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ABSTRACT 

 

Nobody understands quantum mechanics, said Richard Feynman. So, 

this paper will begins by a step by step presentation of the second order 

hyperincursive discrete harmonic oscillator that bifurcates to two incursive 

discrete oscillators with the conservation of a constant of motion. Then, we 

extend this formalism to the hyperincursive discrete Klein-Gordon 

equation bifurcates to the Majorana real 4-spinors and to the Dirac complex 

4-spinors. Naturally, the hyperincursive discrete equations defines the 

                                                           
* Corresponding Author’s Email: Daniel.Dubois@uliege.be. 

Complimentary Contributor Copy



Daniel M. Dubois 

 

104 

relativistic quantum mechanics. When the time and space intervals of the 

discrete systems tend to zero, all these systems tend to 4 first order 

differential equations, representing spinors. In the Dirac generic equation, 

one discovers the Pauli spin matrices. The Pauli matrices X, Y, Z, are used 

as quantum gates for which the square are equal to the unit matrix I. The 

Pauli X-gate acts on a single qubit and is the quantum equivalent of the 

NOT gate for the classical computer. The square root of NOT defines also 

a quantum gate. More interesting is the Hadamard matrix that is the 

normalized sum of the X and Z Pauli matrices. Indeed, with the addition of 

the Hadamard gate to the classical computations the full quantum 

computation power is obtained. 

 

Keywords: quantum computing, Majorana real spinors, Dirac complex 

spinors, hyperincursive discrete equations, incursive discrete equations 

 

 

1. INTRODUCTION 

 

This chapter deals with the continuous and discrete equations of the 

Harmonic Oscillator, and the Relativistic Quantum Majorana and Dirac 

equations. 

We begin in section 2 with the presentation step by step of the two 

incursive discrete harmonic oscillator following my fundamental paper 

(Dubois, 1995) up-dated in my recent paper (Dubois, 2019f). I define a 

generalized forward-backward discrete derivative, depending on a weight 

with 3 values, applied to the time-dependent position and velocity of the 

harmonic oscillator. I deduce the first and the second incursive discrete 

harmonic oscillators, and the hyperincursive harmonic oscillator. Then I 

obtain what I called “the second order hyperincursive discrete harmonic 

oscillator” depending only on the time-dependent position. 

The section 3 introduces the two dimensionless incursive discrete 

harmonic oscillators. Then I present the analytical synchronous solutions of 

these incursive discrete harmonic oscillators that are related to their 

constants of motion (Dubois, 2019f).  

The section 4 deals with a rotation on the position and velocity of the 

incursive discrete harmonic oscillators, which gives rise to recursive discrete 
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harmonic oscillators (Dubois, 2019c). This rotation matrix, with an angle of 

𝜋/4, defines the second order Hadamard matrix, which is a fundamental gate 

in quantum computer. The two recursive discrete harmonic oscillators are 

then transformed to differential equations for small value of the interval of 

time. In defining a complex vector, we obtain the complex harmonic 

oscillator, with the Pauli matrix 𝜎𝑦, which corresponds to the second Pauli 

quantum gate in quantum computer. Finally, we develop the chiral 

representation of this complex harmonic oscillator. With the unitary matrix 

U, the 2 recursive discrete harmonic oscillators are transformed to a complex 

recursive discrete harmonic oscillator. The same development was applied 

to the quantum Majorana equation (Dubois, 2019d).  

The hyperincursive discrete equations were applied to various quantum 

systems (Dubois, 2016, 2018). 

The section 5 deals with the bifurcation of the hyperincursive second 

order discrete Klein-Gordon equation to the discrete Majorana quantum 

relativistic equations and the real 4-spinors Majorana differential equations 

are obtained when the spacetime intervals tend to zero (Dubois, 2019a). 

Then we demonstrate, with an original method based on real 2-spinors 

matrices that the Majorana real 4-spinors equations bifurcate simply to the 

Dirac real 8-spinors equations, which are transformed to the original Dirac 

complex 4-spinors equations (Dubois, 2019b). We present the 4 complex 

hyperincursive discrete Dirac equations. Let us notice that the real 2-spinors 

matrices are related to the three Pauli gates defined in technology of 

quantum computer.  

The section 6 shows that the natural number of discrete wave functions 

of the hyperincursive second order discrete Klein-Gordon equation is equal 

to 16 discrete spacetime wave functions, instead of the classical 4 functions 

of Majorana and Dirac equations. My hyperincursive second order discrete 

Klein-Gordon equations are in agreement with the 16 wave functions of 

Dirac by Proca (Dubois, 2019b). Proca (1932) classified the 16 equations in 

4 groups of 4 functions. There are 4 fundamental equations and the other 

3x4 equations are similar to these 4 equations. But formally, only a theory 

with 16 solutions is the correct one, confirming the power of my 

hyperincursive second order discrete equations formalism.  
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Then the section 7 deals with the chiral representation of the Majorana 

equations in 2 components (Dubois, 2019d) with the same Hadamard matrix 

and Unitary matrix U used for the harmonic oscillator (Dubois, 2019c).  

Next the section 8 gives the solutions of the non-relativistic chiral 

Majorana equation compared to the solution of the non-relativistic quantum 

Dirac equation (Dubois, 2019d). 

Section 9 deals with the 2 coupled Majorana equations in one spatial 

dimension (1D), with the 3 Pauli matrices (Dubois, 2019e).  

Then, the section 10 gives a remarkable relation between the Majorana 

and the Dirac equations in 1D (the y component), with just the inversion of 

the Dirac matrices 𝛼𝑦 and 𝛽, based on the Pauli matrices 𝜎𝑦 and 𝜎0. 

Next, the section 11 deals with the relation between the solutions of the 

non-relativistic Majorana and Dirac equations, which is given by a 

transformation relation given, surprisingly, by an invariant function 

(Dubois, 2019e) depending on the Pauli matrix 𝑥.  

Finally, the section 12 deals with a survey of the reversible gates used 

in quantum computation. The quantum Pauli gates X, Y, Z, that operate on 

one-qubit, are given by 

 

X = 𝑥 = (
0 1
1 0

) , = 𝑦 = (
0 −i
i 0

) , and 𝑍 = 𝑧 = (
1 0
0 −1

) 

 

More interesting is the rotation matrix  

 

R1(θ) = (
sin(θ) cos(θ)

cos(θ) −sin(θ)
),  

 

that generates the Pauli X, Z gates and the Hadamard 𝐻2 gate: 

 

R1(0) = X , R1 (
π

2
) = Z , and R1(

π

4
) =

1

√2
(
+1 +1
+1 −1

) = 𝐻2 

 

with the addition of the reversible logic Toffoli gate to the Hadamard gate, 

the full quantum computation power of a quantum computer is obtained. 
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2. PRESENTATION STEP BY STEP OF THE TWO INCURSIVE 

DISCRETE HARMONIC OSCILLATORS 

 

The harmonic oscillator can be represented by the two ordinary 

differential equations: 

 

d𝑥(𝑡) d𝑡⁄ =  𝑣(𝑡) and d𝑣(𝑡) d𝑡⁄ =  − 𝜔2 𝑥(𝑡) (2.1-a-b) 

 

where x(𝑡) is the position and v(𝑡) the velocity as functions of the time 𝑡, 

and the pulsation 𝜔 is related to the spring constant 𝑘 and the mass 𝑚 by 

𝜔2 = 𝑘/𝑚. The solution is given by  

 

𝑥(𝑡) = x(0)cos(𝜔𝑡) + (𝑣(0)/𝜔) sin(𝜔𝑡),  

 

𝑣(𝑡) = − 𝜔𝑥(0) sin(𝜔𝑡) + 𝑣(0) cos(𝜔𝑡)  (2.1-c-d) 

 

with the initial conditions 𝑥(0) and 𝑣(0). he period of oscillations is given 

by 𝑇 = 2𝜋/𝜔. The energy 𝑒(𝑡) of the harmonic oscillator is constant and is 

given by 

 

𝑒(𝑡) =  𝑘 𝑥2(𝑡) 2⁄ +  𝑚 𝑣2(𝑡) /2 = 𝑘 𝑥2(0) 2⁄ +  𝑚 𝑣2(0) /2 =

 𝑒(0)  =  𝑒0 (2.1-e) 

 

In the discrete form, there are the discrete current time t and the interval 

of time ∆t = h. The discrete time is defined as tk = t0 + kh, k =

0,1,2,… where 𝑡0 is the initial value of the time and 𝑘 is the counter of the 

number of intervals of time ℎ. The discrete position and velocity variables 

are defined as x(k) =  x(tk) and v(k) =  v(tk).  

In my paper (Dubois, 1995), up-dated in my recent paper (Dubois, 

2019f), I defined a generalized forward-backward discrete derivative 

 

D𝑤 = 𝑤 Df  +  (1 − 𝑤) Db (2.2) 
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where 𝑤 is a weight taking the values between 0 and 1, and where the 

discrete forward and backward derivatives on a function f are defined by 

 

Df(f)  =  ∆
+f / ∆t =  ( f(k + 1) −  f(k) ) / h,  

Db(f) =  ∆
−f / ∆t =  ( f(k) −  f(k − 1) ) / h  

 

The generalized incursive discrete harmonic oscillator is given by 

(Dubois, 1995) as:  

 

(1 − 𝑤) x(k + 1) + (2𝑤 − 1) x(k) − 𝑤 x(k − 1) = h v(k)  

 

𝑤 v(k + 1) + (1 − 2𝑤) v(k) + (𝑤 − 1) v(k − 1) = − h ω2x(k)  

 (2.3-a-b) 

 

When 𝑤 = 0, D0 = Db, this gives the first incursive equations: 

 

x(k + 1) − x(k) = h v(k)  

 

v(k) − v(k − 1) = − h ω2x(k) (2.4-a-b) 

 

When 𝑤 = 1, D1 = Df, this gives the second incursive equations: 

 

x(k) − x(k − 1) = h v(k)  

 

v(k + 1) − v(k) = − h ω2x(k) (2.5-a-b) 

 

When 𝑤 = 1/2, D1/2 = Ds = [Df  + Db]/2, this gives the 

hyperincursive equations:  

 

x(k + 1) − x(k − 1) = + 2h v(k)  

v(k + 1) − v(k − 1) = − 2h ω2x(k) (2.6-a-b) 
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where Ds(f) = D1 2⁄ (f) = [ f(k + 1) −  f(k − 1)] 2h⁄  defines a time-

symmetric derivative, Ds.  

