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Figure 0-1. From emissions to Global Warming.

Credits: Original Climate Spiral by Ed Hawkins (Climate Lab Book), extended with Carbon Budget and 
Concentration Spiral by Robert Gieseke and Malte Meinshausen (PRIMAP Group, Potsdam Institute 
for Climate Impact Research, Germany & Australian-German Climate & Energy College, The University 
of Melbourne, Australia). link

Climate change

Context

https://openclimatedata.net/climate-spirals/carbon-budget-temperature/
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Figure 0-2: World consumption of primary energy from 1994 to 2020. 

Credits: BP’s Statistical Review of World Energy 2020. link

World consumption of primary energy

Renewables: 5%

Oil, natural gas, 
and coal: 84%

Context

https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
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Figure 0-3: The gap between emissions and policies scenarios.

Credits: United Nations Framework Convention on Climate Change 
(UNFCCC), Nationally Determined Contributions Synthesis Report. link

The gap between rhetoric and reality on emissions

2.7 °C

Let us get to 
work! :)

Context

https://unfccc.int/documents/306848
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How to reduce greenhouse gas emissions?

Figure intro-1: Emissions reductions by mitigation measure in the NZE, 2020-2050.

Credits: IEA (2021), Net Zero by 2050, IEA, Paris https://www.iea.org/reports/net-
zero-by-2050

Wind and solar provide 70% of total generation in 2050!

Introduction

https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
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How to cope with uncertainty?

Renewable energies are uncertain! 

-> challenges to the electricity system’s adequacy when 
conventional capacities are reduced, and renewable energies are 
increasing.


In parallel: digitization of energy systems, a process towards 
decentralization, liberalization of electricity markets. 

-> increased focus on data-driven decision approaches 
including: 

- forecasting of the renewable generation and the consumption; 

- optimization  and control of energy systems; 
to cope with the uncertainty.

Introduction
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Forecasting

Forecasting = a natural first step to decision-making 
Key parameters to forecast:

- Generation: PV, wind power, hydraulic power …

- Consumption: office, industrial, residential …

- Prices: electricity, gas …

Figure intro-2: humoristic picture about forecasting.

Introduction
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Optimization and management

Figure intro-3: Overview of the different scopes of models.

Credits: Limpens, Gauthier. Generating energy transition pathways: 
application to Belgium. Diss. UCL-Université Catholique de Louvain, 2021.

Microgrid

Introduction
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Microgrids

Figure intro-4: Microgrid scheme.

Credits: ELEN0445 Microgrids course link, Liège University.

An Energy Management System (EMS) 
optimizes the decisions based on:

- monitoring

- forecasting

Introduction

https://github.com/bcornelusse/ELEN0445-microgrids
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Research questions

1. How to produce reliable probabilistic forecasts of 
renewable generation, consumption, and electricity prices?


2. How to make decisions with uncertainty using 
probabilistic forecasts to improve scheduling?

Introduction
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Model simplifications

Microgrids considered are composed of a few nodes 
(generation, consumption, and storage).


Power flows are not considered.


Static and linear model of the battery energy storage 
system (BESS).


No degradation of the microgrid components.


Day-ahead planning: the horizon is cropped to 24 hours.

Introduction
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Forecast quality vs. value

Forecast quality: 


-> the ability of the forecasts to mimic the characteristics of 
the processes involved: assessed by quality metrics.


Forecast value: 


-> the benefits from using forecasts in a decision-making 
process, such as participation in the electricity market.

Morales, Juan M., et al. Integrating renewables in electricity markets: 
operational problems. Vol. 205. Springer Science & Business Media, 2013.

Introduction
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Thesis contributions

Figure intro-5: Thesis skeleton.

Introduction
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Overview

Normalizing flows (NFs) vs. generative adversarial networks 
(GANs) & variational autoencoders (VAEs).


Conditional generative models using weather forecasts.


Open data of the Global Energy Forecasting Competition 2014: 
PV, wind power, and load tracks.


-> NFs are more accurate in quality & value.

