elevator 570

shafts, etc). Taking into account a greater level of detail for the roof representation should 571

therefore improve the conclusion and catch the user's eye. As preparatory work for this new 572

study, we proposed to integrate the urban model into the application and add information as 573

it goes. 574

Therefore, we developed an extension that handles the relevant information for UGIs 575

installations. All information is attached to buildings geometries and integrated into the 576

CityJSON city model as object attributes. Besides, a modified version of the simplified 577

schema is hosted on the database. It validates the new attributes and guarantee the consistency 578

of the application through its different usages. 579

It was possible to add information relating to these levels of detail, whether purely 580

geometric or semantic, without modifying the work already done: the levels-of-detail 581

refinement were added to the model, even if it was already used by project partners. There 582

was no need to create an additional collection. The visual report gives users a quick glance 583

on the zone and future development solutions (see Figure 8). As stated in (Joshi et al. 2020), 584

the method can still be improved considering more socio-economic factors. Hence, the 585

application will allow handling the modifications easily and provides a convenient integrator 586

basis for further developments. 587

 588

Figure 8. UGI module for the visualization and computation of green roofs 589

For comparison purpose, the Table 2 has been updated to present response time of the 590

Building query on the relational enhanced solution. In order to store the new information 591

related to UGI, we added a table associated with the building one. Queries therefore impose 592

the use of an additional join and thus affect performances, what we expected. Changes for 593

the simplified queries in the NoSQL store are about the millisecond sometimes more, 594

sometimes less. It has thus been not added to the table. 595

Table 2. Response time for the Buildings queries – repetition x objects (in milliseconds) 596

 1 x 1 1 x 10 10 x 1 1 x 100 100 x 1 1 x 3353 (1 x all)

Simplified schema 48 53 76 125 297 6678

3DCityDB 83 86 191 163 379 38089

3DCityDB + UGI 88 91 252 172 412 41374

 597

5.2.Energy performance of buildings 598

The European Directive 2010/31/EU of 19 May 2010 on the Energy Performance of 599

Buildings (EPB) requires Member States to set up a system of certification. In addition to 600

setting EPB requirements related to construction, it also imposes renovation work. The 601

energy performance certification of buildings consists of an overall assessment of the energy 602

performance of a building according to a defined calculation method. 603

In Belgium, this directive has been translated in an order of the regional government. 604

This order reviews the calculation method on occasion and makes changes at both the 605

semantic and conceptual levels. Depending on the modifications, the calculation of the 606

energy potential of buildings can change: new parameters can be included, some can be 607

deleted, new stats and intermediate values can be useful or neglected, etc. In an EPB 608

dedicated application based on a storage solution, all these statements result either in a 609

structure modification for new features either storing redundant, unnecessary or incomplete 610

information. As stated in the previous section, the usage of a NoSQL document-oriented 611

solution allows adapting the object attributes without any condition and storing them within 612

the same documents. This can be made without altering the database structure and frees 613

unused space as it goes. 614

The use of an architecture presented in this paper offers a flexible tool that can be easily 615

improved through different changes in methods and legislation. Without going into details of 616

the EPB calculation, we developed a module allowing calculating its value based on buildings 617

attributes and metrics. It is computed on the fly and changes buildings colour following the 618

normalised EPB scale (on the bottom left of Figure 9 - version updated on January 1, 2019). 619

The Figure 9 illustrates a simulation on 2369 buildings in the centre of Liège, Belgium. The 620

EPB module computes and stores the performance value based on attributes such as the type 621

of heating, the coefficient of thermal transmission of a wall, etc. We simulated a modification 622

in the EPB computation by taking into account the over-ventilation by manual opening of 623

doors and windows (in accordance with the decree of 11 April 2019). It was thus sufficient 624

to save the value but without modifying the database query mode using the REST API. The 625

database has thus added key/value pairs to the schema and the required documents in the 626

Buildings documents of the AbstracCityObjets collections. 627

The use of the tool proposes to handle both energy consumption data and 3D city models. 628