In putting the velocity, v(k), of the first equation (2.6-a),  

 

v(k) = [x(k + 1) − x(k − 1)]/2h,  

 

to the second equation (2.6-b), one obtains 

 

x(k + 2) − 2x(k) + x(k − 2) = − 4h2ω2x(k)  (2.7-a) 

 

what I called “the second order hyperincursive discrete harmonic oscillator” 

(Dubois, 2019f), corresponding to the second order differential equation of 

the harmonic oscillator, from equations (2.1-a-b), given by: 

 

𝑑2𝑥(𝑡) 𝑑𝑡2 = −𝜔2𝑥(𝑡)⁄  (2.7-b) 

 

 

3. THE TWO DIMENSIONLESS INCURSIVE DISCRETE 

HARMONIC OSCILLATORS 

 

A series of papers were published on the incursive and hyperincursive 

discrete harmonic oscillator (Antippa and Dubois, 2004, 2006a, 2006b, 

2007, 2008a, 2008b, 2010a, 2010b, 2010c).  

For the discrete harmonic oscillator, let us use the dimensionless 

variables, X and V, for the variables, x and v, as follows (Antippa and 

Dubois, 2010c) : X(k)  =  (𝑘/2)1/2 x(k), V(k)  =  (𝑚/2)1/2 v(k),  

with the dimensionless time, 𝜏 = 𝜔𝑡, where the pulsation is given by 𝜔 =

(𝑘/𝑚)1/2 and with the dimensionless interval of time given by ∆𝜏 = 𝜔 ∆𝑡 =

𝜔 h = H.  

So, the equations (2.4-a-b) and (2.5-a-b) of the two incursive discrete 

harmonic oscillators are given respectively by the following two 

dimensionless incursive discrete equations  
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X1(k + 1) = X1(k) + HV1(k) (3.1-a) 

 

V1(k + 1) = V1(k ) − HX1(k + 1) (3.1-b) 

 

V2(k + 1) = V2(k) − HX2(k) (3.2-a) 

 

X2(k + 1) =  X2(k) + HV2(k + 1) (3.2-b) 

 

and the equations (2.6-a-b) of the hyperincursive discrete harmonic 

oscillator are given by the following dimensionless hyperincursive discrete 

equation 

 

X(k + 1) = X(k − 1) + 2HV(k) (3.3-a) 

 

V(k + 1) = V(k − 1) − 2HX(k) (3.3-b) 

 

Let us recall that this hyperincursive discrete harmonic oscillator is a 

recursive computing system that is separable into the two incursive discrete 

harmonic oscillators (Dubois, 2019f). 

It was demonstrated (Dubois, 2019f) that the following expression  

 

K1(k) = X1(k)X1(k + 1) + V1(k)V1(k) = X1
2(k) + V1

2(k) +

HX1(k)V1(k)  (3.4) 

 

is a constant of motion of the first incursive equations (3.1-a-b), and that the 

following expression  

 

K2(k) = X2(k)X2(k) + V2(k + 1)V2(k) = X2
2(k) + V2

2(k) −

HX2(k)V2(k)  (3.5) 

 

is a constant of motion of the second incursive equations (3.2-a-b).  
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These constants of motion differ with the inversion of the sign of the discrete 

time interval, 𝐻. The analytical synchronous solutions of the equations (3.1-

a-b) and (3.2-a-b) are given by 

 

X1(k) =  cos(2k/N) and V1(k) =  − sin((2k + 1)/N) (3.6-a-b) 

 

X2(k) =  cos((2k + 1)/N) and V2(k) =  − sin(2k/N) (3.6-c-d) 

 

where N is the number of iterations for a cycle of the oscillator, with the 

index of iterations 𝑘 = 0, 1, 2, 3, … , for which the interval of discrete time 

H depends of N, H = 2 sin(π/N). 

 

 

4. ROTATION OF THE INCURSIVE DISCRETE OSCILLATORS 

TO RECURSIVE DISCRETE OSCILLATORS 

 

In the recent paper (Dubois, 2019c), it was demonstrated that rotations 

on the position and velocity variables give rise to a pure quadratic expression 

of the constants of motion (3.4, 3.5), similarly to the constant of energy of 

the classical continuous harmonic oscillator. 

The constant of motion (3.4) is an expression of a quadratic curve 

 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (4.1) 

 

with A = 1, B = H, C = 1,D = 0, E = 0, F = −K1, x =  X1(k), y =  V1(k)  
 

The discriminant, ∆ = 𝐵2 − 4𝐴𝐶= INV, is an invariant under rotations.  

The discriminant of the constant of motion (3.4): 

 

 ∆= 𝐵2 − 4𝐴𝐶 = 𝐻2 − 4 < 0 ,  

 

defines an ellipse.  
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This inequality gives the maximum value of the discrete interval of time, 

𝐻 = 𝜔 ∆𝑡 < 2, with H = 2 sin(π N⁄ ).  

The equations for the rotation are given by 

 

X1(k) = cos(θ) u1(k) − sin(θ) v1(k) (4.2-a) 

 

V1(k) = sin(θ) u1(k) + cos(θ) v1(k) (4.2-b) 

 

or, in matrix form, the rotation matrix R1(θ) is given by 

 

(
V1(k)

X1(k)
) = R1(θ) (

u1(k)
v1(k)

) = (
sin(θ) cos(θ)

cos(θ) −sin(θ)
) (
u1(k)
v1(k)

) (4.3-a) 

 

with 𝐴 = 𝐶, 𝜃 = 𝜋 4⁄ , so cos(𝜋 4⁄ ) = 2−1/2 = ρ, sin(𝜋 4⁄ ) = 2−1/2 = ρ.  

So the equations (4.2-a-b) of the rotation are transformed to  

 

X1(k) = (u1(k) − v1(k))/√2 and V1(k) = (u1(k) + v1(k))/√2 

 (4.2-c-d) 

 

or, in matrix form, the rotation matrix R1(𝜋 4⁄ ) = H2, is given by 

 

(
V1(k)

X1(k)
) = H2 (

u1(k)
v1(k)

) =
1

√2
(
+1 +1
+1 −1

)(
u1(k)
v1(k)

) (4.3-b) 

 

with the 2 × 2 Hadamard matrix 𝐻2, for which, 𝐻2𝐻2 = 𝐼2,  

 

H2 =
1

√2
(
+1 +1
+1 −1

), 

H2H2 =
1

2
(
+1 +1
+1 −1

)(
+1 +1
+1 −1

) = (
+1 +0
+0 +1

) = 𝐼2 = 1 

 

where 𝐼2 is the 2-Identity matrix. 

So, with equations (4.2-a-b), the constant of motion (3.4) becomes a 

pure quadratic form 
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u1
2(k) + v1

2(k) + H(u1
2(k) − v1

2(k))/2 = K1(k) = K1  (4.4-a) 

 

where u1(k) and v1(k) are defined by adding and subtracting the equations 

(4.2-c-d) 

u1(k) = (X1(k) + V1(k))/√2 and v1(k) = (V1(k) − X1(k))/√2,  

or, in matrix form,  

 

(
u1(k)

v1(k)
) = H2 (

V1(k)

X1(k)
) =

1

√2
(
+1 +1
+1 −1

)(
V1(k)

X1(k)
) (4.3-c) 

 

Now let us make the rotation to the first incursive oscillator (3.1-a-b) 

 

(u1(k + 1) − v1(k + 1)) = (u1(k) − v1(k)) +  H(u1(k) + v1(k)) 

(u1(k + 1) + v1(k + 1)) = (u1(k) + v1(k)) −  H(u1(k) − v1(k)) −

H2(u1(k) + v1(k))   

 

In adding and subtracting these two equations, the first incursive discrete 

oscillator becomes:  

 

u1(k + 1) = u1(k) +  H v1(k) − H
2(u1(k) + v1(k))/2 (4.5-a) 

 

v1(k + 1) = v1(k) − H u1(k) − H
2(u1(k) + v1(k))/2 (4.5-b) 

 

defining the first recursive discrete oscillator. For the second incursion, the 

constant of motion (3.5) is obtained by inversion the sign of H: 

 

u2
2(k) + v2

2(k) − H(u2
2(k) − v2

2(k))/2 = K2(k) = K2 (4.4-b) 

 

that is also a pure quadratic function. Indeed, with a similar rotation  

 

X2(k) = sin(θ) u2(k) + cos(θ) v2(k) (4.6-a) 

 

V2(k) = cos(θ) u2(k) − sin(θ) v2(k) (4.6-b) 
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or, in matrix form, the rotation matrix R2(θ) is given by 

 

(
X2(k)

V2(k)
) = R2(θ) (

u2(k)
v2(k)

) = (
sin(θ) cos(θ)

cos(θ) −sin(θ)
) (
u2(k)
v2(k)

) (4.7-a) 

 

For 𝜃 = 𝜋 4⁄ , so cos(𝜋 4⁄ ) = 2−1/2 = ρ and sin(𝜋 4⁄ ) = 2−1/2 = ρ 

 

X2(k) = (u2(k) + v2(k))√2 and V2(k) = (u2(k) − v2(k))/√2  

 (4.6-c-d) 

 

or, in matrix form the rotation R2(𝜋 4⁄ ) = H2 is given by 

 

(
X2(k)

V2(k)
) = H2 (

u2(k)
v2(k)

) =
1

√2
(
+1 +1
+1 −1

)(
u2(k)
v2(k)

) (4.7-b) 

 

with the Hadamard matrix. So, by adding and subtracting the equations (4.6-

c-d), we obtain  

 

u2(k) = (X2(k) + V2(k))/√2 and v2(k) = (X2(k) − V2(k))√2,  

 

or, in matrix form 

 

(
u2(k)
v2(k)

) = H2 (
X2(k)

V2(k)
) =

1

√2
(
+1 +1
+1 −1

)(
X2(k)

V2(k)
) (4.7-c) 

 

Now let us make the rotation to the second incursive oscillator (3.2-a-b) 

 

(𝑢2(k + 1) − v2(k + 1)) = (𝑢2(k) − 𝑣2(k)) − 𝐻(u2(k) + v2(k))  

(u2(k + 1) + v2(k + 1)) = (u2(k) + v2(k)) + 𝐻(u2(k) − v2(k)) −

H2(u2(k) + v2(k))  

 

and the sum and the difference of which give the second recursive discrete 

oscillator 
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u2(k + 1) = u2(k) − H v2(k) − H
2(u2(k) + v2(k))/2 (4.8-a) 

 

v2(k + 1) = v2(k) + H u2(k) − H
2(u2(k) + v2(k))/2  (4.8-b) 

 

These equations are the same as the equations of the first oscillator by 

inversion of the sign of H.  

