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Abstract
Impacts of climate change on the future dynamics ofCentral African forests are still largely unknown,
despite the acuteness of the expected climate changes and the extent of these forests. The high diversity
of species and the potentially equivalent diversity of responses to climatemodifications aremajor
difficulties encounteredwhen using predictivemodels to evaluate these impacts. In this study, we
applied amixture of inhomogeneousmatrixmodels to a long-termexperimental site located inM’Baïki
forests, in theCentral AfricanRepublic. Thismodel allows the clustering of tree species into processes-
based groupswhile simultaneously selecting explanatory climate and stand variables at the group-level.
Using downscaled outputs of 10general circulationmodels (GCM), we projected the future forest
dynamics up to the end of the century, under constant climate andRepresentativeConcentration
Pathways4.5 and8.5. Through comparative analyses acrossGCMversions, we identified tree species
meta-groups, which aremore adapted than ecological guilds to describe the diversity of tree species
dynamics and their responses to climate change. Projections under constant climatewere consistent
with a forest ageing phenomenon,with a slowdown in tree growth and a reduction of the relative
abundance of short-lived pioneers. Projections under climate change showed a general increase in
growth,mortality and recruitment. This acceleration in forest dynamics led to a strongnatural thinning
effect, with differentmagnitudes across species. These differences caused a compositional shift in
favour of long-lived pioneers, at the detriment of shade-bearers. Consistentwith otherfield studies and
projections, our results show the importance of elucidating the diversity of tree species responseswhen
considering the general sensitivity ofCentral African forests dynamics to climate change.

1. Introduction

Among the multiple increasing anthropogenic factors
that will affect tropical forests (Lewis et al 2015), climate
change appears to beboth themost global and inevitable
one. Through the alteration of temperature and rainfall,

climate change could alter the structure, composition
and functioning of tropical forests. Knowing the climate
response of these forests is a major challenge in view of
their crucial role as large-scale carbon stocks and sinks
to contain global warming well below 2 °C (Griscom
et al 2017, Rogelj et al 2018).

OPEN ACCESS

RECEIVED

16 July 2018

REVISED

17December 2018

ACCEPTED FOR PUBLICATION

2 January 2019

PUBLISHED

26March 2019

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2019TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/1748-9326/aafb81
https://orcid.org/0000-0003-1765-0520
https://orcid.org/0000-0003-1765-0520
https://orcid.org/0000-0002-1136-4307
https://orcid.org/0000-0002-1136-4307
https://orcid.org/0000-0002-7523-5176
https://orcid.org/0000-0002-7523-5176
mailto:florian.claeys@gmail.com
mailto:frederic.mortier@cirad.fr
https://doi.org/10.1088/1748-9326/aafb81
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aafb81&domain=pdf&date_stamp=2019-03-26
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/aafb81&domain=pdf&date_stamp=2019-03-26
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Existing studies have largely focused onAmazonia.
Simulations of climate change impact have suggested
that Amazonian forests could rapidly decline as a
result of enhanced droughts and accelerated temper-
ature increase: the Amazonian die-back (Cox et al
2004). Inversely, some models have projected a green-
ing-up of Amazon forests with an overall gain in
productivity as the fertilisation effect of increasing
CO2 concentration overcompensates for the losses
due to changes in temperature and precipitation
(Huntingford et al 2013). Considering Amazon forests
as a carbon sinkmay however be excessively optimistic
and is still being debated (Lewis et al 2015).

As the second largest continuously forested area in
the world, Central Africa is a key region for both cli-
mate change mitigation and adaptation (Niang et al
2014). Its importance for mitigation is largely recog-
nised, with forests sheltering 80%of the above-ground
African carbon stock (Mayaux et al 2013). In this
region, depending on the climate scenarios, temper-
ature is projected to increase in a range between 2 and
4 °C above the baseline observed in the second half of
the 20th century reference (Aloysius et al 2016). Com-
pared to temperature projections, precipitation pro-
jections from general circulation models (GCM) or
from regional circulation models (RCM) are more het-
erogeneous, partly because of the difficulty in resol-
ving climate mechanisms driving the variability of
precipitation across Central Africa (Pokam Mba et al
2018). Changes in projected precipitation range from
−9% to+27% (Aloysius et al 2016). Continental lands
are projected to endure an intensification of dry sea-
sons (Malhi et al 2013), a trend already widely
observed for several decades (Zhou et al 2014).

