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ABSTRACT. 20 

The fronto-parietal semantic network, encompassing the inferior frontal gyrus and the posterior 21 

middle temporal cortex, is considered to be involved in semantic control processes. The explicit vs 22 

implicit nature of these control processes remains however poorly understood. The present study 23 

examined this question by assessing regional brain responses to the semantic attributes of an 24 

unattended stream of auditory words while participants’ top-down attentional control processes 25 

were absorbed by a demanding visual search task. Response selectivity to semantic aspects of verbal 26 

stimuli was assessed via an fMRI response adaptation paradigm.   We observed that implicit 27 

semantic processing of an unattended verbal stream recruited not only unimodal and amodal cortices 28 

in posterior supporting semantic knowledge areas, but also inferior frontal and posterior middle 29 

temporal areas considered to be part of the semantic control network.  These results indicate that 30 

fronto-temporal semantic networks support incidental semantic (control) processes. 31 

 32 
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Introduction 36 

Semantic cognition refers to a range of cognitive processes and representations encoded in 37 

distributed brain areas (Binder et al. 2009; Price 2012) that define our knowledge of objects, word 38 

meanings, facts and people (Ralph et al. 2016a). An influential model, the controlled semantic 39 

cognition (CSC) framework (Ralph et al. 2016a; Chiou et al. 2018; Thompson et al. 2018; Jefferies et 40 

al. 2020), posits that semantic cognition relies on the interaction between semantic representations 41 

on the one hand, and their control on the other (Ralph et al. 2016a). Semantic knowledge involves 42 

specific, low-level as well as generalizable high-level, relationships between sensory, motor, linguistic 43 

and affective features as well as their integration. Semantic control allows the manipulation of these 44 

representations and to generate context-specific semantic inferences based on interactions between 45 

modality-specific sources of information (Lambon Ralph, Sage, et al. 2010).  46 

These two aspects of semantic cognition systems are supported by distinct neural networks. 47 

Semantic knowledge is supported by modality-specific distributed neocortical regions which 48 

bidirectionally communicate with transmodal hubs located within the anterior temporal lobes (ATL) 49 

(Lambon Ralph, Cipolotti, et al. 2010; Ralph et al. 2016a) and for some the angular gyrus (AG) 50 

(Noppeney et al. 2004; Ruff et al. 2008; Jefferies et al. 2020). Note that for other authors, the AG 51 

appears to serve a more domain-general function such as a multimodal online buffer for incoming 52 

internal or external information (Humphreys and Lambon Ralph 2015; Humphreys et al. 2015). 53 

 The ‘semantic control’ system relies primarily on the inferior frontal gyrus (IFG) and the posterior 54 

middle temporal gyrus (pMTG) (Thompson-Schill et al. 1999; Badre and Wagner 2005; Rodd et al. 55 

2005; Jefferies and Lambon Ralph 2006; Binder et al. 2009; Noonan et al. 2010; Seghier et al. 2010; 56 

Davey et al. 2016; Jefferies et al. 2020). This system is thought to monitor and modulate the activity 57 

of semantic knowledge areas (Devlin et al. 2003; Yarkoni et al. 2011; Huang et al. 2012; Jefferies 58 

2013; Zhu et al. 2013; Della Rosa et al. 2018) and may adapt itself when one or more of the CSC 59 

components are compromised by damage, with IFG and pMTG being able to mutually compensate 60 
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for their failure, or in case of demanding tasks (Jefferies 2013; Davey et al. 2015; Ralph et al. 2016a; 61 

Hallam et al. 2018; Jefferies et al. 2020).  62 

Neural substrates of both unimodal and multimodal semantic representations have been shown to 63 

be recruited by preconscious stimuli, suggesting that semantic knowledge can be processed under 64 

conditions of reduced or even absent awareness (Perrin et al. 2002; Gaillard et al. 2006; Kouider and 65 

Dehaene 2007).  By contrast, semantic control is generally believed to rely on conscious processes 66 

and is generally assessed by tasks involving explicit judgment and decision making processes (Ralph 67 

et al. 2016a; Jefferies et al. 2020) although the amount of semantic control has sometimes been 68 

manipulated in a less explicit manner (Badre and Wagner 2002). Some authors have also considered 69 

the theoretical possibility of automatic control process (Badre and Wagner 2005; Davey et al. 2015). 70 

These control processes, supported by the IFG, are further believed to exert a top-down influence  71 

onto unimodal semantic representation areas (Chiou et al. 2018). However, the possibility remains 72 

that semantic control processes may also be at least partially independent of explicit control 73 

processes. Indeed patients with semantic control deficits can show increased effects of semantic 74 

interference and intrusion errors when no explicit semantic judgment is required: when repeatedly 75 

naming pictures from the same versus a different semantic category, these patients show increased 76 

semantic interference effect relative to healthy controls (Schnur et al. 2006; Hamilton and Martin 77 