The discrete equations (4.5-a-b, 4.8-a-b) can be transformed to 

differential equations for small value of the interval of time  

 

∂tu1(t) = +ωv1(t) and ∂tv1(t) = −ωu1(t) (4.9-a-b) 

 

∂tu2(t) = −ωv2(t) and ∂tv2(t) = +ωu2(t) (4.10-a-b) 

 

where ∂tu(t) = ∂u(t)/ ∂t is the time derivative. 

And the conversion to the original variables, with the equations (4.3-c) 

and (4.7-c), are given by  

 

∂t(X1(t) + V1(t)) = ω(V1(t) − X1(t)), 

∂t(V1(t) − X1(t)) = −ω(X1(t) + V1(t)) 

 

∂t(X2(t) + V2(t)) = −ω(X2(t) − V2(t)), 

∂t(X2(t) − V2(t)) = ω(X2(t) + V2(t) 

 

then, the sum and the difference of these equations give 

 

∂tV1(t) = −ωX1(t) and ∂tX1(t)) = +ωV1(t) (4.11-a-b) 

 

∂tX2(t) = +ωV2(t) and ∂tV2(t) = −ωX2(t) (4.12-a-b) 

 

In defining the complex variables 

 

u(t) = (u1(t) − iu2(t))/√2 and v(t) = (v2(t) + iv1(t))/√2   

 (4.13-a-b) 
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the 4 real equations are reduced to 2 complex equations  

 

∂t(u1(t) − iu2(t)) = ω(v1(t) + iv2(t)) and 

 

∂t(v2(t) + iv1(t)) = ω(u2(t) − iu1(t)), or 

 

∂tu(t) = +iωv
∗(t) and ∂tv(t) = −iωu

∗(t) (4.14-a-b) 

 

where the star sign corresponds to the complex conjugate 

 

u∗(t) = (u1(t) + iu2(t))/√2 and v∗(t) = (v2(t) − iv1(t))/√2 

 

We then obtain the second time derivative of the complex harmonic 

oscillator 

 

∂t
2u(t) = −ω2u(t) and ∂t

2v(t) = −ω2v(t) (4.15-a-b) 

 

In defining  

 

w(t) = (
u(t)
v(t)

) (4.16) 

 

we obtain, with the Pauli matrix  

 

σy = (
0 −i
+i 0

),  

 

the two equations 

 

∂tw(t) = −ωσyw
∗(t) and ∂tw

∗(t) = +ωσyw(t) (4.17-a-b) 

 

and the second time derivative is given by 

 

 

Complimentary Contributor Copy



Computing Hyperincursive Discrete … 

 

117 

∂t
2w(t) = −ω2w(t) (4.17-c) 

 

the solution of which being 

 

w(t) = cos(ωt) w(0) − sin(ωt) 𝜎𝑦 w
∗(0) (4.17-d) 

 

In defining a unitary matrix U = UR + iUI, we can write the 

transformations of the position and velocity of the discrete harmonic 

oscillator as follows 

 

𝑈𝑅 (

V1
X2
V2
X1

) =
1

2
(

+1 0
0 +1

0 +1
−1 0

0 −1
+1 0

+1 0
0 +1

)(

V1
X2
V2
X1

) =
1

√2
(

+X1 + V1
+X2 − V2
−X2 + V2
+X1 + V1

) =

1

√2
(

+u1
+v2
−v2
+u1

) = 𝑊𝑅 (4.18-a) 

 

UI(

V1
X2
V2
X1

) =
1

2
(

0 −1
+1 0

−1 0
0 −1

+1 0
0 +1

0 −1
+1 0

)(

V1
X2
V2
X1

) =
1

√2
(

−X2 − V2
−X1 + V1
−X1 + V1
+X2 + V2

) =

1

√2
(

−u2
+v1
+v1
+u2

) = 𝑊𝐼 (4.18-b) 

 

The chiral representation is related to the unitary matrix U 

 

U = UR + iUI =
1

2
(
σ0 + σy −i(σ0 − σy)

i(σ0 − σy) σ0 + σy
) (4.19) 

 

with the property UU∗ = U∗U = 1.  

So, we obtain the complex chiral representation  
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U(

V1
X2
V2
X1

) =
1

2
(

+1 −i
+i +1

−i +1
−1 −i

+i −1
+1 +i

+1 −i
+i +1

)(

V1
X2
V2
X1

) =
1

√2
(

+u1 − iu2
+v2 − iv1
−v2 − iv1
+u1 + iu2

) = (

+u
+v
−v∗

+u∗

) = 𝑊

 (4.18-c) 

where we define the general function 𝑊 separated in the left wL and right 

wR chiral functions 

 

𝑊 = (
wL
wR
) = (

w
−𝑖𝜎𝑦w 

∗) (4.20-a)  

 

wL = w = (
+u
+v
) and wR = −𝑖𝜎𝑦w 

∗ = (
−v∗

+u∗
) (4.20-b-c) 

 

The analytical solutions of the first incursive discrete equations are 

given by  

 

X1(k) =  cos(2k/N) and V1(k) =  − sin((2k + 1)/N) (4.21-a-b) 

 

so, with the relations 

 

u1(k) = (X1(k) + V1(k))/√2 and v1(k) = (V1(k) − X1(k))/√2 

 (4.22-a-b) 

 

the functions u1(k) and v1(k) become 

 

u1(k) = [+cos(2k N⁄ ) − sin((2k + 1) N⁄ )] √2⁄   

= +√2 cos(π 4⁄ + π 2N⁄ ) sin(π 4⁄ − 2k N⁄ − π 2N⁄ ) (4.23-a) 

 

v1(k) = [−sin((2k + 1) N⁄ ) − cos(2k N⁄ )] √2⁄   

= −√2 sin  (π 4⁄ + π 2N⁄ ) cos(π 4⁄ − 2k N⁄ − π 2N⁄ ) (4.23-b) 

 

and the analytical solutions of the second incursive discrete equations are 

given by  
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X2(k) =  cos((2k + 1)/N) and V2(k) =  − sin(2k/N) (4.21-c-d) 

 

so, with the relations 

 

u2(k) = (X2(k) + V2(k))/√2 and v2(k) = (X2(k) − V2(k))/√2 

 (4.22-c-d) 

 

the functions u2(k) and v2(k) become 

 

u2(k) = [cos((2k + 1) N⁄ ) − sin(2k N⁄ )] √2⁄   

 

= +√2 cos(π 4⁄ − π 2N⁄ )sin(𝜋 4⁄ − 2k N⁄ − π 2N⁄ ) (4.23-c) 

 

v2(k) = [cos((2k + 1) N⁄ ) + sin(2k N⁄ )] √2⁄   

 

= +√2 sin(π 4⁄ − π 2N⁄ ) cos (π 4⁄ − 2k N⁄ − π 2N⁄ ) (4.23-d) 

 

Finally, with 

 

u(k) = u1(k) − iu2(k) and v(k) = v2(k) + iv1(k) (4.24-a-b) 

 

the discrete recursive harmonic oscillators are written as follows 

 

u1(k + 1) − iu2(k + 1) =  

u1(k) − iu2(k) +  H (v1(k) + i v2(k)) − H
2(u1(k) − iu2(k) +

v1(k) − iv2(k))/2 (4.25-a) 

 

v2(k + 1) + iv1(k + 1) =  

v2(k) + iv1(k) + H (u2(k) − iu1(k)) − H
2(u2(k) + iu1(k) +

v2(k) + iv1(k))/2 (4.25-b) 

 

So we obtain the complex discrete recursive harmonic oscillator 
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u(k + 1) = u(k) +  iHv∗(k) + iH2(iu(k) + v(k))/2 (4.26-a) 

 

v(k + 1) = v(k) − iHu∗(k) − H2(iu(k) + v(k))/2 (4.26-b) 

 

In conclusion, we have demonstrated the transformation, by rotation 

with the Hadamard and unitary matrices, of the incursive discrete harmonic 

oscillators to recursive discrete harmonic oscillators. The same rotation will 

be applied to the Majorana equation (Dubois, 2019d). 

 

 

5. THE HYPERINCURSIVE DISCRETE KLEIN-GORDON 

EQUATION BIFURCATES TO THE MAJORANA AND DIRAC 

RELATIVISTIC QUANTUM EQUATIONS 

 

The Klein-Gordon equation (Oskar Klein, 1926, Walter Gordon, 1926) 

of the function 𝜑 = 𝜑(𝐫, t)in three spatial dimensions 𝐫 = (x, y, z) and time 

t is given by  

 

− ħ2 ∂t
2𝜑(𝐫, t) =  − ħ2 𝑐2∇2𝜑(𝐫, t) + m2c4𝜑(𝐫, t) (5.1) 

 

where 𝜕𝜇𝜑 = 𝜕𝜑/𝜕𝜇, or, in the explicit form of the nabla operator ∇,  

 

− ħ2 ∂t
2𝜑(𝐫, t) = − ħ2 𝑐2 ∂x

2𝜑(𝐫, t) −  ħ2 𝑐2 ∂y
2𝜑(𝐫, t) −

 ħ2 𝑐2 ∂z
2𝜑(𝐫, t) + m2c4φ (5.2) 

 

where 𝜕𝜇
2𝜑 = 𝜕2𝜑/𝜕𝜇2, ħ is the constant of Plank, 𝑐 is the speed of light, 

and m the mass. From the Klein-Gordon equation, the relativistic quantum 

Dirac and Majorana equations can be deduced (Dirac, 1928, Majorana, 

1937). 

As we will consider the discrete Klein-Gordon equation, we make the 

following usual change of variables 
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𝑞(𝐫, t)  =  𝜑(𝐫, t) 



𝑎 = 𝜔 = 𝑚𝑐2/ħ (5.4) 

 

where  is a frequency, so the Klein-Gordon equation (5.2) becomes 

 

𝜕2q(𝐫, t)/ ∂t2 = +𝑐2 ∂2q(𝐫, t)/ ∂𝑥2 + 𝑐2 ∂2q(𝐫, t)/ ∂𝑦2 +

 𝑐2 ∂2 q(𝐫, t)/ ∂𝑧2 − a2q(𝐫, t) (5.5) 

 

From the Klein-Gordon equation (5.5), the second order hyperincursive 

discrete Klein-Gordon equation (32, 35) is given by 

 

q(x, y, z, t + 2∆t) − 2q(x, y, z, t) + q(x, y, z, t − 2∆t) =  

+B2[q(x + 2∆x, y, z, t) − 2q(x, y, z, t) + q(x − 2∆x, y, z, t)]  

+C2[q(x, y + 2∆y, z, t) − 2q(x, y, z, t) + q(x, y − 2∆y, z, t)]  

+D2[q(x, y, z + 2∆z, t) − 2q(x, y, z, t) + q(x, y, z − 2∆z, t)] −

A2q(x, y, z, t)  (5.6) 

 

where the following parameters A, B, C, and, D,  

 

A = a (2∆t),B = c (2∆t)/(2∆x), C = c (2∆t)/(2∆y), 

       D = c (2∆t)/(2∆z) (5.7) 

 

depend on the discrete interval of time ∆t, and the discrete intervals of space, 

∆x, ∆y, ∆z, respectively. 

