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First-principles study of spin spirals in the multiferroic BiFeO3
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We carry out density functional theory (DFT) calculations to explore the antiferromagnetic (AFM) spin cycloid
in multiferroic BiFeO3 of the R3c ground state structure. We calculate the energy dispersion E (q) of cycloidal
spin spirals along the high symmetry directions of the pseudo-cubic unit cell and find a flat AFM spin spiral (or
cycloid) ground state with a periodicity of ∼80 nm, which is in good agreement with experiments. To investigate
which structural distortion of the R3c phase is the driving mechanism for the stabilization of this cycloid, we
further study three artificial phases: cubic, R3c, and R3m. In all cases, we find a large exchange frustration. The
comparison between these phases provides detailed insight about how polarization and octahedral antiphase
tilting affect the different magnetic interactions and the magnetic ground state in BiFeO3. In R3c BiFeO3,
the magnetic ground state is driven by a competition between the frustrated exchange stemming from the
hybridization between the elements Bi, Fe, O and the Dzyaloshinskii-Moriya (DM) interaction due to the Fe-Bi
ferroelectric displacement. The cycloid appears to be stable because the anisotropy energy in R3c BiFeO3 is
relatively small to enforce a collinear order.

DOI: 10.1103/PhysRevB.103.214423

I. INTRODUCTION

BiFeO3 (BFO) is one of the few single-phase room-
temperature multiferroics which exhibit a large spontaneous
polarization. BFO has an antiferromagnetic texture that can be
approximated locally by a G-type order (G-AFM) in its R3c
ground state. Its Curie temperature is 1123 K [1] and its Néel
temperature is 643 K. The R3c structure has a polarization
of about 90 μC/cm2 at low temperature [2], arising from
off-centered ionic displacements along the [111] direction,
and also shows antiphase antiferrodistortive (AFD) oxygen
octahedral tiltings (a−a−a− in Glazer’s notation [3]). In the
bulk form, the AFM order is modified by the presence of the
Dzyaloshinskii-Moriya (DM) interaction [4,5], which creates
a spin cycloid [6] that propagates along the [11̄0] direction,
with magnetic moments lying in the plane formed by the
polarization and the propagation direction. The periodicity of
the spiral is 62 nm [7,8].

The DM interaction originates from spin-orbit coupling
(SOC). It is typically understood as the magnetic interaction
between two magnetic atoms mediated by an electron which is
under the influence of SOC [9]. Additionally, in multiferroics
the internal electric field has been identified as a possible
source of DM interaction [10]. In BFO both effects could add
to each other: The d orbitals of Bi could induce a strong SOC
[11] and the structural distortions could generate an internal
SOC, specifically through polar displacements, that create
an internal dipole and break inversion symmetry [12,13], or
AFD tilts that mediate the magnetic superexchange interaction

*These authors contributed equally to this work.

[14,15]. The former DM interaction has a magnetoelectric
nature and is crucial to explain the stabilization mechanism
of the spin spiral, as it favors chiral magnetic noncollinear
configurations, while the latter DM interaction is responsible
for the spin density wave (or cycloidal tilt) [16] or weak mag-
netization in the absence of the magnetic cycloid [14]. The
presence of a DM interaction driven spin cycloid in BFO has
triggered many works over the last ten years because it enables
electromagnon coupling [17–19] and couples to polarization
and strain [19–21].

Although of considerable interest, the cycloid of BFO was
only recently explored numerically in Ref. [22]. Since the
periodicity of 62 nm is too large to be studied fully from first
principles, its exploration had to rely on the parametrization
of a Heisenberg Hamiltonian based on the four-state energy
mapping method. The exploration of the different magnetic
configurations is then carried out via Monte Carlo simulations
[22]. This method gives AFM spin cycloid ground state prop-
erties, and the resulting cycloidal pitch of 83 nm was found
in good agreement with experiment. However, this method
does not allow for the direct assessment of the stability of
the cycloid, in particular if long-range exchange interactions
are important, and hence, lacks a description of the differ-
ent stabilization mechanisms that only microscopic electronic
structure calculations could provide.

A suitable method to address this task is the calculation
of incommensurate spin spirals [6]. These have a much larger
magnetic unit cell as compared with the chemical unit cell and
have been studied theoretically for more than twenty years
in ferromagnetic materials. In metals, significant efforts have
been made to simulate noncollinear magnetic states based
on the chemical unit cell [23]. This approach is known as
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the generalized Bloch theorem and relies on the modulation
of the phase of the electron spinors by a factor ±q/2 for
up and down spin, respectively. The framework allows the
calculation of all incommensurate magnetic spin spirals in the
first Brillouin zone, at a cost which corresponds to a single
chemical unit cell.

This approach has been extended to explore the SOC con-
tribution to the total energy of the spin spiral [24]. In this case,
SOC is included in the perturbation theory and gives access to
the DM interaction. It has been very successful in describing
noncollinear magnetic states at surfaces or interfaces, which
are stabilized by the DM interaction in rather simple crystallo-
graphic geometries where the model of Levy and Fert directly
applies [9]. This method has the advantage of quantifying the
source of the DM interaction in terms of SOC contribution to
the total energy. It has been central to obtain key knowledge
in the fields of chiral spintronics where it could identify the
5d-transition metal substrate [25,26], the interfacial electric
field [27,28], or the oxygen concentration at surfaces [29] as
a source of the DM interaction. Although this methodology is
now standard for metals, it has never been applied to magnetic
multiferroic oxides.

In the case of the multiferroic BFO, including the DM
interaction is crucial as it is responsible for the stabilization of
the spin cycloid [30], as well as the weak (ferro)magnetization
due to spin canting [14,31,32]. It is also central to the
mechanism for the magnetoelectric (ME) coupling [33]. As
compared with metals, the crystal structure of a multiferroic
oxide is of prime importance to accurately describe its phys-
ical properties. For example, in a multiferroic of the ABO3

type, the crystallographic structure must be correctly repro-
duced to obtain good transport and magnetic properties [34].