2007). It could however be argued that this task, although not directly involving explicit semantic 78 

control in the form of semantic judgment, may however be considered as an explicit task as the 79 

participants have to produce a target response in a top-down manner. Currently, we do not know 80 

whether the semantic control network involves purely explicit semantic control processes or 81 

whether it can also be recruited incidentally.  82 

We addressed this question by assessing brain responses to semantic information using an incidental 83 

semantic activation paradigm. Regional brain responses to the semantic attributes of an unattended 84 

auditory word stream were recorded while the participants’ attentional control was monopolized by 85 

a demanding visual search task in which participants had to detect an open circle among full circles 86 
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and then indicate the location of the aperture (see Figure 1). This task is considered to demand a 87 

high degree of visual selective attention, decision making and motor control (Davis and Palmer 2004; 88 

Ettenhofer et al. 2016; Schill et al. 2020). Neural sensitivity to semantic processing was assessed 89 

using an fMRI response adaptation paradigm (also known as repetition suppression) (Grill-Spector 90 

2006; Garrido et al. 2009; Larsson and Smith 2012). This phenomenon refers to the reduction of local 91 

brain responses to repeated presentation of a specific stimulus type or attribute (Grill-Spector and 92 

Malach 2001; Sayres and Grill-Spector 2006). Representational areas have been shown to present 93 

such a repetition adaptation of neural responses during same semantic family word presentation 94 

(Chouinard et al. 2008; Yee et al. 2010; Menenti et al. 2012). In this study, we aimed to determine 95 

whether response adaptation in semantic representational areas would also be obtained by purely 96 

incidental semantic stimulation, when no semantic information is processed in a conscious and 97 

voluntary manner. Here, while the participants were carrying out the visual search task, auditory 98 

blocks of 5 to 7 words from the same semantic category (tools, clothes, colors, or animals) were 99 

presented (see Figure 1). We reasoned that brain areas sensitive to semantic processing of the word 100 

stream would decrease their response during the presentation of a given homogenous semantic 101 

block and increase again at the beginning of the following block. 102 

Second, we aimed to determine if semantic control-associated regions would also show such 103 

repetition adaptation effects during incidental semantic processing, in the absence of any ‘active’ 104 

engagement of semantic or other control processes. Most studies investigating semantic control so 105 

far used explicit judgment tasks implying active control processes (Badre et al. 2005; Ralph et al. 106 

2016b; Jefferies et al. 2020) whereas in everyday life semantic control is used in a more incidental 107 

manner such as understanding spontaneously in a conversation that ‘spilling the beans’ has nothing 108 

to do with food.  109 

 110 

 111 

112 
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Materials and methods 113 

Participants 114 

Fourteen healthy right-handed volunteers (age range 18-26 y., 8 females) gave their written informed 115 

consent to participate in this study and received a financial compensation. They were non-smokers, 116 

native French-speakers, had normal audition and normal or corrected-to-normal vision. They had not 117 

any history of medical, neurological or psychiatric disorders. The study was approved by the Ethics 118 

Committee of the Faculty of Medicine of the University of Liège. 119 

Experimental design 120 

Participants were told that they participated in an fMRI study focusing on visual attention, which 121 

implied performing a demanding visual search task in a noisy environment (Figure 1). In this task, each 122 

trial consisted of the 1500ms display of 15 to 20 randomly distributed circles (2cm diameter, 123 

distributed over a 20 x 20 area). All of them were complete except one which was open by 6,2° at 124 

random angle. Participants were instructed to specify whether the circle opening was left or right-125 

handed. When the opening was at the top or the bottom of the circle, the opening side was left free 126 

to decide by participants. Simultaneously, verbal stimuli, presented as distractors, were delivered 127 

through headphones. Frequent, concrete, imageable and unambiguous French words, 1 to 3-syllable 128 

long, were selected based on their frequency of occurrence in the usual oral language (> 500 of litteral 129 

frequency, as assessed by BRULEX index (Pagel et al. 1998), from four semantic categories (tools, 130 

clothes, colours, animals). Homophone and polysemic words were discarded (see Table 1).  131 

Table 1. Presented words by semantic family (in French). 132 
 133 

TOOLS CLOTHES COLOURS ANIMALS 
    
Marteau Veste Rouge Biche 
Ciseaux Pantalon Bleu Ecureuil 
Fourche Soulier Vert Lapin 
Pince Bonnet Jaune Tigre 
Scie Echarpe Blanc Mouche 
Pelle Robe Noir Lion 
Pioche Jupe 

 
Mauve 
 
 

