
Towards Cross-Layer Telemetry
Justin Iurman

Université de Liège, Montefiore
Institute
Belgium

justin.iurman@uliege.be

Frank Brockners
Cisco

Germany
fbrockne@cisco.com

Benoit Donnet
Université de Liège, Montefiore

Institute
Belgium

benoit.donnet@uliege.be

ABSTRACT

This paper introduces Cross-Layer Telemetry (Clt), a way
to combine in-band telemetry (based on In-Situ Oam) and
Application Performance Management (APM, based on dis-
tributed tracing) into a single monitoring tool providing a
full network stack observability. Using Clt, APM traces are
correlated with network telemetry information, providing a
better view and faster root cause analysis in case of issue. In
this paper, we describe the Clt implementation and discuss
a use case demonstrating its efficiency. All Clt source code
is available as open source.

CCS CONCEPTS

• Networks → Network measurement; Network man-

ageability; Network monitoring.

KEYWORDS

Clt, Ioam, OpenTelemetry, Cross-Layer, Telemetry, APM, Jaeger

1 INTRODUCTION

The last decade has witnessed a strong evolution of the In-
ternet: from a hierarchical, relatively sparsely interconnected
network to a flatter and much more densely inter-connected
network [5, 11, 27] in which hyper giant distribution net-
works (HGDNs, - e.g., Facebook, Google, Netflix) are respon-
sible for a large portion of the world traffic [2]. HGDNs are
becoming the de-facto main actors of the modern Internet.
The very same set of actors have fueled the move to very
large data center networks (DCNs), along with the evolution
to cloud native networking.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ANRW ’21, July 24–30, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8618-0/21/07. . . $15.00
https://doi.org/10.1145/3472305.3472313

Throughout the years, multiple Operations, Administra-

tion, and Maintenance (Oam) tools have been developed,
for various layers in the protocol stack [23], going from
basic traceroute to Bidirectional Forwarding Detection
(BFD [22]) or recent UdpPinger [10] and Fbtracert [9]. The
measurement techniques developed under the Oam frame-
work have the potential for performing fault detection and
isolation and for performance measurements.
Telemetry information (e.g., timestamps, sequence num-

bers, or even generic data such as queue size, geolocation of
the node that forwarded the packet) is key to HGDNs, DCNs,
and Internet operators in order to tackle two particular chal-
lenges. First, the network infrastructure must be running
all the time, even in the presence of (unavoidable) equip-
ment failure, congestion, or change of traffic patterns. Said
otherwise, it means that HGDNs and DCNs must carefully
engineer their network infrastructure to be able to ensure
that issues are responded to within seconds. Network moni-
toring and measurements are thus of the highest importance
for HGDNs and DCNs, though the available tools and meth-
ods [9, 10] have not kept up with the pace of growth in speed
and complexity. Second, customers want to enjoy their con-
tent in whatever context they access it: at home behind a
DSL gateway, on a mobile device in public transportation, at
home on multiple devices at the same time, etc. In addition,
customers want to experience their content with the highest
possible quality and the lowest delay without interfering
with the network. Consequently, HGDNs, DCNs, and classi-
cal Internet operators must carefully engineer their network
to ensure the highest Quality-of-Experience (QoE) on the
user side, especially with the emergence of microservices.
Modern cloud-native applications rely on microservices,

namely independent services providing a specific core func-
tion. A single request in an application can invoke a lot of
microservices interacting with each other. As a matter of fact,
it is more and more difficult to monitor and isolate a prob-
lem, e.g., a slowdown of a service. This is why Application
Performance Management (APM, based on distributed tracing
tools like OpenTelemetry [25] or Jaeger [21]) is useful. It
provides a way to observe and understand a whole chain of
events in a complex interaction between microservices. How-
ever, such APM appears as useless when the problem is not
application related but rather located at the network level.

https://doi.org/10.1145/3472305.3472313

ANRW ’21, July 24–30, 2021, Virtual Event, USA Iurman et al.