Python code: https://github.com/jonathandumas/generative-models

Jonathan Dumas, Antoine Wehenkel, Damien Lanaspeze, Bertrand Cornélusse, 
and Antonio Sutera. A deep generative model for probabilistic energy 
forecasting in power systems: normalizing flows. Applied Energy, 305:117871, 
2022. ISSN 0306-2619. doi: https://doi.org/10.1016/j.apenergy.2021.117871.

Part I - Introduction

https://github.com/jonathandumas/generative-models
https://doi.org/10.1016/j.apenergy.2021.117871
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Motivations

Research gaps:


- only [ref] compared NFs to GANs and VAEs for the 
generation of daily load profiles;


- most of the studies that propose or compare forecasting 
techniques only consider the forecast quality; 

- the conditional versions of the models are not always 
addressed.

[ref] Ge, Leijiao, et al. "Modeling daily load profiles of distribution network for 
scenario generation using flow-based generative network." IEEE Access 8 
(2020): 77587-77597.

Part I - Introduction
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Framework of the study
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Figure I-1: The framework of the study.

Part I - Introduction

https://github.com/jonathandumas/generative-models
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Comparison of the models

 

NFs

VAEs

GANs

Log-likelihood 
maximization 

Flow Inverse

Min-max 
problem

Discr im inat or
Fake / 
real ?

Generat or

Encoder Decoder

Variational lower 
bound 

maximization Figure I-2: High level comparison of the three models.

Mathematical formulations are provided in the Ph.D. thesis.

Part I - Background

https://github.com/jonathandumas/generative-models
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Evaluation methodology

 Figure I-3: Methodology: quality and value evaluation.

Part I - Numerical results

https://github.com/jonathandumas/generative-models


NFs VAEsGANs

GEFcom 
2014

LS := Learning set
VS := Validation set
TS := Testing set

LS VS TS

Training
Hyper-parameters 

8 m et r ics:
- Quantile score
- Continuous ranked 

probability score
- Reliability diagram
- Energy score
- Variogram score
- Classifier-based metric
- Scenarios correlations 
- Diebold-Mariano test

Day-ahead bidding of  an 
energy ret ailer :
- Portfolio composed of PV, 

wind power, load, and 
storage device

- Stochastic optimization 
based on scenarios

- Day-ahead planning
- Dispatching
- Profit computation

Models com par ison :
- quality metrics
- profits

Qualit y Value

- PV
- wind power
- load

Open dat aset s:

scenarios

!27

Evaluation methodology

 

Part I - Numerical results

Figure I-3: Methodology: quality and value evaluation.

https://github.com/jonathandumas/generative-models
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Wind power scenarios 

 Figure I-4: Wind power scenarios shape comparison and analysis.

NF GAN VAE

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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PV scenarios 

 Figure I-5: PV scenarios shape comparison and analysis.

NF GAN VAE

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Load scenarios 

 Figure I-6: Load scenarios shape comparison and analysis.

NF GAN VAE

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Quality results

 Table I-1: Averaged quality score per dataset.

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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 Figure I-3: Methodology: quality and value evaluation.

Evaluation methodology

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Energy retailer formulation: scenario-based approach

 

Part I - Numerical results

day-ahead bid S h o r t & l o n g 
deviations

e = first-stage variables: day-ahead bid 
y = second-stage variables: deviations, dispatch, BESS charge/
discharge, BESS state of charge, PV and wind power 
generation.

Net profit = profit - penalty. (kЄ)

https://github.com/jonathandumas/generative-models
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Value results: profits comparison

 Table I-2: Total net profit (kЄ) and cumulative ranking (%).

Net profit = profit - penalty. (kЄ)


-> computed for the 1500 days of the simulation and 
aggregated.

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Results: summary

 

Table I-3: Comparison between the generative models.

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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- Normalizing flows can challenge GANs and VAEs. 

- They can be used effectively by non-expert deep learning 

practitioners.

Figure I-1: The framework of the study.

Part I - Conclusions

https://github.com/jonathandumas/generative-models
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Perspectives

 

Normalizing flows directly learn the stochastic multivariate 
distribution by maximizing the likelihood:

- transfer scenarios from one location to another;

- importance sampling -> stochastic optimization.


