

Inverse-problem-based algorithm for sparse reconstruction of Terahertz off-axis holograms

M. Kirkove, Y. Zhao, M. Georges

Centre Spatial de Liège – STAR Research Unit - University of Liège, Belgium m.kirkove@uliege.be

1. Introduction

2. Method

Overview

3. Results

4. Conclusions

Terahertz radiation

Terahertz (THz) wave range

- Between microwave and infrared
- Frequency: 3-10 THz (1 THz = 1012 Hz)
- Wavelength: 30-1000 μm

Unique properties

- Penetration of non-polar materials
- Ionization free
- Water absorption
- Spectral fingerprint

Applications

Security

Biomedical

Quality control

Off-axis digital holography in THz

Off-axis digital holography (DH)

- Coherent lensless imaging
- Migration from the visible to the THz band

Acquisition setup ([1])

Particular problems

- Low recording distance → unwanted diffraction fringes → reference wave less uniform
- Light field truncation → border effect
- Cameras used for THz: low performance → low resolution

Difficulties of reconstruction

[1] Y. Zhao, M. Kirkove, and M. P. Georges, "Inverse-problem based algorithm for THz off-axis digital holography reconstruction", in Imaging and Applied Optics Congress, The Optical Society (Optical Society of America, 2020), paper HF4G.6.

Image reconstruction in THz off-axis DH: direct methods

Reconstruction by standard direct methods

Limitations

- * Border effect
- Intolerant to noise
- Intolerant to sub-sampling
- No consideration of the non-uniformity of the reference beam

Image reconstruction in THz off-axis DH: inverse-problem approach

Inverse-problem-based (IP-based) approach for deconvolution problems

Measures

Estimate the original object distribution

Equation of the forward model

Forward model of Thz off-axis DH

$$y = |A_d \psi + \alpha r|^2 + n \tag{1}$$

where

• y = measures

• ψ = object field (amplitude and phase)

• A_d = propagation function at distance d

• n = additive noise

• r = normalized reference beam

• α = relative intensity of the reference beam (non-uniform)

• Unknown = ψ

• Non-uniformity of the reference beam \rightarrow additional unknown = α

Estimate ψ and α

Advantages

- Tolerant to noise
- (Tolerant to sub-sampling)
- Consideration of the non-uniformity of the reference beam

New IP-based method for image reconstruction in THz off-axis DH

Ill-posed problem

- Indeterminate problem # of unknowns (ψ and α in each pixel) > # of measurements (γ in each pixel)
- Mathematical properties of $A_d \rightarrow$ several solutions ψ and α compatible with y

Indeterminate problem \rightarrow difficulties to separate ψ from α Ill-posed problem \rightarrow regularization required

Regularization

Sparse solutions (as in [2], [3]) \rightarrow regularization of solutions ψ and α in the wavelet domain (minimization of the l_1 -norm of the wavelet coefficients)

Formulation of the reconstruction problem

Expression of solutions in the wavelet domain

Wavelet coefficients of solutions ψ and α : c_{ψ} , c_{α}

Matrices for fast discrete wavelet transforms (DWT) of ψ and α : W_{w} , W_{α}

Noise-free model:

$$\boldsymbol{m} = |\boldsymbol{A}_d \boldsymbol{\psi} + \boldsymbol{\alpha} \boldsymbol{r}|^2 = |\boldsymbol{A}_d \boldsymbol{W}_{\psi}^{-1} \boldsymbol{c}_{\psi} + \boldsymbol{W}_{\alpha}^{-1} \boldsymbol{c}_{\alpha} \boldsymbol{r}|^2$$
 (2)

^[2] S. Bettens, H. Yan, D. Blinder, H. Ottevaere, C. Schretter, and P. Schelkens, "Studies on the sparsifying operator in compressive digital holography," Opt. Express 25, 18656–18676 (2017)

^[3] C. Schretter, D. Blinder, S. Bettens, H. Ottevaere, and P. Schelkens, "Regularized non-convex image reconstruction in digital holographic microscopy," Opt. Express 25, 16491–16508 (2017)

New IP-based method for image reconstruction in THz off-axis DH

Formulation of the reconstruction problem

Noise-free model:

$$\boldsymbol{m} = |\boldsymbol{A}_{d} \boldsymbol{\psi} + \boldsymbol{\alpha} \boldsymbol{r}|^{2} = |\boldsymbol{A}_{d} \boldsymbol{W}_{\psi}^{-1} \boldsymbol{c}_{\psi} + \boldsymbol{W}_{\alpha}^{-1} \boldsymbol{c}_{\alpha} \boldsymbol{r}|^{2}$$
(2)