To solve such a problem, this paper introduces Cross-Layer
Telemetry (Clt), i.e., device level, flow level, packet level,
and application telemetry at the same time. Clt combines
APM with network telemetry as provided by In-Situ Oam
(Ioam [3]). In a nutshell, Ioam gathers telemetry and opera-
tional information along a path, within packets, as part of
an existing (possibly additional) header. It is encapsulated
in Ipv6 packets as an Ipv6 HopByHop extension header [1, 4].
The purpose of APM is to capture and export data from cloud
native applications, to receive tracing telemetry data and to
provide processing, aggregating, data mining, and visualiza-
tions of that data.
From the HGDNs and DCNs perspective, Clt offers an

integrated view of the network (APM traces are correlated
with network telemetry information), leading so to a care-
ful and efficient integrated network monitoring. Further, if
partial Clt information is embedded in data packets (thanks
to Ioam) rather than being sent within probe packets (e.g.,
ping, traceroute), it has the potential to reduce the teleme-
try traffic, avoiding so to burden the network and letting the
network carrying data traffic instead of monitoring one.

The remainder of this paper is organized as follows: Sec. 2
describes our Clt implementation and associated challenges;
Sec. 3 demonstrates Clt efficiency through a real world use
case; Sec. 4 discusses next steps for Clt being largely de-
ployed; finally, Sec. 5 concludes this paper by summarizing
its main achievements.

2 CROSS-LAYER TELEMETRY

IMPLEMENTATION

Let us assume an HTTPS request to be monitored. With
APM (e.g., OpenTelemetry [25] or Jaeger [21]), one obtains
useful information on the application level based on applica-
tion traces (i.e., L5 → L7). However, picture now a situation
in which one notices an abnormal execution time (e.g., too
long). With APM, it is impossible to exactly understand why it
happens. Worst, if the problem is not application related but,
rather, on the link or on intermediate hops (e.g., due to con-
gestion), one will be stuck wondering why the request takes
so long as the application side looks fine. A better solution
would be to show how the request progresses hop-by-hop
through the network and identify (potential) bottlenecks.
Indeed, by correlating network level telemetry (i.e., network
packets) with APM traces, one would give operators a far more
complete tool to deal with problems. This is exactly what
we want to achieve with Cross-Layer Telemetry (Clt), as it
makes the entire network stack (i.e., from L2→ L7) visible
to monitoring tools, instead of the classic application level
visibility. This section discusses our Clt implementation.

Clt relies on Ioam (Sec. 2.1) for network level telemetry
(L2 → L4) and on a distributed tracing tool for APM (L5 →

Application

Jaeger client CLT

Jaeger agent

Trace
reporting
(UDP)

Netlink

us
er

 sp
ac

e
ke

rn
el

 sp
ac

e

Trace-id
Span-id

Application

us
er

 sp
ac

e
ke

rn
el

 sp
ac

e

IOAM agent

Network traffic
with IOAM

Jaeger collector IOAM collector

IOAM Trace
reporting (grpc)

Application Trace
reporting (grpc)

Correlation
(grpc)

HTTPS request

HTTPS
request

socket

Figure 1: Cross-Layer Telemetry architecture.

L7 – Sec. 2.2). For this implementation, we choose to use
Jaeger as the tracing tool, although Clt is generic enough
to integrate any other alternative to Jaeger. The match-
ing between both is achieved by extending Ioam headers
(Sec. 2.3). Finally, a telemetry agent (Sec. 2.4) is responsible
for extracting data from traces and sending them to a collec-
tor for later processing. The Clt architecture is illustrated
in Fig. 1.