Investigate graphical normalizing flows [1] that could take 
advantage of spatial dependencies between plants.

Part I - Conclusions

[1] Wehenkel, Antoine, and Gilles Louppe. "Graphical normalizing flows." 
International Conference on Artificial Intelligence and Statistics. PMLR, 2021.

Compare NFs to other recent generative models such as diffusion 
models [2].

[2] Dhariwal, Prafulla, and Alex Nichol. "Diffusion models beat gans on image 
synthesis." arXiv preprint arXiv:2105.05233 (2021).

https://github.com/jonathandumas/generative-models
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Perspectives

 

Part I - Conclusions

Figure I-7: Overview of different types of generative models.

Credits: https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html

https://github.com/jonathandumas/generative-models
https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html
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Part II

Figure intro-5: Thesis skeleton.

Presentation focus
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Overview

J. Dumas, C. Cointe, A. Wehenkel, A. Sutera, X. Fettweis and B. 
Cornelusse, "A Probabilistic Forecast-Driven Strategy for a Risk-Aware 
Participation in the Capacity Firming Market," in IEEE Transactions on 
Sustainable Energy, doi: 10.1109/TSTE.2021.3117594.
Python code: https://github.com/jonathandumas/capacity-firming-ro

System: 

-> a grid-connected renewable generation plant & a battery 
energy storage system (BESS) in the capacity firming market.


Methodology: 

-> a min-max-min robust optimization problem with recourse. 


Decomposition techniques: 

-> Benders-dual cutting plane & column and constraints 
generation algorithms.

Part II - Introduction

https://ieeexplore.ieee.org/document/9562566
https://github.com/jonathandumas/capacity-firming-ro


!44

Capacity firming framework

Forecaster  Planner

Dead line

Market 
Periods

Figure II-1: Day-ahead nomination process.

System = a grid connected PV plant + BESS.


Nomination on a day-ahead basis with ramping power constraints. 


Remuneration = gross revenue - penalties. 


Penalties = deviations of the realized imports/exports from the 
engagements.

Part II - Introduction



!45

Day-ahead planning strategies

Figure II-2: Comparison of various optimization schemes.

Credits: Shang, Chao, and Fengqi You. "Distributionally robust optimization for 
planning and scheduling under uncertainty."  Computers & Chemical 
Engineering 110 (2018): 53-68.

Part II - Introduction
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Framework of the study

Figure II-3: Forecast-driven robust optimization strategy.
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Part II - Introduction
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Day-ahead planning strategies

Part II - Problem formulation

Figure II-2: Comparison of various optimization schemes.

Credits: Shang, Chao, and Fengqi You. "Distributionally robust optimization for 
planning and scheduling under uncertainty."  Computers & Chemical 
Engineering 110 (2018): 53-68.

PV point forecast
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Two-stage deterministic formulation

J := - net revenue = - (gross revenue - penalties) [EUR]

Mixed-integer linear program (MILP):

Set of feasible engagements = first-stage variables 
Set of feasible dispatch variables = second-stage variables: 
import/export, BESS charge/discharge, BESS state of charge, PV 
generation, short/long deviations. 

= PV point forecast

Eq. (II-1)

Eq. (II-2)

Part II - Problem formulation

symmetric, convex & piecewise-linear penalty
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Day-ahead planning strategies

Part II - Problem formulation

Figure II-2: Comparison of various optimization schemes.

Credits: Shang, Chao, and Fengqi You. "Distributionally robust optimization for 
planning and scheduling under uncertainty."  Computers & Chemical 
Engineering 110 (2018): 53-68.
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PV generation is within an uncertainty interval:

PV uncertainty set

Part II - Problem formulation

PV uncertainty set

𝒰 = {ut ∈ [umin
t , umax

t ]∀t ∈ 𝒯}
PV generation

umin
t , umax

t = ̂ypv,(q)
t , ̂ypv,(1−q)

t
PV quanti les q-> 
marginal prediction 
intervals!