As usually made in computer science, let us now introduce the discrete 

time tk, and the discrete spaces xl, ym,zn, as follows 

 

tk = t0 + k∆t, k = 0,1,2,…, (5.8) 

 

where k is the integer time increment, and xl = x0 + l∆x, l = 0,1,2,…, ym =

y0 +m∆y,m = 0,1,2, …, zn = z0 + n∆z, n = 0,1,2,… (5.9) 

where l, m, n, are the integer space increments. 
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So, with these time and space increments, the second order 

hyperincursive discrete Klein-Gordon equation (5.6) becomes 

 

q(l,m, n, k + 2) − 2q(l,m, n, k) + q(l,m, n, k − 2) =  

+B2[q(l + 2,m, n, k) − 2q(l,m, n, k) + q(l − 2,m, n, k)]  

+C2[q(l,m + 2, n, k) − 2q(l,m, n, k) + q(l,m − 2, n, k)]  

+D2[q(l,m, n + 2, k) − 2q(l,m, n, k) + q(l,m, n − 2, k)] −

A2q(l,m, n, k)  (5.10) 

 

This equation without spatial components, corresponding to a particle at 

rest, is similar to the harmonic oscillator.  

As presented in my recent paper (Dubois, 2019a), where the functions 

q̃j = q̃j(x, y, z, t) =  q̃j(l,m, n, k), j = 1,2,3,4,  

define discrete Majorana functions, the 4 discrete hyperincursive equations 

of the functions q̃j, j = 1,2,3,4, are obtained as 

 

q̃1(l,m, n, k + 1) = q̃1(l,m, n, k − 1) + B̃[q̃4(l + 1,m, n, k) − q̃4(l −

1,m, n, k)] − C̃[q̃1(l,m + 1, n, k) − q̃1(l,m − 1, n, k)] + D̃[q̃3(l,m, n +

1, k) − q̃3(l,m, n − 1, k)] − Ãq̃4(l,m, n, k)  

q̃2(l,m, n, k + 1) = q̃2(l,m, n, k − 1) + B̃[q̃3(l + 1,m, n, k) − q̃3(l −

1,m, n, k)] − C̃[q̃2(l,m + 1, n, k) − q̃2(l,m − 1, n, k)] − D̃[q̃4(l,m, n +

1, k) − q̃4(l,m, n − 1, k)] + Ãq̃3(l,m, n, k)  

q̃3(l,m, n, k + 1) = q̃3(l,m, n, k − 1) + B̃[q̃2(l + 1,m, n, k) − q̃2(l −

1,m, n, k)] + C̃[q̃3(l,m + 1, n, k) − q̃3(l,m − 1, n, k)] + D̃[q̃1(l,m, n +

1, k) − q̃1(l,m, n − 1, k)] − Ãq̃2(l,m, n, k)  

q̃4(l,m, n, k + 1) = q̃4(l,m, n, k − 1) + B̃[q̃1(l + 1,m, n, k) − q̃1(l −

1,m, n, k)]  + C̃[q̃4(l,m + 1, n, k) − q̃4(l,m − 1, n, k)] −  

D̃[q̃2(l,m, n + 1, k) − q̃2(l,m, n − 1, k)]  + Ãq̃1(l,m, n, k) 

 (5-11-a-b-c-d) 

 

with  
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 Ã = A = a(2∆t), B̃ = B = c ∆t/∆x,  (5-12-a-b) 

 

 C̃ = C = c∆t ∆y⁄ , D̃ = D = c ∆t/∆z (5-12-c-d) 

 

where ∆𝑡 and ∆x, ∆y, ∆z are the discrete intervals of time and space 

respectively.  

From the discrete equations, when the spacetime intervals tend to zero, 

we obtained the following 4 first order partial differential equations (Dubois, 

2019a)  

 

+𝜕Ψ̃1 𝜕𝑡 = +𝑐 𝜕Ψ̃4 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̃1 𝜕𝑦⁄ + 𝑐 𝜕Ψ̃3 𝜕𝑧⁄ − (𝑚𝑐2 ħ⁄ )Ψ̃4  

 

+𝜕Ψ̃2 𝜕𝑡 = +𝑐 𝜕Ψ̃3 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̃2 𝜕𝑦 − 𝑐 𝜕Ψ̃4 𝜕𝑧⁄⁄ + (𝑚𝑐2 ħ⁄ )Ψ̃3  

 

+𝜕Ψ̃3 𝜕𝑡 = +𝑐 𝜕Ψ̃2 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ̃3 𝜕𝑦⁄ + 𝑐 𝜕Ψ̃1 𝜕𝑧⁄ − (𝑚𝑐2 ħ⁄ )Ψ̃2  

 

+𝜕Ψ̃4 𝜕𝑡 = +𝑐 𝜕Ψ̃1 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ̃4 𝜕𝑦 − 𝑐 𝜕Ψ̃2 𝜕𝑧⁄⁄ + (𝑚𝑐2 ħ⁄ )Ψ̃1
 (5.13-a-b-c-d) 

 

which are identical to the original Majorana equations (Majorana, 1937), 

e.g., equations (4-a-b-c-d) in Pessa (Pessa, 2006).  

Recently, we demonstrated that Majorana 4-spinors equations bifurcate 

simply to the Dirac real 8-spinors equations (Dubois, 2019b). 

First, let us consider the inverse parity space, in inversing the sign of the 

space variables in the Majorana equations (5.13-a-b-c-d),  

 

+𝜕Ψ̃1 𝜕𝑡 = −𝑐 𝜕Ψ̃4 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ̃1 𝜕𝑦⁄ − 𝑐 𝜕Ψ̃3 𝜕𝑧⁄ − (𝑚𝑐2 ħ⁄ )Ψ̃4 

+𝜕Ψ̃2 𝜕𝑡 = −𝑐 𝜕Ψ̃3 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ̃2 𝜕𝑦 + 𝑐 𝜕Ψ̃4 𝜕𝑧⁄⁄ + (𝑚𝑐2 ħ⁄ )Ψ̃3  

+𝜕Ψ̃3 𝜕𝑡 = −𝑐 𝜕Ψ̃2 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̃3 𝜕𝑦⁄ − 𝑐 𝜕Ψ̃1 𝜕𝑧⁄ − (𝑚𝑐2 ħ⁄ )Ψ̃2 

+𝜕Ψ̃4 𝜕𝑡 = −𝑐 𝜕Ψ̃1 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̃4 𝜕𝑦 + 𝑐 𝜕Ψ̃2 𝜕𝑧⁄⁄ + (𝑚𝑐2 ħ⁄ )Ψ̃1
 (5.14-a-b-c-d) 

 

 

Complimentary Contributor Copy



Daniel M. Dubois 

 

124 

In defining the 2-spinors real functions,  

 

φa = (
Ψ̃1
Ψ̃2
) ,φb = (

Ψ̃3
Ψ̃4
), (5-15-a-b) 

 

the two equations (5.14-a-b) and (5.14-c-d) are transformed to the two 2-

spinors real equations  

 

+∂φa ∂t = −c 1 ∂φb ∂𝑥 + c0 ∂φa ∂𝑦⁄⁄⁄ − c3 ∂φb ∂𝑧⁄ +

(𝑚𝑐2 ħ⁄ )2φb  

 

+∂φb ∂t = −c1 ∂φa ∂𝑥 − c0 ∂φb ∂𝑦⁄⁄⁄ − c3 ∂φa ∂𝑧⁄ +

(𝑚𝑐2 ħ⁄ )
2
φa (5.16-a-b) 

 

where the real 2-spinors matrices 1,2,3, are defined by 

 

1 = (
0 1
1 0

), 2 = (
0 −1
1 0

), 3 = (
1 0
0 −1

),  (5.17-a-b-c) 

 

and 2-Identity 0 = (
1 0
0 1

) = I2 (5.17-d) 

 

With the inversion between 0 and 2, in introducing the tensor product 

by −2, the functions Ψ̃j  

 

Ψ̃j = (
Ψj,1
Ψj,2

) , 𝑗 = 1,2,3,4, (5.18) 

 

bifurcate to two functions 

 

−2 Ψj = −2  (
Ψj,1
Ψj,2

) = −(
0 −1
1 0

) (
Ψj,1
Ψj,2

) =  (
+Ψj,2
−Ψj,1

) , 𝑗 = 1,2,3,4 

 (5.19) 
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So the Majorana real 4-spinors equation bifurcates into the Dirac real 8-

spinors equations  

 

+𝜕Ψ1,1 𝜕𝑡 = −𝑐 𝜕Ψ4,1 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ4,2 𝜕𝑦⁄ − 𝑐 𝜕Ψ3,1 𝜕𝑧⁄ +

(𝑚𝑐2 ħ⁄ )Ψ1,2  

+𝜕Ψ2,1 𝜕𝑡 = −𝑐 𝜕Ψ3,1 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ3,2 𝜕𝑦 + 𝑐 𝜕Ψ4,1 𝜕𝑧⁄⁄ +

(𝑚𝑐2 ħ⁄ )Ψ2,2  

 

+𝜕Ψ3,1 𝜕𝑡 = −𝑐 𝜕Ψ2,1 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ2,2 𝜕𝑦⁄ − 𝑐 𝜕Ψ1,1 𝜕𝑧⁄ −

(𝑚𝑐2 ħ⁄ )Ψ3,2  

 

+𝜕Ψ4,1 𝜕𝑡 = −𝑐 𝜕Ψ1,1 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ1,2 𝜕𝑦 + 𝑐 𝜕Ψ2,1 𝜕𝑧⁄⁄ −

(𝑚𝑐2 ħ⁄ )Ψ4,2   

 (5.20-a-b-c-d) 

 

+𝜕Ψ1,2 𝜕𝑡 = −𝑐 𝜕Ψ4,2 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ4,1 𝜕𝑦⁄ − 𝑐 𝜕Ψ3,2 𝜕𝑧⁄ −

(𝑚𝑐2 ħ⁄ )Ψ1,1  

 

+𝜕Ψ2,2 𝜕𝑡 = −𝑐 𝜕Ψ3,2 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ3,1 𝜕𝑦 + 𝑐 𝜕Ψ4,2 𝜕𝑧⁄⁄ −

(𝑚𝑐2 ħ⁄ )Ψ2,1  

 

+𝜕Ψ3,2 𝜕𝑡 = −𝑐 𝜕Ψ2,2 𝜕𝑥⁄⁄ + 𝑐 𝜕Ψ2,1 𝜕𝑦⁄ − 𝑐 𝜕Ψ1,2 𝜕𝑧⁄ +

(𝑚𝑐2 ħ⁄ )Ψ3,1  

 

+𝜕Ψ4,2 𝜕𝑡 = −𝑐 𝜕Ψ1,2 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ1,1 𝜕𝑦 + 𝑐 𝜕Ψ2,2 𝜕𝑧⁄⁄ +

(𝑚𝑐2 ħ⁄ )Ψ4,1   

 (5.21-a-b-c-d) 

 

These 2 x 4 = 8 real first order partial differential equations represent 

real 8-spinors equations that are similar to the Dirac complex 4-spinors 

equations (Dirac, 1964).  