2.1 Network Level Telemetry

In-Situ Oam (Ioam) for Ipv6 [1] has been designed for
carrying telemetry data within packet headers, for example
as part of an Ipv6 Extension Header [4]. Typically, Ioam is
deployed in a given domain, between the Ingress and the
Egress or between selected devices within the domain. Each
node involved in Ioam may insert or update an Ioam header.
Ioam data is added to a packet upon entering the domain
and is removed from the packet when exiting the domain.
Ioam data fields are associated to Ioam namespaces, that

are identified by a 16-bit identifier. They allow devices that
are Ioam capable to determine whether Ioam option headers
need to be processed or updated, and also provide additional
context for Ioam data fields. Ioam namespaces can be used
by an operator to distinguish different operational domains.
We have implemented Ioam, and more specifically the

Ioam Pre-allocated Trace Option (Pto– the space for Ioam
data is pre-allocated in the packet header at the Ingress for
the Ioam domain), as a patch for the Linux kernel [14, 19].
The Ioam Pto can carry data, such as, e.g., ingress and/or
egress interface IDs, timestamps, queue size, buffer occu-
pancy, etc. Our implementation provides data plane support
for Ioam, both for processing the header and for the con-
figuration of Ioam namespaces through netlink [24]. It also
provides control plane support for Ioam through a netlink
interface to configure the Ioam insertion, which is per route
configurable. In parallel, we have also implemented the Ioam

Towards Cross-Layer Telemetry ANRW ’21, July 24–30, 2021, Virtual Event, USA

Figure 2: Ioam Pto example. “H” refers to the packet

header, while “P” is the payload. Telemetry data (red

and green) is inserted in the pre-allocated space.

Router 𝐴 is the Ingress of the Ioam domain, while 𝐶

is the Egress.

1 $ sysctl -w net.ipv6.conf.eth0.ioam6_enabled=1
2 $ ip ioam namespace add 123
3 $ ip -6 route add db02::/64 encap ioam6 trace type 0x800000 ns 123 size 12

dev eth0

Figure 3: Ioam command-line configuration.

support [17] for iproute2 that uses the netlink interface
provided for the control plane configuration.
Fig. 2 illustrates how the Ioam Pto works. To set it up,

the operator must configure an Ioam domain between the
three nodes. In this case, Ioam is only used from 𝐴 (Ingress)
to 𝐶 (Egress) but not on the reverse path, meaning Ioam
must be allowed for both 𝐵.𝑒𝑡ℎ0 and 𝐶.𝑒𝑡ℎ0. This is easily
achieved through sysctl (see Line 1 on Fig. 3). Then, an
Ioam namespace (e.g., ID 123) is created on each node (see
Line 2 on Fig. 3). Finally, 𝐴 must be configured to insert
an Ioam Pto in its packets when 𝐶 (e.g., db02::2) is the
destination (see Line 3 on Fig. 3).

As a result, when𝐶 is the destination,𝐴 pre-allocates room
for the Ioam trace and inserts its Ioam data corresponding
to the red block in Fig. 2. Ioam headers are carried inside an
Ipv6 HopByHop Extension Header, as Ipv6 Options. Upon
receiving packets with an Ioam Pto, 𝐵 in turn inserts its
Ioam data (the green block on Fig. 2). 𝐶 does the same as 𝐵,
but it is not visible as𝐶 is the destination. In the end, the full
Ioam trace is available on 𝐶 for processing.

2.2 Application Performance Management

Jaeger is a public and free APM tool, based on distributed
tracing that follows OpenTelemetry standards [25], giving
operators the possibility to monitor their microservices and
get some profiling data such as operation name, timing, tags,
and logs. Distributed tracing relies on two concepts: traces
and spans. A trace ”is a data/execution path through the
system and can be thought of as a directed acyclic graph of
spans” [20]. A span ”represents a logical unit of work that
has an operation name, a start time of the operation and a
duration. Spans may be nested and ordered to model causal
relationships” [20]. Fig. 4 illustrates these concepts. For ex-
ample, span 𝐴 could be an HTTPS request, an algorithm that
loops over a list, or anything else one wants to monitor in

Figure 4: Relationship between a trace and spans.