For BFO, the DM interaction may occur through different
mechanisms. The coupling between the magnetic moments
on neighboring sites is mediated by an oxygen atom which
locally breaks inversion symmetry (via octahedral tilts). This
mechanism occurs via the superexchange and could be en-
hanced via the SOC of the p orbitals of oxygen [10]. In that
case, the direction of the DM interaction should be perpendic-
ular to the Fe-O-Fe planes. Another mechanism may involve
the bismuth atoms, which break inversion symmetry via the
ferroelectric distortions [11]. This mechanism, also known as
the spin current model, creates a DM interaction perpendicular
to the polarization and spiral propagation direction. In that
case, the p orbitals of bismuth, which hybridize with the d
orbitals of iron, could enhance the DM interaction. Finally
an internal electric field is created by the off-centered ferro-
electric displacements (involving bismuth, iron, and oxygen).
In that case, the DM interaction would be favored in a plane
perpendicular to the potential gradient [35], e.g., to the 〈111〉
directions.

Since both the positions of the oxygen and the bismuth
may affect the amplitude and direction of the DM interaction,
several phases should be explored to probe the origin of the
DM interaction. This also opens up the possibility that chang-
ing the crystal structure of the ABO3-type multiferroic will
change the DM interaction and therefore also the propagation
of the spin cycloid [36].

In this paper, by means of state-of-the-art density func-
tional theory (DFT) calculations, we study the incommensu-

± Ω

[11
1]

P

[11
1]

P

± Ω

Cubic R3c

R3m R3c

(a) (b)

(c) (d)

Fe

Bi

O

FIG. 1. Sketches of the studied BiFeO3 structures. Green spheres
correspond to the Bi atoms, golden spheres in the center of each cube
denote Fe, and small red spheres show O atoms. (a) Centrosymmetric
cubic structure, (b) R3c structure where only the oxygen octahedral
tilts are included, represented by curved arrows and ±�. (c) R3m
structure, where only the ferroelectric displacement is included,
denoted by arrows at the Bi sites and Fe sites. The displacement
leads to a large spontaneous polarization P in the [111] direction.
(d) Structural R3c ground state where both effects, oxygen octahedral
tilts from (b) and ferroelectric displacement from (c), are included.
Note that the structures of (a)–(c) are artificial to isolate the structural
distortions of the R3c phase.

rate spin cycloid in BFO. To explain the magnetic structure
of the R3c bulk ground state, we compare the results for
different bulk phases: (a) in the cubic phase where both the
polarization and the tilts are suppressed, (b) in the centrosym-
metric R3̄c phase where the polarization—but not the tilts—is
suppressed, (c) in the R3m phase where the tilts—but not the
polarization—are suppressed, and (d) the ground state R3c
phase (cf. Fig. 1). Here the structures (a)–(c) are artificial
structures to isolate the structural peculiarities of the R3c
phase. For each phase, we have determined the magnetic
ground state and have extracted the magnetic exchange in-
teraction beyond the first-nearest-neighbor approximation, the
DM interaction, and the magnetocrystalline anisotropy. In all
cases, a large exchange frustration is found, i.e., the exchange
interaction of different neighbors competes in strength and
sign. Despite its large frustration, the exchange interaction
favors the collinear order. In both cubic and R3̄c phase, the
DM interaction is vanishing, which is why there the G-AFM
is the magnetic ground state. Contrarily, both the R3m and
the R3c exhibit a cycloidal ground state whose chirality is
driven by a left rotating DM interaction. Counterintuitively,
in the vicinity of the R point, the DM interaction originates
from the SOC contribution of the Fe sites, with little to no
contributions from the p orbitals of both the bismuth and
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TABLE I. DFT calculated structural parameters of the R3c phase of BFO, compared with reported theoretical and experimental values.

Bi (2a) Fe (2a) O (6b) arh (Å) α (deg) � (Å3)

This work (0,0,0) (0.225,0.225,0.225) (0.541,0.939,0.394) 5.54 59.71 119.32
Theory [2] (0,0,0) (0.227,0.227,0.227) (0.542,0.943,0.397) 5.52 59.84 118.34
Expt. [37] (0,0,0) (0.221,0.221,0.221) (0.538,0.933,0.395) 5.63 59.35 124.60

oxygen. From the comparison of the phases it is evident that
the Fe-Bi displacement, responsible for the strong polarization
in BFO, creates a DM interaction which stabilizes the cycloid
while the octahedral tilts destabilize it: The value of the DM
interaction is strongly reduced by the presence of the tilts in
R3c compared to R3m.

This paper is organized as follows: Section II explains the
methodologies, in particular the approach of the generalized
Bloch theorem for spin spirals [6]; in Sec. III we discuss the
results of the calculations carried out for the four different
phases mentioned above. In Sec. IV we compare the stability
of the cycloids and assess their stabilization mechanisms; A
brief conclusion is given in Sec. V.

II. METHODS

A. Structural relaxation

The R3c unit cell of BFO containing 10 atoms is relaxed
with DFT, carried out using the ABINIT package [38–40] and
the projector augmented wave (PAW) method [41]. The ex-
change and correlation functional is treated with local spin
density approximation +U (LSDA+U ), with a Hubbard U
parameter of 4.0 eV and J of 0.4 eV on the Fe atoms, which
is typical for first-principles calculations on BFO [42,43].
The wave functions are expanded using plane-wave basis sets
with a kinetic energy cutoff of 30 Hartree. The self-consistent
calculations are performed with an unshifted 24 × 24 × 24 k-
point grid. For structural relaxation, the collinear G-type AFM
configuration is adopted. The R3c structure is optimized until
the force on each atom is smaller than 1 × 10−5 Ha/bohr.
As shown in Table I, the relaxed rhombohedral lattice con-
stant of R3c-BFO is 5.538 Å and the rhombohedral angle
is 59.71◦, in good agreement with the theoretical values in
Refs. [2,43] and the experimental values of 5.63 Å and 59.35◦
[37], considering that LDA often underestimates the lattice
constant by 1–2%. The relaxed atomic positions are also in
good accordance with other reported values.

The R3m (resp. R3̄c) structure in this study is generated
from the R3c structure by removing the a−a−a− oxygen
octahedral tiltings (resp. the polar displacements on Bi, Fe,
and O atoms). The lattice vectors are kept unchanged. For
our cubic structure, both the tiltings and polar displacements
are removed, and the rhombohedral angle is changed to 60◦,
while keeping the lattice parameter unchanged as compared
with R3c.