Singe 
 

  134 
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 135 

The words were prerecorded by a male speaker and presented in blocks of 5 to 7 words from the same 136 

semantic category, at the rate of one word every 2000 ms. Each word was presented several times, 137 

with an equal probability to occur in any position within the semantic block. The block themselves 138 

were presented in a random order. Each run lasted 3 to 5 minutes according to the number of 139 

presented words and 3 runs were repeated in a row within the MR scanner, with interleaved 3 to 5-140 

minute resting periods (see Figure 1). 141 

 142 

Figure 1. Schematic representation of experimental design.  143 

 144 
 145 

After the MRI sessions, participants were debriefed using questionnaires successively probing their 146 

feelings about the visual task and their feedback, then assessing their comfort and their perception of 147 

the “background noise”, the words that they heard, the words that they were able to remember and 148 

finally, whether they identified any structure in the word stream. This assessment was meant to 149 

exclude subjects who may have had an explicit identification of the semantic nature of the stimuli as 150 
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they may not have focused exclusively on the visual search task.  A debriefing questionnaire further 151 

assessed of the covert nature of the stimuli and the level of attention paid by participants to the 152 

auditory material as well as to the visual display (see Results for further information). 153 

Recordings.  154 

Data were acquired with a 3 T head-only magnetic resonance (MR) scanner (Siemens MAGNETOM 155 

Allegra) using a gradient echo-planar sequence [Gradient echo-planar (EPI) axial slice orientation 156 

whole brain/most of the brain, 34 slices, FoV = 192 x 192 mm², voxel size 3 x 3 x 3 mm³, 25% interslice 157 

gap, matrix size 64 x 64 x 34, TR = 2040ms, TE = 30ms, Flip Angle = 90°].  In all sessions, the first three 158 

volumes were discarded to account for magnetic saturation effects on brain tissue. A structural MR 159 

scan was acquired at the end of the experimental session (T1-weighted three-dimensional 160 

magnetization-prepared rapid-acquisition gradient echo sequence; TR, 1960 ms; TE, 4.43 ms; inversion 161 

time, 1100 ms; FOV, 230 × 173 mm2; matrix size, 256 × 192 × 176; voxel size, 0.9 × 0.9 × 0.9 mm). 162 

Stimuli were displayed using a video projector on a screen positioned at the rear of the scanner, which 163 

the subject could comfortably see through a mirror mounted on the standard head coil. The responses 164 

of the subjects to the distracting visual task were recorded using a small MRI compatible keyboard.  165 

Data analysis.   166 

Data processing and all statistical analyses were performed with the Statistical Parametric Mapping 167 

SPM8 software package (Wellcome Trust Centre for Neuroimaging, London UK, 168 

http://www.fil.ion.ucl.ac.uk/spm/) implemented in MATLAB (MathWorks Inc., Sherborn, MA).  All 169 

functional volumes were spatially realigned, unwarped, normalized to MNI space using the unified 170 

segmentation procedure of SPM8, and smoothed (Gaussian kernel 8mm Full Width at Half Maximum, 171 

FWHM).  172 

The analysis conformed to a mixed effects analysis and accounted for fixed and random effects (RFX). 173 

For each subject, a general linear model was used to estimate brain responses at each voxel. Trials 174 

corresponding to events of the 4 semantic categories (tools, clothes, colors, animals) as well as events 175 

of the visual search task were modelled as stick functions and convolved with the canonical 176 

http://www.fil.ion.ucl.ac.uk/spm/
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hemodynamic response function.  177 

A further regressor modelled the influence of a linear adaptation of BOLD response on word processing 178 

within semantic blocks, assigning a value of 7 for the first word of the block, 6 for the second, 5 for the 179 

third, and so forth. Movement parameters and a constant parameter were also included as covariates 180 

in the design matrix.  181 

High-pass filtering was implemented in the matrix design using a cut-off period of 128 s to remove 182 

slow drifts from the time series. Serial correlations in the fMRI signal were estimated using an 183 

autoregressive (order 1) plus white noise model and a restricted maximum likelihood (ReML) 184 

algorithm.  185 

Linear contrasts assessed: (1) within-block response adaptation to all semantic stimuli (versus 186 

baseline), (2) within-block response adaptation to words of each semantic category (C= colours, V= 187 

clothes, A= animals and O = tools) in comparison to all the others, and (3) the response adaptation of 188 

words across the whole scanning session.  189 

Summary statistics images were smoothed (Gaussian kernel, 6 mm FWHM) and entered in the RFX 190 

analysis. Statistical inferences were performed at the cluster level at p < 0.05, with familywise error 191 

corrections for multiple comparisons across the entire brain volume, with a cluster-forming threshold 192 

of p < 0.001 uncorrected; this procedure has been shown to minimize the likelihood of false positives 193 