the application. In this case, the trace represents all spans:
𝐴 + 𝐵 + 𝐶 + 𝐷 + 𝐸. Traces and spans are generated within
the application by the Jaeger client library, according to
the monitoring instructions added to the code. Those traces
and spans are sent locally over UDP to a network daemon,
the Jaeger agent, that batches and sends them to a remote
collector. The Jaeger collector receives traces from Jaeger
agents and runs them through a processing pipeline, i.e., val-
idates traces, indexes them, performs any transformations,
and finally stores them [20]. At the end, traces can be re-
trieved from storage and displayed thanks to a UI service
called Jaeger Query. The relationship between Jaeger com-
ponents is illustrated by green boxes on the left side of Fig. 1.
To obtain full stack visibility, network telemetry packets

must be correlated with APM traces. It may appear enough,
at first glance, to inject both application trace and span iden-
tifiers in the data plane. Unfortunately, a span identifier can
vary even within a single TCP connection as multiple re-
quests can go over it, meaning it is never going to be a single
span identifier per socket. For instance, one could have two
HTTPS requests to monitor and so two different spans, one
for each request. Also, one could use the same socket for
all clients and keep it open. Therefore, injecting both trace
and span identifiers at socket creation would not be enough.
Indeed, the injection must happen at sending time, and so
for each request on the socket.

2.3 Full Stack Telemetry

In order to match network level telemetry with APM traces,
we extend Ioam Pto header with application trace and span
identifiers right after the initial header, as illustrated in Fig. 5.
Thanks to this enhancement, future correlations on the re-
ceiver side between network telemetry information and APM
traces become possible and easy. With a new patch [15], we
reflect the Ioam Pto header modification and provide a way
to inject both trace and span identifiers on a socket through
netlink. We also provide a Clt client library [15] that encap-
sulates a netlink call to inject both trace and span identifiers
on a socket.

ANRW ’21, July 24–30, 2021, Virtual Event, USA Iurman et al.

0 15 16 24 25 31
Namespace-ID NodeLen Flags RemainingLen

Ioam-Trace-Type Reserved

Trace ID (128 bits)

Span ID (64 bits)

Figure 5: Enhanced Ioam Pto Header.

An example of code to monitor an HTTPS request with
Jaeger is shown in Fig. 6. One can see the difference between
the classic solution and the Clt one. With the latter, only two
more lines are added to the code, i.e., lines 2 and 6. Further,
this technique offers a good “isolation”, i.e., Ioam traces are
sent and correlated with APM traces only for HTTPS requests
and not for other TCP packets (e.g., ACK), which is cleaner on
the UI side as it reflects exactly what must be monitored in
the code from an application point of view.

2.4 Telemetry Data Collection and

Processing

In this telemetry ecosystem, we also provide an Ioam
agent [16] to collect and report Ioam traces. Basically, this is a
per-interface sniffer for Ipv6 packets that filters a HopByHop
Extension Header containing an Ioam Pto. After parsing,
each Ioam trace is represented by our Ioam Trace API [18]
defined with Protocol Buffers v3 [12]. The Ioam agent can be
run in two different modes: output or report (default mode).
The output mode prints Ioam traces in the command-line
interface, while the report mode sends them to a collector
through grpc [13].
Finally, we provide an Ioam collector, a Golang interface

between the Ioam agent and Jaeger [15]. It enhances a span
with Ioam data received from the Ioam agent and reports it
to the Jaeger collector. The latter will in turn correlate the
classic span with the received-enhanced one.