Rather than manage the certification on an individual basis, we offer the possibility to build 629

an energy cadastre at the neighbourhood scale but also of the city. The tool can be used by 630

communities for managing their energy consumption and perhaps optimizing them: 631

highlighting heat islands, heat plant installation, real estate renovation campaign, etc. 632

 633

Figure 9. Illustration of the EPB module 634

6. Conclusion 635

This paper presents a simplified schema for the storage of 3D city model in a document-636

oriented store. It illustrates new capabilities in a dedicated application that allows the storage, 637

management and visualization of CityJSON models. The JSON-encoding provided by the 638

CityJSON specifications has been opened and partially reworked in order to extend 639

possibilities of management. The different collections bring together the three main elements 640

of city models (CityModel, CityObjects and Geometries) and ensure data access. The 641

simplifications brought by this new model ease the accessibility and storage volume. 642

Besides, in order to demonstrate the capabilities of this simplified schema, we developed 643

an application based on JavaScript technological stacks and a NoSQL database. This database 644

paradigm shift proposes to go from a solution that ensure consistency (i.e. the ACID 645

properties of the relational databases) to a solution that improves the application flexibility 646

(i.e. the semi-openness of NoSQL schemas). The benchmark of this solution with the state 647

of the art is convincing in terms of response time and storage weight. We believe that this 648

application will improve the usage of CityJSON and web-based tools in urban built 649

environment modelling. The usability of the application has been illustrated in two use cases 650

of common practice: the visualization and the storage of urban green infrastructures and the 651

energy performance of buildings certification. The application allows users managing the 652

diverse data sources and structural changes during the production phase in a convenient 653

manner. 654

Future works will study the implementation of spatial functions support for the 655

application. An important discussion will take place on the choice between the three 656

possibilities of spatial support: database, client-side or server-side. While the former could 657

not be done without a deep rework of the database management, the proposed architecture 658

may have a place in the demonstration of spatial client/server capabilities enhancements. 659

Nevertheless, such improvements should keep an eye on the implementation of the OGC API 660

- Features standard in order to allow features fetching. A major improvement of this kind will 661

improve the user-friendliness and the dissemination of CityJSON models. 662

References 663

Agrawal, Sonam, and R. D. Gupta. 2017. ‘Web GIS and Its Architecture: A Review’. Arabian 664
Journal of Geosciences 10(23):518. doi: 10.1007/s12517-017-3296-2. 665

Aleksandrov, M., A. Diakité, J. Yan, W. Li, and S. Zlatanova. 2019. ‘SYSTEMS 666
ARCHITECTURE FOR MANAGEMENT OF BIM, 3D GIS AND SENSORS 667
DATA’. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information 668
Sciences IV-4/W9:3–10. doi: 10.5194/isprs-annals-IV-4-W9-3-2019. 669

Allah Bukhsh, Zaharah, Marten van Sinderen, and P. M. Singh. 2015. ‘SOA and EDA: A 670
Comparative Study - Similarities, Differences and Conceptual Guidelines on Their 671
Usage’: Pp. 213–20 in Proceedings of the 12th International Conference on e-672
Business. Colmar, Alsace, France: SCITEPRESS - Science and and Technology 673
Publications. 674

Bartoszewski, Dominik, Adam Piorkowski, and Michal Lupa. 2019. ‘The Comparison of 675
Processing Efficiency of Spatial Data for PostGIS and MongoDB Databases’. Pp. 676
291–302 in Beyond Databases, Architectures and Structures. Paving the Road to 677
Smart Data Processing and Analysis. Vol. 1018, Communications in Computer and 678
Information Science, edited by S. Kozielski, D. Mrozek, P. Kasprowski, B. Małysiak-679
Mrozek, and D. Kostrzewa. Cham: Springer International Publishing. 680

Biljecki, Filip, Kavisha Kumar, and Claus Nagel. 2018. ‘CityGML Application Domain 681
Extension (ADE): Overview of Developments’. Open Geospatial Data, Software and 682
Standards 3(1):13. doi: 10.1186/s40965-018-0055-6. 683