!52

Part II - Problem formulation

Only downward deviations:


Demonstration in the Ph.D. thesis (thank you Quentin :) )

Only lower or upper bounds [ref]:

[ref] Zhao, Long, and Bo Zeng. "Robust unit commitment problem with 
demand response and wind energy." 2012 IEEE power and energy 
society general meeting. IEEE, 2012.

umax
t = ̂ypv,(q=50%)

t

𝒰 = {ut ∈ [umin
t , ̂ypv,(q=50%)

t ]∀t ∈ 𝒯}

𝒰 = {ut ∈ {umin
t ; ̂ypv,(q=50%)

t }∀t ∈ 𝒯}

PV uncertainty set

umin
t = ̂ypv,(q=50%)

t − ̂ypv,(q)
t
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Risk-aversion
2 parameters define the PV uncertainty set [Ref]:

- PV quantile q;

- the uncertainty budget Γ.


-> Γ restricts the number of periods where uncertainty is allowed:

- Γ = T -> full uncertainty;

- Γ = 0 -> no uncertainty.

Part II - Problem formulation

𝒰 = {ut : ∑
t∈𝒯

zt ≤ Γ, zt ∈ {0; 1},

[Ref] Bertsimas, Dimitris, et al. "Adaptive robust optimization for the security 
constrained unit commitment problem." IEEE transactions on power systems 28.1 
(2012): 52-63.

umin
t = ̂ypv,(q=50%)

t − ̂ypv,(q)
t

ut = ̂ypv,(q=50%)
t − ztumin

t ∀t ∈ 𝒯}
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Two-stage robust formulation
Minimizing J over the worst PV trajectory:

Eq. (II-3)

Eq. (II-4)

Part II - Problem formulation

=

Economic dispatch for 
a given engagement & 
PV trajectory
Worst case economic 
dispatch for a given 
engagement over the PV 
uncertainty set

[MILP]

[MILP]
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Second-stage planner transformation

Part II - Problem formulation

Eq. (II-5)

Relaxation (BESS binary 
variables): [MILP] -> [LP]

-> A decomposition technique is used to solve this problem.

=

[LP]

Dual of the economic 
dispatch
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Decomposition of the min max problem

Part II - Decomposition techniques

Master Problem (MP): first-stage variables -> min 


Sub Problem (SP): dispatch variables -> max 

2 algorithms:

- Benders-dual cutting plane algorithm (BD) -> SP 

provides constraints;

- Column and constraints generation algorithm (CCG) -> 

SP provides variables & constraints.

Eq. (II-5)
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BD algorithm

At iteration j:

- SP^j  -> upper bound;

- MP^j -> lower bound.

Eq. (II-6)

New constraints! (cuts)

Part II - Decomposition techniques

Value function of the first-stage 
variables

Note: BD implemented uses a 
warm-start (initial set of cuts)
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CCG algorithm

Eq. (II-7)

New constraints & 
second-stage variables!

Part II - Decomposition techniques

At iteration j:

- SP^j  -> upper bound;

- MP^j -> lower bound.
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Numerical settings

PV quantiles:

- NF

- LSTM

Decomposition technique:

- BD

- CCG

4 robust planners:

- BD-LSTM

- BD-NF

- CCG-LSTM

- CCG-NF

Testing set: 30 days

-> results are aggregated and normalized (%)

PV quantiles:

- NF

- LSTM

4 deterministic planners:

- Quantile-LSTM

- Quantile-NF

- nominal

- oracle

PV point-forecasts

Perfect forecasts

Part II - Case study
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2 strategies:

- fixed Γ and q, for all day of the dataset;

- dynamic Γ and q, for each day of the dataset.

Risk-averse strategy

Sensitivity analysis:

- q = 10, 20, 30, 40%

- Γ = 12, 24, 36, 48

Part II - Case study

Γ and q control the risk-aversion.
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Constant risk-averse parameters strategy

Figure II-5: Results with constant risk-averse parameters.

The greener the better!

Best results:

- BD-NF: 72.6%

- CCG-NF: 73.8 %

- Deterministic planner: 74.1%

Part II - Case study
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A set of rules, detailed in the Ph.D. thesis, details how Γ and q are 
dynamically set.

