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Objectives

- To derive a methodology to reconstruct missing information in satellite data
- Based on neural networks
- Making use of ~four decades of sea surface temperature measurements
- Able to retain small scale variability

- To assess the benefit of using neural networks in comparison with other state-of-the-art methodologies
- DINEOF (Data Interpolating Empirical Orthogonal Functions)




Data used

[
e 4 km spatial resolution
e Liguro-Provencal basin (western Mediterranean Sea)
e 1 April 1985 to 31 December 2009 (25 years)
® 47 % of missing data
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Daily Advanced Very High Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) data
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Challenge: training on gappy data (lots of gaps!)

SST 29-Sep-2009

SST 25-Sep-2009 SST 26-Sep-2009 SST 27-Sep-2009 SST 28-Sep-2009

SST 03-Oct-2009
28

275

27

26.5

26

25.5

25




Methodology

DINCAE: Data-Interpolating Convolutional Auto-Encoder
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Auto-Encoder: used to efficiently compress/decompress
data, by extracting main patterns of variability
- Similarity to EOFs

Convolutional: works on subsets of data, i.e. trains on
local features

Missing data handled as data with different initial errors
- If missing, error variance (6% tends to «

Input data:

- SST/c? (previous day, current day, following day)
- 1/c* (previous day, current day, following day)

- Longitude

- Latitude

- Time (cosine and sine of the year-day/365.25)
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5 encoding layers decoding layers

3x3 filters applied at each layer
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Average pooling layers

Reduce size by retaining the average
value on 2x2 boxes



2 fully connected layers output SST and

Input SST and error variance
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+ 2 drop-out layers

Take out 30% of neurons (pixels) to avoid
overfitting
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small-scale features
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Decoding layers:
upscaling by nearest neighbour interpolation




Baseline method to be improved

DINEOF (Data Interpolating Empirical Orthogonal Functions)
A reconstruction method based on the EOF basis from the dataset
~15 years of development & improvements

http://www.dineof.net/ DINEQF/

Original data 08-Sep-2019



http://www.dineof.net/DINEOF/

Results

Cross-validation: data removed from the last 50 images of the times series (with cloud mask from first 50
images)

Averaging epochs 200 to 100 improved DINCAE results
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Results

Reconstruction examples

SST 18-Oct-2009

Expected error (std. dev.)
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Small-scale variability

True SST with added clouds
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Some artifacts appear when too few data
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Conclusions & future work

A convolutional Autoencoder approach to reconstruct missing data

- Missing data handled by including expected error variance in the input data
- Estimation of missing data + estimation of error of the reconstruction obtained _ -

Future work includes:

- Multivariate analyses
- Work with higher spatial resolution data
- Use of other NN architectures



number type output size parameters

1 input 112x 112 x 8

2 conv. 2d 112x 112 x 16 n. filters = 16, kernel size = (3,3)
3 pooling 2d 56x56x 16 pool size = (2,2), strides = (2,2)
4 conv. 2d 56 x 56 x 24 n. filters = 24, kernel size = (3,3)
5 pooling 2d 28 x28 x24 pool size = (2,2), strides = (2,2)
7 conv. 2d 28 x 28 x 36 n. filters = 36, kernel size = (3,3)
8 pooling 2d 14x 14 x 36 pool size = (2,2), strides = (2,2)
9 conv. 2d 14x 14 x 54 n. filters = 54, kernel size = (3,3)
10 pooling 2d 7x7x54 pool size = (2,2), strides = (2,2)
11 fully connected layer 529

12 drop-out layer 529 drop-out rate for training = 0.3
13 fully connected layer 2646

14 drop-out layer 2646 drop-out rate for training = 0.3
15 nearest neighbor interpolation 14 x 14 x 54

16 concatenate output of 15and 8 14 x 14 x 90

17 conv. 2d 14 x 14 x 36 n. filters = 36, kernel size = (3,3)
18 nearest neighbor interpolation 28 x 28 x 36

19 concatenate output of 18 and 5 28 x 28 x 60

20 conv. 2d 28x28x24 n. filters = 24, kernel size = (3,3)
21 nearest neighbor interpolation 56 x 56 x 24

22 concatenate output of 21 and 3 56 x 56 x 40

23 conv. 2d 56x56x 16 n. filters = 16, kernel size = (3,3)
24 nearest neighbor interpolation 112 x 112 x 16

25 concatenate output of 24 and 1  112x 112 x 26

26 conv. 2d 112x112x2 n. filters = 2, kernel size = (3,3)




