Substitution of limestone filler by waste brick powder in self-compacting mortars: properties and durability

Zengfeng Zhao, Adèle Grellier, Mohamed El Karim Bouarroudj, Frédéric Michel, David Bulteel, Luc Courard

PII: S2352-7102(21)00756-7

DOI: https://doi.org/10.1016/j.jobe.2021.102898

Reference: JOBE 102898

To appear in: Journal of Building Engineering

Received Date: 17 January 2021

Revised Date: 13 June 2021 Accepted Date: 15 June 2021

Please cite this article as: Z. Zhao, A. Grellier, M. El Karim Bouarroudj, F. Michel, D. Bulteel, L. Courard, Substitution of limestone filler by waste brick powder in self-compacting mortars: properties and durability, *Journal of Building Engineering*, https://doi.org/10.1016/j.jobe.2021.102898.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

Credit Author Statement

Zengfeng ZHAO: Conceptualization, Methodology, Investigation, Writing - Original draft

preparation, Writing – Review & Editing;

Adèle Grellier: Data Curation;

Mohamed El Karim Bouarroudj: Resources;

Frédéric Michel: Validation;

David Bulteel: Funding acquisition;

Luc COURARD: Writing – Review & Editing, Funding acquisition.

Substitution of limestone filler by waste brick powder in self-compacting

2 mortars: properties and durability

3

- 4 Zengfeng Zhao^{a,b}*, Adèle Grellier^{a,c}, Mohamed El Karim Bouarroudj^c, Frédéric Michel^a,
- 5 David Bulteel^c, Luc Courard^a

6

- ^aUniversity of Liège, Urban and Environmental Engineering, GeMMe Building Materials,
- 8 Liège, Belgium
- ^bTongji University, Department of Structural Engineering, College of Civil Engineering,
- 10 Shanghai, China
- ^cIMT Lille Douai, Univ. Lille, EA 4515 LGCgE, Civil and Environmental Engineering
- 12 Department, Lille, France

13

Abstract: The feasibility of using waste brick powder (WBP) in the manufacture of self-14 compacting mortar has been investigated in this study. The limestone filler was partially or 15 totally (0%, 50% and 100%) substituted with WBP. The rheological properties, compressive 16 and flexural strengths, drying shrinkage and durability properties (including carbonation 17 resistance, chloride ion diffusion and sulphate resistance) of self-compacting mortars were 18 evaluated. The WBP-mortars presented a higher yield stress and plastic viscosity than that of 19 WBP-free mortar: the additional water has to be added in order to achieve the equivalent 20 workability. The compressive strength of WBP-mortars slightly decreased after 7 days (the 21 compressive strength of series mortars M-BP decreased 5.6% and 9.3% for 50% and 100% 22 WBP based mortars comparing with the reference mortar, respectively; while the compressive 23 strength of series with similar workability mortar M-BP100WA which was based on 100% 24

- 25 WBP decreased 16.7% and it could achieve 26.8 MPa), but the decreasing trend seemed to be
- compensated by the pozzolanic activity of WBP and remained equivalent after 28 days (the
- compressive strength of series mortar M-BP100WA decreased 5.3% and it could achieve 35.6
- 28 MPa). The substitution of limestone filler by WBP didn't seem to impair the durability
- 29 behavior of mortars (except for the resistance to carbonation). Therefore, it is possible to
- 30 manufacture self-compacting mortar by partially or totally substituting limestone filler by
- 31 WBP.
- 32 **Keywords:** waste brick powder, limestone filler, self-compacting mortar, rheology, strength,
- 33 durability.
- *Corresponding author: Zengfeng Zhao, Dr. Ir.
- 35 GeMMe Building materials, Urban and Environmental Engineering, University of Liège
- 36 Allée de la Découverte, 9 4000 LIEGE (Belgium)
- 37 Phone: + 32.4.366.52.58
- 38 Email: zengfeng.zhao@uliege.be

1. Introduction

- 40 Concrete is the second most consumed resource after water and is considered as one of the
- 41 most successful material in the world. The concrete industry's annual global production in
- 42 2010 is approximately 33 billion tons, which consumed nearly 3.7 billion tons of Portland-
- cement clinker and 27 billion tons of aggregate [1]. The cement industry (global production of
- cement is 4.2 billion tons in 2019, e.g. ~0.5 tonne per capita) is a major source of greenhouse
- 45 gas emissions particularly carbon dioxide (CO₂), which accounts for about 8% of total
- world's CO₂ emissions [2]. Very large quantities of construction and demolition waste (CDW)
- are generated yearly around the world. In the European Union (EU), the value was 868
- 48 million tons in 2014, accounting for 35% of the total waste generation of EU [3]. The main
- 49 constituents of CDW are the concrete and brick that may come from the construction of new

buildings, demolition of old structures, renovation-activities and from natural disasters [4–6]. 50 51 EU Waste Framework Directive (2008/98/EC) has provided a framework for achieving that by 2020 a minimum of 70% (by weight) of non-hazardous CDW shall be prepared for re-use, 52 recycled and other material recovery [7]. The demolition of brick masonry structures produces 53 huge amount of waste, including large quantities of clay brick waste [8–12]. In addition, the 54 ceramic bricks industry generates a significant amount of rejected non-conform bricks. 55 However, the fired clay brick waste (the calcination of raw clay minerals occurs the formation 56 of amorphous material during the production of fired clay brick) generally presents some 57 pozzolanic activity [13-16], which could react with calcium hydroxide and form compounds 58 59 with enhanced strength and durability. Therefore, the waste brick powder (WBP) might be used in cement based materials to decrease the amounts of waste which have to be disposed in 60 landfill and the CO₂ emissions [17–20]. Recently, the use of WBP as a partial substitution of 61 Portland cement in the concrete has been received much attention during the past decades 62 [6,16,21-26].63 Liu et al. [6] demonstrated that the hybrid recycled powder from clay brick and concrete 64 waste can be used as a pozzolanic material to replace part of the cement in the concrete when 65 they are well controlled. 66 Vejmelkova et al. [24] evaluated the mechanical properties, durability characteristics of high 67 performance concrete (HPC) produced with up to 60% of Portland cement replacing by fine-68 ground ceramics. The mechanical properties and water transport properties were not 69 significantly impaired by ceramic replacement up to 20%, while the resistance against de-70 icing salts was satisfactory only up to 10% of ceramic replacement, and the chemical 71 resistance (to Na₂SO₄ and MgCl₂) were maintained up to 40%. 72 Ge et al. [26] investigated the fresh and hardened concrete with three different replacement 73 levels up to 30% and three different particle sizes of ground clay-brick replacing cement. The 74

results demonstrated that the slump of fresh concrete significantly decreased as the 75 replacement level was over 10%. The early age strength decreased as the replacement level 76 increased, however, the strength of concrete with ground clay-brick had similar 90-day 77 compressive strength to that of the reference concrete. Concrete with ground clay-brick had 78 low chloride ion penetrability and high freeze-thaw resistance. 79 Schackow et al. [25] studied the durability of Portland cement-lime mortars of partial 80 replacement (10, 25 and 40%) of Portland cement by clay brick waste. The results showed 81 that the mortars with clay brick waste had improved strength and density due to the combined 82 physical pore filling and pozzolanic effect of clay brick waste. The mortar produced with clay 83 84 brick waste showed low ability to absorb chlorides and the resistance to sulphate was lower than the reference mortar. It should be noted here that all results were obtained based on the 85 constant total water to cement ratio. 86 87 Ortega et al. [27] analysed the long-term properties of mortar (including mechanical properties, microstructure and durability) incorporating up to 20% of waste brick powder 88 addition as a clinker replacement. The mortars with 10% and 20% of waste brick powder 89 presented good service properties in long-term (400 days), especially the chloride ingress 90 resistance, even better than reference mortar, which was due to their more refined pore 91 92 network produced by the pozzolanic activity and the filler effect. Toledo Filho et al. [23] examined the potential of use crushed waste clay brick as a 93 supplementary cementitious material with the equal workability of mortars in the proportion 94 95 of 10%, 20%, 30% and 40% of crushed waste clay brick as cement replacement. The results indicated that the optimal percentages of substitution lied between 10 to 20%. The addition of 96 crushed waste clay brick had almost no influence on the compressive strength and elastic 97 modulus up to 20% waste clay brick replacement. 98