Part II - Case study

Γ and q control the risk-aversion.

Risk-averse strategy

2 strategies:

- fixed Γ and q, for all day of the dataset;

- dynamic Γ and q, for each day of the dataset.
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Dynamic risk-averse parameters strategy

Figure II-6: Results with dynamic risk-averse parameters.

Best results:

- BD-NF: 72.3%

- CCG-NF: 75.0 %

- Deterministic planner: 75.0%

Part II - Case study

The greener the better!
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Robust approach allows finding a trade-off between 
conservative and risk-seeking policies.


-> the dynamic risk-averse strategy improved the 
results.

Part II - Conclusions

Figure II-3: Forecast-driven robust optimization strategy.
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Perspectives: uncertainty set
Representations of the uncertainty set:

- Simultaneous prediction intervals instead of Marginal prediction 

intervals [1];

- Multivariate polyhedra [2]. 

Part II - Conclusions

[1] Bessa, Ricardo J. "From marginal to 
simultaneous prediction intervals of wind 
power. " 2015 18 th In te r na t iona l 
Conference on Intel l igent System 
Application to Power Systems (ISAP). 
IEEE, 2015. 

[2] Golestaneh, Faranak, Pierre Pinson, 
and Hoay Beng Gooi. "Polyhedral 
predictive regions for power system 
applications." IEEE Transactions on 
Power Systems 34.1 (2018): 693-704. 

Figure II-7: Different uncertainty sets in dimension 2.

Credits: [2]
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Perspectives: risk-averse strategy using machine learning

Design an improved dynamic risk-averse strategy using a 
machine learning tool.


-> machine learning model outputs the risk-averse parameters 
based on weather forecasts, …

Part II - Conclusions
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Perspectives: RO vs. SP & COO

1. Stochastic programming (SP):

- risk-neutral: maximization of the expected value of the objective;

- risk management: Conditional Value-at-Risk (CVaR).


2. Chance constrained optimization (COO) using a scenario 
approach.


-> conduct a proper comparison of RO  vs. SP & COO with using 
scenarios from generative models: NFs, GANs, VAEs, …)


3. Extend the case study to an energy community: 
-> consider power flows, non-linear model of BESS, component 
degradations …

Part II - Conclusions

min
x

(1 − k)𝔼
ω

{J(x, yω)} + kCVaR1−α(x)
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robust optimization


Conclusions & perspectives
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Conclusions

Figure intro-5: Thesis skeleton.

Conclusions & perspectives
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Perspectives

(1) Forecasting techniques of the future 

-> taking advantage of the underlying physical process/domain-
specific insight;

-> new forecasting techniques (diffusion models …);

-> improve probabilistic forecasts assessment (quality & value).


(2) Machine learning for optimization 

-> simplifying optimization problems by learning a sub-optimal space;

-> physics-informed neural networks in power system applications. 

Conclusions & perspectives
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Perspectives

(3) Modeling & simulation of energy systems 

-> applying forecasting & decomposition techniques in energy system 
models (EnergyScope TD, …)

-> multi-criterion optimization, consider new metrics to optimize 
(EROI, emission, …).


(4) Machine learning & psychology 

-> use algorithms to influence behavior towards sustainability?

-> integrate psychology into the algorithms;

-> address the rebound effect;

-> facilitating behavior changes (carbon footprint …).

Conclusions & perspectives
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Thank you for your attention!

https://youtu.be/xbT4G8XR2io
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Appendix summary

Context


Part I: probabilistic forecasting using normalizing flows


Part II: day-ahead management of a microgrid using robust 
optimization

Appendix



Climate change
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Figure 0-1. From emissions to Global Warming.

Credits: Original Climate Spiral by Ed Hawkins (Climate Lab Book), extended with 
Carbon Budget and Concentration Spiral by Robert Gieseke and Malte Meinshausen 
(PRIMAP Group, Potsdam Institute for Climate Impact Research, Germany & 
Australian-German Climate & Energy College, The University of Melbourne, 
Australia). link

Context

https://openclimatedata.net/climate-spirals/from-emissions-to-global-warming-line-chart/
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Figure 0-2: Near-linear relationship between cumulative CO2 emissions and the 
increase in global surface temperature. 