The response of Central African forests to climate
change has remained largely understudied until
recently (Sonwa et al 2013), partly due to the lack of
regional climate information (Lennard et al 2018).
Tree species composition is strongly correlated with
rainfall and temperature gradients (Fayolle et al 2014).
The global study of Zelazowski et al (2011) on the role
of climate in the distribution of humid tropical forests
and the first regional impact assessment of climate
change on theCongoBasin by Ludwig et al (2013) con-
cluded that, in contrast to Amazonia, a die-back in
Central African forests would be unlikely.

Relationships between climate variables and forest
dynamic processes, i.e. growth, mortality and recruit-
ment, are complex (Swann et al 2016). They are widely
variable fromone species to another resulting in species
uniqueness in their possible response to climate change
(Uriarte et al 2018). The same changes in climate could
be beneficial to some species but detrimental to others,
leading to shifts infloristic composition.

Tropical tree species responses to climate can be
approximated through their shade-tolerance, generally
by distinguishing ecological guilds (Hawthorne 1995)
such as pioneers (P), non-pioneer light-demanders
(NPLD) and shade-bearers (SB). In the Central African

Republic (CAR), Ouédraogo et al (2013) showed that
slow-growing SB species were the least sensitive to
drought. On the contrary, in Ghana, drought might
lead to a shift from SB species to dry-adapted P and
NPLD species (Fauset et al 2012).

From a modelling perspective, tree species group-
ing, andmore generally, plant functional classification
(Lavorel et al 2007) is a tool for simplifying floristic
complexity. There are various methods for grouping
species, including groups based on the subjective eco-
logical knowledge of species, such as widely-used
Hawthorne (1995)ʼs guilds, or groups based on species
dynamic processes, namely growth, mortality and
recruitment (Gourlet-Fleury et al 2005). While sub-
jective ecological groups facilitate the ecological inter-
pretation of results, when it comes to simulating forest
dynamics, it is better to build groups based on their
own processes in order to improve the estimation of
dynamics parameters and the projection perfor-
mances (Mortier et al 2013, Picard et al 2010).

In this study, we aimed at disentangling the long-
term effects of different climate variables on the struc-
ture and dynamics of a tropical rainforest in Central
Africa. We hypothesised that climate change will have
differential impacts on species dynamics with varying
responses driven by different climate and structure
variables within and across ecological guilds. We used
a modelling approach based on Mortier et al (2015)ʼs
mixture of inhomogeneous matrix models (MIMM), a
methodology particularly well adapted to simulate the
dynamic behaviours of species-rich ecosystems. We
applied it to forest inventory data from a unique
30-year-long experiment established at M’Baïki, in
CAR. To integrate the variability of climate projec-
tions, we produced 10different versions of MIMM,
one for each GCM. After comparing observed and
simulated forest stands, we examined the impact of
climate change on forest dynamics, in terms of both
structure and composition, over the 21st century.

2.Material andmethods

2.1.Data
2.1.1. Forest inventory data
Annual forest inventories have been performed since
1982 at the M’Baïki experimental site (figure S1
available online at stacks.iop.org/ERL/14/044002/
mmedia), established in CAR (3° 54′N, 17°56′E). The
vegetation is a Guineo-Congolian semi-deciduous
moist forest, with canopy dominated by Cannabacae,
Myristicacae and Meliacae families (Boulvert 1986).
Ten permanent sample plots, four ha each, were
established in two neighbouring forest reserves.
Between 1982 and 2012, all trees �10 cm diameter at
breast height (DBH)have beenmonitored. Thefloristic
description of the trees is complete since 1992. Three
disturbance treatments were implemented: three plots
were left as controls, seven plots were selectively logged
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of which four were subsequently thinned. Selective
logging occurred between 1984 and 1985 and
consisted of harvesting commercial trees with
DBH� 80 cm. Thinning occurred two years after
logging and consisted in poison girdling all non
commercial trees with DBH� 50 cm and cutting all
lianas. A complete description of the experimental site
can be found inGourlet-Fleury et al (2013).

2.1.2. Climate data
To predict the climate at M’Baïki over the next
century, we used outputs of regional climate simula-
tions over 1992–2100 conducted over theCoordinated
Regional Climate Downscaling Experiment (COR-
DEX)-Africa domain at a resolution of ≈50 km
(0.44°×0.44°). These climate predictions are consid-
ered to be a good compromise between model
performances and computational limits (Panitz et al
2014). CORDEX is a standardised framework in which
GCM projections are dynamically downscaled by RCM
over selected continent-scale regions (Jones et al
2011), includingAfrica (Hewitson et al 2012).