(Eklund et al. 2016). For the ROI analyses, the threshold was also defined at p < 0.05 with small volume 194 

familywise error corrections based on Gaussian random field theory over small spherical volumes (10 195 

mm radius) located in structures of interest reported in the literature focusing on semantic processing 196 

and semantic cognition. These ROI were defined based on the average coordinates published in the 197 

literature and involving the angular gyrus (AG) (Seghier et al. 2010), the temporal poles, the lingual 198 

and fusiform gyri (Dehaene et al. 2002; Jefferies and Lambon Ralph 2006; Ruff et al. 2008; Binney et 199 

al. 2010; Price 2010a; Seghier and Price 2012; Ulrich et al. 2015; Teige et al. 2018). We further 200 

considered the anterior superior temporal gyrus (STG) as this part has also been associated with access 201 
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to semantic knowledge (Ruff et al. 2008; Visser and Lambon Ralph 2011; Rämä et al. 2012; Hallam et 202 

al. 2018). For the semantic control framework, ROIs involved the IFG and pMTG based on the spatial 203 

coordinates published by Jefferies et al. and Badre. A priori locations of interest were the following: 204 

AG [-47, -59, 25] (Price 2010a) and [-30, -64, 24] (Price 2010a; Seghier et al. 2010; Seghier and Price 205 

2012; Price et al. 2015), ATL [-38, 18, -24] (Damasio et al. 2004; Visser et al. 2012; Rice et al. 2015), 206 

right ATL [40, 24, -33] (Price 2010b; Visser et al. 2012), fusiform gyrus [-30, -70, -10] (Dehaene et al. 207 

2002; Jefferies and Lambon Ralph 2006; Ruff et al. 2008; Binney et al. 2010; Price 2010a; Seghier and 208 

Price 2012; Ulrich et al. 2015; Teige et al. 2018), STG [-46, -6, -10] (Ruff et al. 2008; Visser and Lambon 209 

Ralph 2011; Rämä et al. 2012; Hallam et al. 2018), IFG [-54, 18, 8] and pMTG [-56, -50, 3] (Badre et al. 210 

2005; Whitney et al. 2011; Teige et al. 2018)]. Stereotactic coordinates refer to the MNI space. 211 

We also investigated functional connectivity between activity in the left IFG and distant brain regions 212 

involved in semantic processing. Using psychophysiological interaction (Friston et al. 1997; Gitelman 213 

et al. 2003) we determined to which extent category-specific processing regions interacted with the 214 

semantic control network.  215 

After defining the contrasts of interest, BOLD signals were extracted from the seed region of interest 216 

(Left IFG) of each subject.  A new linear model was then constructed for each participant, using three 217 

regressors: the covert listening condition of interest (e.g., animal names), the activity in the reference 218 

area, and the interaction of interest between the first (psychological) and second (physiological) 219 

regressors.  Standard psychophysiological (PPI) analyses were carried out for each subject using the 220 

Generalized PPI toolbox (McLaren et al. 2012). These contrast images were then entered in a second- 221 

level (random effects) analysis. A one-sample t-test was performed to assess the functional 222 

connectivity pattern during passive listening for each semantic family separately (cluster level at p < 223 

0.05, with familywise error corrections for multiple comparisons across the entire brain volume, with 224 

a cluster-forming threshold of p < 0.001 uncorrected. For the ROIs the threshold was defined at p < 225 

0.05 with small volume familywise error corrections over small spherical volumes (10 mm radius) 226 
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located in structures of interest reported in the literature focusing on semantic processing and 227 

semantic cognition). 228 

 229 

Results.   230 

Behavioral results 231 

All subjects performed the task with relatively high accuracy (mean 72.4 ± 8 % hits), suggesting that 232 

participants focused on the visual task as instructed.  At debriefing, none was aware that words were 233 

organized by semantic categories although most participants could recall a few words (5.61 ± 1.06 234 

words, out of 28).  Participants also reported strong engagement in the visual search task as they 235 

described their behaviour as ‘focused’ to ‘very focused’ for this task. Participants described the visual 236 

task as ‘demanding’ to ‘very difficult’, and the background noise as ‘not bothering’ to ‘slightly 237 

bothering’. Most of them appeared to have been more disturbed by the MRI noise itself. They were 238 

unable to reliably identify presented words among other words in a list (mean identification: 6.12 ± 239 

1.9 out of 28 target words presented together with non-target words in a complete list of 40 words). 240 

Finally, when asked to cite five animal, tool or clothes names, subjects produced very few words that 241 

had been presented during the experimental task in the scanner. For clothes an average of 1,2 ± 0.5 242 

names were identical to one of presented words; for animals, this number was 1.1 ± 0.4 identical and 243 

for tools it was 0.8 ± 0.3. Colour words were not assessed given the limited number of color words that 244 

can be produced. 245 

 246 

Functional MRI results 247 

Within-block adaptation to semantic stimuli (irrespective of semantic categories) elicited significant 248 

activation of several clusters (see Table 3) in both the semantic representation amodal network (right 249 

