

# Neural network-based surrogate model for multi-scale analyses

Ludovic Noels, Ling Wu University of Liege Computational & Multiscale Mechanics of Materials http://www.ltas-cm3.ulg.ac.be

> JKU - Workshop 05 July 2021

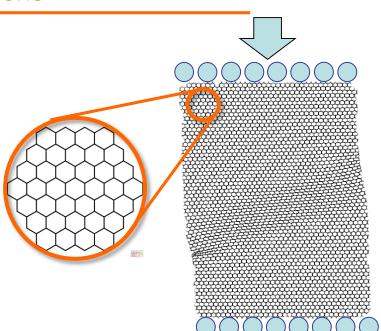


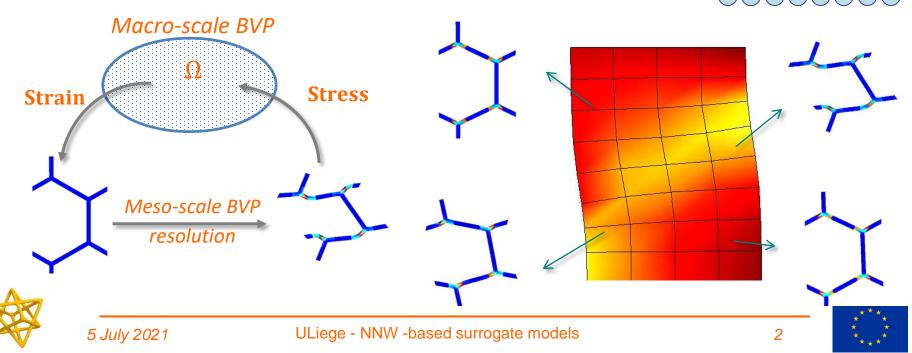
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862015



#### **Multi-scale simulations**

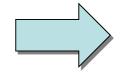
- Computational homogenisation (FE2)
  - Heterogeneous structures
    - Micro-scale: cell, grains, inclusions...
    - Macro-scale: seen as a continuum
  - Direct numerical simulations
    - Time consuming
  - Idea: use multi-scale strategy





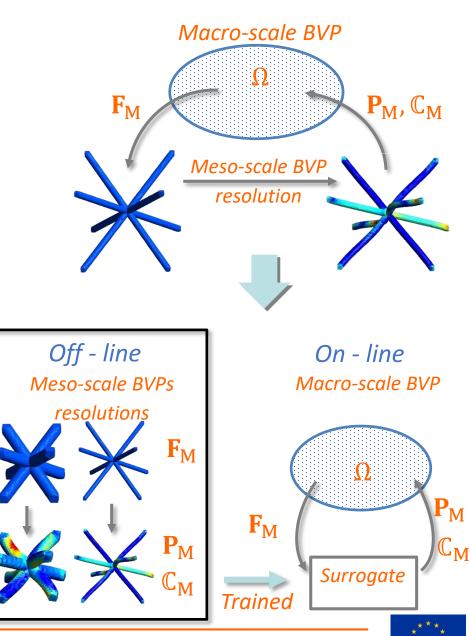
### **Multi-scale simulations**

- Computational homogenisation (FE2)
  - Non-linear simulations
    - Iterations at macro-scale BVP
    - Sub-iterations at meso-scale BVP



#### Unaffordable

- Introduction of data-driven approach
- Use of surrogate models
  - Train a surrogate model (off-line)
    - Requires extensive data
    - Obtained from RVE simulations
    - Different RVE properties
  - Use the trained surrogate model during analyses (on-line)
    - Speed-up of several orders







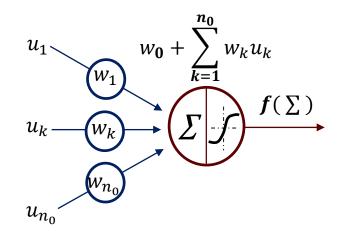
#### **Artificial Neural Network**

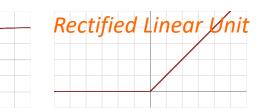
- Definition of the surrogate model
  - Artificial neuron
    - Non-linear function on  $n_0$  inputs  $u_k$
    - Requires evaluation of weights  $w_k$
    - Requires definition of activation function f