Biljecki, Filip, Jantien Stoter, Hugo Ledoux, Sisi Zlatanova, and Arzu Çöltekin. 2015. 684
‘Applications of 3D City Models: State of the Art Review’. ISPRS International 685
Journal of Geo-Information 4(4):2842–89. doi: 10.3390/ijgi4042842. 686

Blaschke, Thomas, Geoffrey J. Hay, Qihao Weng, and Bernd Resch. 2011. ‘Collective 687
Sensing: Integrating Geospatial Technologies to Understand Urban Systems—An 688
Overview’. Remote Sensing 3(8):1743–76. doi: 10.3390/rs3081743. 689

Boaventura Filho, Wagner, Harley Vera Olivera, Maristela Holanda, and Aleteia Favacho. 690
2016. ‘Geographic Data Modelling for NoSQL Document-Oriented Databases’. 691
Lisbon, Portugal. 692

Breunig, Martin, Paul V. Kuper, Edgar Butwilowski, Andreas Thomsen, Markus Jahn, André 693
Dittrich, Mulhim Al-Doori, Darya Golovko, and Mathias Menninghaus. 2016. ‘The 694
Story of DB4GeO – A Service-Based Geo-Database Architecture to Support Multi-695
Dimensional Data Analysis and Visualization’. ISPRS Journal of Photogrammetry 696
and Remote Sensing 117:187–205. doi: 10.1016/j.isprsjprs.2015.12.006. 697

Brewer, Eric A. 2000. ‘Towards Robust Distributed Systems’. P. 7 in Proceedings of the 698
nineteenth annual ACM symposium on Principles of distributed computing - PODC 699
’00. Portland, Oregon, United States: ACM Press. 700

Chasseur, Craig, Yinan Li, and Jignesh Patel. 2013. ‘Enabling JSON Document Stores in 701
Relational Systems’. in Proceedings of the 16th International Workshop on the Web 702
and Databases 2013. New York, NY, USA. 703

da Costa Rainho, Filipe, and Jorge Bernardino. 2018. ‘Web GIS: A New System to Store 704
Spatial Data Using GeoJSON in MongoDB’. Pp. 1–6 in 2018 13th Iberian 705
Conference on Information Systems and Technologies (CISTI). Caceres: IEEE. 706

Diogo, Miguel, Bruno Cabral, and Jorge Bernardino. 2019. ‘Consistency Models of NoSQL 707
Databases’. Future Internet 11(2):43. doi: 10.3390/fi11020043. 708

Doboš, Jozef, and Anthony Steed. 2012. ‘3D Revision Control Framework’. P. 121 in 709
Proceedings of the 17th International Conference on 3D Web Technology - Web3D 710
’12. Los Angeles, California: ACM Press. 711

Đurić, Mladen. 2018. ‘GEOPORTAL FOR SEARCHING AND VISUALIZATION OF 712
CADASTRAL DATA’. САВРЕМЕНА ТЕОРИЈА И ПРАКСА У 713
ГРАДИТЕЉСТВУ 13(1). doi: 10.7251/STP1813687A. 714

Ecma International. 2015. ECMAScript 2015. Language Specification. 6. Geneva, 715
Switzerland. 716

Floros, G., and E. Dimopoulou. 2016. ‘Investigating the Enrichment of a 3D City Model with 717
Various CityGML Modules’. ISPRS - International Archives of the Photogrammetry, 718
Remote Sensing and Spatial Information Sciences XLII-2/W2:3–9. doi: 719
10.5194/isprs-archives-XLII-2-W2-3-2016. 720

Gröger, Gerhard, and Lutz Plümer. 2012. ‘CityGML – Interoperable Semantic 3D City 721
Models’. ISPRS Journal of Photogrammetry and Remote Sensing 71:12–33. doi: 722
10.1016/j.isprsjprs.2012.04.004. 723