ATL, left AG, left thalamus, left fusiform gyrus, left cingulate gyrus, left caudate nucleus and left STG) 250 

and the semantic control network (left IFG and left pMTG). This was also support when considering 251 

response adaptation across the entire scanning session: again, irrespective of semantic category, 252 
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response adaptation was observed in both IFG and pMTG ROIs, in addition to temporo-parietal ROIs 253 

of the semantic representation amodal network (see table 4 and figure 2). 254 

 255 

Figure 2. Semantic-related adaptation activations throughout scanning session – All semantic 256 

categories included.  257 

 258 

The results are shown at a statistical of p < 0.001 uncorrected, or p < 0.05 FWE corrected over SVC. 259 

 260 

For assessing adaptation responses to specific semantic categories, we contrasted one semantic 261 

family to all others (e.g., tool names activations minus animal, color and cloth names). Within-block 262 

specific adaptation to tool names (versus all other categories) was associated with significant activity 263 

foci in left AG, left superior temporal gyrus, motor cortex, right ITG and left fusiform gyrus when 264 

compared to other semantic categories (Table 2, Figure 3).  Activity foci for within-block adaptation 265 

associated with animal names (versus all other categories) involved the left AG, left hippocampus, 266 

bilateral precuneus and the left caudate nucleus (Table 2, Figure 3).  For color names versus all other 267 



v20180504 

13 
 

categories, significant within-block adaptation was detected in the right fusiform gyrus, right 268 

hippocampus, left posterior hippocampus, and left striatum. (Table 2, Figure 3).   269 

 270 

Table 2. Within-semantic block adaptation – Specific semantic categories.  271 
 272 

 MNI coordinates   
 x z z z score 
TOOLS     

Left angular gyrus -22 -78 16 3.25 

Right ITG 54 -4 -14 3.23 

Left STG -40  -12 -20 2.84 

Left fusiform gyrus -20 -74 -4 4.03 

Left motor cortex -30 -48  40 3.00 

Left precuneus -35 -32 36 2.89 

ANIMALS  
x 

 
y 

 
z 

 

Left angular gyrus -46 -70  24 2.85 

Left hippocampus -24 -4 -28 2.95 

Right precuneus  12 -50  50 3.36 

Left caudate nucleus -22 -22  20 3.20 

Left precuneus -10 -40  40 3.24 

COLOURS  
x 

 
y 

 
z 

 
score 

Right fusiform gyrus   8 -80 -2 3.63 

Left post. hippocampus -34 -36 2 3.17 

Right hippocampus  28 -34 -18 4.03 

Left striatum 
 

-28 -12  2 3.20 

CLOTHES     

Left angular gyrus -28 -81  28 3.90 

Left thalamus -4 -2 0 3.35 

Right mid. cingulate gyrus  8 -4  32 3.94 

Right ATL  30  14 -34 3.22 

 

ITG = inferior temporal gyrus, STG = superior temporal gyrus, pMTG = posterior middle temporal gyrus, ATL = anterior temporal lobe.  

Significant at p < 0.05 corr. over SVC. All coordinates refer to MNI space.  

 

Selective within-block adaptation to cloth names (versus all others) was significant in left AG, left 273 

thalamus, right middle cingular gyrus and right ATL (Table 2, Figure 3).  Overall, these results show 274 

that semantic processing areas were selectively and automatically recruited by covert auditory 275 

stimuli in the same way they transmodally encode conceptual representations of concrete objects 276 

and their properties in overt studies (Thompson-Schill 2003; Wheatley et al. 2005; Barsalou 2008; 277 

Kiefer and Pulvermüller 2012) with a differentiation of a dorsal stream (involved in the 278 
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representations of semantics related to movements and actions and a ventral stream (involved in the 279 

semantic representation of shapes and color (Bartels and Zeki 2000; Hubbard et al. 2011; Perlman et 280 

al. 2011; Weiner and Zilles 2016; Neudorf et al. 2019), and a more general involvement of left AG 281 

which has been regarded as a thematic hub for semantic representation (Lewis et al. 2019) as well as 282 

essential for automatic retrieval of specific semantic information (Davey et al. 2015; Jefferies et al. 283 

2020) or more recently as a multimodal ‘automatic’ buffer (Humphreys and Lambon Ralph 2015; 284 

Humphreys et al. 2015).  285 

Table 3. Within-semantic block adaptation – All semantic categories included. 286 
 287 