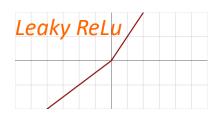
tanh

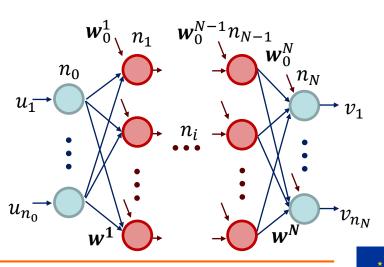
Activation functions f

Sigmoid











- Simplest architecture
- Layers of neurons
  - Input layer
  - N-1 hidden layers
  - Output layers
  - Mapping  $\mathfrak{R}^{n_0} \to \mathfrak{R}^{n_N}$ :  $\boldsymbol{v} = \boldsymbol{g}(\boldsymbol{u})$



•



## **Artificial Neural Network**

# Training

- Use (a lot of) known data
  - Input  $u^{(p)}$  & Output  $v^{(p)}$
  - Requires normalization:  $\hat{\chi} = \frac{\chi \bar{\chi}}{\chi_{\max} \chi_{\min}}$
- Evaluate

•

- The weights  $w_{kj}^{i}$ ,  $k = 1...n_{i-1}$ ,  $j = 1...n_{i}$
- The bias  $w_0^i$
- Minimise error prediction v vs. real  $v^{(p)}$

$$L_{\text{MSE}}(\mathbf{W}) = \frac{1}{n} \sum_{i}^{n} \left\| \boldsymbol{v}_{i}(\mathbf{W}) - \boldsymbol{v}_{i}^{(p)} \right\|^{2}$$

Requires an optimizer: Stochastic Gradient Descent

$$\Delta \mathbf{W} = -\mathcal{F}\left(\frac{\partial L_i(\mathbf{W})}{\partial \mathbf{W}}, \quad \left(\frac{\partial L_i(\mathbf{W})}{\partial \mathbf{W}}\right)^2, \\ \text{batch size, ...} \right)$$

- Testing
  - Use new data
    - Input  $u^{(p)}$ & Output  $v^{(p)}$
    - Verify prediction v vs. real  $v^{(p)}$



Loss

$$u_{1} \\ u_{n_{0}} \\ u_{n_{0}$$

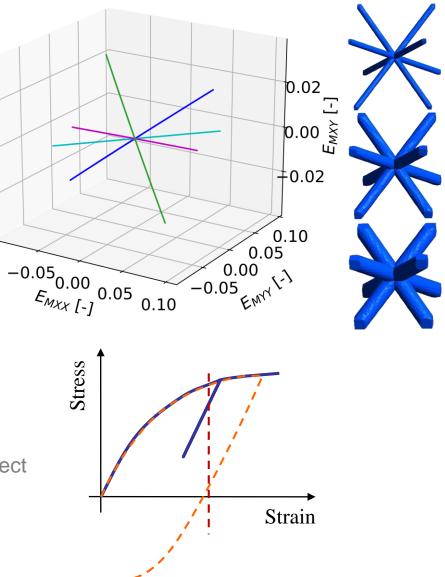
 $w_0^1 n_1 w_0^{N-1} n_{N-1}$ 



#### Complex micro-structures

- Input / output definition
  - Input:
    - Strain (history): **F**<sub>M</sub>
    - Geometry/material parameters:  $\pmb{\varphi}_{\mathrm{m}}$
  - Output:
    - Stress (history): P<sub>M</sub>
- Methodology
  - Address problem of history dependency
    - RVE without buckling
    - Elasto-plastic composite RVE

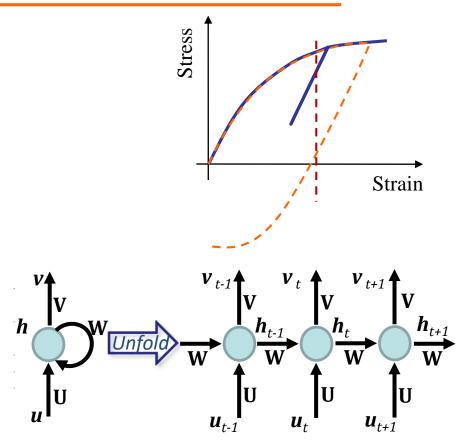
- Address problem of geometry/material effect
  - Octet cells
  - Elastic material at first







- Elasto-plastic material behaviour ٠
  - No bijective strain-stress relation \_
    - Feed-forward NNW cannot be used •
    - History should be accounted for ٠
- Recurrent neural network ۲
  - Allows a history dependent relation \_
    - Input  $u_t$ •
    - Output  $v_t = g(u_t, h_{t-1})$ •
    - Internal variables  $h_t = g(u_t, h_{t-1})$ •
  - Weights matrices U, W, V \_
    - Trained using sequences •
      - Inputs  $u_{t-n'}^{(p)}$  ...,  $u_t^{(p)}$
      - Output  $v_{t-n}^{(p)}, ..., v_t^{(p)}$