Credits: AR6 Climate Change 2021: The Physical Science Basis, Summary for 
policymakers (SPM). link 

CO2 and global surface temperature

Context

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf
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Figure 0-2: Projected changes in the intensity and frequency of hot temperature 
extremes over land.

Credits: AR6 Climate Change 2021: The Physical Science Basis, Summary for 
policymakers (SPM). link 

50-years event intensity & frequency of hot extreme events

Context

https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf
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Thesis scope

How to meet the IPCC targets? 

Net Zero by 2050 [ref] key pillars:

- wind & solar energies -> in power systems (thesis scope); 
- reduce fossil energy consumption; 
- behavior and avoided demand;

- electrification -> address the uncertainty (thesis scope);

- hydrogen-based;

- energy efficiency;

- carbon capture, utilisation and storage;

- …

-> Difficulty: renewable energies are uncertain!

[ref] International Energy Agency (IEA): Net Zero by 2050 report A 
Roadmap for the Global Energy Sector https://www.iea.org/reports/net-
zero-by-2050

Introduction

https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
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Context


Part I: probabilistic forecasting using normalizing flows


Part II: day-ahead management of a microgrid using robust 
optimization

Appendix summary

Appendix
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Applicability of the models

 

1. Forecasting module of an energy management system (EMS).


2. Stochastic/robust unit commitment.


3. Ancillary services market participation.


4. Compute scenarios for any variable of interest, e.g., energy 
prices, renewable generation, loads, water inflow of hydro 
reservoirs. 

Part I - Introduction

https://github.com/jonathandumas/generative-models
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Study contributions

 
Table A-I-1: Comparison of the study’s 
contributions to three state-of-the-art 
studies using deep generative models.

[1] [2] [3] [1] Wang, Yi, et al. "Modeling load 
forecast uncertainty using generative 
adversarial networks." Electric Power 
Systems Research 189 (2020): 
106732. 

[2] Qi, Yuchen, et al. "Optimal 
configuration of concentrating solar 
power in multienergy power systems 
w i th an improved va r ia t iona l 
autoencoder." Applied Energy 274 
(2020): 115124. 

[2] Ge, Leijiao, et al. "Modeling daily 
load profiles of distribution network 
for scenario generation using flow-
based generative network." IEEE 
Access 8 (2020): 77587-77597.

Part I - Introduction

https://github.com/jonathandumas/generative-models


PV 
generation

weather 
forecasts

weather 
forecasts

PV scenarios

Norm alizing Flow

Scenar ios generat ion

!84

Normalizing flows

 Figure appendix-I-1: A three-step conditional normalizing flows for PV generation.

Part I - Background

https://github.com/jonathandumas/generative-models
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Variational auto encoders

 

Encoder

PV 
generation

weather 
forecasts

Decoder

PV scenarios

reparameterization 
trick

weather 
forecasts

Var iat ional Aut oEncoder

Scenar ios generat ion

Decoder

PV scenarios

weather 
forecasts

Figure appendix-I-2: A conditional variational autoencoder for PV generation.

Part I - Background

https://github.com/jonathandumas/generative-models
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Generative adversarial networks

 
Figure appendix-I-3: A conditional generative adversarial network for PV generation.

Part I - Background

https://github.com/jonathandumas/generative-models
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Theoretical comparison

 

Part I - Background

NFs:

- Pros: exact likelihood calculation, efficiently parallelizable;

- Cons: requires bijective transformations, Jacobian 

computation issues.


VAEs:

- Pros: handle non-invertible generators & arbitrary latent 

space dimension;

- Cons: scenarios may be unreal ist ic -> l imited 

approximation of the true posterior with a normally 
distributed prior with diagonal covariance.


GANs:

- Pros: does not rely on estimates of the likelihood or latent 

variable.