 MNI coordinates  

Area 
 

x y z z score 

Left angular gyrus -40 -74 32 2.95 

Left IFG -48 28 12 3.51 

Left caudate nucleus -32 18 0 2.57 

Left cingulate gyrus -12 4 30 2.57 

Left STG -54 -12 -6 3.28 

Left pMTG -44 -56 6 4.11 

Left fusiform gyrus -20 -72 -6 4.23 

Vermis -8 -60 -26 3.15 

Right ATL 36 10 -26 3.85 

Right lingual gyrus 22 -80 -5 3 

Right STG 60 -4 -8 3.21 

Right ITG 52 62 -12 3.41 

 288 
ITG = inferior temporal gyrus, pMTG = posterior middle temporal gyrus, IFG = inferior frontal gyrus.  289 

Significant at p < 0.05 corr. over SVC.  All coordinates refer to MNI space. 290 

 291 

Importantly, within-block adaptation specific to semantic categories versus others did not yield any 292 

activity in the regions involved in semantic control (e.g., IFG and pMTG), supporting the fact that these 293 

latter regions are not involved in semantic representation itself nor in thematic associations but play 294 

a more general and less category-specific role in the context of our task.  295 

Moreover, note that in order to further demonstrate that within-block signal changes were related to 296 

semantic processing and not to mere effect of time or item repetition (Kalm and Norris 2017), 297 

responses to ‘pseudo-blocks’ straddling from the end of a semantic category to the beginning of 298 
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another (e.g., items 5-6-7 of “colours” family and 1-2-3 of “animals”) had also been assessed. This 299 

analysis did not yield any significant response (whole brain thresholded at p < 0.001 uncorrected).  300 

 301 

Table 4. Semantic-related adaptation activations throughout scanning session, regardless of specific 302 
semantic category.  303 
 304 

 MNI coordinates  

Area x 
 

y 
 

z 
 

z score 

Left IFG -46 28 12 3.22 

Left ITG -54 -38 -6 2.68 

Left pMTG -54 -52 2 3.40 

Left fusiform gyrus -21 -70 -5 3.29 

Left angular gyrus -28 -68 22 3.57 

Right IFG 36 48 -14 3.24 

Right anterior cingulate gyrus 2 32 22 2.79 

Right pMTG 54 -38 -6 3.01 

 
ITG = inferior temporal gyrus, pMTG = posterior middle temporal gyrus, IFG = inferior frontal gyrus, ITG = inferior temporal gyrus.  

Significant at p < 0.05 corr. over SVC. All coordinates refer to MNI space. 

 

 

 

 305 

We also ran a mixed ANOVA on BOLD signal (ß values of category-specific contrasts, i.e., ‘tools vs all’)) 306 

to directly test the interaction between repetition and brain region (ROIs). We observed the following 307 

results: tools, left IFG vs fusiform gyrus* - interaction: p = 0.0028; clothes, left IFG vs right ATL** - 308 

interaction: p = 0.0034; animals, left IFG vs precuneus*** - interaction:  p = 0.001; colour names 309 

repetition, left IFG vs right fusiform**** - interaction, p = 0.0041 (IFG at [-46, 28, 12], * fusiform gyrus 310 

at [-20, -74, -4]; **right ATL at [30, 14, -34]; ***right precuneus at [-10, -40, 40]; **** right fusiform at 311 

[8, -80, -2]).This additional analysis confirms our initial observation of a null response for category-312 

specific semantic adaptation in control regions in comparison with representational areas. 313 

Figure 3. Within-semantic block activations related to specific semantic categories.  314 
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 315 

 316 
 317 

The results are shown at a statistical of p < 0.001 uncorrected, or p < 0.05 FWE corrected over SVC. 318 

 319 

Finally, to further understand the dynamics of semantic control, a psychophysiological interaction (PPI) 320 

analysis was conducted for each semantic family in order to determine to which extent the category-321 

specific processing regions and the semantic control network are functionally connected to each other 322 

in each block.  We chose the left IFG as seed region because of the high reliability of its involvement 323 

across numerous studies regarding semantic control that surpass that of pMTG (Jefferies 2013; Ralph 324 
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et al. 2016b; Chiou et al. 2018; Jefferies et al. 2020). As shown in Table 5, we found significant 325 

functional connectivity between the IFG seed region and the other regions involved in the 326 

representation of semantic information that had already been highlighted for the category-specific 327 

contrasts in the preceding analyses (see Figure 4).  328 

 329 

Figure 4. PPI results. Main cerebral regions that functionally connect to left IFG during covert 330 

presentation of stimuli from specific semantic categories (left) and for all semantic stimuli (right).   331 

 332 

 333 
 334 
Functional connectivity results:  for animal names (red), for colors (green blobs), for clothes names (cyan) and for tool names (blue blobs). 335 

Functional connectivity for all semantic stimuli is presented on the right, with yellow blobs. Results are displayed at a statistical threshold of 336 

p < 0.001 uncorrected.  337 

 338 

For tool names, left IFG activity was correlated to left motor cortex, left (anterior) STG, left angular 339 

gyrus and left ATL. For animal names the latter correlated with left fusiform gyrus, left hippocampus 340 

and right precuneus. For colours we found significant association with right fusiform gyrus, left 341 
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posterior hippocampus and right hippocampus. For clothes, left IFG activity correlated with left 342 

precuneus, right middle cingulate gyrus and right ATL.  343 

Ultimately, we conducted a PPI analysis over all semantic categories at the same time, in order to 344 

highlight also functional connectivity with the left pMTG: if the semantic control network is involved 345 

in a domain-general manner during semantic adaptation, the functional connectivity between the left 346 

