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• Computational homogenisation (FE2)

– Heterogeneous structures

• Micro-scale: cell, grains, inclusions…

• Macro-scale: seen as a continuum

– Direct numerical simulations

• Time consuming

– Idea: use multi-scale strategy

Multi-scale simulations
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• Computational homogenisation (FE2)

– Non-linear simulations

• Iterations at macro-scale BVP

• Sub-iterations at meso-scale BVP

– Introduction of data-driven approach

– Use of surrogate models

• Train a surrogate model (off-line)

– Requires extensive data

– Obtained from RVE simulations

– Different RVE properties

• Use the trained surrogate model 

during analyses (on-line)

– Speed-up of several orders

Multi-scale simulations
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• Definition of the surrogate model

– Artificial neuron

• Non-linear function on 𝑛0 inputs 𝑢𝑘

• Requires evaluation of weights 𝑤𝑘

• Requires definition of activation function 𝑓

– Activation functions 𝑓

– Feed-Forward Neuron Network

• Simplest architecture

• Layers of neurons

– Input layer

– 𝑁 − 1 hidden layers 

– Output layers

• Mapping ℜ𝑛0 → ℜ𝑛𝑁: 𝒗 = 𝒈(𝒖)

Artificial Neural Network
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• Training

– Use (a lot of) known data 

• Input 𝒖(𝑝) & Output 𝒗(𝑝)

• Requires normalization:

– Evaluate 

• The weights 𝑤𝑘𝑗
𝑖 , 𝑘 = 1. . 𝑛𝑖−1, 𝑗 = 1. . 𝑛𝑖

• The bias 𝑤0
𝑖

• Minimise error prediction 𝒗 vs. real 𝒗(𝑝)

• Requires an optimizer: 

Stochastic Gradient Descent 

• Testing

– Use new data 

• Input 𝒖(𝑝)& Output 𝒗(𝑝)

• Verify prediction 𝒗 vs. real 𝒗(𝑝)

Artificial Neural Network
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• Input / output definition

– Input:

• Strain (history): 𝐅M

• Geometry/material parameters: 𝝋m

– Output:

• Stress (history): 𝐏M

• Methodology

– Address problem of history dependency

• RVE without buckling

• Elasto-plastic composite RVE

– Address problem of geometry/material effect

• Octet cells

• Elastic material at first

Complex micro-structures
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• Elasto-plastic material behaviour

– No bijective strain-stress relation

• Feed-forward NNW cannot be used

• History should be accounted for 

• Recurrent neural network

– Allows a history dependent relation 

• Input 𝒖𝒕

• Output 𝒗𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏

• Internal variables 𝒉𝒕 = 𝒈 𝒖𝒕, 𝒉𝒕−𝟏

– Weights matrices 𝐔,𝐖,𝐕

• Trained using sequences

– Inputs  𝒖𝒕−𝒏
(𝒑)

, …, 𝒖𝒕
(𝒑)

– Output 𝒗𝒕−𝒏
(𝒑)

, …, 𝒗𝒕
(𝒑)

History dependency
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• Gated Recurrent Unit (GRU) at a glance 

History dependency
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• Recurrent neural network design

– 1 Gated Recurrent Unit (GRU)

• Reset gate: select past information 

to be forgotten 

• Update gate: select past information 

to be passed along 

– 2 feed-forward NNWs (Leaky ReLU)

• NNWI to treat inputs 𝒖𝒕

• NNWO to produce outputs 𝒗𝒕

– Details

• 𝒖𝒕 : homogenised GL strain 𝐄M (symmetric)

• 𝒗𝒕 : homogenised 2nd PK stress 𝐒M (symmetric)

• 100 hidden variables 𝒉𝒕

• NNWI one hidden layer of 60 neurons

• NNWO two hidden layers of 100 neurons

History dependency
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• Data generation

– Elasto-plastic composite RVE

– Training stage

• Should cover full range of possible loading histories

• Use random walking strategy (thousands)

• Completed with random cyclic loading (tens)

• Bounded by a sphere of 10% deformation

History dependency
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• Testing process (new data)

– On random walk

History dependency
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• Testing process (new data)

– On cyclic loading

History dependency
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• Octet cell

– Generalised IMDEA script to generate random cells and random loading paths

Geometrical parameters effect
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• Octet cell

– Test on new random cell/path

Geometrical parameters effect
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• Multiscale simulation

– Elasto-plastic composite RVE

– Comparison FE2 vs. RNN-surrogate

– Training data

• Bounded at 10% deformation

ANN as a mesoscale surrogate model 
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• Multiscale simulation

– Stress-strain distribution at point A

– Strain within the 10% training range

ANN as a mesoscale surrogate model 
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• Multiscale simulation

– Stress-strain distribution at point B

– Strain just at 10% training range

ANN as a mesoscale surrogate model 
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• Multiscale simulation

– Stress-strain distribution at point C

– Strain out of 10% training range

ANN as a mesoscale surrogate model 
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• Only homogenised output is predicted

– On random walk

• Quid of local fields?

– This is an advantage of multiscale methods

– Useful to predict failure, fatigue etc.

– Can we get it back at low cost?

Localisation step
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• Also build a surrogate model of the internal variables

– Problem: The size of 𝒁M is large          overwhelming cost 

Localisation step
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• Optimise the method: reduce the size of the internal variables

– Principal Component Analysis (PCA) applied on 𝒁M to reduce the output of RNN

– But not enough

Localisation step
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• Dimension breakdown: to further reduce the output dimension of RNN

– The surrogate modelling is carried out by a few small RNNs, instead of one big RNN

– The high dimension output is divided into 𝑄 groups, and each RNN is used to 

reproduce only a part of output

– PCA reduces  𝒁M to 180 outputs and we use 𝑄=6

Localisation step
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• Evaluation of equivalent plastic strain 𝛾: Random loading (testing data)

Localisation step
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• Evaluation of equivalent plastic strain 𝛾: Cyclic loading (testing data)

Localisation step
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• More on

– www.moammm.eu

– L. Wu, V. D. Nguyen, N. G. Kilingar, and L. Noels. "A recurrent neural network-

accelerated multi-scale model for elasto-plastic heterogeneous materials subjected 

to random cyclic and non-proportional loading paths." Computer Methods in Applied 

Mechanics and Engineering 369 (September 1, 2020): 113234, 

http://dx.doi.org/10.1016/j.cma.2020.113234

Conclusions
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