Ocean reanalysis for the study of the evolution of the state of the ocean over the last decades

Aida Alvera-Azcárate

IV International Symposium on Marine Sciences

Vigo, 20 June 2018

Ocean reanalysis and the quest for truth

Aida Alvera-Azcárate

IV International Symposium on Marine Sciences

Vigo, 20 June 2018

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

- \rightarrow largest heat capacity in the climate system: energetic buffer
- \rightarrow controls the rate of climate change

 \rightarrow Ocean circulation redistributes heat (and gases), and variability in that circulation determines seasonal to decadal variability in climate

Consequences: sea level rise, rise of temperature, sea ice melting, de-oxygenation, acidification

 \rightarrow Assessing the role of the ocean and sea ice on climate variability is critical for understanding global climate change

 \rightarrow We need to know the state of the ocean and its evolution over the last decades to understand climate change

State of the ocean refers to the description of its temperature, salinity, density, elevation and currents, and its variation in space and time

To determine the state of the ocean, we can use:

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

Measure it!

Observations: satellite

→ THE ESA EARTH OBSERVATION PROGRAMME

Meteorological Missions

driven mainly by Weather forecasting and Climate monitoring needs. These missions developed in partnership with EUMETSAT include the Meteorological Operational satellite programme (MetOp), forming the space segment of EUMETSAT's Polar System (EPS), and the new generation of Geostationary Meteosat satellites (MSG & MTG satellites).

Copernicus Sentinel Missions of the by

Users needs to contribute to the European Global Monitoring of Environment & Security (GMES) initiative. These satellite missions developed in partnership with the EU include C-band imaging radar (Sentinel-1), high-resolution optical (Sentinel-2), optical and infrared radiometer (Sentinel-3) and atmospheric composition monitoring capability (Sentinel-4 & Sentinel-5 on board Met missions MTG and EPS-SG respectively). Earth Explorer Missions driven by Scientific needs to advance our understanding of how the ocean, atmosphere, hydrosphere, cryosphere and Earth's interier operate and interact as part of an interconnected system. These Research missions, exploiting Europe's excellence in technological innovation, pave the way towards new development of future E0 applications. Missions With Partners

Observations: satellite

20160917 All orbits (ascending | descending) Sentinel 3A SLSTR Sea Surface Temperature N= 86533793, Min= -3.16, Max= 35.40 (°C), Clear-Sky Fraction= 13.61 %

Observations: satellite

20160917 All orbits (ascending | descending) Sentinel 3A SLSTR Sea Surface Temperature N= 86533793, Min= -3.16, Max= 35.40 (°C), Clear-Sky Fraction= 13.61 %

Continuous time series from satellite data

DINEOF: Data Interpolating Empirical Orthogonal Functions

- Technique to fill in missing data in geophysical data sets, based on an EOF decomposition
- Truncated EOF basis to calculate missing data (iterative method)
- EOFs extract main patterns of variability
- Reduced noise
- Optimal number of EOFs?: reconstruction error by cross-validation
- Uses EOF basis to infer missing data: non-parametric
- No need of a priori information (correlation length, covariance function...)
- Spatio-temporal coherence exploited to calculate missing values

07-Jun-2018

http://www.dineof.net/DINEOF/

Continuous time series from satellite data

Global SST temperature, TMI on 25 September 2010

Example of DINEOF reconstruction

Study shows influence of monsoon and ENSO on SST

by PhD student Ngu Huynh (U. Liege)

Huynh et al, 2016, Journal of Oceanography

20 years South China Sea SST, CHL and winds DINEOF reconstruction

Example of DINEOF reconstruction

Average SST over the South China Sea

An average of 88% of missing data in the initial dataset (multivariate analysis with wind)
 Calculating average value, correlations with other variables, or trends is not possible with such a high amount of missing data

Limited to the last ~40 years (SST)

Not all variables are available (salinity only for 10 years, no direct currents measured so far)

- Limited to the surface of the ocean
- \rightarrow We need to estimate the 4D (space + time) variations in the ocean
- \rightarrow We can then turn ourselves to in situ measurements