Subasi et al. [28] reported the utilization of waste ceramic powder as filler material replacing 99 100 cement with the amounts of 5%, 10%, 15% and 20% in Self-Compacting Concrete (SCC). The compressive strength of SCC mix decreased gradually but not a dramatically decrease. 101 The potential to use waste ceramic powder in SCC as cement replacement up to 15% is 102 suitable due to the positive effects on the fresh state properties on SCC. 103 Bouarroudj et al. [35] estimated the remaining intra granular porosity of a ground powder 104 using modelling approach and experimental approach with the help of mercury intrusion 105 porosimetry. The results showed that porosity of the ground brick is almost eliminated by the 106 grinding procedure (2% and 2.1% with the modelling approach and experimental approach). 107 108 It should be noted that the references mentioned above are concerned mostly with the partial substitution of cement by WBP in the mortar or concrete. Limestone filler is a commonly 109 preferred filler material to increase the packing of the granular skeleton and maintain the 110 111 cohesion and segregation resistance of SCC [29-31]. Whereas, the source of limestone filler is limited in some region and far transportation is needed for the production of concrete. The 112 WBP, which is locally available, might be used as substitution of limestone filler in SCC. The 113 rejected fired clay bricks waste, straight from the production line, whose effect on the mortar 114 or concrete has not been investigated. Because of the similarities to the bricks waste from 115 116 CDW, preliminary work was conducted with the rejected fired clay brick waste powder as substitution of limestone filler in the self-compacting mortar. 117 The objective of this work is to evaluate the possibility of substituting the limestone filler by 118 119 waste brick powder (WBP) in self-compacting mortar. The properties of mortars including rheological properties, mechanical properties (compressive and flexural strengths), drying 120 shrinkage, and durability properties (carbonation resistance, chloride ion diffusion and 121 sulphate resistance) were investigated. 122

2. Materials and methods

2.1. Materials

125 Materials used for producing mortars are presented as follows.

2.1.1. Cement and natural sand

The cement used in self-compacting mortar was an Ordinary Portland Cement (CEM I 52.5 N) provided by CBR company whose mineralogical composition is shown in Table 1. The density of cement was 3.10 g/cm³ measured by helium pycnometer (Micromeritics AccuPyc 1330). The sand used in this study was a siliceous Standard CEN natural sand in accordance with EN 196-1 [32].

Table 1

133 Mineralogical composition of cement determined by XRD-Rietveld

	C ₃ S	C ₂ S	C ₃ A	C ₄ AF	Anhydrite	Calcite	Gypsum
CEM I 52.5 N (%)	66.97	12.08	7.19	9.47	0.02	2.51	1.76

2.1.2. Waste brick powder and limestone filler

The red waste bricks (high resistance brick block: $288 \text{ mm} \times 138 \text{ mm} \times 138 \text{ mm}$ with the compressive strength of 35 MPa, Fig. 1 (a)) were collected from a Belgian brick production company [33]. About 200 kg of the waste bricks were crushed firstly by using semi-industrial jaw crusher to obtain two fractions: 0/4 mm and 4/10 mm. The water absorption of brick (fraction 4/10 mm) was 11.3% determined by the IFSTTAR method according to Equation 1 (WA represents the water absorption coefficient, M_{ssd} is the mass of brick at saturated surface dried state using colored absorbent paper, and M_{dry} is the mass of brick at 105°C oven dried state) [5].

$$WA = \frac{M_{ssd} - M_{dry}}{M_{dry}} \times 100 \tag{1}$$

The fraction 4/10 mm was grinded by using the semi-industrial ball mill (65 litres with 70 kg of specific balls) to obtain waste brick powder (WBP: fraction 0/0.1 mm used in this study, Fig. 1 (b)).

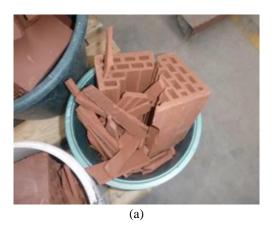


Fig. 1. WBP preparation: (a) collected red waste bricks; (b) WBP after grinding used in this study [33].

A commercial limestone filler (more than 98.1% of calcite) from a Belgian Company was used for the production of self-compacting reference mortar. The density of WBP and limestone filler was $3.07~\text{g/cm}^3$ and $2.73~\text{g/cm}^3$ respectively, measured by helium pycnometer method. Table 2 shows the chemical composition of WBP determined by X-ray fluorescence (Bruker AXS, S4 Pioneer). The major chemical elements of the WBP were oxygen, silicon, aluminum and iron. Table 3 presents the mineral composition of WBP determined by X-ray diffraction (XRD, Brucker AXS D2 phaser diffractometer, $6\text{-}80^\circ$ angle, 0.2° pitch and acquisition time 0.5s). The Rietveld refinement method was used to quantify the crystalline phases and in particular the amorphous phase. The major mineral components of WBP were α -Quartz, hematite and microcline. In addition, the WBP had 16.0% of amorphous phase, which is the most important characteristic with regard to potential pozzolanic activity [6].

Table 2.

Chemical composition of crushed brick powder (%)

	SiO_2	Al_2O_3	Fe_2O_3	Na ₂ O	K_2O	MgO	CaO	TiO_2	SO_3	V_2O_3	MnO	LOI
WBP	62.8	10.4	16.3	0.6	2.1	2.2	1.7	2.4	0.6	0.1	0.2	0.5

Table 3.

165 Mineral composition of crushed brick powder (%)

	α-SiO ₂ Quartz	Fe ₂ O ₃ Hematite	KAlSi ₃ O ₈ Microcline	NaAlSi ₃ O ₈ Albite	SiO ₂ Cristobalite	Amorphous phase
WBP	55.0	12.8	9.2	4.0	2.7	16.0

Fig. 2 presents the particle size distributions (laser granulometry analysis) of WBP, limestone filler and cement used as constituents in the mortars. The WBP had a mono-sized and narrow particle size distribution (PSD): containing a lower proportion of fine particles (1 μ m to 35 μ m) than limestone filler, and a higher proportion of particle between 35 μ m and 75 μ m, while limestone filler presented a continuous PSD. Table 4 reports the specific surface determined by BET method, as well as D10, D50 and D90 diameters of WBP, limestone filler and cement. The WBP presented a higher specific surface area value than that of limestone filler according to the BET method.

Table 4.Physical properties of WBP, limestone filler and cement

	WBP	Limestone filler	Cement
Specific surface area BET (m ² /g)	1.0	0.8	1.29
Density (g/cm ³)	3.07	2.73	3.10
D10 (µm)	4.03	1.74	2.53
D50 (µm)	24.80	18.27	11.14
D90 (um)	60.84	121.67	26.00

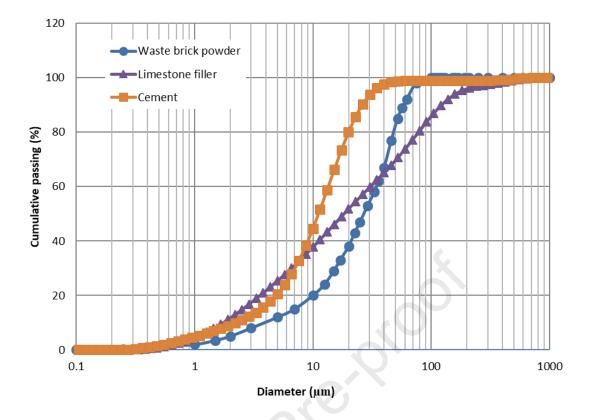


Fig. 2. Particle size distributions of WBP, limestone filler and cement.