2.5 Example

Fig. 1 illustrates the interactions between Jaeger and Ioam
components in Clt. Based on the code snippet in Fig. 6, let us
illustrate what happens step by step. Line 1 uses the Jaeger
client library to create a new span called “test” and to add it
to the current trace. Line 2 uses the Clt library to inject both
trace and span identifiers on the underlying socket through
netlink. From now on, any packet with Ioam going out of
this socket will include the trace and span identifiers. The
only downside is that a packet from a previous trace could be
marked with the current one (e.g., due to queue congestion),
which is half a problem. Indeed, the main goal is to spot
network issues regardless of the connection. However, we
are working on a new per packet solution that will provide
a real representation of connections. Line 3 defines the start

1 span = tracer.start_span('test')
2 CLT.enable(sockfd, span.trace_id, span.span_id)
3 span.start_time = time.time()
4 resp = https.request('GET', '/test') # HTTPS request to monitor
5 span.finish()
6 CLT.disable(sockfd)

Figure 6: Example of tracing code with Clt.

of the span (i.e., the start of the monitoring) by storing the
current timestamp. Line 4 executes an HTTPS request. Since
the Ioam Pto insertion is configured on the node, Ioam will
be included in the network traffic. On the receiver side, the
Ioam agent parses and gathers Ioam traces and reports them
to the Ioam collector with grpc. Line 5 is reached as soon
as the HTTPS request from line 4 is finished, i.e., a response
is received. The span is stopped and the monitoring of the
HTTPS request is done. The Jaeger client library sends the
trace to the Jaeger agent, that in turn sends it to the Jaeger
collector for storage. Line 6 finally uses the Clt library again
to remove both injected trace and span identifiers from the
socket, through a netlink call, providing a better ”isolation”
as explained previously. The trace representing the HTTPS
request monitoring can then be viewed with the Jaeger UI
and has now per-hop network telemetry attached.

3 USE CASE

This section covers a common use case that demonstrates
how Clt can be used to quickly detect and fix a problem,
compared to the classic APM. We first present the use case
scenario (Sec. 3.1) and how we implement it (Sec. 3.2). Then,
we discuss the results (Sec. 3.3), also including the impact of
the additional cost caused by Clt usage.

3.1 Scenario

Picture a situation where clients use a mobile application
requiring authentication. Therefore, the application sends
an HTTPS request towards the corresponding remote API,
with the username and password entered by the client. The
receiving API entry point hides the business logic behind
each request. In this case, a sub-request to authenticate the
client is sent to the server. Each sub-request sent by the API
entry point is monitored by Jaeger.
Suddenly, huge delays during the login process are re-

ported by multiple users. Consequently, the operator con-
sults the monitoring tool where each result is stored and
sees that login traces are showing larger execution times
than usual. Surprisingly enough, both the server and its local
database look fine at first glance. The operator decides to
use Clt, and so enables Ioam on the entry point to attach
network telemetry to Jaeger traces.

Towards Cross-Layer Telemetry ANRW ’21, July 24–30, 2021, Virtual Event, USA

HTTPS Request

HTTPS Response

API
Entrypoint Server

(IPv6)
IOAM Domain

Database

Trace
Collector

IOAM
Collector

Client

Admin

Figure 7: Use case topology

1 $ tc qdisc add dev eth1 root netem delay 100ms

Figure 8: Traffic Control (tc) command to add a

100ms delay on an interface.

3.2 Testbed

Fig. 7 illustrates the scenario described previously. We use
docker [6] to build the topology and docker-compose [7] to
ease the configuration between each container. Each topol-
ogy component is represented by a docker container. The
API entry point’s application handler uses the Jaeger client
library to monitor each critical part of the code. It also uses
the Clt library to inject both the trace and span identifiers
in the underlying socket, which one is kept open for all con-
nections. Still on the entry point, a Jaeger agent is running
and reporting traces to a collector. The Ioam agent runs on
the server and reports every Ioam trace to the Ioam collector.
The administrator uses Jaeger Query as a web interface to
see traces stored in the database in a human-friendly way.
Elasticsearch [8] is used as the database to store Jaeger
traces. Ipv6 is deployed between the API entry point and the
server. Ioam is enabled and configured on each node within
the domain. The entry point is configured to insert Ioam Pto
inside packets when the destination is the server.