Haughian, Gerard, Rasha Osman, and William J. Knottenbelt. 2016. ‘Benchmarking 724
Replication in Cassandra and MongoDB NoSQL Datastores’. Pp. 152–66 in 725
Database and Expert Systems Applications. Vol. 9828, Lecture Notes in Computer 726
Science, edited by S. Hartmann and H. Ma. Cham: Springer International Publishing. 727

Holemans, Amandine, Jean-Paul Kasprzyk, and Jean-Paul Donnay. 2018. ‘Coupling an 728
Unstructured NoSQL Database with a Geographic Information System’. Pp. 23–28 729
in Proceedings of GEOProcessing 2018. Rome, Italy. 730

Joshi, M. Y., W. Selmi, Marc Binard, Gilles-Antoine Nys, and Jacques Teller. 2020. 731
‘POTENTIAL FOR URBAN GREENING WITH GREEN ROOFS: A WAY 732

TOWARDS SMART CITIES’. ISPRS Annals of Photogrammetry, Remote Sensing 733
and Spatial Information Sciences VI-4/W2-2020:87–94. doi: 10.5194/isprs-annals-734
VI-4-W2-2020-87-2020. 735

Kulawiak, Marcin, Agnieszka Dawidowicz, and Marek Emanuel Pacholczyk. 2019. 736
‘Analysis of Server-Side and Client-Side Web-GIS Data Processing Methods on the 737
Example of JTS and JSTS Using Open Data from OSM and Geoportal’. Computers 738
& Geosciences 129:26–37. doi: 10.1016/j.cageo.2019.04.011. 739

Kumar, K., H. Ledoux, and J. Stoter. 2018. ‘Dynamic 3D Visualization of Floods: Case of 740
the Netherlands’. ISPRS - International Archives of the Photogrammetry, Remote 741
Sensing and Spatial Information Sciences XLII-4/W10:83–87. doi: 10.5194/isprs-742
archives-XLII-4-W10-83-2018. 743

Laksono, Dany. 2018. ‘Testing Spatial Data Deliverance in SQL and NoSQL Database Using 744
NodeJS Fullstack Web App’. Pp. 1–5 in 2018 4th International Conference on 745
Science and Technology (ICST). Yogyakarta: IEEE. 746

Ledoux, Hugo, Ken Arroyo Ohori, Kavisha Kumar, Balázs Dukai, Anna Labetski, and 747
Stelios Vitalis. 2019. ‘CityJSON: A Compact and Easy-to-Use Encoding of the 748
CityGML Data Model’. ArXiv:1902.09155 [Cs]. 749

Lim, J., P. Janssen, and F. Biljecki. 2020. ‘VISUALISING DETAILED CITYGML AND 750
ADE AT THE BUILDING SCALE’. ISPRS - International Archives of the 751
Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W1-752
2020:83–90. doi: 10.5194/isprs-archives-XLIV-4-W1-2020-83-2020. 753

Liu, Zhen Hua, Beda Hammerschmidt, and Doug McMahon. 2014. ‘JSON Data 754
Management: Supporting Schema-Less Development in RDBMS’. Pp. 1247–58 in 755
Proceedings of the 2014 ACM SIGMOD international conference on Management of 756
data - SIGMOD ’14. Snowbird, Utah, USA: ACM Press. 757

Lopez, M., S. Couturier, and J. Lopez. 2016. ‘Integration of NoSQL Databases for Analyzing 758
Spatial Information in Geographic Information System’. Pp. 351–55 in 2016 8th 759
International Conference on Computational Intelligence and Communication 760
Networks (CICN). Tehri, India: IEEE. 761

Makris, Antonios, Konstantinos Tserpes, and Dimosthenis Anagnostopoulos. 2019. 762
‘Performance Evaluation of MongoDB and PostgreSQL for Spatio-Temporal Data’. 763
P. 8 in Proceedings of EDBT/ICDT 2019. Lisbon, Portugal: CEUR-WS.org. 764

Mao, Bo, and Lars Harrie. 2016. ‘Methodology for the Efficient Progressive Distribution and 765
Visualization of 3D Building Objects’. ISPRS International Journal of Geo-766
Information 5(10):185. doi: 10.3390/ijgi5100185. 767