In defining the wave function  
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Ψj(𝑥, 𝑦, 𝑧, t) = Ψj = Ψj,1 + iΨj,2, j = 1,2,3,4,  (5.22) 

 

with the imaginary number i, we obtain the original Dirac equations (Dirac, 

1928): 

 

+𝜕Ψ1 𝜕𝑡 = −𝑐 𝜕Ψ4 𝜕𝑥⁄⁄ + i𝑐 𝜕Ψ4 𝜕𝑦⁄ − 𝑐 𝜕Ψ3 𝜕𝑧⁄ − i(𝑚𝑐2 ħ⁄ )Ψ1   

 

+𝜕Ψ2 𝜕𝑡 = −𝑐 𝜕Ψ3 𝜕𝑥⁄⁄ − i𝑐 𝜕Ψ3 𝜕𝑦 + 𝑐 𝜕Ψ4 𝜕𝑧⁄⁄ − i(𝑚𝑐2 ħ⁄ )Ψ2  

 

+𝜕Ψ3 𝜕𝑡 = −𝑐 𝜕Ψ2 𝜕𝑥⁄⁄ + i𝑐 𝜕Ψ2 𝜕𝑦⁄ − 𝑐 𝜕Ψ1 𝜕𝑧⁄ + i(𝑚𝑐2 ħ⁄ )Ψ3   

 

+𝜕Ψ4 𝜕𝑡 = −𝑐 𝜕Ψ1 𝜕𝑥⁄⁄ − i𝑐 𝜕Ψ1 𝜕𝑦 + 𝑐 𝜕Ψ2 𝜕𝑧⁄⁄ + i(𝑚𝑐2 ħ⁄ )Ψ4 

 (5.23-a-b-c-d) 

 

Let us define the discrete Dirac wave function  

 

Qj(l,m, n, k) = Qj = Qj,1 + i Qj,2 , j = 1,2,3,4, (5.24)

  

corresponding to the Dirac wave function (5.22).  

The 4 hyperincursive discrete Dirac equations of the discrete wave function 

are then given by 

 

Q1(l,m, n, k + 1) =  

Q1(l,m, n, k − 1) − B[Q4(l + 1,m, n, k) − Q4(l − 1,m, n, k)]  

+ iC[Q4(l,m + 1, n, k) − Q4(l,m − 1, n, k)]  

−D[Q3(l,m, n + 1, k) − Q3(l,m, n − 1, k)] −  i AQ1(l,m, n, k)   

 

Q2(l,m, n, k + 1) =   

Q2(l,m, n, k − 1) − B[Q3(l + 1,m, n, k) − Q3(l − 1,m, n, k)]  

−i C[Q3(l,m + 1, n, k) − Q3(l,m − 1, n, k)] 

+D[Q4(l,m, n + 1, k) − Q4(l,m, n − 1, k)] −  i AQ2(l,m, n, k)   

Q3(l,m, n, k + 1) =  

Q3(l,m, n, k − 1) − B[Q2(l + 1,m, n, k) − Q2(l − 1,m, n, k)]  
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+i C[Q2(l,m + 1, n, k) − Q2(l,m − 1, n, k)]  

− D[Q1(l,m, n + 1, k) − Q1(l,m, n − 1, k)] + i AQ3(l,m, n, k)   

 

Q4(l,m, n, k + 1) =  

Q4(l,m, n, k − 1) −  B[Q1(l + 1,m, n, k) − Q1(l − 1,m, n, k)]  

− i C[Q1(l,m + 1, n, k) − Q1(l,m − 1, n, k)]  

+D[q2(l,m, n + 1, k) − Q2(l,m, n − 1, k)] + i AQ4(l,m, n, k)   

 (5.25-a-b-c-d) 

 

with  

 

A = 2ω∆t, B = c ∆t/∆x, C = c ∆t ∆y⁄ , D = c ∆t/∆z (5.26) 

 

where ∆𝑡 and ∆x, ∆y, ∆z are the discrete intervals of time and space 

respectively. 

 

 

6. THE HYPERINCURSIVE DISCRETE KLEIN-GORDON 

EQUATION BIFURCATES TO THE 16 PROCA EQUATIONS 

 

Let us show that there are 16 complex functions associated to this second 

order hyperincursive discrete Klein-Gordon equation. This equation without 

spatial components, corresponding to a particle at rest, is similar to the 

harmonic oscillator. For a particle at rest, the Klein-Gordon equation (5.10), 

with the function q(t) depending only on the time variable, is given by  

 

𝜕2q(t)/ ∂t2 = − 𝑎2q(t) (6.1) 

 

with the frequency, 𝑎 = 𝜔 = 𝑚𝑐2 ħ⁄ , given by the equation (5.4).  

This equation (6.1) is formally similar to the equation of the harmonic 

oscillator for which q(t) would represent the position x(t), and 𝜕𝑞(𝑡)/𝜕𝑡 

would represent the velocity 𝑣(𝑡) = 𝜕𝑥(𝑡)/𝜕𝑡.  
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So, with only the temporal component, the second order hyperincursive 

discrete Klein-Gordon equation (5.10) becomes 

 

q(k + 2) − 2q(k) + q(k − 2) = −A2q(k) (6.2) 

 

that is similar to the second order hyperincursive discrete equation of the 

harmonic oscillator, as shown in section 2. This hyperincursive equation 

(6.2) is separable into a first discrete incursive oscillator depending on two 

functions defined by q1(k), q2(k), and a second incursive oscillator 

depending on two other functions defined by q3(k), q4(k), given by first 

order discrete equations.  

So the first incursive equations are given by: 

 

q1(2k) = q1(2k − 2) + Aq2(2k − 1)  

 

q2(2k + 1) = q2(2k − 1) − Aq1(2k) (6.3-a-b) 

 

where q1(2k) is defined of the even steps of the time, and q2(2k + 1) is 

defined on the odd steps of the time.  

And the second incursive equations are given by: 

 

q3(2k) = q3(2k − 2) − Aq4(2k − 1)  

 

q4(2k + 1) = q4(2k − 1) + Aq3(2k) (6.4-a-b) 

 

where q3(2k) is defined of the even steps of the time, and q4(2k + 1) is 

defined on the odd steps of the time.  

The second incursive system is the time reverse of the first incursive system 

in making the discrete time inversion T 

 

𝑻: ∆t →  − ∆t (6.5) 

 

which gives an oscillator and its anti-oscillator.  
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In defining the following 2 complex functions, where i is the imaginary 

number, 

 

𝑞13(2k) = q1(2k) + i q3(2k)   

 

𝑞24(2k + 1) = q2(2k + 1) − i q4(2k + 1)  (6.6-a-b) 

 

the 4 real incursive equations (6.3-a-b) and (6.4-a-b) are transformed to 2 

complex incursive equations  

 

𝑞13(2k) = 𝑞13(2k − 2) + A𝑞24(2k − 1)  

 

𝑞24(2k + 1) = 𝑞24(2k − 1) − A𝑞13(2k) (6.7-a-b) 

 

So the hyperincursive equation for a particle at rest shows a temporal 

bifurcation into an oscillatory equation and an anti-oscillatory equation.  

For a moving particle, the 3 discrete space-symmetric terms in equation 

(5.10) 

 

q(l + 2,m, n, k) − 2q(l,m, n, k) + q(l − 2,m, n, k)  

q(l,m + 2, n, k) − 2q(l,m, n, k) + q(l,m − 2, n, k)  

q(l,m, n + 2, k) − 2q(l,m, n, k) + q(l,m, n − 2, k)  

 

are similar to the discrete time-symmetric term 

 

q(l,m, n, k + 2) − 2q(l,m, n, k) + q(l,m, n, k − 2)  

 

The two complex functions bifurcate for even and odd steps of space x, 

giving 4 complex functions depending on 4 discrete incursive equations. 

These 4 complex functions bifurcate for even and odd steps of space y, 

giving 8 complex functions depending on 8 discrete incursive equations. 

Finally, these 8 complex functions bifurcate for even and odd steps of space 

z, giving 16 complex functions depending on 16 incursive discrete 

equations.  
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But if we consider the space variable as a set of the 3 space variables  

 

𝒓 = (𝑥, 𝑦, 𝑧) (6.8) 

 

the two complex functions bifurcate for even and odd steps of the space 

variable 𝒓 = (𝑥, 𝑦, 𝑧), giving 4 complex functions depending on 4 discrete 

incursive equations, which correspond to a discrete parity inversion 𝑷 

 

𝑷: ∆𝒓 → −∆𝒓 (6.9) 

 

In conclusion, with the discrete time inversion and the parity, we define 

a group of 4 incursive discrete equations with 4 functions. This is in 

agreement with the thesis of Proca. Indeed, as demonstrated by Proca (Proca, 

1930, 1932) in 1930 and 1932, the Klein-Gordon equation admits in the 

general case a total of 16 functions. Classically, for the well-known Dirac 

equation, there are 4 complex wave functions.  

Proca demonstrated that there are 4 fundamental equations of 4 wave 

functions for the Dirac equation 

 

𝜑𝑟,𝑠 𝑓𝑜𝑟 𝑟 = 1,2,3,4, 𝑎𝑛𝑑 𝑠 = 1 (6.10) 

 

and the other 3 x 4 other equations are similar to these 4 equations. 

Proca classified the 16 equations in 4 groups of 4 functions: 

 

1. 4 equations of the 4 functions 𝜑𝑟,𝑠 𝑓𝑜𝑟 𝑟 = 1,2,3,4, 𝑎𝑛𝑑 𝑠 = 1 

2. 4 equations of the 4 functions 𝜑𝑟,𝑠 𝑓𝑜𝑟 𝑟 = 1,2,3,4, 𝑎𝑛𝑑 𝑠 = 2 

3. 4 equations of the 4 functions 𝜑𝑟,𝑠 𝑓𝑜𝑟 𝑟 = 1,2,3,4, 𝑎𝑛𝑑 𝑠 = 3 

4. 4 equations of the 4 functions 𝜑𝑟,𝑠 𝑓𝑜𝑟 𝑟 = 1,2,3,4, 𝑎𝑛𝑑 𝑠 = 4 

 

In each group, the 4 equations depend on 4 functions which are not separable 

except in particular cases. 