In order to simulate a low-level issue, we introduce artifi-
cial delay to mimic a congestion on the router between the
entry point and the server, thanks to the Traffic Control
(tc) tool [26]. Fig. 8 shows the command used to add a delay
of 100𝑚𝑠 on the router interface towards the server, which
means the RTT will suffer from a 200𝑚𝑠 increase.

In our experiment, we generate 200 HTTPS requests per sec-
ond, over a period of four minutes. This time frame is divided
in four slices (one minute each): the first minute represents a
normal situation where everything runs fine. The congestion
(additional 100𝑚𝑠 delay) is introduced in the second minute.
The third minute includes the problem investigation by en-
abling Clt. Finally, the last minute represents the come back
to a normal situation, after the problem has been fixed by the

operator. During the four minutes experiment, we measure
the RTT of each HTTPS request.
When enabling the Ioam Pto insertion on the API entry

point (i.e., enabling Clt), the operator requires the follow-
ing Ioam data to be included in the trace: the hop limit, the
Ioam node-id, both Ingress-id and Egress-id, and the Egress
queue depth. Indeed, the latter is included because the opera-
tor suspects a congestion somewhere on the path. Of course,
additional Ioam data could be required to cover and detect
more problems when one has no clue of the issue.

3.3 Results

Fig. 9 shows a screenshot of the Jaeger UI with a span
representing a login request (span_login) that was randomly
selected among all login requests during the third minute
of the experiment (i.e., Clt enabled). The ioam_span is the
enhanced span attached to the classic one. Thanks to the
latter, the operator quickly detects that the Egress queue
of the router is increasing (see the red rectangle), meaning
there is a congestion. An action can then be applied to fix the
problem, e.g., by re-balancing traffic over queues. Without
Clt, the operator would have faced a lot more difficulties in
performing root cause analysis.

The experiment performed also allows us to measure the
impact of Clt (i.e., the injection of trace and span identifiers
on the socket through netlink and the Ioam Pto header in-
sertion). Fig. 10 shows the RTT measured during the four
minutes experiment. During the second minute, one can
clearly see that the RTT has increased by 200𝑚𝑠 due to the
simulated congestion. The key part is the third minute, dur-
ing which Clt is enabled. Indeed, the distribution on the
graph looks the same for both the second and third minute,
demonstrating so the Clt lightness. In order to make sure
that Clt is really efficient, we also perform a similar experi-
ment in three steps without the congestion. The objective
is to see how Clt behaves without congestion and so with
more traffic. Fig. 11 shows the result. Again, one can see that
the distribution on the graph looks the same, both with and
without Clt.

Therefore, one can say that Clt is efficient since the intro-
duced overhead is only a Netlink call. The major overhead
is due to Ioam and was studied previously [19]. Clt’s major
improvement is a huge gain of time, as well as a more com-
plete tool, for operators to detect low-level issues that are not
application related. It is also worth mentioning that the Clt
solution is generic enough to integrate other alternatives
to Jaeger. Indeed, only the Ioam collector is dependent on
the tracing tool and would need a few modifications, which
is not the case for both the Clt client library nor the Ioam
agent. In the long-term, a solution where both the detection
and reaction steps become automatic is a goal to be reached.

ANRW ’21, July 24–30, 2021, Virtual Event, USA Iurman et al.

Figure 9: Enhanced span (with Ioam) stored by Jaeger.

0 30 60 90 120 150 180 210 240

Time (sec.)

0

50

100

150

200

250

R
T

T
(m

se
c.

)

normal
situation congestion

congestion
+ Clt

normal
situation

Figure 10: RTT measurement, 200 requests/second,

four steps with congestion.

0 30 60 90 120 150 180

Time (sec.)

0

10

20

30

40

R
T

T
(m

se
c.

)

normal situation Clt normal situation

Figure 11: RTT measurement, 200 requests/second,

three steps without congestion.