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

www.argo.ucsd.edu

Observations: in situ

NOAA NODC Ocean Climate Laboratory http://www.nodc.noaa.gov/OCL/

Number of temperature observations from 2010 to 2018

NOAA NODC Ocean Climate Laboratory http://www.nodc.noaa.gov/OCL/

Number of temperature observations from 1950 to 1960

Geographic distribution of casts (73784 casts)

NOAA NODC Ocean Climate Laboratory http://www.nodc.noaa.gov/OCL/

Temperature observations from 1920 to 1930

In situ observations are heterogeneously distributed, both in space and time \rightarrow The scales of variability that we want to study might not be well resolved

 \rightarrow we need to grid the data if we want a complete estimate

Observations have errors:

- Instrumental errors (limited precision or possible bias of the sensor)

- **Representative errors:** the observations do not necessarily correspond to the field we want to obtain. For example, we want to have a monthly average, but the observations are instantaneous (or averages over a very short period of time).

- Synoptic errors: all observations are not taken at the same time.

- Other errors sources: human errors (e.g. permutation of longitude and latitude), transmission errors, malfunctioning of the instrument, wrong decimal separators...

Observations: the gridding problem

- Subjective way (by hand...) \rightarrow

from Walsh et al 2016

- More "objectively", with a set of predefined mathematical operations

DIVA: Data Interpolating Variational Analysis

It uses the variational inverse method (VIM) or variational analysis (Brasseur et al., 1996, Troupin et al. 2012) to find a field with the following characteristics:

\rightarrow smooth

- \rightarrow somewhat **close** to first guess (background climatology)
- \rightarrow close to the observed values

This is achieved by defining a cost function which penalizes a field that doesn't satisfy those requirements.

"smooth" is quantified by averaging the square of the first and second derivatives of the field (for a slowly varying field those derivatives are small) and a correlation length.

"close" is quantified using the RMS error and signal-to-noise ratio.

Those different requirements are **weighted** to define what is more important, a smooth field or a field close to observations.

Gridding in situ data with DIVA

Reality (unknown)

21

20

19

17

21

20

19

18

17

Observed reality (with noise/errors)

Linear Interpolation

21.5

21

20.5

20

19.5

19

18.5

18

17.5

21.5

21

20.5

20

19.5

19

18.5

18

17.5

- Study of the Gulf Stream response to the North Atlantic Oscillation since 1940
- 40 million data
- Monthly analyses of T & S over North Atlantic Ocean

Main conclusion found a 1-year lag between NAO index and the position of the Gulf Stream

from PhD student Sylvain Watelet (U Liege) - Watelet et al, 2017 (JPO)

yeah, sounds great, but this is too complex...

DIVA for all

X

File Collection View Import Export Tools Help

+ っ C

30W_Oxygen_on_Phosphate

Station	10(B)				
Position	35.183°W / 9.62°S				
Date	24 November 1987				
Time	00:00				
Depth Range [m]	[1 - 163]				
Sample: 1 / 9		Q			
1: Depth [m]	1	1			
2: Temperature [d	27.17	1			
3: Salinity [psu]	36.999	1			
4: Oxygen [µmol/kg]	201	1			
5: Phosphate [µmo	0.14	1			
6: Silicate [µmol/kg]	1.2	1			
7: Nitrate [µmol/kg]	0	1			
drvd: Potential Temp	27.17	1			
drvd: Absolute Salini	37.174	1			

SAVE_LG1

Isosurface Values

Station ID: 1

Cruise

.

Longitude	-35.183
Latitude	-9.620
Time [yr]	1987.896
Day of Year	328
Temperature [degC] @ Depth	27.17
Salinity [psu] @ Depth [m]=first	36.999
Oxygen [µmol/kg] @ Depth [201
Phosphate [µmol/kg] @ Depth	0.14

RW Q|- - 369 / 369: 30W_Oxygen_on_Phosphate *

https://odv.awi.de/

4

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

Next step: merge observations and models

Data assimilation

Data assimilation

Data assimilation:

Combine observations and model in an optimal way

Taking their uncertainties/errors into account

- Errors in an ocean model might be due to
- \rightarrow errors in initial conditions
- \rightarrow errors in open ocean boundary conditions
- \rightarrow errors in atmospheric fields (wind, air temperature, ...)
- \rightarrow errors in bathymetry
- \rightarrow inappropriate parametrizations
- \rightarrow discretization error

• • •

Also, model and obs might have

mismatch in resolved scales mismatch in resolved processes

It is essential to know how these uncertainties affect the results of the model.