In this chapter we restricted our analysis to the first group of 4 functions 

in studying the case of the Majorana and Dirac equations. 
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7. CHIRAL REPRESENTATION OF THE MAJORANA 

EQUATIONS IN 2 COMPONENTS 

 

In the preceding section 4, we have presented the rotation of the 

incursive discrete harmonic oscillators by the Hadamard matrix and unitary 

matrix U. The incursive discrete equations are transformed to recursive 

discrete equations, what is a remarkable result (Dubois, 2019c).  

The rotation of the relativistic quantum Majorana equations with the 

same Hadamard matrix and unitary matrix U, gives rise to the transformation 

of the Majorana equations in 2 components (Dubois, 2019d). 

Indeed, we will give the Chiral representation of Majorana equations 

from the unitary matrix, U = UR + iUI, 

 

U = UR + iUI =
1

2
(
σ0 + σy −i(σ0 − σy)

i(σ0 − σy) σ0 + σy
) (7.1) 

 

which can be defined with the Pauli matrix σy and with the unit matrix, 

σ0 = 𝐼2 = 1, with the property UU∗ = U∗U = 1. An excellent introduction 

to the properties of the unitary matrix is given by Palash (Palash, 2011).  

So the real and imaginary parts of this unitary matrix are applied to the 

Majorana real 4-spinors as follows  

 

𝑈𝑅Ψ̃ =
1

2
(

+1 0
0 +1

0 +1
−1 0

0 −1
+1 0

+1 0
0 +1

)

(

 
 

Ψ̃1
Ψ̃2
Ψ̃3
Ψ̃4)

 
 
=
1

2

(

 
 

+Ψ̃1 + Ψ̃4
+Ψ̃2 − Ψ̃3
−Ψ̃2 + Ψ̃3
+Ψ̃1 + Ψ̃4)

 
 
=

1

√2

(

 
 

+Ψ̌11
+Ψ̌21
−Ψ̌21
+Ψ̌11)

 
 

 

 (7.2-a) 

 

UIΨ̃ =
1

2
(

0 −1
+1 0

−1 0
0 −1

+1 0
0 +1

0 −1
+1 0

)

(

 
 

Ψ̃1
Ψ̃2
Ψ̃3
Ψ̃4)

 
 
=
1

2

(

 
 

−Ψ̃2 − Ψ̃3
+Ψ̃1 − Ψ̃4
+Ψ̃1 − Ψ̃4
+Ψ̃2 + Ψ̃3)

 
 
=

1

√2

(

 
 

−Ψ̌12
+Ψ̌22
+Ψ̌22
+Ψ̌12)

 
 

 

 (7.2-b) 
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So the application of the unitary matrix to the Majorana real 4-spinors 

is given by 

 

UΨ̃ =
1

2
(

+1 −i
+i +1

−i +1
−1 −i

+i −1
+1 +i

+1 −i
+i +1

)

(

 
 

Ψ̃1
Ψ̃2
Ψ̃3
Ψ̃1)

 
 
=

(

 
 

+Ψ̌11 − iΨ̌12
+Ψ̌21 + iΨ̌22
−Ψ̌21 + iΨ̌22
+Ψ̌11 + iΨ̌12)

 
 
=

(

 
 

Ψ̌1
Ψ̌2
Ψ̌3
Ψ̌4)

 
 
= Ψ̌ 

 (7.2-c) 

 

The general function Ψ̌ can be separated in the top left chiral function, 

Ψ̌L, and in the bottom right chiral function, Ψ̌R chiral function,  

 

Ψ̌ = (
Ψ̌L
Ψ̌R
), Ψ̌L = (

Ψ̌1
Ψ̌2
) and Ψ̌R = (

Ψ̌3
Ψ̌4
)  (7.4-a-b-c) 

 

and the bottom right function can be deduced directly from the top left 

function as follows 

 

Ψ̌R = −𝑖𝜎𝑦Ψ̌L
∗ = (

−Ψ̌2
∗

+Ψ̌1
∗) (7.5) 

 

with the rotation 2𝑥2 Hadamard matrix, 𝐻2,  

 

𝐻2 =
1

√2
(
+1 +1
+1 −1

) (7.6) 

 

let us transform the Majorana 2-spinors, as follow 

 

(
Ψ̌11
Ψ̌22

) = 𝐻2 (
Ψ̃1
Ψ̃4
) =

1

√2
(
Ψ̃1 + Ψ̃4
Ψ̃1 − Ψ̃4

)  

 

(
Ψ̌12
Ψ̌21

) = 𝐻2 (
Ψ̃2
Ψ̃3
) =

1

√2
(
Ψ̃2 + Ψ̃3
Ψ̃2 − Ψ̃3

) (7.7-a-b) 
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and let us apply these rotations to the Majorana equations as follow 

 

+𝜕Ψ̌11 𝜕𝑡 = +𝑐 𝜕Ψ̌11 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̌22 𝜕𝑦⁄ − 𝑐 𝜕Ψ̌21 𝜕𝑧⁄ +

(𝑚𝑐2 ħ⁄ )Ψ̌22  

+𝜕Ψ̌12 𝜕𝑡 = +𝑐 𝜕Ψ̌12 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̌21 𝜕𝑦 + 𝑐 𝜕Ψ̌22 𝜕𝑧⁄⁄ −

(𝑚𝑐2 ħ⁄ )Ψ̌21   

+𝜕Ψ̌21 𝜕𝑡 = −𝑐 𝜕Ψ̌21 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̌12 𝜕𝑦 − 𝑐 𝜕Ψ̌11 𝜕𝑧⁄⁄ +

(𝑚𝑐2 ħ⁄ )Ψ̌12  

+𝜕Ψ̌22 𝜕𝑡 = −𝑐 𝜕Ψ̌22 𝜕𝑥⁄⁄ − 𝑐 𝜕Ψ̌11 𝜕𝑦 + 𝑐 𝜕Ψ̌12 𝜕𝑧⁄⁄ −

(𝑚𝑐2 ħ⁄ )Ψ̌11  (7.8-a-b-c-d) 

 

Again with the Hadamard matrix, let us transform the 2-spinors (7.7-a-b) as 

follows 

 

(
Ψ̌4
Ψ̌1
) = 𝐻2 (

Ψ̌11
iΨ̌12

) =
1

√2
(
+Ψ̌11 + iΨ̌12
+Ψ̌11 − iΨ̌12

), 

 

(
Ψ̌2
Ψ̌3
) = 𝐻2 (

 iΨ̌22
Ψ̌21

) =
1

√2
(
+Ψ̌21 + iΨ̌22
−Ψ̌21 + iΨ̌22

) (7.9-a-b) 

 

which are the same transformations as in the unitary matrix (7.2-c).  

Let us give the partial differential equations of the 2 left chiral functions Ψ̌1 

and Ψ̌2, as 

 

 +𝜕Ψ̌1 𝜕𝑡 = +𝑐 𝜕Ψ̌1 𝜕𝑥⁄⁄ + i 𝑐 𝜕Ψ̌2 𝜕𝑦⁄ − 𝑐 𝜕Ψ̌2 𝜕𝑧⁄ + i (𝑚𝑐2 ħ⁄ )Ψ̌2
∗  

 +𝜕Ψ̌2 𝜕𝑡 = −𝑐 𝜕Ψ̌2 𝜕𝑥 − i 𝑐 𝜕Ψ̌1 𝜕𝑦 − 𝑐 𝜕Ψ̌1 𝜕𝑧⁄⁄ − i (𝑚𝑐2 ħ⁄ )Ψ̌1
∗⁄⁄  

 (7.10-a-b) 

 

Let us write the chiral left Majorana equation with the left chiral 

function, Ψ̌L (7.4-b): 

 

𝜕𝑡Ψ̌L = +c𝑧𝜕𝑥Ψ̌L − 𝑐𝑦𝜕𝑦Ψ̌L − 𝑐𝑥𝜕𝑧Ψ̌L − (𝑚𝑐
2 ħ⁄ )𝑦Ψ̌L

∗ (7.10-c) 
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The chiral right Majorana equation with the right chiral function, Ψ̌R 

(7.4-c), is easy to write. For a particle at rest, the left non-relativistic 

Majorana equation is given by 

 

𝜕𝑡Ψ̌L = −(𝑚𝑐
2 ħ⁄ )𝑦Ψ̌L

∗ (7.11) 

 

In conclusion, in this section, we have considered the chiral 

representation of the Majorana equations. 

 

 

8. SOLUTIONS OF THE NON-RELATIVISTIC QUANTUM 

MAJORANA AND DIRAC EQUATIONS 

 

This section is written following our recent paper (Dubois, 2019d).  

In the non-relativistic limit 𝑝 ≪ 𝑚𝑐, the particles are at rest, with a 

momentum 𝑝 ≅ 0.  

In this limit, the Majorana equations (7.10-a-b) are given by 

 

+𝜕Ψ̌1 𝜕𝑡 =⁄ + i (𝑚𝑐2 ħ⁄ )Ψ̌2
∗  

+𝜕Ψ̌2 𝜕𝑡 =⁄ − i (𝑚𝑐2 ħ⁄ )Ψ̌1
∗ (8.1-a-b) 

 

With Ψ̌(t) = (
Ψ̌1(t)

Ψ̌2(t)
) (8.2-a) 

 

these equations (8.1-a-b) become 

 

𝜕𝑡Ψ̌ = −(𝑚𝑐
2 ħ⁄ )𝑦Ψ̌

∗ (8.3-a) 

 

where 𝜕𝑡 = 𝜕/𝜕𝑡, and 𝑦 = i (
0 −1
1 0

), is a Pauli matrix. 

The complex conjugate of equation (8.3-a) is given by 

 

𝜕𝑡Ψ̌
∗ = +(𝑚𝑐2 ħ⁄ )𝑦Ψ̌ (8.3-b) 
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With the two equations (8.3-a-b), one obtains a second order equation 

 

𝜕𝑡
2Ψ̌(t) = −(𝑚𝑐2 ħ⁄ )2Ψ̌(t) (8.4) 

 

that is the temporal Klein-Gordon equation.  

