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Abstract:
With the current goal of reaching a 100% electrification rate of the world population, the importance of PV/battery or
solar home systems (SHS) grows as the one of the most viable solution for the most remote and scattered communities.
Their modularity and capacity to harvest local resources is particularly relevant for that purpose. The stochasticity of solar
energy and of the demand can however lead to energy shortages in the most critical periods of the day, while an over-sized
system represents an important increase in the levelized cost of energy (LCOE). To capture these dynamics and the trade-
off between installed capacity and lost load probability (LLP), 16 different demand scenarios are modeled and analyzed.
An optimal size for SHS is determined using a linear programming model with different levels of LLP in each scenario. The
Demand time series are constructed using a stochastic demand generator that simulates the behavior of each appliance
on a household. The information to create the base-case scenario was obtained with field surveys of a rural community in
Cochabamba, Bolivia (Raqaypampa). Each scenario has different combinations of appliances, including the intensive use
of radio to comply with guidelines of remote education (due to the COVID-19 crisis). The result shows that there is a high
reduction of the LCOE in the lower range of LLP. This reduction reaches a breaking point where a higher LLP does not
represent a significant further reduction of the LCOE. An empirical mathematical formulation is proposed to calculate this
inflection point and a Pareto front plotted to assess the tradeoff between quality of service and LCOE.
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1. Introduction
The world faces crucial challenges in terms of the increasing energy requirement [1], this will contribute to
a greater emission of greenhouse gases [2]. The decarbonization of energy production is one of the great
challenges of the century [3]. All societies are going through a drastic change regarding energy sources [4].
The energy needs of humans have a notable influence on social development [5, 6] and the provided energy
quality. This has major consequences in rural areas of developing countries [7]. The use of Solar Home Sys-
tems (SHS) and an improvement in service, may imply a significance reduction in fuel costs [8], these savings
that would allow the development of small and medium-sized production units, increasing production rates and
diversifying them [9]. One of the problems due to COVID-19 has been the implementation of distance educa-
tion [10]. This would imply an increase in demand. The present work develops the implications that distance
education may have on unsupplied energy.
Rural electrification is essential for socio-economic development in emerging countries [11]. Although energy
is used for different basic purposes, it is not enough to improve the rural economy and make profound social
change. Isolated micro grids offer a higher level of access to energy; however, in remote populated rural areas,
this solution could be a costly investment [7]. On the other hand, SHS may be a feasible solution to achieve
100% rural electrification in Bolivia [12]. The problem resides in many techno economic factors [13] associated
with consumption limitations to cover basic needs and future scaling with increasing demand [7]. This growth is
associated with the adoption of new household appliances due to the increase in the economy and the number
of Productive Units [14] (PU). The Productive Energy Use (PUE) is one of the main reasons for the change in
energy sources [15]. The present work presents an alternative method to achieve the optimal sizing for the
specific case of SHS, in contrast to the already existing method applied to MicroGrids [16].

It is important to take into account the potential impacts of the SHS limitations may have in different household
activities [17] and therefore in universal access to energy [18]. This paper exposes the relationship of the



Levelized Cost of Energy (LCOE) and the Net Present Cost (NPC) as a function of the of Loss of Load Proba-
bility (LLP) in different scenarios that contemplate the specific presence of electronic devices for common and
PUE. Through optimization, it will allow to analyze the trade-off between the energy unsupplied and the LCOE,
allowing to evaluate the impact that this could have in the life of inhabitants of households.

2. Methods
From a sequential point of view, for the analysis of the influence of the unsupplied energy in relation to the
activities of each household, it is necessary to collect sufficient input data that allow assessment closer to
reality for the specific case of a remote population. With all time series obtained, it is pertinent to optimize the
SHS that will allow to be no notable influence on the LCOE and the NPC without compromising the energy
unsupplied (breaking point), this iteratively can take a few seconds or several days depending on the steps to
use for this method. In this context, the estimation of the breaking point takes up simpler alternatives that allow
the modular segregated analysis of appliances, and, therefore, of the activities associated with each household.

The RAMP tool used to obtain the random and unpredictable time series of demand contemplates a single level
associated with the type of appliance of a specific type of user [19]. These users can be classified depending
on energy needs, based on socio-economic indicators. For the analysis of the techno-economic indicators
of the SHS, the use of a technique based on machine learning has been foreseen [20]. For its optimization
under certain boundary conditions, the variability of the LCOE and the NPC is identified as a function of the
probability that the system cannot supply a fraction of the demand. Likewise, characteristics of the functional
relationship (breaking point) are identified using the Maximum Distances Method (MDM) [21], which allow
resizing to specific conditions for analysis of the limit influence of the energy not supplied on the activities of
each household.

Figure 1: Flow Information Diagram.

2.1. RAMP for estimating Demand.
The estimation of the demand per household and per appliance was carried out using a bottom-up stochastic
model. For this, it is chosen to classify the users, likewise this model requires information on the character-
istics of the electrical appliances (approximate nominal power). This information is based on probabilities of
use in certain time intervals, limit and representative values of use, as well as frequency of use (for household
appliances for occasional use). The data collected allows the generation of time series per minute, the ran-
domization is independent in each layer. RAMP allows the individual evaluation of each appliance (even those
of occasional use) and user in an amount of days defined.

The characterization of the types of user is dependent on the type of analysis of interest, in this case the type
of electrical appliance, the economic activity and the monetary income per household are the most relevant
aspects. The daily load curve [22] (occasional and typical), are proposed based on estimates within the context
of the case study. Although the number of users whose energy consumption is similar to a productive unit in
defined periods of the year is scarce, the number of users is not a layer to take into account in the stochastic
model for estimating average demand in the SHS. The representativeness of the demand curves throughout
the year should consider the appropriate treatment on the individual daily estimates. Likewise, the use of



optional stochastic models of the equipment with variable power (refrigerator and freezer) has been taken into
consideration. The nominal load of this type of equipment is determined by the temperature at a certain time.

2.2. Hourly PV energy generation estimates
The estimation of the photovoltaic energy available in the geographic location of analysis requires time series
data of the total radiation; incident per surface (Iglo

t ) and the temperature of the photovoltaic cell (T PV
t ). The

phenomenon of diffusion, refraction and typical reflection of electromagnetic waves applied to solar radiation
on the ground is defined by the Equation 1. The ground is essentially a surface with inclination β, where It and
Ig is the horizontally incidence radiation on a surface and reflected radiation respectively and ρ is the diffuse
refractance of the environment.

Ig = I · ρ · 1− cosβ
2

(1)

With the ambient temperature (T amb
t ) at defined time interval t at a set nominal cell temperature (NOCT )

it is possible to calculate the outlet temperature of the photovoltaic cell (T PV ). The Equation 2 defines the
relationship of the parameters to be used.

T PV
t = T amb

t +
NOCT − 20

800
· Iglo

t (2)

One of the greatest difficulties is the accessibility to empirical data on ambient temperature and surface irradia-
tion in remote areas. Due to this, it is available to use approximate data from a web platform “renewables.ninja”.
This platform has a MERRA-2 database to generate time series of temperature and irradiation at any latitude
and altitude in the world. The time series obtained have the time step of one hour, allowing the user to define
the inclination angles [23, 24]. Once the synthetic time series is obtained, the cell output data is calculated.
The calculated time series allow the resolution of a five parameter model (Equation 3) for estimate the effective
irradiance (Ieff ) incident on a surface applied to a circuit [25,26].

Ieff = Ib · Rbeam · Kτα + Id · Kτα,d ·
1 + cos (β)

2
+ ρg · I · Kτα,g ·

1− cosβ
2

(3)

Where Ki are the incidence angle modifiers for direct undispersed radiation b in determined value of relation
between the radiation of the beam on the inclined surface and that of a horizontal surface (Rbeam) at any angle
(i = τα), and at 58o (τα, d and τα, g) for diffuse and ground reflected radiation.
The generalization [27] of photovoltaic cells with equivalent circuits (De Soto Single Diode Model, Equation
4) allows the estimation of the photovoltaic energy available for various commercial modules in any location
[26,28].

I = IL − Io
Ä
e

V+IR
a − 1

ä
− V + IRs

Rsh
(4)

The five parameters are the ideality factor (a), light current (lightcurrent), diode reverse saturation current (Io),
series resistance (Rs) and shunt resistance (Rsh).

2.3. Sizing tool
The tool used uses two linear optimization steps for isolated hybrid Microgrids. Although this tool can enter
data from different energy sources, the first optimization step of the SHS would only focus on the flow of solar
energy in different scenarios (s). The next optimization step is based on the energy flow through the system
components in a defined time interval (t). That fraction of the energy supplied (E re) by the source that cannot
be supplied to the system (E re,u), depends on intrinsic aspects of the unit, such as efficiency (ηre) and the yield
(N re).

The optimization relies on the modeling of input (Ebat ,ch) and output (Ebat ,dis) flow energy from the battery bank.
This is based on technical characteristics of this SHS component such as the efficiencies of charge (ηch) and
discharge (ηdis), in addition to the nominal capacity (Cbat ). The optimization considers limit values of the state
of charge (Pbat ,ch y Pbat ,dis), which allow the optimization to carry out energy dispatch, with a charge balance.

The boundary conditions for the SHS are given by an energy balance (5) that considers that portion of the
energy that cannot be supplied (LL, ELL) by the system with respect to a demand (D). And that energy that
cannot be consumed or stored (ECurtailment ).

Ds,t = E re
s,t − Ebat ,ch

s,t − Ebat ,dis
s,t + ELL

s,t + ECurtailment
s,t (5)

Therefore, the first boundary condition is probabilistically related to the loss of load (Lost Load Probability,
LLP). The probability of occurrence of this event in this case depends on each scenario, in this study it was



based on the determination of the variability of the result of the objective function as a function (Equation
6) of the variation of this probability. The restriction imposed for the minimum portion of energy from non-
deliverable energy sources, and a minimum of energy in the battery bank in case of a blackout, considering
the independence of the battery with respect to the SHS (Nbat ) and the minimum percentage of renewable
energy (Ire). Likewise, the minimum flow of energy for the battery is established in order to reduce the cost
that this implies, the sizing tool is capable of generating the time series associated with the assigned cost. The
objective function of optimization consists of minimizing the total investment cost for the project (NPC), which is
the addition of the project investment (Inv ) and the costs of supplying the annual demand (YC), in conjunction
with the discounts (e) in the year (y ).

Inv +
S∑

s=1

Ñ
Y∑

y=1

YCs

(1 + e)y · I
occurrence
s

é
(6)

It is logical to expect that the Inv of the SHS will depend on the technical characteristics of the components of
the units. For a more detailed understanding of the optimization model, it is recommended to refer to [29] and
observe in detail based on the description made which are the terms to simplify.

2.4. Non-linear regression
The nonlinear regression process was carried out by means of an optimization using the Levenberg-Marquardt
(LM) method, essentially [30], this is preloaded in the scipy.optimize library. This algorithm is a modification of
the Gauss-Newton method (Equation 7) that is based on the linearization of the residuals. The iteration will
be much faster if it has points close to minimizing the sum of the least squares that will allow the problem to
converge [31].

δµ = −(JT J)−1∇C = −(JT J)−1JT r (7)

Where µ is the set of parameters, J is the Jacobian matrix that depends on the number (m and set of pa-
rameters is defined as Jm,µ = ∂rm/∂µi , where r are the residuals. C is the sum of frames to minimize in all
parameters in the i iterations.

The SciPy library is an open source library that together with the sublibery allows the optimization of the least
squares of fit of a given data series. In this case, the variability of the output techno-economic indicators of
MicroGrids.py, the LCOE and NPC as a function of the LLP was analyzed (Equation 8 y 9). The variation of
the indicators of interest was evidenced by iterative resizing using the optimization tool described in 2.3.. The
increments used were 0.5% to 10% and 10% to 100% LLP. The functional relationship between the variables
of interest corresponds to an algebraic series analogous to the simple Michaelis Menten [32] equation or
Hinshelwood-Lindemann kinetic model.

LCOE =
C1 (LLP)C2 + C3

C4 +
∑n

i=5 Ci (LLP)Ci+1
(8)

NPC =
A1 (LLP)A2 + A3

A4 +
∑n

i=5 Ai (LLP)Ai+1
(9)

Where Ci and Ai are constants of the fit model for the functional relationship of the LCOE and the NPC, respec-
tively. Note that the terms of the algebraic series can be neglected depending on the scenario to be treated. To
verify the fit of the functional relationship, only the coefficient of determination (R2) was taken as a reference
of a conclusive statistical parameter, functional relationships with up to 12 statistical coefficients or parameters
were used for this purpose.