4 NEXT STEPS

In the near future, Clt will be pushed further. First, we
plan to standardize the required fields for Clt within Ioam.
Then, we plan to standardize Ioam within OpenTelemetry
API, therefore allowing network telemetry to have its own
“stack” in all distributed tracing tools. Depending on how the

OpenTelemetry standardization will be designed, the cur-
rent spans hierarchy may need to be rethought. Indeed, what
we could provide for, e.g., an HTTPS session is a set of child
spans showing the individual hops that the HTTPS session
rides across. For now, the current solution does not require
such a modification since the entire Ioam trace is attached
to a single span. Finally, we will explore a bit more what
additional possibilities Clt enables. For example, Clt could
be used in a closed loop context to automatically respond to
issues found in the full stack.

5 CONCLUSION

This paper introduced Cross-Layer Telemetry (Clt), a new
and efficient solution to enhance distributed tracing tools,
such as Jaeger or OpenTelemetry, by correlating Applica-
tion Performance Management (APM) traces with network
telemetry information. Clt leverages In-Situ Oam (Ioam)
to make the entire network stack (L2→ L7) visible for dis-
tributed tools, instead of the classic application level visi-
bility. We do believe that Clt solves challenges from the
microservice tracing world and brings a more complete trac-
ing solution to operators to solve lower level issues that are
not necessarily application related.

SOFTWARE ARTEFACTS

All the source code required for the Clt implementation
as described in this paper is freely available here: https://
people.montefiore.uliege.be/bdonnet/telemetry

ACKNOWLEDGMENTS

Mr. Iurman’s work has been funded by a Cisco grant CG#
1673376.

https://people.montefiore.uliege.be/bdonnet/telemetry
https://people.montefiore.uliege.be/bdonnet/telemetry

Towards Cross-Layer Telemetry ANRW ’21, July 24–30, 2021, Virtual Event, USA

REFERENCES

[1] S. Bhandari, F. Brockners, C. Pignataro, H. Gredler, J. Leddy, S. Youell, T.
Mizrahi, A. Kfir, B. Gafni, P. Lapukhov, M. Spiegel, S. Krishnan, R. Asati,
and M. Smith. 2021. In-situ OAM IPv6 Options. Internet Draft (Work in
Progress) draft-ietf-ippm-ioam-ipv6-options-05. Internet Engineering
Task Force.

[2] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig. 2018. Open
Connect Everywhere: A Glimpse at the Internet Ecosystem Through
the Lens of the Netflix CDN. ACMSIGCOMMComputer Communication

Review 48, 1 (January 2018).
[3] F. Brockners, S. Bhandari, and T. Mizrahi. 2021. Data Fields for In-Situ

OAM. Internet Draft (Work in Progress) draft-ietf-ippm-ioam-data-12.
Internet Engineering Task Force.

[4] S. Deering and R. Hinden. 2017. Internet Protocol, Version 6 (IPv6)

Specification. RFC 8200. Internet Engineering Task Force.
[5] A. Dhamdhere and C. Dovrolis. 2010. The Internet is Flat: Modeling

the Transition from a Transit Hierarchy to a Peering Mesh. In Proc.

ACM CoNEXT.
[6] Docker. [n.d.]. Empowering App Development for Developers. See

https://www.docker.com/.
[7] Docker. [n.d.]. Overview of Docker Compose. See https://docs.docker.

com/compose/.
[8] Elastic. [n.d.]. The Official Distributed Search and Analytics Engine.

See https://www.elastic.co/elasticsearch/.
[9] Facebook. [n.d.]. fbtracert. See https://github.com/facebook/fbtracert.
[10] Facebook. [n.d.]. UdpPinger. See https://github.com/facebook/

UdpPinger.
[11] P. Gill, M. Arlitt, Z. Li, and A. Mahant. 2008. The Flattening Inter-

net Topology: Natural Evolution, Unsightly Barnacles or Contrived
Collapse?. In Proc. Passive and Active Measurement Conference (PAM).