Mobasheri, Amin, Helena Mitasova, Markus Neteler, Alexander Singleton, Hugo Ledoux, 768
and Maria Antonia Brovelli. 2020. ‘Highlighting Recent Trends in Open Source 769
Geospatial Science and Software’. Transactions in GIS 24(5):1141–46. doi: 770
10.1111/tgis.12703. 771

Nys, Gilles-Antoine, Roland Billen, and Florent Poux. 2020. ‘AUTOMATIC 3D 772
BUILDINGS COMPACT RECONSTRUCTION FROM LIDAR POINT CLOUDS’. 773
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial 774
Information Sciences XLIII-B2-2020:473–78. doi: 10.5194/isprs-archives-XLIII-B2-775
2020-473-2020. 776

Nys, Gilles-Antoine, Abderrazzaq Kharroubi, Florent Poux, and Roland Billen. 2021. ‘AN 777
EXTENSION OF CITYJSON TO SUPPORT POINT CLOUDS’. in Proceedings of 778
the XXIVth ISPRS Congress. Nice, France. 779

Nys, Gilles-Antoine, Florent Poux, and Roland Billen. 2020. ‘CityJSON Building Generation 780
from Airborne LiDAR 3D Point Clouds’. ISPRS International Journal of Geo-781
Information 9(9):521. doi: 10.3390/ijgi9090521. 782

Obe, Regina O., and Leo S. Hsu. 2015. PostGIS in Action. Second edition. Shelter Island, 783
NY: Manning. 784

Olivera, Harley Vera, Maristela Holanda, Valeria Guimarâes, Fernanda Hondo, and Wagner 785
Boaventura Filho. 2015. ‘Data Modeling for NoSQL Document-Oriented Databases’. 786
Cusco, Peru. 787

Pispidikis, I., and E. Dimopoulou. 2016. ‘DEVELOPMENT OF A 3D WEBGIS SYSTEM 788
FOR RETRIEVING AND VISUALIZING CITYGML DATA BASED ON THEIR 789
GEOMETRIC AND SEMANTIC CHARACTERISTICS BY USING FREE AND 790
OPEN SOURCE TECHNOLOGY’. ISPRS Annals of the Photogrammetry, Remote 791
Sensing and Spatial Information Sciences IV-2/W1:47–53. doi: 10.5194/isprs-annals-792
IV-2-W1-47-2016. 793

Poux, Florent, Roland Billen, Jean-Paul Kasprzyk, Pierre-Henri Lefebvre, and Pierre Hallot. 794
2020. ‘A Built Heritage Information System Based on Point Cloud Data: HIS-PC’. 795
ISPRS International Journal of Geo-Information 9(10):588. doi: 796
10.3390/ijgi9100588. 797

Reis, Debora G., Fabio S. Gasparoni, Maristela Holanda, Marcio Victorino, Marcelo Ladeira, 798
and Edward O. Ribeiro. 2018. ‘An Evaluation of Data Model for NoSQL Document-799
Based Databases’. Pp. 616–25 in Trends and Advances in Information Systems and 800
Technologies. Vol. 745, edited by Á. Rocha, H. Adeli, L. P. Reis, and S. Costanzo. 801
Cham: Springer International Publishing. 802

Schultz, William, Tess Avitabile, and Alyson Cabral. 2019. ‘Tunable Consistency in 803
MongoDB’. Proceedings of the VLDB Endowment 12(12):2071–81. doi: 804
10.14778/3352063.3352125. 805

Sveen, Atle Frenvik. 2019. ‘Efficient Storage of Heterogeneous Geospatial Data in Spatial 806
Databases’. Journal of Big Data 6(1):102. doi: 10.1186/s40537-019-0262-8. 807

Tomlinson, Roger. 1968. ‘Geographic Information System for Regional Planning’. in Papers 808
of a CSIRO Symposium. GA Stewart. 809