- Cons: training issues, mode collapsing, hyper parameters 

selection issues.

https://github.com/jonathandumas/generative-models
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Quality metrics

 

Univariate metrics:

- Continuous Ranked Probability Score (CRPS)

- Quantile Score (QS)

- Reliability diagrams


Multivariate metrics:

- Energy Score (ES) -> multivariate generalization of the CRPS

- Variogram Score (VS) -> captures the correlations between 

multivariate components in contrats to the ES


Specific metrics:

- Classifier based

- Correlation between scenarios


Statistical metric :

- Diebold and Mariano test -> CRPS, QS, ES & VS

Part I - Numerical results

https://github.com/jonathandumas/generative-models


NFs VAEsGANs

1. Generate M scenarios per 
day of both the LS & TS

2. Build M pairs of LS & TS for 
a conditional classifier

3. M classifiers per model

classifier 1

ROC & AUC 1

classifier M.......

ROC & AUC M
Com pare t he m odels 

.......
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Classifier-based metric

 

Goal: assess whether a scenario can be 
distinguished from an observation.

Part I - Numerical results

Figure appendix-I-4: Classifier-based metric methodology.

ROC curve: measure the ability of a 
classifier to produce good relative 
instance scores.


Area under the ROC curve = AUC

-> equivalent to the probability that the 
classifier will rank randomly chosen 
positive instance higher than a randomly 
chosen negative instance


AUC = 0.5 for a random classifier 

https://github.com/jonathandumas/generative-models
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Implementation details

 

Table A-I-2: Dataset and implementation details.

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Hyper-parameters

 
Table A-I-3: NF (a), VAE (b) & GAN (c) hyper-parameters.

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Quality results: QS, CRPS, and reliability diagrams

 

Part I - Numerical results

Figure appendix-I-5: Quality standard metrics comparison on the wind 
(markers), PV (plain), and load (dashed) tracks.

https://github.com/jonathandumas/generative-models
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Quality results

 

Part I - Numerical results

Figure appendix-I-6: Wind, PV, and load tracks classifier-based metric.

https://github.com/jonathandumas/generative-models
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Scenarios shape analysis

 

Part I - Numerical results

Figure appendix-I-7: Average of the correlation matrices over the testing set.

https://github.com/jonathandumas/generative-models
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Forecast value: energy retailer

 

Day-ahead scheduling of an energy retailer:

- wind power generation;

- PV generation;

- electrical consumption;

- a battery energy storage system (BESS).


-> balance the portfolio on an hourly basis to avoid financial 
penalties by exchanging the surplus or deficit of energy in the 
day-ahead electricity market.


A stochastic planner (MILP) is implemented using a 
scenario-based approach. 

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Energy retailer: data illustration

 Figure appendix-I-5: Illustration of the observations on a random day of the testing set.

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Energy retailer: implementation details

 

Energy retailer: 

- wind power (10 zones);

- PV generation (3 zones);

- load (1 zone);

- 1 battery energy storage device. 


-> 1500 independent simulated days (50 days of testing * 30 
combinations of PV & wind generation zones).


A two-step approach: 

(1) the stochastic planner computes the day-ahead bids for each 

generative model and the 1500 days simulated;

(2) a real-time dispatch is carried out using the observations, 

with the day-ahead decisions as parameters.

Part I - Numerical results

https://github.com/jonathandumas/generative-models
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Energy retailer: numerical settings

BESS min/max capacity = 0/1 kWh


Charging & discharging efficiencies = 95 %


Full charge/discharge in 2 hours


50 PV, wind power, and load scenarios per optimization problem


Each simulation day the BESS is fully discharged as the first & 
last period.

Part I - Numerical results
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Context


Part I: probabilistic forecasting using normalizing flows


Part II: day-ahead management of a microgrid using robust 
optimization

Appendix summary

Appendix
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Stochastic programming (SP) vs. robust optimization (RO)
Random vector: renewable generation. 


1. Feasibility 
SP: -> solutions feasible for all realizations of the random vector. 

RO: -> solutions feasible inside a uncertainty set.


2. Optimality

SP: -> rank random variables J(x, ω) according to their expectations 
and pick the biggest (in a maximization problem). 

RO: -> random variables J(x, ω) are ranked by their worst possible 
outcome.


3. Solution algorithm

SP: -> a discrete approximation (scenarios) of the random vector.  

