
Transportation Research Part E xxx (2009) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

Transportation Research Part E

journal homepage: www.elsevier .com/locate / t re
Optimal rail-road container terminal locations
on the European network

S. Limbourg *, B. Jourquin
Louvain School of Management, FUCaM, Mons Campus, 151 Ch. de Binche, B-7000 Mons, Belgium
a r t i c l e i n f o

Article history:
Received 26 May 2008
Received in revised form 27 November 2008
Accepted 6 December 2008
Available online xxxx

Keywords:
Location
Terminals
Hub-and-spoke
Network
Intermodal
Transport
1366-5545/$ - see front matter � 2008 Elsevier Ltd
doi:10.1016/j.tre.2008.12.003

* Corresponding author. Tel.: +32 65 323293; fax
E-mail addresses: sabine.limbourg@fucam.ac.be (

Please cite this article in press as: Limbou
Part E (2009), doi:10.1016/j.tre.2008.12.0
a b s t r a c t

The European transport policy has focused on sustainable transport solutions, among
which intermodal transport is a key player. However, its efficiency is strongly dependent
on the location of the container terminals. In this paper, a set of estimated potential loca-
tions is used as input for an iterative procedure based on the p-hub median problem that
takes the variation in trans-shipment costs according to the number of trans-shipped con-
tainers into account. The final results are the optimal locations for European transfer ter-
minals embedded in a hub-and-spoke network.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The success of road transport results in ever-worsening congestion and more environmental problems. That is why one of
the objectives of the European Common Transport Policy is to restore the balance between modes of transport and to devel-
op intermodality. To promote this, the Commission has launched the Marco Polo programme, the objective of which is to
transfer 12 bn ton-km/year from road to other modes of transportation in Phase 1, rising to 20.5 bn ton-km/year in Phase II.

A review of intermodal rail-road transport related problems can be found in Bontekoning et al. (2004). Among the iden-
tified topologies, this paper is concerned with rail-road combined transport using terminals embedded in a hub-and-spoke
rail network. This kind of topology is supposed to reduce transportation costs by consolidating shipments at the hubs. The
efficiency of such a network depends on the location of the hubs and the problem is thus to find the optimal hub locations
and to allocate the remaining nodes to these hubs. This problem is known as the p-hub median problem.

Among recent papers, Jeong et al. (2007) focused their research on freight transport by rail between ten European coun-
tries. Their paper addresses the problem of a planner who has to identify the best combination of routes, frequencies, volume
and length of trains. Racunica and Wynter (2005) also considered a rail hub-and-spoke network, but from a more theoretical
point of view, using recent findings on the polyhedral properties of this class of problems.

The optimal location problem for container transfer terminals embedded in a hub-and-spoke network is not easy to solve
for networks containing several thousands of nodes, as the number of possible locations rapidly becomes too large to be ta-
ken as input by exact optimal location models. They thus have to start with a subset of nodes that can be considered as good
potential locations.
. All rights reserved.
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In a some papers (see, for instance, Macharis, 2004), the potential locations are determined using common-sense and a lot
of information collected on the field. Three systematic approaches based on the locations of the network nodes are presented
in Arnold (2002) and Arnold et al. (2002, 2004). Spatial aggregation of demand nodes can also be used to reduce the size of
location problem. Limbourg and Jourquin (2007) applied the p-HMP to a set of potential locations obtained by both spatial
aggregation of demand nodes using hierarchical clustering methods and by a flow-based approach which takes the flows of
commodities and their geographic spread into account. They showed that the latest method gives better results and that is
why it is retained in this paper to determine a set of potential locations that will be used as input for an adapted p-hub med-
ian problem formulation.

The main contribution of this paper is to propose an iterative procedure based on both the p-hub median problem and the
multi-modal assignment problem. Moreover, the objective function of our p-hub median formulation includes the costs for pre-
and post-haulages by road, trans-shipment (according to the number of handled containers into account) and rail haulage.

In the p-hub median problem, the total demand is assigned to the hubs. In this paper however, the demand can be as-
signed over all the transportation modes, with the possibility (but not the obligation) of using the trans-shipment facilities.

The p-hub median problem is then further solved again with updated trans-shipment costs based on the estimated flow
at each terminal. This procedure is repeated until the relative difference in trans-shipment costs between two iterations is
smaller than a given threshold, set to1% in our case.