Data-fidelity term:

$$D(\boldsymbol{c}_{\psi}, \boldsymbol{c}_{\alpha}) = \frac{1}{4} \|\boldsymbol{y} - \boldsymbol{m}\|_{2}^{2} = \frac{1}{4} \|\boldsymbol{y} - |\boldsymbol{A}_{d} \boldsymbol{W}_{\psi}^{-1} \boldsymbol{c}_{\psi} + \boldsymbol{W}_{\alpha}^{-1} \boldsymbol{c}_{\alpha} \boldsymbol{r}|^{2} \|_{2}^{2}$$
(3)

Minimization of:

$$D(\boldsymbol{c}_{\psi}, \boldsymbol{c}_{\alpha}), \lambda_{\psi} \|\boldsymbol{c}_{\psi}\|_{1}, \lambda_{\alpha} \|\boldsymbol{c}_{\alpha}\|_{1}$$

$$(4)$$

Reconstruction problem:

$$(\widetilde{\boldsymbol{c}}_{\psi}, \widetilde{\boldsymbol{c}}_{\alpha}) = \underset{\boldsymbol{c}_{\psi}, \boldsymbol{c}_{\alpha}}{\operatorname{argmin}} D(\boldsymbol{c}_{\psi}, \boldsymbol{c}_{\alpha}) + \lambda_{\psi} \|\boldsymbol{c}_{\psi}\|_{1} + \lambda_{\alpha} \|\boldsymbol{c}_{\alpha}\|_{1}$$
(5)

Algorithm

- Wavelet filter: (CDF) 9/7 wavelet
- Based on an alternating direction method of multipliers (ADMM) based framework
- Using 2 projection operators and 2 soft thresholding operators

Parameters

- λ_{ψ} and λ_{α} : scalar parameters for regularizations strengths
- σ: standard deviation of the noise
- l_{w} and l_{α} : number of wavelet decomposition levels
- n_i : number of iterations

Synthetic data

Acquisition parameters

Object field (ψ , amplitude)

Object field

Highly transparent phase object Amplitude: 0.8-1

Object field $(\psi, phase)$

Synthetic data

Constant: 0.9505

Measures (y)

Reference field amplitude (α)

Variable: Gaussian function (mean ~ 0.9505)

Measures (y)

Results on synthetic data

Simulation

$\sigma = 0.025, n_i = 180$

$$\lambda_{\psi} = 0.12, \lambda_{\alpha} = 0.8, l_{\psi} = 5, l_{\alpha} = 5$$
 $\sigma = 0.025, n_{i} = 180$
 $\lambda_{\psi} = 0.125, \lambda_{\alpha} = 0.25, l_{\psi} = 5, l_{\alpha} = 4$
 $\sigma = 0.075, n_{i} = 255$

Reconstruction

Processing parameters

Original α: constant

Original α : variable

Signal-to-noise ratios (SNRs)

$$SNR_{\psi_{amp}} = 22.3, SNR_{\psi_{ph}} = 24.8$$
 $SNR_{\psi_{amp}} = 11.2, SNR_{\psi_{ph}} = 21.5$ $SNR_{\alpha} = 21.8$ $SNR_{\alpha} = 11.6$

Results on synthetic data

Algorithm: variability of α

Experimental data

640x480 $\Delta = 17 \,\mu\mathrm{m}$

 $\theta \approx 45^{\circ}$

camera

Sample (polypropylene, n = 1.49)

Hologram (y)

Reference amplitude

Results on experimental data

Processing parameters

$$\lambda_{\psi} = 0.45, \lambda_{\alpha} = 0.125$$
 $l_{\psi} = 5, l_{\alpha} = 4$
 $\sigma = 0.08875$
 $n_{i} = 500$

Conclusions of current work

Advantages of the method

- Some benefits of the IP approach
 - No border effect
 - Tolerance to noise
 - Consideration of the non-uniformity of the reference beam
- Benefit due to wavelet-based regularization
 - Regularization adapted with respect to the awaited resolution
- Additional advantages
 - Acceptable convergence
 - Parameter tuning reliable

Limitations of the method

- * Difficulties to separate the solutions ψ and α
- Not tolerant to down-sampling

Future work

Steps of future work

- Assessment of the performances of the method
- Consideration of down-sampling
- Improvement of separation between the solutions ψ and α by consideration of additional measures
- Study of the potential of the method in other spectral bands

Thank you for your attention!

Questions: M.Kirkove@uliege.be