We used 10GCM outputs (table S1), downscaled
by the Rossby Centre regional atmospheric model
(Samuelsson et al 2011). For each GCM, we used three
sets of climate projections: the historical runs over the
period 1992–2005 extended over 2006–2099, which
we refer to as baseline scenario under constant climate;
and the projected runs under two Representative Con-
centration Pathways (RCP), RCP 4.5 and RCP8.5
(Moss et al 2010), over the period 2006–2100. The
baseline scenario allowed, by comparison with the
other two scenarios, the identification of forest
dynamics that would or not be affected by climate
change.

2.2. Forest dynamicsmodellingmethodology
We used the MIMMmethodology (Mortier et al 2015)
to model the forest dynamics based on each of the
10 GCM used. MIMM is a statistical correlative model
that identifies differential growth, mortality and
recruitment processes, and selects their associated
subsets of explanatory variables. It combines ideas of
mixture models, generalised linear models (GLM),
variable selection and matrix models. The MIMM

method consists of two steps: (i) for each dynamic
process, penalised finite mixtures of GLM are used to
classify species into groups, select the best explanatory
variables, and estimate the model parameters; (ii) a
Usher (1966, 1969)matrix model is then calibrated for
each non-empty identified group and used to project
forest dynamics. Further details are provided in the
supplementary section S1.3.

2.3. Simulation protocol
2.3.1. FittingMIMMonGCMversions forM’Baïki
We used data collected on all the M’Baïki plots,
regardless of the disturbance treatment applied, and

data fromCORDEX-Africa historical runs, to fit MIMM

to the various GCM and to define the composition and
the parameters associated to species groups, over the
1992–2005 period. This enabled us to quantify the
dynamic processes over a large range of stand condi-
tions, using≈120 000 diameter increments measures,
3600 death and 6100 recruitment events.

We processed the climate data after extracting the
30 arc s (≈1 km2) pixel corresponding to the M’Baïki
site from raster maps of climate variables. For this
pixel we averaged, on an annual basis, monthly time
series of 13 climate variables. We excluded six highly
correlated variables, using a variance inflation factor
(VIF) threshold of 5 (Dormann et al 2013). We thus
kept seven climate variables to calibrate MIMM

(table 1). Climate variables were complemented by
four structure variables calculated from the M’Baïki
forest inventories and directly linked to the develop-
ment of trees and forest stands: DBH (in cm) and its
logarithmic transformation, log-DBH, to deal with the
nonlinear association between DBH and the growth
and mortality processes; stand density (stems per hec-
tare, in ha−1) and stand basal area (in m2 ha−1) to
quantify the tree competition effect on growth, mor-
tality and recruitment processes.

We assessed the observed and projected stand
structures based on four output variables: stand den-
sity (ha−1), stand basal area (m2 ha−1), quadratic dia-
meter (cm) and carbon biomass (teqCO2 ha

−1). We
calculated the first three variables directly from the
MIMM outputs at each time step while we estimated
carbon biomass by combining theMIMMoutputs with
a pantropical allometric equation (Chave et al 2014)
with the conversion rate from biomass to carbon set to
0.47 (Eggleston et al 2006, table 4.3). We took species-
specific wood densities from the database of Zanne
et al (2009). When there was no match at the species
level, we used the average value at the genus level.
When no value was available in the database, we used
the default 0.60g cm−3 recommended by Henry et al
(2010, p. 1383) for tropical Africanwoods.

Table 1. List of explanatory climate and structure
variables used in this study. Climate variables are
those kept using aVIF<5 criterion.

Label Long name

Climate variables

clt Total cloud fraction

mrr Total runoff

sfw Dailymaximumnear-surfacewind speed

snd Duration of sunshine

tas Near-surface air temperature

uas Eastward near-surface wind

vas Northward near-surface wind

Structure variables

bsl Stand basal area

dmt Diameter at breast height

dns Stand density

ldm Log-diameter at breast height

3

Environ. Res. Lett. 14 (2019) 044002



2.3.2. Simulation of forest dynamics
For each of the 10GCM, three simulation analyses
were conducted. The first analysis, for calibration,
aimed at comparing simulated and observed stands at
M’Baïki. It involved running simulations from 1992 to
2005. The two other analyses, for validation and
projection, started in 2006, when historical runs of
GCM were no longer available. The three different
climate scenarios presented in section 2.1.2 were used
for validation and projection. The validation analysis
ended in 2012, when the last forest inventories at
M’Baïki were available. This was done to compare
projected forest stands to observed stands under
different climate scenarios. The projection analysis
ended in 2099 and aimed to simulate the impact of
climate change over the 21st century, starting with the
average abundance of the control plots atM’Baïki.