RO: -> definition of an uncertainty set.

Morales, Juan M., et al. Integrating renewables in electricity markets: 
operational problems. Vol. 205. Springer Science & Business Media, 2013.

Part II - Problem formulation
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SP & RO pros/cons

Part II - Problem formulation

SP pros:

- less conservative than RO & easier to implement than RO;

- Include risk management with CVAR.


SP cons:

- problem size and computational requirements issue;

- challenging to identify an accurate probability distribution;

- results are sensitive to the scenario generation technique.


RO pros:

- requires only moderate information about the uncertainty; 

- optimal solution that immunizes against all realizations of the 

uncertain data.


RO cons:

- the RO version is not always tractable & more difficult to implement 
than SP;
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BD & CCG algorithms convergence
1. Relatively complete recourse assumption 

-> the SP is feasible for any engagement plan and generation 
trajectory (always true in the capacity firming framework).


2. SP convergence 


-> the convergence of the relaxed SP is checked at each iteration 
of the algorithm by ensuring there is no simultaneous charge and 
discharge.


3. Overall convergence 

-> the overall convergence of the algorithm toward the optimal 
solution is checked.

Part II - Decomposition techniques
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BD & CCG algorithms convergence check

MP^J = MP value at iteration J

SP^J = SP value at iteration J

epsilon  = epsilon threshold (0.5 EUR)


When: |MP^J-SP^J| < epsilon -> convergence between MP & SP is 
reached.


-> Compute MILP^J: deterministic formulation of the problem 
computed using the PV worst-case trajectory retrieved from the SP 
at J.


-> if |MP^J-MILP^J| < epsilon -> ok! :)

-> else |MP^J-MILP^J| < epsilon -> Nok :(-> update big-M’s 
values & restart the algorithm.

Part II - Decomposition techniques
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BD warm start

Building an initial set of cuts for the BD MP.


-> sampling PV trajectories assumed to be close to the worst PV 
trajectory in the uncertainty set U.


t1 = time period corresponding to the first non null PV 50% quantile

tf = time period corresponding to the last non null PV 50% quantile


If m = tf - (t1 + Gamma -1) > 0 -> m trajectories are sampled:


The trajectory m is built by setting the Gamma values of the PV 50% 
quantile to the lower bound (PV quantile q) for time periods:


T1 + (m-1) <= t <= t1 + Gamma -1 +(m-1)


Part II - Decomposition techniques
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ULiège case study

Figure A-II-1: Results illustration on September 14, 2019.

Part II - Case study
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Numerical settings

Part II - Case study

Pc = PV total installed capacity = 466.4 kWp


Planning & controlling periods = 15 minutes


Peak hours are set between 7 & 9 pm (UTC+0)


Ramping power constraints 7.5%Pc (15%Pc)


Lower/upper bounds on the engagements & net power = 0/466.4 kW


Engagement tolerance = 1%Pc & penalty factor = 5


BESS min/max state of charge = 0/466.4 kWh


Charging & discharging efficiencies = 95%
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Dynamic risk-averse strategy: set of rules

Part II - Case study

Motivation: the sharper the quantile forecast distribution around the 
median is, the less risk averse the strategy should be.


2 parameters are designed:

- PV uncertainty max depth: d_q = % distance between PV 10 & 50 

% quantiles

- The budget uncertainty depth: d_Gamma = % of the total 

installed capacity
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BD algorithm with & without warm start

Figure A-II-2: BD convergence without (left) and with 
(right) warm start on September 14, 2019.

Part II - Case study
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BD algorithm warm start computation times statistics

Table A-II-1: BD computation times (min) statistics with 
and without warm start.

Part II - Case study

-> Reduce the computation time 


-> Reduce the number of times the big-M's values need to be 
increased before reaching the final convergence criterion with the 
MILP



BD and CCG algorithms comparison

-> CCG converges in 5-10 iterations vs 50-100 for BD


-> CCG provides better results than BD


-> CCG does not always converge (MILP convergence criterion)
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Table A-II-1: BD vs CCG statistics.

Part II - Case study