IFG seed region and the pMTG should be observed when assessing connectivity independently of type 347 

of semantic category. When running this analysis, (see Table 5 and figure 4), we indeed observed 348 

significant functional connectivity between the left IFG and the left pMTG, as well as the right IFG and 349 

anterior cingulate cortex involved in semantic control or more general executive control.  350 

 351 

Table 5. PPI results. First panel shows cerebral regions correlating with BOLD response in the left IFG 352 

during passive listening of specific semantic families versus all others. Second panel lists regions that 353 

correlate with left IFG for all semantic content.   354 

 355 
 MNI coordinates   
 x z z z score 
TOOLS     

Left motor cortex -54 -44 46 3.84 

Left STG -40  -4 -16 4.73 

Left angular gyrus -42 -60 26 3.75 

Left ATL -30 16 -34 3.92 

ANIMALS  
x 

 
y 

 
z 

 

Left fusiform gyrus -20 -78  -16 5.67 

Left hippocampus -28 4 -18 5.09 

Right precuneus  12 -36  44 4.88 

COLOURS  
x 

 
y 

 
z 

 
score 

Right fusiform gyrus   17 -80 -11 3.92 

Left post. hippocampus -34 -36 2 3.17 

Right hippocampus  38 -30 -20 3.71 

CLOTHES     

Left precuneus -2 -12 76 4.04 

Right mid. cingulate gyrus  12 6  38 3.84 

Right ATL  33  12 -30 3.45 

     

 MNI coordinates   

 x z z z score 

ALL SEMANTIC     
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Left pMTG -44 -56 -8 3.97 

Left ant. cingulate gyrus -2  38 22 2.56 

Left angular gyrus -32 -70 30 2.53 

Right IFG 46 40 -18 2.64 

 
 
STG = superior temporal gyrus, ATL = anterior temporal lobe, pMTG = posterior middle temporal gyrus, IFG = inferior frontal gyrus.  

Significant at p < 0.05 corr. over SVC (10 mm radius). All coordinates refer to MNI space. 

 
 356 

 357 

Discussion 358 

This study examined the nature of the semantic control network by assessing its involvement in 359 

implicit semantic processing tasks. Using an fMRI adaptation paradigm for incidentally activated 360 

semantic information we observed robust adaptation within the ATL, the AG and ventral temporo-361 

occipital areas across all semantic categories, consistent with implicit activation of semantic 362 

knowledge. These regions also showed semantic category-specific differences in neural responses.   363 

Most importantly, adaption was observed across all categories, without any category-specific 364 

differences, in the IFG and pMTG associated with semantic control. This was observed while 365 

participants could not direct their attention to the stimuli nor process semantic information in any 366 

explicit and controlled manner. The implicit nature of these semantic and semantic control responses 367 

is further supported by the high hit rate for the demanding visual search task and the participants’ 368 

debriefing reports, showing that participants were unable to recall or recognize most of the 369 

presented words and that they were unaware of the organization of the words into semantically 370 

coherent blocks.  371 

The activity of the pMTG in covert semantic processing here is important to be highlighted given that 372 

it had been specifically associated with explicit, judgement-based and demanding semantic tasks in 373 

previous studies  (Davey et al. 2016; Thompson et al. 2016; Jefferies et al. 2020), for instance when 374 

ongoing retrieval needs to be shaped to context (e.g., in a task where the association honey > 375 

marriage would prevail over honey > bee). Our results suggest that, under conditions promoting 376 

automatic semantic processing, semantic control areas can nevertheless be recruited, potentially 377 

following a bottom-up information transfer from semantic representation-specific regions. 378 
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The CSC framework would anticipate recruitment of pMTG and IFG when activation within the 379 

semantic system itself triggers the engagement of control (e.g. ambiguous or unexpected inputs) 380 

(Jefferies 2013; Ralph et al. 2016a).  Our data suggest that this recruitment also occurs in the absence 381 

of conscious semantic processing. 382 

The finding of semantic control network recruitment in covert conditions could indicate that this 383 

network is not specific to explicit or conscious semantic control. It could be argued that semantic 384 

control network activation in covert semantic processing conditions is a mere bottom-up activation 385 

resulting from connections between the transmodal hubs (ATL) and the semantic control network 386 