2.1.3. Mortar design

The mix design was performed according to the method of concrete equivalent mortar (MBE) developed by Schwartzentruber [34]. Table 5 presents the compositions of self-compacting mortar. Five self-compacting mortars were manufactured with limestone filler being substituted by WBP at substitution rates (in volume) of 0%, 50% and 100% (noted M-BPO, M-BP50 and M-BP100, respectively). The same water to cement ratio (W/C) of 0.8 was used for the series of mortars M-BP0, M-BP50 and M-BP100 (Here only a high W/C ratio was used to obtain self-compacting mortar and to eliminate the effect of superplasticizers). Previous investigations realized on this material [35] showed that the porosity of WBP was very low after grinding the brick particle. Preliminary tests showed however that the substitution of limestone filler by WBP had a negative impact on the workability: preventive measures (superplasticizers or extra water addition) are required to control the workability of

mixture. It should be noted that the purpose of this study is to estimate the actual effect of WBP substituting limestone filler, while keeping the other variables constant. Therefore, an additional quantity of water was used for the series of mortars M-BP50WA and M-BP100WA in order to achieve similar spread flow index of mixture as reference mortar M-BP0 (WA in M-BP50WA and M-BP100WA means that water added to produce mortars with similar workability).

Table 5

200 Compositions of self-compacting mortar (g)

Mix Type	Cement	Natural sand	Limestone filler	WBP	Effective water	Additonal water	Total water
M-BP0	448.0	1350.0	298.3	0.0	358.4	0	358.4
M-BP50	448.0	1350.0	149.2	167.7	358.4	0	358.4
M-BP100	448.0	1350.0	0.0	335.4	358.4	0	358.4
M-BP50WA	448.0	1350.0	149.2	167.7	358.4	19.0	377.4
M-BP100WA	448.0	1350.0	0.0	335.4	358.4	37.9	396.3

2.2. Experimental methods

The experimental program and test methods are listed in Table 6.

Table 6.

205 Experimental program and test methods.

Studied properties	Curing time (days)	Samples per test	Standard test method
Water demand	0	1	Beta P test [36–38]
Spreading flow index	0	2	MBE cone [34]
Shear stress and shear rate	0	1	Rheocad 400 [39]
Density of fresh mortar	0	3	EN 1015-6 [40]
Air content	0	1	EN 1015-7 [41]
Flexural strength	7, 28	3	EN 196-1 [32]
Compressive strength	7, 28	6	EN 196-1 [32]
Water absorption	28	3	NBN B15-215 [42]
Drying shrinkage	1	3	NBN B14-217 [43]
Carbonation resistance	28	3	EN 13295 [44]
Sulphate resistance	28	3	ASTM C1012-04 [45]
Chloride ion diffusion	28	2	Courard et al. [14,36]

2.2.1. Beta P test

The water demand of limestone filler and WBP was characterized by means of β_p factor [36–38]. The Beta P test was performed in order to quantify water demand β_p of the mixture corresponding to the rheological behavior of a paste with different water contents. This test

involved the measurement of the spreading of a paste for different water contents and a relative flow area (R) factor calculated from the spreading diameter D (mm) (Equation 2) with the mini-cone (h = 60 mm, d = 70 mm and D = 100 mm) used for European standard EN 1015-3 [46].

215

$$R = \frac{(D^2 - 100^2)}{100^2} = (D/100)^2 - 1$$
 (2)

216

Okamura et al. [47] demonstrated that, for a paste made with any particular powder, the water powder ratio by volume (V_w/V_p) and the relative flow area (R) are linearly related (Equation 3).

$$V_w/V_p = \beta_P + R \times E_p \tag{3}$$

220

221

222

223

224

where βp is the water ratio, which can be considered as comprising the water adsorbed on the powder surface together with that required to fill the voids in the powder system and to provide sufficient dispersal of the particles, needed for mix flowing; Ep is the deformation coefficient, which is a measure of the sensitivity of the fluidity characteristics of the paste to increasing water content.

225

- 2.2.2. Mixing procedure for the manufacture of mortar
- A precise mixing procedure was followed according to European standard EN 196-1 [32].
- 228 The mixtures protocol was kept the same for all the studied mortars. For the mix of M-
- BP50WA and M-BP100WA, the total quantity of water (efficient water plus additional water)
- was used to manufacture the specimens, without any pre-saturating process of WBP.
- 231 2.2.3. Tests on fresh mortars

After mixing, the first rheological test performed was the spread test. The spread flow of fresh mortar was measured immediately after the removing the MBE cone [34] (h = 150 mm, d = 50 mm and D = 100 mm, approximately 687 ml). The spread value was measured along two perpendicular diameters after 5 min mixing. The second rheological test was performed with Rheocad 400 (CAD Instrumentation) [39] in order to evaluate yield and shear stresses (Fig. 3). This rheometer is a mechanical computer-controlled device, which is developed specially for building materials characterization, such as cement, fresh mortar and concrete. Its principle is based on the measurement of the torque developed in response to the controlled rotation of a measuring device in a bowl. The torque is recorded as a function of the rotation velocity. Careful calibration and used program of the system [33] allowed to transfer this correlation to a correlation between the dynamic viscosity of the mortar and the shear gradient (a range between $0.1 - 60 \text{ s}^{-1}$). The density of fresh mortars was determined in accordance with European standard EN 1015-6 [40]. Before casting, the air content of mortars was measured according to the European standard EN 1015-7 [41].

Fig. 3. Rheocad 400: (a) machine with bowl; (b) special impeller.

2.2.4. Mechanical behavior of mortars

Six specimens of $40 \text{ mm} \times 40 \text{ mm} \times 160 \text{ mm}$ were prepared for measuring the mechanical behaviour of mortars for each mixture. One day after casting, these specimens were

demoulded and stored into water at 21 ± 2 °C until the ages of 7 and 28 days. After each age, both flexural and compressive strengths were evaluated in conformity with European standard EN 196-1 [32]. These two mechanical strength tests were carried out with an INSTRON 5585 (loading capacity of 200 kN). After the failure of the three specimens in bending test, the two parts of each prism were subjected to compressive strength measurement according to European standard EN 196-1.

2.2.5. Water absorption

Water absorption of mortars was measured after 28 days of curing. Three specimens of 40 mm \times 40 mm \times 160 mm were used for the determination of water absorption according to the standard NBN B15-215 [42]. The specimens were immersed into water until achieving a constant mass. The constant mass was taken as the saturated mass of sample (M_{satu}). The dried mass was obtained after drying the saturated sample in an oven at 105°C until constant mass (M_{dried}). The water absorption (WA) was then obtained by ratio of the absorbed water amount to the oven-dried mass (Equation 4).

$$WA = \frac{M_{satu} - M_{dried}}{M_{dried}} \times 100 \tag{4}$$

2.2.6. Drying shrinkage

Three mortar specimens (40 mm \times 40 mm \times 160 mm) were used for evaluating drying shrinkage. The prisms were demoulded one day after casting and immediately stored in dry climatic room at 21 \pm 2 °C and 60 \pm 5% RH, according to the standard NBN B14-217 [43]. The drying shrinkage measurements were continuously performed at ages of 1, 3, 7, 14 and 28 days. Length variances were determined in accordance with the standard NBN B14-217.