B. Magnetic energy dispersion and magnetic interactions

To determine the magnetic ground state and magnetic inter-
actions, we use the above-mentioned structures and calculate
the energy dispersions E (q) of flat homogeneous spin spirals
[6] applying the full-potential linearized augmented plane

wave (FLAPW) approach [44–46], as implemented in the
FLEUR ab initio package [47]. For all these calculations, we
have used the local density approximation [48], muffin-tin
radii of 2.80 bohrs, 2.29 bohrs, and 1.29 bohrs for Bi, Fe, and
O atoms, respectively, and a large plane-wave cutoff kmax of
4.6 bohr−1. These parameters result in a magnetic moment
of m = 4 μB for all phases in agreement with experiments
[49–51]. Spin spirals are the general solution of the Heisen-
berg model on a periodic lattice and can be characterized by
the spin spiral vector q. This vector determines the propaga-
tion direction of the spin spiral as well as the canting angle
between two neighboring spins. A magnetic moment mi at an
atom position ri is given by

mi = m(cos(q · ri ), sin(q · ri ), 0), (1)

where m is the magnitude of the magnetic moment. The vector
q is a vector in reciprocal space and we choose it along the
high symmetry directions of the cubic Brillouin zone (BZ, for
the cubic case), R-X-M-�-R and in the respective directions
of the rhombohedral BZ for the rhombohedral phases. In
order to compare and visualize the energy dispersions for all
calculated phases, the energies are presented in the pseudocu-
bic BZ along R-X-M-�-R directions. Every point in the BZ
represents a certain collinear state, e.g., the � point is the
ferromagnetic (FM) state and the R point the G-type AFM
state. Along the full paths, self-consistent calculations without
SOC have been performed using the generalized Bloch theo-
rem [23] with a k-point mesh of 10 × 10 × 10. To accurately
determine the energies around the magnetic ground state at
|q| → R, the magnetic force theorem [52,53] has been applied
using a large k-point set of 64 000 (i.e., 40 × 40 × 40). The
Heisenberg exchange interaction constants Ji j beyond first
nearest neighbors of each phase are then determined by map-
ping the Heisenberg Hamiltonian

H = −
∑

i j

Ji j (mi · m j ) (2)

onto the resulting energy dispersion E (q). Here, the number
of required neighbors to describe the exchange interaction
is determined by finding the best overall fit of the energy
dispersion, for which including more neighbors will not give
a significantly better description (for detailed information,
see Appendix A). As the exchange interaction appears to be
frustrated (i.e., different neighbors Ji j compete in sign and
strength to form the magnetic ground state), we also determine
the exchange interaction in an effective first-nearest-neighbor
approximation Jeff, which coincides with the so-called ex-
change stiffness A. Jeff can be interpreted as a measure of the
curvature in the energy dispersion very close to the magnetic
ground state, here, for E (q → R). The strength of exchange
frustration can be determined in two ways, either by compar-
ing the energy contributions of the different neighbors Ji j or
by comparing the ratio between the effective nearest neighbor
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exchange Jeff and the exchange interaction of the first neighbor
J1. For the latter, a ratio of Jeff/J1 ∼ 1 is a sign of a very small
exchange frustration, whereas systems with a ratio Jeff/J1 � 1
are known as highly exchange frustrated.

For each point calculated with the magnetic force theorem
at q → R, spin-orbit coupling is added in first-order perturba-
tion theory [24]. The energy contribution due to SOC, �ESOC,
is used to determine the strength of the DM interaction (the
magnitude of the DM vector Di j) by mapping the DM Hamil-
tonian

HDM = −
∑

i j

Di j · (mi × m j ) (3)

to the total SOC contribution (cf. Appendix A). Here, a k-
point mesh of 20 × 20 × 20 has been used.

We determine the uniaxial magnetocrystalline anisotropy
energy (MAE) in the approximation of an easy axis anisotropy
u parallel to the 〈111〉 directions according to the Hamiltonian

Hani = −
∑

i

K (mi · u)2. (4)

We self-consistently perform scalar-relativistic calculations in
the collinear G-type AFM state and use the force theorem [52]
imposing the SOC quantization axis along the [111] direction
(E||) and perpendicular to this direction [110], denoted as E⊥
(for completeness, also the [112] direction has been checked).
The MAE is then defined as EMAE = E|| − E⊥. As for the DM
interaction, a k-point mesh of 20 × 20 × 20 has been applied.

III. RESULTS

A. Cubic phase

In the cubic phase [see Fig. 1(a)], both the antiphase tilting
of the O atoms and off-centering of Fe and Bi are lacking, i.e.,
the system is centrosymmetric, and we expect neither a DM
interaction nor a polarization to be formed. This case is the
simplest one and a good benchmark for our DFT calculations.

In Fig. 2(a), the energy dispersion for flat spin spiral states
without spin-orbit coupling (SOC) along the high-symmetry
paths of the pseudocubic Brillouin zone (BZ, see inset)
R-X-M-�-R is presented. All points show the results of the
energy dispersion E (q) obtained from DFT calculations, as a
function of the different q vectors. The line is the fit of E (q)
using the Heisenberg exchange interaction (for more details,
see Appendix A). In order to fit such a curve, the function
needs to reproduce the energy minimum in the vicinity of
the R point (G-AFM) and M point (in-plane checkerboard
AFM) as well as the two maxima at the X and the � points
(FM). These maxima have a high energy of around 200
meV/atom and 370 meV/atom, respectively. This rather large
energy difference is usually a sign of hard magnetic behavior
and small exchange frustration, since it typically coincides
with a quick increase of the energy when leaving the mag-
netic ground state. The nearest neighbor exchange interaction
J1 = −31 meV is strongly antiferromagnetic and it prevents
neighboring Fe magnetic moments from spontaneously flip-
ping into ferromagnetic order. However, close to the R point,
the energy dispersion appears to be flatter than anticipated
from the large J1.