2.3.3. Atmospheric CO2 concentration as an explanatory
variable
While recent studies show that atmospheric CO2

concentration varies both spatially and seasonally
across the world (Zhang et al 2013), this variable was
not available in CORDEX-Africa. In an attempt to
consider CO2, we averaged GCM projections of atmo-
spheric CO2 concentration under theCoupledModeal
Intercompariosn Project Phase 5 (CMIP5) (Taylor et al
2012) and included this average as a covariate in the
10GCM versions. MIMM was fitted with and without
this variable to assess the relevance of including CO2

concentration as a covariate.
Although the calibration and validation procedures

could be successfully completed, the simulations over
the projection period systematically failed to converge
when includingCO2. Forest dynamics reachedunrealis-
tic levels, with infinite values in stand characteristics and
processes. This failure was due to the perfect correlation
of the annual average atmospheric CO2 concentration
with time. Thus, CO2 effect was confounded with
linear temporal trend, a situation that prevents any valid
projection. In the following, only results obtained
withoutCO2 concentration are presented.

2.3.4. SummarisingMIMMoutputs
Because the number of species combined to the
10GCM versions led to an impractical number of
information, results were summarised by re-aggregat-
ing MIMMʼs outputs according to the two following
approaches. The first, exogenous toMIMM, is based on
ecological guilds, the second, endogenous to MIMM, is
based on the similarities of species groupings between
GCM versions. For the latter, we used hierarchical
clustering to define new meta-groups. The number of
meta-groups was estimated using the gap statistics
(Kaufman and Rousseeuw 2005). In comparison to
guilds, meta-groups are more consistent with the
information from the data as they follow the same logic
of species grouping based solely on the similarity of
their dynamic processes (Picard et al 2010). Further

details are provided in the supplementary section S2.1.
The contributions of variables to projected changes in
dynamic processes were quantified using weighted
averages across GCM versions of the correlations
between the linear predictor associated to a variable and
the projected values (see supplementary section S1.3).

3. Results

3.1. Species groups and explanatory variables
Among the 10different GCM versions used for apply-
ing MIMM to the M’Baïki data, the number of groups
identified ranged between 5and 8 for the growth
process, and 2and 4 for the recruitment process. For
the mortality process, all versions agreed on 3groups.
Allocating species across growth, mortality and
recruitment groups resulted in 11to 17 non-empty
growth-mortality-recruitment combined groups. In
these groups, depending on the GCM version, the
number of species was variable with the largest groups
containing between 35and 67species, and the average
group between 12.2 and 18.9species. The number
of species groups obtained by model fitting and
the species composition of these groups showed
similarities and differences across GCM versions
(figure 1(a)). The cluster allocation of species and the
parameter estimates are provided for each GCM

version in supplementary section S3.
To refine comparisons, we disaggregated model

projections from the group to the species level, and
then re-aggregated them at the guild level and at the
meta-group level. The differences between groups,
guilds and meta-groups are illustrated in figure 1 and
detailed in figure S2. Some species groups, especially
some P-dominated or SB-dominated groups were
quite well discriminated on the basis of their guild
composition. The majority of groups mixed species
from two or all three guilds. In particular, no group
was exclusively composed ofNPLD.

Ninemeta-groups were identified with a hier-
archical cluster analysis and gap statistics (figure S2 and
table 2).Meta-groups1, 5 and6were highly dominated
by SB. Meta-groups2 and3 were dominated by NPLD,
meta-group4 by long-lived P and meta-group9 by
short-lived P. The two remaining meta-groups 7 and 8
are dominated byNPLD and SB, in similar proportions.

The climate and structure variables selected to be
associated with the dynamic processes varied across the
GCM versions, guilds and meta-groups (tables S2 and
S3). At the guild level, all structure variables were gen-
erally selected to explain dynamic processes with the
exception of stand density for growth. All climate vari-
ables are generally selected to explain growth, but were
not systematically selected for mortality and recruit-
ment. The selection of the variables varied within
guilds, reflecting the heterogeneity of specific responses
within guilds. For example, climate variables had a large
variability in their selection for mortality among P. At
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the meta-group level, the frequency of selection for the
variables had narrower range, indicating less hetero-
geneity of species responses within meta-groups than
within guilds, the best example being meta-group5.
However, contrasts in terms of variable selection can be
observed betweenmeta-groups, for example on growth
(stand density is less selected in meta-groups 1 and 2)
and on recruitment (climate variables are less selected
inmeta-groups 2 and 3).

