

Materials and Solid Mechanics





# How finite element simulations and phase field method interact to predict material properties of additive manufacturing samples

Jocelyn Delahaye, Seifallah Fetni,

Anne Mertens,

Anne Marie Habraken



#### Contents

- Motivation
- Computational Frame work
  - Finite Element
  - Phase Field
- Conclusion











# **Motivation**

#### Provide guidance in Additive Manufacturing & Post treatment

# Background : the process



# The microstructure: bi phasic material A-B

Cell Size different in the melt pool Melt Pool core (MP Fine) Melt Pool Boundary (MP Coarse) Heat Affected Zone

#### B atoms → Walls (eutectic rich zone + precipitate) → Precipitate in the cell → Some in solid solution within the cell

Typical As-Built Material



L. Thijs,et.al , Acta Mater. 61 (2013) 1809–1819.

1.3 µm

J.G. Santos Macías et al. Acta Materialia 201 (2020)] L. Zhao et al. Materials Science & Engineering A 764 (2019)]

5

# Bi phasic material evolution

Microstructure evolution



Thermal treat 3 **FSP** 

Globules of B material can appear "Matrix" of A material (still solid solution)

Eutectic network defining wall can disappear

After Heat Treatments Friction Stir Processing

L. Zhao et al. Materials Science & Engineering A 764 (2019)]

LongLifeAM results courtesy of MMS team

# Static properties linked with microstructure







# **Computational Frame work**

<u>Today focus</u>: Thermal FE and Phase Field → Microstructure

![](_page_7_Figure_2.jpeg)

![](_page_8_Figure_0.jpeg)

![](_page_8_Picture_1.jpeg)

### **Final Microstructure**

![](_page_8_Picture_3.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Figure_1.jpeg)

# **Finite Element Model**

Predict the Tp° history, melt pool size...

# FE thermal model

▶ Lagamine thermo-mechanical-metallurgical FE code (developed since 1982)

![](_page_10_Figure_2.jpeg)

- Validated by Abaqus, Comsol, Aster and experiments
- Validated on DED for 3 materials

H.-S Tran et al. Materials & Design, 204, 128, 2017, 3D case of Ti6Al4VR. Jardin et al. Metals 2020, 10, 1554, 3D case of M4 high speed steelS. Fetni et al. Materials & Design, 204, 2021, 2D case of 316L + WC

- I TDMU collaboration (project EDPOMP)
  - → Directed Energy Deposition: FEM & Deep Learning

![](_page_10_Picture_8.jpeg)

T. Quy Duc Pham et al . ESAFORM proc. 2021 and Rice 2021

# FE thermal model applied on LPBF

- D 2D model (no thermal flow in transversal direction, 1 track per layer)
- Birth element technique
- Solid model (no fluid movement, just by increased conductivity)
- Laser absorptivity, convection and radiation coefficients adjusted to recover: melt pool size & cell size
- Material data: Heat capacity c<sub>p</sub> and conduction k
- Mesh convergence studied

 Temperature history for each material point
 Melt pool depth and width Thermal finite elements model of LPBF [PhD Delahaye unpublished results 21]

![](_page_11_Figure_8.jpeg)

# **Input Material data**

- c<sub>p</sub> and conduction k measured on LBFP samples
- BUT differential scanning calorimetry (DSC) measurement = bad 'twin' Cooling / heating rate: 10<sup>6</sup> K.s<sup>-1</sup> for LPBF ≠ 1.7 K.s<sup>-1</sup> for DSC

![](_page_12_Figure_4.jpeg)

# Model improvement?

Instantaneus c<sub>p</sub> and k computed on real temperature history

#### 4 Different models

- 1. Calphad approach (A-B equilibrium phase diagram)
- 2. Calphad apparent (Diagram shifted: heat absorbed by dissolution of 'wall')
- 3. New implemented model with kinetic effect of liquid solid interface & Sur saturation due to the high cooling rate in LPBF
- 4. Post processing of microstructure result of Phase Field simulation

![](_page_14_Figure_0.jpeg)

# Model 3: Conductivity model 💺

-microstructure AB in equilibrium -microstructure AB out of balance (sur saturation of B in A solid solution)

- → Dendrite growth model under non equilibrium conditions
- $\rightarrow$  no diffusion in solid
- ightarrow Infinite diffusion in liquid

R. Trivedi and W. Kurz, Dendritic growth, International Materials Reviews 341 39 (2) (1994)

w. J. BOETTINGER, S. R. CORIELL, and R. TRIVEDI: 'Fourth conf. on rapid solidification 13; 1988, Baton Rouge, LA, Claitor's Publishing Division.

