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Generalized k-means

Assume that X ∼ F arises from 2 groups G1 and G2 with probabilities πi(F ) = IPF [X ∈ Gi] (called the prior probabilities), then F is a mixture of two distributions : F = π1(F )F1 + π2(F )F2 (with density
f = π1f1 + π2f2). In this particular setting, cluster analysis may be performed in order to find the underlying groups. Several procedures to construct clusters are available, a classical one is the 2-means algorithm
that is a particular case of the generalized 2-means procedure. For a suitable nondecreasing penalty function Ω : R

+ → R
+, the clusters’centers T1(F ) and T2(F ) are solutions of the minimization problem

min
{t1,t2}⊂Rp

∫

Ω

(

inf
1≤j≤2

‖x − tj‖

)

dF (x) (1)

while, for all x ∈ R
p, the corresponding classification rule is given by

RF (x) = Cj(F ) ⇔ Ω(‖x − Tj(F )‖) = min
1≤i≤2

Ω(‖x − Ti(F )‖). (2)

As García-Escudero and Gordaliza (1999), who studied some robustness properties of these estimators, we restrict ourselves to the univariate case. In this case, the clusters take the simplest forms C1(F ) =]−∞, C(F )[

and C2(F ) =]C(F ), +∞[ where C(F ) =
T1(F ) + T2(F )

2
is the cut-off point.

Empirical and theoretical error rates

The performance of a classification rule can be measured by the error rate which is the probability to misclassify data. Two types of error rates can be computed : a theoretical one and a more empirical one. The
first one can be written as ER(F, Fm) where F is the distribution of the training sample used to set up the classification rule and Fm (model distribution) is the distribution under which the quality of the rule is
assessed (via a test sample). Often, this test sample is also used to estimate the prior probabilities. The empirical error rate corresponds to ER(F, F ), meaning that the classification rule is tested on the same sample
as the one used to set up the rule.
More formally, the theoretical error rate is defined as

ER(F, Fm) =

2
∑

j=1

πj(Fm)IPFm

[

RF (X) 6= Cj(F )
∣

∣ Gj

]

(3)

while the empirical error rate takes the form

ER(F, F ) =

2
∑

j=1

πj(F )IPF

[

RF (X) 6= Cj(F )
∣

∣ Gj

]

. (4)

In ideal circumstances, F = Fm and the two error rates are identical. However, if the distribution F is contaminated, Fε say, the two error rates are different.
Equation (3) becomes

ER(Fε, Fm) =

2
∑

j=1

πj(Fm)IPFm

[

RFε
(X) 6= Cj(Fε)

∣

∣ Gj

]

(5)

and equation (4) becomes

ER(Fε, Fε) =

2
∑

j=1

πj(Fε)IPFε

[

RFε
(X) 6= Cj(Fε)

∣

∣ Gj

]

. (6)

One sees that the theoretical error rate is only contaminated through the classification rule while the contamination is everywhere in the empirical error rate. This difference will be stressed in the sequel when focusing
on point mass contamination, i.e. Fε = (1 − ε)F + ε∆x, in the same spirit as Croux et al. (2008) and Croux et al. (2008) did in discriminant analysis.
The model distribution of interest is a mixture of two homoscedastic normal distributions : F = π1 N(µ1, σ

2) + (1 − π1) N(µ2, σ
2) with µ1 < µ2 since Qiu and Tamhane (2007) proved the optimality of the 2-means

clustering method under a particular case of normal mixture : the model FN = 0.5 N(µ1, σ
2) + 0.5 N(µ2, σ

2). Under the optimal model, the cut-off point corresponds to the midpoint between the means of the two

groups C(FN ) =
µ1 + µ2

2
.

Influence function

Hampel et al. (1986) defined the influence function of a statistical functional T at a distribution F as IF(x; T, F ) =
∂

∂ε
T [(1 − ε)F + ε∆x]

∣

∣

∣

∣

ε=0
for those x where this derivative exists. It measures the impact on the

statistical functional of an infinitesimal contamination at the point x. Two interesting properties of this function are : •EF [IF(X ; T, F )] = 0,

• T (Fε) ≈ T (F ) + εIF(x; T, F ) (First order Taylor expansion of T at F ).
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Figure 1: Optimal error rate (solide line) and contaminated theoretical error rate (dashed
line) as a function of the amount of contamination (left panel) and as a function of the position
of the contaminated mass (right panel) under model FN with µ1 = −1, µ2 = 1 and σ = 1.
The position of the contamination is set to x = −0.5 (left panel) and the percentage of
contamination is set at 10% (right panel).

Figure 1 shows that the contaminated theoretical error rate ER(Fε, FN ) is always bigger than the

optimal error rate Φ
(

µ1−µ2
2σ

)

= ER(FN , FN ). Then, the first order Taylor expansion of this error

rate at the distribution FN implies that IF(x; ER, FN ) ≥ 0 and the first property of the influence
function leads to IF(x; ER, FN ) ≡ 0 for all x ∈ R. Under this model, one then needs to compute
the second order influence function (second derivative of the contaminated theoretical error rate)
to study the impact of contamination on the theoretical error rate. The right panel shows that
the smallest impact on the theoretical error rate comes from contamination near the centers of the
groups.

Proposition 1. The influence function of the theoretical error rate of the generalized 2-means

procedure is given by

IF(x; ER, F ) =
1

2
{IF(x; T1, F ) + IF(x; T2, F )}{π2(F )f2(C(F )) − π1(F )f1(C(F ))} (7)

for all x 6= C(F ).

Expressions of IF(x; T1, F ) and IF(x; T2, F ) have been computed by García-Escudero and Gordaliza
(1999).

Due to the symmetry under FN , one has fN,1

(µ1 + µ2

2

)

= fN,2

(µ1 + µ2

2

)

and then the influence

function of the theoretical error rate is null.

Empirical error rate
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Figure 2: Optimal error rate (solide line) and contaminated empirical error rate (dashed
line) as a function of the amount of contamination (left panel) and as a function of the position
of the contaminated mass (right panel) under model (N) with µ1 = −1, µ2 = 1 and σ = 1.
The position of the contamination is set to x = −0.5 (left panel) and the percentage of
contamination is set at 10% (right panel).

Figure 2 shows that the behaviour of the empirical error rate under contamination is quite different
because contamination may make this error rate decrease even under optimality. Indeed, when the
contamination is classified in the cluster corresponding to its group, i.e. when it is well classified,

the empirical error rate ER(Fε, Fε) is lower than the optimal one Φ
(

µ1−µ2
2σ

)

= ER(FN , FN ).

Consequently, the influence function of this error rate under FN is not identically null any more.
As the cut-off point is near zero, this behaviour is highlighted on the right panel. This is the same
kind of phenomenon as in regression where good leverage points are outliers that may improve the
regression outputs whereas bad leverage points have a negative impact.

Proposition 2.The influence function of the empirical error rate of the generalized 2-means method

is given by

IF(x; ER, F ) =
1

2
(IF(x; T1, F ) + IF(x; T2, F )){π2(F )f2(C(F )) − π1(F )f1(C(F ))}

+ I{x ≤ C(F )}(1 − 2δ1(x)) + δ1(x) − π1(F ){1 − F1(C(F ))} − π2(F )F2(C(F )) (8)

for all x 6= C(F ).

Under FN , this expression reduces to

IF(x; ER, FN ) = I{x ≤ C(FN )}(1 − 2δ1(x)) + δ1(x) − {1 − FN,1(C(FN ))}

which is not identically null.
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