3.2.Model validation
Over the calibration period (1992–2005), no signifi-
cant difference was found between simulations and
observations on forest structure and dynamics, across
all disturbance treatments except for a slight under-
estimation of recruitment in logged plots (figure 2).
Interestingly, MIMM was able to capture the effects of

disturbance treatments, with a clear impact of logging
and/or thinning on forest dynamics.

Over the validation period (2006–2012), simulated
forest structure and dynamics remained close to the
observed data for all climate change scenarios and dis-
turbance treatments, except a slight overestimation of
growth and recruitment in treated plots. In particular,
some trends such as the decrease of stand density and
recruitment, as well as the increase of basal area, quad-
ratic diameter and carbon biomass were well captured
byMIMM.

3.3. Baseline scenario
Under the baseline scenario, with constant climate
conditions over the projection period 2006–2099, the
forest dynamics and structure projected in 2099
differed from those observed in 2005 (figure 3). The

Figure 1.Overlapping projection of groups of species for eachGCMversion (subfigure 1(a)) and ofmeta-groups (subfigure 1(b)). For
each point, the size is proportional to the number of trees clustered in the group ormeta-group, and the colour and stand position
correspond to the guild composition of these trees: themore trees fromP (respectively, NPLD and SB) in the group or in themeta-
group, the closer the point to the P (respectively, NPLD and SB) summit of the simplex with green (respectively, red and blue).

Table 2.Ecological description of themeta-groups. From left to right, columns indicate themost abundant species inside eachmeta-group,
the number of trees, the number of species, themaximumDBH (in cm), the diameter increment (in cm yr−1) and the proportions , expressed
in reference to the number of trees, of each regeneration guild (in %).

Guild

composition (%)

Meta-group Dominating species Number of

trees

Number of

species

Maximum

DBH (cm)
Mean growth

(cm yr−1)
P NPLD SB

1 Garcinia punctata 6978 42 37.5 0.11 0.4 1.0 98.6

2 Entandrophragma

cylindricum

880 14 112.7 0.49 25.9 66.2 7.9

3 Petersianthus

macrocarpus

1810 18 106.9 0.44 10.6 73.3 16.1

4 Bosqueia angolensis 2321 26 96.8 0.75 69.6 5.7 24.7

5 Strombosia grandifolia 461 5 70.8 0.25 3.0 0.0 97.0

6 Staudtia kamerunensis 7042 43 60.6 0.17 3.1 7.0 89.9

7 Celtis zenkeri 5544 42 77.2 0.31 9.6 53.3 37.1

8 Pycnanthus angolensis 2748 14 103.4 0.31 0.0 53.7 46.3

9 Musanga cecropioides 2233 4 100.5 1.27 99.9 0.0 0.1
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projected stand basal area, quadratic diameter, and
carbon biomass in 2099 were significantly higher than
the 2005 levels (p-values <10−3), while the projected
stand density did not differ from the observed one in
2005 (p-values >0.05). Regarding dynamics, the
projected mortality and recruitment in 2099 did not
differ from the ones observed in 2005 (p-values
>0.05), while the projected growth in 2099 was
significantly lower than the 2005 level (p-values
<0.01). These results showed evidence of a forest
ageing phenomenon with fewer but larger trees and
reflected that natural forests in M’Baïki are not at
equilibrium (Gourlet-Fleury et al 2013).

At the guild level, some differences were also
found between projections in 2099 and the observed
values in 2005. Projected quadratic diameter and car-
bon biomass of NPLD and SB species in 2099 were all
significantly higher than the observed values in 2005
(p-values<10−3). The basal area of SB species was also
significantly higher than the one observed in 2005
(p-value<10−3). Conversely, the basal area and quad-
ratic diameter of P species projected in 2099 were
significantly lower than the observed values in 2005
(p-values<0.05). Moreover, projected growth in 2099
was significantly lower for all guilds than the levels
observed in 2005 (p-values <0.01). Projected mortal-
ity in 2099 was significantly higher than observations

for NPLD species in 2005 (p-value <10−3). We found
no difference between projected and observed recruit-
ment for all guilds.

At the meta-groups level, the composition
remained almost unchanged between observations in
2005 and projections in 2099, and we found no sig-
nificant difference in stand density (figure 4). Pro-
jected quadratic diameters in 2099 were significantly
higher compared to 2005 observed values for all meta-
groups except 4, 5 and9 (significantly lower for meta-
group 9). Growth was projected lower in 2099 com-
pared to the observed values in 2005 except for meta-
groups2 and8. Projected mortality in 2099 was sig-
nificantly higher than the observed values in 2005 for
meta-groups 2, 3 and9. Recruitment was projected
significantly lower for meta-group 1 and significantly
higher for meta-groups 5 and8 in 2099 compared to
the 2005 observed levels. These results were also con-
sistent with forest ageing, with a general decline in
growth, and a decreased abundance of pioneers in
favour of shade-tolerant species.