# FE simulation sensitivity

![](_page_15_Picture_1.jpeg)

For fixed convection & radiation coefficient, Identified laser absorptivity highly depends on input data

![](_page_15_Figure_3.jpeg)

Why ? 2D FE assumption + *Marangoni* not accurate (*liquid convection generated by variable surface tension in the melt pool*)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

As built

![](_page_16_Picture_3.jpeg)

#### After post processing

# **Phase Field Model**

#### Predict microstructure evolution

# Phase Field Model description (1/4)

#### Free energy formulation

- Kim Kim Suzuki model to compute the phase η
- Interface considered as mixture of both phases A and B with the same chemical potential

![](_page_17_Figure_4.jpeg)

![](_page_17_Figure_5.jpeg)

# Phase Field Model description (2/4)

Elastic strain

### Elastic strain energy Stresses Total strain $\begin{cases} \nabla_{j}\sigma_{ij} = 0 \\ \sigma_{ij} = C_{ijkl} \\ \varepsilon_{kl} - \varepsilon_{kl}^{0} \end{cases}$ Eigen strain

Stiffness tensor

![](_page_18_Figure_2.jpeg)

A. Khachaturyan, Theroy of Structural Transformations in Solids, 1983.

![](_page_18_Picture_4.jpeg)

# Phase Field Model description (3/4)

#### Enhanced diffusion by quenched-in vacancies

![](_page_19_Figure_2.jpeg)

# Phase Field Model description (4/4)

#### Governing equations

- Cahn-Hilliard for conserved field (A and B quantity)
- □ Allen-Cahn for non-conserved field (phase  $\eta$ )
- Solved by Fourier spectral methods

![](_page_20_Figure_5.jpeg)

J. Zhu, L.-Q. Chen, J. Shen, V. Tikare, Physical Review E 60 (1999) 3564–3572.

### Phase Field Model input

| Model parameter                                                     | Symbol          | Simplification                        | Tool / experiment                                      | Reference        |
|---------------------------------------------------------------------|-----------------|---------------------------------------|--------------------------------------------------------|------------------|
| Free energy density                                                 | $f^{lpha}, f^d$ | Parabola fitting                      | CALPHAD<br>modeling                                    | [ANS98]          |
| A/B Inter-diffusivity                                               | $\tilde{D}$     | A/B Impurity<br>diffusion coefficient |                                                        | [Man+09]         |
| A Self-diffusivity                                                  | $^{*}D_{A}^{A}$ |                                       |                                                        | [Man+09]         |
| Interfacial mobility                                                | $M_\eta$        |                                       | DSC experiment                                         | No published yet |
| A/B interface energy                                                | γ               |                                       | Back calculation<br>from nucleation<br>rate experiment | [ROS58]          |
| Initial conditions (phase ,<br>fraction and molar<br>fraction of B) | $\eta^0, X_B^0$ |                                       | XRD + SEM<br>analysis                                  | No published yet |
| Molar volume                                                        | $V_m$           |                                       | CALPHAD<br>modeling                                    | [Hal07]          |
| Stiffness tensor                                                    | $C_{ijkl}$      | Use A value for the whole system      | CALPHAD<br>modeling                                    | [Su+15]          |
| Equilibrium vacancy site fraction                                   | $X_{Va}^e$      |                                       |                                                        | [Meh07]          |

Ansara, et al., COST 507 - Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, 1998. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer Science & Business Media, 2007. Turnbull, Acta Metallurgica 6 (1958) 653–659. Mantina, et al., Acta Materialia 57 (2009) 4102–4108 Controlled Processes, Springer Science & Business Media, 2007. Hallstedt, Calphad 31 (2007) 292–302. Controlled Processes, Springer Science & Business Media, 2007. Controlled Processes, Springer Science & Bu

### Phase Field simulation of a rich eutectic zone

with B precipitates within a matrix A

![](_page_22_Figure_2.jpeg)

#### for a heating rate of 20 K/min

![](_page_22_Figure_4.jpeg)

# Validation on experimental DSC curve

- Frist peak (desaturation of A matrix with B) well simulated
- Second peak (B precipitate coarsening) shifted to high temperature

 $\rightarrow$  need to tune model input parameters

 $\rightarrow 4^{th}$  model for predicting DSC and deriving  $c_p$  and k

![](_page_23_Figure_5.jpeg)

![](_page_24_Picture_0.jpeg)

# Conclusion

# On the way

- FE improvement (Marangony and 3D) : 2D FE partially validated
- ♦ Phase Field simulations (time step) → microstructure for LPBF:
   Computations validated on DSC

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

Process and post process optimization to reach ideal microstructure

 ◆ Final Microstructure → Final properties HAZ thickness explains fracture strains

J. Delahaye, et al. , Acta Mater. 175 (2019) 160-170

![](_page_26_Picture_0.jpeg)

#### Thank you for your attention Questions ?

anne.habraken@uliege.be