(Binney et al. 2012; Ralph et al. 2016b).  It is important to note here that our PPI analysis showed 387 

highly specific functional connectivity patterns between the frontal part of the semantic control 388 

network and specific semantic processing areas indicating that the control network is not just 389 

generally co-activated in covert semantic processing. Rather, it adapts its functional connectivity to 390 

category-specific semantic processing areas, as a function of the specific semantic features being 391 

(covertly) processed. The intervention of the semantic control network in a covert semantic 392 

habituation paradigm as used in this study may reflect the progressive diminution of covert semantic 393 

monitoring processes, as the semantic control network gradually detects the predictability and the 394 

within-block semantic coherence of presented words.  395 

Confusions between everyday objects when simultaneously available (such as between a fork and a 396 

spoon) or difficulties in retrieving the use of objects when no contextual cues are available (Jefferies 397 

and Lambon Ralph 2006; Ralph et al. 2016b; Jackson et al. 2021) as observed in patients with 398 

semantic aphasia (SA) may be the consequence of the degradation of ‘automatic’ semantic control. 399 

Naming or verbal fluency impairment in these patients may also stem at least partially from these 400 

control deficits. The poor capacity of SA patients to perceive subtle contextual aspects in a 401 

conversation, such as homonym discrimination, implied meaning or even humor (Jefferies and 402 

Lambon Ralph 2006; Hoffman et al. 2018), may be further aspects linked to automatic semantic 403 

control impairment.  Unlike in patients with semantic dementia, cueing often allows patients with SA 404 
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to perform better in various semantic tasks, clearly showing that at least some of their difficulties are 405 

related to loss of control and retrieval mechanisms rather than a loss of semantic knowledge 406 

(Chapman et al. 2020). 407 

Given the domain-general aspects of semantic control (Hoffman et al. 2009; Jackson et al. 2021), we 408 

should indeed expect the same ‘automatic control’ mechanisms to apply for verbal and other 409 

modalities such as visual, non-verbal auditive, olfactive or tactile stimuli. The fMRI adaptation 410 

paradigm presented in this study could indeed be easily extended to other stimuli, by presenting 411 

streams of non-verbal auditory stimuli sharing or not semantic features. However, when using 412 

streams of visual objects, the main task on which the focus of attention is directed would need to be 413 

changed as there would be interference between the visual nature of the main task and the 414 

incidentally attended stream of visual objects. 415 

As mentioned above, AG is a complex region, and its precise functions are still a matter of debate 416 

(Seghier et al. 2010). The strong AG response we observed for both general semantic and category-417 

specific adaptation reflects this complexity, indicating that the AG and its different subparts may 418 

subserve both specific semantic and more general control processes. 419 

Finally, our results can also be considered in the light of recent computational models of the  420 

semantic system which have integrated control and representational mechanisms (Hoffman et al. 421 

2018; Jackson et al. 2021), unifying the Hub-and-Spoke theory (Ralph et al. 2016b) and the Controlled 422 

Semantic Cognition Framework (Ralph et al. 2016b; Jefferies et al. 2020). These models also allow for 423 

dynamic properties such as recent experience buffering and conceptual learning, as well as damage 424 

caused by degeneration or stroke. The reverse-engineered model developed by Jackson et al. posits 425 

that semantic cognition relies on indirect interactions between a single deep multimodal hub 426 

(putatively the ATL) and modality-specific representational areas (spokes). Regarding control 427 

mechanisms, simulations provided significantly better results when control operated on the 428 

modality-specific areas than on its deep components (Jackson et al. 2021).This model therefore 429 

predicts that control regions should not directly connect to ATL. The present study supports this 430 
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prediction, as we did not observe any significant functional connectivity between the IFG and ATL 431 

ROIs, but significant connectivity between the IFG and other category-specific representational 432 

areas. Moreover, Hoffman et al. proposed a computational model combining a Hub-and-spokes 433 

architecture with a ‘buffer’ system that allows activated semantic information to be influenced by 434 

current context; this interaction between semantic knowledge and context has been proposed to be 435 

supported by the ventral parietal cortex (VPC). The strong and persistent neural responses we 436 

observed in ventro-parietal cortex (AG) may support this prediction as the AG response pattern 437 

differed from the other semantic ROIs in that it was neither specific to semantic knowledge nor to 438 

control.  439 

 440 

Conclusions  441 

Automatic semantic processing of an unattended verbal stream recruits not only posterior cortices 442 

known as unimodal and amodal semantic representation areas, but also IFG and pMTG, which are 443 

usually associated with semantic control. Moreover, the left IFG showed category specific functional 444 

connectivity with different semantic processing areas in temporal cortices and brain regions 445 

associated. These results indicate that semantic control processes do not only intervene in explicit, 446 

judgment based semantic tasks but also in implicit semantic processing tasks. The fronto-temporal 447 

semantic control network may be involved in the covert detection of semantic regularities allowing 448 

for more efficient identification and selection of semantic representations in temporal cortices.    449 

  450 
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