This technique is based on the use of Parameter objects as variables. This method allows to improve the
uncertainty after the first regression with the approximate values, the library has several models adaptable to
different types of curves. The first regression is based on the Bayesian method (Equation 10) of data whose
characteristics that allow the handling of any distribution of modeling uncertainty. This first regression allows
the generation of the Markov and Monte Carlo chain (MCMC) and nested sampling [33].

p(µ|D)α p(D|µ) · p(u) (10)

Simple Bayesian theory states that there is a direct relationship between the probability of agreement between
the set of parameters with respect to the input data (p(µ|D)) and the probability of likelihood between the
input data and the estimates (p(D|µ)) and the anticipated probability of the parameters (p(µ)). The MCMC
algorithm is based on the generation of a chain from a continuous random variable whose probability density



is proportional to the function to be adjusted. The chain of points generated is analyzed integrally on the
random variable, taking this as a reference of the expected value or the estimated variance. The Monte
Carlo method allows these variables to be correlated, making it necessary to calculate the errors of the mean
values. Throughout the relationship of the chain, the condition of proportionality is maintained with the given
function [34].

2.5. Maximum Distance Method (MDM)
Obtaining the point of maximum curvature represents the change in trend of the analysis parameters with
respect to LL, this through the method proposed in [21]. The geometry of the estimated function found is used
to obtain the point of maximum curvature that represents the change in trend of the analysis parameters with
respect to LL Figure 3). Where a secant line is drawn with the extreme values of LLP (0% and 100%), the
function that describes the secant line is illustrated in Equation 11.

ys = ao + a1xs (11)

It is expected that the functional relationships are at a greater distance with respect to this line drawn. For this
purpose, is drawn a perpendicular line to a ys (Equation 12). With the established perpendicularity condition,
the relationship between the slopes of the lines can be found (Equation 13).

yd = bo + b1xs (12)

b1 =
−1
a1

(13)

If several lines are drawn perpendicular to ys, the slopes (bi ) of the lines drawn would be constant. This
condition allows an iterative process to be carried out where the variations would be referred to the parameter
bo of the line.
The line yd intercepts with the function (LCOE and NPC) and with ys, the result obtained is two points that
allow finding a distance with the general equation of distances in a plane, with the Cartesian information of the
points obtained (14).

dj =
√(

yj ,d − ys,d
)2 +

(
xj ,d − xs,d

)2 (14)

Where j are the two study indicators (LCOE and NPC). The iterative process would consist of two systems of
equations to find the points of intersection. The nonlinear system will be solved by Python’s symbolic numeric
solver [35].

3. Case of Study
The selected case study is a SHS from the “indigenous rural native autonomous territory of Raqaypampa”,
in the department of Cochabamba located in the Plurinational State of Bolivia. The information related to the
inputs of the demand estimation model was obtained based on surveys of a sample of fifty people, the surveys
were carried out in the period from 10/03/2019 to 10/10/2019) [36].

3.1. Meteorological data and demand data
For the case study, demand curves and meteorological data are not available. For this reason, the open-source
RAMP tool was used to estimate the demand information to size and optimize the SHS. Regarding meteoro-
logical information (photovoltaic energy in the area and temperature), the online platform renewables.ninja
(https://www.renewables.ninja/) has been used. The input data for the platform were latitude (-18.1891201)
and longitude (-65.3847939) in the local time from 01/01/2018 00:00:00 to 12/31/2018 23:00:00.

3.2. User characterization
To establish the base and scenarios with productive activities. These types of scenarios contemplate the use
of high consumption appliances associated with the generation of seasonal or regular income. It is common
to observe this type of behavior in rural areas in the absence of legally constituted businesses, those activities
must necessarily provide a service to more than a household [37]. Families have been characterized based on
socioeconomic factors,identified in the surveys performed. A simple conditional criterion and estimates [38,39]
of net income per household was proposed. The factors analyzed were the type of economic activity per person
in the household, net income, rate of electricity consumption, total number of people in the household, number
of people who generate income, existence of high-consumption appliances, number of rooms per household,
building materials.
Based on these data, the 50 families surveyed could be characterized into two big groups (A = 44 and B = 6).
From now on, each household will be called “user”. These groups have as their main indicator the type of
economic activity that the entire household. The power data for each appliance was based on characteristics
described in the surveys and making assumptions based on the DaftLogic database [40].