2.2.7. Resistance to carbonation

The accelerated carbonation test was performed according to the European standard EN 13295 [44]. The three mortar specimens ($40 \text{ mm} \times 40 \text{ mm} \times 160 \text{ mm}$) were cured in water for 28 days and then pre-conditioned at 21 ± 2 °C and $60\pm 5\%$ relative humidity (RH) for 28 days before the carbonation test. Specimens were then stored in the carbonation incubator with 1% CO_2 concentration and relative humidity of $60\pm 5\%$ (21 ± 2 °C). After 28 and 56 days' carbonation, respectively, the carbonation depth of freshly broken faces was measured by means of phenolphthalein indicator following the European standard EN 13295.

2.2.8. Chloride ion diffusion

The chloride ion diffusion coefficient of mortars was determined using two-compartment diffusion cells [14,36] (Fig. 4). After 28 days curing in water, 10 mm \pm 2 mm thick mortar samples were sawed from 8 cm diameter specimens and stored in Ca(OH)₂ saturated solution. Each sample was polished with 600-grade emery paper, rinsed with deionized water and the surface dried with a tissue before being fitted into the diffusion cell. After fitting with epoxy resin and sealing with silicon paste, the cells were filled at one side with 3 M NaCl in saturated Ca(OH)₂ solution (left compartment, e.g. upstream in Fig. 4, the chloride concentration of left compartment was noted as C_{up}) and at the other side with Ca(OH)₂ saturated solution (right compartment, e.g. downstream in Fig. 4, the chloride concentration of right compartment was noted as C_{down}). At periodic intervals (2, 4, 6, 8, 10, 12, 14 and 16 weeks, respectively), chloride concentration (C_{down}) was determined in right compartment by means of titration from a 10 cm³ sample of the solution. The chloride ion diffusion coefficient (D_c in m²/s) was determined according to the Equation 5 [48] (where $C_{up} >> C_{down}$).

$$D_c = \frac{C_{down}}{C_{up}} \times \frac{eV_{down}}{A(t - t_0)} \tag{5}$$

where e is the thickness of specimens in m, V_{down} is the volume of right compartment in m³, A is the surface area of specimens in m² and t-t₀ corresponds to the testing time in days, respectively.

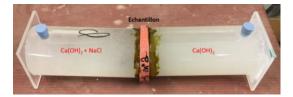
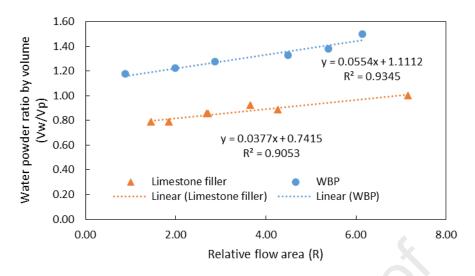


Fig. 4. Experimental setup of chloride diffusion cells.


2.2.9. Sulphate resistance

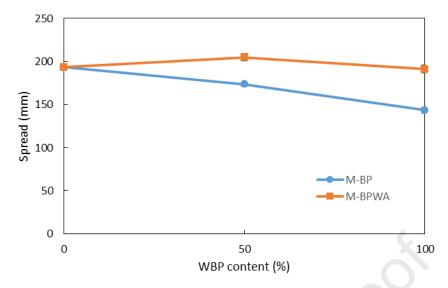
The sulphate resistance of mortars was performed in accordance with the ASTM C1012-04 [45]. The method involved the determination of length change of prismatic specimens immersed in a standard sulphate solution (with a sodium sulphate concentration of 50 g/litre). After the 28 days curing in the water, the three mortar specimens (40 mm \times 40 mm \times 160 mm) were measured for length and placed in the standard sulphate solution at 21 \pm 2°C. Changes of length of the specimens were measured after storage periods of 1, 2, 3, 4, 5, 6 and 11 weeks, respectively.

3. Results and discussion

3.1. Water demand of limestone filler and WBP

The relationship of water powder ratio by volume (Vw/Vp) and relative flow area (R) for limestone filler and WBP is presented in Fig. 5. Table 7 shows the results of Beta P test. As can be seen in Fig. 5 and Table 7, the WBP presented a higher βp compared to the limestone filler, which can be justified by mono-disperse and narrower particle size distribution of WBP and higher BET specific surface area [26,28]. This indicates that a higher quantity of water is needed to achieve the same workability of paste for WBP. Thus WBP has a higher water demand compared with limestone filler. This finding agrees with the results of other authors [6,25]. Regarding the deformation coefficient (Ep), the WBP had a higher value demonstrating a greater sensitivity to the variation of water quantity [36,37].

Fig. 5. Relationship of V_w/V_p and R for limestone filler and WBP.


Table 7.

321 Results of Beta P test

Powder	β_{p}	E _p (deformation coefficient)	\mathbb{R}^2	
Limestone filler	0.742	0.038	0.905	
WBP	1.111	0.055	0.935	

3.2. Properties of fresh mortars

Fig. 6 presents the spread values of mortars as a function of WBP content. In the series of mortars M-BP (M-BP0, M-BP50 and M-BP100), the spread of mortars decreased when substituting limestone filler by WBP. Other researchers reported that the workability of mortar or concrete decreased as the substitution of the cement by brick powders increased [21,25,26,28]. In the series of mortars M-BPWA (M-BP50WA and M-BP100WA), the substitution of limestone filler by WBP didn't seem to affect the spread flow properties of mortars. The mixture M-BP50WA presented slightly higher or similar spread value as the reference mixture. This outcome is probably due to the higher water demand of WBP compared with limestone filler [25,26] and the higher quantity of water that is added to the mix.

Fig. 6. Spread of fresh mortars as a function of WBP content (M-BP refers to the series of mortars M-BP0, M-BP50 and M-BP100; while M-BPWA refers to the series of mortars M-BP50WA and M-BP100WA).

The flow curves were analysed with the standard Bingham model to study the rheological properties of non-Newtonian fluids such as cement pastes, mortars and concretes (Equation 6).

$$\tau = \tau_0 + \mu \dot{\gamma} \tag{6}$$

where τ is shear stress, τ_0 is yield stress, μ is plastic viscosity and $\dot{\gamma}$ is shear rate.

Fig. 7 shows that the flow curve of mortars provided a perfect fit to a straight line for shear rates in the 1-22 s-1 range. The yield stress, plastic viscosity and the correlation coefficient (R²) are presented in Table 8. The results showed that the mortars with substitution of limestone filler by WBP presented a higher yield stress and plastic viscosity than that of reference mortar. The trend line equation of the reference mortar presented the lowest yield stress and plastic viscosity. For the series of mortars M-BP, the yield stress and plastic viscosity of mortar increased with the substitution rate of WBP, which is in accordance with spreading flow test. Indeed, these behaviors probably depended on the internal friction between the particles and the fluidity of mortars: the WBP presented a mono-size and narrower PSD, a higher surface specific area and probably higher internal friction between the

particles than limestone filler. In addition, a few of water was adsorbed by the WBP during the mix, which led to decrease of the availability of free water in the mix: thus the torque and the viscosity of mortar increased with the substitution rate [39,49]. For the series of mortars M-BPWA, the yield stress and plastic viscosity of mortar slightly increased when substituting limestone filler by WBP, which is probably due to higher internal friction of WBP (the additional water was added to produce the mortar with the similar workability level).

On the basis of the values obtained by Rheocad tests, it can be considered that the series of mortars M-BP presented initial yield stress and plastic viscosity higher than the series of mortars M-BPWA. For the series of mortars M-BPWA, the fluidity of the mix increased because of the additional water used, which led to the decrease of the viscosity and the torque or shear stress. These results are consistent with the workability of mortar evaluated by means of spreading flow test.