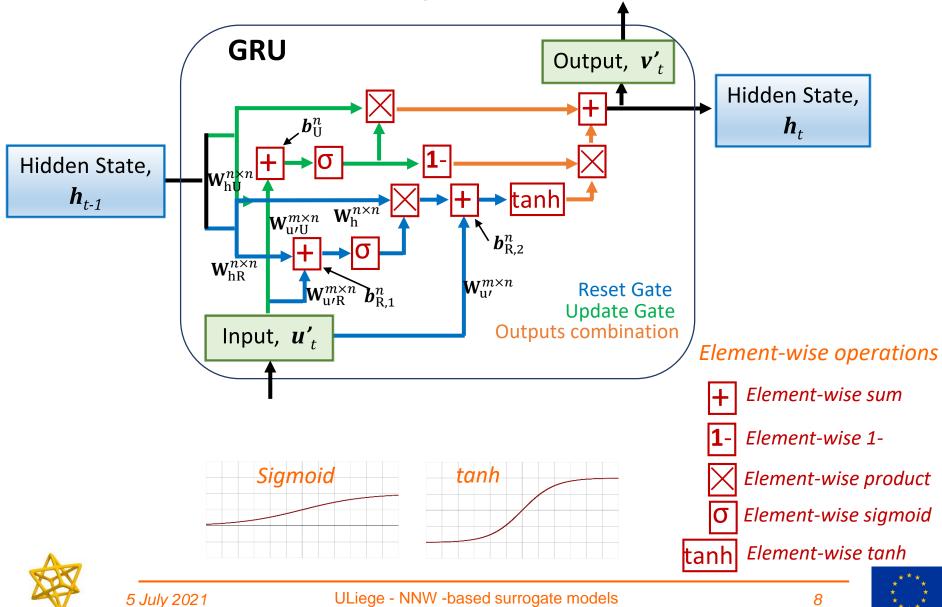






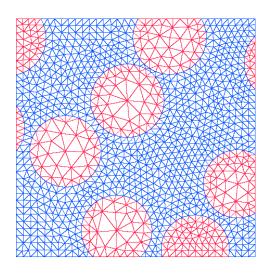


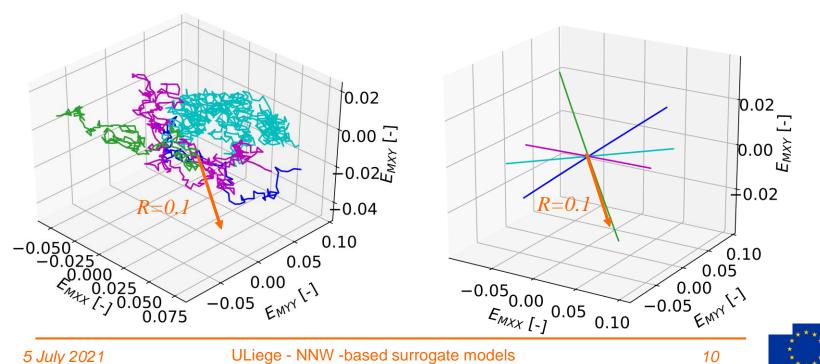
• Gated Recurrent Unit (GRU) at a glance



