DINCAE: reconstruction of missing satellite data with a convolutional auto-encoder

Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers

Phi-Week 9-13 September 2019

NACIONALNI INŠTITUT ZA **BIOLOGIJO** NATIONAL INSTITUTE OF **BIOLOGY**

Objectives

- To derive a methodology to reconstruct missing information in satellite data
 - Based on neural networks
 - Making use of ~four decades of sea surface temperature measurements
 - Able to retain small scale variability
- To assess the benefit of using neural networks in comparison with other state-of-the-art methodologies
 - DINEOF (Data Interpolating Empirical Orthogonal Functions)

Data used

- Daily Advanced Very High Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) data
- 4 km spatial resolution
- Liguro-Provençal basin (western Mediterranean Sea)
- 1 April 1985 to 31 December 2009 (25 years)
- 47 % of missing data

Average SST (°C)

Challenge: training on gappy data (lots of gaps!)

Methodology

DINCAE: Data-Interpolating Convolutional Auto-Encoder

Auto-Encoder: used to efficiently compress/decompress data, by extracting main patterns of variability

- Similarity to EOFs

Convolutional: works on subsets of data, i.e. trains on local features

Missing data handled as data with different initial errors

- If missing, error variance (σ^2) tends to ∞

Input data:

- SST/ σ^2 (previous day, current day, following day)
- $1/\sigma^2$ (previous day, current day, following day)
- Longitude
- Latitude
- Time (cosine and sine of the year-day/365.25)

3x3 filters applied at each layer

+ 2 drop-out layers

Take out 30% of neurons (pixels) to avoid overfitting

Baseline method to be improved

DINEOF (Data Interpolating Empirical Orthogonal Functions) A reconstruction method based on the EOF basis from the dataset ~15 years of development & improvements

http://www.dineof.net/DINEOF/

Results

Cross-validation: data removed from the last 50 images of the times series (with cloud mask from first 50 images)

Averaging epochs 200 to 100 improved DINCAE results

Reconstruction results -full time seriescompared to WOD in situ data (under clouds)

RMS (DINEOF) $1.1676^{\circ}C$

RMS (DINCAE) 1.1362°C

Results

Reconstruction examples

True SST 18-Oct-2009

True SST with added clouds

Expected error (std. dev.)

Small-scale variability

Results

Reconstruction examples

True SST 25-Nov-2009

True SST with added clouds

Expected error (std. dev.)

Some artifacts appear when too few data

If you want to know more...

- Manuscript under revision (open review) in GMD

- Code available at:

https://github.com/gher-ulg/DINCAE

Conclusions & future work

A convolutional Autoencoder approach to reconstruct missing data

- Missing data handled by including expected error variance in the input data
- Estimation of missing data + estimation of error of the reconstruction obtained

Results similar (& slightly better) than established approach (DINEOF)

Small scale variability retrieved in reconstructed data

Future work includes:

- Multivariate analyses
- Work with higher spatial resolution data
- Use of other NN architectures

number	type	output size	parameters
1	input	112 x 112 x 8	
2	conv. 2d	112 x 112 x 16	n. filters = 16, kernel size = $(3,3)$
3	pooling 2d	56 x 56 x 16	pool size = $(2,2)$, strides = $(2,2)$
4	conv. 2d	56 x 56 x 24	n. filters = 24, kernel size = $(3,3)$
5	pooling 2d	28 x 28 x 24	pool size = $(2,2)$, strides = $(2,2)$
7	conv. 2d	28 x 28 x 36	n. filters = 36, kernel size = $(3,3)$
8	pooling 2d	14 x 14 x 36	pool size = $(2,2)$, strides = $(2,2)$
9	conv. 2d	14 x 14 x 54	n. filters = 54, kernel size = $(3,3)$
10	pooling 2d	7 x 7 x 54	pool size = $(2,2)$, strides = $(2,2)$
11	fully connected layer	529	
12	drop-out layer	529	drop-out rate for training $= 0.3$
13	fully connected layer	2646	
14	drop-out layer	2646	drop-out rate for training $= 0.3$
15	nearest neighbor interpolation	14 x 14 x 54	
16	concatenate output of 15 and 8	14 x 14 x 90	
17	conv. 2d	14 x 14 x 36	n. filters = 36, kernel size = $(3,3)$
18	nearest neighbor interpolation	28 x 28 x 36	
19	concatenate output of 18 and 5	28 x 28 x 60	
20	conv. 2d	28 x 28 x 24	n. filters = 24, kernel size = $(3,3)$
21	nearest neighbor interpolation	56 x 56 x 24	
22	concatenate output of 21 and 3	56 x 56 x 40	
23	conv. 2d	56 x 56 x 16	n. filters = 16, kernel size = $(3,3)$
24	nearest neighbor interpolation	112 x 112 x 16	
25	concatenate output of 24 and 1	112 x 112 x 26	
26	conv. 2d	112 x 112 x 2	n. filters = 2, kernel size = $(3,3)$