We determine the effective nearest neighbor exchange in-
teraction of Jeff = −21 meV to quantify this “flatness” in the

FIG. 2. Energy dispersion E (q) of homogeneous, flat spin spiral
states for pseudocubic BiFeO3 [cf. Fig. 1(a)] with respect to the
G-type AFM structure energy E (R). (a) Energy dispersion without
spin-orbit coupling (SOC) along the high-symmetry directions of the
pseudocubic first Brillouin zone. The points are spin spiral energies
computed from DFT and the lines are obtained by mapping the
Heisenberg exchange Hamiltonian to the DFT data. The directions of
high symmetry paths are shown in the inset. (b) Zoom around the R
point for left (positive) and right-rotating (negative) spin spiral states
with (red) and without (gray) SOC. Note that the energy scale is
below 0.1 meV. The fit including SOC (red curve) contains exchange
beyond first nearest neighbors, Dzyaloshinskii-Moriya interaction
and uniaxial anisotropy energy. Note that the red circle at the R
point is only shifted by K/2 [K being the uniaxial magnetocrystalline
anisotropy defined in Eq. (4)] to keep the red points continuous. In
that case, the ground state is at E = 0 meV/Fe atom.

energy dispersion for E (q → R). The energy for very small
canting angles in a spin spiral is reduced compared to the
parabolic behavior for large nearest neighbor exchange J1

alone. Taking these two properties into account, the ratio of
Jeff/J1 ∼ 0.68 is a sign of large exchange frustration in the
artificial cubic phase of BFO. Similar frustrated exchange in-
teraction has been reported in ultrathin magnetic films [26,54–
56]. Here, it occurs due to the hybridization of Fe with both
oxygen and bismuth, even without structural distortion.

To fully account for this exchange frustration, seven neigh-
bors for the exchange interaction are required to model the
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TABLE II. Magnetic interactions in BiFeO3 mapping an atomistic spin model to the results of DFT calculations in the conventions per atom
and per pair per m2. All values of the ith neighbor exchange Ji, Dzyaloshinskii-Moriya constant D, and uniaxial magnetocrystalline anisotropy
K are given in meV. J > 0 (J < 0) represents FM (AFM) order, D > 0 (D < 0) counterclockwise (clockwise) rotation. K < 0 denotes a [111]
directed easy magnetization direction and K > 0 prefers an easy plane perpendicular to the [111] directions. The corresponding dispersion
curves are shown in Figs. 2, 3, 4, 5. Note that the values for the DM interaction for R3m and R3c are adapted to fit the spin spiral minimum
in Figs. 4(b) and 5(b). To obtain a spin spiral pitch of 62 nm in the R3c phase, the DM interaction would have to be D = +0.466 meV (see
Discussion).

cubic phase

J1 J2 J3 J4 J5 J6 J7 Jeff D K
meV/atom −31.542 −1.645 −0.657 −1.338 +0.148 +0.126 −0.075 −21.110 ±0 +0.0073
meV/μ2

B/pair −3.943 −0.206 −0.082 −0.167 +0.019 +0.016 −0.009 −2.639 ±0 +0.0005

R3c phase

J1 J2 J3 J4 J5 J6 J7 Jeff D K
meV/atom −28.174 −1.927 −0.196 −1.216 −0.081 +0.022 −0.084 −16.156 ±0 +0.239
meV/μ2

B/pair −3.522 −0.241 −0.025 −0.152 −0.010 +0.003 −0.011 −2.020 ±0 +0.0149

R3m phase

J1 J2 J3 J4 J5 J6 J7 Jeff D K
meV/atom −33.820 −1.716 −0.026 −2.331 – – – −17.758 +0.636 −0.187
meV/μ2

B/pair −4.228 −0.215 −0.003 −0.291 – – – −2.220 +0.080 −0.0117

R3c phase

J1 J2 J3 J4 J5 J6 J7 Jeff D K
meV/atom −27.814 −1.475 −0.163 −0.940 −0.027 +0.069 −0.512 −11.780 +0.342 +0.069
meV/μ2

B/pair −3.477 −0.184 −0.020 −0.118 +0.003 +0.009 −0.064 −1.473 +0.043 +0.0043

DFT calculated points of Fig. 2(a) (all determined values
J1, . . . , J7 are displayed in Table II). This procedure results in
the dark gray line. The description of cubic BFO based on the
extended Heisenberg model agrees well with the calculations:
It can reproduce the maxima of energy at the X and the �

point and the local energy minimum at the M point. Note
that this would not be possible by solely taking J1 or Jeff into
account. Despite the large AFM nearest neighbor exchange,
the contributions of farther neighbors such as J2 ∼ 5%J1 and
J4 ∼ 4%J1 have a significant contribution and lead to the large
exchange frustration in the system.

To scrutinize the magnetic ground state, we zoom in on
the energy dispersion close to q → R [Fig. 2(b)], for energy
differences smaller than 0.1 meV. The G-type AFM structure
represents the energy minimum without SOC (gray points and
line). Due to the exchange frustration, even a small distortion
triggered by internal strain might be sufficient to induce an en-
ergy minimum away from the G-type AFM state. When SOC
is included (red points and curve) the magnetic ground state
does not change. In fact, the DM interaction is completely
suppressed (cf. Table II) as expected since the cubic phase
is centrosymmetric, and additionally, the uniaxial anisotropy
energy is extremely small. From these results, we conclude
that in a hypothetical cubic structure of BFO, the magnetic
ground state is the G-type AFM. To obtain a spin cycloidal
ground state, we need to take further structural effects into
account, which we describe in the following.

B. R3c phase

Next, we explore the magnetic properties of the R3c phase
[see Fig. 1(b)], which has a lower symmetry than the cubic

crystal structure. In this case, the polarization is still absent so
the structure has inversion symmetry but fewer mirror planes
due to the presence of the oxygen octahedral tilts. This means
that the oxygen along the Fe-O-Fe bonds is not a center of
inversion anymore.

The energy dispersion E (q) without SOC in the R3c phase
is shown in Fig. 3(a). It is comparable to that in the cubic
phase [cf. Fig. 2(a)] with only minor changes, e.g., the energy
difference between R and the other points of the BZ, X,
M, � are reduced and so is J1 ∼ −28 meV (cf. Table II).
The curvature in R3̄c BFO appears flatter than in the cu-
bic phase as the effective nearest neighbor exchange Jeff =
−16.16 meV/atom is reduced. Consequently, the exchange
frustration is enhanced because the ratio of Jeff/J1 = 0.57 is
slightly smaller. To fully describe the behavior of the energy
dispersion, again, the exchange interaction of seven neighbors
needs to be taken into account, where especially J2 ∼ 7%J1

and J4 ∼ 4%J1 have large contributions. Thus, comparing the
cubic and the R3c phase, the antiferrodistortions do not ma-
jorly affect the exchange interaction; however, small structural
distortions lead to a slight change in the hybridization of the
Fe orbitals with O and Bi and the exchange frustration is
increased.