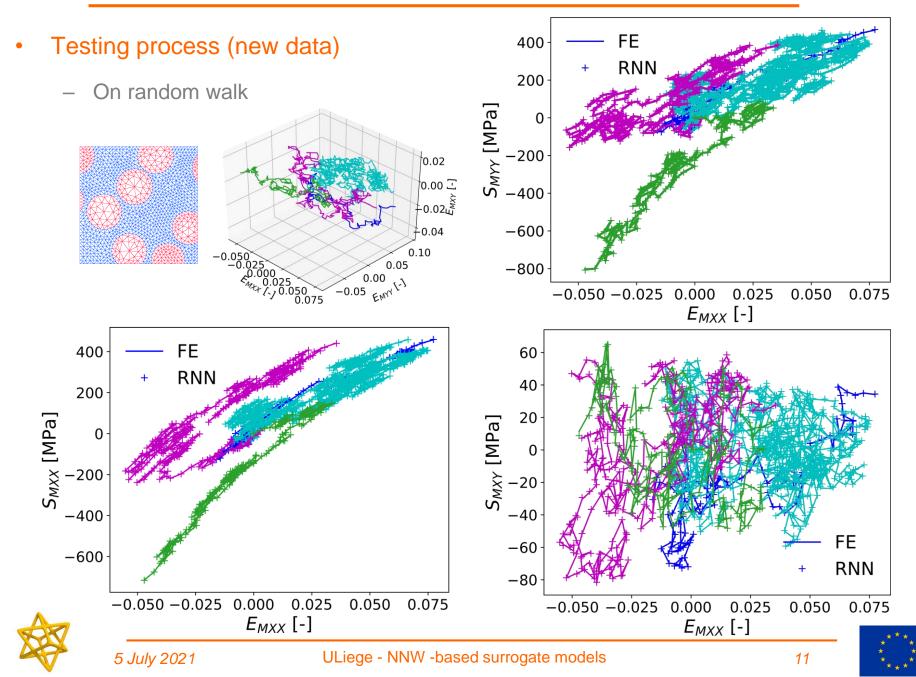


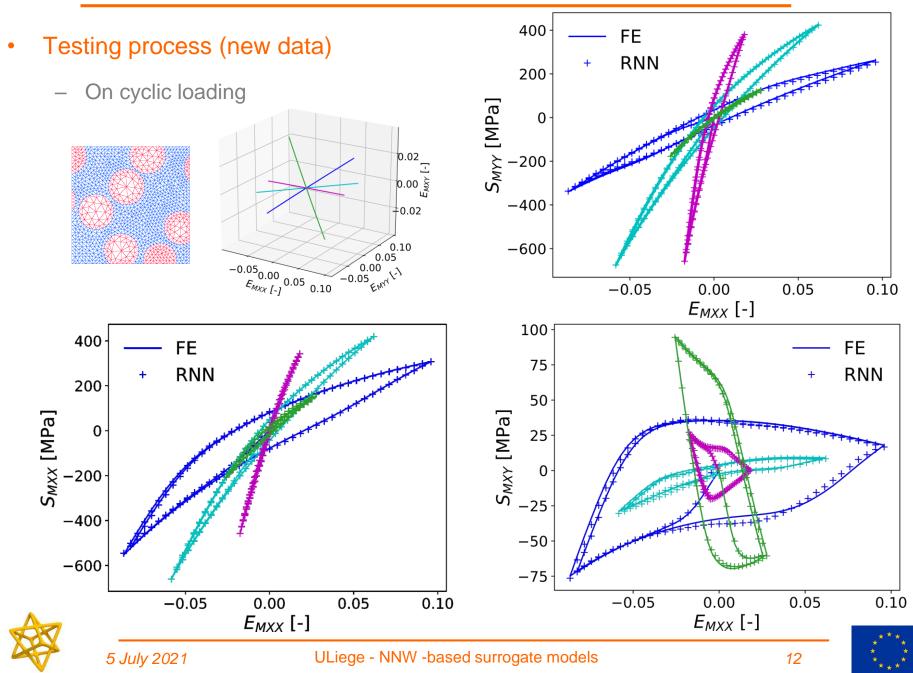
- Data generation
  - Elasto-plastic composite RVE
  - Training stage
    - Should cover full range of possible loading histories
    - Use random walking strategy (thousands)
    - Completed with random cyclic loading (tens)
    - Bounded by a sphere of 10% deformation