3.4. Impacts of climate change on forest structure
anddynamics
RCP 4.5 and 8.5 scenarios projected a strong impact of
climate change on the structure and the dynamics of
forest stands, compared to the projections under the

Figure 2.Change over time of themean observed and simulated output variables describing forest structure for each disturbance
treatment under different climate scenarios: stand density (in ha−1, subfigure 2(a)), stand basal area (inm2 ha−1, subfigure 2(b)),
quadratic diameter (in cm, subfigure 2(c)), above-ground carbon biomass (in teqCO2 ha

−1, subfigure 2(d)), growth (in cm yr−1,
subfigure 2(e)), mortality (in yr−1, subfigure 2(f)), recruitment (in ha−1 yr−1, subfigure 2(g)) and turnover (in yr−1, subfigure 2(h)).
For both observation and simulations, the three treatments atM’Baïki are plotted separately. Over the calibration period (1992–2005),
simulations start from average treatment-specific forest stands in 1992 and integrate historical runs as climate series until 2005. Later
on, simulations are run under three climate scenarios: the constant average climate in historical runs between 1992 and 2005, RCP4.5
andRCP8.5. Uncertainty bars around observations correspond to the variability between theM’Baïki sample plots. Uncertainty bars
around predictions correspond to the variability between the different GCMversions.
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Figure 3.Average values and standard errors of output variables describing the structure and dynamics of observed and projected
forest stands, at the stand and at the guild levels. Structure variables are stand density (in ha−1, subfigure 3(a)), tree basal area (in
m2 ha−1, subfigure 3(b)), quadratic diameter (in cm, subfigure 3(c)) and above-ground carbon biomass (in teqCO2 ha

−1,
subfigure 3(d)). Dynamics processes are growth (in cm yr−1, subfigure 3(e)), mortality (in yr−1, subfigure 3(f)) and recruitment (in
ha−1 yr−1, subfigure 3(g))while turnover rate (in yr−1, subfigure 3(h)) is also given. For each variable or process, values are indicated at
the whole-stand level (first set, in grey) from left to right, and at the guild level (green, red, blue for P,NPLD and SB, respectively). Each
set of barplot is composed of four bars, withmore or less saturated colour, representing from left to right:M’Baïki control plot
observations between 1992 and 2005 (first bar, themost saturated), projected stands under constant climate (second bar, the least
saturated), projected states under RCP4.5 andRCP8.5 in 2099 (3rd and 4th bars, respectively, with lower and upper intermediary
saturations).

Figure 4. Same asfigure 3, but formeta-groups.
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baseline scenario (figure 3). The same trend, namely
an acceleration of forest dynamics due to an enhance-
ment of growth, recruitment and mortality processes,
was observed in the great majority of the simulations
under all scenarios, but with a higher variability for
RCP8.5 than for RCP4.5.

Growth increased by a factor of 3.4±1 under
RCP4.5 and a factor of 6.8±4 under RCP8.5 com-
pared to the baseline scenario. Mortality was multi-
plied by 3.7±2 under RCP4.5 and 5.7±3 under
RCP8.5, while recruitment, divided by stand density,
was multiplied by 3.9±2 under RCP4.5 and 5.7±4
under RCP8.5. For the baseline scenario, the turnover
(calculated as the average ofmortality and recruitment
rates) was found to equal 1.1±0.05% while for the
RCP 4.5 and 8.5, it equalled 4.7±3% and 7.1±5%
respectively. Considering the contribution of each
variable to each dynamic process (figure 5), projected
changes of growth appear to bemainly driven by stand
basal area and sunshine duration under RCP4.5 and
by temperature under RCP 8.5. Projected changes of
recruitment appear to be mainly driven by stand basal
area and stand density, while projected changes of
mortality appear to be driven by temperature and, to a
lesser extent, by total runoff.

Climate change significantly impacted the stand
density as well as the structural characteristics of the
forest: a thinning phenomenon was observed with
stand density falling from 588±25ha−1 to
473±48ha−1 under RCP4.5 and to 474±81ha−1

under RCP8.5, paralleled with an increase of the

quadratic diameter from 31±1 cm to approximately
33±3 cm under RCP4.5 and 37±4 cm under
RCP8.5.