Due to the oxygen octahedral tilts, a DM interaction can
emerge between Fe pairs mediated by the oxygen atoms, due
to the lack of mirror planes [22]. However, each Fe atom is
surrounded by six such pairs and serves as center of inversion.
This results in the cancellation of the overall DM interaction
for each Fe atom in the R3c phase of BFO: Antiferrodistortion
is not enough to destabilize the G-type AFM state and to
form a spin cycloid. However, it is known that AFD tilts in
R3c-BFO can give rise to a DM interaction of a particular
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FIG. 3. Energy dispersion E (q) of homogeneous, flat spin spiral
states for R3c BiFeO3 [cf. Fig. 1(b)] with respect to the G-type AFM
structure energy E (R). (a) Energy dispersion without spin-orbit cou-
pling (SOC) along the high symmetry directions of the pseudocubic
first Brillouin zone. The points and the line are spin spiral energies
computed from DFT and obtained by mapping the Heisenberg ex-
change Hamiltonian to the DFT data, respectively. The directions of
high symmetry paths are shown in the inset. (b) Zoom around the R
point for left (positive) and right-rotating (negative) spin spiral states
with (red) and without (gray) SOC. Note that the energy scale is
below 0.4 meV. The fit including SOC (red curve) contains exchange
beyond first nearest neighbors, Dzyaloshinskii-Moriya interaction
and uniaxial anisotropy energy. Note that the red circle at the R point
is only shifted by K/2 to keep the red points continuous. In that case,
the ground state is at E = 0 meV/Fe atom.

symmetry that induces a noncollinear spin canting [14,15,32];
within the present approach, only flat spin spiral states are
considered, and the determination of the DM interaction re-
sponsible for this spin canting is not accessible.

In the closeup of Fig. 3(b) [note that the energy range is
different from Fig. 2(b) but still extremely small], the G-AFM
state is the magnetic ground state, stabilized by a large easy
plane (111) anisotropy of K = +0.24 meV (cf. red points
and curve with SOC and Table II). Therefore, compared to
the cubic phase, the AFD not only increases the exchange
frustration but also the anisotropy.

C. R3m phase

In the R3m phase [see Fig. 1(c)], both Fe and Bi atoms
are displaced in the [111] direction with respect to the cubic
phase, yielding a finite polarization. Since no AFD tilts are
present, the Fe-O-Fe bonds conserve a mirror plane through
the O atom and perpendicular to the bonds. This means that a
DM interaction can occur only perpendicular to the Fe-O-Fe
plane.

Figure 4(a) shows the energy dispersion E (q) without SOC
for BFO in the R3m phase. As in the cubic and R3̄c case [cf.
Figs. 2 and 3(a)], the dispersion curve shows the two maxima
at the X and the � point. The energy difference between
the R and the � point is increased up to E = 400 meV/Fe
atom which explains the increased nearest-neighbor exchange
interaction J1 ∼ −34 meV (cf. Table II). The frustration of
exchange is increased compared to the previously discussed
phases with the effective nearest neighbor exchange of Jeff =
−17.76 meV/atom close to the R point and a ratio of Jeff/J1 =
0.52. Along the complete high symmetry path, four shells
were considered in the extended Heisenberg Hamiltonian to fit
the DFT results where J4 ∼ 0.07 J1 (due to the appearance of
the DFT data compared to both cubic and R3̄c phase, includ-
ing more neighbors into the model will not give a significantly
better description of the energy dispersion, cf. Appendix A).

The energy dispersion curve without SOC is again very
flat near the R point [gray points and curve in Fig. 4(b)].
Including SOC (red points and curve) does not stabilize the
collinear G-AFM ground state as in the cubic or R3c phase
but an AFM spin cycloidal ground state with a pitch length
of about λ ∼ 63 nm considering the energy minimum in the
fit. The proximity of this value to the experimental pitch of
the AFM spin cycloid present in the R3c phase is fortuitous.
The propagation direction is along [11̄0] (from R [ 1

2 , 1
2 , 1

2 ]
to X [1, 0, 1

2 ]), and the spins lie in the plane formed by the
polarization in [111] and q in [11̄0], dictated by the DM
interaction direction of [112̄] [Fig. 4(c)]. This ground state
can arise because the ferroelectric displacement in R3m leads
to a large DM interaction (D ∼ 0.6 meV in [112] direction,
cf. Table II). Figure 4(c) shows the energy contribution to the
energy dispersion due to the presence of spin-orbit coupling,
where we observe that the contributions of both Bi (green) and
O (blue) are negligible. The large DM interaction therefore
stems from the change in the internal potential of the Fe atoms
(red) as it also has been shown in Ref. [57]. Here, the Fe
atoms contain the only net SOC contribution (black). The
magnetocrystalline anisotropy (K = −0.19 meV, cf. Table II)
is quantitatively reduced compared to the antiferrodistorted
R3c phase, and furthermore, the preferred magnetization di-
rection changes from an easy plane perpendicular to an easy
axis collinear to the (111) directions. From these results, we
conclude that the Fe-Bi ferroelectric displacements play a
decisive role for BFO to exhibit a spin cycloid ground state
since it introduces a nonvanishing DM interaction.

D. R3c phase

We now turn to the structure ground state of BFO, e.g.,
the R3c phase [see Fig. 1(d)]. This phase includes the effects
of both antiferrodistortion, as in R3c, and the ferroelectric
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FIG. 4. Energy dispersion E (q) of homogeneous, flat spin spiral
states for R3m BiFeO3 [cf. Fig. 1(c)] with respect to the G-type AFM
structure energy E (R). (a) Energy dispersion without spin-orbit cou-
pling (SOC) along the high symmetry directions of the pseudocubic
first Brillouin zone. The points and the line are spin spiral energies
computed from DFT and obtained by mapping the Heisenberg ex-
change Hamiltonian to the DFT data, respectively. The directions of
high symmetry paths are shown in the inset. (b) Zoom around the R
point for left (positive) and right-rotating (negative) spin spiral states
with (red) and without (gray) SOC. Note that the energy scale is
below 0.2 meV. The fit including SOC (red curve) contains exchange
beyond first nearest neighbors, Dzyaloshinskii-Moriya interaction
and uniaxial anisotropy energy. Due to slight deviations stemming
from the exchange interaction, the value for the DM interaction has
been adapted to better describe the energy dispersion with SOC.
Note that the red circle at the R point is only shifted by K/2.
(c) Element-resolved energy contribution due to spin-orbit coupling
�ESOC to the energy dispersion of spin spirals calculated in the [112]

displacements of the R3m phase. The energy dispersion with-
out SOC [Fig. 5(a)] looks similar to all previously discussed
phases, consequently, the exchange interaction (cf. Table II)
is also strongly frustrated. The energy differences along the
whole high symmetry path are the smallest of all phases
and J1 = −28 meV/atom. Note that in BFO in general, the
antiferromagnetic exchange interaction is large and prevents
the system from spontaneously changing the magnetic or-
der. While J1 is still comparable with the other calculated
phases, due to the very flat energy dispersion at q → R, Jeff =
−11.8 meV/atom is by far the smallest. Consequently, the
magnetic exchange frustration is maximized in the R3c phase
with a ratio of Jeff/J1 = 0.42. To capture these effects, seven
neighbors are included to describe E (q) along the whole path.
Here, especially J4 ∼ 0.035 J1 and J7 = 0.018 J1 contribute
strongly to the exchange frustration.