3.3. Demand scenarios
The devices of low power and daily use are proposed as a starting point to establish the scenarios. The rest
of the scenarios are proposed (Sn, n = 1, 2, . . . , 16) in a modular way with each one of the appliances of
occasional and atypical use (Tables 1 and 2).

Table 1: Definition of the modular scenarios from base scenario proposed for user A. (*) Variable power
and cycle of use; (**) Atypical Use; (***) Seasonally variable power [36]. The Baseline Scenario for user A
considers: 3 Indoor Bulbs, 1 Outdoor Bulb, 1 Radio, 1 TV, 2 Phone Charger, 1 Water heater, 1 Mixer*.

Appl. S1 S2 S3 S4 S5 S6 S7 S8 S9

Freezer 1* 1 1* 1*

Fridge 1 1 1* 1*

Welder 1*** 1***

Grinder 1*** 1***

Industrial
Dryer

1 1

Table 2: Definition of the modular scenarios proposed for user B. (*) Variable power and cycle of use; (**)
Atypical Use; (***) Seasonally variable power [36]. The Baseline Scenario for user B considers: 3 Indoor
Bulbs, 1 Outdoor Bulb, 1 Radio, 1 TV, 2 Phone Charger.

Appl. S10 S11 S12 S13 S14 S15 S16

Water pump 1 1

Blender 1 1

Iron** 1 1

Washing machine** 1 1

Mill** 1 1

DVD 1 1

To propose the scenarios that consider mixed distance education (through community radios) according to
the guidelines established by local authorities. [41, 42]. A continuous educational radio program by levels
has been assumed over a period of 30 minutes [43], based on earlier protocols in the region (Peru). The
temporal gradients were added to the base scenario based on the number of students according to the surveys,
with a maximum of 3 and 5 people for the type of users A and B respectively, thus proposing 8 scenarios
(CSn, n = 1, 2, 3. . . , 8).

4. Results and Discussion
4.1. Estimated annual demand

Figure 2: Left;Average demand per day for March, comparison between the average per time change and the
typical and occasional demand curves for the S7 scenario. Right; Normalized curves of average, typical and
occasional demand during March for the S7 scenario.



With all the input data of the RAMP tool defined, the average monthly demand for one year was estimated
for the proposed scenarios. Although, the robustness of the model is not altered by the individual estimation
of users or appliances. The presentation of the average demands (per minute) is not representative. The
scenario S7 (Figure 2) is taken as a reference because its characteristics allow to visualize an extreme case
of underestimation.

4.2. Generalization based on nonlinear regression

Figure 3: Left; Nonlinear adjustment of the variation of NPC as a function of LLP, graphical representation of
MDM for S14. Right; Break point for the adjusted curves of NPC as a function of LLP for the some scenarios
with productive activities and distance education proposed.

It has been possible to generalize the functional relationship between LCOE and NPC, and the probability of
the system of not being able to supply a fraction of the required energy (LLP). The functional relationships
were drawn through exploratory iterations, and the Equations 8 and 9 establishes the generalization of this
exploration. In all cases, a determination coefficient greater than 0.99 was obtained. Something to take into
consideration is that those scenarios with only productive activities (Tables 1 and 2), the cost of energy and
the total investment cost is higher (Figure 3). The generalization extends to the proposed distance education
scenarios for both indicators with respect to the indirect relationship with the number of students and the in-
crease in the LCOE and NPC. In scenarios where demand increases, the cost of energy supply decreases, at
the expense of increasing the risk of blackouts, due to the decrease in the nominal capacity of the battery bank
(BNC) and NPC.

4.3. Finding the Breaking Point
Figure 3 (right) shows the critical points of some of the proposed scenarios, obtained with the MDM. Something
remarkable is that the behavior not correlated with the demand of the limit values in the functions (obtained in
4.2.) extends to the breaking points.
The initial points of the iteration were given by the intersection of the secant with the functional relationship
found. Note that each of the scenarios will have two critical points (optimal LCOE and NPC). The meaning
of this point is the change in strategy from shaving the peak to reducing demand in other places. This lead
to stop reducing the investment in technology and start reducing the operation cost (Table 3). It is important
to highlight the comparative importance of the scenarios without restrictions of economic activities and most
frequently the scenarios with distance education (1 student per household) for the two types of users.

4.4. LL contrast based on modular demand
With the critical point obtained in the previous section, the SHS has been resized at the point where the amount
of energy supplied does not significantly affect the total investment cost of the system and the unit cost of en-



Table 3: Summary of optimization results at critical points of LCOE and NPC. CP = critical point AVG = average,
SD = standard deviation, MAX = maximum, MIN = minimum, S9 = user A without restrictions, S16 = user B
without restrictions.

CP LCOE CP NPC

BNC NPC LCOE BNC NPC LCOE

Wh K USD USD/KWh Wh K USD USD/KWh

USER A

AVG 1.56 3.603 0.671 1.60 3.671 0.68

MAX 5.69 8.750 1.768 5.75 8.827 1.78

MIN 0.47 1.017 0.384 0.45 0.982 0.38

S9 3.05 10.081 0.560 2.46 8.473 0.47

CS1 3.05 10.081 0.560 2.46 8.473 0.47

USER B

AVG 0.44 0.880 0.720 0.39 0.787 0.65

MAX 0.85 1.648 1.120 0.54 1.112 0.76

MIN 0.33 0.665 0.622 0.31 0.645 0.60

S16 0.70 1.397 0.727 0.67 1.362 0.71

CS4 3.05 10.081 0.560 2.46 8.473 0.47

Figure 4: Average total annual demand contrasted with the modular demand of each appliance and the LL,
obtained with an LLP at an optimal LCOE (left) and NPC (right) for the S7.

ergy. It is very important to analyze which equipment will be affected by the inability of the SHS to supply the
total of the required demand. This incidence will allow us to observe the possible effect on productive activities
(Tables 1 and 2). Likewise, in the scenarios with distance education, it allows to visualize those appliances that
could be compromised.

The influence of the loss load on frequently used appliances with high energy consumption is remarkable,
likewise this is explained by the behavior of the total demand of the proposed scenario, this behavior is ex-
tensible to other scenarios with activities productive with high consumption appliances such as the scenario
illustrated in Figure 4, this contrast is less marked in an average representative curve. This could be explained
by the greater incidence of the other more frequently used appliances on the total demand, however, during
the short period of use, the system would have a drastic momentary inability to supply power to the system.
Peak demand hours coincide with the operating hours of appliances involved in high-consumption productive
activities around 12:00 noon. These differences are less appreciable in the scenarios with education due to
the closeness in characteristics (in terms of demand) with the base scenarios. Likewise, these implications on
the modular demand curves are not easily appreciable and interpretable in the unrestricted scenarios.



5. Conclusion
In this work, a sequence of steps is exposed to be able to evaluate the energy supply capacity of an SHS in a
remote population of a developing country. For this purpose, each electrical appliance available in the homes
and their characteristic productive use was considered. 26 scenarios were proposed, considering productive
activities and distance education. The SHS were dimensioned based on the estimated demands for one year
and the meteorological data obtained and calculated from the case study. Through non-linear regression based
on two mathematical methods, the relationship between the techno-economic indicators of the SHS and the
probability that the system was not able to supply a fraction of total demand was found. Using geometric and
numerical techniques, the limit that the system will not be able to supply a certain portion of the demand without
compromising the investment in the SHS and the unit price of the energy supplied was determined. At this
boundary, the demand per appliance was contrasted to analyze the SHS service with respect to the energy
not supplied and the individual activities of each type of household.
For the analysis case study, it was found that the relationship between the total investment cost of the SHS and
the unit price of energy service has a general form, regardless of the proposed scenario. This is verifiable by a
coefficient of determination greater than 0.99 in each scenario. The analysis showed that at the breaking point
it would lead to stop reducing investment in technology and begin to reduce the cost of operation. Another
finding is that it is necessary to schedule the demand before sizing this type of systems.
Finally, in order to ensure a good transparency, reproducibility and re-usability of this work, all the datasets,
scripts and models are released under an open license and are available in the following repository: [44].
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