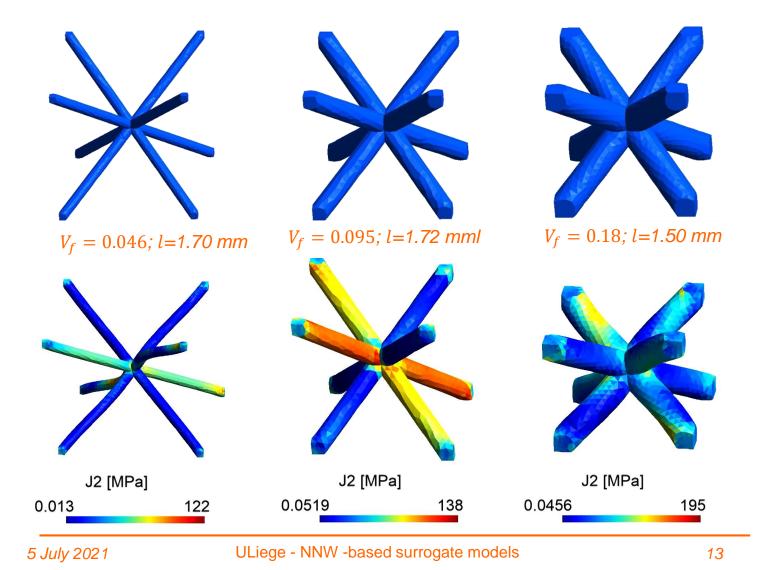








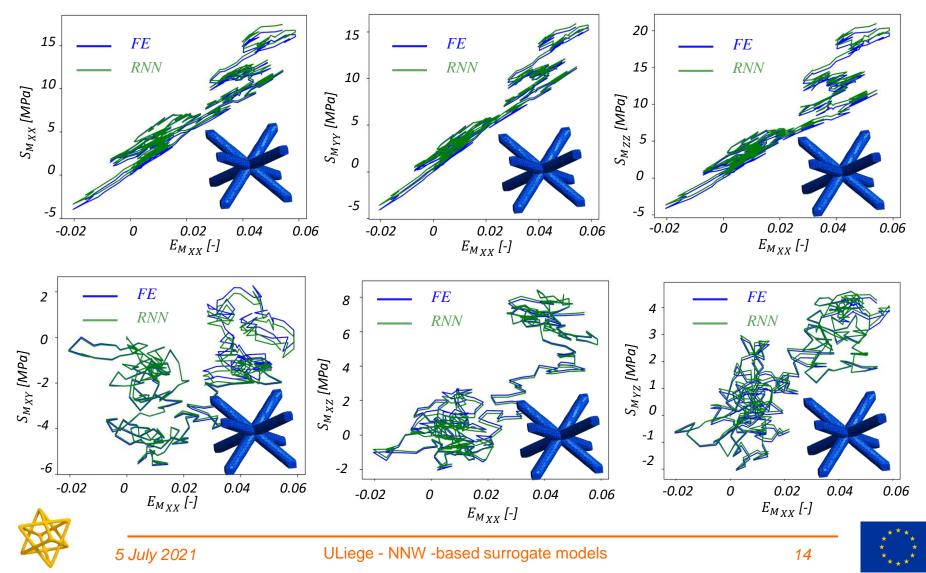
- Octet cell
  - Generalised IMDEA script to generate random cells and random loading paths