The solution of equation (8.4) is given by 

 

Ψ̌(t) = cos(𝑚𝑐2t ħ⁄ )Ψ̌(0) − sin(𝑚𝑐2t ħ⁄ )𝑦Ψ̌
∗(0)  (8.5) 

 

or in explicit form 

 

Ψ̌1(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ̌1(0) + i sin(𝑚𝑐

2t ħ⁄ )Ψ̌2
∗(0)  (8.6-a) 

 

Ψ̌2(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ̌2(0) − i sin(𝑚𝑐

2t ħ⁄ )Ψ̌1
∗(0) (8.6-b) 

 

Now let us consider the following Dirac 2-spinors  

 

Ψ̂(t) = (
Ψ1(t)
Ψ4(t)

), (8.7) 

 

for which the temporal non-relativistic Dirac equation is given by 

 

𝜕𝑡Ψ̂(t) = −𝑖(𝑚𝑐
2 ħ⁄ )𝑧Ψ̂(t) (8.8) 

 

where 𝜕𝑡 = 𝜕/𝜕𝑡, and 𝑧 = (
1 0
0 −1

), is a the Pauli matrix. 

The analytical solution of the non-relativistic Dirac equation (8.8) is 

given by 

 

Ψ̂(t) = cos(𝑚𝑐2t ħ⁄ )Ψ̂(0) − i sin(𝑚𝑐2t ħ⁄ )𝑧Ψ̂(0) (8.9) 

 

or in explicit form 

 

Ψ1(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ1(0) − i sin(𝑚𝑐

2t ħ⁄ )Ψ1(0)  (8.10-a) 

Complimentary Contributor Copy



Daniel M. Dubois 

 

136 

Ψ4(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ4(0) + i sin(𝑚𝑐

2t ħ⁄ )Ψ4(0) (8.10-b) 

 

In conclusion, in this section, we have considered the solutions of the 

non-relativistic chiral Majorana equation and the Dirac equation. 

 

 

9. THE GENERIC MAJORANA 4-SPINORS EQUATION 

 

With the Majorana wave functions, Ψ̃j = Ψ̃j(x, y, z, t), j = 1,2,3,4, we 

have given the 4 Majorana partial differential equations (5.13-a-b-c-d).  

Let us define the two Majorana bi-spinors wave functions 

 

Ψ̃a = (
Ψ̃1
Ψ̃2
), Ψ̃b = (

Ψ̃3
Ψ̃4
), (9.1-a-b) 

 

The Majorana equations (5.13a-b-c-d), for the bi-spinors, become:  

 

𝜕𝑡Ψ̃a = +𝑐𝑥𝜕𝑥Ψ̃b − 𝑐0𝜕𝑦Ψ̃a + 𝑐𝑧𝜕𝑧Ψ̃b − 𝑖(𝑚𝑐
2 ħ⁄ )𝑦Ψ̃b  

 

𝜕𝑡Ψ̃b = +𝑐𝑥𝜕𝑥Ψ̃a + 𝑐0𝜕𝑦Ψ̃b + 𝑐𝑧𝜕𝑧Ψ̃a − 𝑖(𝑚𝑐
2 ħ⁄ )𝑦Ψ̃a  

 (9.2-a-b) 

 

where 𝜕𝜇 = 𝜕/𝜕𝜇 and, 𝑥  ,𝑦 ,𝑧, are the Pauli 2x2 matrices 

 

 𝑥 = (
0 1
1 0

), 𝑦 = (
0 −i
i 0

), 𝑧 = (
1 0
0 −1

), 0 = (
1 0
0 1

) = I2  

 (9.3-a-b-c-d) 

 

and where 0, is the 2x2 unit matrix I2 . 

Let us define the Majorana 4-spinors wave function from the two bi-spinors 

(9.1-a-b): 
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Ψ̃ = (
Ψ̃a
Ψ̃b
) (9.1-c) 

 

The Majorana equations (9.2-a-b) for the 4-spinors become the following 

generic Majorana equation: 

 

 𝜕𝑡Ψ̃ = 𝑐α𝑥𝜕𝑥Ψ̃ − 𝑐β𝜕𝑦Ψ̃ + 𝑐α𝑧𝜕𝑧Ψ̃ − 𝑖(𝑚𝑐
2 ħ⁄ )α𝑦Ψ̃ (9.4-c) 

 

where the 4x4 matrices, α𝑥 , α𝑦, α𝑧, are defined with the Pauli matrices by 

  

α𝑥 = (
0 𝑥
𝑥 0

), α𝑦 = (
0 𝑦
𝑦 0

), 𝑧 = (
0 𝑧
𝑧 0

) (9.5-a-b-c) 

 

and β is defined with the unit matrix by  

 

β = (
0 0
0 −0

) (9.5-d) 

 

In the next section we will give the generic Dirac 4-spinors equation and 

its relation to the Majorana equation.  

 

 

10. THE GENERIC DIRAC 4-SPINORS EQUATION    

 

In defining the Dirac wave function by Ψj = Ψj (𝑥, 𝑦, 𝑧, t), j = 1,2,3,4,  

we have given the 4 Dirac partial differential equations (5.23-a-b-c-d). 

Let us define the Dirac bi-spinors wave functions 

 

Ψa = (
Ψ1
Ψ2
), Ψb = (

Ψ3
Ψ4
), (10.1-a-b) 

 

The Dirac equations (5.23a-b-c-d), for the bi-spinors, become:  
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𝜕𝑡Ψa = −𝑐𝑥𝜕𝑥Ψb − 𝑐𝑦𝜕𝑦Ψb − 𝑐𝑧𝜕𝑧Ψb − 𝑖(𝑚𝑐
2 ħ⁄ )0Ψa  

 

𝜕𝑡Ψb = −𝑐𝑥𝜕𝑥Ψa − 𝑐𝑦𝜕𝑦Ψa − 𝑐𝑧𝜕𝑧Ψa + 𝑖(𝑚𝑐
2 ħ⁄ )0Ψb  

 (10.2-a-b) 

where 𝜕𝜇 = 𝜕/𝜕𝜇 and 𝑥  ,𝑦  ,𝑧, are the Pauli 2x2 matrices (9.3-a-b-c), 

and where 0, is the 2x2 unit matrix I2 (9.3-d). 

Let us define the Dirac 4-spinors from the two bi-spinors (10.1-a-b): 

 

Ψ = (
Ψa
Ψb
) (10.3) 

 

The Dirac equations (10.2-a-b) for the 4-spinors become the following 

generic Dirac equation: 

 

 𝜕𝑡Ψ = −𝑐α𝑥𝜕𝑥Ψ− 𝑐α𝑦𝜕𝑦Ψ− 𝑐α𝑧𝜕𝑧Ψ− 𝑖(𝑚𝑐
2 ħ⁄ )βΨ (10.4) 

 

where the 4x4 matrices, α𝑥 , α𝑦, α𝑧, were defined in equations (9.5-a-b-c), 

and β was defined in equation (9.5-d). 

In comparing the Dirac equation (10.4-c) with the Majorana equation 

(9.4-c), we see that there is an inversion of the two matrices, β, and, α𝑦, with 

an inversion of signs of the space variables, 𝑥, and, z.  

This is in agreement with my demonstration, given in the preceding 

section 5, of the bifurcation of the Majorana real equation to the Dirac 

complex equations (Dubois, 2019b).  

Let us remark that the Pauli matrices represent logical quantum gates in 

quantum compution.  

Let us first recall the properties of the Pauli 2x2 matrices, 𝑥  ,𝑦  ,𝑧: 

 

𝜎𝑥
2 = 𝜎𝑦

2 = 𝜎𝑧
2 = 𝐼2 = (

1 0
0 1

) (10.5) 

 

The square of the Pauli gates are equal to the 2x2 unit gate. 

The square of the unit gate is equal to itself: 
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𝜎0
2 = 𝐼2 = 𝜎0 (10.6) 

 

The Pauli gates do not commute, and show the following properties:  

 

𝜎𝑦𝜎𝑧 − 𝜎𝑧 𝜎𝑥 = 𝑖𝜎𝑥  

𝜎𝑧𝜎𝑥 − 𝜎𝑥 𝜎𝑧 = 𝑖𝜎𝑦  

𝜎𝑥𝜎𝑦 − 𝜎𝑦 𝜎𝑥 = 𝑖𝜎𝑧 (10.7-a-b-c) 

 

With the Kronecker product, , it is possible to create the 4x4 matrices 

α𝑥 , α𝑦, α𝑧 and, β, with the product of two Pauli 2x2 matrices, as follows: 

 

α𝑥 = σxσx = (

0 0
0 0

0 1
1 0

0 1
1 0

0 0
0 0

), α𝑦 = σxσy = (

0 0
0 0

0 −𝑖
𝑖 0

0 −𝑖
𝑖 0

0 0
0 0

)  

 

α𝑧 = σxσz = (

0 0
0 0

1 0
0 −1

1 0
0 −1

0 0
0 0

) (10.8-a-b-c)

 ,  

β = σzσ0 = (

1 0
0 1

0 0
0 0

0 0
0 0

−1 0
0 −1

) (10.8-d) 

 

The square of the matrices, α𝑥 , α𝑦, α𝑧, β, are equal to the unit matrix, 𝐼4: 

 

αx
2 = αy

2 = αz
2 = β2 = 𝐼4 = (

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

)  (10.9) 

 

The matrices, α𝑥, α𝑦, α𝑧, β, show the following important properties: 

 

𝛼𝑦𝛼𝑧 + 𝛼𝑧 𝛼𝑥 = 0  
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𝛼𝑧𝛼𝑥 + 𝛼𝑥 𝛼𝑧 = 0  

𝛼𝑥𝛼𝑦 + 𝛼𝑦 𝛼𝑥 = 0 (10.10-a-b-c) 

 

 

𝛼𝑦𝛽 + 𝛽𝛼𝑦 = 0  

𝛼𝑧𝛽 + 𝛽𝛼𝑧 = 0  

𝛼𝑥𝛽 + 𝛽𝛼𝑥 = 0 (10.11-a-b-c) 

 

The next section deals with a fundamental invariant related to the Pauli 

matrix, 𝑥. 

 

 

11. A NEW INVARIANT OF THE NON-RELATIVISTIC 

QUANTUM MAJORANA AND DIRAC WAVE FUNCTIONS 

 

This section gives the comparison of the solutions of the non-relativistic 

quantum Majorana and Dirac equations after (Dubois, 2019e).  

In the limit, 𝑝 ≪ 𝑚𝑐, the particles are at rest, with a momentum 𝑝 ≅ 0. 