Data assimilation can be used to reduce the effect of these error sources, i.e. **improve the knowledge of the ocean state**

Overview of data assimilation methods

Simple ad-hoc methods

- \rightarrow Direct insertion
- \rightarrow Nudging: adding a term to the model equation that pulls the model towards the observations

Statistical estimation (estimate the state with the lowest error)

- \rightarrow Optimal interpolation
- \rightarrow Kalman Filter
- \rightarrow Kalman Smoother

Variational methods (estimate the state with the highest probability)

 \rightarrow 3D-Var \rightarrow 4D-Var (with time)

Overview of data assimilation methods

Direct insertion

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

Ocean Reanalyses: long model runs

 \rightarrow a comprehensive estimation of the state of the ocean state over the **last decades** (mainly temperature, salinity, sea level and currents)

 \rightarrow calculated by merging hydrodynamic ocean models and all available observations using data assimilation

\rightarrow Homogeneous

→ Ocean reanalyses are critical to understand climate and to predict future change

- \rightarrow Study long-term changes in the ocean
- \rightarrow Initial conditions in hydrodynamic models:
 - for operational forecasts of the ocean
 - for short-term predictions (study of specific processes)
 - for climate-related activities
- \rightarrow Study of ocean-atmosphere interactions (heat balance, global water cycle)
- \rightarrow Computation of transports across ocean basins and key straits (transport of heat)
- \rightarrow Monitoring the ocean, near-real time climate signals
- \rightarrow Serving Copernicus downstream services
 - delivering products and services to manage and protect the environment and natural resources, and ensure civil security

Ocean Reanalyses

So what's the problem??... There can be:

- Different hydrodynamic models
- Different data quality procedures
- Different data assimilation approaches
- Different spatial and temporal resolution
- Global of regional coverage

Let's make a parenthesis...

- A wide range of ocean syntheses exist, each created to fulfill specific objectives.
- Ocean syntheses have been **insufficiently evaluated** products present significant differences!
- Lack of coordination between different efforts
- Users of ocean syntheses do not know:
 - Which specific product to use for their application
 - How good this product is
 - How a particular ocean synthesis differs from others

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

COST is an EU-funded programme that enables researchers to set up their interdisciplinary research networks in Europe and beyond. COST Actions are a **networking instrument** for researchers to cooperate and coordinate nationally funded research activities.

Bottom-up strategy, favour interdisciplinary projects

Provide networking opportunities

Special focus: early research scientists, inclusiveness target countries

- \rightarrow Pan-European
- \rightarrow Open to all researchers

Networking tools available through COST: Workshops Conferences Training schools Short-term scientific missions (STSMs) Dissemination activities.

November 2014 to November 2018

Main objective: establish and consolidate a network of European scientists working on the generation and evaluation of ocean synthesis products, data providers, experts in data analysis, data assimilation and ocean modelling...

Support individual mobility, strengthen existing networks and foster collaboration between researchers.

- compile an inventory of end-user requirements (quality and availability of ocean syntheses)
- improve the understanding of the value and use of ocean syntheses
- issue recommendations on which data products are the most suitable for which task.
- increase awareness of ocean synthesis products among end users

http://www.eos-cost.eu

A COST Action to **improve the coordination** of European efforts in the evaluation of ocean syntheses:

- better understanding of the value and use of ocean syntheses
- promote the use of ocean syntheses

Chairs: Aida Alvera-Azcárate (University of Liège, BE) Keith Haines (University of Reading, UK)

a.alvera@ulg.ac.be

Scientific community (ocean, weather, climate modellers, climate researchers, oceanographers) working in:

national research centres operational centres (e.g. Mercator Ocean in France) national weather services (e.g. Met Office in the UK) climate research centres...

Public sector

Policy makers Local authorities in coastal regions, marine safety National environmental agencies

Private sector and other non-scientific representatives of the European society

Fisheries management authorities Insurance companies Commercial shipping Offshore renewables as well as Oil and Gas

Plus all end users of ongoing European projects (MyOcean2, GODAE, CLIVAR/GSOP...)