#### • Octet cell

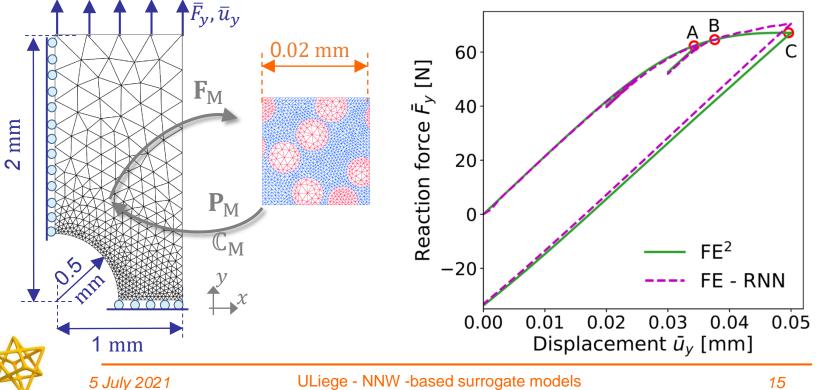
Test on new random cell/path



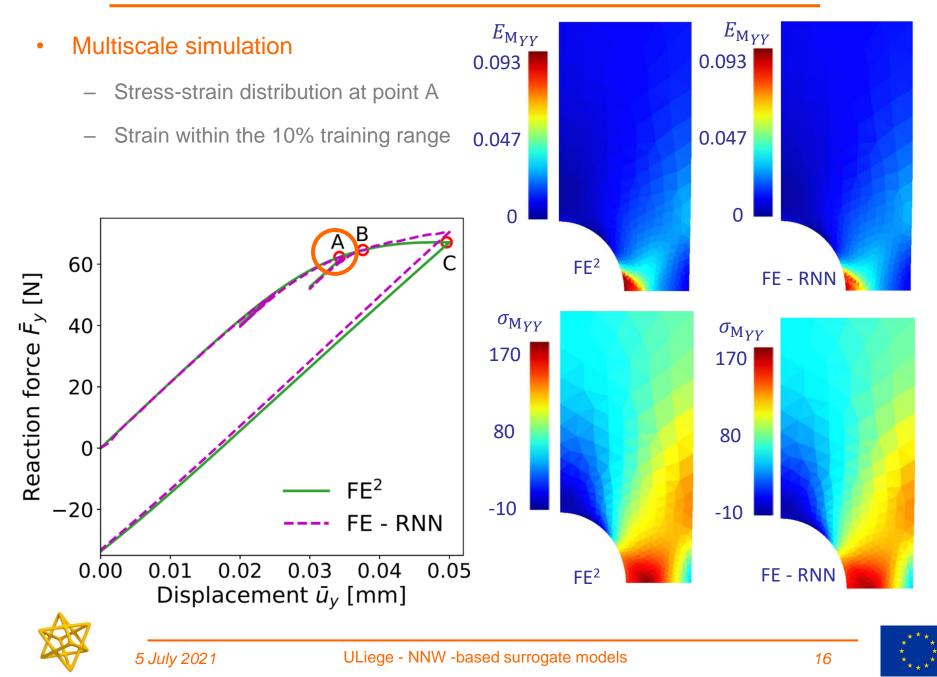
#### Multiscale simulation •

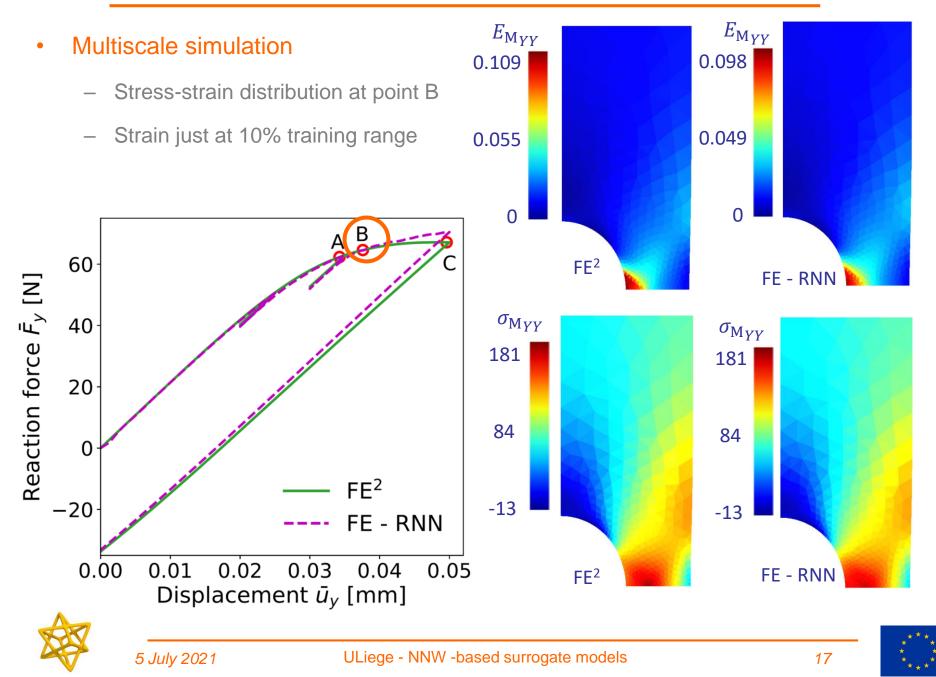
- Elasto-plastic composite RVE \_
- Comparison FE<sup>2</sup> vs. RNN-surrogate
- Training data
  - Bounded at 10% deformation •

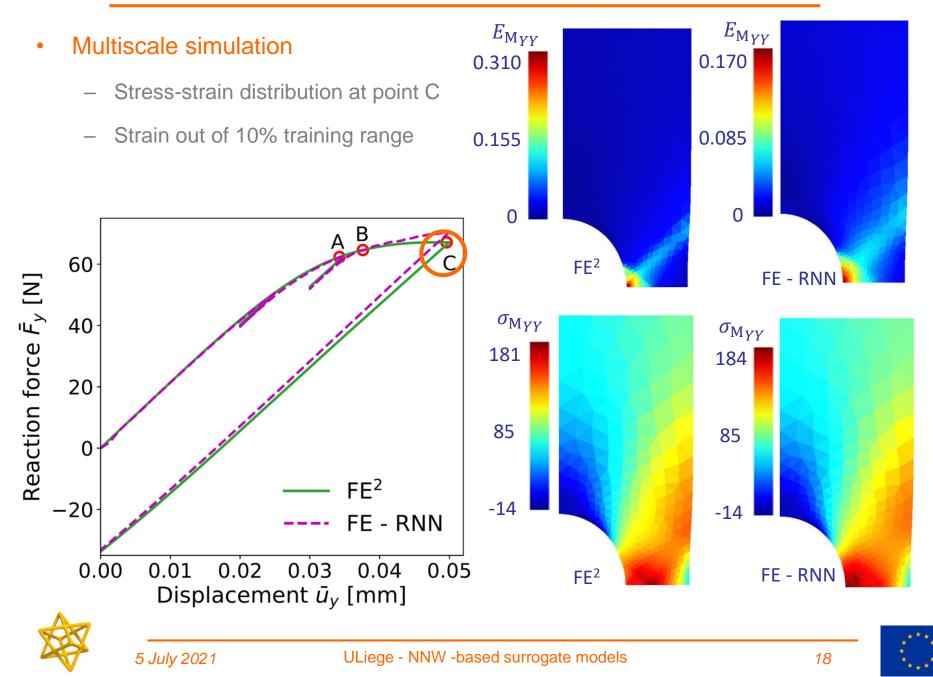
| Off-line           | FE <sup>2</sup> | FE-RNN            |
|--------------------|-----------------|-------------------|
| Data<br>generation | -               | 9000 x<br>2 h-cpu |
| Training           | -               | 3 day-cpu         |
| On-line            | FE <sup>2</sup> | FE-RNN            |
| Simulation         | 18000 h-cpu     | 0.5 h-cpu         |