In this phase, it is actually possible to measure the ex-
change interaction via inelastic neutron scattering [51,58].
The reported values of J1 are ∼4.4 meV/pair (values given
per pair obtained for mi = 5 μB in Ref. [58]) and mi ∼ 4 μB

(values are given per atom at 5 K in Ref. [51]) in very good
agreement with J1 = 3.5 meV/pair (obtained for mi = 4 μB

in our case) in this work. The difference between these two
measures can be explained by the different number of shells
used on this work.

Despite the large exchange frustration, a G-AFM state is
expected when SOC is neglected [dark gray curve without
SOC in Fig. 5(b)]. Including SOC and the two previously
separated effects of the R3c and R3m phases, the magnetic
ground state in the R3c phase changes to an AFM spin cycloid
with a pitch length of about 80 nm [red points in Fig. 5(b)].
This is in good agreement with the experimentally measured
value of 62 nm in bulk BFO [7,8] and the theoretical value
of 83 nm [22]. The propagation direction of the cycloid is
along [11̄0] with the spins perpendicular to the DM interaction
direction of [112̄]. [Note that only in [112̄] the DM interaction
is nonzero, cf. Fig. 5(c)].

Compared to the R3m phase, the DM interaction in R3c
BFO is reduced (D ∼ 0.34 meV, cf. Table II), but the whole
contribution of SOC still stems from the Fe atoms [red points
in Fig. 5(c)], and the calculated DMI energy of 0.04 meV
at q = 0.0065(2π/a), where the total energy is minimized,
agrees reasonably with the reported experimental value of
0.07 meV [59]. Since both structural perturbations are present
in the R3c phase, the DM interaction and MAE are smaller
compared to the phases showing only one of these perturba-
tions (cf. Table II). The smaller DM interaction with respect
to the R3m phase can be explained by the inclusion of the R3c
structure with vanishing DM interaction into R3c BFO, effec-
tively reducing its magnitude. In a similar way, the anisotropy
of the R3c phase can be seen as a sum of two structural effects
and their opposing anisotropy contributions, leading to the
reduced anisotropy of K ∼ +0.07 meV. The reported value of

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
direction. Shown are the total (black), Fe (red), Bi (green), and O
(blue) contributions. Due to an antiferromagnetic unit cell, each atom
appears twice with the same contribution. Here, the lines serve as a
guide to the eye.
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FIG. 5. Energy dispersion E (q) of homogeneous, flat spin spiral
states for R3c BiFeO3 [cf. Fig. 1(d)] with respect to the G-type AFM
structure energy E (R). (a) Energy dispersion without spin-orbit cou-
pling (SOC) along the high symmetry directions of the pseudocubic
first Brillouin zone. The points and the line are spin spiral energies
computed from DFT and obtained by mapping the Heisenberg ex-
change Hamiltonian to the DFT data, respectively. The directions of
high symmetry paths are shown in the inset. (b) Zoom around the R
point for left (positive) and right-rotating (negative) spin spiral states
with (red) and without (grey) SOC. Note that the energy scale is
below 0.1 meV. The fit including SOC (red curve) contains exchange
beyond first nearest neighbors, Dzyaloshinskii-Moriya interaction
and uniaxial anisotropy energy. Due to slight deviations stemming
from the exchange interaction, the value for the DM interaction has
been adapted to better describe the energy dispersion with SOC. Note
that the red circle at the R point is only shifted by K/2. (c) Element
resolved contribution due to spin-orbit coupling �ESOC to the energy
dispersion of spin spirals calculated in the [112] direction. Shown are

both the DM interaction D = 0.107 meV and the anisotropy
K = 0.009 meV in Ref. [58] are larger than our values D =
0.043 meV and K = 0.0043 meV, respectively, because the
exchange frustration is taken into our model Hamiltonian.

IV. DISCUSSION

We now set the results in an experimental context and
compare the different phases with each other, to understand
the driving mechanisms that form the magnetic ground state
in R3c BFO. For all four investigated phases, cubic, R3c,
R3m, and R3c, we observe a flat energy dispersion around
the energy minimum at the R point of the pseudocubic BZ
[cf. Figs. 2, 3, 4, 5(b)]. This behavior can be explained by a
large exchange frustration stemming from the hybridization
among the three elements Bi, Fe, and O. A distortion of the
perfect pseudocubic structure will not have a large effect on
the exchange interaction, but slightly increase the frustration.
In the R3c phase, the frustration of exchange is stronger since
J1 is smaller and for instance J7 is larger in comparison with
the other phases. Note that despite the large frustration, the
exchange interaction will still favor the G-type AFM state
because the magnetic ground state is extremely close to the
collinear state.

Within our model, a spin cycloid ground state with the
calculated periodicity can only be obtained by a large DM
interaction. However, in the cubic and R3c phases the DM
interaction is zero [60]. It solely can arise due to the Fe-Bi
displacement in the R3m phase (cf. Fig. 4). That means the
DM interaction presented in R3c BFO originates from the
ferroelectric displacement, which is also responsible for the
strong polarization in BFO. This finding is in good agreement
with the so-called inverse spin current model [10,12].

In total, the DM interaction competes with both exchange
and anisotropy to stabilize an AFM spin cycloid in R3c BFO.
A large anisotropy as calculated for either the R3c or R3m
phase would, however, stabilize the collinear order and pre-
vent the formation of a cycloid in the R3c phase. Since the
anisotropies for R3c and R3m BFO prefer magnetization di-
rections perpendicular to each other, the total anisotropy is
reduced when both structural displacements are included into
R3c BFO (cf. Table II).