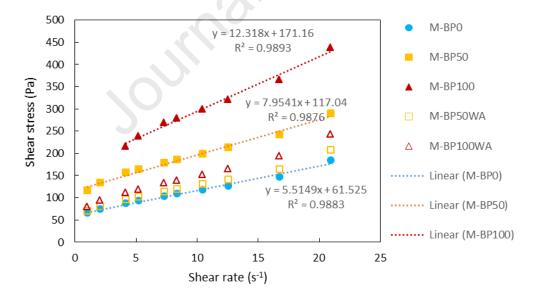


Fig. 7. Flow curve of mortars and evaluation of the yield stress.

Table 8.

Rheological properties of mortar

Mortar	τ ₀ (yield stress, Pa)	μ (plastic viscosity, Pa s)	\mathbb{R}^2
M-BP0	61.52	5.51	0.99
M-BP50	117.04	7.95	0.99
M-BP100	171.16	12.32	0.99
M-BP50WA	65.60	6.36	0.99
M-BP100WA	76.03	7.55	0.99

Fig. 8 indicates the air content of mortars as a function of WBP substitution rate: the higher the substitution rate, the higher the air content. This is probably due to the higher specific surface area and mono-sized and narrower PSD of WBP compared with the limestone filler and induces the inclusion of air bubbles during the mixing procedure. Moreover, the density of the fresh mortars decreased when substitution rate increased. Similar observations were found with waste ceramic powders by Subaşı et al. [28].

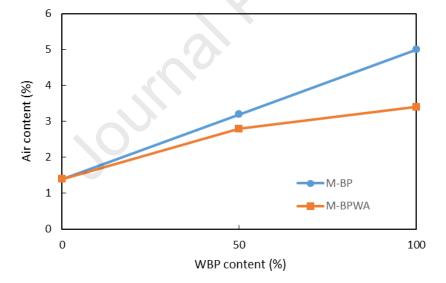


Fig. 8. Air content of mortars as a function of WBP content.

3.3. Properties of hardened mortars

3.3.1. Mechanical properties

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

Fig. 9 and Fig. 10 show the results of compressive and flexural strengths of mortars as a function of WBP content. When the substitution of limestone filler by WBP increased, the compressive strength of mortars slightly decreased after 7 days (the compressive strength of mortars M-BP decreased 5.6% and 9.3% for 50% and 100% WBP based mortars comparing with the reference mortar, respectively; while the compressive strength of mortars M-BPWA decreased 2.7% and 16.7% for 50% and 100% WBP based mortars, respectively; the compressive strength of series mortar M-BP100WA could achieve 26.8 MPa), which is probably due to the higher air content for mortars with WBP. After 28 days, the compressive strength of mortars with WBP was equivalent to reference mortar with limestone filler (the compressive strength of series mortar M-BP100WA decreased 5.3% comparing with the reference mortar and it could achieve 35.6 MPa); the decreasing trend seems to be compensated, probably by the pozzolanic activity of WBP [6,27] (Ortega et al. [27] showed the quantity of portlandite for mortar made with 10% and 20% of brick powder did not increase much or even decreased from 15 to 90 days, due to the consumption of portlandite in the pozzolanic reactions based on thermogravimetric analysis) and this effect could be enhanced after 90 days [50]. The compressive strength of the mixture M-BP100 was slightly greater (1.7 MPa) than the mixture M-BP50. The 16% of amorphous phase content present in WBP could react with calcium hydroxide and form hydrated products as calcium hydrated silicates (C-S-H) and calcium aluminate hydrates (C-A-H), which progressively enhance strength and durability properties of cement based materials [16,23,24,27]. For the series of mortars M-BP, the compressive strength was slightly higher than the series of mortars M-BPWA. The difference between the two series was the highest for the 100% substitution rate, since additional water quantity was added for the series of mortars M-BPWA, and thus the higher water to cement ratio induced the decrease of the compressive strength of mortars for the series of mortars M-BPWA. It is important to notice that all the specimens fulfil the requirements of the European standard EN 998-2 [51] about the specification for mortars for masonry (the compressive strength of masonry mortars Grade "Md" should be greater than 25 MPa). Similar trends were observed for the flexural strength of mortars.

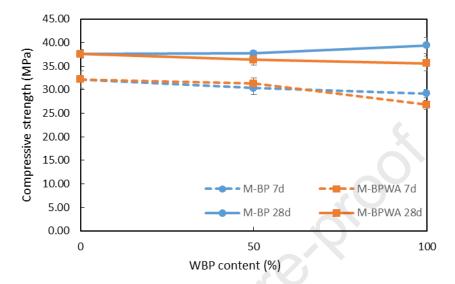


Fig. 9. Compressive of mortars as a function of WBP content.

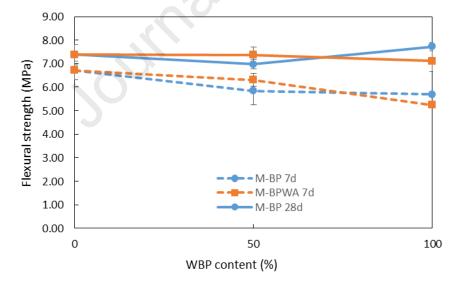


Fig. 10. Flexural strength of mortars as a function of WBP content.

3.3.2. Water absorption

The water absorption of mortars cured for 28 days are presented in Fig. 11. For the series of mortars M-BP, the water absorption values were similar for the different WBP contents. The

water absorption values of mortars M-BPWA were slightly higher than the series of mortars M-BP, which is due to the additional water: this is inducing a higher initial water to cement ratio when compared to the series of mortars M-BP and leading to higher porosity. In addition, the reaction between Ca(OH)₂ and the amorphous compounds (pozzolanic effect), such as silica and alumina present in WBP, will generate supplementary silicate/aluminate hydrates similar to those produced in the cement hydration; it will induce to a refinement of the pore structure and a decrease of the porosity of the cement matrix [16,23,27]. Tests performed at 90 days should confirm even better this trend [50]. Finally, the porosity or water absorption values were similar for the different WBP contents for the series of mortars M-BP, while the slightly higher values were obtained for the series of mortars M-BPWA.

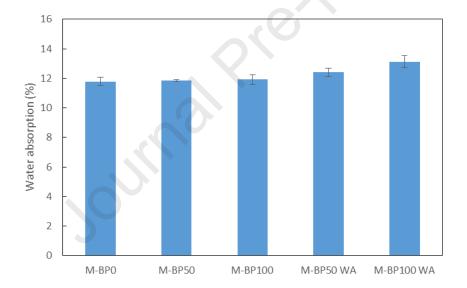


Fig. 11. Water absorption of mortars at 28 days.

3.3.3. Drying shrinkage

The drying shrinkage of mortars is presented in Fig. 12. The incorporation of WBP induced a reduction of the drying shrinkage of mortar in comparison with that of limestone filler, which is probably due to their more refined pore network produced by the pozzolanic activity [50]. The results on series of mortars M-BPWA showed a reduction of the drying shrinkage of mortar, but to a lesser extent. It should be noted here that the use of additional water for

mortars MP-BPWA increased the initial water to cement ratio and this should contribute to an increase in drying shrinkage compared with the mortars MP-BP [36,52–54].

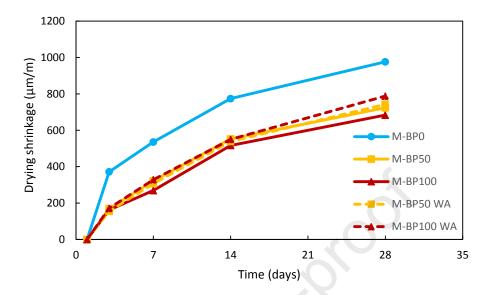


Fig. 12. Drying shrinkage of mortars.