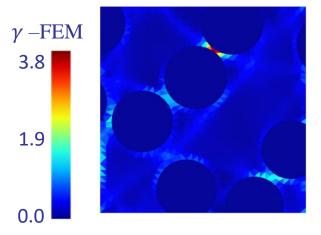






### Localisation step

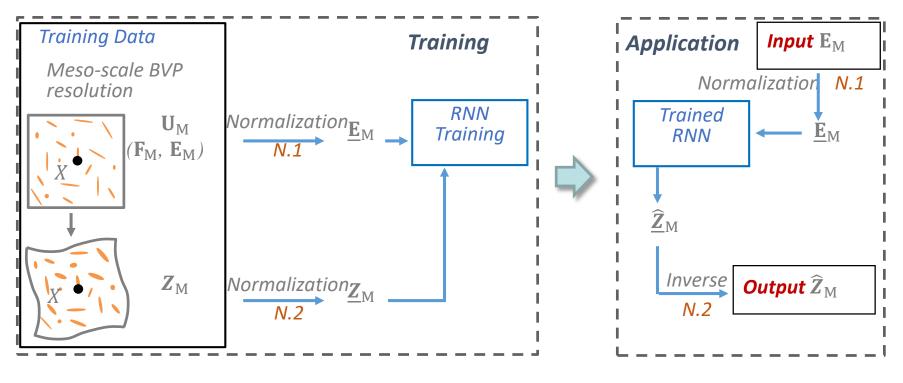
- FΕ Only homogenised output is predicted 400 RNN 200 On random walk 0 200--200 -400 0.02 0.00 🖸 -0.02<sup>WX</sup> -600 -0.04 0.10 0.05 -800 -0.05 EMYY [-] 0.00 25 0.050 0.075 -0.050 - 0.025 0.000 0.0250.050 0.075  $E_{MXX}$  [-]
- Quid of local fields?
  - This is an advantage of multiscale methods
  - Useful to predict failure, fatigue etc.
  - Can we get it back at low cost?







• Also build a surrogate model of the internal variables

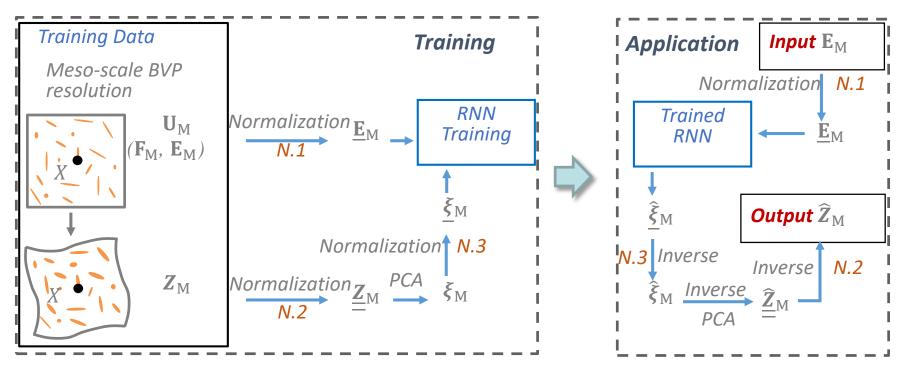


- Problem: The size of  $\underline{Z}_{M}$  is large  $\square$  overwhelming cost