Our cycloid pitch length of ∼80 nm calculated from DFT
for R3c BFO agrees reasonably well with the experimen-
tally measured one of 62 nm [7,8]. We note that in standard
implementations of spin dynamics, the anisotropy energy con-
tribution is modified for exactly collinear states. In this case
for q at the R point there will be a jump in energy by K/2,
which yields an energy 10 μeV lower than the spin cycloid
ground state. This is an artifact, but will not happen in full
calculations, as any departure from collinearity will restore
the continuous red curve energies from Fig. 5(b).

To be in perfect agreement with experimental observations,
a slight decrease in the AFM spin cycloid pitch length is

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
the total (black), Fe (red), Bi (green) and O (blue) contributions. Due
to an antiferromagnetic unit cell, each atom appears twice with the
same contribution. Here, the lines serve as a guide to the eye.
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needed. This requires an enhancement of the DM interac-
tion. In fact, to recover a magnetic ground state cycloid with
62 nm pitch—assuming the given values for the exchange
interaction and anisotropy of Table II—the DM interaction
would have to be D = 0.466 meV = 0.059 meV/μ2

B/pair.
This value is consistent with previously reported DM inter-
actions of 0.18 meV/pair estimated from the experimental
wavelength [16,30,51], and 0.102 meV/pair calculated by
density function theory using the four-state method [22].

V. CONCLUSION

In conclusion, we applied DFT calculations to investigate
the magnetic ground state of multiferroic BiFeO3. We find
an AFM spin cycloid with a pitch length of ∼80 nm in the
R3c phase which is in good agreement with experimental
and previous theoretical observations. To explain the magnetic
structure, we compare several artificial bulk phases with inter-
mediate symmetry, which isolate the structural properties of
the R3c bulk phase of BiFeO3: pseudocubic, R3c, and R3m.
We find that all phases show a large exchange frustration
which leads to small energies required to cant the spins out
of the collinear G-type AFM order. In the R3c phase, the
octahedral antiferrodistortion stabilizes the G-type AFM state
due to a large anisotropy and zero net Dzyaloshinskii-Moriya
interaction. The R3m phase shows ferroelectric displacements
of Fe and Bi which is responsible for a strong polarization
in BFO, but also for the appearance of a net DM interaction
which is strong enough to destabilize the collinear order of
the G-type AFM in R3m BiFeO3. The anisotropy of the R3m
phase favors a magnetization direction perpendicular to that
one of the R3c phase, and the two distortions compete. Sum-
ming up all effects in the R3c phase, exchange frustration, DM
interaction from the ferroelectric displacement, and the com-
petition of both anisotropy contributions from R3m and R3c
lead to the stabilization of an AFM spin cycloid in BiFeO3

with a long cycloid period.
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APPENDIX A: DESCRIPTION OF HEISENBERG
EXCHANGE AND DM INTERACTIONS IN

THE PSEUDOCUBIC LATTICE

In the main text, we map the energy dispersions with-
out spin-orbit coupling (SOC) onto the Heisenberg exchange
interaction beyond first nearest neighbors to determine the
strength of the exchange constants Ji j . To understand the
procedure of mapping and the applied formulas, we pro-
vide an example for the nearest neighbor along the R-X
direction of the cubic Brillouin zone (BZ). The Heisenberg
exchange interaction between two (normalized) magnetic mo-
ments mi, m j at positions Ri, R j is described via

H = −
∑

i j

Ji j (mi · m j ). (A1)

The general solutions of the Heisenberg model on a discrete
lattice are homogeneous flat spin spirals characterized by the
spin spiral vector q. We perform first principles calculations
of these spirals to constrain and fit the model. Transferring
Eq. (A1) into reciprocal space leads to

H = −N
∑

q

J (q)mq · mq, (A2)

where N is the number of interacting magnetic moments and
the exchange constant

J (q) =
∑

δ

J0δe−iq·Rδ

=
∑

δ

J0δ (cos(q · Rδ ) − i sin(q · Rδ )). (A3)

The parameter δ denotes the respective neighboring distance
in real space. The resulting energy contribution then is

E = −NS2J (q). (A4)

The spin spiral vector q can be defined as

q = q1b1 + q2b2 + q3b3, (A5)

where b1, b2, b3 are the reciprocal lattice vectors. We now
adapt the general formulas for the simple cubic (sc) lattice. For
the sc lattice, the primitive unit vectors are given in cartesian
coordinates as

a1 = a

⎛
⎝

1
0
0

⎞
⎠, a2 = a

⎛
⎝

0
1
0

⎞
⎠, a3 = a

⎛
⎝

0
0
1

⎞
⎠, (A6)

where a denotes the lattice constant and for the reciprocal
lattice,

b1 = 2π

a

⎛
⎝

1
0
0

⎞
⎠, b2 = 2π

a

⎛
⎝

0
1
0

⎞
⎠, b3 = 2π

a

⎛
⎝

0
0
1

⎞
⎠. (A7)

The respective BZ of the sc lattice is also cubic [shown in
Fig. 6(a) in the inset] and has the distinct high symmetry and
corner/face points �, X, M, R, which are given in internal
coordinates with (u, v,w) where the reciprocal vector k is
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FIG. 6. Energy dispersions of homogeneous flat spin spiral states
without (gray) and with (red) spin-orbit coupling (SOC) for BiFeO3

(BFO) at |q| → R of the pseudocubic Brillouin zone. The points
show the DFT calculated energies (dark gray without SOC, red
with SOC) whereas lines represent the fit to the extended Heisen-
berg model including the exchange interaction beyond first nearest
neighbors (without SOC, gray lines), the Dzyaloshinskii-Moriya in-
teraction and magnetocrystalline anisotropy energy (with SOC, red
lines). For positive (negative) values of q, the AFM spin spirals prefer
a counterclockwise (clockwise) rotation. (a) R3m phase and (b) R3c
phase. Note that here, all lines are based on the complete fitting of
the DFT data.

defined as k = ub1 + vb2 + wb3.

� =
⎛
⎝

0
0
0

⎞
⎠, X =

⎛
⎝

0
1/2

0

⎞
⎠, M =

⎛
⎝

1/2

1/2

0

⎞
⎠, R =

⎛
⎝

1/2

1/2
1/2

⎞
⎠.

For the nearest neighbor in the sc, the scalar product of q · R
is defined as in Table III.