3.4. Durability of mortars

3.4.1. Carbonation

Fig. 13 shows the carbonation depth of mortars under accelerated conditions. The substitution of limestone filler by WBP increased the carbonation depth of mortars. In addition, the carbonation depths increased with time. Accelerated carbonation in the mortars is the result of the reaction between carbon dioxide and calcium hydroxide, calcium silicate hydrates produced upon hydration [5,54,55]. As discussed earlier in Section 3.3.2, the WBP content slightly increased the permeability of the open pore network, which should promote the penetration of CO_2 and, consequently, an increase in the carbonation rate [25]. The results obtained with the series of mortars M-BPWA showed a higher carbonation depth than that of series of mortars M-BP, which is due again to a higher porosity of the mortar.

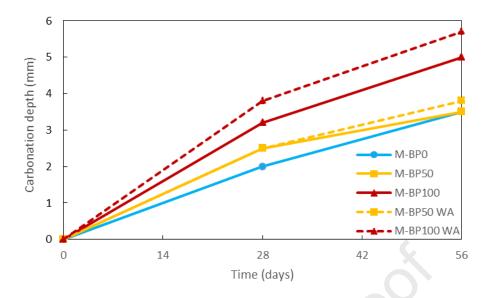


Fig. 13. Carbonation depth of mortars as a function of time.

447

448

446

3.4.2. Chloride ion diffusion

Fig. 14 presents the evolution of chloride ion diffusion through mortars versus time. The 449 standard deviations of M-BP0 and M-BP100WA are also presented in Fig. 14. The apparent 450 chloride ion diffusion coefficient of mortars is shown in Table 9. Transport through reference 451 mortar was observed after 16 weeks, with an apparent chloride diffusion coefficient of 452 4.01×10⁻¹³ m²/s. The apparent chloride diffusion coefficients of mortars with WBP were 453 similar to that of the reference mortar (except for the mortar M-BP100WA presenting slightly 454 greater value, which may due to the highest porosity of mortar M-BP100WA [23,26,27]; the 455 mortar M-BP100 presenting lowest value, which may due to the pozzolanic effect and a 456 refinement of the pore structure [50]). But globally, the substitution of limestone filler by 457 WBP didn't seem to significantly impair the chloride ion diffusion resistance of mortars. 458

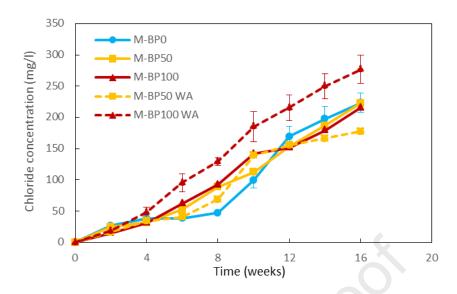


Fig. 14. Chloride diffusion rates for mortars with limestone filler and WBP.

Table 9.Chloride diffusion rates for mortars with limestone filler and WBP

Mortar	Apparent chloride diffusion coefficient (m ² /s)	Standard deviation (m ² /s)
M-BP0	4.01×10^{-13}	1.83×10^{-14}
M-BP50	4.00×10^{-13}	2.81×10^{-14}
M-BP100	3.69×10^{-13}	1.49×10^{-14}
M-BP50 WA	4.03×10^{-13}	6.89×10^{-15}
M-BP100 WA	4.94×10^{-13}	3.33×10^{-14}

3.4.3. Resistance to sulphate

Fig. 15 presents the variation in length of mortars immerged into Na₂SiO₄ solution. All the mortars exhibited similar expansion after only a few days. The expansion of the mortars M-BP50 and M-BP100 after 11 weeks was measured as 314 μm/m and 383 μm/m, respectively. The expansion of the series of mortars M-BPWA show similar values as the reference mortar (the expansion was measured as 388 μm/m for the reference mortar). The mortar M-BP100 presented slightly higher length variation after the sulphate attack compared with the mortar M-BP100WA, which may due to the lower porosity than that of the mortar M-BP100WA, and thus the lower porosity means the lower ability to resist the expansion of the formed ettringite [56]. According to the literature, the resistance to sulphate is related to the pore sizes, as well

as the total porosity and permeability of cement based materials. The substitution of limestone filler by WBP slightly increased the permeability of the open pore network, which was compensated by the pozzolanic effect of WBP [23,25]. The substitution of limestone filler by WBP didn't seem to affect the behavior of mortars with regard to sulphate attack.

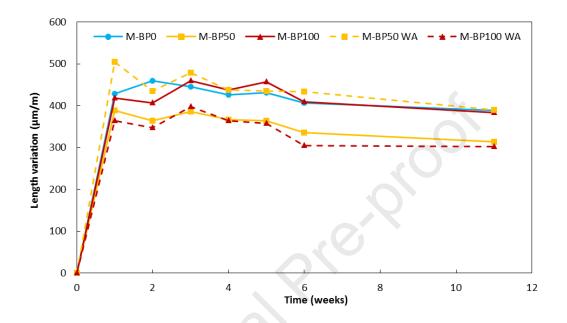


Fig. 15. Length variation of mortars with limestone filler and WBP in sulphate solution.

4. Conclusions

- The possibility of substituting limestone filler by Waste Brick Powder (WBP) in self-compacting mortar has been evaluated. The main conclusions can be drawn as follows:
 - 1) The WBP are characterized by a higher βp (a higher water demand) compared to the limestone filler. This indicated a higher quantity of water is needed to achieve the same workability of paste for WBP.
 - 2) The mortars produced by substitution of limestone filler by WBP presented a higher yield stress and plastic viscosity than that of reference mortar. In the series of mortars M-BP, the yield stress and plastic viscosity of mortar increased with the substitution rate of WBP, which is consistent with the workability measured by means of spread

- test (the spread of mortars decreased with the substitution rate of limestone filler by WBP). In the series of mortars M-BPWA, the substitution of limestone filler by WBP didn't seem to affect the spread properties of mortars.
- 3) When the substitution rate of limestone filler by WBP increased, the compressive strength of mortars slightly decreased after 7 days (the compressive strength of series mortar M-BP100WA decreased 16.7% and it could achieve 26.8 MPa), but the decreasing trend seemed to be compensated by the pozzolanic activity of WBP and remained equivalent after 28 days (the compressive strength of series mortar M-BP100WA decreased 5.3% and it could achieve 35.6 MPa). After 28 days, the compressive strength of mortars with WBP was equivalent to reference mortar with limestone filler; the decreasing trend seems to be compensated by the pozzolanic activity of WBP and this effect should be enhanced after 90 days. In the series of mortars M-BP, the compressive strength of mortars was slightly higher than the series of mortars M-BPWA. It is important to notice that all the specimens fulfil the compressive strength requirement of the European standard EN 998-2 for masonry mortars Grade "Md".
- 4) The conclusion can be drawn the choice whether on constant flow index (series of mortars M-BPWA) or constant water to cement ratio (series of mortars M-BP). The mortars prepared with additional water (mortars M-BPWA) showed poorer mechanical properties. On the contrary, for the series of mortars M-BP, the WBP's filler or pozzolanic effect will be enhanced by the presence of less water (decrease of flowability). There is a beneficial effect from WBP if no additional water is added. However, in the case of higher WBP substitution rate (100%), it is needed to add extra water or superplasticizers in order to achieve the workability requirement of fresh mortars, especially for the self-compacting mortars.

5)	The incorporation of WBP induced a reduction of the drying shrinkage. The
	substitution of limestone filler by WBP however increased the carbonation depth of
	mortars: the results obtained with series of mortars M-BPWA presented higher
	carbonation depth than that of series of mortars M-BP, which is due to the higher
	porosity of the mortar. Finally, the substitution of limestone filler by WBP didn't seem
	to impair the behavior of mortars in case of sulphate and chloride ions.