[12] Google. 2008. Protocol Buffers – Google’s data interchange format.
See https://github.com/protocolbuffers/protobuf.

[13] grpc. [n.d.]. A High Performance, Open Source Universal RPC Frame-
work. See https://grpc.io.

[14] J. Iurman. 2020. Kernel patch for Ipv6 Ioam. See https://github.com/
iurmanj/kernel_ipv6_ioam.

[15] J. Iurman. 2021. Cross Layer Telemetry. See https://github.com/
iurmanj/cross-layer-telemetry.

[16] J. Iurman. 2021. Ioam Agent for Python3. See https://github.com/
iurmanj/ioam-agent.

[17] J. Iurman. 2021. Ioam Patch for iproute2. See https://github.com/
iurmanj/kernel_ipv6_ioam/tree/master/iproute2.

[18] J. Iurman. 2021. Ioam Trace API with Protocol Buffers v3. See
https://github.com/IurmanJ/ioam-proto3.

[19] J. Iurman, B. Donnet, and F. Brockners. 2020. Implementation of
Ipv6 Ioam in Linux Kernel. In Proc. Technical Conference on Linux

Networking (Netdev 0x14).
[20] Jaeger. [n.d.]. Architecture. See https://www.jaegertracing.io/docs/1.

22/architecture/.
[21] Jaeger. [n.d.]. Open-Source, End-to-End Distributed Tracing. See

https://www.jaegertracing.io.
[22] D. Katz and D. Ward. 2010. Bidirectional Forwarding Detection (BFD).

RFC 5880. Internet Engineering Task Force.
[23] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten. 2014. An

Overview of Operations, Administration, and Maintenance (OAM) Tools.
RFC 7276. Internet Engineering Task Force.

[24] netlink. [n.d.]. netlink(7) – Linux manual page. See https://man7.org/
linux/man-pages/man7/netlink.7.html.

[25] OpenTelemetry. [n.d.]. Effective Observability Requires High-Quality
Telemetry. See https://opentelemetry.io.

[26] tc. [n.d.]. tc(8) – Linux manual page. See https://man7.org/linux/man-
pages/man8/tc.8.html.

[27] H. Zhao and J. Bi. 2013. Characterizing and Analysis of the Flattening
Internet Topology. In Proc. International Symposium on Computers and

Communications (ISCC).

https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.elastic.co/elasticsearch/
https://github.com/facebook/fbtracert
https://github.com/facebook/UdpPinger
https://github.com/facebook/UdpPinger
https://github.com/protocolbuffers/protobuf
https://grpc.io
https://github.com/iurmanj/kernel_ipv6_ioam
https://github.com/iurmanj/kernel_ipv6_ioam
https://github.com/iurmanj/cross-layer-telemetry
https://github.com/iurmanj/cross-layer-telemetry
https://github.com/iurmanj/ioam-agent
https://github.com/iurmanj/ioam-agent
https://github.com/iurmanj/kernel_ipv6_ioam/tree/master/iproute2
https://github.com/iurmanj/kernel_ipv6_ioam/tree/master/iproute2
https://github.com/IurmanJ/ioam-proto3
https://www.jaegertracing.io/docs/1.22/architecture/
https://www.jaegertracing.io/docs/1.22/architecture/
https://www.jaegertracing.io
https://man7.org/linux/man-pages/man7/netlink.7.html
https://man7.org/linux/man-pages/man7/netlink.7.html
https://opentelemetry.io
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html

	Abstract
	1 Introduction
	2 Cross-Layer Telemetry Implementation
	2.1 Network Level Telemetry
	2.2 Application Performance Management
	2.3 Full Stack Telemetry
	2.4 Telemetry Data Collection and Processing
	2.5 Example

	3 Use Case
	3.1 Scenario
	3.2 Testbed
	3.3 Results

	4 Next Steps
	5 Conclusion
	References