Inserting q · R into Eq. (A3), the fitting formula for the
nearest neighbor reads as

E1 = −2J1{cos(2πq1) + cos(2πq2) + cos(2πq3)}. (A8)

In the R-X direction, the q vector goes along (1/2, 1/2, 1/2) →
(1, 0, 1/2), which means the applied q vector is q′ =

TABLE III. Position R of the nearest neighbor in Cartesian co-
ordinates and the respective scalar product of q · R.

Position R q · R

a(1, 0, 0) 2πq1

a(0, 1, 0) 2πq2

a(0, 0, 1) 2πq3

a(−1, 0, 0) −2πq1

a(0, −1, 0) −2πq2

a(0, 0,−1) −2πq3

(1/2 − q, 1/2 + q, 1/2). The length of the R-X path is
√

2
2 and

including the vector in Eq. (A8) leads to

ERX
1 = −2J1{cos(2π (1/2 − q))

+ cos(2π (1/2 + q)) + cos(π )}
= −2J1{−2 cos(2πq) − 1}

considering the length����������⇒
of the path

ERX
1 = −2J1{−2 cos(

√
2πq) − 1}. (A9)

According to this procedure, we determine the formulas for
mapping the exchange interaction onto the calculated values
for the whole path of q, R-X-M-�-R.

For the DM interaction, we only focus on the magnetic
ground state at the region of |q| → R. The DM interaction
acting on two magnetic moments mi, m j is described with

HDM = −
∑

i j

Di j · (mi × m j ). (A10)

The cross product is linked to a sin behavior where a linear
contribution remains close to the R point where q → 0.

The resulting formula for the DM interaction is derived
similarly as the exchange. In the R-X direction, we applied
the formula for the nearest neighbor DM interaction as

ERX
DM, 1 = −4

√
2πD1q. (A11)

APPENDIX B: DETERMINATION OF EXCHANGE
AND DZYALOSHINSKII-MORIYA INTERACTION

FROM FIRST PRINCIPLES

Using the description of Appendix A, we first map
the exchange interaction of Eq. (A8) onto the results from the
DFT calculations without spin-orbit coupling. The data are
seen in the energy dispersions (cf. Fig. 6 and Fig. 1, . . . ,4
in the main text) as dark gray points and the result of
the mapping is seen as dark gray lines. As energy refer-
ence for the mapping, we choose the � point in contrast
to the DFT calculated values which show the R point as
energy reference. We do this to not restrict the fit to go
directly through the R point because around R, we reached
the limit of DFT accuracy. Two main features occur to
be important as a result: the overall appearance and rep-
resentation of the fit for all data points along R-X-M-�-R
and a good representation of the DFT calculated values at
the energy minimum. Here, three main problems can be
seen:

(1) The larger the described spin spiral period (a small
value of |q| in reciprocal space), the more distant neighbors
need to be taken into account (in real space) to capture these
features. Here, the energy dispersion at the ground state en-
ergy is very close to the collinear state—closer than in every
other system known in the literature.

(2) The energy minimum is in the range of ≈ 50 μeV.
(3) The energy differences between the high symmetry

points of the BZ—R, X, M, �—are large.
These three features are hard to accommodate and de-

scribe within a reasonable amount of interacting neighbors
for the exchange interaction. Therefore, we restrict ourselves
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in finding reasonable values for the exchange interaction to
obtain the most reasonable agreement between the DFT cal-
culated values and the fit. All resulting values are presented
in Table II. Here, the number of included neighbors in the
fit of the exchange interaction are chosen, so that including
more neighbors will not give a significant improvement of the
description. This criterion needs to be subjective because the
points show some irregular shape due to the limit of accuracy
which we reach in DFT calculations, visible in the extremely
small energy windows of panels (b) of Figs. 2, 3, 4, and 5. For
the two latter, e.g., we decide the best line to lie in between
the first few points from R. In the case of the R3m phase,
this can be achieved by including up to four neighbors and
in the case of the R3c phase (due to the slightly different
shape of the dispersion), seven neighbors are needed. Note
that especially J4, J7 can be seen as responsible to flatten the
curve along the high symmetry directions. On the other hand,
J5, J6, J8, . . . will change the energy differences between the
high symmetry points, which we do not desire, once the good
differences are obtained. In the case of the R3m phase, the
energy contributions of J5, J6, . . . therefore are negligible and
for R3c, it is J8, J9, . . . . Due to slight deviations stemming
from the exchange interaction in Figs. 4 and 5, the values
for the DM interaction have been adapted to better describe
the energy dispersion with SOC [red curve in the respective
panel (b)].

The values for the DM interaction solely from DFT are
obtained by mapping Eq. (A11) to the DFT results of panels
(c) in Figs. 4 and 5. For these values, the curves are presented
in Fig. 6. For the R3m phase, it is D = +0.383 meV/atom
and for the R3c phase, it is D = +0.207 meV/atom. Note that

this value is still in good agreement with previously reported
values.

APPENDIX C: SENSITIVITY OF THE
SPIN SPIRAL PERIOD

In the present work, the determined period of the AFM
spin spiral in R3c BFO λ ∼ 80 nm from DFT calculations
is in good agreement with the experimentally reported value
of 62 nm [7,8]. Despite the high accuracy of the calcula-
tions, the spin spiral period λ is a very sensitive value since
it reflects the reciprocal value of the spin spiral vector q.
Note that at the R point of the pseudocubic Brillouin zone,
q → 0 means λ → ∞. In panels (b) of Figs. 2, 3, 4, and 5,
the range of |q| ∈ [0, 0.02] in units of 2π/a corresponds to
λ ∈ [∞, 27.69 nm]. Here, the rhombohedral lattice constant
a = 5.538 Å has been taken into account. As a consequence,
a very small change at the energy minimum of q = 0.0085 ±
0.001 2π/a will affect the spin spiral period approximately
as λ ∼ 65 ± 8 nm. In other words, a slight change in either
exchange, DM interaction, or anisotropy has a rather large
change in the respective spin spiral period. Taking the DM in-
teraction, D = 0.342 meV/atom determined from panels (b)
in Fig. 5 in the main text (cf. Table II) yields a spin spiral pe-
riod of λ ∼ 80 nm, while the value D = 0.466 meV/atom can
reproduce the experimentally observed period of λ = 62 nm.
Although the difference in �λ ∼ 20 nm appears rather large,
both values for the DM interaction are in very good agree-
ment with previous reports. Even though the actual spin spiral
period is such a sensitive quantity, our conclusions and the
driving mechanisms are robust and will not change.
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