The use of Waste Bricks Powder (WBP) as an alternative to limestone fillers seems to be a good opportunity for recycling waste brick and reducing natural resource depletion. Fresh and hardened properties of mortars globally fulfil the requirements for self-compacting mortars. Particular attention should be paid to the use of these materials in the case of the presence of reinforcements and the risks associated with carbonation. However, a more in-depth study, in particular on samples at 90 days for which the manifestation of the pozzolanic effect would be more evident, should still be carried out for future research.

Acknowledgments

Authors would like to thank the "Institut Interuniversitaire des Silicates, Sols et Matériaux (INISMa)" and the "Centre Terre et Pierre (CTP)" for their participation in the preparation of waste brick powder. A warm thank is also given to Master's students Enrico Tabarelli and Martin Wintgens who performed tests. Authors would like to thank the Interreg VALDEM project "Integrated solutions for the recovery of material flows resulting from the demolition of buildings: a cross-border approach towards a circular economy" (Interreg France-Wallonie-Vlaanderen Convention No. 1.1.57, 2014-2020) for its financial support.

References

[1] P.K. Mehta, P.J.M. Monteiro, Concrete microstructure, properties and materials, 2017.

- Z. Zhao, L. Courard, F. Michel, S. Remond, D. Damidot, Influence of granular fraction 542 [2] and origin of recycled concrete aggregates on their properties, Eur. J. Environ. Civ. 543 Eng. 22 (2018) 1457–1467. doi:10.1080/19648189.2017.1304281. 544 [3] J. De Brito, F. Agrela, R.V. Silva, Construction and demolition waste, Elsevier Ltd, 545 2018. doi:10.1016/B978-0-08-102480-5.00001-4. 546 [4] Z. Zhao, L. Courard, S. Groslambert, T. Jehin, A. Léonard, J. Xiao, Use of recycled 547 concrete aggregates from precast block for the production of new building blocks: An 548 industrial scale study, Resour. Conserv. Recycl. 157 (2020) 104786. 549 Z. Zhao, S. Remond, D. Damidot, L. Courard, F. Michel, Improving the properties of [5] 550 551 recycled concrete aggregates by accelerated carbonation, Proc. Inst. Civ. Eng. Constr. Mater. 171 (2018) 126–132. doi:10.1680/jcoma.17.00015. 552 Q. Liu, T. Tong, S. Liu, D. Yang, Q. Yu, Investigation of using hybrid recycled powder 553 [6] from demolished concrete solids and clay bricks as a pozzolanic supplement for 554 cement, Constr. Build. Mater. 73 (2014) 754-763. 555 doi:10.1016/j.conbuildmat.2014.09.066. 556 [7] E.C. Directive, Directive 2008/98/EC of the European Parliament and of the Council of 557 19 November 2008 on waste and repealing certain Directives, Off. J. Eur. Union L. 312 558 (2008).559 [8] F. Pacheco-Torgal, S. Jalali, Reusing ceramic wastes in concrete, Constr. Build. Mater. 560 24 (2010) 832–838. doi:10.1016/j.conbuildmat.2009.10.023. 561 J. Katzer, Strength performance comparison of mortars made with waste fine aggregate [9] 562 and ceramic fume, Constr. Build. Mater. 47 (2013) 1-6. 563
- 565 [10] A. Heidari, D. Tavakoli, A study of the mechanical properties of ground ceramic 566 powder concrete incorporating nano-SiO2 particles, Constr. Build. Mater. 38 (2013)

doi:10.1016/j.conbuildmat.2013.04.039.

255–264. doi:10.1016/j.conbuildmat.2012.07.110. 567 [11] S.M.A. El-Gamal, F.I. El-Hosiny, M.S. Amin, D.G. Sayed, Ceramic waste as an 568 efficient material for enhancing the fire resistance and mechanical properties of 569 hardened Portland cement pastes, Constr. Build. Mater. 154 (2017) 1062–1078. 570 doi:10.1016/j.conbuildmat.2017.08.040. 571 Y. Cheng, F. Huang, G.L. Li, L. Xu, J. Hou, Test research on effects of ceramic 572 polishing powder on carbonation and sulphate-corrosion resistance of concrete, Constr. 573 Build. Mater. 55 (2014) 440–446. doi:10.1016/j.conbuildmat.2014.01.023. 574 F. Avet, X. Li, K. Scrivener, Determination of the amount of reacted metakaolin in 575 [13] 576 calcined clay blends, Cem. Concr. Res. 106 (2018) 40–48. doi:10.1016/j.cemconres.2018.01.009. 577 L. Courard, A. Darimont, M. Schouterden, F. Ferauche, X. Willem, R. Degeimbre, 578 [14] Durability of mortars modified with metakaolin, Cem. Concr. Res. 33 (2003) 1473-579 1479. doi:10.1016/S0008-8846(03)00090-5. 580 B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: A 581 [15] review, Cem. Concr. Compos. 23 (2001) 441-454. doi:10.1016/S0958-9465(00)00092-582 5. 583 E. Navrátilová, P. Rovnaníková, Pozzolanic properties of brick powders and their 584 effect on the properties of modified lime mortars, Constr. Build. Mater. 120 (2016) 585 530–539. doi:10.1016/j.conbuildmat.2016.05.062. 586 [17] Z.E. Abib, H. Gaher-Abib, F. Kharchi, Effect of Clay Fines on the Behavior of Self-587 Compacting Concrete, Engineering. 05 (2013) 213–218. doi:10.4236/eng.2013.52031. 588 D. Aboutaleb, B. Safi, K. Chahour, A. Belaid, Use of refractory bricks as sand [18] 589 replacement in self-compacting mortar, Cogent Eng. 4 (2017). 590 doi:10.1080/23311916.2017.1360235. 591

592	[19]	R. Amjadi, M. Monazami, E. Mohseni, H. Azar Balgouri, M.M. Ranjbar, Effectiveness
593		of different recycled materials in self-compacting mortar, Eur. J. Environ. Civ. Eng. 21
594		(2017) 1485–1501. doi:10.1080/19648189.2016.1175974.
595	[20]	V. Letelier, E. Tarela, G. Moriconi, Mechanical Properties of Concretes with Recycled
596		Aggregates and Waste Brick Powder as Cement Replacement, Procedia Eng. 171
597		(2017) 627–632. doi:10.1016/j.proeng.2017.01.396.
598	[21]	L.A. Pereira-De-Oliveira, J.P. Castro-Gomes, P.M.S. Santos, The potential pozzolanic
599		activity of glass and red-clay ceramic waste as cement mortars components, Constr.
600		Build. Mater. 31 (2012) 197–203. doi:10.1016/j.conbuildmat.2011.12.110.
601	[22]	L.G. Li, Z.H. Lin, G.M. Chen, A.K.H. Kwan, Reutilizing clay brick dust as paste
602		substitution to produce environment-friendly durable mortar, J. Clean. Prod. 274
603		(2020) 1–11. doi:10.1016/j.jclepro.2020.122787.
604	[23]	R.D. Toledo Filho, J.P. Gonçalves, B.B. Americano, E.M.R. Fairbairn, Potential for
605		use of crushed waste calcined-clay brick as a supplementary cementitious material in
606		Brazil, Cem. Concr. Res. 37 (2007) 1357–1365. doi:10.1016/j.cemconres.2007.06.005.
607	[24]	E. Vejmelková, M. Keppert, P. Rovnaníková, M. Ondráček, Z. Keršner, R. Černý,
608		Properties of high performance concrete containing fine-ground ceramics as
609		supplementary cementitious material, Cem. Concr. Compos. 34 (2012) 55–61.
610		doi:10.1016/j.cemconcomp.2011.09.018.
611	[25]	A. Schackow, D. Stringari, L. Senff, S.L. Correia, A.M. Segadães, Influence of fired
612		clay brick waste additions on the durability of mortars, Cem. Concr. Compos. 62
613		(2015) 82–89. doi:10.1016/j.cemconcomp.2015.04.019.
614	[26]	Z. Ge, Y. Wang, R. Sun, X. Wu, Y. Guan, Influence of ground waste clay brick on
615		properties of fresh and hardened concrete, Constr. Build. Mater. 98 (2015) 128–136.
616		doi:10.1016/i.conbuildmat.2015.08.100.