The impacts of climate change differed from one
guild to another. It was found to favour P over SB (no
significant effect on NPLD). The proportion of SB fell
from 62±0.5% to 56±4% under RCP4.5 and to
55±5% under RCP8.5, while the proportion of P

increased from 10±0.4% to 16±5%under RCP4.5
and to 17±5% under RCP8.5. Meanwhile, the pro-
portion of NPLD remained around 26%. P turnover
rose from 2.3±0.1% for the baseline scenario, to
6.8±3% under RCP4.5 and 8.2±5% under
RCP8.5. NPLD and SB turnover shared the same pat-
tern of increased turnover: from 0.78±0.03% to
3.7±2% and 7.1±5% (NPLD species); from
1±0.04% to 3.8±2% and 7.2±5% (SB species).
Dynamic processes appeared to be driven by the same
climate variables at the guild-level than at the stand-
level (figure S3, same plotting method as in figure 5).
NPLD and SB dynamic processes appeared to be driven
by a larger number of climate variables than P dynamic
processes, suggesting a higher sensitivity of SB and
NPLD to climate variables.

Forest dynamics acceleration, albeit with much
more variability under RCP8.5 compared to RCP4.5,
was a general trend projected for all processes and all
meta-groups (figure 4), with the sole exception of
recruitment for meta-group1 that decreased with
time. The magnitude of increase varied greatly from
one meta-group to the other leading to changes in the

Figure 5.Trivariate representation of the contribution of explanatory variables, except tree variablesDBH and log-DBH, to the change
of growth,mortality and recruitment over time, for RCP4.5 and8.5. Segments represent the variability (standard errors) across the
different GCMversions. A value of 1means that the projected contribution of the variable is perfectly correlated to the projection of
the dynamic process based on all the explanatory variables while a null contributionmeans that the variable does not contribute to the
projection of the dynamic process.
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composition of the forest. The natural thinning effect
projected at the whole-stand level mainly affected the
most abundant meta-groups in the control stands,
dominated by SB—the relative proportion of meta-
groups 1, 6 and 7 fell from 22±7.1%, 26±8.2%,
23±7.2% in the control stands to 19±5.9%,
21±6.6%, 20±6.5% under RCP8.5—and favoured
meta-group 4 dominated by long-lived P, whose rela-
tive proportion doubled from 7±2.1% to 14±
4.6%, andmeta-groups dominated byNPLD—the rela-
tive proportion of meta-groups 2 and 3 rose from
4±1.2%and 6±1.9% to 6±1.8%and9±2.7%.

The climate drivers of dynamic processes were
variable across meta-groups (figure S4 and S5, same
plotting method as in figure 5). Under RCP4.5,
growth was driven by duration of sunshine for all
meta-groups except 9. Under RCP8.5, growth was
driven by temperature for all SB- and NPLD-domi-
nated meta-groups, but no driver was found for the
growth of P-dominated meta-groups4 and9. For
mortality, the temperature was the most relevant vari-
able for all meta-groups and scenarios. Under
RCP4.5, recruitment was driven by duration of sun-
shine for all meta-groups, by temperature for SB-
dominated groups and also by total runoff for meta-
group9. Under RCP8.5, temperature was found rele-
vant for the recruitment of P- and SB-dominated
meta-groups.

4.Discussion

We used MIMM, a method allowing the simultaneous
clustering of species into groups according to dynamic
processes (growth, mortality and recruitment) and the
identification of group-specific explanatory climate
and structure variables. We projected the dynamics of
M’Baïki forest stands over the 21st century under a
constant climate scenario and under two scenarios of
climate change, RCP4.5 and8.5. We showed that
climate change would lead to a sharp acceleration of
forest dynamics, with an increase of growth, mortality
and recruitment, leading to changes in forest structure
and composition, namely a natural thinning effect
with fewer but larger trees, and an increase in the
relative proportion of pioneers at the detriment of
shade-bearers.

4.1. Climate changewould accelerate the dynamics
of tropical forests
The simultaneous increase of growth, mortality and
recruitment, as well as basal area and aboveground
biomass, is consistent with historical observations in
theM’Baïki forests (Gourlet-Fleury et al 2013) and has
already been well documented at a pantropical scale
(Malhi et al 2014). Our projections are also consistent
with projections from pantropical studies (Lewis et al
2015) andCentral African studies (Ludwig et al 2013).