EOS in numbers

- 4 international workshops
- 4 training schools (61 students funded by EOS)
- 10 working group meetings
- 5 Management Committee meetings
- 27 short-term scientific missions
- So far, ~220 scientists have been funded by EOS

Network within the Network: Polar reanalyses

Polar regions reanalises Intercomparison Network

Polar regions are facing very rapid change over the last years, therefore are a special region of interest within EOS

An intercomparison of 10 reanalyses in Arctic and Antarctic regions has been realised

"An assessment of ten ocean reanalyses in the polar regions", Uotila et al, Climate Dynamics 2018

In the paper:

"...our best estimate of what the truth might look like"

"...this paper does not seek to tell the user which reanalysis to use, but to show which are outliers for certain variables, which can still be very useful."

Network within the Network: Polar reanalyses

Name	C-GLORS025v5	ECDA3	GECCO2	GLORYS2v4	GloSea5-GO5	MOVE-G2i	ORAP5	SODA3.3.1	TOPAZ4	UR025.4
Institution	CMCC	GFDL/NOAA	Hamburg University	Mercator Océan	UK MetOffice	MRI/JMA	ECMWF	University of Maryland	NERSC	University of Reading
Nominal horizontal resolution	0.25°	1°	1° × 1/3°	0.25°	0.25°	1° × 0.3° – 0.5°	0.25°	0.25°	12–16 km	0.25°
Vertical resolu- tion	50 z-levels	50 z-levels	50 z-levels	75 z-levels	75 z-levels	52 z-levels	75 z-levels	50 z-levels	28 z-isopycnal layers	75 z-levels
Top-level thickness	$\sim 1 \text{ m}$	10 m	10 m	~ 1 m	~ 1 m	2.25 m	~1 m	~ 10 m	min 3 m	~ 1 m
Ocean-ice model	NEMO3.2-LIM2	MOM4-SIS	MITgcm	NEMO3.1- LIM2	NEMO3.4- CICE	MRI.COM3- CICE4	NEMO3.4- LIM2	MOM5-SIS	HYCOM-EVP SI	NEMO3.2- LIM2
Time period	1980-2015	1961-2012	1948-2014	1992-2015	1993-2012	1980-2012	1979-2012	1980-2015	1991-2016	1989-2010
Initialization	Spinup	Spinup	Cold start	Cold start	Spinup	Spinup	Spinup	Spinup	Cold start	Cold start
Source of atmospheric forcing data	ERA-Interim	Coupled	NCEP RA1	ERA-Interim	ERA-Interim	JRA-55 ^a	ERA-Interim	NASA MERRA2	ERA-Interim	ERA-Interim
Ocean restor- ing	Large scale bias correction to EN3v2a	Fully coupled	None	T, S restor- ing towards EN4.1.1 for z > 2000 m and lat $<$ 60°S ($\tau = 20$ years)	Surface Haney SSS restoring (- 33.333 mm/day/ PSU), 3D T/S to ENACT3 2004–2008 climatology ($\tau = 1$ year)	Relaxing (by IAU) T/S to merged PHC3- WOA13 climatology $(\tau = 5 \text{ years})$	Relaxation to OSTIA/ NOAA OIv2d SST	Restoring to mean T and S ($\tau =$ 10 years). Relaxation to WOA SSS (τ = 3 months)	Relaxing T/S to merged PHC3– WOA13 climatology	None
Sea-ice DA method	Nudging	None (SST)	None (SST)	Reduced order KF	3DVAR	3DVAR	3DVAR-FGAT	None (SST)	EnKF	OI
Sea-ice DA variables	SIC, Arctic SIT	-	-	SIC	SIC	SIC	SIC	-	SIC, SIV	SIC
Sea-ice DA sources	NOAA OIv2d, PIOMAS	-	-	CERSAT	OSISAFv2	MGDSST	OSTIA, NOAA OIv2d	-	OSISAF	OSISAF
Ocean DA method	3DVAR	EnKF	4DVAR (adjoint)	Reduced order KF + 3DVAR large scale bias	3DVAR	3DVAR	3DVAR	OI	EnKF	ΟΙ

Network within the Network: Polar reanalyses

10 km

North Atlantic ORA-IP: intercomparison network aiming at better understand the differences between reanalyses of the North Atlantic. AMOC estimates

- Intercomparison of 12 reanalyses to determine variability, differences and reasons for them ECCOv4r3
- Can we learn what makes a reanalysis good at specific processes?