J.M. Ortega, V. Letelier, C. Solas, G. Moriconi, M.Á. Climent, I. Sánchez, Long-term 617 effects of waste brick powder addition in the microstructure and service properties of 618 mortars, Constr. Build. Mater. 182 (2018) 691-702. 619 doi:10.1016/j.conbuildmat.2018.06.161. 620 S. Subasi, H. Öztürk, M. Emiroğlu, Utilizing of waste ceramic powders as filler [28] 621 material in self-consolidating concrete, Constr. Build. Mater. 149 (2017) 567–574. 622 doi:10.1016/j.conbuildmat.2017.05.180. 623 N. Su, K.C. Hsu, H.W. Chai, A simple mix design method for self-compacting [29] 624 concrete, Cem. Concr. Res. 31 (2001) 1799-1807. doi:10.1016/S0008-8846(01)00566-625 X. 626 H. Okamura, M. Ouchi, Self-Compacting Concrete, J. Adv. Concr. Technol. 1 (2003) 627 [30] 5–15. 628 [31] O. Esping, Effect of limestone filler BET(H2O)-area on the fresh and hardened 629 properties of self-compacting concrete, Cem. Concr. Res. 38 (2008) 938–944. 630 doi:10.1016/j.cemconres.2008.03.010. 631 CEN, EN 196. Methods of testing cement - Part 1: Determination of strength. European [32] 632 Committee for Standardization, 2005. 633 [33] E. Tabarelli, The recycling of crushed waste bricks in the self-compacting mortar, 634 Master's thesis, University of Liège, 2018. 635 A. Schwartzentruber, C. Catherine, La méthode du mortier de béton équivalent [34] 636 (MBE)—Un nouvel outil d'aide à la formulation des bétons adjuvantés, Mater. Struct. 637 33 (2000) 475–482. 638 M.E.K. Bouarroudj, S. Rémond, A. Grellier, D. Bulteel, F. Michel, Z. Zhao, L. [35] 639 Courard, Intra granular porosity of grinded hardened cement paste and bricks: 640 modeling and experimentation, Mater. Struct. 54 (2021) 1-14. doi:10.1617/s11527-021-641

642		01670-5.
643	[36]	L. Courard, F. Michel, Limestone fillers cement based composites: Effects of blast
644		furnace slags on fresh and hardened properties, Constr. Build. Mater. 51 (2014) 439-
645		445. doi:10.1016/j.conbuildmat.2013.10.076.
646	[37]	L. Courard, F. Michel, J. Pierard, Influence of clay in limestone fillers for self-
647		compacting cement based composites, Constr. Build. Mater. 25 (2011) 1356–1361.
648		doi:10.1016/j.conbuildmat.2010.09.009.
649	[38]	P. Domone, C. Hsi-wen, Testing of binders for high performance concrete, Cem.
650		Concr. Res. 27 (1997) 1141–1147.
651	[39]	C. Artelt, E. Garcia, Impact of superplasticizer concentration and of ultra-fine particles
652		on the rheological behaviour of dense mortar suspensions, Cem. Concr. Res. 38 (2008)
653		633-642. doi:10.1016/j.cemconres.2008.01.010.
654	[40]	CEN, EN 1015. Methods of test for mortar for masonry - Part 6: Determination of bulk
655		density of fresh mortar. European Committee for Standardization, 2007.
656	[41]	CEN, EN 1015. Methods of test for mortar for masonry - Part 7: Determination of air
657		content of fresh mortar. European Committee for Standardization, 1999.
658	[42]	NBN, B 15-215. Concrete testing - Absorption of water by immersion. Belgian
659		standard, Brussels, Belgium, 1989.
660	[43]	NBN, B 14-217. Test on mortar - Shrinkage and expansion. Belgian standard, Brussels
661		Belgium, 1983.
662	[44]	CEN, EN 13295. Products and systems for the protection and repair of concrete
663		structures - Test methods - Determination of resistance to carbonation. European
664		Committee for Standardization, Brussels, Belgium, 2004.
665	[45]	ASTM, C 1012-04. Standard test method for length change of hydraulic-cement
666		mortars exposed to a sulfate solution, 2004.

- 667 [46] CEN, EN 1015. Methods of test for mortar for masonry Part 3: Determination of
- consistence of fresh mortar (by flow table). European Committee for Standardization,
- 669 1999.
- 670 [47] H. Okamura, K. Maekawa, K. Ozawa, High performance concrete, 1993.
- 671 [48] M. Wintgens, Durabilité des liants fabriqués à partir de fines provenant du recyclage de
- brique, Master's thesis, University of Liège, 2019.
- 673 [49] F. Toussaint, C. Roy, P.H. Jézéquel, Reducing shear thickening of cement-based
- suspensions, Rheol. Acta. 48 (2009) 883–895. doi:10.1007/s00397-009-0362-z.
- 675 [50] A. Grellier, D. Bulteel, M.E.K. Bouarroudj, S. Rémond, Z. Zhao, L. Courard,
- Alternative hydraulic binder development based on brick fines: Influence of particle
- size and substitution rate, J. Build. Eng. 39 (2021) 102263.
- doi:10.1016/j.jobe.2021.102263.
- 679 [51] CEN, EN 998. Specification for mortar for masonary Part 2: Masonary mortar.
- European Committee for Standardization, Brussels, Belgium, 2004.
- 681 [52] P. Chindaprasirt, S. Homwuttiwong, V. Sirivivatnanon, Influence of fly ash fineness on
- strength, drying shrinkage and sulfate resistance of blended cement mortar, Cem.
- 683 Concr. Res. 34 (2004) 1087–1092. doi:10.1016/j.cemconres.2003.11.021.
- 684 [53] A.A. Melo Neto, M.A. Cincotto, W. Repette, Drying and autogenous shrinkage of
- pastes and mortars with activated slag cement, Cem. Concr. Res. 38 (2008) 565–574.
- doi:10.1016/j.cemconres.2007.11.002.
- [54] A.M. Neville, Properties of concrete, Longman London, 1995.
- 688 [55] B. Johannesson, P. Utgenannt, Microstructural changes caused by carbonation of
- cement mortar, Cem. Concr. Res. 31 (2001) 925–931. doi:10.1016/S0008-
- 690 8846(01)00498-7.
- 691 [56] C. Colman, D. Bulteel, V. Thiery, S. Rémond, F. Michel, L. Courard, Internal sulfate

- attack in mortars containing contaminated fine recycled concrete aggregates, Constr.
- 693 Build. Mater. 272 (2021) 121851. doi: 10.1016/j.conbuildmat.2020.121851.

Highlights

- Waste brick powder (WBP) presented a higher water demand than limestone filler (LF)
- The mortars produced by WBP presented a higher yield stress and plastic viscosity
- The mortar M-BP presented a higher compressive strength than that of mortar M-BPWA
- The substitution of LF by WBP didn't seem to impair the durability of mortars
- It is possible to manufacture SCC by partially or totally substituting LF by WBP

Declaration of interests
oximes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: