
sustainability

Article

Heat Transfer Measurement within Green Roof with
Incinerated Municipal Solid Waste Aggregates

Mostafa Kazemi * , Luc Courard and Julien Hubert

����������
�������

Citation: Kazemi, M.; Courard, L.;

Hubert, J. Heat Transfer Measurement

within Green Roof with Incinerated

Municipal Solid Waste Aggregates.

Sustainability 2021, 13, 7115. https://

doi.org/10.3390/su13137115

Academic Editors: Domenico Mazzeo,

Danièle Waldmann-Diederich and

Laddu Bhagya Jayasinghe

Received: 11 May 2021

Accepted: 19 June 2021

Published: 24 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

GeMMe Building Materials, Urban and Environmental Engineering Division (UEE), University of Liege,
4000 Liège, Belgium; luc.courard@uliege.be (L.C.); julien.hubert@uliege.be (J.H.)
* Correspondence: mostafa.kazemi@uliege.be

Abstract: A green roof is composed of a substrate and drainage layers which are fixed on insulation
material and roof structure. The global heat resistance (Rc) within a green roof is affected by the
humidity content of the substrate layer in which the coarse recycled materials can be used. Moreover,
the utilization of recycled coarse aggregates such as incinerated municipal solid waste aggregate
(IMSWA) for the drainage layer would be a promising solution, increasing the recycling of secondary
resources and saving natural resources. Therefore, this paper aims to investigate the heat transfer
across green roof systems with a drainage layer of IMSWA and a substrate layer including recycled
tiles and bricks in wet and dry states according to ISO-conversion method. Based on the results, water
easily flows through the IMSWAs with a size of 7 mm. Meanwhile, the Rc-value of the green roof
system with the dry substrate (1.26 m2 K/W) was 1.7 times more than that of the green roof system
with the unsaturated substrate (0.735 m2 K/W). This means that the presence of air-spaces in the
dry substrate provided more heat resistance, positively contributing to heat transfer decrease, which
is also dependent on the drainage effect of IMSWA. In addition, the Rc-value of the dry substrate
layer was about twice that of IMSWA as the drainage layer. No significant difference was observed
between the Rc-values of the unsaturated substrate layer and the IMSWA layer.

Keywords: heat transfer; incinerated municipal solid waste aggregate; water content; green roof

1. Introduction

Over the past few decades, the rapid increase in urban areas has exerted pressure on
the environment owing to the high consumption of natural resources in the construction
sector and low energy performance of building envelope components such as walls and
roofs. For instance, 60–80% of global energy consumption has been derived from urban
areas, even though they occupy only 3% of the Earth’s land [1–5]. Since the greatest amount
of urban spaces has been covered by roofing systems [6], the use of green roofs as one of the
building envelope components has been proposed, and it has been frequently installed in
rooftops to broaden the green infrastructure with high energy efficiency in the construction
process [7–10]. The green roofs can promote the heating and cooling energy performance
of dwelling houses in an urban area. The decrease in the urban heat island influence is
another advantage of green roof systems. Additionally, rainwater runoff can be reduced
and delayed when a green roof is used for the rooftops [9,11–14].

The green roof classification is dependent on its thickness and its weight. Among
nature-based solutions for roofing systems, the extensive green roof has the shallowest
depth and the lightest weight and it includes vegetation, substrate, filter, drainage and
insulation layers, from top to the bottom [14,15]. The physical properties of materials
used for the substrate and drainage layers can noticeably influence the permeability and
thermal performance of roofing systems [16]. Furthermore, high porosity of substrate layer
can contribute to promoting the insulation performance of a green roof [17]. Moreover,
the green roof’s heat resistance is affected by the moisture content of substrate layer in
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which the media mixtures can be used in wet and dry states [8,18]. Concerning this, a
study by Kotsiris et al. [19] on green roof systems showed that there was a linear relation
between the substrate’s thermal conductivity and its moisture content, even though this
linear assumption seemed to not be realistic as reported by other researchers [20–23]. The
moisture content effect on the green roof performance during dry periods was evaluated
by Berretta et al. [24]. The vertical profile of the moisture content was highly dependent on
the substrate’s characteristics. Moreover, the diurnal temperature fluctuation led to a daily
reduction in moisture content owing to evapotranspiration during the warmer hours of
the day. A study by He et al. [25] on green roof thermal behavior showed that increasing
the evapotranspiration phenomenon increased with the presence of water content in the
substrate layer during the summer period, contributing to promoting the green roof’s
thermal performance due to increasing the evaporated water. Pianella et al. [26] revealed
that the media mixtures used for substrate layer influenced the green roof’s thermal
conductivity. In addition, increasing the media mixtures’ moisture content led to increasing
the substrate layer’s thermal conductivity; hence, the green roof with a dry substrate
had the lowest thermal conductivity. Fabisni et al. [27] showed that the water content
noticeably affected the substrate and drainage layers’ thermal properties, in which the
thermal conductivity of substrate increased by triple during the raining periods. Another
study by Almeida et al. [28] on green roof’s thermal behavior demonstrated that the
presence of a substrate layer increased the thermal insulation of green roof systems, while
its insulation capacity in wet state was not as much as that in dry state. Recently, He
et al. [29] showed that the green roof’s cooling effect increased by increasing the substrate’
water content. Moreover, the cooling and heating loads of buildings decreased once the
green roof was used for the rooftops.

The drainage layer of green roof systems is responsible for draining the water from
overlying layers of green roof systems. Regarding this, the use of coarse granular aggregates
for the drainage layer has been proposed by researchers [30]. A type of volcanic porous
materials was used by Palla et al. [31] for the drainage layer of roofing systems. As per
the experimental observation, the extra water easily passed through the vertical profile
of roofing systems once the volcanic porous material was used as the drainage layer.
Additionally, some amounts of water molecules were trapped in the empty pores of volcanic
materials. The use of natural materials for the drainage layer of green roof systems can
impose a heavy impact on the environment. By using recycled materials for the drainage
layer, the burden on both the cost of construction process and the environment can be
reduced by saving natural resources [32–38]. Concerning this, the thermal performance
effect of rubber crumbs and pozzolana as a drainage layer on roofing systems was assessed
by Coma et al. [39,40]. As per the results, more insulation capacity was observed for green
roofs with rubber crumbs rather than those with volcanic gravel during the summer period.
For the winter period, they suggested to increase the thickness of green roof layers to
promote the roofing systems’ insulation capacity. Concerning this, Kazemi et al. [8,14]
showed that due to higher internal temperature during the winter period, the presence of
water content in the substrate and drainage layers led to absorption of the internal ceiling
temperature, and subsequently caused them to consume more heating loads and energy in
cold periods.

Based on the above, although the green roof system has a separate insulation layer, the
materials used for the substrate and drainage layers can affect the insulation performance
and the heat resistance of rooftops. Moreover, it is required to assess the thermal resistance
of green roof systems without a vegetation layer, because, in some cases, the vegetation
coverage of rooftops is scarce, particularly during the winter season and hot summer
periods [39]. In such conditions, the substrate and drainage layers can play a fundamental
role in providing heat resistance for rooftops. On the other hand, since the coarse recycled
materials have an adequate moisture retention capacity as well as a suitable water passing
ability [32,41–43], they have a comparative advantage in providing enough thermal per-
formance for the substrate and drainage layers of green roof systems [8,14], while there
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are few studies for selecting appropriate coarse recycled materials and assessing their
thermal performance for rooftops [14]. Moreover, the heat resistance of a substrate with
coarse recycled materials in wet and dry states is required to be evaluated and compared
to each other once the media mixtures’ moisture content can affect the roofing systems’
thermal resistance [8,18]. Therefore, in this study, the heat resistance of green roof systems
with a drainage layer of incinerated municipal solid waste aggregate (IMSWA) and a
substrate layer with recycled tiles and bricks in wet and dry states was assessed following
ISO 9869-1 [44]. After that, the effect of media mixtures’ moisture content on thermal
performance of green roof was investigated. Moreover, the drainage and substrate layers
were separately exposed to the temperature to measure their heat resistance.

2. Experimental Program
2.1. Methodology

The extensive green roof includes vegetation, substrate, filter, drainage and insulation
layers, from the top to the bottom, as shown in Figure 1 [14,15]. Since the drainage and
substrate layers could contain the coarse recycled materials, this study only focused on
the thermal resistance of these two layers. The drainage layer included IMSWA, which
was available in the market. The IMSWA was composed of the crushed ceramic, crushed
aggregate, inert waste, crushed brick, and crushed glass. On the other hand, the commercial
soil media with recycled tiles and bricks in dry and wet states was used for the substrate
layer. The dry state could be representative of the substrate layer in a Mediterranean area
with a summer non-rainy weather condition [45]. Therefore, two green roof systems were
named S15-IMSWA5_Dry and S15-IMSWA5_Wet and they were considered in dry and
wet states as presented in Table 1. As reported by other researchers [46], the green roof
with 15-cm substrate can provide an adequate depth for growing different types of plants.
Moreover, the drainage layer of granular materials with the thickness about 5 cm can
provide a suitable condition for the dewatering of the green roof [39,40]. Therefore, the
total thickness of green roof systems was 20 cm with the substrate and drainage layers’
thicknesses at 15 cm and 5 cm, respectively.
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Figure 1. A cross-sectional view of green roof layers.

Table 1. Green roofs’ geometrical configurations.

No. Specimens ID Thickness (cm)

Drainage Layer Substrate

1 S a 15-IMSWA b 5_Dry 5 15
2 S15-IMSWA5_Wet 5 15
3 IMSWA 5 -
4 S15_Dry - 15
5 S15_Wet - 15

a Substrate. b Incinerated municipal solid waste aggregate.

As shown in Figure 2, a 40 × 40 × 20 cm experimental mold was used for testing
the thermal resistance of green roof systems. It is noteworthy that a thin filter layer was
used between the substrate and drainage layers to prevent them from mixing with each
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other (Figure 2). In the next step, the 15-cm substrate layers in dry and wet states (S15_Dry
and S15_Wet) were separately put in a 40 × 40 × 15 cm experimental mold to measure
their thermal resistance. After that, to assess the thermal resistance of IMSWA layer as the
drainage layer with a thickness of 5 cm, a 40 × 40 × 5 cm experimental mold was used.
Moreover, a water transmissivity test was carried out to assess the water passing ability
of IMSWA with a specific size. The geometrical configuration of specimens is presented
in Table 1. To expose the top and the bottom of the specimens to the low and high
temperatures, they were separately placed between the cold and hot plates of the thermal
device. After that, the specimens were compressed between the aforementioned plates to
measure their thermal conductivity. It is noteworthy that, in this study, it was assumed that
the use of substrate in wet and dry conditions can affect the thermal resistance of the system,
once the green roof layers contained coarse recycled materials. The temperature values were
recorded in the center of the specimens and the surrounding area of the experimental molds
were insulated using the polyurethane foam to provide adequate boundary conditions
for the system. Following this, the Rc-values for different specimens were obtained using
the Average Method of ISO 9869-1 [44] to carry out the one-dimensional thermal analysis
through the depth of drainage layer and substrate in wet and dry conditions. Therefore,
the heat resistance of green roof layers with the presence of water content and air-voids
was measured and analyzed.
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The thermal device had a sensor in the hot plate to automatically measure the ther-
mal conductivity of the specimens. Concerning this, the device measured the difference
between the temperature at the top and bottom surfaces of specimen, which indeed was
the difference between the hot and cold plates (∆T) as presented in Equation (1):

∆T = Th − Tc (1)

where Tc and Th refer to the temperatures of cold and hot plates, respectively (K).
Equation (2) was used for calculating the heat flow rate (q) with the unit of W/m2 as

suggested by the Fourier’s law:

q = λ.
∆T
l

(2)

where l is the thickness of green roof layers (m).
To evaluate the heat resistance of specimens, the R-value (m2 K/W) was obtained

using Equation (3), which was recommended by the Average Method of ISO 9869-1 [44]:

Rc =
∑m

t=0 ∆Tt

∑m
t=0 qt (3)

where m is the minimum required measurement period (h), and t is the time interval.
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2.2. Materials Properties

Due to the effect of materials characteristics on the heat resistance of green roof
systems [8,18,47], the properties of substrate with coarse recycled materials and IMSWA
were obtained as presented in Table 1. The bulk density of substrate in wet and dry states
was equal to 1000.95 kg/m3 and 944.1 kg/m3, respectively. The corresponding value for
the IMSWA was 1147.26 kg/m3. The specific heat capacity of substrate with coarse recycled
materials and IMSWA was obtained by means of the Calorimetric method according to
ASTM D4611-16 [48]. The substrate sample was taken directly from the experimental green
roof mold and its water content in wet state was 87.35 kg/m3. The corresponding value for
IMSWA was 8.19 kg/m3. These values were obtained by means of the gravimetric analysis
following NF ISO 16586 [49]. In this analysis, the materials should be completely dried by
keeping them inside of the oven at 105◦C for 48 h. To obtain the water holding capacity
of materials, their free water content was measured using the gravimetric analysis. This
parameter is attributed to the capillary action of materials, keeping the water content within
their pores at 100% relative humidity. Indeed, the free water content value is lower than the
maximum water content owing to the trapped air in materials’ pores [35,50]. Concerning
this, a method proposed by researchers [51,52] was used to obtain the free water content
value for IMSWA and substrate. The water absorption coefficient value was obtained based
on EN 1925 [53] and it was equal to 0.067 kg/m2 s0.5 and 0.22 kg/m2 s0.5 for the IMSWA
and substrate, respectively.

3. Results and Discussion
3.1. Water Transmissivity (IMSWA Layer)

The drainage layer of green roofs should be made using coarse aggregates to easily
pass the water through the roofing systems [30,54]. As per EN 12620 [55], the minimum
coarse aggregate size is 5 mm. Moreover, the thinness of the IMSWA layer (5 cm) caused
us to avoid using a big size for the drainage layer. Therefore, IMSWA with a size of 7 mm
was considered for the drainage layer and its water passing ability was assessed using the
water transmissivity test.

To assess the horizontal water passing ability of the IMSWA layer, the transmissivity
test apparatus was used and carried out according to ASTM D4716 [56]. A cross-sectional
view of the transmissivity test is shown in Figure 3, in which ∆h was the difference in total
head across the IMSWA layer. The load equivalent to the weight of substrate was used to
apply to the top of IMSWA layer. Additionally, to prevent the water coming up from the
sides of the load cell, a foam was used at its bottom. After following a high amount of water
using the hose-pipe, the water horizontally passed through the IMSWA layer in less than
one second, then the water surface was observed to have the same level at the two sides of
the U-shape box apparatus, resulting in zero value for ∆h parameter. Consequently, the
drainage layer of IMSWA with a size of 7 mm was able to horizontally pass a high amount
of water for the green roof systems, contributing to buffering the storm water runoff.
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3.2. Temperature Distribution

According to the experimental process, the applied temperature to the top of green
roof specimens (15 ◦C) was lower than that to the bottom of green roof specimens (26 ◦C);
hence, the temperature applied by the thermal device to the green roof specimens was rep-
resentative of a cold period. Therefore, the effect of the dry and wet states of the substrate
layer on the temperature distribution across the green roof systems (S15-IMSWA5_Wet and
S15-IMSWA5_Dry) was assessed as shown in Figure 4.
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According to the results, the average temperatures between the substrate and drainage
layers for S15-IMSWA5_Dry and S15-IMSWA5_Wet specimens were 22.81 ◦C and 22.02 ◦C,
respectively. The corresponding temperatures in the middle of substrate were 19.64 ◦C and
18.87 ◦C, respectively. Therefore, the temperature through the depth of green roof specimen
with the dry substrate was about 4% more than that with the unsaturated substrate,
demonstrating that the former was slightly less affected by the cold plate at the top of
the specimens (15 ◦C). It can be said that the water content in the unsaturated substrate
caused it to absorb more cold temperature, resulting in a decrease of the thermal resistance
of green roof systems and subsequently increasing the energy consumption [8,12,57].
Moreover, the thermal device’ conditions were representative of a cold period; hence,
the evapotranspiration phenomenon could not effectively occur as a consequence of the
moisture content evaporation transferred from the substrate into the air. Similar results
were also reported by Poë et al. [58], particularly for the winter period. Parallel to this,
the heating conditions should be provided more for the inside of the buildings, once the
substrate was in wet state.

3.3. Thermal Resistance

Figures 5 and 6 show the thermal conductivity and Rc-value of specimens following an
extension to the average method of ISO 9869-1 [44]. The difference between the temperature
of the hot and cold plates for all specimens was assumed to be more than 7 ◦C as it is
recommended to be at least 5–10 ◦C for the Average Method [44,59,60]. The thermal
properties of green roof systems and their layers are presented in Table 2. For all specimens,
the convergence duration was assumed to be longer than 72 h according to ISO 9869-1 [44].
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Figure 6. Green roof layers’ Rc-value curves.

Table 2. Green roof layers’ properties.

Materials Substrate with Coarse
Recycled Materials IMSWA

Porosity 0.4863 0.4726
Specific heat capacity, Dry (J/kg.K) 810 750
Thermal conductivity, Dry, λ (W/m·K) 0.17 0.115
Water content (kg/m3) 87.35 8.19
Free water content (kg/m3) 285.71 101.2
Water absorption coefficient, A1 (kg/m2 s0.5) 0.22 0.067

As per the ISO-conversion method, the Rc-value at the end of the data set should not
deviate more than ±5% from the respective value obtained 24 h before. According to the
results obtained for all specimens (Table 3), there was a difference less than 1% between
the results at the end and 24 h before the end of the data set, meeting the ISO-conversion
method’s requirement.
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Table 3. Green roof layers’ thermal properties.

Specimens ID IMSWA5 S15_Wet S15_Dry S15-
IMSWA5_Wet

S15-
IMSWA5_Dry

Test duration (h) 101 122 165 168 168
Convergence duration (h) 76 73 75 120 120

Thermal conductivity (W/m·K) 0.115 0.32 0.16 0.27 0.16

Rc-value (m2 K/W)

24 h before the end of data set 0.432 0.463 0.94 0.732 1.25
End of data set 0.43 0.462 0.93 0.735 1.26

The first 67% of data during
the convergence period 0.43 0.461 0.93 0.728 1.26

The last 67% of data during
the convergence period 0.43 0.462 0.94 0.726 1.25

Average value during the
convergence period 0.43 0.46 0.94 0.735 1.26

Based on another criteria of ISO 9869-1 [44], the Rc-value when applying the method
to the first 67% of data should not deviate by more than ±5% from the respective value
when analyzing the last 67% of the data. As per the results of all specimens (Table 3), 2.4%
difference was mostly obtained between the results at the first and the last 67% of the
convergence duration, which was less than 5% as recommended by ISO 9869-1 [44].

3.4. Green Roof Layers’ Heat Resistance

To evaluate the heat transfer through the depth of materials, their thermal conductivity
and Rc-value should be measured and calculated [26,61]. Table 2 shows the thermal
properties of specimens following ISO 9869-1 [44]. According to the results, the Rc-value of
the dry substrate, S15_Dry, (0.94 m2 K/W) was about twice that of the unsaturated substrate,
S15_Wet, (0.46 m2 K/W), while the reverse was observed for the thermal conductivity value.
Similar to this, a study by Pianella et al. [26] showed that the lowest thermal conductivity
was obtained for the substrate once it was in dry state. It can be said that the thermal
resistance of the trapped air is more than that of water content [62,63]. Considering this,
the air-spaces among soil particles were more in the dry substrate than the unsaturated
substrate; hence, the presence of air-spaces in the dry substrate provided more thermal
resistance than the presence of water content in the unsaturated substrate.

As presented in Table 2, the Rc-value of the dry substrate layer, S15_Dry, (0.94 m2 K/W)
was about twice that of IMSWA5 as the drainage layer (0.43 m2 K/W), while the thickness
of the former was three times that of the latter. It seems that the air-spaces among IMSWAs
effectively participated in increasing the drainage layer’s thermal resistance. In addition,
assuming the same thickness for IMSWA and dry substrate layers, the air-spaces among
IMSWAs were found to be more than those among dry substrate’s particles. In fact, the
heat could not flow more easily across air-spaces as much as solid particles. Therefore,
when the particles were tighter and compressed more, the contact points among particles
increased, leading to facilitating the conduction heat transfer through substrate layers,
similar to what other researchers revealed [26,64–67]. On the other hand, there was no
significant difference between the Rc-value of the unsaturated substrate layer (S15_Wet)
and IMSWA5, while the thickness of the former was three times that of the latter. It can
be said that the air-spaces in IMSWA5 were more than those in the unsaturated substrate
layer, and the presence of the water content in the latter provided the same heat resistance
as the drainage layer of IMSWA5, while the thickness of the substrate layer was three times
that of the drainage layer.

The effect of the unsaturated and dry substrate layer on the thermal resistance of green
roof systems (S15-IMSWA5_Wet and S15-IMSWA5_Dry) was assessed. As presented in
Table 2, the Rc-value of green roof system with dry substrate (1.26 m2 K/W) was 1.7 times
more than that of the green roof system with the unsaturated substrate (0.735 m2 K/W),
while the reverse was obtained for the thermal conductivity. In brief, an increase in thermal
resistance of green roof systems can be a consequence of the increase of air-spaces among
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dry soil particles, outperforming the water content in the unsaturated soil particles. That is
why the insulation performance of green roof systems was found to be adequate during the
summer (warm) period, while, in some cases, the thermal resistance of roofing systems with
the unsaturated substrate was less favorable during the winter (cold) period as reported by
other researchers [8,12,40,68].

4. Conclusions

The heat transfer capacity of green roof systems with IMSWA drainage layer and
substrate layer including recycled tiles and bricks in wet and dry states was assessed
following ISO-conversion method. As per the results and discussion, the major conclusions
can be extracted as follows:

• This study contributes to the body of knowledge related to green roof and the results
demonstrate to what extent the use of substrate in wet and dry conditions affect the
thermal resistance of the system, once the green roof layers contain coarse recycled
materials.

• Transmissivity through 5-cm IMSWA drainage layer is very high. Therefore, IMSWAs
with a size of 7 mm had adequate capacity to horizontally pass a high amount of water
for a green roof system.

• Temperature across the depth of green roof specimen with dry substrate (S15-IMSWA5_Dry)
was about 4% higher than that with unsaturated substrate (S15-IMSWA5_Wet). The
presence of moisture caused the substrate layer to be affected more by the outside
cold temperature, resulting in an increase in energy consumption.

• According to the heat transfer measurement during the convergence duration (longer
than 72 h), a difference of less than 1% between the Rc-values of specimens at the
end and 24 h before the end of the data set was observed. Moreover, 2.4% difference
was noticed between the Rc-values of specimens at the first and the last 67% of the
convergence duration. Therefore, the aforementioned differences were less than 5%,
meeting the ISO-conversion method’s requirements.

• The Rc-value of the dry substrate including air-spaces was about twice that of the
unsaturated substrate including water content. Therefore, the presence of air-spaces
in the dry substrate provided more heat resistance than in the case of water in the
unsaturated substrate.

• As per the results, the Rc-value of the dry substrate layer was about twice that of
IMSWA5 as the drainage layer. Moreover, no significant difference was observed
between the Rc-value of the unsaturated substrate layer and IMSWA5, while the
thickness of the former was three times that of the latter. Therefore, the presence of
air-spaces among IMSWAs played a key role in promoting the thermal resistance of
drainage layer.

• The Rc-value of green roof system with dry substrate (1.26 m2 K/W) was 1.7 times
higher than that of the green roof system with unsaturated substrate (0.735 m2 K/W),
while the reverse was obtained for the thermal conductivity. Therefore, the air-spaces
among dry soil particles outperformed the water content in media mixtures to promote
the heat resistance of rooftops.

The use of IMSWAs for the drainage layer in green roof systems represents an interest-
ing solution for helping water evacuation and, additionally, dry the substrate layer. This
implies a high thermal resistance and better insulating properties of the green roof system.
Moreover, according to the experimental works in lab-scale, the 5-cm drainage layer of
IMSWA can be considered as a potential material for the green roof system and further
researches are required for assessing its applicability for real building structures. On the
other hand, since the vegetation coverage at rooftops is scarce in some cases, this study
only focused on the thermal resistance of the drainage and substrate layers without plant
coverage. Therefore, the main limitation of this study was that the effect of a vegetation
layer on the green roof system’ thermal performance could not be assessed.
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