AMOC: Atlantic Meridional Overturning Circulation

System of ocean currents driven by T & S differences

Transport of heat from tropics to north (& Europe)

Important component of climate system

Variability in AMOC drives changes in Europe's climate

Meridional heat transport from reanalyses and climatologies, 1993-2000

yeah, sounds great, but this is **really** too complex...

Where to access ocean reanalyses

· ·

Universität H	lamburg Der Bildung				ICDC Sitemap English						
ICDC Home	Daten	Projekte	Beratung	News & Workshops	Kontakt						
• MIN-Fakultät > CEN >	ICDC Datenzentrum > Projekte	► Easy INIT ► Ocean Synthesis Direct DC	ory		٩						
Ocean Synthes The following list provid an syntheses. More Info	sis/Reanalysis Dire des basic information on the a ormation on regional ocean sp	ctory available global ocean syntheses /nthesis and further information	and some regional oce- on some global pro-	 Biogeochemische Nordso Easy INIT Ocean Synthesis Direct 	e-Klimatologie						
ucts are provided at th	e Copernicus Marine Environ	ment Monitoring Service (CMEM	s).	ESA-CCI Sea-Ice-ECV Pro						(
Links to the project web pages and access to monthly mean data of the products via HTTP, FTP or OPeNDAP protocol and visualization with Live Access Server (LAS) are included if available and marked with an icon. The			HTTP, FTP or OPeNDAP harked with an icon. The	 Historische hydrograph KLIWAS Nordsee Klimat 		COPERN MARINE	NICUS ENVIRONMEN	T MONITORIN	G SERVICE	Search terms	OI
rmation. Currently on	le project name, domain and ly a limited number of produ	time period. Click on the project cts are available but the catalog v	name to get more in- will be completed in the	 Baltic and North Seas C 	European Commission	Providing PROD	OUCTS and SERVICES fo	or all marine application	5	Contraction	
xt months.				► MBT Korrektur & Interp						SHORT-CUT	
	AOR3D	82°5 - 82°N	1993-2010	 Monitoring des Wärme 	ABOUT US MAR BEI	KETS & NEV	WS SCIENCE & MONITORII	& TRAINING & NG EDUCATION	SERVICES PORTFOLIO	TO SERVICES	, >
•				Monitoring the Daily Cl						REGISTER	
	ANTIC- EUROPEAN RTH WEST SHELF- OCEAN	ATLANTIC- EUROPEAN NORTH WEST SHELF-	1985-2014 💌	SAMD Archive SMOSice Projekt					·	SCIENTIFIC	
PHY	SICS REANALYSIS FROM	OCEAN		 XBT Korrektur & Interpresent 	— A	CCESS YOU	JR OCEAN IN	FORMATION		QUALITY	
0							GETTING STARTED \rightarrow				P
• Atla	intic-Iberian Biscay Irish-	Atlantic Ocean North-	2002-2011 🛃							COLLABORATIVE	0
)S catal	ogue, http:	//www.eos-c	cost.eu/		OCEAN PRODUCTS Ocean product catal download or visualiz accross more than 1 variables, including I current and forecast	logue, to ₂e data o historic, ₂ed data.	PCEAN NONITORING NDICATORS ssential variables nonitoring the health of the cean RENDS	OCEAN Extensive an the state of nearly 20 ye severe / nota events EXPERTISE	nual analysis on he ocean over ars and ble annual	A LATEST NEWS FLU CMEMS:8027] [CMEMS OCEANCOLOUR NRT MULTIOBS products - delays in data product 2018-06-22/23 INFORMATION ALL NEW	ASH ::8028 and - Possible :tion on VS FLASF

CMEMS catalogue, http://marine.copernicus.eu/

Introduction: the role of the ocean on climate

Estimating the state of the ocean:

- Gridding satellite data
- Gridding in situ data
- Ocean models and data assimilation

Ocean reanalyses

- Definition and applications
- COST Action EOS

Concluding remarks

On validation of analyses and reanalyses

78 78 79 72 78 64

20 20 24 22 26 48

70 78 74 72 71 61

20 20 20 22 28 68

Fundel, An introduction to forecast verification

- \rightarrow Processes present in model and data are not the same
- \rightarrow Point measurements vs. area-averaged model results
- \rightarrow Higher spatial resolution: double penalty effect

"Different" ways to validate a model/reanalysis

- \rightarrow Neighbourhood methods that give credit for close forecasts
- \rightarrow Scale separation methods that isolate scale-dependent errors
- \rightarrow Object-based methods that evaluate attributes of coherent features
- attributes of conerent features
- \rightarrow Field deformation methods that measure phase and amplitude errors.

Also, an eddy in the wrong place, is it better than no eddy?

The data-model spectrum

Some final thoughts

The state of the ocean is impossible to know exactly

Uncertainties in the data Uncertainties in the models Lack of enough information

Ocean reanalyses are our best tool so far to study the state of the ocean, but many improvements necessary

A final though to all those scientists that, while knowing that the reality is impossible to know, they keep trying...

http://www.eos-cost.eu

A COST Action to **improve the coordination** of European efforts in the evaluation of ocean syntheses:

- better understanding of the value and use of ocean syntheses
- promote the use of ocean syntheses

Chairs: Aida Alvera-Azcárate (University of Liège, BE) Keith Haines (University of Reading, UK)

a.alvera@ulg.ac.be

29 March – 1 April 2016)

- Workshop on the use of models, reanalyses and observations to assess the health of the ocean environment (Liege, Belgium, 17 March 2017)

- Workshop on ocean reanalyses and inter-comparisons (Toulouse, France, 29-30 June 2017)

- Regional Climate System Modelling for the European Sea Regions (Palma de Mallorca, Spain, 14-16 March 2018)

1. School on Data Assimilation and Data Analysis Techniques (Lecce, Italy, 4-15 April 2016)

- \rightarrow Fundamentals of combining physical data in an optimal way
- $\rightarrow\,$ Bayesian and Ensemble methods
- \rightarrow Variational methods
- \rightarrow Hybrid methods (ensemble + variational)
- \rightarrow Reduced order methods
- \rightarrow Optimal interpolation
- → Data-Interpolating Variational Analysis (DIVA)
- 24 students, 9 teachers by EOS-COST

2. The Global Ocean Week (Toulouse, France, 10-14 October 2016)

- → Outlook of Copernicus Marine Service and its added value for Blue Growth
- → Focus on Copernicus Marine Service global ocean products and practical exercises.
- \rightarrow Focus on downscaling of ocean syntheses
- \rightarrow Intercomparisons of ocean syntheses available worldwide
- \rightarrow Training on the evaluation of ocean syntheses
- \rightarrow Opportunities for creating Science and SMEs Networking

21 students, 9 teachers by EOS-COST

Activities organized under EOS 3. Copernicus Marine Data in Ocean Models and Operational Applications (Hamburg, Cermany, 5-9 February 2018)

This 1-week training school was organised in collaboration with EUMETSAT. Topics covered were, among others:

 \rightarrow Learning what data and products the Copernicus Marine Data Stream provides.

→ Accessing and downloading data and products provided in the Copernicus Marine Data Stream (CODA, EUMETSAT Data archive, EUMETCast).

- \rightarrow Reconstructing missing data in satellite datasets using DINEOF.
- \rightarrow Use of CMEMS reanalysis products.

16 students, 4 teachers paid by EOS-COST (4 more students and 6 teachers by Eumetsat)

4. Training school ("Crash course") in data assimilation (Bergen, Norway, 22 to 25 May 2018)

 \rightarrow 4-day school

 \rightarrow aimed at PhD-level students and early stage scientists with beginner or no notions of data assimilation intending to apply data assimilation as part of their research.

 \rightarrow It will cover the basic notions of data assimilation, focusing on ensemble methods, illustrated with real-scale / operational applications and with the aid of practical exercises.

What is the state of the ocean?

We don't know!