The definition of the problem to be solved and the inputs needed are explained in Section 2, while Section 3 presents the
proposed methodology. Finally, an application that considers multi-modal transport over the whole trans-European net-
work, taking into account existing or new hubs is illustrated in Section 4.

Another application finally compares and discusses the optimal locations obtained by our method to those described by
Ballis (2002) and to Jeong et al.’s (2007).

2. The p-hub location problem

In the standard multiple-hub network problem (see O’Kelly and Miller (1994) for the different classes of problems), three
constraints are traditionally identified: it is assumed that all the hubs are connected directly to each other, that there is no
direct connection between non-hub nodes, and that the non-hub nodes are connected to a single hub. The inter-hub links
consolidate the total flow coming from the origin hub (or any of its spoke nodes) to the destination hub (or any of its spoke
nodes). The location of the hubs must be chosen from the set of nodes, N, considered as potential locations and the objective
is to minimise the total transportation cost.

The p-hub median problem (p-HMP) was first formulated as a quadratic integer program by O’Kelly (1987). Campbell
(1994) formulated this problem as a mixed integer linear programming problem. Refinements were further proposed by
Campbell (1996), Skorin-Kapov and O’Kelly (1996) and O’Kelly et al. (1996).

This problem is hard to solve, opening the way to heuristics (see for instance O’Kelly (1987), Aykin (1990), Klincewicz
(1991), Campbell (1996)) and metaheuristics (Smith et al., 1996; Ernst et Krishnamoorthy, 1996; Klincewicz, 1992; Sko-
rin-Kapov and Skorin-Kapov, 1994). Approaches using upper and lower bounds were also proposed O’Kelly, 1992; O’Kelly
et al., 1995; Skorin-Kapov et al., 1996). Finally a number of methods that are able to find the optimal solution for problems
of limited size can be found in Skorin-Kapov et al. (1996), O’Kelly et al. (1996), and Ernst and Krishnamoorthy (1996).

Our model is based on the formulation proposed in the latest paper, in which Yi
km defines the total flow of commodities i

(i.e., traffic emanating from node i) that is routed through hubs k and m. If the total flow from node i is denoted by
Oi ¼

P
j2NWij and the total flow to node i is denoted by Di ¼

P
j2NWji, the formulation becomes:

Inputs:
Plea
Part
p ¼ number of hubs to be opened
Wij ¼ flow from origin i to destination j

Ckm
ij ¼ unit cost between origin i and estination j via the hubs located at nodes k and m

¼ vCik þ aCkm þ dCmj
where v is the relative cost of pre-haulage; a is the inter-hub discount (0 6 a 6 1); d is the relative cost of post-haulage; and
Cij is unit travel cost between origin i and destination j.
Decision variables:
Xij ¼ 1 if node i is connected to a hub located at node j 8i; j 2 N
0 if not

Yi
km P 08i; k;m 2 N
Minimise:

X

i2N

X

k2N

CikXikðvOi þ dDiÞ þ
X

i2N

X

k2N

X

m2N

aCkmYi
km ð1Þ
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Subject to:
Plea
Part
X

x2N

Xkk ¼ p ð1:1Þ
X

k2N

¼ 1 8i 2 N ð1:2Þ

Xik 6 Xkk 8i; k 2 N ð1:3Þ
X

m2N

Yi
km �

X

m2N

Yi
mk ¼ OiXik �

X

j2N

WijXjk 8i; k 2 N ð1:4Þ

Xij 2 f0;1g 8i; j 2 N ð1:5Þ
Yi

km P 0 8i; k;m 2 N ð1:6Þ
The objective function (1) minimises the total transportation cost on the system. Constraint (1.1) stipulates that exactly p-
hubs should be used. Taken together, Eqs. (1.2) and (1.5) ensure that each node is allocated to a single hub and that a hub
node cannot be allocated to another hub. Eq. (1.3) prevents allocations to non-hub nodes. Eq. (1.4) is the divergence equation
for commodity i at node k in a complete graph, where the demand and supply at the nodes is determined by the allocations
Xik. Constraints (1.5) ensure that Xij is binary. This problem involves (N3 + N2) variables and requires (1 + N + 2N2) linear
constraints.

Each (i, j) pair in a p-HMP is analogous to a demand point in a p-median problem (p-MP) in which the demand nodes are
assigned to the nearest facilities. As it may not be optimal to assign the demand nodes to their nearest hub, the p-HMP re-
laxes this constraint.

2.1. Rail-road transport

The Recordit (REal COst Reduction of Door-to-Door Intermodal Transport, 2002) European research program defined and
validated a methodology for estimating the costs of intermodal freight transport in Europe. Recordit also compared the costs
of intermodal and road-only solutions. The methodology used to collect the data and to compute the costs was based on the
description of the intermodal chain, defined as a sequence of activities. The estimations of the costs in the model presented
in this paper are essentially based on Recordit.

The PINE report (Prospective Customers of Inland Navigation Within the Enlarged Europe Report, 2004) was also used to
refine the costs for barge transport. Data on road transport published by the French Road National Committee (CNR, 2007)
were also considered. Finally, railway costs were validated on the basis of a report of the Ministry for Mobility in the Neth-
erlands (Vervoort and Split (2005)).

The usage distribution between containers sizes is about 60% for 400 and 40% for 200 boxes. Knowing that the average net
weight of a TEU is about 15 or 16 tons (International Union of combined Road-Rail transport companies (UIRR)), the
(un)loading costs are estimated to 1.297 €/t. Using the same sources, the costs for the different haulages are:

� 0.105 €/t for pre- and post-haulage;
� 0.072 €/t for road haulage;
� 0.042 €/t for rail haulage;
� 0.014 €/t for barge haulage.

Assuming a 10 % cost reduction for inter-hub rail transport resulting from economies of scale and that Ti is the trans-ship-
ment cost of the hub located at i, v ¼ d ¼ 0:105

0:072 ¼ 1:458;a ¼ 0:90�0:042
0:072 ¼ 0:525 the objective function (1) becomes:
X

i2N

X

k2N

ð1:458Cik þ TkÞXikðOi þ DiÞ þ
X

i2N

X

k2N

X

m2N

0:525CkmYi
km ð2Þ
In order to integrate the variation of the trans-shipment costs according the number of handled TEUs, a logarithmic
regression was performed on the results of the various trans-shipment costs obtained by Ballis and Golias (2002) for differ-
ent terminal configurations. These terminals handle between 25,000 and 300,000 intermodal transport units (ITU) per year.
If T(n) is the trans-shipment cost and n the number of ITUs trans-shipped, TðnÞ ¼ �12:163 lnðnÞ þ 180:26 with r2 = 0.96. A
lower limit is set at 2 €/ton and an upper limit is set to 5 €/ton to remain in line with the Recordit and (ECMT, 1998) reports.

2.2. Determining the demand

We used the origin-destination (OD) matrices for the year 2000, produced by NEA transport research and training. The
matrices give information about the type of commodity being transported, classified according to the standard goods clas-
sification for transport statistics/revised (NST/R chapters). Only the figures for NST/R chapter 9, containing the demand for
containers amongst other manufactured products, were taken into account in the model. The database contains region-to-
region relations at the NUTS 2 (Nomenclature of Territorial Units for Statistics) level, for the area of the EU25, plus Norway
and Switzerland.
se cite this article in press as: Limbourg, S., Jourquin, B. Optimal rail-road container terminal locations ... Transport. Res.
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A centroïd for each NUTS 2 region was located on our network. As several important cities of different sizes can be found
inside a same region, each centroïd was placed at the centre of the most inhabited city of the region instead of at the geo-
graphic gravity centre. These centroïds are taken as the origins or destinations for the commodities. The assignment of the
demand between these centroïds is performed using the algorithm presented in Jourquin (2006) that spreads the flow over
several alternative routes and transportation modes on a multi-modal network.

The use of centroïds in rather large regions such as NUTS 2 regions can lead to some errors due to the level of aggregation.
Indeed, NUTS 2 regions are irregular in shapes and sizes and there is a strong national effect as some countries have adopted
larger NUTS 2 regions that others. The interested reader can refer to Limbourg (2007), in which a complete discussion of the
problem and estimations of the possible errors that can be induced by it can be found.

In order not to disrupt the results with origin-destination pairs which are not concerned by combined transport, only the
pairs separated by at least 300 km are taken into account. Indeed, the distance for pre- and post-haulages are often estimated
to be 50 km (see for instance the European Conference of Ministers of Transport (1998) or Recordit, 2002). Moreover, if d is
the distance between the two terminals, if the trans-shipment costs are set to their lower limit and if the other operation
costs are those presented in Section 2.1, the costs for combined transport and road-only transport are equal if:
100�0.105 + d�0.042 + 2�2 = (d + 100)�0.072.

As a result, intermodal trips should be longer than 343 km.
The European Conference of Ministers of Transport (1998) also estimates that the shortest distance over which combined

transport is competitive is 300 km. Finally, according to the UIRR (International Union of combined Road-Rail Transport com-
panies) statistics (2000), 92% of the intermodal transport units (ITU) are used on trips that are longer than 300 km. For all this
reasons, the demand for shorter distances was left out of our matrices.

2.3. Setting up the network

The network model was developed using a software called NODUS which was developed at the ‘‘Group Transport &
Mobility” (GTM) of the Catholic University of Mons (Belgium). It is a G.I.S. (geographic information system) based software
designed for analysing multi-modal and inter-modal freight transport with all their interface operations. It is also spatially
referenced and based on ESRI ArcInfo shape files, making it compatible with most widespread GIS tools. Nodus uses BBN
Technologies’ OpenMapTM (www.openmap.org) package, that is an Open Source JavaBeansTM (java.sun.com) based program-
mer’s toolkit, providing the means to allow users to see and manipulate various geospatial information.

The railway and road networks were taken from the digital chart of the World (DCW) and updated. The DCW is an Envi-
ronmental Systems Research Institute, Inc. product originally developed for the US Defense Mapping Agency (DMA) using
DMA data. The inland waterway network was digitised at our research lab. The borders of the NUTS 2 regions were provided
by Geophysical Instrument Supply Co. (GISCO).

All these separate layers were connected using ‘‘connectors” from each centroïd to each modal layer located not further
than the average radius of the considered regions, so about 100 km. These connectors have an average length of 4.66 km for
roads, 3.23 km for railways and 32 km for waterways, with respective standard deviations of 9.95, 6.34 and 38.85. The com-
plete set of layers can be considered as a geographical graph, of about 110,000 edges and 90,000 vertices.

2.4. Using flows to determine a set of potential locations

Spatial aggregation of demand nodes is often used to reduce the size of location problems, but aggregation also introduces
errors in the solutions. Different aggregation errors are discussed in Current and Schilling (1987), who also give methods to
reduce them. Most of the relevant literature concerns the p-median or covering problem: Casillas (1987), Current et al.
(1987, 1990), Francis et al. (1996, 1999), Goodchild (1979), Plastria (2001) and Zhao and Batta (1999, 2000).

As specified in the introduction of this paper, Limbourg and Jourquin (2007) applied the p-HMP to a set of potential loca-
tions obtained both by spatial aggregation of demand nodes using hierarchical clustering methods and by a flow-based ap-
proach, showing that the latest approach was to be preferred. Indeed, the total transportation cost on the system appeared to
be systematically lower with the flow-based method for all the configurations that were tested. This can be considered as an
advantage when the objective is to maximise the efficiency of the transport system.

In order to consolidate the flows which can be spread over different itineraries in the same corridor for same or different
transportation modes, the flow-based method starts with an all-or-nothing assignment on the road network, which com-
putes the cheapest path between each origin-destination pair and assigns all the trade flow to this single route. The result
of this first assignment is presented in Fig. 1.

Different terminal classifications (Bowersox et al., 1986; Terminet, 1996, 1997a,b; Wiegmans et al., 1999; Wiegmans,
2003; Ballis, 2002) can help us to specify the type of terminal to be considered in this paper. The largest terminals (in terms
of size and volume) have maritime connections and are located in ports such as Rotterdam, Antwerp, Hamburg, Le Havre,
Marseille or Algeciras. They can be referred to as ‘‘XXL”, ‘‘XL” or ‘‘consolidation” terminals. The shipment sizes that are han-
dled in these facilities are large enough to fully load trains or barges, without any further consolidation.

The smallest terminals are ‘‘M”, ‘‘S”, ‘‘distribution” or ‘‘hinterland” terminals. They are also sometimes referred to as na-
tional or regional terminals. They need a line or a collection/distribution consolidation network topology for the commod-
ities being transported.
Please cite this article in press as: Limbourg, S., Jourquin, B. Optimal rail-road container terminal locations ... Transport. Res.
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Finally, the ‘‘L” or ‘‘transfer” terminals are mid-size facilities mostly devoted to trans-shipment operations for continental
freight flows. These terminals are embedded in a hub-and-spoke network and are those which are referred to in this paper.
They will be called ‘‘hubs” in the text. According to Ballis (2002), hubs are located in Metz, Villeneuve St. George (Paris), Sch-
aerbeek (Brussels), Cologne, Hanover and Mannheim (i.e. in the North of Europe). Moreover Ballis points out that a hub near
Milan would be useful.

Wiegmans (2003) estimates that the annual volume for this kind of terminals must be at least 100,000 twenty-foot equiv-
alent units (TEU). A selection of potential locations is thus performed by retaining the nodes along which the consolidated
flow is higher than a given threshold which impact will be discussed later. The resulting set of this first selection can be re-
duced by retaining only the nodes that are closer than 5 km from the railway network.

This set of nodes is however still rather large, mainly because many of them are close to each other, having similar char-
acteristics (chain effect). At the micro or regional level, these nodes may be very different (availability of ground surface for
instance). However, such considerations are less important at the macro European level where it is important to know where
it would be helpful to locate a terminal. For this reason, only the node with the largest volume of flow in a given NUTS 2
region was kept (Fig. 2).

3. Methodology

3.1. Reference scenario

A geographical representation of a transportation network does not provide an adequate basis for detailed analyses of
transport operations, as the same infrastructure (link or node) can be used in different ways. To solve this problem, the idea,
initially proposed by Harker (1987) and Crainic et al. (1990), is to create a virtual link with specific costs for each particular
use of an infrastructure network. The concept of super-networks described by Sheffi (1985) that proposes ‘‘transfer” links
between modal networks provides a somewhat similar framework.

Jourquin and Beuthe (1996) discussed a methodology and an algorithm that create, in a systematic and automatic way, a
complete virtual network with all its virtual links corresponding to different possible operations for every real link or node of
a geographic network. Tavasszy (1996) also discussed virtual networks and the software that implements them. In this ap-
Please cite this article in press as: Limbourg, S., Jourquin, B. Optimal rail-road container terminal locations ... Transport. Res.
Part E (2009), doi:10.1016/j.tre.2008.12.003



Table 1
Global fit of the network model.

Tons Tons-kilometres

Data (%) Model (%) Data (%) Model (%)

Waterways 1.73 1.50 1.96 1.83
Rail 13.55 14.17 15.10 15.12
Road 84.72 84.33 82.94 83.05
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proach, both the modal choice and the assignment steps of the classical four-stage approach (in which generation, distribu-
tion, modal-split and assignment are treated as separate steps) are performed at the same time.

It appears (Jourquin and Limbourg, 2006), that equilibrium assignment procedures, which take capacity constrains into
account, are unable to capture modal and route behaviours when they are applied to large scale networks such as the trans-
European multi-modal freight network. This is essentially due to the fact that equilibrium models are only efficient at a local
level where congestion (or at least heavy traffic) is observed. As origin-destination matrices for long distance transport are
often available on a yearly basis only, it is difficult to estimate what happens during the peak hours. Even more problematic
is the fact that long distance transport last several hours, or even days, and it is not possible, with static models, to know
where a vehicle is located at any given moment.

Congestion can however not be ignored. As container terminals are mostly located nearby urban areas and that pre- and
post-haulages participate to the local traffic, the average speed on the local road network around the cities was lowered to
correspond to the observed average speed (Stratec et al., 1999) in congested areas.

Last but not least, the demand at European level is often available only at the NUTS 2 level. At this level of aggregation, it
is not realistic to assume that only one route between each OD pair is used. Therefore a multi-flow algorithm that ensures
that the computed set of paths both contains different itineraries and uses different transportation modes is required. The
retained method (Jourquin, 2006) spreads the flow over different realistic paths according to their relative weights in the set
of alternative routes.

The results (Table 1) for the trans-European network clearly show that it is possible to obtain a globally calibrated model
on both the transported quantities and the flows expressed in ton-km, using an assignment on a virtual network, without an
explicit modal-split module. This first assignment represents the reference scenario that will be used later in this paper.

3.2. Hub-and-spoke network design

As outlined in Section 2.4, an all-or-nothing assignment of the OD matrix is firstly performed on the road network to se-
lect the potential locations. The results are used as input to a p-HMP to obtain p optimal locations. Once the optimal locations
have been determined, they are integrated into the network. As they are located on the road network, connectors to the
closest rail node are created where needed. Then, the inter-hub railway network is identified, choosing the fastest railway
route between each pair of terminals, creating a hub-and-spoke network that will further be used to model intermodal
transport.

3.3. Combined transport modelling

In order to distinguish pre- and post-haulages and truck-only transport, three different road transportation means are
considered: the first is for truck-only transport, the second for pre-haulage and the third for post-haulage. For rail transport,
two means are considered: one for traditional rail transport and another that corresponds to the rail part of combined trans-
port. There is no unloading associated with pre-haulage and no loading associated with post-haulage by trucks: these two
means must thus be combined with the rail part of a combined transport trip to model intermodal transport.

3.4. Assignment on a network where combined transport is allowed

Once the combined transport has been modelled, a new assignment is performed, during which trans-shipments are
made possible at the optimally located terminals. The demand can be assigned over all the transportation modes, with
the possibility (but not the obligation) of using the trans-shipment facilities. Combined transport is thus considered as
one possible transport solutions among others, and the three constraints of the p-HMP (see Section 2) are thus relaxed at
this stage of the model.

3.5. Iterative procedure

To take the variation of the trans-shipment costs according the number of TEUs trans-shipped into account, an iterative
procedure is needed. In order to estimate the trans-shipment cost of each facility ðT0

k 8k 2 NÞ, an assignment during which all
the potential locations are considered as terminals is performed. After that, the following algorithm is implemented:
Please cite this article in press as: Limbourg, S., Jourquin, B. Optimal rail-road container terminal locations ... Transport. Res.
Part E (2009), doi:10.1016/j.tre.2008.12.003
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1. n = 0,
2. minimise the objective function (2),
3. create the hub-and-spoke network,
4. assign on the network,
5. n = n+1,
6. determine the flows, Fn

k , trans-shipped at hub k,
7. compute the trans-shipment costs according to the flows TkðFn

kÞ,
8. Tn

k ¼ ðT
n�1
k þ TkðFn

kÞÞ=2,

9. if $ k 2 N : Tn
kðF

n
kÞ > Tn�1

k ðFn�1
k Þ go to Step 2,

10. if $ k 2 N :
Tn

k ðF
n
k Þ�Tn�1

k ðFn�1
k Þ

Tn
k ðF

n
k Þ

> 0:01 go to Step 4,
11. stop.
4. Results

4.1. Sensitivity of the model to some hypotheses

4.1.1. Sensitivity to the set of potential locations
As explained in Section 2.4., the potential locations are dependent of the consolidated flow thresholds. To illustrate this,

Table 2 gives the optimal locations obtained for a number of hubs varying from 2 to 10 and for minimum flow thresholds
varying from 150,000 TEU (resulting in 33 potential locations) to 50,000 TEU (85 potential locations). Five configurations
(for p = 3, 4, 5, 9 and 10) remain unchanged when the 50,000 or the 75,000 TEU threshold are used, and two (p = 3 and
10) when the 100,000 TEU threshold is considered. Except for the 150,000 TEU threshold case, all the configurations with
ten hubs remain unchanged.

Fig. 3 represents the evolution of the ratio of the total transportation cost for a configuration with p-hubs, Cp, to the total
cost of the reference scenario, C.

As expected, this total cost decreases with the threshold. It is worthwhile to note that the configurations obtained for a
same number of hubs, p, are very similar in cost, except for the 150,000 TEU threshold case. This is due to the fact that Lon-
don, identified as optimal location in the other cases, is missing in the set of potential locations for this threshold.

Fig. 4 illustrates the variation of the ton-km transported by road for the all these configurations. Note that for some net-
works with two or three hubs, the amount of bn ton-km/yr by road increases. A closer look to one of these two-hub config-
urations (London and Paris) shows that 1.46 bn ton-km/yr are transferred from road to rail but 2.08 bn ton-km/yr are needed
for pre- and post-haulages. Such an optimal configuration could therefore very well not appear if the external costs for road
transport were internalised.

In the next sections, all the presented analysis will be based on the 50,0000 minimum flow threshold, which results in the
largest set of potential locations.

4.1.2. Sensitivity to economies of scale on the inter-hub network
The economy of scale that can be achieved on the rail network varies, according to Recordit, from 0% to 20%, depending on

the characteristics of the railway lines. In order to evaluate the sensitivity of the optimal locations to this parameter, the
problem was solved for possible gains of 5%, 10%, 15% and 20%. It outcomes that all the optimal locations obtained for all
the configurations (from 2 to 10 hubs) remain the same. The optimal solutions can thus be considered as insensitive to these
cost reductions, at least within the considered range of values.
Table 2
Optimal locations obtained with different minimum flow thresholds.

p Threshold

50,000 TEU 75,000 TEU 100,000 TEU 125,000 TEU 150,000 TEU

2 1,2 1,16 1,14 4,8 9,11
3 1,3,4 1,3,4 1,3,4 1,2,11 2,3,9
4 1,2,5,6 1,2,3,17 1,2,9,14 1,2,9,11 4,9,11,19
5 1,2,5,6,7 1,2,5,6,7 1,2,5,7,9 1,2,5,9,11 4,5,9,11,20
6 1,2,3,4,5,6 1,2,3,4,5,6 1,2,5,7,9,14 1,2,5,8,9,11 2,4,5,7,9,14
7 1,2,4,5,8,9,11 1,2,3,4,5,6,18 1,2,3,4,5,6,18 1,2,3,4,5,7,8 2,4,5,9,12,13,14
8 1,2,4,5,8,9,10,11 1,2,3,5,9,10,12,14 1,2,4,5,6,12,13,14 1,2,4,5,6,12,13,14 4,5,6,8,9,12,13,14
9 1,2,4,5,6,9,12,13,14 1,2,4,5,6,9,12,13,14 1,2,4,5,9,10,12,14,15 1,2,4,5,9,10,12,14,15 2,4,5,6,7,9,10,14,20
10 1,2,4,5,6,9,12,13,14,15 1,2,4,5,6,9,12,13,14,15 1,2,4,5,6,9,12,13,14,15 1,2,4,5,6,9,12,13,14,15 2,4,5,6,7,9,10,14,15,20

1 London; 2 Paris; 3 Köln; 4 Lyon; 5 Milan; 6 Madrid; 7 Münster; 8 Namur; 9 Barcelona; 10 Hamburg; 11 Darmstadt; 12 Eindhoven; 13 Hannover; 14
Karlsruhe; 15 Munich; 16 Metz; 17 Marseille; 18 Nuremberg; 19 Lille; 20 Antwerp.
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4.2. Optimal configurations

In Fig. 3, a local minimum was observed for p = 8. Note that, in some configurations with p P 10, the total cost on the
system can be lower than the one for the height-hub configuration. However, some terminal classifications like those pub-
lished in Wiegmans (2003) or SIMET (1995) assume that the hubs must capture more than 100,000 ITU/yr.

A closer look to the number of ITUs captured by the hubs in our model reveals that, on an average basis, the optimally
located hubs handle indeed more than 100,000 ITUs, the seven-hubs configuration yielding the highest capture. For the
height- and nine-hub configurations, there are however two-hubs that capture only about 80,000 ITUs; it is the case for three
terminals when ten hubs are located.

In the standard multiple-hubs network problem, it is assumed that all the hubs are connected directly to each other. Thus,
if a network includes N hubs, N(N � 1) inter-hub relations are needed. In our model, we observe that all the hub connections
are indeed used for all the configurations up to six hubs, but four inter-hub connections (for a total of 21) are not used for the
seven-hub configuration. This ratio becomes 4/28, 7/36 and 9/45 for the configurations with 8, 9 and 10 hubs, respectively. In
other words, the solutions tend to correspond less to real hub-and spoke networks as p increases.

These two reasons, added to the fact that a local minimum is observed for height-hubs in Fig. 3, suggest that, given our
hypotheses, the upper limit for the number of container terminals embedded in a European hub-and-spoke network is
height.

When the reference scenario (without terminals) is compared to the results obtained when trans-shipments at the seven
international hubs mentioned by Ballis (2002) (including an additional hub in Milan) are made possible, our model estimates
that road transport decreases by 1.16 bn ton-km/yr and that the total cost on the transportation system decreases by 0.22%.
Our optimal configuration with seven-hubs (Paris, Lyon, Milan, Barcelona, Darmstadt, London and Namur), as represented by
Fig. 5, results in a decrease of 4.2 bn of ton-km/yr transported by road, which represents 35% of the annual objective of the
Marco Polo I programme. This configuration decreases the total cost by 1.54%. In this optimal solution, intermodal transport
is not competitive (and thus not used) on four inter-hub links (Paris/Darmstadt, Namur/Darmstadt, Paris/Namur and Milan/
Darmstadt, which are therefore not represented in Fig. 5). Note that intermodal transport can sometimes be competitive for
distances that are only slightly longer than 300 km, such as the Milan/Lyon relation.

One have to keep in mind that the improvements induced by hub-and-spoke networks are to be considered globally and
that, at the local level, intermodal transport can generate additional trucking to and from the terminals, which are often lo-
cated in already congested areas. Moreover, the average payload for pre- and post-haulages is lower than for traditional
trucking (Recordit considers 65% instead of 85% for long haul trucking). In our optimal solution with seven-hubs, pre-
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and post-haulages represent 2 bn ton-km/yr. Despite this, the same optimal configuration yields for a reduction of 4.2 bn
ton-km/yr for truck transport.

The heuristic solution obtained by Jeong et al. (2007) for a 10-countries European railway network was an eight-hub con-
figuration (Karlsruhe, Munich, Nuremberg, Hamburg, Düsseldorf, Paris, Metz and Lyon). This configuration has only three
hubs in common with our optimal configuration with the same number of hubs (Milan, Paris, Barcelona, Hamburg, Darms-
tadt, London, Namur and Lyon). This is due to the fact that most of their 48 potential locations were in France and Germany,
with only one location in Belgium, the Netherlands, Poland, the Czech Republic, Austria and Switzerland, and three locations
in the north of Italy while our model is based on 85 potential locations spread over a larger geographical area. Moreover, they
only consider rail flows (and not the other modes) and their potential locations are chosen among the existing terminals.
Finally, they estimate the economies of scale for each inter-hub relation according to the physical characteristics of the trains
that are used and the service frequency. The results of their model are thus not easy to compare with ours.

4.3. Optimal solution that takes the existing hubs into account

The optimum locations for p’ new hubs in a configuration that already contains p’’ hubs (p = p0+p’’) can be calculated. If J
ð� NÞ is the set of existing hubs, the constraints Xii ¼ 1 8i 2 J have to be added to the constraints (1.1–1.6).

If an additional hub were to be added to the configuration with seven-hubs described by Ballis (2002), it should be located
in London. This would decrease road transport by 1.75 bn ton-km/yr and the total transport cost by 1.33%. This can be com-
pared to our optimal configuration with eight-hubs that decreases road flows by 4.72 bn ton-km/yr and total cost by 1.63%.

If two additional hubs were to be added, they should be located in London and in Madrid, decreasing road transport by
3.42 bn ton-km/yr and the total cost by 1.57%. If three hubs were added, the road flow would decrease by 5.92 bn ton-km/yr
and the total cost by 1.61%, which is still less than our optimal solution with eight-hubs.

5. Concluding remarks

Intermodal transport is one of the key elements towards a sustainable freight transport policy over medium and long dis-
tances. However, its efficiency strongly depends on the location of the container terminals. Several network topologies and
types of terminals can be implemented, but policy makers don’t have a complete set of adequate support tools that can help
to take the right strategic decision at the trans-national level. Indeed, the decision to open a new terminal is most often taken
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at the national or even regional level, ignoring the international network effects. These local decisions can lead to a reduction
of the global efficiency of the intermodal transportation system.

The methodology presented in this paper, and its computer implementation, offer an optimisation tool that can be used
by policy makers in the framework of an international hub-and-spoke railway network that interfaces road and rail trans-
port. The tool can compute the optimal locations of a given number of hubs or find out the best location(s) for one or more
additional hubs, taking an existing configuration into account. The main contribution of the method is to propose an iterative
procedure based on both the p-hub median problem and the multi-modal assignment problem. Moreover, the objective
function of the formulation includes the costs for pre- and post-haulages by road, trans-shipment (according to the number
of handled containers into account) and rail haulage.

It comes out that the locations of the current seven European hubs induce a sub-optimal hub-and-spoke network. Indeed,
the performance of the optimal configuration that results from our model (for the same number of hubs) is more than three
times better in terms of reduction of the ton.km/yr transported by road. This solution would achieve 35% of the Marco Polo I
annual objective. The model also predicts that no more than height-hubs should operate on the European network.

Obviously, the results depend on the quality of the used origin-destination matrices and the existence of other types of
terminals, as their interaction with the hubs still remains to be considered and incorporated in the model. For instance,
although all the traffic to and from the ports were taken into account, the port activities were not explicitly modelled. There-
fore, an additional constraint could be added to the model formulation in order to locate the hubs at, at least, a given distance
from a port. Further, no capacity constraints were considered on the railway network, although it is known that some chunks
suffer from congestion.

Finally, we are aware that the second best configuration obtained for a given number of hubs can be very comparable, in
terms of total costs, to the optimal solution. Therefore, local consideration such as ground availability or price could make the
difference for decision makers.
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