In the preceding section, we have given the following 2-components chiral 

Majorana equations (7.10-a-b); 

 

+𝜕Ψ̌1 𝜕𝑡 = +𝑐 𝜕Ψ̌1 𝜕𝑥⁄⁄ + i 𝑐 𝜕Ψ̌2 𝜕𝑦⁄ − 𝑐 𝜕Ψ̌2 𝜕𝑧⁄ + i (𝑚𝑐2 ħ⁄ )Ψ̌2
∗   

 

+𝜕Ψ̌2 𝜕𝑡 = −𝑐 𝜕Ψ̌2 𝜕𝑥 − i 𝑐 𝜕Ψ̌1 𝜕𝑦 − 𝑐 𝜕Ψ̌1 𝜕𝑧⁄⁄ − i (𝑚𝑐2 ħ⁄ )Ψ̌1
∗⁄⁄  

 (11.1-a-b) 

 

In the non-relativistic limit, these 2-components Majorana equations are 

given by 

 

+𝜕Ψ̌1 𝜕𝑡 =⁄ + i (𝑚𝑐2 ħ⁄ )Ψ̌2
∗ (11.1-c) 

 

+𝜕Ψ̌2 𝜕𝑡 =⁄ − i (𝑚𝑐2 ħ⁄ )Ψ̌1
∗ (11.1-d) 
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with  

 

Ψ̌(t) = (
Ψ̌1(t)

Ψ̌2(t)
), (11.2) 

 

these Majorana equations become 

 

𝜕𝑡Ψ̌ = −(𝑚𝑐
2 ħ⁄ )𝑦Ψ̌

∗ (11.3-a) 

 

where 𝜕𝑡 = 𝜕/𝜕𝑡, with the Pauli matrix, 𝑦 = i (
0 −1
1 0

)  

 

The complex conjugate of equation (11.3-a) is given by 

 

𝜕𝑡Ψ̌
∗ = +(𝑚𝑐2 ħ⁄ )𝑦Ψ̌ (11.3-b) 

 

These 2 equations (11.3-a-b) transform to the following second order 

equation 

 

𝜕𝑡
2Ψ̌(t) = −(𝑚𝑐2 ħ⁄ )2Ψ̌(t) (11.4) 

 

which is identical to the second order derivative of the Klein-Gordon 

equation for a particle at rest, with a 2-spinors complex Majorana function 

Ψ̌(t). 

The analytical solution of the equation (11.4) is given by 

 

Ψ̌(t) = cos(𝑚𝑐2t ħ⁄ )Ψ̌(0) − sin(𝑚𝑐2t ħ⁄ )𝑦Ψ̌
∗(0)  (11.5) 

 

or, in explicit form 

 

Ψ̌1(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ̌1(0) + i sin(𝑚𝑐

2t ħ⁄ )Ψ̌2
∗(0)  (11.6-a) 

 

Ψ̌2(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ̌2(0) − i sin(𝑚𝑐

2t ħ⁄ )Ψ̌1
∗(0) (11.6-b) 
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Now let us consider the following Dirac 2-spinors  

 

Ψ̂(t) = (
Ψ1(t)
Ψ4(t)

), (11.7) 

 

The non-relativistic Dirac equation is given by 

 

𝜕𝑡Ψ̂(t) = −𝑖(𝑚𝑐
2 ħ⁄ )𝑧Ψ̂(t) (11.8) 

 

where 𝜕𝑡 = 𝜕/𝜕𝑡, and with the Pauli matrix, 𝑧 = (
1 0
0 −1

) 

The analytical solution of the Dirac equation (11.8) is given by 

 

Ψ̂(t) = cos(𝑚𝑐2t ħ⁄ )Ψ̂(0) − i sin(𝑚𝑐2t ħ⁄ )𝑧Ψ̂(0) (11.9) 

 

or, in explicit form 

 

Ψ1(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ1(0) − i sin(𝑚𝑐

2t ħ⁄ )Ψ1(0)  (11.10-a) 

 

Ψ4(t) =  cos(𝑚𝑐
2t ħ⁄ )Ψ4(0) + i sin(𝑚𝑐

2t ħ⁄ )Ψ4(0) (11.10-b) 

 

Now, we will show the relation between the solutions of the Dirac 

equations from the solutions of the Majorana equations with the method of 

Lamata et al. (Lamata et al., 2012). So, let us consider the sum of the forward 

and backward solutions (11.9) of the Dirac equation  

 

[Ψ̂(+t) + Ψ̂(−t)]/2 =  cos(𝑚𝑐2t ħ⁄ ) Ψ̂(0)  

 

and the difference of the forward and backward solutions 

 

[Ψ̂∗(+t) − Ψ̂∗(−t)]/2 = i sin(𝑚𝑐2t ħ⁄ )𝑧  Ψ̂
∗(0)  

 

 

Complimentary Contributor Copy



Computing Hyperincursive Discrete … 

 

143 

In multiplying by the Pauli matrix, 𝑥 = (
0 1
1 0

), the relation becomes 

 

i sin(𝑚𝑐2t ħ⁄ )𝑥 𝑧  Ψ̂
∗(0) =  sin(𝑚𝑐2t ħ⁄ )𝑦  Ψ̂

∗(0)  

 

so we obtain the following relation between the solution of the Dirac 

equation and the solution of the Majorana equation  

 

Ψ̌(t) = [Ψ̂(+t) + Ψ̂(−t)]/2 − 𝑥[Ψ̂
∗(+t) − Ψ̂∗(−t)]/2 (11.11) 

 

that is equal to the solution (11.5) of the Majorana equation.  

We obtain the same result as Lamata et al, but they have not given the 

inverse equation for obtaining the Majorana solution from the Dirac 

solution. 

Let us now make the inverse in giving the Dirac solution as a function 

of the Majorana solution, after (Dubois, 2019e). So, let us start from the 

solution (11.5) of the Majorana equation. Let us consider the sum of the 

forward and backward solutions (11.5) 

 

[ Ψ̌(t) + Ψ̌(−t)]/2 = cos(𝑚𝑐2t ħ⁄ )Ψ̌(0)  

 

and the difference of the forward and backward solutions 

 

[Ψ̌∗(t) − Ψ̌∗(−t)]/2 = sin(𝑚𝑐2t ħ⁄ )𝑦Ψ̌(0)  

 

Let us multiply this relation by the Pauli matrix, 𝑥, 

 

sin(𝑚𝑐2t ħ⁄ )𝑥𝑦Ψ̌(0) = i sin(𝑚𝑐
2t ħ⁄ )𝑧Ψ̌(0)  

 

So we obtain the relation between the solution of the Majorana equation 

and the solution of the Dirac equation (11.9) as follows 

 

Ψ̂(t) = [ Ψ̌(t) + Ψ̌(−t)]/2 − 𝑥[Ψ̌
∗(t) − Ψ̌∗(−t)]/2 (11.12) 
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Surprisingly, the transformation relation is invariant, the relation 

(11.12), which gives the Dirac wave function from the Majorana wave 

function, is identical to the relation (11.11), which gives the Majorana wave 

function from the Dirac wave function. At our knowledge, this is a new 

invariant of the non-relativistic quantum Majorana and Dirac equations. This 

invariant is based on the Pauli matrix 𝑥, that is the quantum gate X, which 

is the “spin flip” or the NOT gate, a reversible gate in quantum computation. 

 

 

12. QUANTUM COMPUTATION WITH  

REVERSIBLE GATES 

 

In this chapter, we have used some reversible quantum gates as defined 

for developing quantum computers. The quantum Pauli gates X, Y, Z, that 

operate on one-qubit, are based on Pauli matrices: 

 

X = 𝑥 = (
0 1
1 0

) (12.1) 

 

which is a “spin flip” or NOT gate, 

 

𝑌 = 𝑦 = (
0 −i
i 0

) (12.2) 

 

𝑍 = 𝑧 = (
1 0
0 −1

) (12.3) 

 

that is a phase shift gate with 𝜑 = 𝜋. 

Only the X and Z are necessary, because the Y can be deduced from 

them: 

 

𝑌 = iXZ = (
0 −i
i 0

) (12.4) 

 

The square of each Pauli gate is the identity matrix 𝐼 
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𝐼2 = 𝑋2 = 𝑌2 = 𝑍2 = −𝑖𝑋𝑌𝑍 = 𝐼 (12.5) 

 

The quantum Hadamard gate 𝐻2 is defined by 

 

𝐻2 =
1

√2
(
+1 +1
+1 −1

) (12.6) 

 

which is a rotation gate, that gives a basis change. 

The Hadamard gate can be deduced from the X and the Z gates: 

 

𝐻2 =
1

√2
(X + Z) =

1

√2
(
+1 +1
+1 −1

) (12.7) 

 

In the section 4, the Hadamard matrix was deduced from the rotation 

matrix 

 

R1(θ) = (
sin(θ) cos(θ)

cos(θ) −sin(θ)
) (12.8) 

 

for the angle θ = π/4, as 

 

R1(π/4) = (
sin(π/4) cos(π/4)

cos(π/4) −sin(π/4)
) =

1

√2
(
+1 +1
+1 −1

) = 𝐻2 (12.9) 

 

In this section 4, we have demonstrated a remarkable result: by the 

rotation of the position and velocity of the two incursive discrete equations 

of the harmonic oscillator, with the Hadamard matrix gate, we have 

transformed the incursive discrete equations to recursive discrete equations 

of the harmonic oscillator. 

Let us remark that the X ans Z gates can be deduced from this rotation 

matrix for the angles θ = 0 and θ = π/2 respectively 

 

R1(0) = (
sin(0) cos(0)

cos(0) −sin(0)
) = (

0 1
1 0

) = X (12.10) 
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R1(π/2) = (
sin(π/2) cos(π/2)

cos(π/2) −sin(π/2)
) = (

1 0
0 −1

) = Z (12.11) 

 

In the technology of quantum computers, many quantum gates are also 

defined, for example, the phase gate, the square root of the NOT gate, the 

CNOT gate and the CCNOT gate. 

The phase gate is given by 

 

𝑆 = (
1 0
0 i

) (12.12) 

 

This phase gate can also be deduced from the Z gate,  

 

𝑆 =  √𝑍
2

= (
1 0
0 i

) (12.13) 

 

indeed, it is the square root of Z, 

 

𝑆𝑆 =  𝑍 = (
1 0
0 i

) (
1 0
0 i

) = (
1 0
0 −1

) (12.14) 

 

The square root of the NOT gate is written as 

 

√X
2

= √NOT
2

=
1

2
(
1 + i 1 − i
1 − i 1 + i

) (12.15) 

 

The XOR (exclusive OR) gate, the Controlled NOT gate CNOT, is a 

two-qubit operation defined by 

 

𝐶𝑁𝑂𝑇 = (

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

) (12.16) 

 

And finally, the reversible Toffoli gate, the Controlled-Controlled NOT 

gate CCNOT, is a three-qubit operation defined by  
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𝐶𝐶𝑁𝑂𝑇 =

(

 
 
 
 
 

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0)

 
 
 
 
 

 (12.17) 

 

The Hadamard and Toffoli gates are quantum universal gates 

(Aharonov, 2003). 
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