Toschi, I., E. Nocerino, F. Remondino, A. Revolti, G. Soria, and S. Piffer. 2017. 810
‘GEOSPATIAL DATA PROCESSING FOR 3D CITY MODEL GENERATION, 811
MANAGEMENT AND VISUALIZATION’. ISPRS - International Archives of the 812
Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-1/W1:527–813
34. doi: 10.5194/isprs-archives-XLII-1-W1-527-2017. 814

Trubka, Roman, Stephen Glackin, Oliver Lade, and Chris Pettit. 2016. ‘A Web-Based 3D 815
Visualisation and Assessment System for Urban Precinct Scenario Modelling’. ISPRS 816
Journal of Photogrammetry and Remote Sensing 117:175–86. doi: 817
10.1016/j.isprsjprs.2015.12.003. 818

Virtanen, Juho-Pekka, Kaisa Jaalama, Tuulia Puustinen, Arttu Julin, Juha Hyyppä, and 819
Hannu Hyyppä. 2021. ‘Near Real-Time Semantic View Analysis of 3D City Models 820
in Web Browser’. ISPRS International Journal of Geo-Information 10(3):138. doi: 821
10.3390/ijgi10030138. 822

Višnjevac, Nenad, Rajica Mihajlović, Mladen Šoškić, Željko Cvijetinović, and Branislav 823
Bajat. 2019. ‘Prototype of the 3D Cadastral System Based on a NoSQL Database and 824
a JavaScript Visualization Application’. ISPRS International Journal of Geo-825
Information 8(5):227. doi: 10.3390/ijgi8050227. 826

Vitalis, S., A. Labetski, F. Boersma, F. Dahle, X. Li, K. Arroyo Ohori, H. Ledoux, and J. 827
Stoter. 2020. ‘CITYJSON + WEB = NINJA’. ISPRS Annals of Photogrammetry, 828
Remote Sensing and Spatial Information Sciences VI-4/W1-2020:167–73. doi: 829
10.5194/isprs-annals-VI-4-W1-2020-167-2020. 830

Vitalis, Stelios, Ken Arroyo Ohori, and Jantien Stoter. 2020. ‘CityJSON in QGIS: 831
Development of an Open‐source Plugin’. Transactions in GIS tgis.12657. doi: 832
10.1111/tgis.12657. 833

Voutos, Yorghos, Phivos Mylonas, Evaggelos Spyrou, and Eleni Charou. 2017. ‘A Social 834
Environmental Sensor Network Integrated within a Web GIS Platform’. Journal of 835
Sensor and Actuator Networks 6(4):27. doi: 10.3390/jsan6040027. 836

Weglarz, Geoffrey. 2004. ‘Two Worlds of Data – Unstructured and Structured’. DM Review. 837

Westerholt, Rene, and Bernd Resch. 2015. ‘Asynchronous Geospatial Processing: An Event-838
Driven Push-Based Architecture for the OGC Web Processing Service: Push-Based 839
Async Geo-Processing with the OGC WPS’. Transactions in GIS 19(3):455–79. doi: 840
10.1111/tgis.12104. 841

Yao, Zhihang, Claus Nagel, Felix Kunde, György Hudra, Philipp Willkomm, Andreas 842
Donaubauer, Thomas Adolphi, and Thomas H. Kolbe. 2018. ‘3DCityDB - a 3D 843
Geodatabase Solution for the Management, Analysis, and Visualization of Semantic 844
3D City Models Based on CityGML’. Open Geospatial Data, Software and 845
Standards 3(1). doi: 10.1186/s40965-018-0046-7. 846

Zhang, Xiaomin, Wei Song, and Liming Liu. 2014. ‘An Implementation Approach to Store 847
GIS Spatial Data on NoSQL Database’. Pp. 1–5 in 2014 22nd International 848
Conference on Geoinformatics. Kaohsiung, Taiwan: IEEE. 849

Zlatanova, Sisi, and Jantien Stoter. 2006. ‘The Role of DBMS in the New Generation GIS 850
Architecture’. Pp. 155–80 in Frontiers of Geographic Information Technology, edited 851
by S. Rana and J. Sharma. Berlin/Heidelberg: Springer-Verlag. 852

 853

 854