Our simulations projected a slight increase of car-
bon biomass. This result is also consistent with pre-
vious projections in tropical forests which suggested
that climate change induces a shift from low-biomass
forests to high-biomass forests (Kim et al 2017). The
increase of carbon biomass projected in our baseline
scenario, without climate change, is consistent with
observations of forest ageing. It can be explained by a
recovery from past human-induced disturbance
(Morin-Rivat et al 2014).

4.2. Climate changewould affect forest composition
by favouring long-lived pioneers
The magnitude of the projected changes in dynamics
varies from one group of species to another and this
differential response leads to a change in the relative
species composition of forest stands, resulting in an
increase of the relative proportion of pioneers, at the
detriment of shade-bearers. In particular, we projected
a rise of long-lived pioneers (meta-group 4) at the
detriment of shade-bearers (meta-groups 1, 6 and 7).
Compared to shade-bearers, pioneers have higher
light requirements, faster growth and are more
disturbance-adapted. Some studies have already
reported shifts in tree composition favouring fast-
growing species over slow-growing ones (Wright 2005)
and have hypothesised a response to climate change.
The expected higher dominance of pioneers may also
raise questions about the future capacity of Central
African forests to cope with droughts. Indeed,
although pioneers are mostly deciduous and therefore
well adapted to seasonal drought, the increase in their
dominance may have a negative effect on the global
ecosystem resistance to water stress because pioneers
that allocate their resources to fast growth are less
resistant towater stress (Aubry-Kientz et al 2015).

4.3. Climate drivers and particularly temperature
have significant effects on the dynamic processes
Projected growth appeared to be mainly driven by
stand basal area and sunshine duration under RCP4.5
and by temperature under RCP8.5. Projected recruit-
ment of forests is found to be mainly driven by stand
basal area and stand density, while projected mortality
appeared to be driven by temperature and, to a lesser
extent, by total runoff. These results highlight the
sensitivity of forests to climate (Anderson-Teixeira
et al 2013) with sunshine duration (a proxy of the
energy reaching the forest system), water availability
and temperature as the main drivers. The positive
influence of sunshine duration on growth has already
been stressed by Dong et al (2012). The influence of
total runoff as a proxy for water availability, is in line
with other studies showing the importance of drought
in treemortality (Phillips et al 2010, eg).

The positive correlation between mortality and
temperature is consistent with observations from field
studies (Clark et al 2010). However the positive
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correlation between growth and temperature contra-
dicts most of the results from the Amazon (Aubry-
Kientz et al 2015). The temperature-sensitivity of
growth observed in Amazon forests may not be valid
in African forests, as the latter are presumably more
resilient to climate change thanAmazon forests (Malhi
et al 2014). This contradiction could also be resolved
considering the nonlinearity of relationships between
temperature and photosynthesis (Hüve et al 2011):
tropical tree species may be near a high temperature
threshold that, if exceeded, will greatly reduce growth
(Doughty and Goulden 2008). Amazon forests would
already have crossed this threshold whereas Central
African forests may still be below it. In this case, our
projections might not have captured this threshold
effect.

4.4.Meta-groups sharpen differences in species
response to climate change that are less evidentwith
guilds
The elaboration of optimal species aggregation techni-
ques formodelling the dynamics of species-rich ecosys-
tems remains an active research area (Kazmierczak et al
2014). The comparison of several climate calibrations
shows a great similarity in the way species are grouped,
making it possible to identify meaningful ecological
meta-groups. The identified meta-groups differ in
many ways from Hawthorne (1995)ʼs guilds: species
with different dynamic profiles can be distinguished
within the same guild, notably among pioneers, while
other species are grouped together although they are
considered to belong to distinct guilds, notably SB and
NPLD.Compared to exogenous guilds, ourmeta-groups
have the advantage to be an endogenous result from
the model and to reflect the species-specific dynamic
responses to climate variables in a more accurate way
than guilds. More generally, in the continuation of the
work of Gourlet-Fleury et al (2005), Picard et al (2010)
and Mortier et al (2015), our results show the value of
using dynamics data-driven classifications rather than
classifications based on ecological knowledge to simu-
late long-term forest dynamics.

To refine the grouping of species based on
their response to climate change, further develop-
ments can be considered, for example through the
ongoing CMIP6 (Eyring et al 2016) and advances in
the use of extended matrix of GCM-RCM experi-
ments (Wilcke and Bärring 2016), or through the
incorporation of ecophysiological processes (Feng
et al 2018), especially to deal with the effects of
increased atmospheric CO2. These would offer new
opportunities to enhance the future projections of
climate change and to improve the understanding of
its impact on tropical forest dynamics (Malhi et al
2014).
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