• Optimise the method: reduce the size of the internal variables

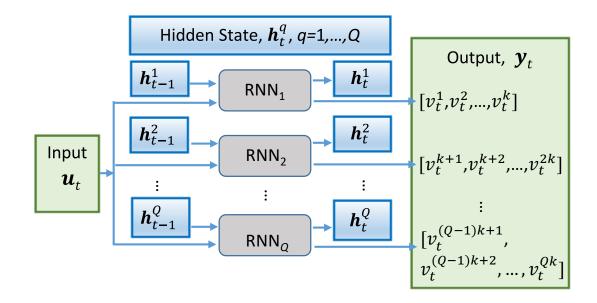


- Principal Component Analysis (PCA) applied on  $\underline{Z}_{M}$  to reduce the output of RNN
- But not enough





• Dimension breakdown: to further reduce the output dimension of RNN

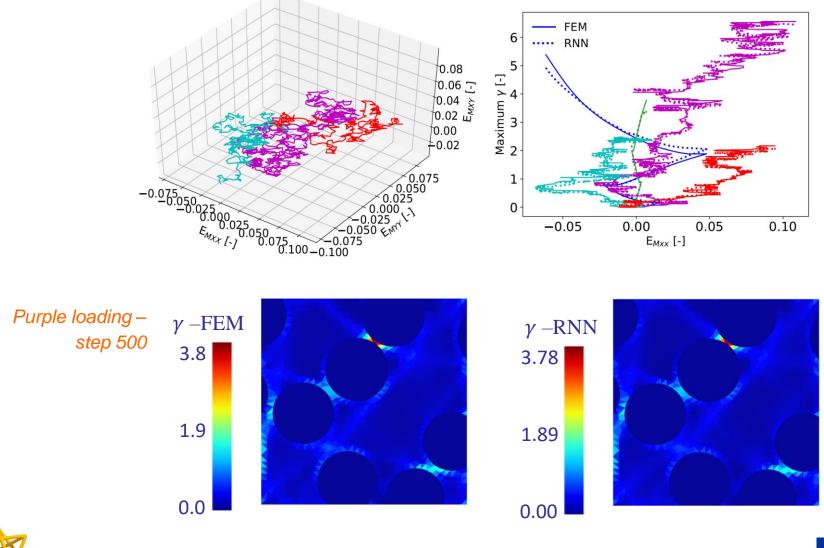


- The surrogate modelling is carried out by a few small RNNs, instead of one big RNN
- The high dimension output is divided into *Q* groups, and each RNN is used to reproduce only a part of output
- PCA reduces  $\underline{Z}_{M}$  to 180 outputs and we use Q=6





• Evaluation of equivalent plastic strain  $\gamma$ : Random loading (testing data)

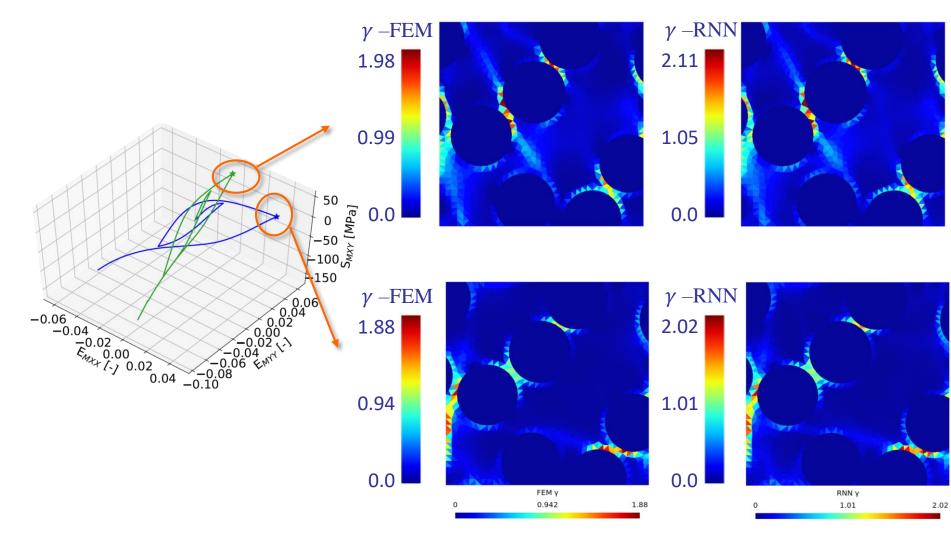




ULiege - NNW -based surrogate models

#### Localisation step

• Evaluation of equivalent plastic strain  $\gamma$ : Cyclic loading (testing data)







- More on
  - www.moammm.eu
  - L. Wu, V. D. Nguyen, N. G. Kilingar, and L. Noels. "A recurrent neural networkaccelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths." Computer Methods in Applied Mechanics and Engineering 369 (September 1, 2020): 113234,

http://dx.doi.org/10.1016/j.cma.2020.113234



